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ABSTRACT 

HYPERSPECTRAL SIGNATURE DETECTION OF LOW ABUNDANCE INTIMATE 

MIXTURES IN MICROSCENES USING CONVOLUTIONAL NEURAL NETWORKS 

Kevin P. Christiansen, M.S. 

George Mason University, 2019 

Thesis Director: Dr. Arie Croitoru 

 

The high-confidence detection and identification of very low abundance, subpixel 

quantities of solid materials in nonlinear (intimate) mixtures are still significant 

challenges for HSI data analysis. Machine learning with convolutional neural networks 

(CNN) has proven to be an accurate means of identifying and typing features for various 

forms of data including estimating nonlinear functions and detecting features in one-

dimensional data series. The application of CNNs to low abundance intimate mixtures, 

could improve minimum detectable quantities (MDQs) compared to current algorithms 

by processing spectra such that subtle features are enhanced and more discriminable. To 

test this, microscenes of three different intimate mixtures at varying abundance ratios 

(weight percent) were generated and measured using a benchtop shortwave infrared 

(SWIR) hyperspectral imager. A microscene is a hyperspectral image of a small-scale 

human-generated landscape measured in a laboratory. The 3 mixtures measured consisted 
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of silicate sand + Nd2O3, silicate sand + powdered sugar, and soil + aspartame. Several 

hundred thousand labeled spectra are easily and rapidly generated in one HSI cube of a 

microscene for neural network training and testing. The mixture detection abilities of 

several processing methods were compared including deep learning (DL) CNNs in 

TensorFlow, shallow (non-convolutional) neural networks in both TensorFlow and 

MATLAB, and ENVI’s matched filter (MF), support vector machine (SVM), and linear 

spectral unmixing (LSU) functions. The CNN models for each mixture have >98 % 

average validation accuracies for detecting mixtures of varying abundances, including the 

lowest abundances measured. Both the DL/CNN and shallow neural networks tested 

showed increased detection capabilities compared to some more traditional ENVI 

methods. The networks were able to identify the lowest weight percent of sand + Nd2O3, 

but the MF and LSU methods did not yield results that would be considered reliable 

detections. The results establish confidence in using CNNs as a means of detecting low 

abundance intimate mixtures in real-world scenarios. 
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INTRODUCTION 

The high confidence detection and identification of very low abundance, subpixel 

quantities of solid materials in nonlinear (intimate) mixtures are still significant 

challenges for hyperspectral imagery (HSI) data analysis. Motivated by a desire to reduce 

minimum detectable quantities and enabled by microscene data generation methods, this 

research tests the ability of deep learning (DL) convolutional neural networks (CNNs) to 

analyze spectral signatures of intimate mixtures. The results are compared to analysis 

methods in ENVI as well as neural networks developed using MATLAB. 

The process of spectral unmixing is important to understanding the constituent 

materials of a remotely sensed HSI data. The ability to detect materials mixed with low 

abundances aids an analyst’s understanding of what is going on in a scene. For example, 

questions such as how much of a chemical is present in a soil or how much oil film is on 

water could potentially be answered using spectral unmixing techniques. Increasing the 

ability to detect smaller quantities and doing so accurately, is the goal of this research.  

 

Hyperspectral Mixtures 

A detector (a pixel) in a remote sensing imaging system collects the 

electromagnetic energy scattered from multiple materials (endmembers) within its field 

of view. The resulting data contains a combination of spectral components from each 
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endmember. An analyst working with HSI is commonly looking to detect a specific 

material within a pixel or would like to know the component makeup of a pixel. Both 

analytic processes may involve a process known as spectral unmixing.  

The types of materials that might be mixed within a pixel may vary widely with 

the ground sampling distance (GSD) of the system. For example, imagery from 

hyperspectral remote sensing systems such as NASA/JPL's AVIRIS1, with a nominal 

GSD of 20 meters, may have mixtures including of a variety of vegetation, soils, and 

manmade materials [34]. A laboratory based HSI sensor with a controllable GSD 

(dependent on test setup), such as the data collected for this paper, can potentially 

measure any combination of materials and collect the data in a controlled environment.  

Understanding the component makeup of the pixels being analyzed is important 

due to the phenomenology of the interaction of light and materials at certain wavelengths. 

This paper uses spectra captured from 936 nm to 2508 nm, spanning both the near-

infrared (NIR) and shortwave infrared (SWIR) wavelength regimes. NIR/SWIR 

wavelengths are typically reflective as opposed to emissive, meaning photons detected 

are dependent on reflected sunlight, surface reflectivity, illumination geometry, and other 

complex phenomena. This paper does not consider possible thermal/emissive SWIR 

sources and focuses on the mixing effects and modeling of reflective phenomena.  

In HSI analysis, a mixture model can describe the way endmembers are combined 

within the pixels of the image data and estimates their relative abundances. Spectral 

unmixing provides a comprehensive and quantitative mapping of the elementary 

                                                 
1 https://aviris.jpl.nasa.gov/aviris/index.html - accessed July 2019 
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materials that are present in the data cube [13]. Baseline processing methods rely on 

linear spectral mixing models that can adequately estimate the reflectance and abundance 

of endmembers within a single pixel. However, the complexities of material-photon 

interactions such as multiple scattering within or around the materials often drive a 

requirement for more accurate, non-linear, models for unmixing. Understanding and 

modeling mixing phenomenologies due to photon interactions will lead to more accurate 

extractions of material abundances within spectral signatures. 

The amount of detail to use when defining a mixing model can be subjective. 

Commonly, mixing models are defined as either linear or nonlinear. Linear mixing 

suffices when the arrangement of different materials in a scene or in a single pixel is 

macroscopic ("checkerboard"), and the incident light interacts with just one material prior 

to being received by the sensor [5]. The linear mixing model (LMM) is defined in 

Equation 1 where 𝑅𝑖 is the reflectance of a pixel in wavelength band i, 𝑓𝑗 is the fractional 

abundance of endmember j in the pixel, 𝑀𝑗,𝑖 is the reflectance of endmember j in band i, 

𝑟𝑖 is the unmodeled reflectance for the pixel in band i, and n is the number of 

endmembers. The LMM assumes that all mixing occurs within an individual pixel and is 

due to the resolution of the instrument being greater than the size of the components 

being measured. Abundances in a linear mixture represent the relative area of the 

corresponding endmember in an imaged region [14]. 
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𝑅𝑖 = ∑ 𝑓𝑗𝑀𝑗,𝑖 + 𝑟𝑖

𝑛

𝑗=1

 

Equation 1: Linear Mixing Model 

 

Nonlinear mixing is due to the light being scattered by multiple materials in the 

scene and physical interactions between the light and the materials. These interactions 

can be due to multiple layers of macroscopic scattering (classical) or due to microscopic 

(intimate) interactions. Mixing at the classical level occurs when light is scattered from 

one or more objects, is reflected off additional objects, and eventually is measured by the 

sensor. Microscopic mixing occurs when two materials are homogeneously mixed [14]. 

Figure 1 shows a diagram from [6] showing a schematic of linear and nonlinear mixing 

interactions. Further information about unmixing taxonomies and more graphics showing 

linear and nonlinear interactions of light can be found in [21].  
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Figure 1. Schematic view of three types of spectral mixing. 

(a) Linear mixing in a checkerboard type surface. (b) Nonlinear (linear plus bilinear) mixing in a two-layer 

media. (c) Nonlinear mixing in an intimate (particulate) media. Figure is from Bioucas-Dias et al. (2013) [6]. 

 

This research focuses on the application artificial neural networks, rather than 

defined analytical models, to analyze intimate mixtures. Artificial neural networks have 

demonstrated the capability of estimating complex nonlinear functions and several types 

of neural network architectures have been applied to the problem of nonlinear spectral 

unmixing [39]. This section will highlight some of the neural network applications to 

spectral unmixing.  

Several studies have highlighted the benefits of neural networks applied to 

nonlinear mixtures and their improvement over linear unmixing techniques. Plaza et al. 

(2009) [33] and Kumar et al. (2012) [26] showed successful nonlinear mixture estimation 

using a multi-layer perceptron (MLP) networks. MLP networks are a relatively basic 

form of network that uses nonlinear functions to transform inputs in order to categorize 

the data. Improving on MLP networks, Carpenter et al. (1999) [9] developed a neural 

network-based mixture estimation method that outperforms maximum likelihood 
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classification and linear mixture models. The network is based on adaptive resonance 

theory (ART) which aims to increase stability and speed compared to MLPs through self-

organizing the feature mapping from input vectors. Again, building on the base of MLP 

networks, Palsson et al. (2018) [32] showed that an autoencoder neural network extracted 

endmembers with improvements over traditional unmixing methods. Autoencoder 

networks build on MLP networks by learning a representation of the input data, which 

reduces data dimensionality, increasing speed. Lastly, Ahmed et al. (2017) [1] proposed 

using artificial neural networks to determine if a linear or nonlinear mixture model should 

be used for a specified input. Based on the characteristics of neighboring pixels, the 

network determines the best combination of mixtures models to use in order to produce 

the most accurate results. These studies build a foundation for further research in the area 

of nonlinear unmixing using neural networks. 

Other types of neural networks besides MLPs have been applied to the spectral 

unmixing problem with the goal to estimate accurate abundances of materials within a 

mixture. Licciardi and Del Frate (2011) [28] used autoassociative neural networks to 

extract accurate pixel abundance estimations from the hyperspectral data. Guilfoyle et al. 

(2001) [18] use a radial basis function neural network to perform abundance estimation 

on nonlinear binary mixtures. The radial basis function network concept has been applied 

to various time series problems. Time series data often have common data structures and 

features to hyperspectral data so detection algorithms such as this network can be shared 

between the two modalities.  
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The research presented in this paper builds on the neural network applications 

discussed by applying yet another type of network (CNNs) to the low abundance intimate 

mixture detection problem. Of the neural networks that have been applied to the spectral 

unmixing problem, few, if any, have explored the use of convolutions in the hidden 

layers of the network [40]. The idea is that using CNNs may increase the confidence of 

detection for an analyst through processing subtle spectral features such that they’re more 

discernable from the background.  

 

Convolutional Neural Networks 

Machine learning and CNNs are active areas of research for applications in 

computer vision / image processing. In the last decade, advances in DL/CNN methods 

and application programming interfaces (APIs), such as Google’s TensorFlow (used in 

this research), have made it easier for scientific researchers to apply such processing to 

their problems. There are a few, now famous, networks that have paved the way for 

methods that are used in research discussed in this paper. AlexNet [24], VGG Net [37], 

ResNet [19], and the fully connected network (FCN) [29] are all examples of such 

networks. Although these networks weren’t used “out of the box” in this research, some 

features of these networks that result in lower error rates were used.  

Machine learning with CNNs has been widely proven to be an accurate means of 

identifying and typing features for various forms of data including estimating nonlinear 

functions and detecting features in one-dimensional data series [16]. Typical use, 

however, are applications to spatially unique objects in two-dimensional images with red, 
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green, and blue color channels [25]. In remote sensing image data, materials that need to 

be detected, identified, and characterized can appear spatially similar but spectrally 

unique. Specifically, in HSI data, that uniqueness takes the form of spectral absorption 

features when looking at the spectral dimension of a pixel within the HSI cube (3rd 

dimension or 3D). 3D CNNs have been applied to HSI data to detect material classes, 

considering both spatial and spectral information in one operation [11]. However, the 3D 

operation may not be desirable for a problem such as low-abundance spectral unmixing 

in spatially homogeneous materials. CNNs use kernels to transform the input data into 

unique classes in order to categorize them. Other kernel-based methods for classifying 

hyperspectral images, have been used to generalize linear algorithms to nonlinear data [8, 

27].  

HSI signatures in the spectral dimension are most often unique between material 

types (hence the colloquial term “signature.”) The signatures are due to varying 

absorption of photons as a function of wavelengths. In nonlinear mixtures, mass fraction, 

density, particle size, and single scattering albedo will affect the size and shape of the 

absorption features. One method of analyzing spectra is derivative spectroscopy; a way of 

identifying and characterizing spectral features based on first- or higher-order derivatives 

[31]. One example of this method is shown in Figure 2 from a soil discrimination study 

by Bannari et al. (2018) [7]. The figure shows the reflectance spectra collected alongside 

the same spectra with first derivative processing done in order to be able to distinguish 

similar soils that would not otherwise be distinguishable.  
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Figure 2. Example reflectance spectra and continuum removed first derivative spectra.  

Plots are from research by Bannari et al. (2018) [7].  

 

A properly designed kernel convolved with spectra will lead to an analogous 

result to that of derivative spectroscopy, aiding the categorization of spectral components. 

The flexibility in CNN structure and number of kernels that could be applied within a 

CNN greatly expands the possibilities of derivative-like analysis. In two-dimensional 

CNN applications, it is commonly seen that a CNN generates weights that produce 

outputs like that of an image convolved with an edge detection kernel. One aspect of the 

research presented in this paper is how the training of a one-dimensional CNN will 

generate the edge-detection-like or derivative-like kernel weights such that it finds 

spectral uniqueness in each class of data, resulting in high detection accuracies. 

Considering the success of processes like derivative spectroscopy for HSI signature 

discrimination and the capability of convolutional processing to extract a derivative, 

applying CNNs to HSI data warrants investigation.  
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Microscenes 

Microscenes are a method of generating data for the evaluation of hyperspectral 

systems and algorithm performance. The concept, introduced by Allen et al., (2013) [2], 

is to generate a small-scale setting that consists of the material constituents that would be 

found in a real-world scene. Applications of microscenes are typically, but not limited to, 

the simulation of spectral data that would be acquired during airborne or spaceborne 

hyperspectral remote sensing data. Benefits of microscenes include cost-effectiveness of 

a laboratory system vs. an air- or spaceborne remote sensing system, the customization of 

scene constituents, and the efficiency of data collection for analysis. Commercially 

available laboratory HSI sensors can acquire several hundred thousand spectra in one 

hyperspectral image acquisition of a Petri dish (or other suitable sample tray) thus 

furnishing many labeled samples. Imagery derived from microscenes contains many 

properties in common with non-laboratory remote sensing systems and have been shown 

to be useful as a proxy for overhead imagery [4, 35, 36]. 

Lab-based HSI data of microscenes both qualitatively and quantitively represent 

accurate proxies to actual remotely sensed hyperspectral data [2]. Importantly for this 

research, Allen et al. (2013) [2] assert that the spectral mixing interactions, among other 

properties, are fully represented naturally in a microscene. This is a key aspect of data 

quality for machine learning research that may not be accurately represented in modeled 

or simulated data. Additionally, the use of microscenes for machine learning training data 

specifically highlights two benefits related to the large amounts of data required for 

accuracy. First, the inexpensive and rapid collection of large amounts of data is easily 
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accomplished. Second, this large amount of data is easily labeled because the user has 

made the microscene and therefore knows exactly what materials, and quantities, are in 

the data. Each sample of training data doesn’t have to be human or algorithmically post-

processed in order the label the data correctly. Furthermore, an intimate mixture can be 

generated with such small weight percentages of materials that the user can’t visibly or 

spectrally see it but is certain the materials are present due to the process of how the 

mixture was created. This provides an advantage that is not widely considered in other 

machine learning applications. It is a novel method when the goal is to determine MDQs 

since the scene generation can produce test cases that are below the limits of human or 

current, “traditional” algorithm interpretability.  
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METHODS 

The methods discussed in this paper include the generation of microscenes for 3 

unique intimate mixtures. The mixtures were then imaged with SWIR hyperspectral 

sensor and labelled with their respective weight percents for input into processing 

algorithms. 6 techniques were tested. The designs of these techniques are discussed in 

this section, and the results shown in the following section. Figure 3 shows a diagram of 

the flow of data for this research. 

 

 
Figure 3. Data generation and processing overview. 

The flow of data in this research consisted of generating the microscenes, capturing the hyperspectral image 

data, labelling the data, and then processing it for mixture detection using 6 different methods.  

 



13 

 

Microscenes and HSI Data Collection 

Microscene Generation 

This study used 150 mm diameter plastic Petri dishes in which to create 

microscenes.  The individual Petri dishes respectively contained varying weight percents 

of chemicals mixed with a common base material. Table 1 outlines the 3 binary mixtures 

and weight percents in each microscene. Each mixture is described further in following 

sub-sections. A hyperspectral image of a single Petri dish generates several hundred 

thousand labeled spectra for analysis—as individual spectra (i.e., individual pixels 

extracted from the HSI data) or as n-pixel mean spectra where n can be any integer value. 

Single-pixel and 50-pixel average spectra were analyzed for the sand + Nd2O3 and 50-

pixel average spectra, only, were analyzed for sand + powdered sugar and soil + 

aspartame.  

 

Sand + Nd2O3 

The sieved silicate sand comes from a commercially purchased 50-lb. bag of 

“sand-box” play sand. The sand fraction of the mixtures was 500 micrometers (35 mesh) 

and smaller. The reagent-grade Nd2O3, essentially a fine powder with particle size much 

smaller than the sand (several orders of magnitude smaller; essentially a clay), was very 

thoroughly mechanically mixed with the sand; it is thus intimately mixed with the sand. It 

is believed that due to the particle size difference and texture of the Nd2O3, the powder is 

sticking to and coating the outside of the sand particles, causing the multiple photon 

interactions expected in a mixture defined as intimate. Nd2O3 was chosen because of the 
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spectral features it presents in the shortwave infrared (SWIR; 900 nm to 2500 nm)2 

region of the spectrum, their location in contrast to the mean spectrum of sand, its low 

toxicity, and its high density. The low weight percent samples contain very low 

abundances (from an earth remote sensing perspective) of the chemical. Spectra of the 

Nd2O3 mixtures are shown in Figure 4. 

 

Sand + Powdered Sugar 

The powdered sugar mixture used the same sand as described in Section 2.1.1 and 

was chosen for many of the same reasons as the Nd2O3. Spectra of the powdered sugar 

mixtures are shown in Figure 4.  

 

Soil + Aspartame 

The soil + aspartame mixture was, in part, chosen due the finer particle size of 

soil vs the sand. The soil used is a clay and likely has similar particle size as the 

aspartame. Spectra of the aspartame mixtures are shown in Figure 4. 

  

                                                 
2 See section “The HSI Measurements” for more details about the SWIR imaging system used in this 

research.  
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Table 1. Weight Percent of Mixtures for each Microscene 

Mixture Weight percent Reagent 

Sand + Nd2O3 0 N/A N/A 0.5 1 2 3 4 5 

Sand + Powdered Sugar 0 0.1 0.25 0.5 1 2 3 4 5 

Soil + Aspartame 0 0.1 0.25 0.5 1 2 3 4 N/A 

 

The HSI Measurements 

The HSI data of the microscenes were acquired with a Headwall Photonic, Inc., 

Micro-Hyperspec® SWIR hyperspectral imaging spectrometer. The sensor was set to 

acquire 168 bands (of a possible 267) in the ~898 nm to ~2508 nm range. During data 

processing, the first four bands were discarded due to noise content; the analyses 

described here are thus applied to 164 bands from 936.50 nm to 2508.20 nm. A 

translation table moved the microscene by the sensor; illumination was provided by a 

quartz-tungsten-halogen lamp. Other features of the Micro-Hyperspec® SWIR and a 

photograph of the apparatus in the laboratory at the National Institute of Standards and 

Technology3 may be found in Appendix I. Ground sample distance of the resulting image 

data is ~0.3 millimeters (mm). 

 

                                                 
3 The HSI measurements used in this study were made at the National Institute of Standards and 

Technology (NIST) in Gaithersburg, MD. 
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Conversion to Reflectance 

The microscene data are easily converted to reflectance by also collecting an HSI 

cube of a plaque of polytetrafluorethylene (PTFE), a dark current cube (a collection event 

with the lens cap on), and a point-spectrometer measurement of the reflectance of PTFE. 

Converting all raw measurements to floating point numbers, reflectance is calculated as 

shown in Equation 2, where DN is digital number. Conversion to reflectance is 

accomplished with ENVI’s “Spectral Math” capability.  

 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = (
𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑒𝑛𝑒 𝐷𝑁 − 𝐷𝑎𝑟𝑘 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑁

𝑃𝑇𝐹𝐸 𝐷𝑁 − 𝐷𝑎𝑟𝑘 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑁
) ∗ 𝑃𝑇𝐹𝐸 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 

Equation 2: Conversion to Reflectance 

 

Spectra from the Microscenes 

Two forms of the spectra are analyzed in this study: single pixel spectra and 50-

pixel average spectra. Figure 4 shows a plot of a randomly selected 50-pixel average 

spectra from each mixture and within each plot, each weight percent. There is a 

noticeable change in apparent spectral features from the lowest to the highest weight 

percent of each mixture, however, only slight differences or no difference at all is seen 

among the lowest weight percents. This is highlighted in Figure 5, showing the mean 

spectra of 50,000 samples of the 0% mixture and the next lowest weight percent mixture. 

Besides some differences in total reflectance (standard deviation among 50,000 spectra is 

~2% reflectance), the spectral feature differences are not identifiable by human visual 
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inspection. For this reason, the neural network processing methods are being studied to 

find their minimum abundance detection limit.  

Regions of interest (ROIs) were defined for each of the microscenes. In most 

cases, an ROI was composed of numerous boxes placed to avoid obvious specular grains. 

The spectra within each ROI comprise a set of data for training and validation (for which 

samples are held back from the training phase). An ROI such as that shown in Figure 6 

contains just over 50,000 spectra; indeed, ROIs were chosen to capture ~50,000 

spectra—an arbitrary quantity assumed sufficient to form a good set of labeled 

measurements from which samples for training and validation may be drawn. It is evident 

from Figure 6 that many more spectra could be extracted from a given microscene. The 

spectra from an ROI are then output to an ASCII text file and can be imported to the 

neural network software or other tools.  
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Figure 4. Example spectra from each mixture.  

From top to bottom: (a) Nd2O3 + sand, (b) powdered sugar + sand, (c) aspartame + soil. The spectra shown are 

randomly selected individual spectra among the 50,000 samples used in the CNN training/validation. Each 

mixture’s diagnostic spectral features are indications of the weight percent of the mixture. 
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Figure 5. Example spectra from each mixture of no reagent and the lowest weight percent mixture.  

From top to bottom: (a) Nd2O3 + sand, (b) powdered sugar + sand, (c) aspartame + soil. The spectra shown are 

the mean spectra among the 50,000 samples used in the CNN training/validation. Each plot shows the base 

material (0% reagent) spectra and the lowest weight percent mixture. Note the lack of discernable features in 

each comparison. The standard deviation of the mean of each set of spectra is ~2% reflectance.  
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Figure 6. Microscene context image.  

A grayscale image (1727.16 nm; 2 % linear stretch) of the microscene with 1.0 weight percent Nd2O3. The red 

boxes are regions of interest (ROIs) for extracting spectra. In a figure in Appendix I the microscene can be seen 

on the translation stage beneath the HSI sensor. 

 

Characterizing the Sand 

There is a broad range of spectral signatures in the sand. This is evident in the 

speckled nature of the sand in Figure 4. However, most of the grains are essentially the 

same as the mean spectrum. The grains are quartz, feldspars (most common minerals in 

the earth’s crust) and a grain or so of mica and other accessory minerals. Within the Petri 

dish, there are also spectra due to specular reflections from various grains randomly 

oriented to produce such an effect, grains showing etaloning, and spectra with real sensor 

noise artifacts (rare, small random spikes). This spectral signature diversity is desirable 

because it adds a reality to the data that is also in airborne remotely sensed HSI. And it 

can be moderated somewhat by averaging clumps of pixels (and is indeed moderated by a 

point spectrometer measurement with a spot size on the order of millimeters to 

centimeters in diameter). The impact of light passing through the transparent plastic Petri 
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dish wall, evident especially at the left and right sides of the microscene in Figure 7 

imparts plastic spectral features. For the generation of signatures for analysis here, these 

pixels are ignored as is evident from the placement of the ROI in Figure 6. 

 

 
Figure 7. Signature diversity in the Sand. 

(left) A SWIR false color composite image of the sand-only microscene. (right) Single-pixel spectra from the 

microscene at left. The red trace (‘Red_ROI_Mean’) is the mean spectrum of a region of interest (containing 

approximately 50,000 spectra) for the sand-only microscene (not shown). The plot key indicates the (sample, 

line) address of the pixel in the microscene. 

 

HSI Data Analysis 

Applying SVM to Sand + Nd2O3 Mixture 

An HSI cube was formed from the 50-pixel spectra extracted from the respective 

ROIs in the seven sand + Nd2O3 microscenes. Thirty thousand spectra from each 

microscene are used for the cube. Half of the spectra in each class (i.e., the different 

weight percents) are designated as training; the remaining half are used for testing. Only 

one trial with the following settings (entered in ENVI’s ‘SVM Options’ window) is 
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reported in this paper: the kernel type is a radial basis function; the gamma in kernel 

function is 0.006; the penalty parameter is 100.0; and the pyramid levels is zero as is the 

classification probability threshold [10]. 

 

Applying Spectral Mixture Analysis (SMA) to Sand + Nd2O3 Mixture 

An analyst not knowing the nature of the mixture or deposit of Nd2O3 on (and 

churned/mixed within) the sand may attempt to find the reagent by a “simple” linear 

unmixing analysis for which spectra of the reagent and of the sand are endmembers. 

Proceeding in this manner, ENVI’s linear spectral unmixing was applied to the individual 

spectra in the ROIs of the microscenes. It was run completely unconstrained using a 

spectrum of pure Nd2O3 and a mean sand spectrum (red trace in Figure 7) as 

endmembers. ROI mean fractions (along with mean +/- one standard deviation) of Nd2O3 

are plotted vs. weight percent Nd2O3 in Figure 13. 

 

The Matched Filter (MF) 

A separate microscene was generated within which small aliquots of the 0.5, 1, 2, 

3, 4, and 5 weight percent Nd2O3 + sand samples are emplaced along with several other 

materials. The scene created a realistic analog, in terms of signal-to-clutter ratio (SCR), 

as that presented in an airborne HSI data cube (indeed, microscenes can be built that are 

more stressing in terms of SCR than an airborne data set). ENVI’s MF algorithm was 

applied using a pure Nd2O3 spectrum (the same one used in linear spectral unmixing) 

[15]. The statistics required by the algorithm (scene mean spectrum and covariance 
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matrix) were generated with a mask over the Nd2O3 -containing aliquots to minimize 

target signal leakage that would degrade the MF performance. This trial is conducted to 

demonstrate that even when Nd2O3 is present, the MF scores can be very low (particularly 

in the 0.5, 1, and 2 weight percent aliquots) such that using typical data analysis practice, 

those pixels would most likely be deemed free of the reagent. The scores are low for two 

reasons: the abundance of the Nd2O3 is low (again, particularly in the 0.5, 1, and 2 weight 

percent aliquots) and it is nonlinearly mixed with the sand such that expecting a “good” 

match with a spectrum of regent-grade Nd2O3 is unrealistic. 

 

Deep Learning Convolutional Neural Network (DL/CNN) 

The DL/CNN is coded in Python using Keras with a TensorFlow-GPU backend.  

The computer built for processing runs Linux Ubuntu 18.04, has a 1 TB solid-state drive, 

32 GB DDR4 2133 MHz DRAM, an NVIDIA GTX 1080 GPU, and an Intel Xeon E3-

1270 CPU.  The high-end gaming GPU is appropriate for machine learning: it has 9 

TFLOPS of processing capability and typically runs TensorFlow training and validation 

processing in ~10 minutes for 25 epochs of ~400,000 samples. The model uses three one-

dimensional (1D) convolutional layers to form a deep learning neural network. Similar 

structures are commonly used in processing time-series data—but here applied naturally 

to spectra which are also 1D data structures. Some parameters, including number of 

filters and kernel size, have been optimized for the input data; however, the overall 

structure has not yet been exhaustively studied for the application to HSI data. One 
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example DL/CNN model summary output from Keras is shown in Table 2. A detailed 

diagram of the DL/CNN layer structure is shown in Figure 8.  

 

 
Figure 8. DL/CNN structure diagram. 

1D data extracted from a 3D HSI data cube are inputs to the DL/CNN which applies a series of convolutional 

layers and a fully connected layer to label the weight percents of each material mixture.  
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Table 2. Keras DL/CNN Model Summary Output 

Layer Output Shape 
Trainable 

Parameters 

Conv1D (None, 144, 12) 264 

Activation (None, 144, 12) 0 

MaxPooling (None, 72, 12) 0 

Conv1D (None, 52, 12) 3036 

Activation (None, 52, 12) 0 

MaxPooling (None, 26, 12) 0 

Dropout (None, 26, 12) 0 

Conv1D (None, 6, 12) 3036 

Activation (None, 6, 12) 0 

MaxPooling (None, 2, 12) 0 

Flatten (None, 36) 0 

Dense (None, 8) 296 
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Shallow Neural Networks 

A shallow (i.e., a single hidden layer), fully connected, feed-forward neural 

network implemented in MATLAB (v. R2018a) was applied to the sand + Nd2O3 

microscene spectra. Each class contained 15,000 spectra from which user-specified 

fractions were held back from training for testing and validation. Scaled conjugate 

gradient backpropagation was applied for training (though other training methods 

available in the MATLAB implementation were tested). Different numbers of nodes (also 

referred to as neurons) in the hidden layer (5, 10, and 20) were also tested. The 

MATLAB neural network graphical user interface (GUI) was used to implement this 

capability (though it can also be implemented as a series of commands at the command 

prompt or as a .m file). 

For comparison to the MATLAB shallow neural network, a shallow, fully 

connected, feed-forward neural network implemented in Python using Keras with a 

TensorFlow-GPU backend was applied to the sand + Nd2O3 microscene spectra. This 

shallow network was branched from the same code used for the DL/CNN. The only 

change was that the 3 layers of CNNs with pooling were replaced by a single “Dense” 

layer. The focus on this paper is to explore the potential benefits of CNNs for HSI data 

analysis, but many other types of neural networks can also classify 1D data with high 

accuracy. This shallow network provides a baseline for comparison to the DL/CNN as 

well as a baseline for further exploration into other TensorFlow functions and model 

structures.  
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Neural Network Metrics 

Two metrics were used to assess neural network performance. The first is 

validation accuracy. Validation accuracy is the total number of correctly categorized 

samples divided by the total number of samples in that category. This value is calculated 

from the validation dataset, a random sampling of spectra that is separated from the 

spectra that is used to train the network. The second metric used is F-1 score. F-1 score is 

the harmonic mean of precision and recall, reaching its optimal value at 1 and its worst 

value at 0 (Equation 3.) F-1 or F-beta (a weighted version F-1) is often used in neural 

network and other classification applications as a measure of accuracy. Throughout the 

paper, validation accuracy will be most discussed. A summary of each network’s mean F-

1 score can be found in the Results section in Table 4. 

𝐹1 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

Equation 3: F-1 Score 

 

DL/CNN Parameter Optimization 

Several parameters in the CNN model were optimized to improve results from a 

baseline validation accuracy of ~90 % to an accuracy of >98 %. The method of 

optimizing was to functionalize the CNN training/validation runs such that they iterate 

over a range of inputs and log the details of each run for later analysis. After the multiple 

1D CNN structure was formed and produced a baseline of success, two arguments in the 

“Conv1D” Keras function were identified for optimization [20]. The “filters” and 

“kernel_size” arguments were iterated over six values each. These arguments were 
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chosen due to the possible effects they have on the kernel weights being applied to 

spectral absorption features. Values of “filters”, the dimensionality of the output space 

(i.e., the number of output filters in the convolution), ranged from 6 to 192. Values of 

“kernel_size,” the length of the 1D convolution window, ranged from 3 to 15. Figure 9 

shows the validation accuracies for these ranges of values and for each material mixture. 

Although the results are similar, each model has different optimized values for “filters” 

and “kernel_size”. The Optimized values are shown in Table 3. 

Dropout rate, convolution activation function, and max pooling “pool_size” were 

also tested – though somewhat less rigorously. It was decided based on ad-hoc tuning of 

these parameters to use three common parameters in each network: a dropout rate of 0.5 

to avoid overfitting [38], the hyperbolic tan function (tanh)4, and pooling size of 2. These 

values consistently provided good results for each of the mixtures being tested and are 

also commonly used in various online tutorials for CNN development. The networks 

were trained over 25 epochs. Larger numbers of epochs (up to 100) were tested with no 

significant improvement to the validation accuracy. Some combinations of these values 

did not produce an adequate result from the training run (i.e., relu activation function, and 

pooling sizes > 10.) Those that did, however, produced results anywhere from 79 % to 99 

% validation accuracy. Although there are many more possible layers, functions, 

variables, and ways to structure the CNN, the initial optimized results show successful 

application of this CNN to the 1D hyperspectral data.  

 

                                                 
4 A list of Keras activation functions can be found at https://keras.io/activations/ - Accessed July 2019 
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Table 3. Optimized DL/CNN Parameters for each Mixture 

50-Pixel Avg Mixture 

Model 
Optimized “filters” Value 

Optimized “kernel_size” 

Value 

Sand + Nd2O3 12 21 

Sand + Powdered Sugar 24 6 

Soil + Aspartame 48 9 
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Figure 9. DL/CNN validation accuracies for each mixture as a function of kernel size and number of filters in 

each training/validation run. 

From top to bottom: (a) Nd2O3+ sand, (b) Powdered Sugar + sand, (c) Aspartame + soil. 
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Training with a “Junk” Class 

In any application of this network to a microscene or other remotely sensed scene, 

there will be spectra present other than those for which the CNN is trained. To ignore the 

materials that would be considered clutter or not material(s)-of-interest spectra, the 

TensorFlow networks were trained with a “junk” class. The junk class contained 

signatures unrelated to the sand and mixture classes. The signatures in the class were 

generated from the “usgs_veg.sli” and “usgs_min.sli” spectral library files bundled with 

ENVI [22]. These were chosen due to their availability, spectral resolution, wavelength 

range, and diversity of spectral features within the collections. A plot of the junk class 

spectra, showing these diversities, is in Figure 10. A test demonstration of making a 

synthetic microscene with implanted junk spectra was accomplished and demonstrates 

the separation of the spectra of interest and the junk spectra (See “Implementation for 

HSI Analysis” section). Confusion matrices of the validation accuracy of each CNN 

model including the junk class are shown in Figure 14. The MATLAB neural networks 

were not trained with a junk class; a difference to consider when comparing network 

accuracies.  
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Figure 10. Plot of the junk spectra used in training the DL/CNNs. 

 

Convolutional Layer Analysis  

The convolutional functions of the neural network layers are applied to the spectra 

in such a way that spectral features will be transformed such that slight changes between 

signatures are more discernable. The hypothesis, as described earlier, is that the 

network’s convolutions will learn derivative-like spectral-feature enhancement kernels 

(weights) such that unique spectral features are made discernable. To investigate whether 

this effect is occurring within the CNN layers, the weights of each convolutional layer are 

saved during each training run. Figures 11 and 12 show the pre- and post-training outputs 

from each of the three convolutional layers from the best performing Sand + Nd2O3 

network. Figure 11 contains three plots that show a single spectrum convolved with the 

pre-trained weights in each convolutional layer. Since the network has three 

convolutional layers, the figure shows the first layer at the top and the third layer at the 
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bottom. Figure 12 shows the same spectrum convolved with the post-training weights in 

each convolutional layer. Note there are multiple traces in each plot because each 

convolution layer applies multiple “filters.”  

The three post-training plots show the spectral data being transformed into unique 

signatures due to the kernel weights that the network established. They also show the 

reduction in data dimensionality mostly due to the max pooling layers. The third post-

training layer shows the 6 x 12 output of an input spectrum. The signature at this step 

shows the data has been transformed into values near 1 and -1, which inform the network 

to which mixture that signature belongs. Each mixture will have a different signature at 

this step that the DL/CNN has learned through the training epochs.  

The visualization of these layers indicates that the kernel weights are indeed 

transforming the data into unique signatures from each input mixture. The output of the 

first post-training convolution layer could be interpreted as the accentuation of spectral 

features, like that of derivative spectroscopy, as is hypothesized. However, the final layer 

doesn’t necessarily show the same resemblance, mostly due to the reduction of data 

dimensionality. The number of filters used, the kernel sizes, number of training samples, 

number of training epochs, all result in a complexity of data manipulation that could be 

studied further for the application of DL/CNNs for HSI data categorization.  
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Figure 11. Pre-training convolutional layer analysis. 

The three plots show a single spectrum convolved with the pre-trained weights in each of the three convolutional 

layers. The first layer on top, the third layer on the bottom. Note there are multiple lines in each plot, because 

each convolution layer applies multiple “filters.” The Reflectance and Wavelength axes are representative of the 

dimension of those values however, the values themselves are arbitrary due to the filters applied to the spectra. 
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Figure 12. Post-training convolutional layer analysis. 

The three plots show a single spectrum convolved with the post-trained weights in each of the three 

convolutional layers. The first layer on top, the third layer on the bottom. Note there are multiple lines in each 

plot, that is because each convolution layer applies multiple “filters.” The Reflectance and Wavelength axes are 

representative of the dimension of those values however, the values themselves are arbitrary due to the filters 

applied to the spectra. 
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RESULTS 

Baseline Analysis 

The application of linear spectral unmixing, the support vector machine, and the 

matched filter are to present a set of results not for direct comparison to the neural 

networks, per se, but as examples of what more commonly applied and “traditional” 

algorithms yield. The “traditional” algorithms are all found in ENVI, a common, industry 

standard, HSI data analysis software package. An emphasis is implicitly placed on the 

low weight percent classes as these present the greatest challenge to current capabilities. 

The higher weight percent trials would, most likely, be detected with a suite of traditional 

or mainstay HSI analysis tools. Unless otherwise specified, the baseline ENVI analysis 

was done on 50-pixel average sand + Nd2O3 spectra. 

 

Linear Spectral Unmixing 

ENVI’s “Linear Spectral Unmixing” (LSU) capability without constraints, the 

fractions obtained are shown in Figure 13. The nonlinear mixing is evident in the plot and 

in the relative magnitudes of the coefficients in the best-fit curve equation (corresponding 

to the blue dotted trace). The best-fit curve R2 value is 0.9983 – an indication of the non-

linearity of the estimated fractions, unrelated to the accuracy of the estimated weight 

fraction from SMA. For the 0.5 and 1.0 weight percent mixtures, the retrieved fractions 
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are very small (less than 0.1) and may be considered “noise” to an analyst. The higher 

weight percent cases (two to five percent) are confidently detected with LSU. No 

adjustments for density or particle size distribution have been applied to the retrieved 

fractions.  

 

 
Figure 13. Spectral Mixture Analysis. 

A roll-up of the fractions (vs. weight fraction [weight percent / 100.0]) in the mixtures. The gray symbols are 

mean +/- one standard deviation. The unmixing is completely unconstrained. 

 

Support Vector Machine 

A roll-up of ENVI’s statistics applied to the test samples is shown in Figure 14 

(only the first four weight percents are shown for brevity). The SVM scores membership 

in a class with a value ranging from 0, meaning no membership, to 1.0, meaning 

membership. The SVM is also effective at separating the four lowest weight percents.  
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Figure 14. SVM statistics for the sand + Nd2O3 samples. 

ENVI-generated statistics for the first four classes, only, shown here for the validation spectra. (i.e., those not 

used in training). The class separation results are excellent. Class 2 is highlighted to emphasize that the SVM is 

quite capable of separating a small amount of reagent from the sand-only class. 

 

The Matched Filter 

As indicated previously, a separate microscene was created that contained small 

aliquots of the Nd2O3 + sand mixture samples. This microscene is built primarily to show 

that for low weight percent reagent samples, the MF target detection scores for the two 

lowest weight percent mixtures of Nd2O3 spectrum are very close to 0. On a scale from 0 

to 1 (1 being a perfect match to a reference spectrum and 0 being the background,) the 

scores are 0.0 and 0.03 (Figure 15, third image from the left). Scores this low would 

likely be missed by current best practices for selecting pixels for further analysis. In 

Figure 15, the statistics for the application of the MF are based on 1) all pixels in the 

scene (third from left frame in Figure 15); and 2) those pixels containing Nd2O3 masked-

out to avoid the target leakage effect (fourth from left frame in Figure 15). 

0% Nd2O3 0.5% Nd2O3

Basic Stats Min Max Mean stDev Basic Stats Min Max Mean stDev

0 0.995 1.000 1.000 0.000 0 0.000 0.018 0.000 0.001

0.5 0.000 0.003 0.000 0.000 0.5 0.980 1.000 1.000 0.001

1 0.000 0.001 0.000 0.000 1 0.000 0.006 0.000 0.000

2 0.000 0.000 0.000 0.000 2 0.000 0.001 0.000 0.000

3 0.000 0.000 0.000 0.000 3 0.000 0.001 0.000 0.000

4 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 5 0.000 0.000 0.000 0.000

1% Nd2O3 2% Nd2O3

Basic Stats Min Max Mean stDev Basic Stats Min Max Mean stDev

0 0.000 0.001 0.000 0.000 0 0.000 0.000 0.000 0.000

0.5 0.000 0.056 0.000 0.001 0.5 0.000 0.000 0.000 0.000

1 0.942 1.000 1.000 0.001 1 0.000 0.012 0.000 0.000

2 0.000 0.001 0.000 0.000 2 0.987 1.000 1.000 0.001

3 0.000 0.000 0.000 0.000 3 0.000 0.007 0.000 0.000

4 0.000 0.000 0.000 0.000 4 0.000 0.005 0.000 0.000

5 0.000 0.000 0.000 0.000 5 0.000 0.001 0.000 0.000
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Figure 15. Matched Filter Detections. 

(left to right). A digital camera photograph (i.e., normal color) of the microscene composed of sand, the six 

aliquots of Nd2O3 (red circles; top to bottom 5 weight percent to 0.5 weight percent reagent), and several other 

materials presenting a range of spectral signature information. A SWIR false-color composite of the microscene. 

A MF plane using all pixels in the microscene to generate the statistics. A MF plane generated with statistics that 

masked out the six Nd2O3-containing aliquots. 

 

 Overall, the three ENVI methods applied confidently detect the presence of higher 

abundance mixtures. The MF detection image in Figure 15 shows clear discrimination 

from the background for at least the three highest abundances. Fractions from the SMA 

for the 3-4 highest abundances are significant, indicating that >20% of the pixel being 

investigated is made up of Nd2O3. The MF scores and SMA fractions for the 0.5 and 1.0 

weight percent mixtures that an analyst would likely consider consistent with the 

background of the image. The SVM, however, in addition to detecting the high 

abundance mixtures, was able to detect the lowest abundance mixtures.  
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Shallow Neural Network Results 

Single-Pixel Spectra 

The MATLAB NN results are shown in Figures 16 and 17. The low abundance 

mixtures (0, 0.5, 1, and 2 weight percent Nd2O3) are highlighted with a red box to show 

excellent separability. Performance lowers somewhat for the higher weight percent trials. 

This result warrants some further investigation, but current thoughts are that the Nd2O3 

spectra are dominating, hindering the separability of the spectra after a certain weight 

percent is achieved. Varying the number of neurons in the single hidden layer has 

minimal impact on performance. Using 5 neurons was 90.7% accurate and using 10 

neurons was 90.8% accurate. Figure 16 shows the results from 20 neurons which was 

91.45% accurate. Again, an emphasis is directed towards 0.5 and 1 weight percent for 

which the scores average  98 %.  

 

50-Pixel Average Spectra 

Results obtained with the 50-pixel average spectra are better than for the single-

pixel trials. The spectral signature diversity evident in Figure 7 is reduced; signal-to-noise 

ratio is increased by the averaging. As seen in the single-pixel results, varying the number 

of neurons in the hidden layer has minimal impact on performance here as for the single-

pixel spectra trial above. Figure 17 shows the results when 10 neurons were used, which 

resulted in 100% accuracy. Using 5 neurons also resulted in 100% accuracy, and 20 

neurons resulted in 99.9% accuracy.  
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Figure 16. MATLAB Neural Network single pixel confusion matrix using 20 neurons. 

 

 

Figure 17. MATLAB Neural Network 50-pixel average confusion matrix using 10 neurons. 
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DL/CNN Results 

DL/CNN 50-pixel Average Spectra for Three Mixture Types 

Table 4 shows the overall validation results for the optimized DL/CNN of each 

mixture. The results show >98 % overall validation accuracy for each mixture tested. The 

results are encouraging that a CNN can discriminate the low abundance intimate 

mixtures. When visualized by validation accuracy vs. individual weight percent as shown 

in Figure 19, the results show two distinct outcomes dependent on the mixture 

composition. The sand + Nd2O3 and sand + powdered sugar mixtures have greater 

accuracies for lower weight percents than higher weight percents. This indicates that the 

spectral feature differences between sand and the reagent material are distinctly different 

but at higher weight percents may be dominated by the reagent (Nd2O3 or powdered 

sugar) spectra, hindering separability. Some of these effects can be identified by visual 

inspection of the Nd2O3 spectra in Figure 4 from 1600-1800 nm and in the powdered 

sugar spectra in Figure 4 from 2000-2400 nm. The aspartame mixture results are different 

in that the aspartame spectral features aren’t as obviously visible compared to its soil 

background. Subtle absorption features can be seen at ~2100 nm and ~2250 nm and are 

much less pronounced than the ones in the other two mixtures tested. It is highly likely 

this is causing the detection limit to be at a higher weight percent compared to the other 

mixtures. 
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Figure 18. DL/CNN Confusion matrices of the validation result for the optimized models for each mixture. 

From top to bottom: (a) Nd2O3 + sand, (b) powdered sugar + sand, (c) aspartame + soil. 
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Figure 19. DL/CNN validation accuracy of each weight percent of each mixture. 

 

DL/CNN 50-pixel Average Spectra vs. Single-Pixel Spectra 

Two datasets were generated from the Nd2O3 + sand microscenes: one with ROIs 

of 50-pixel spectral averages and the other with single-pixel spectra. The overall 

validation accuracy is over 8% better for the 50-pixel average data (Table 4); however, 

the accuracies at low abundances are comparable. Figure 20 shows the drop-off in 

accuracy between two and three weight percent for the single pixel spectra, and subtly for 

the 50-pixel average spectra. This is could be due to a few factors, that should be 

investigated further. One possibility is that the higher weight percents mean spectra are 

being dominated by the Nd2O3 reagent spectra, therefore hindering separability of the 

higher wt. % classes. More specifically the sand spectra, seen in Figure 4, show very few 

changes in the slope of the signature – it is relatively linear compared to the Nd2O3. The 
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DL/CNN may not be able to distinguish that there is this relatively flat, featureless range 

within the signature of the Nd2O3. Another potential for the drop-off in accuracy at higher 

weight percents is that the depth and width of a spectral absorption feature may be very 

similar at >2 weight percent. Since the Nd2O3 spectral features may dominate at the 

higher weight percents, the neural network might not be able to separate them simply due 

to their similarity. It is curious though, how a neural net may not be able to discriminate 

these mixtures when band depth systematically increases with increase in reagent weight 

percent. More microscenes and continued research is needed to be able to add confidence 

to these conclusions and, ideally, identify any weight percent, from 0 to 100 %.  

Grain size effect on accuracy was also considered. The variability of the grains in 

the mixture at single pixel scales might hinder the uniformity of the spectra at each 

weight percent. The effective GSD in the imagery is ~0.3 mm and the largest sand grain 

size is ~0.5 mm. However, the sample size of data (50,000 samples) and the mixing 

method (thoroughly mechanically mixed) lends confidence that we are indeed detecting 

spectral features generalized in each weight percent. If variability in the mixture was a 

major contributing factor, it would be present in the accuracy result of each weight 

percent.  
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Figure 20. DL/CNN comparison of Nd2O3 validation accuracy for 50-pixel average spectra vs. single pixel 

spectra at each weight percent. 

High accuracy (>98 %) for the lowest weight percents of single pixel spectra is a promising result. 

 

DL/CNN vs. Shallow Network 

 A shallow neural network was implemented in Python using Keras with a 

TensorFlow-GPU backend and applied to the sand + Nd2O3 microscene spectra (both 

single-pixel and 50-pixel average spectra). This shallow network was branched from the 

same code used for the DL/CNN. The only change was that the 3 layers of CNNs with 

pooling were replaced by a single “Dense” layer. The TensorFlow shallow network 

showed decreased accuracy for both the single-pixel and 50-pixel average spectra 

compared to the DL/CNN. Overall validation accuracies are shown in Table 4. The 50-

pixel average spectra result is very promising at 97.75 %. It is only ~2 % worse than the 

DL/CNN and is likely good enough to satisfy the need for detection of low abundance 
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Nd2O3. The single-pixel shallow network result is ~5% lower than the single-pixel 

DL/CNN, indicating it is not a data type and network type pair worth implementing.   

 The DL/CNN and the shallow networks both show the same trend of very good 

accuracies at the lower weight percent mixtures but lower accuracies at the higher weight 

percent mixtures. This may indicate that the difficulty with separating the higher weight 

percent mixtures is independent of the networks and is more likely caused by mixing 

phenomenologies or the microscene data itself.  
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Table 4. Overall Neural Network Results 

Mixture 
Pixel 

Averaging 
Software 

Processing 

Type 

Overall 

Validation 

Accuracy 

Lowest 

Weight 

Percent 

Accuracy 

Mean  

F-1 

Score 

Nd2O3 + 

Sand 
50 Pixels TensorFlow DL/CNN 99.71 % 100.0% 0.9971 

Nd2O3 + 

Sand 
50 Pixels TensorFlow Shallow 97.75 % 100.0% 0.9773 

Nd2O3 + 

Sand 
50 Pixels MATLAB Shallow 100.0% 100.0% 1.000 

Nd2O3 + 

Sand 
1 Pixel TensorFlow DL/CNN 91.09 % 98.05% 0.9112 

Nd2O3 + 

Sand 
1 Pixel TensorFlow Shallow 85.99 % 93.66% 0.8606 

Nd2O3 + 

Sand 
1 Pixel MATLAB Shallow 91.40% 99.06% 0.9150 

Sand + 

Powdered 

Sugar 

50 Pixels TensorFlow DL/CNN 98.62 % 100.0% 0.9862 

Soil + 

Aspartame 
50 Pixels TensorFlow DL/CNN 98.73 % 96.11% 0.9857 

 

Implementation for HSI Analysis 

Using the microscene data collected, synthetic images were generated in order to 

test how the algorithm would work when implemented for a user. Figure 21 shows an 

example of a 100x100 pixel x 164 band hyperspectral image created. The image had 

9984 pixels of sand (0 weight percent Nd2O3), 5 pixels of each 0.5%, 1%, and 5% Nd2O3, 

as well has a vegetation spectrum in 1 pixel. The implemented prediction results when 

the DL/CNN was applied were 100% correct, as shown in Figure 22. 
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Figure 21. The synthetic image and spectra implanted in the image derived from microscene images.  

Note the lack of visual identification of the Nd2O3 mixed pixels and the obvious vegetation pixel (dark pixel in 

the middle-right area). 
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Figure 22. Results from the DL/CNN model prediction on a synthetic image from microscene data.  

 

The implementation of these methods will also benefit from DL/CNN models that 

contain multiple mixtures such that iterative application of networks on the same image 

data aren’t necessary. To test this, the three mixtures in the paper were concatenated and 

trained with the parameters of the optimized sand + Nd2O3 network. The overall 

validation accuracy of this concatenated DL/CNN was 97.66%; a promising result for 

future development of a model containing many spectra and abundances.  
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DISCUSSION AND CONCLUSION 

The CNN results have overall validation accuracies of >98 % for each of the three 

mixtures studied using 50-pixel average spectra. The results demonstrate the potential of 

CNNs for detailed HSI analysis of low abundance intimate mixtures – especially if 

trained with ample data such as that generated by microscenes. A CNN in combination 

with results from traditional methods may form a stronger convergence-of-evidence case 

for the presence of a material at a low abundance. Particularly for the very low weight 

percent classes, this CNN application is a very promising result. Traditional methods of 

spectral analysis are effective at separating larger abundances including algorithms such 

as the matched filter (Figure 15), the adaptive cosine estimator, various approaches to 

nonlinear spectral unmixing, the United States Geological Survey’s Tetracorder and 

PRISM [12, 23, 30]. However, the research shows that continued investigation is 

warranted for the use of trained neural networks to achieve lower MDQs and to deal 

effectively with nonlinear mixtures. 

Several methods of unmixing and categorizing the non-linear mixtures, in 

addition to the CNNs, were tested in this study. Overall, the ENVI methods applied 

confidently detected the higher abundance mixtures (Figures 13 and 15). Additionally, 

the SVM was also able to detect the lowest abundance mixtures with high confidence 

(Figure 14). The MF and SMA methods yielded values for the 0.5 and 1.0 weight percent 
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mixtures that were 0 or close to 0, which are values consistent with background spectra 

rather than detection of the material.  

Shallow, non-convolutional neural networks also showed good results for 

characterizing the low abundance mixtures. Using 50-pixel average spectra, the shallow 

networks were 100% accurate in detecting the lowest abundance Nd2O3 mixtures (Table 

4). All neural networks tested (MATLAB shallow NN, TensorFlow DL/CNN, 

TensorFlow shallow NN) were able to separate low abundance classes based on the 

training data provided. This is an important addition to an analyst’s toolbox for this type 

of problem where other traditional methods like the matched filter and linear unmixing 

did not produce adequate detections at low abundances.  

The overall accuracy difference between the DL/CNN and the shallow neural 

networks was small (~2%). Both types of network did very well with low abundance 

mixtures as shown in Table 4. This outcome is an indication that less complex networks 

may still suffice for low abundance detection. The shallow network results are 

encouraging due to the simplicity and ease of entry into using tools like the MATLAB 

GUI for training a neural network. In some cases, the DL/CNN did end up with better 

overall accuracies than the shallow network (accuracies of Nd2O3 + Sand using both 50-

pixel and single pixel data types), which indicates the convolutional transformation of the 

data is a better choice when creating a network for unmixing. The trade space for creating 

NNs and layering functions is essentially infinite so, the best functional design, whether it 

uses convolutions or not, is still to be created. 
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Applying the DL/CNN to multiple mixtures also revealed factors to consider in 

future research. A single set of DL/CNN parameters did not suffice to categorize each 

mixture with the same accuracy so, in order to get the highest accuracy results, 

parameters of the convolutions (number of filters, kernel size) were optimized for each 

mixture. However, data from multiple mixtures could be concatenated and trained with a 

single set of parameters resulting in slightly lower overall model accuracy (97.66 % vs. 

>98% for the 3 networks independently.) Different spectral features in the unique 

mixtures impact the DL/CNN’s ability to separate classes with certain sized kernels and 

therefore the kernels need to be optimized. Ideally, an automated optimization feature for 

DL/CNN structure definition would be used, such as Google’s AutoML approach, rather 

than a trial and error type method that was used in this research [17].  

The high accuracy results of this study encourage future use of microscenes as a 

data source for training neural networks. Additional microscenes will need to be built for 

specific background/target-material combinations but such an activity is fast and low-cost 

(once a suitable laboratory sensor has been acquired). Also, spectral library construction 

should, in the future, be based on data from a microscene—from laboratory (and field-

portable) imaging spectrometers. The spectral remote sensing community should 

augment the current single-pixel measurement of complex materials and mixtures with 

probability distributions of reflectance values on a band-by-band basis to capture, 

understand, and somehow utilize (e.g., with CNNs) the variability that real materials in 

real remote sensing scenes present.  
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Future work in this research includes: to explore the performance impact of 

different parameter settings and architectures of the DL/CNN (and of the shallow NN and 

the SVM), conduct a systematic study of SNR of the HSI data on performance (notable 

difference between 50-pixel average and single pixel results), develop confidence metrics 

for CNN-based material identification, build microscenes with other chemicals—to 

include ternary mixtures, and convert a spectrum to a two-dimensional data structure with 

parameterizations such as a wavelet transform and use “conventional”/computer vision 

2D or 3D CNNs. 
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APPENDIX I 

 

The Headwall Photonics, Inc., Micro-Hyperspec® SWIR sensor parameters (left) 

and a digital camera photograph of the sensor in the laboratory (right). A microscene is 

shown on the translation stage. Note also the light source. 
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APPENDIX II 

The Keras code for the DL/CNN: 

model = Sequential() 

conv1 = Conv1D(filters=conv1_nFilters, kernel_size=conv1_kernel_size, 

input_shape=(164, 1)) 

model.add(conv1) 

convout1 = Activation(activationFunc) 

model.add(convout1) 

model.add(MaxPooling1D(2)) 

model.add(Conv1D(filters=conv2_nFilters, kernel_size=conv2_kernel_size, 

input_shape=(164, 1)))  

convout2 = Activation(activationFunc) 

model.add(convout2) 

model.add(MaxPooling1D(2)) 

model.add(Dropout(droputRate)) 

model.add(Conv1D(filters=conv3_nFilters, kernel_size=conv3_kernel_size, 

input_shape=(164, 1)))  

convout3 = Activation(activationFunc) 

model.add(convout3) 

model.add(MaxPooling1D(2)) 

model.add(Flatten()) 

model.add(Dense(nclasses, activation='sigmoid')) 

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
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