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Abstract

MULTI-FIDELITY STOCHASTIC COLLOCATION

Maziar Raissi, PhD

George Mason University, 2013

Dissertation Director: Dr. Padmanabhan Seshaiyer

Over the last few years there have been dramatic advances in our understanding of

mathematical and computational models of complex systems in the presence of uncertainty.

This has led to a growth in the area of uncertainty quantification as well as the need to

develop efficient, scalable, stable and convergent computational methods for solving dif-

ferential equations with random inputs. Stochastic Galerkin methods based on polyno-

mial chaos expansions have shown superiority to other non-sampling and many sampling

techniques. However, for complicated governing equations numerical implementations of

stochastic Galerkin methods can become non-trivial. On the other hand, Monte Carlo and

other traditional sampling methods, are straightforward to implement. However, they do

not offer as fast convergence rates as stochastic Galerkin. Other numerical approaches are

the stochastic collocation (SC) methods, which inherit both, the ease of implementation of

Monte Carlo and the robustness of stochastic Galerkin to a great deal. However, stochastic

collocation and its powerful extensions, e.g. sparse grid stochastic collocation, can simply

fail to handle more levels of complication. The seemingly innocent Burgers equation driven

by Brownian motion is such an example. In this work we propose a novel enhancement

to stochastic collocation methods using deterministic model reduction techniques that can

handle this pathological example and hopefully other more complicated equations like



Stochastic Navier Stokes. Our numerical results show the efficiency of the proposed tech-

nique. We also perform a mathematically rigorous study of linear parabolic partial differ-

ential equations with random forcing terms. Justified by the truncated Karhunen-Loève

expansions, the input data are assumed to be represented by a finite number of random

variables. A rigorous convergence analysis of our method applied to parabolic partial dif-

ferential equations with random forcing terms, supported by numerical results, shows that

the proposed technique is not only reliable and robust but also very efficient.



Introduction

The effectiveness of stochastic partial differential equations (SPDEs) in modelling compli-

cated phenomena is a well-known fact. One can name wave propagation [Pap71], diffusion

through heterogeneous random media [Pap95], randomly forced Burgers and NavierStokes

equations (see e.g [BT73,DPD03,KMS+97,MR04] and the references therein) as a couple

of examples. Currently, Monte Carlo is by far the most widely used tool in simulating

models driven by SPDEs. However, Monte Carlo simulations are generally very expensive.

To meet this concern, methods based on the Fourier analysis with respect to the Gaussian

(rather than Lebesgue) measure, have been investigated in recent decades. More specifi-

cally, Cameron–Martin version of the Wiener Chaos expansion (see, e.g. [CM47,HKPS93]

and the references therein) is among the earlier efforts. Sometimes, the Wiener Chaos ex-

pansion (WCE for short) is also referred to as the Hermite polynomial chaos expansion.

The term polynomial chaos was coined by Nobert Wiener [Wie38]. In Wieners work, Her-

mite polynomials served as an orthogonal basis. The validity of the approach was then

proved in [CM47]. There is a long history of using WCE as well as other polynomial chaos

expansions in problems in physics and engineering. See, e.g. [CC70,OB67,Cho71,Cho74],

etc. Applications of the polynomial chaos to stochastic PDEs considered in the litera-

ture typically deal with stochastic input generated by a finite number of random variables

(see, e.g. [SG02, GS03, XK03, ZL04]). This assumption is usually introduced either di-

rectly or via a representation of the stochastic input by a truncated Karhunen–Loève ex-

pansion. Stochastic finite element methods based on the Karhunen–Loève expansion and

Hermite polynomial chaos expansion [GS03, SG02] have been developed by Ghanem and

other authors. Karniadakis et al. generalized this idea to other types of randomness and

1



polynomials [JSK02, XK03, XK02]. The stochastic finite element procedure often results

in a set of coupled deterministic equations which requires additional effort to be solved.

To resolve this issue, stochastic collocation (SC) method was introduced. In this method

one repeatedly executes an established deterministic code on a prescribed node in the ran-

dom space defined by the random inputs. The idea can be found in early works such as

[MH03,TPPM97]. In these works mostly tensor products of one-dimensional nodes (e.g.,

Gauss quadrature) are employed. Tensor product construction despite making mathemat-

ical analysis more accessible (cf. [BNT07]) leads to the curse of dimensionality since the

total number of nodes grows exponentially fast as the number of random parameters in-

creases. In recent years we are experiencing a surge of interest in the high-order stochastic

collocation approach following [XH05]. The use of sparse grids from multivariate inter-

polation analysis, is a distinct feature of the work in [XH05]. A sparse grid, being a

subset of the full tensor grid, can retain many of the accuracy properties of the tensor

grid. While keeping high-order accuracy, it can significantly reduce the number of nodes

in higher random dimensions. Further reduction in the number of nodes was pursued in

[AA09,MZ09, NTW08b,NTW08a]. Applications of these numerical methods take a wide

range. Here we mention some of the more representative works. It includes Burgers equa-

tion [HLRZ06,XK04], fluid dynamics [KLM06,KNG+01,LMRN+02,LWSK07,XK03], flow-

structure interactions [XLSK02], hyperbolic problems [CGH05,GX08,LSK06], model con-

struction and reduction [DGRH07,GMPW05,GD06], random domains with rough bound-

aries [CK07,LSK07,TX06,XT06], etc.

Along with an attempt to reduce the number of nodes used by sparse grid stochastic

collocation, one can try to employ more efficient deterministic algorithms. The current trend

is to repeatedly execute a full-scale underlying deterministic simulation on prescribed nodes

in the random space. However, model reduction techniques can be employed to create a

computationally cheap deterministic algorithm that can be used for most of the grid points.

This way one can limit the employment of an established while computationally expensive

algorithm to only a relatively small number of points. A related method is being used by K.

2



Willcox and her team but in the context of optimization [REWH08]. “Multifidelity”, which

we also adopt, is the term they employed in their work. For a tractable demonstration of

our method we consider linear parabolic partial differential equations with random forcing

terms. We show that our method dramatically decreases the computational cost of sparse

grid stochastic collocation methods. The idea of the method is very simple. For each point

in the stochastic parameter domain we search to see if the resulting deterministic problem is

already solved using a high fidelity (accurate but computationally expensive) algorithm, e.g.

Backward Euler Finite Elements method, for a sufficiently close problem. If yes, we use the

solution to the nearby problem to create POD (Proper Orthogonal Decomposition) basis

functions. These are highly relevant global basis functions. We then employ POD-Galerkin

method, a low fidelity algorithm (less accurate but computationally cheap), to solve the

original problem. We provide a rigorous convergence analysis for our proposed method

applied to linear parabolic partial differential equations. It is shown by numerical examples

that the results of numerical computation are consistent with theoretical conclusions.

We also consider the Stochastic Burgers equation studied in [HLRZ06] to test our method

against a serious while still tractable problem. We believe that the non-linear nature of the

Burgers equation with the extra complexity of Brownian motion, makes this equation a

proper test for our method. The regular repetitive execution of the full-scale underlying

high-fidelity deterministic algorithm for the sparse grid stochastic collocation simply fails

for this equation. This equation is also studied in [HLRZ06] using Wiener Chaos expansion.

For the deterministic Burgers equation resulting from stochastic collocation samples, we are

going to use a high fidelity algorithm called “group finite element” (GFE) and a low fidelity

algorithm called “group proper orthogonal decomposition” (Group POD). These two meth-

ods are discussed in [DS10]. The GFE method, also known as product approximation, is a

finite element (FE) technique for certain types of non-linear partial differential equations. It

expresses the non-linear terms of a PDE in a grouped form. As a result, spatial discretiza-

tion of non-linear terms is computed only once before integration. Therefore, a substantial

reduction in computational cost is achieved [CGMSS81, Fle83, Roa98]. Experiments with

3



the GFE method have indicated an increase in economy and a slight increase in the nodal

accuracy compared to FE solutions of the unsteady Burgers equations and many other

problems [CGMSS81, Fle83, SF92]. Although theoretical results exist for other problems

[CGMSS81,SSA84,CLZ89,DD75,LTZW89,Mur86,TOU90], we are unaware of convergence

theory for the GFE applied to Burgers equation. The computational advantage of the GFE

method over the conventional FE method for two and three dimensional Burgers equations

and viscous compressible flows is demonstrated in [Fle83, SF92]. As for the group POD

method, we use the projection of grouped non-linear terms onto a set of global basis func-

tions. This projection onto global basis functions further reduces the cost of simulation due

to symmetry in the non-linear terms. Reduced order modelling, using proper orthogonal

decompositions (POD) along with Galerkin projection, for fluid flows has seen extensive

applications studied in [Sir87,CAM+88,HLB98,Fah01, ILD00,KV01,KV02,HY02,RCM04,

Cam05]. Proper orthogonal decomposition (POD) was introduce in Pearson [Pea01] and

Hotelling [Hot33]. Since the work of Pearson and Hotelling, many have studied or used

POD in a range of fields such as oceanography [BV97], fluid mechanics [Sir87,HLB98], sys-

tem feedback control [Rav00,ABK01,AK01,KBTB02,AK04, LT05], and system modeling

[Fah01,KV02,RCM04,HY05].

In an attempt to increase the accuracy of our method, we employ local improvement

techniques for reduced-order models using sensitivity analysis of the proper orthogonal de-

composition (see [HBP09,BB97]). A serious limitation of proper orthogonal decomposition

basis is that while it accurately represents the flow data used to generate it, it may not

be as accurate when applied off-design. To mitigate this issue, one should update the basis

before applying it to solve a nearby problem.

4



Chapter 1: Multi-fidelity Stochastic Collocation Method

applied to Stochastic Burgers Equation

Our objective in this work is to demonstrate how sparse grid stochastic collocation method

can be enhanced using deterministic model reduction techniques. To simplify the presenta-

tion while employing a serious test, we study the stochastic Burgers equation. It is a well

known fact that the deterministic Burger’s equation is not a good model of turbulence. It

does not display chaotic behaviour; all solutions converge to a unique stationary solution as

time goes to infinity, even in the presence of a forcing term in the right hand side. However,

several authors (see e.g. [CAM+88,CTMK93,Jen69,HY75,KPZ86]) have suggested to use

the Stochastic Burgers equation with random forcing term as a simple model for turbulence

and to study the dynamics of interferences.

1.1 Stochastic Burgers - A tractable while serious test

The Stochastic Burgers equation studied in this work is given by,

ut +
1

2
(u2)x = µuxx + σ(x)Ẇ (t), (1.1)

(t, x) ∈ (0, T ]×[0, 1], u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0, whereW (t) is a Brownian motion

and u0 ∈ L2([0, 1]) is a deterministic initial condition. If ‖u0‖L2
< ∞ and ‖σ‖L2

< ∞, it

is known (see, e.g [DPDT94]) that (1.1) has a unique square integrable solution. If u is

the solution of equation (1.1), then u is not only a function of t and x, but it is also a

function of the Brownian motion path W t
0 = {W (s), 0 ≤ s ≤ t}. In order to approximate

the Brownian motion with a finite number of independent and identically distributed (iid)

5



standard normal random variables, we let {hk, k = 1, 2, . . .} be an arbitrary orthonormal

basis in L2([0, t]) and define ξk :=
∫ t
0 hk(s)dW (s), for k ∈ {1, 2, . . .}. It can be shown that

ξk are iid Gaussian random variables. It is a standard fact that we can expand W (s) as

W (s) =

∫ t

0
χ[0,s](τ)dW (τ) =

∞
∑

k=1

ξk

∫ s

0
hk(τ)dτ, (1.2)

where χ[0,s](τ) is the characteristic function of the interval [0, s]. Note that

χ[0,s](τ) =
∞
∑

k=1

ckhk(τ),

where ck =
∫ t
0 χ[0,s](τ)hk(τ)dτ =

∫ s
0 hk(τ)dτ . If {hk, k = 1, 2, . . .} are chosen as Haar

wavelets, then expansion (1.2) is exactly the Levy-Ciesielski construction [McK69] of Brow-

nian motion. Therefore we can view a solution u of (1.1) as a function of x, t and ξ =

(ξ1, ξ2, . . .). We also know that expansion (1.2) converges in the mean square sense (i.e.,

E[W (s)−∑d
k=1 ξk

∫ s
0 hk(τ)dτ ]

2 goes to zero as d→ ∞ uniformly for s ≤ t.). Our first step

is to truncate expansion (1.2) at some point d to get

ut +
1

2
(u2)x = µuxx + σ(x)

d
∑

k=1

ξkhk(t). (1.3)

In the following, we are seeking an approximation to a random field

ud(ξ̂; t, x) ∈ C∞(Rd;L2([0, T ];W ([0, 1])))

which satisfies equation (1.3) along with the initial and boundary conditions of problem

(1.1), where ξ̂ = (ξ1, ξ2, . . . , ξd) andW ([0, 1]) is a Banach space of functions v : [0, 1] −→ R

6



to be later specified. Let us assume that the random vector ξ̂ has ρ(ξ̂) (which is simply the

multiplication of probability densities of d standard normal variables) as its joint probability

density. We are also interested in approximating expectation and higher moments E[ukd] ∈

L2([0, T ];W ([0, 1])), k = 1, 2, . . . of the solution which are given by

E[ukd](t, x) =

∫

Rd

ukd(ξ̂; t, x)ρ(ξ̂)dξ̂, k ∈ {1, 2, . . .}. (1.4)

For simplicity, we are overloading the symbol ξ̂ to denote both a random vector and its

realizations. For each fixed ξ̂, equation (1.3) can be written as,

ut +
1

2
(u2)x = µuxx + fd(t, x), (1.5)

where fd(t, x) = σ(x)
∑d

k=1 ξkhk(t). Whether we are using Monte Carlo or Stochastic

Collocation, in order to solve the stochastic equation (1.3), we need to solve the deterministic

equation (1.5) many times for different values of ξ̂. In the following, we specify the high

fidelity and the low fidelity algorithms that we will employ to solve equation (1.5).

1.2 GFE as a high-fidelity deterministic algorithm

A standard finite element approximation to the solution ud(t, x) of equation (1.5) can be

written as ud,N (t, x) =
∑N

j=1 αj(t)βj(x), where {βj(x), j = 1, . . . , N} are N piecewise linear

finite element basis functions, and each αj(t) is an unknown function of time. We also

define WN ([0, 1]) := span{βj , j = 1, . . . , N}. The basis functions are chosen according

to a computational grid on the domain [0,1] with {xn, n = 0, . . . , N + 1} as its set of

nodes, in a way that βj(xn) = δj,n, where δj,n is the Kronecker delta and j, n = 1, . . . , N .

Note that u2d,N (t, xn) =
∑N

j=1 α
2
j (t)βj(xn). This motivates us to approximate u2d(t, x) by

7



∑N
j=1 α

2
j (t)βj(x). Use of the weak form of (1.5) and the approximations for ud and u2d

results in the following differential equations.

Mα̇ = −µAα− 1

2
G(α) + V (t), (1.6)

α(0) = α0 = [(u0, βi)]
N
i=1,

where G(α) = N [diag(α)]α, [N ]ij = (β′j , βi), [M ]ij = (βj , βi), [A]ij = (β′j , β
′
i), [V (t)]i =

(fd(t, .), βi) and (f, g) =
∫ 1
0 f(x)g(x)dx is the standard L2([0, 1]) inner product. We are

using ẏ and y′ to denote the derivatives with respect to time and space, respectively. This

algorithm is called group finite elements (GFE). A detailed study of this method can be

found in [DS10]. We employ this algorithm only once for ξ̂ = 0 which results in fd ≡ 0.

Note that if more accurate results are needed, this algorithm can be employed at more

points in the stochastic space. Details of this improvement will be provided later in the

next chapters. For now, it suffices to use it only once.

1.3 Group POD as a low-fidelity deterministic algorithm

Solution to equations (1.6), with V (t) ≡ 0, gives an approximate solution w(t, x) to (1.5),

with fd(t, x) ≡ 0. Let {w(ti, .), i = 1, . . . , S} be a set of S “snapshots”, where

t1 < t2 < . . . < tS

are equally spaced points of time in the interval [0, T ]. The correlation matrix K of the

data set {w(ti, .), i = 1, . . . , S} can be defined as

K :=

(

1

S
(wi, wj)

)S

i,j=1

(1.7)

8



where wi = w(ti, .), i = 1, . . . , S. Let {λk,Zk} denote the eigenvalues and the corresponding

normalized eigenvectors of K. Define Z to be the matrix [Z1| . . . |ZS ]. The POD basis

functions {ψk}Sk=1 are given as

ψk =
1√
Sλk

S
∑

i=1

[Z]i,kwi, k = 1, . . . , S. (1.8)

Let the solution ud to (1.5) be written as

ud(t, x) = U(x) + vd(t, x) (1.9)

where U(x) := 1
S

∑S
i=1w(ti, x). Therefore, using (1.5), we obtain that vd satisfies

vt +
1

2
(v2)x − µ(vxx + U ′′) + UU ′ + Uvx + vU ′ = fd, (1.10)

(t, x) ∈ (0, T ] × [0, 1], v(0, x) = v0(x) = u0(x) − U(x), v(t, 0) = v(t, 1) = 0. Let the POD

approximation of vd(t, x) be given by vd,p(t, x) =
∑M

j=1 aj(t)ψj(x), where ψj is a POD basis

function, and aj(t) is an unknown function of time. Note that M is the dimension of the

POD basis. Furthermore, let v2d(t, x) be approximated by
∑M

j=1 Fj(a)ψj(x), with Fj(a) as

an unknown function of a(t) = [aj(t)]
M
j=1. The projection of equation (1.10) onto the POD

set Ψ = {ψk}Mk=1 results in the variational problem of finding v ∈ L2([0, T ];WN,M ([0, 1])),

where WN,M ([0, 1]) := span{Ψ}, such that

(vt, ψi) +
1

2
((v2)x, ψi) + (UU ′, ψi) + . . . (1.11)

µ(vx + U ′, ψ′
i) + (Uvx + U ′v, ψi) = (fd, ψi),
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and (v(0, .), ψi) = (v0, ψi), for i = 1, . . . ,M . When the POD approximations for vd and v2d

are substituted into equation (1.11), we obtain the system of ordinary differential equations

Mȧ = −Aa− 1

2
NpF (a)− V (t), (1.12)

a(0) = a0 = [(v0, ψi)]
M
i=1,

where [Np]ij = (ψ′
j , ψi), [M ]ij = (ψj , ψi), [A]ij = µ(ψ′

j , ψ
′
i) + (Uψ′

j + U ′ψj , ψi), [V ]i =

(−fd + UU ′, ψi) + µ(U ′, ψ′
i), and F (a) = [Fi]

M
i=1 is determined as given below. At the grid

points xn, n = 1, . . . , N we want to have

M
∑

j=1

Fj(a)ψj(xn) =





M
∑

j=1

aj(t)ψj(xn)





2

. (1.13)

Let γnj = ψj(xn), then,

M
∑

j=1

Fj(a)γnj =





M
∑

j=1

aj(t)γnj





2

=

M
∑

j,ℓ=1

γnjγnℓajaℓ (1.14)

Since γnjγnℓ = γnℓγnj , for j 6= ℓ we can avoid computing γnjγnℓ twice by writing

M
∑

j,ℓ=1

γnjγnℓajaℓ = γ̂nâ (1.15)

where γ̂n is a 1× 1
2(M

2 +M) vector given as

γ̂n := [γn1γn1, 2γn1γn2, . . . , 2γn1γnM , γn2γn2, 2γn2γn3, . . . , 2γn2γnM , . . . , γnMγnM ]
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and the 1
2(M

2 +M)× 1 vector â is

â := [a1a1, a1a2, . . . , a1aM , a2a2, a2a3, . . . , a2aM , . . . , aMaM ]T .

We may write (1.14) in the matrix form as

ΓF (a) = Γ̂â (1.16)

where the N ×M matrix Γ is given by

Γ =













γ11 γ12 . . . γ1M
...

...
...

...

γN1 γN2 . . . γNM













(1.17)

and Γ̂ is the N× 1
2(M

2+M) matrix [γ̂i]
N
i=1. Equation (1.16) normally has no solution, since

M is generally chosen to be less than N . However, similar to the method used in [DS10],

one can directly approximate the product NpF (a) by ΓTNΓF (a), where N is the matrix

used in (1.6). We can finally approximate NpF (a) by

NpF (a) ≈ N̂â, (1.18)

where N̂ is the M × 1
2(M

2 +M) matrix given by N̂ = ΓTN Γ̂. With this, problem (1.12)

takes the form

Mȧ = −Aa− N̂â− V (t), (1.19)

a(0) = a0 = [(v0, ψi)]
M
i=1.

11



This model is then solved for a(t) to give an approximation vd,p(t, x) =
∑M

j=1 aj(t)ψj(x) of

vd(t, x). Therefore, according to (1.9), ud(t, x) is approximated by U(x) + vd,p(t, x). The

above algorithm called group proper orthogonal decomposition (group POD) is studied in

detail in [DS10]. We will employ this algorithm for other sample values of ξ̂ in the stochastic

space.

1.4 Multi-fidelity Stochastic Collocation

We are finally in a position to demonstrate the multi-fidelity stochastic collocation method.

Our aim is to approximate the solution of (1.3) in the space VN,p = L2([0, T ];WN ([0, 1]))⊗

Pp(R
d), where WN ([0, 1]) = span{βj} is the finite element space, and Pp(R

d) is the span

of tensor product polynomials with degree at most p = (p1, . . . , pd). The procedure for

approximating the solution of (1.3) is divided into two parts:

1. Use the Group POD method to solve problem (1.5) at ξ̂ ∈ R
d and get the solution

ud(ξ̂, t, x).

2. Collocate on zeros of suitable orthogonal polynomials and build the interpolated so-

lution ud,p ∈ VN,p using

ud,p(ξ̂, t, x) = Ipud(ξ̂, t, x) = (1.20)

p1+1
∑

j1=1

· · ·
pd+1
∑

jd=1

ud(ξ1, . . . , ξd, t, x)(lj1(ξ̂)⊗ · · · ⊗ ljd(ξ̂),

where the functions {ljk}dk=1 can be taken as Lagrange polynomials. Using this for-

mula, as described in [BNT07], mean value and variance of ud can also be easily

approximated.
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1.4.1 Generalization to Sparse Grids

Here, we give a short description of the isotropic Smolyak algorithm. More detailed infor-

mation can be found in [BNR00,NTW08b]. Assume p1 = p2 = · · · = pd = p. For d = 1,

let {I1,i}i=1,2,... be a sequence of interpolation operators given by equation (1.20). Define

∆0 = I1,0 = 0 and ∆i = I1,i − I1,i−1. Now for d > 1, let

A(q, d) =
∑

0≤i1+i2+...+id≤q

∆i1 ⊗ · · · ⊗∆id (1.21)

where q is a non-negative integer. A(q, d) is the Smolyak operator, and q is known as

the sparse grid level. Now instead of (1.20), A(q, d)ud(ξ̂, t, x) can be used to approximate

the solution ud of (1.3). This way one reduces the number of grid points on which the

deterministic algorithms should be employed.

1.5 Numerical results

In the following numerical experiment, we let T = 1.0, u0(x) = (ecos(5πx) − 3
2) sin(πx),

σ(x) = 0.01, and µ = 1
200 . We discretize time into 50 steps, and divide the spatial domain

into 64 intervals. We solve the problem by the Monte Carlo method and compare the results

with the solution of our algorithm. We use the Clenshaw-Curtis abscissas (see [CC60]) as

collocation points. These abscissas are the extrema of Chebyshev polynomials. We project

the Brownian motion in [0, T ] on the trigonometric basis functions hk(t) in L2([0, T ]) given

by

h1(t) =
1√
T
, hk(t) =

√

2

T
cos

(

(k − 1)πt

T

)

, k ∈ {2, 3, . . .}. (1.22)

For small values of d in (1.3), say d = 2, and sparse grid level 6, sparse grid stochastic

collocation with the full employment of the expensive high-fidelity GFE provides similar

results to when sparse grid stochastic collocation is used with the cheap low-fidelity group
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Figure 1.1: Expectation and Second Moment of the solution given at the final time T = 1.0
when d = 2 for sparse grid level 6.

POD algorithm. The results, using 10 POD basis functions, are summarized in Figure 1.1

and in Table 1.1. In this table Monte Carlo method is the reference point.

Standard deviations of the two methods is shown in Figure 1.2. Note that we are only

using a single point in the stochastic parameter space to generate POD basis functions. We

are also performing no types of improvement to the POD basis functions. The issue brought
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Table 1.1: Comparison of the errors of the two methods.

L2([0, 1]) Rel. Error E[u] E[u2] Std. Dev.

POD & Sparse Grid 0.0109 0.0207 0.4125

GFE & Sparse Grid 0.0017 0.0028 0.0183

up in Figure 1.2 can be simply dealt with by either increasing the number of times that

the high fidelity algorithm is employed, or by local improvements to POD basis functions

(see Chapter 3), or both. Numerical results section of Chapter 3 illustrates the effect these

improvements.

Figure 1.2: Standard Deviation of the solution given at final time T = 1.0 when d = 2 for
sparse grid level 6.

Even for such a low dimension of d = 2, the enhanced version of the algorithm using

the POD method shows an increase in speed of over 10 times when the number of spatial

points is increased to 512. The results, using 10 POD basis functions, are summarized in

Table 1.2.
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Table 1.2: Comparison of the execution times of the two methods.

Time

POD & Sparse Grid 10.35 sec

GFE & Sparse Grid 101.58 sec

For larger values of d, say d = 4, however, the regular sparse grid stochastic collocation

algorithm is not at all efficient due to the huge amount of computations it needs to perform.

The enhanced version of the sparse grid stochastic collocation seems to provide a cure in this

case. Using 10 POD basis functions, as the sparse grid level changes from 7 to 9, we get the

convergence pattern presented in Figure 1.3. These results compared with the solution of

Monte-Carlo are illustrated in this figure. This time we are discretizing the spacial domain

into 128 intervals. The stochastic collocation with POD for levels 8 and 9 compares well

with the Monte Carlo solution. Level 7 of the sparse grid is where convergence is first taking

effect.

Execution times and the errors in expected values and second moments, when the sparse

grid level changes from 7 to 9, are given in Table 1.3. For the sparse grid part of our code

we modified the Matlab toolbox developed in [KW05, Kli07] to benefit from the parallel

features of Matlab programming language.

Table 1.3: Execution time and convergence pattern of the proposed method as the sparse
grid level changes from 7 to 9.

level 7 level 8 level 9

Execution time in seconds 238.30 609.11 1489.31

Error in Expectation 0.2190 0.0184 0.0144

Error in Second Moment 0.2167 0.0293 0.0289

Remark 1.1. It may be noted that stochastic collocation methods and consequently our

multi-fidelity method are most effective in small noise regimes. This remark holds true for
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Figure 1.3: Convergence pattern as the sparse grid level changes from 7 to 9.

next chapters as well.

Remark 1.2. For the eigenvalues and eigenvectors computations in (1.8) we are using

Matlab’s “eigs” command. This is efficient if the size of the correlation matrix introduced in

equation (1.7) is relatively small. For more complicated systems, Matlab’s “svds” command

might be employed as well. This remark holds true for next chapters as well.
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Chapter 2: Multi-fidelity Stochastic Collocation Method

applied to Parabolic PDEs with Random Input Data

Up to this point we were employing the high fidelity algorithm only once. The idea is to

utilize this algorithm more often and consequently increase the accuracy. In order to be able

to provide rigorous analysis of our proposed method we start the study of linear parabolic

partial differential equations in this chapter.

2.1 Problem definition

LetD ⊂ R
2 be a bounded, connected and polygonal domain and (Ω,F , P ) denote a complete

probability space with sample space Ω, which corresponds to the set of all possible outcomes.

F is the σ-algebra of events, and P : F → [0, 1] is the probability measure. In this section,

we consider the stochastic linear parabolic initial-boundary value problem: find a random

field u : [0, T ]×D × Ω → R, such that P -almost surely the following equations hold:

∂tu(t,x, ω)−∆u(t,x, ω) = f(t,x, ω) in (0, T ]×D × Ω,

u(t,x, ω) = 0 on (0, T ]× ∂D × Ω, (2.1)

u(0,x, ω) = 0 on D × Ω.

In order to guarantee the existence and uniqueness of the solution of (2.1), we assume that

the random forcing field f : [0, T ]×D × Ω ∋ (t,x, ω) 7→ f(t,x, ω) ∈ R satisfies:

∫ T

0

∫

D
f2(t,x, ω)dxdt < +∞ P -a.e. in Ω. (2.2)
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Following [BNT07] and inspired by the truncated KL expansion [Loe77], we make the

assumption that the random field f depends on a finite number of independent random

variables. More specifically,

f(t,x, ω) = f(t,x,y(ω)) on [0, T ]×D × Ω, (2.3)

where y(ω) = (y1(ω), . . . , yr(ω)) and r ∈ N+. Let us define the space,

L2
P (Ω) := {y = (y1, y2, . . . , yr)

T :
r
∑

n=1

∫

Ω
|yn(ω)|2dP (ω) <∞},

where y denotes an r-dimensional random vector over (Ω,F , P ). We also define the Hilbert

space,

V := L2(0, T ;H1
0 (D))⊗ L2

P (Ω),

with the inner product (., .)V : V × V → R given by:

(u, v)V =

∫ T

0

∫

D
E[∇u(t,x, ω).∇v(t,x, ω)]dxdt.

A function u ∈ V is called a weak solution of problem (2.1) if:

∫

D
E[∂tuv]dx+

∫

D
E[∇u.∇v]dx =

∫

D
E[fv]dx, (2.4)

∀v ∈ H1
0 (D)⊗ L2

P (Ω) and ∀t ∈ (0, T ],

and P -almost surely u(0,x, ω) = 0. The existence and uniqueness of the solution of problem

(2.4) is a direct consequence of assumption (2.2) on f ; see [Eva].

Let Γn = yn(Ω) denote the image of the random variable yn, for n = 1, . . . , r, and
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Γ =
∏r
n=1 Γn. We also assume that the distribution measure of y(ω) is absolutely continuous

with respect to the Lebesgue measure. Thus, there exists a joint density function ρ : Γ → R+

for y = (y1, . . . , yr). Hence, we can use (Γ,Br, ρdy) instead of (Ω,F , P ), where Br is the

r-dimensional Borel space. Analogous to the definitions of L2
P (Ω) and V we can define

L2
ρ(Γ) := {y ∈ Γ :

∫

Γ
||y||2ρdy <∞},

and

Vρ = L2(0, T ;H1
0 (D))⊗ L2

ρ(Γ),

with inner product

(u, v)Vρ =

∫

Γ
(u(y), v(y))L2(0,T ;H1

0
(D))ρdy.

where

(u(y), v(y))L2(0,T ;H1

0
(D)) =

∫ T

0

∫

D
∇u(t,x,y).∇v(t,x,y)dxdt.

The weak solution u ∈ V of problem (2.1), using the finite dimensional noise assumption

(2.3), is of the form u(t,x, ω) = u(t,x, y1(ω), . . . , yr(ω)). Therefore, the weak formulation

(2.4) can be equivalently expressed as finding u ∈ Vρ such that ρ-almost everywhere in Γ,

u(0,x,y) = 0, and

∫

Γ

∫

D
∂tuvdxρdy +

∫

Γ

∫

D
∇u.∇vdxρdy =

∫

Γ

∫

D
fvdxρdy, (2.5)

∀v ∈ H1
0 (D)⊗ L2

ρ(Γ) and ∀t ∈ (0, T ].

For each fixed t ∈ (0, T ], the solution u to (2.5) can be viewed as a mapping u : Γ → H1
0 (D).

In order to emphasize the dependence on the variable y, we use the notations u(y) and f(y).

Hence, we achieve the following equivalent settings: find u(y) ∈ H1
0 (D) such that ρ-almost
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everywhere in Γ, u(0,x,y) = 0, and

∫

D
∂tu(y)vdx+

∫

D
∇u(y).∇vdx =

∫

D
f(y)vdx, (2.6)

∀v ∈ H1
0 (D) and ∀t ∈ (0, T ], ρ-a.e. in Γ.

Note that there may exist a ρdy-zero measure set Nρ ⊂ Γ in which (2.6) is not satisfied.

Therefore, from a computational perspective, if a point y ∈ Nρ is chosen, the resulting

solution of (2.6) is not the true solution of the original equation. However, the computation

of the moments of the solution does not suffer from this disadvantage.

2.2 Multi-fidelity Collocation method

In this section, we apply our multi-fidelity stochastic collocation method to the weak form

(2.6). Let Vρ,h be a finite dimensional subspace of Vρ given by Vρ,h = L2(0, T ;Hh(D)) ⊗

Pp(Γ), where Hh(D) ⊂ H1
0 (D) is a standard finite element space and Pp(Γ) ⊂ L2

ρ(Γ) is the

span of tensor product polynomials with degree at most p = (p1, . . . , pr). The goal is to

find a numerical approximation to the solution of (2.6) in the finite dimensional subspace

Vρ,h. Choose η > 0 to be a small real number. The procedure for solving (2.6) is divided

into two parts:

1. Fix y ∈ Γ, and search the η-neighbourhood Bη(y) ⊂ Γ of y. If problem (2.6) is not

already solved by the finite element method for any nearby problem with y′ ∈ Bη(y),

solve problem (2.6) using a regular backward Euler finite element method at y and let

y′ = y. In contrast, if equation (2.6) is already solved using the finite element method

for some points in Bη(y), choose the closest one to y and call it y′. In either case,

use the solution at y′ ∈ Bη(y) to find a small number d ∈ N+ of suitable orthonormal

basis functions {ψj(y′)}dj=1 ⊂ Hh(D) using proper orthogonal decomposition (POD)

method. Now use Galerkin projection on to the subspace Xd(y′) = span{ψj(y′)}dj=1
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to find

{umd (y)}Nm=1 ⊂ Xd(y′) ⊂ Hh(D),

such that

(umd , vd) + k(∇umd ,∇vd) = k(fm(y), vd) + (um−1
d , vd), (2.7)

∀vd ∈ Xd(y′), m = 1, . . . , N,

and u0d = 0, where N ∈ N+ is the number of time steps, and k = T/N denotes the

time step increments. It is worth mentioning that (., .) denotes the L2-inner product.

Note that we are employing a backward Euler scheme to discretize time.

2. Collocate (2.7) on zeros of suitable orthogonal polynomials and build the interpolated

discrete solution

{umd,p}Nm=1 ⊂ Hh(D)⊗ Pp(Γ), (2.8)

using

umd,p(x,y) = Ipumd (x,y) = (2.9)

p1+1
∑

j1=1

· · ·
pr+1
∑

jr=1

umd (x, yj1 , . . . , yjr)(lj1(y)⊗ · · · ⊗ ljr(y)), m = 1, . . . , N,

where the functions {ljk}rk=1 can be taken as Lagrange polynomials. Using this formula, as

described in [BNT07], mean value and variance of u can also be easily approximated.

2.2.1 Proper Orthogonal Decomposition

In this section, we choose a fixed y′ ∈ Bη(y) ⊂ Γ and drop the dependence of equation

(2.6) on y′, for notational conveniences. Therefore, we consider the problem of finding
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w ∈ H1
0 (D) such that:

(wt, v) + (∇w,∇v) = (g, v), ∀v ∈ H1
0 (D), (2.10)

and w(x, 0) = 0, for all x ∈ D. Note that g = f(y′). Let tm = mk, k = 0, . . . , N ,

where k denotes the time step increments. Assume Th to be a uniformly regular family of

triangulation of D (see [Tho97,Cia78]). The finite element space is taken as

Hh(D) = {vh ∈ H1
0 (D) ∩ C0(D) : vh|K ∈ Ps(K), ∀K ∈ Th},

where s ∈ N+ and Ps(K) is the space of polynomials of degree ≤ s on K. Write wm(x) =

w(x, tm), and let wmh denote the fully discrete approximation of w resulting from solving

the problem of finding wmh ∈ Hh(D) such that w0
h(x) = 0 and for m = 1, . . . , N ,

(wmh , vh) + k(∇wmh ,∇vh) = k(gm, vh) + (wm−1
h , vh), (2.11)

∀vh ∈ Hh(D), m = 1, . . . , N.

It is easy to prove that problem (2.11) has a unique solution wmh ∈ Hh(D), provided that

gm ∈ L2(D) (see [Tho97]). One can also show that if wt ∈ Hs+1(D) and wtt ∈ L2(D), the

following error estimates hold:

||wm − wmh ||0 ≤ Chs+1

∫ tm

0
||wt||s+1dt+ Ck

∫ tm

0
||wtt||0dt, m = 1, . . . , N, (2.12)

where ||.||s denotes the Hs(D)-norm and C indicates a positive constant independent of the

spatial and temporal mesh sizes, possibly different at distinct occurrences.
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For the so-called snapshots Ui := wmi

h ∈ Hh(D), i = 1, . . . , ℓ, where

1 ≤ m1 < m2 < · · · < mℓ ≤ N,

let

V = span{U1, . . . , Uℓ}.

Assume at least one of Ui is non-zero, and let {ψj}lj=1 be an orthonormal basis of V with

l = dimV. Therefore, for each Ui ∈ V we will have:

Ui =
l
∑

j=1

(Ui, ψj)H1

0
(D)ψj , (2.13)

where (Ui, ψj)H1

0
(D) = (∇umi

h ,∇ψj).

Definition 2.1. The POD method consists of finding an orthonormal basis ψj (j = 1, 2, . . . , d)

such that for every d = 1, . . . , l, the following problem is solved

min
{ψj}dj=1

1

ℓ

ℓ
∑

i=1

‖Ui −
d
∑

j=1

(Ui, ψj)H1

0
(D)ψj‖2H1

0
(D). (2.14)

A solution {ψj}dj=1 of this minimization problem is known as a POD basis of rank d.

Let us introduce the correlation matrix K = (Kij)
ℓ
i,j=1 ∈ R

ℓ×ℓ given by

Kij =
1

ℓ
(Ui, Uj)H1

0
(D). (2.15)

The following proposition (see [Sir87,KV01,KV02]) solves problem (2.14).

Proposition 2.2. Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0 denote the positive eigenvalues of K and

v1,v2, . . . ,vl the associated orthonormal eigenvectors. Then a POD basis of rank d ≤ l is
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given by

ψi =
1√
λi

ℓ
∑

j=1

(vi)jUj , i = 1, . . . , d, (2.16)

where (vi)j denotes the j-th component of the eigenvector vi. Furthermore, the following

error formula holds:

1

ℓ

ℓ
∑

i=1

‖Ui −
d
∑

j=1

(Ui, ψj)H1

0
(D)ψj‖2H1

0
(D) =

l
∑

j=d+1

λj . (2.17)

One can immediately notice the similarities between equation (2.17) and a truncated

singular value decomposition.

Let Xd := span{ψ1, ψ2, . . . , ψd}, and consider the problem of finding wmd ∈ Xd ⊂ Hh(D)

such that w0
d(x) = 0 and for m = 1, . . . , N ,

(wmd , vd) + k(∇wmd ,∇vd) = k(gm, vd) + (wm−1
d , vd), (2.18)

∀vd ∈ Xd ⊂ Hh(D), m = 1, . . . , N.

Remark 2.1. If Th is a uniformly regular triangulation and Hh(D) is the the space of

piecewise linear functions, the total degrees of freedom for problem (2.11) is Nh, where Nh

is the number of vertices of triangles in Th, while the total of degrees of freedom for problem

(2.18) is d (where d≪ l ≪ ℓ≪ Nh).

The following proposition, proved in [LCSY09], gives us an error estimate on the solution

of problem (2.18).

Proposition 2.3. If wmh ∈ Hh(D) is the solution of problem (2.11), wmd ∈ Xd ⊂ Hh(D)

is the solution of problem (2.18), k = O(h), ℓ2 = O(N), and snapshots are equably taken,
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then for m = 1, 2, . . . , N , the following estimates hold:

‖wmh − wmd ‖0 +
1

ℓ

ℓ
∑

j=1

‖∇(w
mj

h − w
mj

d )‖0≤ (2.19)

C



k1/2
l
∑

j=d+1

λj





1/2

, m = mi, i = 1, . . . , ℓ;

‖wmh − wmd ‖0+
1

ℓ



‖∇(wmh − wmd )‖0+
ℓ−1
∑

j=1

‖∇(w
mj

h − w
mj

d )‖0



 ≤

C



k1/2
l
∑

j=d+1

λj





1/2

+ Ck, m 6= mi.

Combining (2.12) and (2.19) we get the following result.

Proposition 2.4. Under assumptions of proposition 2.3, the error estimate between the

solutions of problems (2.10) and (2.18), for m = 1, 2, . . . , N , is given by:

‖wm − wmd ‖0≤ Chs+1 + Ck + C



k1/2
l
∑

j=d+1

λj





1/2

(2.20)

Now, with a slight overloading of notation, we assume that the function f is given by

f = f(y), where f ∈ C(Γ;C(0, T ;L2(D))) is the function employed in equation (2.6), and

consider the following problem: find u ∈ H1
0 (D) such that u(x, 0) = 0, for all x ∈ D, and

(ut, v) + (∇u,∇v) = (f, v), ∀v ∈ H1
0 (D). (2.21)

Remark 2.2. Note that since ‖y−y′‖< η and under the assumption that f as a member of
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C(Γ;C(0, T ;L2(D))) is Lipschitz continuous on Γ, we get that ‖f(y)− f(y′)‖C(0,T ;L2(D))=

‖f − g‖C(0,T ;L2(D))≤ Lf‖y − y′‖, where Lf is the Lipschitz constant. Also, note that we

are slightly overloading the symbol f to denote both the function f ∈ C(Γ;C(0, T ;L2(D)))

employed in equation (2.6) and the function f = f(y′) ∈ C(0, T ;L2(D)) used in equation

(2.10).

Let us also consider the following problem: find umd ∈ Xd ⊂ Hh(D) such that u0d(x) = 0

and for m = 1, . . . , N ,

(umd , vd) + k(∇umd ,∇vd) = k(fm, vd) + (um−1
d , vd), ∀vd ∈ Xd ⊂ Hh(D). (2.22)

Note that equations (2.22) and (2.7) are identical, according to the fact that we are using

f = f(y). Our aim is to find an estimate for ‖um − umd ‖0. First we need to prove two

lemmas.

Lemma 2.5. Let u be the solution of problem (2.21) and let w be the solution of problem

(2.10), then we have:

‖um − wm‖0≤ C‖f − g‖C(0,T ;L2(D)). (2.23)

Proof. let z = u− w and subtract equations (2.10) and (2.21) to get:

(zt, v) + (∇z,∇v) = (f − g, v), ∀v ∈ H1
0 (D), (2.24)

with z(x, 0) = 0, for all x ∈ D. Letting v = z and integrating equation (2.24) from 0 to tm,

we get:

1

2

∫ tm

0

d

dt
‖z‖20dt+

∫ tm

0
(∇z,∇z)dt =

∫ tm

0
(f − g, z)dt.
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This results in

1

2
‖zm‖20≤

∫ tm

0
‖f − g‖0‖z‖0dt ≤

1

2

∫ T

0
‖f − g‖20dt+

1

2

∫ T

0
‖z‖20dt.

Therefore,

‖zm‖20≤ T‖f − g‖2C(0,T ;L2(D))+

∫ T

0
‖z‖20dt. (2.25)

Now we need to bound
∫ T
0 ‖z‖20dt. For this, we integrate (2.24) once again but this time

upto T , and use the Poincaré inequality ‖v‖0≤ Cp‖∇v‖0, for each v ∈ H1
0 (D), to get:

1

2
‖z(T )‖20+

1

C2
p

∫ T

0
‖z‖20dt ≤

∫ T

0
‖f − g‖0‖z‖0dt.

Therefore,

∫ T

0
‖z‖20dt ≤ C2

p

(

1

2δ

∫ T

0
‖f − g‖20dt+

δ

2

∫ T

0
‖z‖20dt

)

.

Thus,

(1−
C2
p

2
δ)

∫ T

0
‖z‖20dt ≤

C2
p

2δ
T‖f − g‖2C(0,T ;L2(D)).

Choose δ > 0 such that 1− C2
p

2 δ > 0, and let

C =

√

T

(

1 +
C2
p

2δ − C2
pδ

2

)

.

Now, equation (2.25) implies (2.23).

Lemma 2.6. Let umd be the solution of problem (2.22) and wmd be the solution of problem
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(2.18), then we have:

‖umd − wmd ‖0≤ C‖f − g‖C(0,T ;L2(D)) (2.26)

Proof. let zmd = umd − wmd and subtract equations (2.18) and (2.22) to get:

(zmd , vd) + k(∇zmd ,∇vd) = k(fm − gm, vd) + (zm−1
d , vd), (2.27)

∀vd ∈ Xd ⊂ Hh(D), m = 1, . . . , N,

with z0d(x) = 0. Let vd = zmd in equation (2.27) and use Poincaré inequality ‖v‖0≤ Cp‖∇v‖0,

for each v ∈ H1
0 (D), to achieve:

‖zmd ‖20+k
1

C2
p

‖zmd ‖20≤ k‖fm − gm‖0‖zmd ‖0+‖zm−1
d ‖0‖zmd ‖0.

Therefore,

(

1 + k
1

C2
p

)

‖zmd ‖0≤ k‖fm − gm‖0+‖zm−1
d ‖0,

which upon summation yields,

‖zmd ‖0≤ k‖f − g‖C(0,T ;L2(D))

m
∑

j=1





1

1 + k
C2

p





j

.

Let γ = 1
C2

p
and note that (1 + γk)m ≤ eγkm. Moreover, setting ζ = 1/(1 + γk) we find:

k

m
∑

j=1





1

1 + k
C2

p





j

= k
1− ζm

ζ−1 − 1
=

1− ζm

γ
≤ 1− e−γkm

γ
.
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Letting C = (1− e−γkm)/γ, we get (2.26).

Now using estimates (2.20), (2.23) and (2.26) and remark 2.2, we get the following error

estimate.

Theorem 2.7. Let u be the solution of problem (2.21), and umd be the solution of problem

(2.22), for m = 1, . . . , N , we have

‖um − umd ‖0≤ Cη + Chs+1 + Ck + C



k1/2
l
∑

j=d+1

λj





1/2

, (2.28)

where the eigenvalues λj depend on y′ ∈ Bη(y) ⊂ Γ, and the constants C depend on y and

y′, but are independent of h, k and η.

2.3 Error analysis

In this section, we carry out an error analysis for the multi-fidelity collocation method

introduced in section 2.2 for problem (2.6). In [BNT07], the authors showed that if the

solution of (2.6) is analytic with respect to the random parameters, then the collocation

scheme (2.9) attains an exponential error decay for umd − umd,p with respect to each pn.

The convergence proof in [BNT07] applies directly to our case. Therefore, our main task

is to prove the analyticity property of the POD solution umd with respect to each random

variable yn. We will then only state the corresponding convergence result. In the following

we impose similar restrictions on f as in [BNT07,ZG12], i.e., f is continuous with respect

to each element y ∈ Γ and that it has at most exponential growth at infinity, whenever the

domain Γ is unbounded. Moreover, we assume that joint density function ρ behaves like a

Gaussian kernel at infinity. In order to make it precise, we introduce the weight function
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σ(y) =
∏r
n=1 σn(yn) ≤ 1, where

σn(yn) =











1 if Γn is bounded,

e−αn|yn| for some αn > 0 if Γn is unbounded,

and the space

C0
σ
(Γ;V ) = {v : Γ → V : v is continuous in y and maxy∈Γ{σ(y)‖v(y)‖V } < +∞},

where V is a Banach space. In what follows, we assume that f ∈ C0
σ
(Γ;C([0, T ];L2(D)))

and the joint probability density ρ satisfies

ρ(y) ≤ CMe
−

∑r
n=1

(δnyn)2 , ∀y ∈ Γ, (2.29)

for some constant CM > 0, with δn being strictly positive if Γn is unbounded and zero

otherwise. Under these assumptions, the following proposition is immediate; see [BNT07].

Proposition 2.8. The solution of problem (2.6) satisfies u ∈ C0
σ
(Γ;C(0, T ;H1

0 (D))) and

correspondingly, the approximate solution umd resulting from (2.22) or equivalently (2.7),

satisfies umd ∈ C0
σ
(Γ;Hh(D)), for m = 1, . . . , N .

Furthermore, we have the following regularity result.

Lemma 2.9. The following energy estimate holds:

‖umd ‖L2(D)⊗L2
ρ(Γ)

≤ C2
p(1− e

− km

C2
p )‖f‖C(0,T ;L2(D))⊗L2

ρ(Γ)
,

where Cp is the Poincaré Canstant.

Proof. Similar to the proof of Lemma 2.6.
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2.3.1 Analyticity with respect to random parameters

We prove that the solution umd of equation (2.22) is analytic with respect to each random

parameter yn ∈ Γ, whenever f(y) is analytic and is infinitely differentiable with respect to

each component of y. To do this, we introduce the following notations as in [BNT07,ZG12]:

y∗
n ∈ Γ∗

n =
r
∏

j=1,j 6=n

Γj and σ∗
n =

r
∏

j=1,j 6=n

σj .

We first make the additional assumption that for every y = (yn,y
∗
n) ∈ Γ, there exists

γn < +∞ such that

‖∂jynf(y)‖C(0,T ;L2(D))

1 + ‖f(y)‖C(0,T ;L2(D))
≤ γjnj!. (2.30)

Remark 2.3. Under the finite dimensional noise assumption (2.3), f(t,x, ω) is represented

by a truncated linear or nonlinear expansion so that assumption (2.30) holds. For example,

consider a truncated KL expansion for random forcing term f(t,x, ω) given by

f(t,x, ω) = f(t,x,y(ω)) = E[f ](t,x) +
r
∑

n=1

√
µncn(t,x)yn(ω). (2.31)

We have

‖∂jynf(y)‖C(0,T ;L2(D))

1 + ‖f(y)‖C(0,T ;L2(D))
≤











√
µn‖cn‖C(0,T ;L2(D)), j = 1,

0, j > 1.

Therefore, we can set γn =
√
µn‖cn‖C(0,T ;L2(D)), and observe that definition (2.31) satisfies

assumption (2.30). Moreover, the random forcing f(t,x,y) defined in (2.31), satisfies the

Lipschitz continuity assumption of remark 2.2.
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Lemma 2.10. Under assumption (2.30), if the solution umd (x, yn,y
∗
n) is considered as a

function of yn, i.e., u
m
d : Γn → C0

σ∗

n
(Γ∗
n;L

2(D)), then the j-th derivative of umd (x,y) with

respect to yn satisfies

‖∂jynumd (y)‖L2(D)≤ Cj!γjn, m = 1, . . . , N, (2.32)

where C depends on ‖f(y)‖C(0,T ;L2(D)), and the Poincaré constant Cp.

Proof. Take the j-th derivative of formulation (2.22) or equivalently (2.7) with respect to

yn, and let vd = ∂jynu
m
d (y) to get

‖∂jynumd (y)‖20+k‖∂jyn∇umd (y)‖20= k(∂jynf
m(y), ∂jynu

m
d (y)) + (∂jynu

m−1
d (y), ∂jynu

m
d (y)).

Therefore,

(1 +
k

C2
p

)‖∂jynumd (y)‖0≤ k‖∂jynfm(y)‖0+‖∂jynum−1
d (y)‖0,

which upon summation yields

‖∂jynumd (y)‖0≤ k‖∂jynf(y)‖C(0,T ;L2(D))

m
∑

i=1





1

1 + k
C2

p





i

.

Thus,

‖∂jynumd (y)‖0≤ C2
p(1− e

− km

C2
p )[1 + ‖f(y)‖C(0,T ;L2(D))]γ

j
nj!.

Letting C = C2
p(1− e

− km

C2
p )[1 + ‖f(y)‖C(0,T ;L2(D))] we get (2.32).

We will immediately obtain the following theorem, whose proof closely follows the proof

of Theorem 4.4 in [ZG12].
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Theorem 2.11. Under assumption (2.30), the solution umd (x, yn,y
∗
n) considered as a func-

tion of yn, admits an analytic extension umd (x, z,y
∗
n), z ∈ C, in the region of complex plane

Σ(Γn, τn) := {z ∈ C : dist(z,Γn) ≤ τn},

where 0 < τn < 1/γn.

Proof. For each yn ∈ Γn we define the power series umd : C → C0
σ∗

n
(Γ∗
n;L

2(D)) as

umd (x, z,y
∗
n) =

∞
∑

j=0

(z − yn)
j

j!
∂jynu

m
d (x, yn,y

∗
n)

Thus,

σn(yn)‖umd (z)‖C0

σ
∗
n
(Γ∗

n;L
2(D)) ≤

∞
∑

j=0

|z − yn|j
j!

‖∂jynumd (yn)‖C0

σ
∗
n
(Γ∗

n;L
2(D))

≤ σn(yn)C(yn)

∞
∑

j=0

(|z − yn|γn)j ≤ Ĉ

∞
∑

j=0

(|z − yn|γn)j ,

where C(yn) is a function of ‖f(yn)‖C0

σ
∗
n
(Γ∗

n;C(0,T ;L2(D))), and the constant Ĉ is a function

of ‖f‖C0
σ
(Γ;C(0,T ;L2(D))). The series is convergent for all z ∈ C, provided that |z− yn|≤ τn <

1/γn. Therefore, the function umd admits an analytic extension in the region Σ(Γn; τn).

2.3.2 Convergence analysis

Our goal is to provide an estimate for the total error em = um − umd,p in the norm L2(D)⊗

L2
ρ(Γ), for each m = 1, . . . , N . The error splits naturally into em = (um−umd )+(umd −umd,p).

Recall that umd,p = Ipumd and is given by (2.9). We can estimate the interpolation error

(umd − umd,p) by repeating the same procedure as in [BNT07], using the analyticity result
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of theorem 2.11. All details about the estimates of the interpolation error can be found

in section 4 of [BNT07] and the references cited therein. Therefore we state the following

theorem without proof.

Theorem 2.12. Under assumption (2.30), there exist positive constants bn, n = 1, . . . , r,

and C that are independent of h, d, and p such that

‖umd − umd,p‖L2(D)⊗L2
ρ(Γ)

≤ C

r
∑

n=1

βn(pn) exp(−bnpθnn ), (2.33)

where

θn = βn = 1 and bn = log

[

2τn
|Γn|

(

1 +

√

1 +
|Γn|2
4τ2n

)]

if Γn is bounded,

and

θn =
1

2
, βn = O(

√
pn), and bn = τnδn if Γn is unbounded,

where τn is the minimum distance between Γn and the nearest singularity in the complex

plane, as defined in theorem 2.11, and δn is defined in assumption (2.29).

Remark 2.4 (Convergence with respect to the number of collocation points). For an

isotropic full tensor-product approximation, i.e., p1 = p2 = · · · = pr = p, the number of

collocation points Θ is given by Θ = (1 + p)r. Thus, one can easily obtain the following

error bound with respect to Θ; see [ZG12].

‖umd − umd,p‖L2(D)⊗L2
ρ(Γ)

≤











CΘ−bmin/r, if Γ is bounded,

CΘ−bmin/2r, if Γ is unbounded,
(2.34)

where bmin = min{b1, b2, . . . , br} as in theorem 2.12. The constant C does not depend on r
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and bmin.

Remark 2.5 (Extensions to sparse grid stochastic collocation methods). Note that the

convergence as shown in (2.34) becomes slower as the dimension r increases. This slow-

down effect as a result of increase in dimension is called the curse of dimensionality. For

large values of r, sparse grid stochastic collocation methods [NT09, NTW08b], specially

adaptive and anisotropic ones, e.g., [MZ09, NTW08a] are more effective in dealing with

this problem. Our analyticity result (theorem 2.11) combined with the analysis in [NT09,

NTW08b,MZ09,NTW08a], can easily lead to the derivation of error bounds for sparse grid

approximations. For instance, for an isotropic Smolyak approximation [NT09, NTW08b]

with a total of Θ sparse grid points, the error can be bounded by

CΘ−bmin/(1+log(2r)).

Here, we will give a short description of the isotropic Smolyak algorithm. More detailed

information can be found in [BNR00, NTW08b]. Assume p1 = p2 = · · · = pr = p. For

r = 1, let {I1,i}i=1,2,... be a sequence of interpolation operators given by equation (2.9).

Define ∆0 = I1,0 = 0 and ∆i = I1,i − I1,i−1. Now for r > 1, let

A(q, r) =
∑

0≤i1+i2+...+ir≤q

∆i1 ⊗ · · · ⊗∆ir (2.35)

where q is a non-negative integer. A(q, r) is the Smolyak operator, and q is known as the

sparse grid level.

Now we need to find error bounds for the deterministic part of our algorithm in the

L2(D) ⊗ L2
ρ(Γ) norm, i.e., um − umd . First, note that according to (2.29), the joint density

function ρ behaves like a Gaussian kernel at infinity. Therefore, in practice we are literally

dealing with a compact random parameter set Γ, since we can approximate Γ with a large

enough compact set. So from now on we assume that Γ is compact. We know that Γ ⊂
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⋃

y′∈ΓBη(y
′). Thus, using the compactness assumption on Γ, there exist Υ ∈ N+ and

{iy′}Υi=1 ⊂ Γ such that Γ =
⋃Υ
i=1Bη(

iy′) ∩ Γ. Letting iΓ = Bη(
iy′) ∩ Γ, we can write

Γ =
⋃Υ
i=1

iΓ.

Theorem 2.13. Under the Lipschitz continuity (see Remark 2.2) assumption, there exist

constants C and Λ such that

‖um − umd ‖L2(D)⊗L2
ρ(Γ)

≤ Cη + Chs+1 + Ck + Ck1/4Λ. (2.36)

Proof. Let us first integrate the the last term in estimate (2.28). Thus, we have

∫

Γ











C(y,y′(y))



k1/2
l(y,y′(y))
∑

j=d(y,y′(y))+1

λj(y
′(y))





1/2










2

ρ(y)dy =

k1/2
∫

Γ
C(y,y′(y))2

l(y,y′(y))
∑

j=d(y,y′(y))+1

λj(y
′(y))ρ(y)dy =

k1/2
Υ
∑

i=1





l(iy′)
∑

j=d(iy′)+1

λj(
iy′)





∫

iΓ
C(y, iy′)2ρ(y)dy

Now letting Λi =
∑l(iy′)

j=d(iy′)+1
λj(

iy′), and assuming Λ2 = maxi=1,...,Υ{Λi}, we get the

following upper bound for the above expression:

k1/2Λ2
Υ
∑

i=1

∫

iΓ
C(y, iy′)2ρ(y)dy = k1/2Λ2

∫

Γ
C(y,y′(y))2ρ(y)dy.

Letting C2 =
∫

ΓC(y,y
′(y))2ρ(y)dy, we get the last term in (2.36). The first three terms

of (2.36) can also be easily computed by integrating the first three terms of (2.28). We will
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get the same expressions for the constants C as above.

Remark 2.6. Due to the way that the POD method works, the constant Λ is so small that

the k1/4 term has a very little effect on the error. The fact that the largest eigenvalues of the

correlation matrix (2.15) capture most of the information is a distinct feature of ellipticity

conditions. Addition of advective terms or non-linearities might affect this feature.

Combining (2.33) and (2.36), we will finally get the following total error estimate.

Theorem 2.14. Under assumption (2.30) and the Lipschitz continuity (see remark 2.2)

assumption , there exist positive constants C and Λ that are independent of h, k, η and p,

and there exist constants bn, n = 1, . . . , r, such that

‖um − umd,p‖L2(D)⊗L2
ρ(Γ)

≤ Cη + Chs+1 + Ck + Ck1/4Λ + C

r
∑

n=1

βn(pn) exp(−bnpθnn ),

(2.37)

where θn, βn and bn are the same as the ones in theorem 2.12.

Remark 2.7. In some cases, one might be interested in estimating the expectation error,

i.e., ‖E[um − umd,p]‖L2(D). This can be easily achieved by observing that:

‖E[um − umd,p]‖2L2(D) =

∫

D

[∫

Γ
[um(x,y)− umd,p(x,y)]ρ(y)dy

]2

dx

≤
∫

D

[∫

Γ
[um(x,y)− umd,p(x,y)]

2ρ(y)dy

∫

Γ
ρ(y)dy

]

dx

=

∫

Γ

[∫

D
[um(x,y)− umd,p(x,y)]

2dx

]

ρ(y)dy

= ‖um − umd,p‖L2(D)⊗L2
ρ(Γ)

. (2.38)

38



2.4 Numerical experiments

In this section, we provide a computational example to illustrate the advantages of multi-

fidelity stochastic collocation method. Specifically, we consider problem (2.1) with D =

(0, 1)2 ⊂ R
2, T = 1, and the forcing term being given by:

f(t,x, ω) = 10 + et
r
∑

n=1

yn(ω) sin(nπx).

The real-valued random variables yn, n = 1, . . . , r, are supposed to be independent and have

uniform distributions U(0, 1). In the following, we let r = 4. We employ the sparse grid

stochastic collocation method introduced in Remark 2.5 with sparse grid level q = 8. We

use the Clenshaw-Curtis abscissas (see [CC60]) as collocation points. These abscissas are

the extrema of Chebyshev polynomials. We divide the spatial domain D into 32× 32 small

squares with side length ∆x = ∆y = 1/32, and then we connect the diagonals of the squares

to divide each square into two triangles. These triangles constitute the triangulation Th,

with h =
√
2/32. Take k = 0.1 as the time step increment. We use all of the time steps to

form the snapshots. We employ 6 POD basis functions.

Remark 2.8. In order to form the correlation matrix (2.15) needed to find POD basis

functions we are in practice using the L2(D) norm. This way we can avoid the computation

of derivatives of the finite element solutions.

In the following, we compare the solution resulting from a regular isotropic sparse grid

stochastic collocation method which only uses the finite element method, with the hybrid

multi-fidelity method proposed in this work which employs both finite element and POD

methods. In Figure 2.1, we compare the expected values resulting from the multi-fidelity

method and a regular sparse grid stochastic collocation method. We take η = 0.1. Recall

that for each y ∈ Γ our method searches the η neighbourhood of y to check whether for

some y′ ∈ Bη(y) problem (2.6) is already solved. If a nearby problem (at y′) is found to be
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solved by finite element method, our algorithm uses this information to create POD basis

functions and solves problem (2.6) at y using Galerkin-POD method which is computation-

ally much cheaper than finite element. Moreover, Figure 2.2 compares variances of solutions

resulting from the two methods.
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Figure 2.1: Comparison of expected
values (bottom) resulting from a
regular sparse grid method (top left)
and the multi-fidelity method with
η = 0.1 (top right).
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Figure 2.2: Comparison of variances of
solutions (bottom) resulting from a
regular sparse grid method (top left)
and the multi-fidelity method with
η = 0.1 (top right).

Figures 2.3 and 2.4, show the convergence patterns of expectations and variances of

solutions with regard to η, respectively. These results validate our theoretical estimates

of previous sections. We are actually comparing our multi-fidelity method with a regular

sparse grid stochastic method. Note that for small enough η (less than the shortest distance

between the collocation points) we get the regular sparse grid method back. Therefore the

error is zero for such a small η.

Figure 2.5 demonstrates how the number of times that the finite element code is em-

ployed increases with respect to a decrease in η.
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Figure 2.3: Convergence pattern of
expected values of solutions
with respect to η.
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Figure 2.5: Number of times that the finite element code is employed as a function of η.

Table 2.1, summarizes the results when η = 0.1. In this case, the number of times that

the finite element code is utilized by the multi-fidelity method is 3745. Compared it to

18946, the number of times that a regular sparse grid calls the finite element code.

Table 2.2 is just another way of presenting the data depicted in Figures 2.3,2.4, and 2.5.
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Table 2.1: Relative errors when η = 0.1.

Relative error in L2 norm Relative error in L∞ norm

Expected value 3.6× 10−4 4.8× 10−4

Variance 1.2× 10−2 2.0× 10−2

Table 2.2: Relative errors and the number of times that the finite element code is employed
for different values of η.

η # FE calls Exp. L2 error Exp. L∞ error Var. L2 error Var. L∞ error

4 1 1.72E-02 2.34E-02 7.25E-02 8.72E-02

2 3 3.27E-02 4.35E-02 2.99E-01 4.84E-01

1 5 1.95E-02 2.33E-02 1.50E-01 2.45E-01

1/2 36 1.63E-02 1.85E-02 1.21E-01 1.38E-01

(1/2)2 92 4.26E-03 5.43E-03 9.27E-02 1.02E-01

(1/2)3 306 4.55E-03 5.89E-03 1.31E-02 1.68E-02

(1/2)4 621 2.64E-03 2.98E-03 3.91E-02 6.21E-02

(1/2)5 1866 2.81E-03 3.55E-03 2.88E-02 3.86E-02

(1/2)6 3743 4.96E-04 7.09E-04 6.23E-03 8.00E-03

(1/2)7 4129 8.58E-04 1.19E-03 8.00E-03 1.07E-02

(1/2)8 9026 4.42E-04 5.63E-04 3.22E-03 5.39E-03

(1/2)9 9026 3.35E-04 5.61E-04 2.18E-03 3.33E-03

(1/2)10 13442 2.76E-04 4.69E-04 1.15E-03 1.49E-03

(1/2)11 13442 2.65E-04 4.59E-04 1.08E-03 1.22E-03

(1/2)12 16642 2.25E-04 4.04E-04 4.18E-04 5.15E-04

(1/2)13 16642 2.29E-04 4.02E-04 5.75E-04 7.78E-04

(1/2)14 18434 1.54E-04 2.75E-04 1.89E-04 2.71E-04

(1/2)15 18434 1.52E-04 2.71E-04 7.42E-05 9.43E-05

(1/2)16 18946 0 0 0 0

Remark 2.9. Note that this chapter closely follows our paper [RSa].
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Chapter 3: Stochastic Burgers revisited

In this chapter we once again consider the stochastic Burgers equation (1.1). Recall that

after truncating the expansion (1.2) at some point d we were able to get

ut +
1

2
(u2)x = µuxx + σ(x)

d
∑

k=1

ξkhk(t). (3.1)

For each fixed ξ̂ = (ξ1, . . . , ξd), equation (3.1) can be written as,

ut +
1

2
(u2)x = µuxx + fd(t, x), (3.2)

where fd(t, x) = σ(x)
∑d

k=1 ξkhk(t). Recall that we needed to solve the deterministic equa-

tion (3.2) many times for different values of ξ̂. In the following, we revisit the low fidelity

algorithm of Group POD and apply it on

ut +
1

2
(u2)x = µuxx + gd(t, x), (3.3)

where gd(t, x) = σ(x)
∑d

k=1 ζkhk(t), which is practically equation (3.2) evaluated at the new

parameter ζ̂ = (ζ1, . . . , ζd). Note that ξ̂ and ζ̂ are not necessarily equal. Consequently, fd

and gd are generally different. We solve equation (3.2) using the GFE method (1.6).
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3.1 Group POD as a low-fidelity deterministic algorithm

Solution to equations (1.6), with V (t) = [(fd(t, .), βi)]
N
i=1, gives an approximate solution

to (3.2) given by w(t, x) =
∑N

j=1 αj(t)βj(x). Let {w(ti, .), i = 1, . . . , S} be a set of S

“snapshots”, where t1 < t2 < . . . < tS are equally spaced points of time in the interval

[0, T ]. Furthermore, define Y = [α(t1) · · ·α(tS)] to be the snapshots matrix. Let L be a

lower triangular matrix resulting from the Cholesky decomposition of the mass matrix M ,

i.e., M = LLT . Define Ỹ := LTY to be the weighted snapshots matrix. The correlation

matrix K of the data set {w(ti, .), i = 1, . . . , S} is given by

K :=

(

1

S
(wi, wj)

)S

i,j=1

=
1

S
Y TMY =

1

S
Ỹ T Ỹ (3.4)

where wi = w(ti, .), i = 1, . . . , S. Let {λk,Zk} denote the eigenvalues and the corresponding

normalized eigenvectors of K. Define Z to be the matrix [Z1| . . . |ZS ]. The POD basis

functions {ψk}Sk=1 are given as

ψk =
1√
Sλk

S
∑

i=1

[Z]i,kwi, k = 1, . . . , S. (3.5)

Note that

1

S
Ỹ T Ỹ Z = ZΛ, (3.6)

where Λ := diag(λk, k = 1, . . . , S). Let us express the POD basis function ψj as ψj(x) =

∑N
i=1 ψi,jβi(x) and let ψ = (ψi,j) for i = 1, . . . , N and j = 1, . . . , S. Using (3.5) we get

ψ = Y Z(SΛ)−
1

2 . (3.7)

44



Using exactly the same procedure as the one in Group POD introduced in section 1.3, with

fd being replaced by gd, we can get an approximate solution ud(t, x) to (3.3).

3.2 Local improvements to POD basis functions

Note that we want to use the POD basis functions found at ξ̂ to solve the deterministic

problem (3.3) at a nearby point ζ̂. It is a well known fact that if ζ̂ = ξ̂ we get sufficiently

accurate approximations of the solution of problem (3.3) or equivalently (3.2). However,

for ζ̂ 6= ξ̂, we usually experience a drop in accuracy. In order to deal with issue, we use the

sensitivity analysis of POD basis functions to improve the accuracy of the solution found

at ζ̂. Note that the POD bases (3.5) are a function of ξ̂. We are specifically interested in

the sensitivity of these POD bases in the direction of ζ̂ − ξ̂. To do so, we introduce a new

parameter θ ∈ [0, 1] and consider the mapping ξ̂+ θ(ζ̂ − ξ̂). Therefore, the POD bases can

be considered to be a function of θ. We start by noting that:

KZk = λkZk, (3.8)

where K is defined by (3.4), and {λk,Zk} denote the eigenvalues and the corresponding

normalized eigenvectors of K. We assume that the entries of K, Z, and Λ are smooth

functions of the parameter θ so that (3.8) can be differentiated with respect to θ. In what

follows, partial derivative of any matrix or vector is denoted using the superscript (θ).

Therefore, by implicit differentiation of (3.8) with respect to θ we get:

(K − λkI)Z(θ)
k = −(K(θ) − λ

(θ)
k I)Zk. (3.9)

Equation (3.9) has a solution only if the right-hand side vector belongs to the range of

K−λkI and thus must be orthogonal to ker(K−λkI) which is spanned by Zk. Therefore,
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we should have that

ZT
k (K

(θ) − λ
(θ)
k I)Zk = 0. (3.10)

Since Zk has unit norm, the sensitivity of the eigenvalues is obtained by (see e.g. [Lan64,

FKS+68,MH88,SLO94])

λ
(θ)
k = ZT

kK
(θ)Zk. (3.11)

Note that K = 1
S Ŷ

T Ŷ and Ŷ = LTY . Therefore, K(θ) = 1
S (Ŷ

(θ)T Ŷ + Ŷ T Ŷ (θ)) and

Ŷ (θ) = LTY (θ). Provided that we know what Y (θ) is, we can now fully characterize the

solution Z(θ)
k of equation (3.9). We find a particular solution Sk of (3.9) in the least-square

sense (obtaining the minimum norm solution). Since λk is simple, for all ̺ ∈ R, Sk + ̺Zk
is the general expression for the solutions of (3.9). To determine the particular solution

of (3.9) which corresponds to the sensitivity Z(θ)
k of Zk, we need an additional condition.

This comes naturally from the normalization condition ZT
k Zk = 1 which was employed to

specify Zk. Differentiating the normalization condition we get ZT
k Z

(θ)
k = 0 and consequently

̺ = −ZT
k Sk. Finally,

Z(θ)
k = Sk − (ZT

k Sk)Zk. (3.12)

Once the sensitivity of matrices Z and Λ are determined, the sensitivity of POD basis

modes ψ and POD bases ψk are straightforward to be computed by differentiating (3.7).

More specifically,

ψ(θ) = Y (θ)
Z(SΛ)−1/2 + Y Z

(θ)(SΛ)−1/2 + Y ZS−1/2(Λ−1/2)(θ)

= Y (θ)
Z(SΛ)−1/2 + Y Z

(θ)(SΛ)−1/2 − 1

2
Y ZS−1/2(Λ−1/2Λ(θ)Λ−1)

= Y (θ)
Z(SΛ)−1/2 + Y Z

(θ)(SΛ)−1/2 − 1

2
ψΛ(θ)Λ−1. (3.13)
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To complete the sensitivity analysis of the POD bases, we still need to find the sensitivity

of the snapshot data matrix Y (θ). This can be done by the sensitivity analysis of equation

(3.2).

3.2.1 Sensitivity analysis of the Burgers equation

Let u be the solution of equation (3.2) and let z = ∂θu be the partial derivative of u with

respect the parameter θ. Taking the derivative of equation (3.2) with respect to θ, we get

that z should satisfy

zt + (zu)x = µzxx + ∂θfd(t, x), (3.14)

where ∂θfd(t, x) = ∂θ[σ(x)
∑d

k=1(ξk+θ(ζk−ξk))hk(t)] = σ(x)
∑d

k=1(ζk−ξk)hk(t), with zero

boundary and initial conditions. Note that equation (3.14) is no longer non-linear and can be

efficiently solved using a regular Finite Element method in a negligible amount of time. The

finite element basis functions are assumed to be as before and we are seeking the solution in

the space WN ([0, 1]) = span{βj , j = 1, . . . , N} defined earlier. Let z(t, x) =
∑N

i=1 zi(t)βi(x)

be the solution resulting from solving (3.14) with the Finite Element method. Then the

sensitivity of the snapshot matrix Y is given by Y (θ) = (zi(tj)), i = 1, . . . , N and j =

1, . . . , S. This completes the sensitivity analysis of POD basis functions in the directions of

ζ̂ − ξ̂.

3.2.2 Improving POD bases

Following [HBP09], we state two ideas for constructing improved reduced bases.

1. Extrapolated basis: Note that POD bases introduce in (3.5) are functions of ξ̂ and

consequently functions of θ used in the transformation ξ̂+ θ(ζ̂ − ξ̂). Let us use ψk(θ)

to emphasize this dependence. Note that when θ = 0 we are considering the POD
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basis functions at ξ̂ and when θ = 1 we are considering them at ζ̂. Now let us use

ψk(θ) ≃ ψk(0) + ∆θ
∂ψk
∂θ

(0) (3.15)

to approximate ψk(θ). The capability of this extrapolation obviously depends on the

assumption that POD modes behave nearly linear with respect to the parameter θ.

However, using this method, the dimension of the reduced basis is preserved. Other

approaches based on this idea can be found in [LLN+05, LFL06, MSN+07]. These

papers motivate the extrapolation approach based on mode sensitivity, by showing an

increase in robustness of the derived POD models with respect to parameter change.

2. Expanded basis: The sensitivity of the modes generally seem to span a different sub-

space than the POD modes. Therefore, it seems plausible to expect that if we seek

the approximate solution in the space spanned by the union of these two sets, we

can represent a broader range of solutions. Therefore, we use {∂θψk} to expand the

original POD basis functions {ψk}. By a misuse of notation, we are still using

WN,M ([0, 1]) = spank=1,...,M{ψk, ∂θψk}

to denote the space where we seek the solution of equation (1.11). The underlying

assumption of this approach is that WN,M ([0, 1]) is well suited to address the change

in the solution induced by a change in parameter. This indeed is a legitimate assump-

tion since the sensitivities represent changes in the parameter space. However, the

dimension of the reduced basis is now doubled.

3.3 Multi-fidelity Stochastic Collocation

We are finally in a position to demonstrate the multi-fidelity stochastic collocation method.

Our aim to approximate the solution of (3.1) in the space VN,p = L2([0, T ];WN ([0, 1])) ⊗
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Pp(R
d), where WN ([0, 1]) = span{βj} is the finite element space, and Pp(R

d) is the span

of tensor product polynomials with degree at most p = (p1, . . . , pd). Choose η > 0 to be

a small real number. The procedure for approximating the solution of (3.1) is divided into

two parts:

1. Fix ζ̂ ∈ R
d, and search the η-neighbourhood Bη(ζ̂) of ζ̂. We use Bη(ζ̂) = {ξ̂ ∈ R

d :

|ξk−ζk| < η, ∀k = 1, . . . , d}. If problem (3.2) is not already solved by the GFE method

for any nearby problem with ξ̂ ∈ Bη(ζ̂), let ξ̂ = ζ̂ and solve problem (3.2) using the

GFE method. In contrast, if equation (3.2) is already solved for some points in Bη(ζ̂),

pick the closest one to ζ̂ and call it ξ̂. In either case, use the solution at ξ̂ ∈ Bη(ζ̂)

to find a small number of suitable basis functions resulting from local improvements

to POD bases using sensitivity analysis. Let WN,M ([0, 1]) ⊂ WN ([0, 1]) be the span

of these basis functions. Now use the Group POD method to solve problem (3.3) at

ζ̂ ∈ R
d and get the solution ud(ζ̂, t, x).

2. Collocate on zeros of suitable orthogonal polynomials and build the interpolated so-

lution ud,p ∈ VN,p using

ud,p(ζ̂, t, x) = Ipud(ζ̂, t, x) = (3.16)

p1+1
∑

j1=1

· · ·
pd+1
∑

jd=1

ud(ζ1, . . . , ζd, t, x)(lj1(ζ̂)⊗ · · · ⊗ ljd(ζ̂),

where the functions {ljk}dk=1 can be taken as Lagrange polynomials. Using this for-

mula, as described in [BNT07], mean value and variance of ud can also be easily

approximated.
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3.3.1 Generalization to Sparse Grids

Here, we give a short description of the isotropic Smolyak algorithm. More detailed infor-

mation can be found in [BNR00,NTW08b]. Assume p1 = p2 = · · · = pd = p. For d = 1,

let {I1,i}i=1,2,... be a sequence of interpolation operators given by equation (3.16). Define

∆0 = I1,0 = 0 and ∆i = I1,i − I1,i−1. Now for d > 1, let

A(q, d) =
∑

0≤i1+i2+...+id≤q

∆i1 ⊗ · · · ⊗∆id (3.17)

where q is a non-negative integer. A(q, d) is the Smolyak operator, and q is known as

the sparse grid level. Now instead of (3.16), A(q, d)ud(ζ̂, t, x) can be used to approximate

the solution ud of (3.1). This way one reduces the number of grid points on which the

deterministic algorithms should be employed.

3.4 Numerical experiments

In this section, we consider equation (3.1) given once again below for conveniences.

ut +
1

2
(u2)x = µuxx + σ(x)

d
∑

k=1

ξkhk(t), (3.18)

(t, x) ∈ (0, T ] × [0, 1], u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0, where u0 ∈ L2([0, 1]) is a

deterministic initial condition. In the following numerical experiments, before employing

the full-blown version of the multi-fidelity algorithm, we first consider the case when we are

still utilizing a single point ξ = 0 (similar to Chapter 1) in the stochastic parameter domain

to generate the POD bases, however, this time we are performing local improvements using

the extrapolated basis technique. We let T = 1.0, u0(x) = (ecos(5πx)−3
2) sin(πx), σ(x) = 0.01

and µ = 1/200. In Figure 3.1 we observe that the mere usage of improved basis functions

without any increase in the number of times that the high fidelity algorithm is employed
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fixes the issue brought up in Figure 1.2. Table 3.1 compares the corresponding errors of the

two methods with the Monte Carlo method being the point of reference.

Figure 3.1: Standard Deviation of the solution given at final time T = 1.0 when d = 2 for
sparse grid level 6.

Table 3.1: Comparison of the errors of the two methods.

L2([0, 1]) Rel. Error E[u] E[u2] Std. Dev.

POD & Sparse Grid 0.0105 0.0208 0.0408

GFE & Sparse Grid 0.0024 0.0046 0.0248

For the rest of this section, unless otherwise stated, we assume that σ(x) = 0.1 cos(4πx)

and µ = 1/100. We let T = 0.8 and u0(x) = (ecos(5πx) − 3
2) sin(πx). We are still projecting

the Brownian motion in [0, T ] on the trigonometric basis functions hk(t) in L2([0, T ]) given

by

h1(t) =
1√
T
, hk(t) =

√

2

T
cos

(

(k − 1)πt

T

)

, k ∈ {2, 3, . . .}. (3.19)
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Let us first study the effect of local improvements to POD basis functions. Choose ξ̂

and ζ̂ to be two d dimensional vectors with Gaussian distributed randomly chosen en-

tries. We again consider the transformation ξ̂ + θ(ζ̂ − ξ̂)/||ζ̂ − ξ̂||. We let θ to change in

the interval [−1/2, 1/2]. We compute the POD basis functions at ξ̂ and use them, along

with their extrapolated and expanded local improvements, to solve the nearby problem at

ξ̂+ θ(ζ̂− ξ̂)/||ζ̂− ξ̂|| using the Group POD method. We then compare the results with the

ones from the GFE method. For the finite element code we partition the spatial domain

[0, 1] into 64 intervals. We also divide the time domain [0, T ] into 200 time steps. For

the reduced order models, we use 10 POD basis functions which results in 10 extrapolated

basis functions and 10+10 extended basis functions. We also consider the case when 20

POD basis functions and consequently 20 extrapolated bases are employed, for compari-

son. We let d = 10. Figure 3.2 shows the typical behaviour of Group POD method when

Figure 3.2: Comparison of the effects of extrapolated and expanded local improvements to
POD basis functions
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POD, Extrapolated, and Expanded basis functions are employed. The authors believe that

the improvement in accuracy that is achieved by employing Expanded basis functions is

not worth the increase in the number of bases. Therefore, in the multi-fidelity collocation

method proposed earlier we use Extrapolated basis functions to locally improve the perfor-

mance of Group POD method. Now we apply the multi-fidelity collocation method. Let us

assume that η = 1/2 and d = 3. For the finite element code we partition the spatial domain

[0, 1] into 32 intervals. We also divide the time domain [0, T ] into 20 time steps. We use

10 extrapolated POD basis functions. We employ the Smolyak algorithm with sparse grid

level q = 8. We use the Clenshaw-Curtis abscissas (see [CC60]) as collocation points. These

abscissas are the extrema of Chebyshev polynomials. In Figure 3.3 we compare expectations

and second moments of solutions resulting from our multi-fidelity method (GFE & Group

POD) and the ones resulting from a regular sparse grid method with the full employment of

GFE as the high fidelity algorithm. In this figure, we are also including the solutions coming

out of the Monte-Carlo method with the full employment of the high fidelity algorithm for

reference.

For this value of η = 1/2, the number of times that our algorithm calls the high fidelity

(GFE) code is reduced to 2030. Compare it to 6018, the number of times that the GFE code

is called when sparse grid stochastic collocation with full employment of the high-fidelity

algorithm is utilized. Comparing the two methods, assuming that sparse grid stochastic col-

location with full employment of the high-fidelity algorithm is accurate enough, we get that

the error in expectation is given by 8.2×10−4 and the one in the second moment is 1.4×10−3.

Figure 3.4, shows the convergence patterns of expectations and second moments of

solutions with regard to η. We are in fact comparing our multi-fidelity method with a

regular sparse grid stochastic collocation method. Note that for small enough η (less than

the shortest distance between the collocation points) we get the regular sparse grid method

back. Therefore the error is zero for such a small η.
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Figure 3.3: Expectation and Second Moment of the solution given at the final time T = 0.8
when d = 3, for sparse grid level 8 and η = 0.5.
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Figure 3.4: L2([0, 1])-norm convergence pattern of Expectation and Second Moment of the
solution given at the final time T = 0.8 when d = 3, for sparse grid level 8.
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Figure 3.5 demonstrates how the number of times that the finite element code is em-

ployed increases with respect to a decrease in η. Table 3.2 is just another way of presenting

the data depicted in Figures 3.4 and 3.5.

Remark 3.1. Note that this chapter closely follows our paper [RSb].

Figure 3.5: Number of times that the high fidelity algorithm (GFE method) is called as a
function of η.

Table 3.2: Relative errors and the number of times that the finite element code is employed
for different values of η.

η # FE calls Expectation L2 error Second Moment L2 error

16 1 4.56E-02 8.60E-02

4 20 2.53E-02 4.94E-02

1 659 2.55E-03 4.95E-03

1/2 2030 8.16E-04 1.43E-03

(1/4) 3424 4.45E-04 8.05E-04
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Conclusions

In this work, we have proposed a method to enhance the performance of stochastic col-

location methods using proper orthogonal decomposition. We have carried out detailed

error analyses of the proposed multi-fidelity stochastic collocation methods for parabolic

partial differential equations with random forcing terms. We illustrated and supported

our theoretical analyses with a numerical example. The analysis of this work can simply

be generalized to parabolic partial differential equations with random initial conditions and

random coefficients. Our method only requires a well-posedness argument of the correspond-

ing deterministic equations. We have also chosen to apply our method to the stochastic

Burgers equation because of its tractability and because lots of powerful model reduction

techniques such as group POD existed for this equation. Our method enhances the power

of stochastic collocation methods in handling more stochastic differential equations. Our

work provides another reason for the importance of research in Model reduction techniques.

We believe that more research can follow our work and apply our method to more inter-

esting problems. Such problems can be in fluid dynamics and fluid structure interactions.

Navier-Stokes equations under uncertainty can for instance be a reasonable next step.
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