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Understanding cultural dynamics in human societies is the first step towards solving many

complex social issues. In this dissertation I focus on the drivers of diffusion and adoption of

cultural traits, such as values, beliefs, and behaviors. I adopt an evolutionary view of cultural

dynamics. Particularly, I use concepts from dual inheritance theories of cultural evolution

to develop and test an agent-based model capable of simulating the changing distributions

of cultural traits in a large population of actors over the course of prolonged periods of time.

Particularly, I pay close attention to the mechanisms of indirectly biased transmission of

traits and guided variation, which are both hypothesized to be significant drivers of cultural

dynamics. Indirectly biased transmission consists of the adoption of specific trait variants

on the basis of possession of initially unrelated external markers. Guided variation is then

individual adaptation driven by self-exploration.

I use various methods to explore the pathways of cultural evolution. Among them are

agent-based modeling, evolutionary computation, complex network analysis and statistical

data analysis. Furthermore, I make use of large publicly available datasets to validate my

models. The first one of these is the database of bill co-sponsorship in the U.S. House of

Representatives from 1973 to 2008. The other is a comprehensive dataset of scientific



co-authorship in various disciplines stretching back for over a century. The results show

that cultural evolution models based on indirectly biased transmission and guided variation

are suitable to explaining the dynamics of various complex social networks. Furthermore, I

show that this type of cultural evolution leads to emergence of meaningful cultural signs

by gradually associating previously independent external markers with specific cultural

trait variants. Finally, I describe how the proposed model leads to plausible social network

configurations.



Chapter 1: Introduction

In this chapter I first state the problem at hand and provide motivation for its study. I then

provide some background on concepts that play an important role in addressing the problem.

In the sections that follow, I give brief overviews of the individual research questions that I

attempt to answer in my dissertation. I finish the chapter with comments on the structure

of this dissertation.

1.1 Motivation and Statement of the Problem

Cultural practices structure human conduct in contexts ranging from modes of governance

and natural resource management to conflict resolution, power relationships and religious

practices. Due to their wide-ranging effects and observed persistence, such practices can

serve as either seemingly insurmountable roadblocks or powerful catalysts for collaboration

in different areas of life, such as economics, politics or international relations. If we could

properly understand the life-cycle of cultural practices and the underlying mechanisms, we

would be better equipped to solve complex issues in these areas of interest. For example,

global climate change or terrorism are both phenomena, which are decidedly affected by

culture (Tohme, 1992; Kluch and Vaux, 2016). Many scientific models of culture have been

developed precisely for these purposes. However, existing models either lack explanatory

power and remain static and descriptive in their nature, or their dynamics are fairly simple

and schematic. Furthermore many models lack sufficient formalization and their replication

and validation proves rather difficult. The goal of my doctoral dissertation is to contribute

to the study of culture and its evolution by developing a formal, reproducible and general

agent-based model of cultural evolution grounded in established theory, and extending the

validity of the theory by comparing the model to empirical evidence of cultural evolution in
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qualitatively different domains of human culture.

In particular, I am interested in how actors’ imperfect knowledge of cultural attributes

and the resulting reliance on unrelated external markers as signs of culture affects population-

level cultural trajectories from an evolutionary perspective. This mechanism for cultural

evolution has been proposed in dual inheritance theory (Boyd & Richerson, 1985), but to

the best of my knowledge it has not been tested with the use of an agent-based model.

The work is positioned at the intersection of cultural and social realms of human action.

Here, by the social realm I mean anything that pertains to relations between actors. As

Weber (1978, p.4) puts it, any action “is social insofar as its subjective meaning takes

account of the behavior of other and is thereby oriented in its course”. The cultural realm

then refers to what Geertz (1973, p.89) describes as “a system of inherited conceptions

expressed in symbolic forms by means of which men [sic] communicate, perpetuate, and

develop their knowledge about and attitudes toward life”.

In the chapters that follow, I draw on theoretical foundations of cultural evolution to

develop an agent-based model of culture. As the focus here will be on evolution and its

trajectories, I implement an evolutionary algorithm within the agent-based model. For now,

I therefore introduce the various themes that pervade this work.

1.2 Background

1.2.1 Overview of Cultural Evolution Theories

Many social theorists have proposed models of cultural dynamics over the years. Berger

and Luckmann (1967) have developed a compelling model of social construction of reality

and the role of culture-maintenance organizations. Bourdieu (1984) has attributed the

stratification of society into classes based on the possession of different types of cultural

and symbolic capital. Marxist theorists such as Gramsci (2000) or Williams (1978) have

put forth comprehensive models on the spread and life-cycle of ideologies. However, these

sociological theories suffer from insufficient formalization, and their empirical validation
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often proves to be difficult.

The cultural debate has not been confined exclusively to sociology. In modern anthro-

pology neo-evolutionary theories have discarded several core concepts of classical social

evolutionism; doing away with notions of social progress and determinism. Neoevolutionism

embraced stochasticity and individual decision-making among other driving forces of cultural

emergence. Nevertheless, it remained firmly grounded in the Darwinian evolutionary frame-

work (e.g. Sahlins, 1960). Similarly, in the biological sciences, evolutionary explanations of

culture emerged under the heading of sociobiology. Wilson (1975) pioneered this approach,

taking a strictly genetic view of cultural evolution. These ideas were rejected by many

intellectual opponents, claiming them to be biologically deterministic, ethnocentric and a

slippery slope leading to social darwinism and eugenics (Sahlins, 1976; Gould, 1981; Lewontin

et al., 1984). Memetics, first introduced by Dawkins (1976), further extended sociobiological

theories by positing that cultural units (or “memes”) are self-replicating entities akin to

biological viruses.

Dual inheritance theories respond to this strain of research and hypothesize that culture

is transmitted in human populations both vertically–from generation to generation–by

forces that can be modeled with mechanisms similar to biological evolution, as well as

horizontally–within generations–by social influence. Boyd and Richerson (1985, 2005) use

genetic evolution as a partial metaphor for the evolution of culture, although they point

out major differences. Most importantly, genetic evolution drivers such as selection for

reproduction, gene recombination and mutation act on the genotype of individuals, while

only indirectly affecting the phenotype. In Boyd & Richerson’s (1985) model of cultural

evolution the phenotype is also affected directly by social forces of cultural transmission.

Particularly important in this model are the concepts of biased transmission and guided

variation. Biased transmission is based on the notion that evolved preferences for specific

phenotypic traits can drive the selection of certain genetic (or in this case cultural) traits.

Guided variation then serves the purpose of transmitting cultural traits within a single

generation. The process of guided variation depends on an adaptive standard that determines
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which cultural variants are learned.

Although dual inheritance theories have emerged in direct response and even opposition

to earlier evolutionary perspectives of culture, they have often suffered from criticism on the

same grounds as the former frameworks (Fracchia and Lewontin, 1999; Atran, 2001; Gabora,

2011). However, Henrich et al. (2008) claim that most of the critiques are rooted in a

fundamental misunderstanding of the dual inheritance paradigm of cultural evolution. Unlike

sociobiologists and their opponents who either categorically accept or reject the analogy

between cultural and genetic evolution, dual inheritance theorists think in quantitative terms

and recognize the analogy between culture and genes as loose, even if highly useful for the

modeling of various empirical processes (ibid). Still others have deemed dual inheritance

approaches as the most promising of the evolutionary frameworks (Laland and Brown, 2002);

citing overly mathematical language, as well as the lack of empirical research on the topic as

main obstacles for wider adoption.

In this work I will be mostly using the dual inheritance definition of culture due to Boyd

and Richerson. If different definitions are discussed elsewhere, they will be stated explicitly.

Definition 1.1 (Boyd & Richerson, 2005, p.6). Culture is information capable of affecting

individuals’ behavior that they acquire from other members of their species by teaching,

imitation, and other forms of social transmission.

Dual inheritance theory is an established framework that has been formalized in the

form of mathematical models, and has been since applied to a number of specific cases of

cultural evolution (e.g. Henrich & Boyd, 2001; Henrich et al.,2012). In this work I provide a

stronger argument for the validity of dual inheritance theory by accounting for the complex

networks of interactions present in human societies and elucidate the micro-to-macro link by

representing and simulating the mechanisms of dual inheritance theory in an agent-based

model.
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1.2.2 Overview of Cultural Agent-Based Models

Within the field of computational social science, researchers have also contributed towards

explanations of cultural evolution. One of the most influential ABMs of culture is due to

Axelrod (1997). In this model the probability of interaction between agents located in a

rectangular grid depended on their cultural closeness, and when they interacted they copied

distinct traits from each other. Axelrod observed local convergence, but global polarization.

Moreover, he showed that the number of distinct cultural regions was positively correlated to

the number of cultural features, but negatively correlated with the number of possible traits.

A number of agent-based modelers have since revised and extended Axelrod’s original model.

Klemm et al. (2003) have added small random perturbations to the agents’ cultural genome

and found that such “cultural noise” actually leads to less diversity in the long run. Parisi et

al. (2003) have replaced the homophily mechanism with a social influence mechanism, where

agents set their cultural traits based on the average trait in their neighborhood. Centola

et al. (2007) have extended the homophily mechanism towards evolving networks. In their

model, agents whose similarity falls below a threshold value sever their link and instead

select another neighbor randomly. This led to the discovery of distinct intervals of the

threshold value which resulted either in complete individuality, multiple cultural clusters, or

global monocultures. Finally, Flache and Macy (2011) tested a version including both social

influence and network homophily. This resulted in highly robust and persistent cultural

diversity.

However, these models assume agents possess perfect knowledge of their neighbors’

cultural “genome” (in the sense of dual inheritance theory). This is a strong assumption and

goes against the principle of bounded rationality (Simon, 1996). Other agent-based models of

culture have attempted to circumvent this shortcoming. Bednar and Page (2007) and Bednar

et al. (2010) created and analyzed models in which agents play several games with different

payoff matrices. Each game represents a different cultural feature. Agents possess limited

cognitive capacities and their rule sets for both games are forced to overlap to a certain

degree. The authors found that this leads to the spreading of cultural memes through the
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transfer of dominant strategies from one cultural feature to another. A different approach

to represent agents’ indirect inference of others’ cultural traits is the use of observable

“tags” (e.g. physical features, markings, clothes, etc.). Hales (2000) developed a model in

which agents played one-shot prisoner dilemma games only with agents possessing the same

tag. Each agent was either an absolute cooperator or defector. Over the course of many

generations this led to homogenization of the tag-groups into clusters consisting solely of

either cooperators or defectors. Hammond and Axelrod (2006) also made use of tags in their

agent-based model of ethnocentrism. The simulation results implied that the emergence of

cooperation was contingent upon the evolution of in-group favoritism. External markers also

appear in Janssen’s (2005) work on cooperation in reputation systems. However, it is the

case in these studies, that the tags are “ready-made” signs, in that agents either recognize

them as indicators of group membership (Hales, 2000; Hammond & Axelrod, 2006) or are

able to learn a pre-existing relationship between the tag and another trait (Janssen, 2005).

Many models approach the evolution of culture qua evolution of cooperation. Often, the

mechanics of cooperative (or selfish) behavior are modeled with the Prisoner’s Dilemma

game (Axelrod, 1986; Miller, 1996; Macy & Skvoretz, 1998; Bowles & Gintis, 2004), although

others have used the ultimatum game (Shutters, 2009) or the stag hunt and snowdrift games

as well (Santos et al., 2006). Other models have moved away from issues of direct reciprocity

and instead consider indirect reciprocity among groups of actors. For example, Takahashi

(2000) explores conditions under which generalized exchange is globally sustainable. Thus,

instead of mutual cooperation, agents offer help unilaterally in hopes that a third party will

return the favor at some point in the future. In a similar fashion, the question of delayed

reciprocity was tackled by de Vos et al. (2001). The authors assume that agents periodically

face natural hazards, and they must ask others for help, who in turn must hope that their

favor will be returned by someone else in the future. The model tests several altruistic as

well as selfish strategies and their sensitivity to harshness of environmental conditions.

Finally, some agent-based modeling studies have considered the effect of network structure

on the diffusion of cultural practices such as cooperation. Santos et al. (2006) investigate the
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nature of cultural diffusion when agents have the option to update both their game-playing

strategies as well as their neighborhoods. Chiang (2013) studies the relationship between

dynamics of cooperation on networks and nodal attributes, and finds cooperative strategies

are robust when conditional upon node centrality.

1.2.3 Overview of Evolutionary Computation in Agent-Based Models

The use of evolutionary computation methods in agent-based models has a long tradition.

Evolutionary algorithms (EAs) were originally designed as problem solvers. Given a space of

potential solutions, a large number of search points, or “individuals”, is randomly initialized.

By means of evaluating individuals in their environment, a measure of quality can be assigned

to them. A selection process is then used to choose a subset of high-quality individuals.

Descendants of these individuals are then generated by randomized processes representing

recombination and mutation. The processes of evaluation, selection and reproduction then

continue until a sufficient solution is found (Back, 2000). However, EAs need not be used only

for optimization purposes. They have also been used to provide robust on-line adaptation,

machine intelligence, as well as to capture the essence of evolutionary processes through

simulation (Fogel, 2000). In fact, Holland (1975) has designed the genetic algorithm (GA)

to be a simulation of evolution, not to solve problems (De Jong, 1995). While it is true that

problem-solving applications have been at the forefront of evolutionary computation, there

is ample room for more work to be done in modeling evolutionary systems (De Jong, 2005).

Several efforts have used evolutionary algorithms in agent-based model studies of coop-

eration (Macy & Skvoretz, 1998; Santos et al., 2006; Hammond & Axelrod, 2006; Hales,

2000). Other ABMs employing EAs have focused on ecological issues such as strategies for

resource acquisition (Saam & Harrer, 1999), crop cultivation (Perez-Losada & Fort, 2011),

or efficiency of resource extraction (Lake & Crema, 2012). The various evolutionary ABM

studies also differ in the types of populations they study, from human actors, to mental

models (Edmonds, 1997; Dosi et al., 1999). Considerable heterogeneity is also present in

the specific implementations of individual mechanisms that make up the EAs. While some
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ABMs only use vertical transmission (Bowles & Gintis, 2004; de Vos et al., 2001; Kohler

et al., 2012) others include both vertical and horizontal transmission (Powell et al., 2009;

Premo & Hublin, 2009; Lake & Crema, 2012). Similarly, some models approach reproduction

from generational perspectives (Klos, 1999; Lake, 2001; Pepper & Smuts, 2000), but others

implement a survival mechanism (Kohler et al., 2012; Perez-Losada & Fort, 2011; Premo &

Hublin, 2009). Further differences in approaches are demonstrated in other aspects, such as

choices of fitness functions, recombination, or mutation methods.

Ultimately, most of these models suffer from serious shortcomings. Issues with repro-

ducibility, insufficient formalization and narrow application pervade the existing literature

(see Chapter 2 for details). One of the goals of my work is to formalize the framework of

cultural evolution in the form of an agent-based model, its implementation in computer

code, and its detailed, comprehensive and disambiguous description. Moreover, the goal for

the model is to be as general and robust as possible, with a wide range of applications.

1.3 Research Questions

1.3.1 Research Question 1

How do the cultural mechanisms of indirectly biased transmission and guided variation affect

the distribution of cultural practices from an evolutionary perspective?

Boyd and Richerson (1985, 2005) have extensively developed dual-inheritance models of

cultural evolution. Their models are couched in various contexts and rest on a whole range

of hypothesized mechanisms. Among the most important mechanisms are those of indirectly

biased transmission and guided variation.

Definition 1.2 (Boyd & Richerson, 1985, p.182). Transmission is indirectly biased if

naive individuals prefer some models over others based on an observable trait and use such

preferences to determine the attractiveness of that model for other, hidden traits.

Definition 1.3 (Boyd & Richerson, 1985, pp. 6, 82). Guided variation is learning in the

form of trial and error in which the trials are self-generated and explored by the individual
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itself, the results of which can be transmitted to other generations

Boyd and Richerson investigate via mathematical approaches what happens when

individuals possess little information regarding the presence of the underlying trait variants

in others and are therefore led to form preferences for alternative, observable markers. They

posit, that this leads to the association of certain markers with specific trait variants and

results in phenomena such as drift-away or runaway evolution.

While many ABMs have studied the topic of cultural evolution, most have done so from

the perspective of the emergence of cooperation (Axelrod, 1997; Macy & Skvoretz, 1998;

Santos et al., 2006). Such models generally assume that agents have perfect information

regarding the cultural makeups of others. Certainly, other efforts have made use of tags

(i.e. external markers) as proxies for cultural practices (Hales, 2000; Hammond & Axelrod,

2006; Janssen, 2005), but without exception the models assume a pre-existing association

between the tags and the cultural trait variants. Finally, there have been studies focusing

on the interplay between network structure and cultural evolution (Santos et al., 2006;

Chiang, 2013). However, to the best of my knowledge, there has been no agent-based

model that would simultaneously implement (a) the issue of imperfect knowledge regarding

cultural behaviors, (b) the independent nature of tags and cultural trait variants, and (c)

the co-evolution of network structure.

1.3.2 Research Question 2

How does the co-evolution of cultural traits, external markers and social network structure

affect the cultural topology of agent populations?

As part of this objective, I expand on the previous research question by considering the

social network structure in more detail. Specifically, I ask how the trajectories of cultural

evolution change when social networks are assumed to be amenable to change by the actors

themselves. I therefore once again begin with the same set of assumptions stemming from

the dual inheritance approach of Boyd and Richerson (1985). However, in their work,

considerations of the exact structure of social relations are largely absent. Elsewhere, Santos
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et al. (2006) have built and studied an agent-based model of cultural evolution, giving the

agents the opportunity to adjust not only their game-playing strategies but also their social

ties. Specifically they tested the sensitivity of their model with respect to the ratio between

game strategy adjustment and neighborhood adjustment. They have found that when social

tie adjustment is much more common than strategy adjustment cooperation does not emerge.

However, above a critical value of the ratio, cooperative regimes appeared. Although the

study focuses on social network evolution, it uses Prisoner’s Dilemma games (as well as

stag hunt and snowdrift games) to model cooperation dynamics, and does not touch on

the issue of hidden traits and external markers. Another study by Efferson et al. (2008)

considers both tags and unknown traits as well as in-group/out-group choices. The authors

experimented on small groups of live subjects and found that when external markers align

well with the possession of certain hidden behavioral traits the subjects display significant

in-group favoritism.

To answer this research question I combine the approaches listed above (i.e. dual

inheritance cultural theory and dynamic network models), and I extend my original cultural

evolution model in order to allow agents to modify their neighborhoods throughout the

course of the simulation. I then study how the resulting structure of the agent network and

the distribution of cultural traits and tags within the network depends on the ways that

agents adjust their social ties.

1.3.3 Research Question 3

Does the proposed co-evolutionary model faithfully reproduce the dynamics of bill co-sponsorship

in the U.S. House of Representatives?

There is an increasing sense that American society is becoming politically polarized. A

number of studies have attempted to validate this intuition in quantifiable terms. Abramowitz

and Saunders (2007) have carried out survey-based study among U.S. voters only to confirm

that measures of polarization are increasing. Fowler (2006a, 2006b) along with Zhang et

al. (2008) have performed quantitative analyses of co-sponsorship networks, and report
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increasing partisanship in both chambers of the U.S. Congress. Andris et al. (2015) have

arrived at similar findings when considering roll-call voting patterns in both chambers.

Alizadeh et al. (2016) have made a case for the emergence of extremist ideologies from a

psychological perspective.

There are several hypothesized causes of political polarization, from the impacts of party

system quantity and quality (Dalton, 2008), and the effect of media bias (Bernhardt, Krasa,

& Polborn, 2008), to the “trickle-down” dynamics of partisanship among political elites

(Baldassari & Gelman, 2008; Lachat, 2008).

Here, I posit that the increasing polarization among U.S. political elites also depends on

the existing cultural structures within the larger legislative community and is constrained

by the uncertainty regarding ideological positions as they pertain to political negotiations.

Therefore, I modify the cultural evolution model and apply it to simulate dynamics of

collaboration among legislators. To validate the model I use an extensive dataset that tracks

bill co-sponsorship in the U.S. House of Representatives.

As with any sort of evolutionary process, the underlying principle here is the accumulation

of small gradual changes over longer periods of time. Although this change occurs at scales

different from human biological evolution, and transmission of cultural material is not

as clearly delineated as genetic (sexual) transmission, the mapping of basic evolutionary

principles is still possible. Ideas, such as ideological beliefs may be transmitted by means

of social influence, learning, or socialization, from one legislator to another. Ideas may be

combined with others and modified by chance (“mutated”). Selection of behavioral models

also occurs by means of influence and reputation. For this reason I choose to approach

co-sponsorship dynamics from the perspective of cultural evolution.

1.3.4 Research Question 4

Does the proposed co-evolutionary model faithfully reproduce the dynamics of co-authorship

in different scientific fields?
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Scientific co-authorship networks have been studied from sociological perspectives (En-

dersby et al. 1996; Moody, 2004) as well as using network science approaches (Barabasi

et al. 2002; Newman, 2004). Barabasi et al. (2004) studied networks extracted from

different datasets and reported on the scale-free structure of such co-authorship networks.

Furthermore, they used the preferential attachment model to successfully reproduce these

networks in silico. Newman (2004) has later confirmed the scale-free nature of co-authorship

networks in another study. De Stefano et al. (2013) further note that such network analyses

are sensitive to the choice of data as well as the specific network definitions (De Stefano et

al., 2011).

To answer this question I modify my cultural evolution model to account for the nature

of scientific communities, such as the growth in population size, the discovery of new traits

and markers, and the social aspect of collaboration. I then validate the model against

empirical data on two different scientific fields (Economics and Artificial Intelligence) from

the Microsoft Academic Graph database (Sinha et al., 2015).

Once again, although the scales are different, the mapping of evolutionary concepts onto

the domain of scientific collaboration is possible: I argue that scientific practices can spread,

combine and mutate over time via means of influence, reputation and social selection of

viable model individuals.

1.4 Structure of the Dissertation

This is a manuscript-based dissertation. Each of the chapters, excluding the Introduction

and Conclusion chapters either has been submitted, or will be submitted for review in the

near future. Chapter 2 has been accepted for publication in the Journal of Computational

Social Science.

The structure of the dissertation can be compared to a tree: Chapter 2 represents the

roots, Chapters 3 and 4 make up the trunk of the tree, while chapters 5 and 6 are the different
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branches stemming from the trunk. In Chapter 2, I present an extensive survey of agent-

based modeling literature that incorporates Evolutionary Computation methods. In Chapter

3, I develop and present a model of cultural evolution that assumes hidden cultural traits

and the reliance of actors on external markers to ensure successful collaboration between

actors. I investigate the resulting cultural landscapes stemming from these assumptions.

Chapter 4 describes an extension of this model, one in which the social networks are dynamic

as a result of the agents’ ability to adjust their social neighborhoods. Next, I explore how

the different constraints and approaches to neighborhood adjustment affect the resulting

distributions of cultural traits and external markers. Chapters 5 and 6 represent application

of the cultural evolution model to specific cases. Chapter 5 extends the model and applies it

to networks of bill co-sponsorship in the U.S. House of Representatives in an attempt to

explain political polarization and partisanship from a cultural perspective. In Chapter 6, I

apply the model to simulating networks of scientific collaboration, modifying several of the

evolutionary mechanisms to account for the specifics of the scientific community. Here, I use

the Microsoft Academic Graph database to compare model results to empirical evidence.

Finally, Chapter 7 provides a summary of the dissertation, where I revisit my research

questions, show my research contributions, identify areas of future work, and provide a

conclusion.
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Chapter 2: Survey of Evolutionary Computation Methods in

Social Agent-Based Modeling Studies

Abstract: Agent-based modeling is a well-established discipline today with a rich and

vibrant research community. The field of Evolutionary Computation (EC) is also well

recognized within the larger family of computational sciences. In the past decades many

agent-based modeling studies of social systems have used EC methods to tackle various

research questions. Despite the relative frequency of such efforts, no systematic review of

the use of evolutionary computation in agent-based modeling has been put forth. Here, I

review a number of prominent agent-based models of social systems that employ evolutionary

algorithms as a method. I comment on some theoretical considerations, the state of current

practice, and suggest some best practices for future work.
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2.1 Introduction

The purpose of this chapter is to give an overview of the current state of evolutionary

computation techniques in the field of agent-based modeling of social systems, and to

confront the practices with the theory of evolutionary computation. The history of agent-

based modeling is over four decades long today, and the concept has blossomed from

experimental method to a full-fledged discipline with its own conferences, journals, and

institutions. The literature on ABMs is both numerous and broad in scope. Agent-based

simulation is used to explain phenomena in sociology (see Bianchi and Squazzoni, 2015 for

a review of relevant studies), as well as in archaeology, geography, demographics, human

biology, political science and economics (see Cioffi-Revilla, 2017; Cegielski and Rogers, 2016;

Heppenstall et al. 2011; or Lake, 2014 for reviews). The field of agent-based modeling has

established itself by publishing works in leading scientific journals (e.g. Macy and Skvoretz,

1998; Boyd et al., 2010; Deffuant et al., 2005 ; Powell et al., 2009), by organizing annual

conferences such as the Social Simulation Conference, and by sustaining quality field-specific

journals such as the Journal of Artificial Societies and Social Simulation. The very nature

of agent-based simulations as powerful explanatory tools capable of modeling change and

emergent phenomena made it a suitable method for tackling evolutionary questions. In fact

at least a few dozen of “evolutionary ABMs” have been published in the past two decades.

Most of these studies are at least loosely inspired by the Evolutionary Computation (EC)

approach and employ its tools to a certain degree. EC itself is an established discipline

dating back to the 1960s, situated within the broader field of Artificial Intelligence in

the computer science community (Gilbert and Troitzsch, 2005, ch.10). The fundamental

principle of the field lies in the harnessing of mechanisms of biological evolution as a powerful

problem-solving tool. EC practitioners implement computational algorithms that mimic

the processes of biological evolution to tackle various optimization problems as well as to

study evolutionary dynamics. However, despite the significant histories of both fields, and

the continuing intertwining and borrowing of concepts from both camps, there has been
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very little explicit interaction and collaboration between agent-based modelers and EC

researchers. This work aims to survey the rich ecosystem of evolutionary ABMs and to

compare their approaches to established theory and practice in the domain of EC.

To carry out such a review, I must first define what I mean, when I say “evolution”.

The term evolution has at least two distinct, commonly used meanings (along with a

number of other, rarely used meanings). The first, colloquial meaning, refers to any kind

of accumulation of change, or gradual directional change. The second, formal term, refers

to biological evolution, which is defined as the change in the heritable characteristics of

biological populations over successive generations (Hall & Hallgrimsson, 2008). As the first

meaning is overly broad, and the second meaning too restrictive for the purposes of the study

of social systems, I introduce a third definition, which I will use throughout this chapter.

This definition is neither as relaxed as the colloquial use, nor as narrow as the biological

definition. The definition used here is as below:

Definition 2.1 (Evolution). Evolution is the cumulative change in intrinsic characteristics

of individual entities over time, as a consequence of the suitability of those characteristics to

changes external to the individuals.

Note, that unlike in biological evolution the individuals need not be biological organisms

and furthermore the traits need not necessarily be heritable (at least not in the strict

genetic sense). On the other hand, this definition is unlike its colloquial counterpart in

the sense that any change in individuals’ attributes must be a function of the suitability

of the individuals’ characteristics to its current external environment1. This allows us

to study other crucial categories, such as cultural evolution. Thus, when I write about

“Evolutionary ABMs” I mean agent-based models that simulate processes included under this

definition of evolution. Furthermore, I only study agent-based models that either explicitly

use Evolutionary Algorithms (EAs), or implicitly implement methods that closely resemble

them, in order to study evolution as defined above.

1Here by the environment I mean anything external to the individual that has the power to affect it and
over which the individual has limited control.
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In the section that follows I begin with an overview of the history and development of

the field of EC. In section 2.3 I continue by outlining a simple prototype of an EA. Then,

in section 2.4, I proceed by giving brief overviews of numerous examples of Evolutionary

ABMs. I divide these into several categories, such as evolution of cooperation, ecological

models, etc. Next, in section 2.5, I address each integral design component of an EA in its

own subsection and contrast relevant theoretical considerations with actual implementations

found in the surveyed studies. In section 2.6 I conclude by assessing the current state of

evolutionary agent-based modeling literature.

2.2 Overview of Evolutionary Algorithms: History, Purpose

and Applications

An EA is a stochastic, population-based metaheuristic that relies on random variation,

selection, and other mechanisms with analogies in biological evolution (Back et al. 2000, p.

xxv). The central idea of evolutionary algorithms is that of harnessing the power of biological

evolution and translating it into an efficient computer-based optimization algorithm. EAs

have found their place in agent-based modeling literature as well. For example Axelrod

(1986) has used one in his study on social norms. In the model each agent possessed a pair of

alleles tied to their propensity to cooperate with others. The agents’ fitness was modulated

in different ways based on the actions they took, whether selfish or altruistic. Only the

fittest agents were then selected to seed the next generation of agents. In this way, Axelrod

was able to track which alleles related to cooperation were able to survive and eventually

dominate the population.

Evolutionary algorithms (EAs) are the subject of the field of Evolutionary Computation,

which traces its history back to the 1960s. The notion that evolutionary processes are

able to find local (and potentially also global) optima of solutions to problems defined by

environmental constraints was familiar since the times of Charles Darwin. The proposition

that such processes could be represented in the form of computational operations and that
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their power could thus be harnessed by computers to solve various optimization problems

was initially posed in the first half of the 20th century(De Jong, 2005, p. 24). It was not

until the availability of inexpensive digital computers reached a sufficient threshold in the

1960s that these ideas began to be exploited in practice. Holland (1962) envisioned the role

of evolutionary processes as crucial tools for the design of robust adaptive systems capable

of navigating through complex dynamic environments. Rechenberg (1965) developed his

idea of how evolutionary processes could be utilized to solve difficult parameter optimization

problems into the family of tools now known as evolution strategies. Fogel et al. (1966) saw

evolutionary computational techniques as a means of developing artificial intelligence.

From these different visions emerged the three techniques which enjoy the most interest

in the EC community today: Evolutionary Strategies (ES), used mainly for real-valued

parameter optimization, Genetic algorithms (GA), focusing on the genotype-phenotype

mapping and the idea of genetic building-blocks, and finally Genetic Programming (GP),

which is used for evolving formal symbolic statements, such as chunks of computer code,

decision-making routines or mathematical equations, represented as nested tree-like structures.

EC and the formal study of EAs is well established today. There are several recognized

archival journals (such as Evolutionary Computation or IEEE Transactions on Evolutionary

Computation), as well as a number of peer-reviewed conferences (such as the Genetic and

Evolutionary Computation Conference or the Congress of Evolutionary Computation), and

numerous high-quality monographs (e.g. Back, 1995; De Jong, 2005; Fogel, 1995; Holland,

1992; Koza, 1992; Mitchell, 1998 ).

Although EAs are used for a wide range of purposes, De Jong (2005, p.27) notes that

perhaps the most natural application is as an optimizer, which is why significant effort

was put into applying these techniques towards various types of optimization problems.

From a systems analysis perspective we may identify three main components of a working

system: its inputs, outputs, and its internal model which transforms the former into the

latter. Armed with this interpretation we may define an optimization problem as one where

the model of the system is known along with a series of outputs and it is left to identify the
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inputs which best reproduce the outputs (Eiben & Smith, 2007, p. 9). Among some of the

concrete applications of optimization problems one can count route planning (such as in the

Traveling Salesman Problem) and scheduling, control (of robotic movement, etc.), design

(e.g. aircraft parts) and classification (e.g. game-playing systems or image processing).

However, De Jong (2005, p.28) also cites other uses of EAs, such as models of cognition,

the design of neural networks, but perhaps most importantly the potential of such techniques

to provide significant insights into complex adaptive systems (CAS). He claims that even

simple computational models can provide better understanding in contexts in which humans

are known to make notoriously poor predictions (p. 231). In fact, there is a desire among

parts of the EC community to capture the essence of evolution in a computer simulation and

use the simulations to gain new insight into the physics of natural evolutionary processes

(Bäck, Fogel, & Michalewicz, 2000, p. 2). From a systems point of view, this type of problem

falls under the modeling and system identification heading. Eiben and Smith (2007) define

system identification problems as those where both the inputs and outputs are known and a

suitable model that translates between the two is to be found. A related type of problem

is that of simulation; in this case the inputs and the model is known, and the goal is to

identify the associated outputs. These kinds of problems are usually encountered in models

of biological evolution, economic models and in models of social and cultural systems. In

these cases evolutionary computing allows the researcher to design and perform experiments

that fundamentally differ from the methods of classical biology, economics, or social science

and offers possibilities that go far beyond the capabilities of studies based on such traditional

approaches. There are, however, several caveats to this approach. One of these is the

trade-off between biological (social, economic, etc.) fidelity and computational effectiveness.

These pose conflicting design objectives in evolutionary algorithms (De Jong, 2005). Tightly

related to this is the issue of how conclusions drawn in the computer simulations can be

transferred to the biological (social, economic, etc.) medium (Eiben & Smith, 2007, p. 8).

Finally, Eiben and Smith (2007, ibid) also note the lack of mutual awareness between

computer scientists and other disciplines interested in modeling evolutionary processes as
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the reason why such experimental studies are still scarce.

2.3 A Simple Evolutionary Algorithm

Although the particulars of different implementations of EAs vary, each consists of at least

a subset of canonical components. These are:

• A population of individuals and their representation (see subsection 2.5.1)

• Fitness evaluation (2.5.2)

• Parent selection mechanism (2.5.2)

• Survivor selection mechanism (2.5.2)

• Recombination operator (2.5.3)

• Mutation operator (2.5.4)

A detailed discussion of each of these components along with an overview of its use

by evolutionary agent-based modelers in practice will be given in section 2.5. For now, I

will present only a brief outline. Each EA is first initialized with a population of random

individuals (also “solutions” or “search points”). Most often these individuals are simply sets

of parameters which pertain to the problem at hand. The set of all possible combinations of

parameters is usually referred to as the search space. There are many options regarding

the representation of the parameters in the computer. The most straight-forward way is the

so-called phenotypic approach, where the representation space is identical with the

search space. An example of this is when the parameters are all real-valued and they are also

represented as real values in the computer program. This need not necessarily be the case,

as is illustrated by the genotypic approach in which the search space is different from

the representation space and a mapping between the two is necessary. The most common

example of this is when integer- or real-valued parameters are represented as bit-strings.

Although this intuitively seems as an unnecessary practice, it has certain advantages (as
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well as shortcomings, which will be discussed later). Moreover, the genetic approach has its

analogy in biological evolution.

Each of these individuals is then evaluated for its fitness. Here EAs can be differentiated

into those with an objective fitness function, and those where the function is only

implicit. In the first case the performance of each individual is solely the result of its

position in the search space and can be objectively measured independent of the performance

of other individuals. The latter case is usually found in co-evolutionary systems, that is,

systems where performance of an individual can depend on the state of the remaining

individuals in the population.

Once the individuals are evaluated a selection mechanism is used to identify a subset

of the fittest individuals (usually called the “parents”) who will reproduce and create

additional offspring. This is done via the recombination operator, which dictates how the

genetic material of two or more parents is combined in a deterministic or stochastic manner

to create a new individual. The mutation operator is then responsible for making small,

stochastic changes to the offspring’s genetic material.

Once the offspring have been created the survival mechanism determines which indi-

viduals proceed to the next time step. The simplest format is the so-called generational

or age-based EA in which all the individuals from the previous generation are removed

from the population and only the offspring are allowed to proceed. The complementary

approach to this are steady-state or non-overlapping systems in which only a part of the

previous generation is removed and replaced by offspring at any given step. The survival

mechanism in this case can be a function of either age or fitness. In most EAs the selection,

reproduction and survival phases are implemented in a way that keep the population size

constant, although formats with variable population sizes are possible, and certainly more

faithful analogues of biological and social systems.

This completes a single cycle of the EA. A simple illustration of the EA scheme is given in

figure 2.1. The individual stages are then repeated many times until some stopping criterion

is met. Although there is a number of nuances and possible additions to this scheme this
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gives an introductory sketch of a basic EA design.

Figure 2.1: Evolutionary algorithm cycle

2.4 Evolutionary Algorithms in Agent-Based Models

Agent-based simulation is a powerful methodological tool because it is (1) inherently dynamic,

and thus capable of providing a lucid account of change; (2) able to represent heterogeneity,

(3) path-dependent and (4) focused on non-teleological, bottom-up explanations (Epstein &

Axtell, 1996). These qualities make it uniquely positioned to answer questions regarding

evolutionary processes. For this reason, the history of evolutionary ABMs is almost as long as

that of agent-based modeling itself. Only a decade after Schelling’s (1971) ground-breaking
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study on patterns of segregation, Axelrod and Hamilton (1981) analyzed the dynamics of

iterative Prisoners’ Dilemma (PD) tournaments from an evolutionary perspective. Although

their work did not explicitly employ EAs to study what the authors called the “evolutionary

robustness and viability” of different strategies, it was perhaps the sign of an increasing

interest of tackling the problem of evolution in artificial agent societies.

While evolutionary ABMs have been published sporadically throughout the 1980s and the

early 1990s, the frequency of such research efforts has increased greatly since the late 1990s

and throughout the 2000s. The scholars who contribute to the emerging niche come from a

variety of institutions across North America, Europe, and Asia, as well as from a wide range of

disciplines. ABMs utilizing evolutionary algorithms have been designed to answer questions

in sociology (Santos et al., 2006), economics (Takahashi, 2000), anthropology (Pepper &

Smuts, 2000), archaeology (Kohler et al., 2012), ecology (Perez-Losada & Fort, 2011), etc.,

and many of them touch on aspects of psychology, cognitive sciences and neuroscience as

well. As discussed in section 2.2 most EA applications approach evolution as an optimization

process. This is not the case in evolutionary ABMs. In fact, all of the ABMs surveyed in

the following sections study evolution from the simulation and modeling perspective, and

this will be reflected in the analysis of the employed practices.

In the following parts of this chapter I present what constitutes a representative cross-

section with respect to discipline, research topic and methodology. The surveyed studies

are summarized in Table 2.1. I begin by outlining the research categories under which

evolutionary ABMs most commonly fall. I identified six common themes in such models,

which may overlap to a certain degree:

1. Evolution of cooperation

2. Ecological models

3. Evolution of cultural practice

4. Evolution of bounded rationality

5. Evolution of sign systems
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6. Adaptation

Finally, there are many ABMs that either include the term “evolution” or “evolutionary”

in their descriptions or seem to be evolutionary at first glance, but do not exactly fit the

proposed definition. Examples of this include Axelrod’s (1996) study of cultural evolution or

the Kohler et al.’s (2000) original Village simulation. The former was not included because

there is no selective pressure or concept of fitness, while the latter, despite modeling death

and reproduction, does not allow for any change in the inherent characteristics of its agents.

2.4.1 Evolution of Cooperation

At first glance the existence of cooperative or altruistic behaviors, which lead the individual

to temporarily defer its own well-being for the well-being of others, poses a logical paradox.

Why would any individual act contrary to its self-interest if acting out of their own free

will? These questions have led philosophers to reason that individuals must be compelled to

follow the laws of “covenants” (Hobbes, 2013 [1651]) or social contracts (Rousseau, 1968

[1762]) by the fear of punishment from some greater force. The already tentative position

of cooperation was certainly not improved by Darwin’s theory of evolution, expressed in

competitive terms of survival of the fittest individuals. In the second half of the 20th century,

game theory emerged as a viable approach to formalizing the multi-objective nature of social

behavior. Especially the formulation of Prisoner’s Dilemma and its subsequent analysis

helped elucidate the elementary dynamics of self-interest and altruism (see Axelrod, 1984 or

Poundstone, 1992 for explanations of the dilemma and some theoretical considerations). For

this reason it became a popular tool of researchers hoping to demonstrate conditions under

which cooperation can emerge.

Axelrod (1986) used a modified n-person version of the Prisoner’s Dilemma to explore

what conditions lead to the development of norms in societies. In this model agents take turns

during which they have an opportunity to cooperate or defect. Defections give a boost to

the agent, but they hurt the other players. There is also a possibility of each defection being

seen by other agents. If agents see a defection they can either choose to let it go, or they can
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punish the defector. Such a punishment costs the defector as well as the agent who executes

the punishment. Axelrod then allowed for heterogeneity in strategies by giving each agent

two parameters which he termed “boldness” and “vengefulness”. While boldness controlled

the agent’s willingness to defect given a certain probability of being seen, vengefulness

determined its probability of punishing a defection of other agents. In simulations of this

model Axelrod failed to observe any sort of cooperative norm. This prompted him to

introduces so-called “metanorms” in which agents could punish not only defectors but also

those who see a defection and do not punish it. Under these new conditions Axelrod was

able to observe the emergence of a cooperative norm. It should be noted however, that

later efforts to replicate the model failed to reproduce Axelrod’s results (Galan & Izquierdo,

2005). This was mostly ascribed to the small number of runs, the small population sizes

and the arbitrary choice of parameters.

Macy and Skvoretz (1998) created an evolutionary ABM to study how cooperation

emerges in a society where repeated interaction is uncertain. Once again, they achieve

this by having the agents play the Prisoner’s Dilemma. The agents are modeled as either

unconditional cooperators or unconditional defectors. Furthermore, they can signal certain

external markers and possess rules on how to evaluate others (whether based on markers,

fitness, projection of ego etc.). These rules can be based on the possession of certain markers

or agents’ fitness. They position these agents into neighborhoods. Agents have a higher

probability of interacting with neighbors rather than strangers. The agents also have the

option to exit the game (i.e. refuse to interact, or distrust the partner). Under these

assumptions, the authors allow the agents to evolve and track the model’s sensitivity to the

cost of exit, the neighborhood size, and the propensity to favor neighbors over strangers.

They show that cooperation can emerge (first locally in a single vanguard neighborhood

and then globally by spreading to other neighborhoods) when exiting is fairly cheap and

neighborhoods are small, and there is a large share of within-neighborhood interaction.

The authors note that this is perhaps how Protestantism could have succeeded in the U.S.:

churches were small and tightly knit and Protestantism thus became a marker of trust

25



spreading to other communities.

Klos (1999) extended an earlier evolutionary ABM by Miller (1998). In the original

model agents play one of 16 different iterated Prisoner’s Dilemma strategies which replicate,

recombine and mutate over the course of generations. In the extended version the agents

are placed on a toroidal grid and they compete against their neighbors. This changes the

selection mechanism, which becomes local: agents only imitate strategies of their neighbor.

Similarly as in Miller (1998), a cooperative regime emerges. However, Klos introduces a

second tweak by which fitness becomes subjective: the agents only know the standing of

those neighbors who they have played in the current generation. With this modification

implemented, cooperation ceases to emerge in the model.

Another adjustment of the classic PD design was explored by Takahashi (2000), who

explores conditions under which generalized exchange (i.e. indirect reciprocity) is globally

sustainable. Thus, instead of mutual cooperation, agents offer help unilaterally in hopes

that a third party will return the favor at some point in the future. In the model, agents

employ a particular strategy according to which they give another randomly chosen agent

resources, while holding the receiving individual to a certain standard of giving to others.

If the standard is not met, the giver ceases to donate to that agent, and chooses another

random individual who meets the standard. The agents are heterogeneous in that they

have different standards (thresholds) of giving and different shares of resources that they

give out. Subsequently, the assumption of perfect information possessed by the agents is

relaxed by placing them on a grid, where the agents only know how charitable their Moore

neighbors are. Even under this assumption generalized exchange emerges. It should be

noted that the central assumption in the form of the general strategy employed requires a

certain pre-developed sense of fairness on the part of the agents.

The question of the evolution of direct delayed reciprocity was tackled by de Vos et

al. (2001). In their model agents can become distressed with an exogenous probability

(representing “harshness of conditions”) each round. If agents become distressed they will

seek help from others; if they do not receive it in time they die. However, if an agent
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helps another one, this results in an increased risk (controlled by a cost parameter) of the

helper becoming distraught in the next round. Agents possess one of three strategies. First,

defectors ask different agents for help every time, while never reciprocating it. Second,

committal agents only ask for help those they have helped in the past; they always answer to

requests for help, as long as those requesting it have helped the agent at some point in the

past or have not received help from the agent before. The third strategy is a book-balancing

one in which agents ask for help those who have received help from them and not reciprocated

yet, and provide help only to those who are not indebted to them. The agents remember

all interactions and their outcomes, but do not know anything about other interactions

(i.e. they do not exchange information). The authors then simulate the evolution of mixed

strategy populations under different conditions of harshness, population size, and cost of

helping. They conclude that commitment strategies are able to invade small populations in

harsh conditions as soon as two committal mutants appear. The results showed that the

commitment strategies fared better than strict book-balancing agents, even when costs of

helping are high.

Hales (2000) explored another dimension of the evolution of cooperation. Unsatisfied

with kin selection, group selection or reciprocity as explanations for emergence of cooperation,

he set out to explore how biased interaction affects the onset of wide-spread cooperation in

societies. In the model agents, who are either unconditional defectors or cooperators, possess

one from a wide range of tags. Agents then play one-shot PD games in pairs. Agents pick

an agent at random and if they have the same tag they play the game. In the other case

they keep picking agents until they find one with the same tag. Hales shows that over many

generations sustained cooperation emerges when the range of possible tags is high enough,

i.e. the possibilities far outnumber the agent population.

Hammond and Axelrod (2006) used this tag-based approach to test the hypothesis that

social dilemmas such as the PD game promote in-group favoritism. In their model agents

possess three traits: an observable tag, an in-group PD strategy, and an out-group PD

strategy (either unconditional defection or cooperation). They then play one-shot PD games
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with Von Neumann neighbors on a toroidal grid and reproduce locally. The authors show

that this leads to the evolution of ethnocentric strategies, i.e. in-group favoritism where

agents cooperate within their group but defect outside of their groups. External markers

also appear in Janssen’s (2005) work on cooperation in reputation systems. The motivation

of the research was to explain how reputation systems with voluntary feedback (such as

eBay user ratings) effectively work. In the ABM agents play PD games repeatedly with an

option to exit. Agents also possess reputation, which is modified based on feedback provided

stochastically by their partners in the PD. Agents leave the simulation if their reputation

or payoffs become too low and are replaced by new agents possessing random strategies.

In an extension of the model, agents also signal a number of different symbols, which can

eventually become recognized by others through a learning process as signs standing for

specific strategies. This allows the agents to be strategic about playing and exiting the PD.

The results showed that in the absence of signaling symbols cooperation emerges only above

a certain threshold of propensity for giving negative feedback. With signaling this threshold

disappears and cooperation emerges in all cases.

Several articles have also focused on the co-evolution of cooperation and network structure.

Santos et al. (2006) gave agents in their model the option to update their game-playing

strategies as well as their neighborhood. The sensitivity of the model was then tested with

respect to the ratio between the frequencies of strategy and network updates and the overall

connectivity of the network. The authors showed that cooperation emerges as the network

update becomes more frequent relative to strategy update. Moreover, the threshold ratio

necessary for cooperation to evolve increases with the network’s connectivity, i.e. highly

connected networks require more agile adaptability.

Chiang (2013) also focused on the interplay of cooperation and network structure. The

question is how is cooperation able to spread, if it is assumed to be conditional on certain

nodal attributes (such as degree or betweenness centrality). Agents’ strategies were defined

as ranges of nodal attributes, and they only cooperated with agents whose attribute values

fall within that range. A wide variety of populations with mixed strategies were simulated
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and allowed to evolve. Chiang observed that under such assumptions the most robust

strategies are those that cooperate with either distinctly lower valued or higher valued nodes.

Evolutionary ABMs inspired by anthropological motivations have also explored the issue

of cooperation. Bowles and Gintis (2004), for example, simulated a hunter-gatherer society

divided into distinct groups with migration between them. Members of the groups have an

option to contribute to resource acquisition efforts at a certain cost. The acquired resources

are then distributed evenly regardless of contribution. However, free-riders can be punished

as in Axelrod’s norm model. Assuming agents possess imperfect information about the

system, the authors show that cooperative mutants are able to survive and replicate even in

populations initially composed entirely of opportunistic free-riders.

Other anthropological ABMs also touch on the evolution of cooperation, such as Pepper

and Smuts’ (2000) research on alarm signals and resource sharing and their dependence on

kin selection, or Kohler et al.’s (2012) model of hierarchical structure formation in public

goods games.

2.4.2 Ecological Models

The models listed in the previous subsection focused mostly on the evolution of individual

behaviors and their dependence on the nature of social interactions between the individuals.

However, societies do not evolve in a vacuum separated from the natural world. The

surrounding environment constrains the actions of individual agents and affects their results

as well. Thus the relationship between the population and its milieu shapes the co-evolution

of the ecosystem as a whole. A number of articles on evolution in ABMs reflect this reality

and employ an ecological approach to modeling.

One of the first such models was introduced and analyzed in a paper by Conte and

Castelfranchi (1998). They were interested in the evolutionary dynamics of normative

strategies for resource gathering. Agents move around a toroidal grid where food is distributed

randomly. This food can be marked as their property and eventually eaten to increase their

strength. Agents possessed one of several strategies which dictate conditions under which
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they attack others for food. The authors then analyzed the resulting strength inequality

within the population as a function of the initial make-up of the populations in terms of

strategies. Saam and Harrer (1999) subsequently added an evolutionary mechanism to the

model whereby the agents were able reproduce by pooling their strength between offspring.

Pepper and Smuts (2000) explored how ecological variation contributes to the emergence

of within-group cooperation using a similar simulation environment in which agents expend

energy to locate food. The authors modeled food restraint and alarm calling as two

qualitatively different dimensions of cooperation. Alarm calling was useful in notifying

nearby agents of predators, thus reducing their chance of being killed while simultaneously

increasing the caller’s chances of being preyed upon. Both forms of cooperation emerged

from mixed populations in patchy environments, which forced agents to concentrate in small

cohesive groups, as relocation proved costly. However the two cooperative behaviors differed

in their dependence on kin selection. Unlike food restraint, alarm calling was only able to

spread when newly-born offspring were placed near their parents.

Another use of the same artificial ecosystem was motivated by the question of the

onset of cultural learning in early hominids and its dependence on the variance of resource

availability (Lake, 2001). In Lake’s model agents possessed different propensities towards

individual and cultural learning. When agents learned individually they recalled (possibly

out-dated) information regarding resource availability only at cells that they have personally

visited. When agents learned culturally they were able to communicate their experiences

with others. However, there was an inherent trade-off as better knowledge by the group

leads to more over-exploitation of the slowly regenerating resources. Lake’s simulations show

an evolutionary advantage of cultural learning in environments where resource patchiness is

low.

Lake and Crema (2012) revisited this topic and studied the link between adaptation and

resource exploitation in more depth. The authors simulated a population of agents mining

resources from a common pool. The agents were equipped with different cultural traits,

which determine how much of the resource they can extract. Crucially, the extraction payoffs
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showed some degree of variance independent of the traits. Agents reproduced selectively

based on their payoffs, inherited traits from parents and innovated these traits by imitating

other successful agents. The simulations showed that higher rates of innovation are only

beneficial when payoff variance is low, otherwise the resource pool is over-exploited and

adaptation dwindles. Moreover, the authors were able to identify a “sweet spot” such that

population-wide adaptation is faster when the innovation rate is neither too low, nor too

high.

Kohler et al. (2012) studied how a public goods game in a landscape with variable

resources contributes to the evolution of social hierarchies. They specifically focused on

modeling pre-hispanic Pueblo societies in the U.S. Southwest. In the simulation agents made

a choice between contributing to the public good and defecting, while receiving a fair share

either way. Once again free-riding can be punished at a cost. Kohler et al. then introduced

two types of agents—hierarchical and non-hierarchical—who occupied the same landscape.

Hierarchical agents willingly elected leaders who tax the followers and who were entirely

responsible for punishing free-riders while bearing the costs. The results showed that over

time there is a large increase in the ratio of agents living in hierarchical communities. These

communities evolved to be significantly larger than those of the non-hierarchical type, which

is in line with the archaeological record.

Migratory phenomena are another example of ecological factors in evolutionary dynamics.

Premo and Hublin (2009) built and ABM to test the hypothesis that culturally mediated

migration was crucial to the loss of genetic diversity in hominid populations. Individuals in

the model were stochastically forced to migrate, however they would only move to cells that

were culturally similar enough. Each individual then possessed a series of genes and cultural

traits which could be either selective or selectively neutral. The simulations showed that

the extent of genetic diversity loss is sensitive to increasing the cultural similarity threshold.

The authors also found that larger innovation rates and proportions of culturally neutral

traits result in a lower similarity threshold necessary to trigger loss of diversity.

The effect of population density and its structure in space was tackled by Powell et al.
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(2009) when they agentized Henrich’s (2004) mathematical model of cumulative cultural

evolution during the Upper Pleistocene transition. Agents were defined by their skill level in

an abstract cultural domain and placed in sub-populations, which were linked by stochastic

migration events. The skill value was modified through unbiased vertical transmission

from parents to offspring and by biased horizontal transmission which acts by copying

the best individual in the agent’s current sub-population. In both cases transmission was

imperfect and “noisy”. As in Henrich’s (2004) original model, the authors concluded that

for any given level of transmission noise there exists a critical population size above which

cultural innovations start spreading, and that smaller communities can only innovate through

migration from and into denser sub-populations.

2.4.3 Evolution of Cultural Practice

Cultural practices have a strong grasp on the behaviors of individual humans, even entire

societies, yet the origins of some of them remain largely unknown. Consider for example

religion and ritual, which have been the subject of fierce sociological and anthropological

debates for over a century now. On one end, under the Durkheimian interpretation, religion

is considered a crucial adaptation of societies which fosters a feeling of solidarity among

its members by resolving cognitive dissonance, satisfying emotional needs, or infusing

action with meaning (Kertzer, 1989). Other explanations view rituals as an unintended

consequence of adaptations serving entirely different functions, such as regulating the impact

of environmental conditions (Rappaport, 1967). Gould and Lewontin (1979) compared the

latter phenomenon to the work of mosaic artists who fill in the empty spaces in the spandrels

below the arches of a cathedral’s dome, itself a design aspect necessary from the perspective

of structural stability. In fact, Gould and Lewontin dismissed post hoc explanations of

specific traits as meaningful evolutionary adaptation for being “just-so stories”; offering

enticing, but ultimately untestable narratives. However, the explanatory and revealing

nature of agent-based simulations proves, yet again, especially fitting for the purpose of

testing hypotheses regarding the emergence of cultural phenomena, be they adaptive or
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serendipitous in nature.

Kachel et al. (2010) have used an evolutionary ABM for this reason, when testing the

“grandmother hypothesis” (G. C. Williams, 1957). The hypothesis states that the lengthening

of the post-menopausal period and thus the increasing longevity is the result of the inclusive

fitness benefits of grandmothering. Each agent was defined by its longevity, fertility and

reproductive age length, while the environment is defined by the exogenous parameters of

maximum weaning age of offspring and the age of maturation. The critical assumption

was that mothers who are weaning cannot have offspring. Two scenarios were tested: one

in which grandmothers took over child-rearing duties, which allowed mothers to become

fertile again earlier, and another in which grandmothering increased the chances of the

offspring’s survival to maturity. Results showed that grandmothering behavior does not

lead to an increase in longevity in either of the scenarios. However, in scenarios where

grandmothering behavior had a direct effect on decreasing the weaning age, selection did

favor shorter reproductive periods in women.

Perez-Losada and Fort (2011) set out to explain the loss of cultural diversity in farming

during the neolithic in Central Europe through simulation methods. They modeled a

landscape which is occupied by farming households who must share finite resources and take

part in stochastic migration, as determined by the archaeological record. Each farm was

defined by its strategy to cultivate any combination of eight possible crops. The households’

cropping practices are inherited by descendant households. From the simulated scenarios

the authors observe that loss of diversity occurs in the most recently occupied cells and

propagates “backwards”. The authors concluded that this is because cropping practices on

the moving front of the migration have a better chance to catch on as a result of a lesser

degree of competition.

2.4.4 Adaptation

Other evolutionary modeling efforts focus on explaining adaptation of cognitive agents to

environmental constraints strictly during their lifetimes. This view of evolutionary processes
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in which individual phenotypes are plastic and amenable to change after birth is known

as Baldwinian or Lamarckian evolution. While in the Baldwinian approach changes in the

phenotype are not retained in subsequent generations, the Lamarckian position holds that

phenotypical adaptations are reflected in the genotype and passed onto offspring. While

these paradigms are contentious, and particularly Lamarckian inheritance has been largely

disproved as a mechanism of biological evolution, both have their place in general evolutionary

theory. In fact, the existence of cultural transmission suggests that if cultural genotypes

are constituted of socially constructed representations such as language, rather than genes,

Lamarckian inheritance may now dominate genetic inheritance in human societies (Moravec,

1987). Even if the role of Lamarckian processes in nature and society is disputed, nothing

precludes researchers from using evolutionary algorithms to represent such mechanisms. On

the contrary, computer simulations devised in this way might even speak to the validity of

such evolutionary models. For example, even though the Klos (1999) study uses a genetic

algorithm complete with inheritance of strategies, its intention was never to model evolution

over the course of many generations. Rather, the approach was to understand the algorithm

as a model for the adaptation of individuals through abandoning and acquiring different

social strategies over the course of their lifetime.

A good example of an evolutionary simulation model employing Lamarckian adaptation

is Xue’s et al. (2011) effort to properly identify conditions under which short-term fitness-

enhancing innovations are advantageous in the long term. The authors argued that the

long-standing intuition that the ability to predict consequences of one’s own actions is

beneficial to fitness has never been thoroughly tested. To carry out such a test, they designed

an agent-based model in which individuals possessed a single phenotypical trait representing

their adaptation to the environment, i.e. a measure of how close they are to the optimal

fitness value. Then at each time-step innovations became available and agents had to decide

whether to adopt them or not. Each agent had a probability of determining correctly

whether the innovation will be beneficial or not. The environment was fully determined by

the optimal fitness as a function of time. The function possessed a strong central tendency
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throughout the first phase of the simulation, after which the value precipitated dramatically.

Agents that were closer to the optimum had a higher chance of survival, and their offspring

inherited the innovations adapted throughout their lifetimes. Several different types of

environments were tested, distinguished by the rate at which the fitness value precipitates

during reversal events. The results showed that the value of innovation significantly decreases

in scenarios with faster environmental changes.

2.4.5 Evolution of Sign Systems

A crucial part of human cultural dynamics is the evolution of meaning: the forming of

more or less arbitrary yet salient relationships between mental representations and physical

phenomena. Complex sign systems such as languages convey references to physical objects

or abstract concepts and their relations to one another through various means, such as the

modulation of sound waves in the vocal chords, or the imprinting of various geometrical shapes

on suitable materials. However, the assignment of specific signs to their representations

is arbitrary. It is only a matter of convention that members of the feline family are in

English referred to as cats and canines are referred to as dogs. Had it been the other way

around, it would pose no impediment to the function of language whatsoever. The formal

study of meaning in sign systems dates back to early 20th century, with the emergence of

semiotics and the efforts of Saussure (1916) to deconstruct meaning into its constituent

parts. Since then significant effort was put into the analytical study of sign systems, while

considerations of mechanisms responsible for the emergence of meaning were given less

attention. Agent-based modeling certainly offers a way to test hypotheses regarding the

evolution of sign systems.

A handful of the models described in previous subsections make use of external markers

(or tags) which can be observed by other agents. Through repeated interactions and their

subsequent evaluation or classification, agents come to associate these markers with certain

patterns of behavior (should any be present). Thus, the markers can stand in as signs for a

behavior that cannot be a priori derived by any other means. In Hales’ (2000) model of
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conditional cooperation agents possessed a high degree of homophily, interacting only with

those individuals who shared the same tag. The simulations showed that the proliferation of

cooperation within tag groups was only possible when the discriminatory ability of the tags

was minute enough, that is, when the tag alphabet was large enough to represent a wide

range of small communities. Similarly Hammond and Axelrod (2006) showed that when

agents are able to employ different strategies when encountering agents who possess different

markers, the evolutionary dynamics of kin selection lead to the association of cooperation

with sameness and defection with difference. Finally, Janssen (2005) showed that agent

populations equipped with simple neural networks coupled with fitness-based selection were

able to learn existing correlations between external markers and cooperative behaviors.

2.4.6 Evolution of Bounded Rationality

A special niche of evolutionary modeling is concerned with the evolution of cognitive models

of reality in the minds of individual actors. While classical economists assumed that agents

always act rationally to maximize their utility, modern approaches attempt to relax these

often unrealistic assumptions. Simon (1996) pioneered the concept of procedural, or bounded

rationality which posits that individuals form estimates of unknown utility functions, and

that these estimates are periodically updated to reflect feedback to most recent actions and

(imperfect) observations of a changing environment. Tree-based genotype representations

and genetic programming algorithms are particularly well-suited for simulating the selection

of such boundedly-rational decision-making processes.

Edmonds (1997) used this approach to simulate cognitive frameworks of agents. In his

case a mental model is composed of a subset of possible elementary operations, variables,

constants, and the relationships between them which lead to different outcomes based on

the inputs. Agents would continuously evaluate the performance of their current models,

create new ones by recombining older instances, and select the best ones to guide their next

decision. Edmonds tested his agents in two contexts. The first was the management of

a simple investment portfolio composed of two goods under an unknown utility function.
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Agents had to estimate the function using their own models. By employing different utility

functions, Edmonds was able to explore the limits of such a boundedly-rational cognitive

structure. As a subsequent test Edmonds applied the same architecture to the El Farol

crowding problem (Arthur, 1994). In this version the bar patrons continuously evolved a

population of strategies for signaling their intentions and deciding on their true intention of

whether or not to go to the bar (they only wanted to go, if it was not too crowded). The

agents’ models effectively co-evolved because outputs of one model can be used as inputs

for another. This interaction ultimately lead to the emergence of heterogeneous strategies

which the original El Farol study lacked.

Dosi et al. (1999) also argued that decision-making must follow some form of procedural

rationality by pointing to the existence of a class of problems that cannot be algorithmically

solved in optimal fashion. Just as Edmonds (1997), they used genetic programming to

test the viability of their hypothesis. Once again, agents possessed a set of strategies

defined by recursive tree-like structures which help them learn an unknown supply-demand

curve. Agents had access to variables such as prices, quantities and market shares from a

pre-determined number of previous steps. The authors showed that in monopoly cases a

single agent is able to learn the optimal strategy fairly quickly. In cases with several agents

interesting behaviors such as tit-for-tat appeared. However, the authors note that in cases

of more complicated strategies their semantic interpretation becomes difficult. This points

to the question of the realism of such a model and the degree of isomorphism to human

cognitive architectures.

2.5 Design of Evolutionary Algorithms and Practice in Agent-

Based Modeling Studies

2.5.1 Representation

Usually the first important choice a modeler must make when designing an evolutionary

algorithm is the choice of how to represent the individuals, or the the candidate solutions, that
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Figure 2.2: An example of a binary phenotype representation (bottom) encoding for a
genotype consisting of a list of real-valued parameters (top).

make up the population of the EA. As most problems tackled by EAs are simply parameter

estimation problems, this question is reduced to the representation of the parameter values

themselves. Depending on the nature of the parameters it is perhaps natural to represent

them directly as what they are: Boolean variables, integers or real values. This is what

De Jong (2005) calls the phenotypic approach. In this case, individuals correspond directly

to points in the solution space and the parameter values—the phenotypes–are the basic

heritable units.

A different approach is to separate the representation space and the solution space and

relate the two with some type of mapping. This approach, which De Jong (2005) dubs the

genotypic approach, consists of encoding the parameter values using a universal code. In

the case of computers it is natural to choose binary code (as shown in figure 2.2). This

type of representation is essentially analogous to the concept of genetic inheritance, in that

individual traits (points in the solutions space) are made of a combination of multiple genes

(points in a multi-dimensional representation space). Evolution then operates on single bits,

or individual genes rather than the actual phenotype. There has been considerable debate

regarding the utility of binary representation. Holland (1975) and Goldberg (1989) argue

that it is desirable from a theoretical point of view that genetic algorithms act on distinct
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building-blocks or schemata that represent salient substructures of the larger structures being

evolved. De Jong (2005) offers a different perspective, claiming that neither approach can be

globally declared to be better and that each strategy has its own strengths and weaknesses.

Certainly one weakness is the existence of hamming cliffs in binary representations. This

refers to the fact that a single small change in the representation space (i.e. a single bit-flip)

may produce a disproportionately large change in the solution space, depending on the

salience of the bit being flipped. Effective strategies, such as Gray coding, have been proposed

and analyzed to deal with this issue (Mattias & Whitley, 1994). However, even hamming

cliffs aside, others have claimed it to be a mistake to encode real-valued parameters in binary

(Eiben & Smith, 2007, p. 40), and that maximizing the number of schemata being processed

is not necessarily useful, or may even be harmful (Fogel, 2000, p. 137).

Only a few of the reviewed ABMs have employed the genotypic approach. Klos (1999),

based on Miller (1998), represented agents’ PD strategies as finite state machines, which

were in turn represented in binary. Here each bit marked the presence or absence of

each component of the finite state machine. Other authors have utilized the genotypic

approach without relying on binary representations. For example, Premo and Hublin (2008)

represented agent’s traits as a series of nominal, integer-valued loci. The nature of the trait

was defined by the proportions of the different values in the loci. Kachel et al. (2010),

also striving for a greater degree of biological fidelity, represented their agents’ traits as a

result of averaging two real-valued alleles. Each allele was inherited from a different parent.

Finally, Hales (2000) used a mixed approach in which part of the phenotype, namely the

external marker, was represented with a binary genotype. This multi-dimensional tag space,

and the way in which agents traverse it, dramatically changes the dynamics of the model

when compared to a one-dimensional tag representation (cf. Riolo, 1997).

However, most studies used the phenotypic approach, as it is perhaps the more natural

one for most researchers. The domain of the parameter space has varied depending on the

nature of the problem. Macy and Skvoretz (1998), as well as Perez-Losada and Fort (2011)

have used binary phenotypes to represent the presence or absence of certain behaviors. More
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Figure 2.3: A general schema of survivor and parent selection.

commonly, ordinal scales have been used (e.g. Lake and Crema, 2012), as well as real-valued

ones (e.g. Powell et al. 2009, Chiang 2013).

2.5.2 Selection and Survival

Darwinian evolution is driven by the natural selection of genotypes in the form of the survival

of the fittest. Evolutionary algorithms acknowledge this by implementing selection and

survival mechanisms that determine which individuals are allowed to reproduce and create

new phenotypic combinations (as illustrated in figure 2.3). This is done by first assessing

the individuals’ fitness. Fitness can be objective, as a measure of how well an individual is

able to solve a problem within environmental constraints. It can also be implicit, that is,

dependent on the behavior of the system as a whole. The ways in which fitness evaluations

are conceptualized in agent-based modeling studies varies. In some studies this is done by

representing payoffs from social dilemma’s through Prisoner’s Dilemma games (e.g. Macy

and Skvoretz, 1998; Hammond and Axelrod, 2006; Chiang, 2013) or public goods games

(e.g. Axelrod, 1984; Bowles and Gintis, 2004). In others agents gain fitness by collecting

geographically dsitrbuted resources (e.g. Pepper and Smuts, 2000; Kohler et al., 2011;
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Lake and Crema, 2012), and some combine multiple elements into a multi-objective fitness

evaluation (e.g. Janssen, 2005). Once every individual is associated with a fitness value, the

population can be ranked accordingly. There are several ways how to select the subset of the

fittest. The simplest one is truncation selection, in which the n highest ranked individuals

are selected. In rank-proportional selection each individual is assigned a probability of

selection according to its rank; the probability ratio between subsequent ranks can be tuned

with a parameter. In tournament selection a subset of individuals of size n is first selected

randomly and the most fit individual from it is chosen; this process is then repeated many

times. Finally, in fitness-proportionate selection every individual’s probability of selection

is directly proportional to its fitness value.

The consideration of the selection mechanism is important because it greatly affects

the selective pressure exerted on the population throughout the simulation. This is in turn

related to the phenomenon of genetic drift. Drift is the process through which, under neutral

selection, trait variants that are by chance initially over-represented by even the slightest

amount compared to others, will eventually take over the entire population. Any form of

fitness-biased selection will lessen the effects of genetic drift, however it cannot eradicate

it completely. Selective pressure then refers to the usual takeover time in the population.

When the takeover time is low, selective pressure is high and vice versa.

There are various reasons why significant drift effects should be avoided. In optimization

applications this is known as premature convergence, as it leads to suboptimal solutions.

However, in simulations of evolutionary dynamics preventing drift phenomena is important

as well, especially if the target system is known to show negligible effects of drift. Other

simulation efforts call for the exploration of the degree to which drift affects the system, in

which case it can be tuned via parameters of the selection mechanism.

Truncation selection shows the highest rates of selective pressure, leading to extremely

rapid convergence, although it can be somewhat controlled by the selection of the truncation

point; rank-proportional and tournament selection have a slower convergence overall, but

there too the rate can be controlled by choice of their respective parameters (see De Jong,
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2005, sec. 6.3.1.2). Fitness-proportionate selection is certainly not without issues either.

Once again, in practical applications, it comes with high rates of premature convergence.

However, notably in larger populations, selective pressure tapers off as the share of the fittest

variants increases (because these variants will have more or less equal fitness). Too low of a

selection pressure can also pose a problem, especially in co-evolutionary systems (such as

those usually modeled by ABMs), where relative fitness is more important than absolute

fitness (Chattoe, 1998). Eiben and Smith (2007, p. 62) point out that tournament selection

does in fact select in terms of relative rather than absolute fitness, and is therefore invariant

towards any translations of fitness functions, whether objective or implicit.

The second concept complementary to selection is the survival mechanism. The most

straight-forward and most commonly used is the generational GA (e.g. Axelrod, 1986; Macy

and Skvoretz, 1998; Hales, 2000). Under such a configuration, all of the parent individuals

who are selected to reproduce are removed from the simulation and fully replaced by their

offspring, while usually keeping population size constant. On the other hand there are

so-called steady-state systems in which only a small subset of individuals are removed and

replaced by new agents in every step (e.g. de Vos et al., 2001; Janssen, 2005; Kachel et al.,

2010). Death in these cases can be either age-based or fitness-based. Arguably, generational

methods are prone to higher drift rates, which must be offset by larger population sizes

(Sarma & De Jong, 2000). Hancock (2000) also notes that steady-state systems are more

adept at dealing with noisy systems.

Not all evolutionary models include both selection and survival methods. In fact, almost

a half of the articles surveyed here use no proper selection mechanism, and rely solely on

survival mechanisms coupled with fitness-neutral selection to control the parent pool (e.g.

Perez-Losada and Fort, 2011; Powell et al., 2009; Saam and Harrer, 1999). Naturally, these

models are steady-state systems. Others utilize fitness-biased selection mechanisms. For

example Klos (1999) as well as Lake (2001) use tournament selection. However, a surprising

number of studies use methods that can be problematic with respect to drift effects. Axelrod

(1986), Takahashi (2000) and Lake and Crema (2012) all use some version of truncation
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selection. Examples of the use of fitness-proportionate selection include the studies of Hales

(2000), Santos et al. (2006) and Hammond and Axelrod (2006).

It is surprising that there is little discussion or explanation regarding choice of selection

mechanisms in a number of the surveyed studies, considering the confounding and often

dramatic role that drift can play in evolutionary simulations. The lack of fitness-biased

selection in steady-state systems can be somehow offset by the non-overlapping nature of

the population’s generations. However, in non-overlapping configurations which use fitness-

proportionate or truncation methods, undesirable selective pressure should ideally be offset

either by highly disruptive recombination operators or large population size (Deb, 2000).

Unfortunately, this is often not the case (e.g. Hammond and Axelrod, 2006; Perez-Losada

and Fort, 2011).

Another interesting aspect of selection is the effect of modeling physical space. Op-

timization applications recognize this in a number of techniques such as island models,

speciation, fitness-sharing, or crowding (see e.g. Eiben and Smith, 2007, sec. 9.3-9.4 for

descriptions). Several of the surveyed agent-based modeling studies take geographical effects

into consideration as well. For example Pepper and Smuts (2000) test the hypothesis that

cooperation can emerge as a result of kin selection (the selection of behaviors which help

genetically similar individuals at one’s own expense) and the local clustering of trait groups.

In other cases, such implicit effects were brought to light post hoc, as was the case of Bausch

(2015) who showed that the model of Hammond and Axelrod (2006) is sensitive to the

practice of placing offspring only in the neighborhoods of their parents. The insight was

that the cooperation behavior did not emerge because of the tags as Hammond and Axelrod

(2006) argued, but rather simply because agents interacted with their close kin most of the

time.

2.5.3 Recombination

Recombination operators control how genes or traits get transmitted from parents to their

offspring and how they are modified in the process. The role of recombination is the
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Figure 2.4: One-point crossover recombination

exploration of the parameter space by creating new solutions from old ones. It can also

help maintain diversity. Not all evolutionary algorithms utilize recombination, in which case

offspring are created by (asexually) cloning their parents. However De Jong (2005) notes

that cloning is yet another example of a method susceptible to drift. In sexual reproduction

models several different recombination techniques are commonly used. The simplest method

is one-point crossover in which the parameter vectors of the two parents are split at a

randomly chosen position and the complementary parts from opposite parents are then

“re-glued” together to create two offspring (as shown in figure 2.4). This can be generalized to

n-point crossover in which case there are n cut points. Uniform crossover is another operator

which steps through the parameters one by one, while a random trial determines which of

the two parent contributes its value in the current position (see figure 2.5 for an illustration).

It is important to note that there are trade-offs between the different types of crossover.

The n-point version of crossover possesses positional bias, meaning that alleles that are

close together have a higher chance of staying together. This has important implications

for genotypic representations (Eiben and Smith 2007, p. 49). On the other hand, uniform

crossover has distributional bias, meaning that most of the time the ratio of genes inherited

from the two parents will be close to even (unless the random trials are explicitly biased).

Other possible recombination operators include arithmetic crossover (e.g. averaging of the
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Figure 2.5: Uniform crossover recombination

parents’ values of real-valued parameters) or multi-parent recombination, which is easily

accomplished in the computer and especially useful when simulating cultural dynamics.

Genetic programming with its tree-based representations uses a specific set of crossover

techniques. The most common one is sub-tree crossover, used by both Edmonds (1997)

and Dosi et al. (1999), which acts by switching sub-trees of the two parents at randomly

selected nodes (Eiben and Smith 2007, p. 108). Often, GP algorithms would impose some

type of limit on the tree size, since this method can lead to undesirable bloating, expending

precious computational power (Angeline, 2000, p. 287). Ultimately, what matters most for

recombination according to De Jong (2005, p. 185) is that one should choose an internal

representation that “in some sense reflects or preserves the meaningful application-dependent

sub-components”.

Once again, most of the surveyed agent-based modeling studies choose the path of least

resistance and model inheritance via cloning. In some cases this is motivated by the goal of

modeling imitation of behaviors rather than true sexual reproduction (e.g. Axelrod, 1986;

Powell et al., 2009; Xue, 2011; Lake and Crema, 2012). In many others the phenotype

consists of a single value (e.g. a choice between cooperation and defection) and thus cloning

is the only possible approach (e.g. de Vos et al., 2001; Bowles and Gintis, 2003; Lake, 2001;

Santos and Pacheco, 2006). In some studies no justification for this choice is provided (e.g.
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Takahashi, 2000; Hales, 2000; Hammond and Axelrod, 2006; Chiang, 2013).

A few of the studies utilize classic crossover techniques. Kachel et al. (2010) use one

point crossover, while Klos (1999) implements two point crossover in his model, and Macy

and Skvoretz (1998) use a version of uniform crossover. Yet others use more exotic diversity

maintenance techniques. Janssen (2005) does not implement inheritance in his model at

all. Instead removed agents are replaced by randomly created individuals. This is a specific

choice related to the nature of reputation systems which he sets out to investigate in this

model. In Saam and Harrer’s (1999) study the focus is on the flow of resources between

agents. It is therefore natural that inheritance would act in the form of pooling of the

parents’ resources. The GP models of Edmonds (1997) and Dosi et al. (1999) both use

traditional sub-tree crossover.

2.5.4 Mutation

While recombination serves the purpose of exploration of the solution space, the role of

mutation is exploitation, or local search within small regions of the solution space. Whereas

recombination operators can have more or less arbitrary arity, mutation operators are

usually unary, that is, they act on a single individual at a time, by introducing small

stochastic changes to parts of their genotype. The goal is to define mutation in a way that

a small change of an internal representation of an object results into a small change in

the corresponding external object (De Jong 2005, p.87). This is mostly straight-forward

in phenotypic representations, but crucial to understand when dealing with genotypic

representations. For real-valued parameters the traditional approach is to introduce small

Gaussian perturbations. Integer-valued representations make us of random resetting, which

is especially well-suited for nominal variables, or gradual incrementing/decrementing, which

is appropriate for ordinal and cardinal variables (Eiben and Smith 2007, p. 43-44). Once

again, GP algorithms make use of a set of idiosyncratic mutation strategies such as random

leaf growth, random sub-tree shrinkage, or the switching of two random subtrees within a

single tree (Angeline 2000, p. 249-250). The chance of a mutation occurring in any given
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part of an individual’s genotype is usually fairly low, traditionally set at 1% or less. In fact,

De Jong (2005, p. 173) notes that in GA-like designs mutation rates higher than 1% result

in the system becoming very noisy, and confound other underlying evolutionary dynamics.

Past evolutionary ABMs have employed a variety of mutation techniques. Macy and

Skvoretz (1998), Hales (2000) and Axelrod (1986) flip bits in the agent’s genotype (without

addressing hamming cliff phenomena). Models with nominal phenotypes, such as PD

strategies, usually use random resetting (e.g. Bowles and Gintis, 2003; Hammond and

Axelrod, 2006). Real-valued problems appropriately utilize perturbation techniques, however,

the range of distributions used is broad: from truncated Gaussian (Kachel et al., 2010) and

uniform perturbations (Xue, 2011) to Gumbel distributions (Powell et al., 2009). Many

models, however, do not implement mutation operators at all (e.g. Saam and Harrer, 1999;

Pepper and Smuts, 2000; de Vos et al., 2001; Lake, 2001; Dosi et al., 1999; Santos et al., 2006;

Lake and Crema, 2012). A specific application of mutation techniques in certain ABMs is

the representation of imperfect imitation. In this case mutation occurs every time imitation

is attempted (see Powell et al., 2009; Xue, 2011).

2.5.5 Lamarckian Methods

As noted in section 2.4.4, Lamarckian evolution is arguably an important driver of human

cultural dynamics. From a practical point of view nothing prevents a modeler to implement

Lamarckian inheritance into an evolutionary computation. For this reason some of the

evolutionary ABMs in fact do this to achieve their objectives. Lamarckian effects can be

modeled in two flavors: either as horizontal transmission between two specific agents (i.e.

imitation or learning) which is propagated into subsequent generations or as an abstract

innovation force (essentially a type of in-life mutation which is inherited by offspring). In the

case of horizontal transmission, the mechanisms can differ in the way in which individuals

select the models that they imitate. This choice can be done in a fitness-biased fashion

(by selecting from some subset of fittest individuals) or in a selectively neutral fashion (e.g.

based on the possession of certain tags).
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Xue (2011) makes use of an innovation operator, while others model horizontal transmis-

sion (e.g. Lake 2001, Premo and Hublin 2008, Powell et al. 2009), and in some cases both

techniques are combined (see Lake and Crema, 2012). Finally, in some instances the presence

of Lamarckian inheritance is implicit, mainly in cases where evolutionary processes are

interpreted as imitation and the intended target system has no genetic basis (e.g. Axelrod

1986, Klos 1999).

It is important to note, that the specific choice of a Lamarckian operator also bears

consequences with respect to the behavior of the model. Notably, Vaesen (2012) has shown

that the conclusion’s of Powell’s et al. (2009) study do not hold when we relax the assumption

that agents will always be able to identify the fittest agent to imitate.

2.5.6 Co-Evolution

Co-evolution is the mutual effect that two or more species exert on each other during the

course of their evolution. Strictly speaking, co-evolution only applies to cases in which

multiple species are involved (Thompson, 1994), however similar mechanisms, such as

intraspecific competition2 or evolutionary arms races can also be at play within a single

species. There are several types of co-evolution and related phenomena. Mutualism is

the process whereby two or more species reciprocally affect each other; host-parasite and

predator-prey co-evolution occurs when one species is dependent on the other as a resource,

while the other must adapt to evade the predator; finally competition (which can be both

intraspecific and interspecific) occurs when individuals vie for a shared, limited resource

(Thompson, 1994).

In EC co-evolutionary techniques have been used to further increase the efficiency of

optimization algorithms (e.g. Hillis 1990; Potter and De Jong, 2000). In simulations of

evolutionary dynamics, co-evolution may be inherent, as defined by the scope of the problem.

Most of the ABMs reviewed here model some type of competition over limited resources (e.g.

Axelrod, 1984; Klos, 1999; Lake, 2001; Chiang 2013). Often it is hard to define whether the

2Competition for a limited shared resource among individuals from a single species.
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competition occurs between multiple species or within a single one of them, as many of the

models simulate cultural evolution. For example it is difficult to say whether “cooperators”

and “defectors” are just two strategies employed by the same species, or whether different

utility estimation heuristics evolved independently by competing agents constitute distinct

artificial “species” (e.g. Edmonds 1997; Dosi et al., 1999). Only a minority of the models

reviewed here do not simulate any aspect of co-evolution, whether it is due to the absence of

explicit competition over resources in a single-species model (e.g. Powell et al., 2009; Premo

& Hublin, 2009; Kachel et al., 2010) or because the individuals do not interact in any way

whatsoever (Xue et al. 2011).

2.6 Discussion

The above survey of agent-based modeling studies that use evolutionary computation

techniques shows that there has been great interest in modeling evolutionary dynamics

in a rigorous fashion. These efforts have been present for over three decades now and

the frequency of such studies has only increased in recent years (of the 23 studies listed

in table 2.1, 18 were published in 2000 or later and 7 of them were published in 2010 or

later). The methods of evolutionary computation have appeared in ABMs of various target

systems. Evolution of biological as well as cultural systems has been modeled. The topic of

cultural evolution itself has been studied from the perspective of various practices such as

reciprocal cooperation norms, alarm-calling behaviors, grandmothering, or crop diversity.

Although these concepts are multi-faceted, they are all studied through the prism of memetic

transmission, which stems from sociobiological paradigms emerging in the second half of the

twentieth century as a loose analogy to genetic transmission (e.g. Dawkins, 1979; Boyd and

Richerson, 1985). Although contentious, it appears that the popularity of such approaches is

not fading in the foreseeable future, and thus an influx of new studies utilizing evolutionary

algorithms coupled with agent-based simulation is inevitable.

I have stated that the purpose of this study is to confront the existing approaches in

49



social ABMs employing EC methods with established theory and best practices. The survey

has revealed many quality studies that contribute significantly to the scientific knowledge

regarding evolutionary processes in social systems, yet apart from a few exceptions, most of

them fall short of best practices in one or more aspects. One of these aspects is reproducibility.

There are two facets of reproducible research in the computational sciences: a complete and

detailed description of the entities and processes present in the model, and the availability

of the computer code. Only three of the studies reviewed here have made the computer

code publicly available (Premo & Hublin, 2009; Kachel et al., 2010; Chiang, 2013). A few

other studies arguably provide enough detail in the description of the model entities and

processes, such that a replication of the computer code from scratch would be possible and

unproblematic (Pepper & Smuts, 2000; Saam & Harrer, 1999). The remainder of the studies

do not make code publicly available and offer only incomplete or ambiguous descriptions of

the models. In some studies these ambiguities are minor, such as the absence of commentary

on agent activation regimes (e.g. Macy & Skvoretz, 1998; Hales, 2000; Hammond & Axelrod,

2006), or agent state initialization (e.g. Xue et al, 2011). Nevertheless, such minute aspects

can still have significant effects on the model (Alizadeh & Cioffi-Revilla, 2015). Other studies

fail to fully specify even some of the central mechanisms, such as selection (e.g. Edmonds,

1997; Dosi et al., 2001; Bowles and Gintis, 2003), recombination (e.g. Edmonds, 1997;

Kohler et al., 2010), mutation (e.g. Takahashi 2000; Kohler et al., 2010) or specifics of model

geography (Powell et al., 2009).

Another aspect of best practices that I discuss here is proper justification of the choice

and implementation of various model mechanisms. When EAs are used for optimization,

individual measures of performance provide ample justification for the use of different

evolutionary mechanisms. In simulation approaches the task is much more difficult, because

justification has to include an account of plausibility and an adequate degree of alignment

with the target system that is being simulated. For example, when simulating sexual

reproduction, two-parent recombination should be used to create new offspring. On the

other hand cloning might be a plausible account of cultural transmission in specific cases,
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while other instances might call for multi-parent recombination. However, in many of the

surveyed studies such accounts are largely absent (e.g. Axelrod, 1986; Takahashi, 2000;

Pepper & Smuts, 2000; Hales, 2000; Lake, 2001; Hammond & Axelrod, 2006; Lake & Crema,

2012)

Finally a number of studies fall short in other research practices, such as arbitrary, and

unjustified parameter values (Axelrod, 1986; Hammond & Axelrod, 2006) or the selection of

inappropriate mechanisms, which have a known confounding effect on the variable being

explained (Perez-Losada & Fort, 2011).3

The study of Kachel et al. (2010) on the grandmothering hypothesis is an example

of a high quality study that satisfies all of the above mentioned practices. The choice of

specific mechanisms is well justified and supported by evolutionary theory as it applies to

the problem at hand, the model is described in comprehensive detail using the ODD protocol

(Grimm et al., 2006), and the computer code is made publicly available.

To assure the highest possible quality of such future efforts the adoption of a few guiding

principles is encouraged. As a first principle, both agent-based modelers as well as EC

theorists should actively seek interactions and collaborations among each other whenever

the nature of the research lies in the intersection of both topics. It has already been pointed

out that the EC community has regretfully little to none interaction with those researchers

who focus on the study of evolutionary dynamics (Eiben and Smith, 2007). Other leading

figures of evolutionary computation have explicitly called for the development of a unifying

EC framework which would, among other things, provide a “means by which outsiders can

obtain a high level understanding of EC” (De Jong, 2005, p. 232) and possibly “open the

door to interdisciplinary collaboration” (ibid). To the best of my knowledge, there has

also been little outreach from the ABM community, apart from rare exceptions. Continued

collaboration between EC experts and ABM researchers will only benefit the design of

agentized simulations of evolution.

A second, closely related principle is a deeper focus on the theoretical considerations and

3Perez-Losada and Fort attempt to explain cultural drift, but use methods such as cloning, which are
known to significantly contribute to drift.
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justifications of the choice of specific EC mechanisms. In previous sections I have elaborated

on how the implementation of different mechanisms has to be carefully adjudicated to avoid

undesirable side-effects. It is therefore surprising to see how so many agent-based modeling

studies forego the justification of some of the necessary mechanisms completely. In certain

cases it has been proven that the lack of such reflection leads to very idiosyncratic results. For

example, Axelrod’s (1986) norms game has been replicated by Galan and Izquierdo (2006)

using different evolutionary operators with striking results. The outcomes of the simulations

were found to be highly sensitive to choice of different selection mechanism, fitness regimes

and population sizes. Other studies also defy what is considered good practice in the EC

community. The greatest danger seems to be the potentially confounding effect of genetic

drift (as noted in section 2.5.2). Although pure genetic drift only occurs in selectively neutral

contexts, drift-like phenomena can occur in selective environments as well. This is true, for

example, when selection acts on absolute fitness and the variance in the fitness distribution

is very low. A number of models use selection mechanisms that rely on absolute fitness,

such as roulette-wheel selection, without off-setting its effects with disruptive recombination

or mutation methods. Instead, modelers often combine this with other operators which

are themselves susceptible to drift phenomena, such as cloning or the complete absence

of mutation. In other cases, the exploitative nature of mutation is distorted with the use

of bit-flipping in binary genotype representation without addressing hamming cliff issues.

There are also many models which simulate insufficiently small populations, numbering in

the dozens, or in one extreme case only a handful of agents.

Finally, as a third principle, just as with other important aspects of ABM design, it

is necessary to provide all necessary details of the precise implementation of evolutionary

mechanisms within the model. For example the ODD protocol (Grimm et al., 2006), has

long been recognized as the standard for describing ABM design. In the light of this, it

is surprising that some of the surveyed studies have offered only vague descriptions of

the evolutionary algorithms powering their simulations. As reviewed above, these details

are important when considering the sensitivity of a model, or even the possibility of its

52



replication.

Even despite some of these shortcomings, the usefulness of such models in offering

fresh explanations for complex phenomena and their ability to provide insight into the

working of dynamic adaptive systems is invaluable. The design of new agent-based studies

following the evolutionary computation approach should be welcomed with enthusiasm, while

simultaneously promoting the quest for even sounder designs supported by good practice

and theoretical rigor through collaboration with the EC community.
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Table 2.1: Comparison of the implementation of evolutionary mechanism and concepts in different ABMs

# Study Domain of
evolution

Co-evolution Parameter
space domain

Genotype-phenotype
mapping

Phenotype Phenotype change

1 Axelrod Populations Intrasp.

comp.4
Integer (cardinal) Binary code Boldness,vengefulness Via genotype change

2 Bowles and Gintis Populations Intrasp. comp. Categorical Direct Public goods game strategy Vertical transmission

3 Chiang Populations Intrasp. comp. Real-valued Direct Thresholds of cooperation Vertical transmission

4 de Vos et al. Populations Intrasp. comp. Categorical Direct Indirect reciprocity strategy Vertical transmission

5 Dosi et al. Mind Intersp.

comp.5
Real-valued,
operators

Direct Estimate of utility function Vertical transmission

6 Edmonds Mind Intersp. comp. Real-valued,
operators

Direct Estimate of utility function Vertical transmission

7 Hales Populations Intrasp. comp. Boolean Binary code6 PD strategy, tag Via genotype change

8 Hammond & Axelrod Populations Intrasp. comp. Categorical Direct Cooperation/defection (PD), tag Vertical transmission

9 Janssen Populations Intrasp. comp. Categorical,
real-valued

Direct Cooperation/defection (PD), tag,
probability of feedback, trust

Learning
(neural networks)

10 Kachel et al. Populations None Real-valued Arithmetic7 Longevity, length of reproductive
period

Via genotype change

11 Kohler et al. Populations Intrasp. comp. Categorical Direct Public goods game strategy,
hierarchical/non-hierarchical

Vertical transmission

12 Klos Populations Intrasp. comp. Boolean Binary code Iterated PD strategy Via genotype change

13 Lake & Crema Populations Intrasp. comp. Integer (ordinal) Direct Efficiency of resource extraction Vertical and horizontal
transmisison, innovation

14 Lake Populations Intrasp. comp. Categorical Direct Cultural/individual learning Vertical transmission

15 Macy & Skvoretz Populations Intrasp. comp. Categorical Direct PD strategy, tags Vertical transmission

16 Pepper and Smuts Populations Intrasp. comp. Categorical Direct Presence/absence of

alarm calling/food restraint

Vertical transmission

17 Perez-Losada & Fort Populations None Boolean Direct Types of crops cultivated Vertical transmission

18 Powell et al. Populations None Real-valued Direct Degree of skill in abstract cultural
domain

Vertical and horizontal
transmission

19 Premo & Hublin Populations None Integer (cardinal) Arithmetic8 Abstract genetic/cultural traits Vertical and horizontal
transmission

20 Saam & Harrer Populations Intrasp. comp. Real-valued Direct Resource acquisition strategy Vertical transmission

21 Santos et al. Populations Intrasp. comp. Categorical Direct Cooperation/defection

(PD, stag hunt, snowdrift)

Vertical transmission

22 Takahashi Populations Intrasp. comp. Real-valued Direct Indirect reciprocity strategy Vertical transmission

23 Xue et al. Populations None Real-valued Direct Degree of adaptation to environ-
ment

Vertical transmission, in-
novation
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Table 2.2: (Continued) Comparison of the implementation of evolutionary mechanism and concepts in different ABMs

# Fitness Survival Selection Recombination Mutation

1 Payoffs from public goods game Generational Truncation Cloning Bit-flipping, 1%

2 Payoffs from public goods game Steady-state; stochastic death, fitness-
based

Not specified9 Cloning Random resetting, 1%

3 Payoffs from PD Generational Tournament10 Cloning Not specified

4 Dead/alive Steady-state; stochastic death, averted
by help from others

Fitness-neutral Cloning None

5 Distance from max. utility Generational Not specified11 Sub-tree crossover None

6 Distance from max. utility12 Generational Not specified13 Not specified14 Not specified15

7 Payoffs from PD Generational Fitness-proportionate Cloning Bit-flipping, 0.1%

8 Payoffs from PD Steady-state; fixed death rate Fitness-proportionate Cloning Random resetting, 0.5%

9 Payoffs from PD Steady-state; agents die if reputa-
tion/payoffs below threshold

None16 None None

10 Dead/alive Steady-state; stochastic death, based on
longevity trait

Age-dependent One-point crossover Truncated Gaussian
perturbation, 5%

11 Energy from resources Age-specific mortality Age-specific fertility Not specified Not specified

12 Payoffs from PD17 Generational Tournament18 Two-point crossover Bit-flipping, 0.5%

13 Energy from resources Generational Truncation Cloning None

14 Energy from resources Generational Tournament Cloning None

15 Payoffs from PD Generational Fitness-neutral, local Fitness-biased
uniform crossover

Bit-flipping, 1%

16 Energy from resources, death by
predation

Generational Fitness-neutral, local Cloning None

17 Age-based Steady-state; fixed death rate Fitness-neutral Cloning None

18 Degree of skill in abstract cul-
tural domain

Generational Fitness-neutral Cloning Gumbel distributed
perturbation, 10019%

19 Fully determined by genotype Steady-state; stochastic death, based on
current population size

Fitness-proportionate One-point crossover Incremental, 0.001%

20 Energy from resources Generational Fitness-neutral Additive None

21 Payoffs from games Generational Fitness-proportionate Cloning None

22 Energy from resources Generational Truncation Cloning Perturbation,
distribution not specified,
probability varied

23 Distance from optimal fitness Steady-state; stochastic death, fitness-
based

Fitness-neutral20 Cloning Truncated uniform
perturbation, 100%21
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4Intraspecific competition (within species)
5Interspecific competition (between species)
6Only the tag part of the genotype is represented in binary.
7Mean of two real-valued alleles.
8Each individual allele in a given locus has a fixed fitness contribution to the phenotype.
9“By the fitness of an agent, we mean the expected number offspring produced by the agent in one period

minus the probability the agent dies in that period”. (Bowles and Gintis 2004, p.18)
10Agents imitate fittest neighbor.
11“Selection consists of preserving the fittest rules, and discarding the less fit ones”. (Dosi et al. 1999, p.

15)
12A penalty for model complexity (tree size) is also assessed.
13“[The agent] then selects the best models in terms of fitness for carrying over in the next period”.

(Edmonds 1997, p.6)
14“[The agent] produces some new ones by either combining the previous models with a new operator or

by growing a new random one”. (Edmonds 1997, p.6)
15See above.
16There is no reproduction or inheritance in Janssen’s model. Unfit agents are simply removed and replaced

by new random ones.
17Relative to neighbors’ payoffs.
18Candidates sampled from Moore neighborhood.
19Represents imperfect imitation.
20Random surviving agents is chosen to create a new clone in place of a recently deceased agent.
21Represents imperfect imitation.

56



Chapter 3: A Model of Co-Evolution of Signs and Cultural

Traits

Abstract: The identification of main drivers of stability and change in human cultures

remains an open problem. Traditional methods have fallen short of explaining the focal

mechanisms responsible for the evolution of culture. Thus, I take an alternative approach

and develop an agent-based model capable of simulating cultural dynamics with the use

of various underlying mechanisms. The model is inspired by principles of dual inheritance

theory. Specifically, I test the mechanisms of indirectly biased transmission and guided

variation as hypothesized drivers of the diffusion of cultural traits and the emergence of

cultural signs. I show that the resulting distribution of cultural traits and external markers

is dependent on the chosen network structure, ratio of vertical and horizontal transmission,

and the specific choice of mechanisms.
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3.1 Introduction

Cultural practices structure human conduct in contexts ranging from modes of governance

and natural resource management to conflict resolution, power relationships and religious

practices. Due to their wide-ranging effects and observed persistence, such practices can serve

both as insurmountable roadblocks and powerful catalysts for problem solving in different

areas of life (e.g. economics, politics or international relations). Consider the example of

climate protection: global climate change is considerably driven by human-developed natural

resource management practices determined by values, beliefs and social institutions (Tohme,

1992). Another area of concern is opinion radicalization in social groups. Data-driven

research shows that the emergence of terrorism is related to differentiation in cultural

dimensions and the absence of cultural engagement in individuals (Kluch and Vaux, 2015).

If we could properly understand the life-cycle of cultural practices, we would be better

equipped to solve complex issues in these areas of interest, as well as others. Here, I outline

an effort to develop a powerful explanatory model of the complex long-range dynamics of

cultural practices in human societies and present some preliminary results.

I begin by introducing the theoretical background of this work and commenting on

previous literature on the topic of modeling cultural evolution in section 3.2. In sections

3.3-3.6, I describe my agent-based model and its implementation in detail. I continue with

an overview of the results of model simulations, which I give in section 3.8. Finally, in

sections 3.8-3.9, I discuss these findings and offer a conclusion.

3.2 Background

The model presented here is embedded in the dual inheritance theory of cultural evolu-

tion which assumes both horizontal (intra-generational) and vertical (inter-generational)

transmission of cultural traits in a population of social individuals (Boyd and Richerson,

1985). Dual inheritance theories respond to neo-evolutionary theories (e.g. Wilson, 1975)

and hypothesize that culture is transmitted in human populations both vertically—from
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generation to generation—by forces that can be modeled with mechanisms similar to bio-

logical evolution, as well as horizontally—within a single generation—by social influence

and individual learning. Boyd and Richerson (1985, 2005) use genetic evolution partially

as a metaphor for the evolution of culture, although they point out major differences.

Among some of the important mechanisms in the dual inheritance framework are indirectly

biased transmission and guided variation. Transmission of genetic trait variants is said

to be indirectly biased when it is driven by preferences for unrelated phenotypic traits.

Guided variation is the process of individual in-life adaptation based on the evaluation

of self-generated and self-explored trials. I hypothesize that these two mechanisms are

important to cultural evolution in human populations and they crucially contribute to the

emergence of cultural clusters and cultural signs. To determine what kinds of macro-scale

phenomena these mechanisms produce in different qualitative types of human societies I

develop and analyze an agent-based model where individuals enter into dyadic interactions

with others based on co-evolving preferences for external markers and attempt to solve simple

coordination problems. Crucially, I assume that the strategies for solving these problems are

selectively neutral, while their interactions are not. In other words each strategy is equally

good, but the collaborating individuals will only succeed when their strategies are the same.

This is a common occurrence in the realm of culture.

Within computational social science, researchers have also contributed towards explana-

tions of cultural dynamics. One of the most influential ABMs of culture is due to Axelrod

(1997). A number of agent-based modelers have since revised and extended Axelrods original

model (e.g. Klemm et al., 2003; Parisi et al., 2003; Centola et al., 2007; Flache and Macy,

2011).

However, these models assume agents possess perfect knowledge of their neighbors cultural

“genotype”. Moreover, they only model horizontal transmission of cultural information.

Finally, the studies use Prisoner’s Dilemma to model the problematic nature of cooperation,

whereas I assume cooperation is unavoidable. Other agent-based models of culture have

attempted to circumvent these limitations. One approach to represent agents indirect
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inference of others cultural traits is the use of observable tags. Hales (2000) developed a

model in which agents played one-shot Prisoner’s Dilemma games only with agents possessing

the same tag. Hammond and Axelrod (2006) also made use of tags in their agent-based

model of ethnocentrism. However, in these models the tags are assigned meaning a priori.

Reynolds (1994, 2008) has developed the class of cultural algorithms, introducing vertical

transmission. These models are genetic algorithms in which agents evolve based on their

performance against a fitness function and a belief space, which consists of the cultural

genotypes of top performers. The rest of the population then acquires traits from this space

via an influence function. Yet others have explored cooperation using the ultimatum game

(Shutters, 2009) or the stag-hunt and snowdrift games (Santos et al., 2006), but without

considering some of the other aspects I wish to explore. Furthermore, I take a network

approach to modeling the interactions between actors. The network science paradigm holds

that network structure is an important determinant of dynamics of certain processes in

agent populations. Different network formation models have been proposed over the years.

The random graph model was the first such venture (Erdos & Rényi, 1960). In recent years,

attempts at more generating more realistic social networks, have resulted in the use of

algorithms such as the preferential attachment model (Barabási & Albert, 1999), or the

small-world model (Watts & Strogatz, 1998). It is evident from this concise review that

computational cultural simulations can be useful in exploring cultural dynamics, however

none of the existing models sufficiently address the research objectives that I formulate.

3.3 Overview

In this section I will give a detailed specification of an agent-based model aimed at simulating

the co-evolution of cultural signs, or “tags”, as they are often referred to in the literature,

and cultural traits possessed by artificial agents. I use the ODD protocol (Grimm et al.,

2006) to describe the model. I begin with defining the purpose of the model.
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3.3.1 Purpose

The purpose of the model is to simulate and explain the causes of differentiation of human

populations into groups distinctly defined by shared cultural trait variants and observable

external markers, and the clustering of such groups in social and physical space. Specifically,

the model is designed to test the hypothesis that the phenomenon of cultural clustering

and the emergence of meaningful cultural signs is caused in part by the conjuction of

two mechanisms: (1) The vertical (parent to child1) transmission of cultural trait variants

indirectly biased by the possession of certain external markers, and (2) the guided variation

of partner selection strategies based on past experience.

3.3.2 Entities and Variables

The main entities in the models are the individual agents. Each agent represents a single

person. The agents are defined by a collection of state variables (as shown in table 3.1).

These can be separated into static variables which are fixed throughout the agent’s existence

and dynamic variables which may change over time. A description of the static variables is

provided first.

• CulturalTrait: This variable represents an abstract cultural trait which can take on

one of many possible interpretations such as religious affiliation, commodity exchange

practices, etc. The value assigned to the agent represents the particular trait variant

that the agent possesses, e.g. Islam, as opposed to Christianity or Buddhism (in the

case of religion), or barter, as opposed to gifting or currency exchange (in the case

of commodity exchange). The only assumption here is that the available variants

are selectively neutral when considered independently of each other. This is simply

generalizing the statement that a person is no better off by following either Muslim

or Christian faith, all else being equal, and presuming no interaction with others. In

1Here I use the term parent in a cultural, rather than biological sense. A cultural parent can be one of
many influential persons from the actor’s perspective, such as teachers, clergy, and other authority figures, as
well as their actual biological parents, friends, or significant others.
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Table 3.1: Agent variables

Name Domain Scale Type

CulturalTrait Integer Categorical Static
Tag Integer Categorical Static
Neighborhood List of agents Categorical Static
Fitness Integer Cardinal (ratio) Dynamic
NumGood List of integers Cardinal (ratio) Dynamic
NumBad List of integers Cardinal (ratio) Dynamic
FirstGood List of integers Cardinal (ratio) Dynamic
FirstBad List of integers Cardinal (ratio) Dynamic
LastGood List of integers Cardinal (ratio) Dynamic
LastBad List of integers Cardinal (ratio) Dynamic

reality the individual payoffs resulting from an interaction between two Muslim persons

might be different from those between a Muslim and a Christian person, depending on

the nature of the interaction. In general, the interactions between the trait variants are

therefore selectively biased. This feature of the model will be revisited and explained

in full detail in section 3.3.3. It should be noted that the cultural makeup of real

individuals does not simply consist of a single trait, but rather of a collection of often

inter-dependent traits. Here a single trait is modeled for sake of clarity and simplicity.

• Tag: This variable represents an abstract external marker possessed by the agent and

directly observable by other agents. Examples of interpretations include morphological

features, style of clothing, accents, etc. Once again it is assumed that each variant of

the tag is selectively neutral. For example from a functional viewpoint the agent gains

no extra benefit from wearing a red shirt instead of a blue shirt (apart from minor

exceptions such as use for camouflage).

• Neighborhood: A list of other agents with whom the agent is able to interact. This can

be viewed in network terms, where the agent represents a single node i from the vertex

set V of a graph G = (V,E). For every agent j in i’s neighborhood the unordered pair

(i, j) defines an undirected edge in the graph’s edge set E. The neighboring relation is
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symmetric, i.e if i is in j’s neighborhood then j must be in i’s also.

The following list provides a description of the dynamic agent variables:

• Fitness: This variable represents the agent’s “cultural” reproductive fitness. A higher

fitness value gives the agent a better chance of producing cultural offspring, which

inherit its cultural makeup (the “genes” in this model) to a certain degree. Fitness is

modified through interaction with other agents. When agents pair with others who

possess the same trait variant, they receive a boost to their fitness. When the partner’s

trait is different the agent’s fitness value decreases. It should be noted that because

the goal of the built-in EA is not optimization, we do not concern ourselves with issues

such as escaping local fitness optima. We are merely interesting in the dynamics, and

as far as we know, local optima traps might as well be part of the underlying reality of

cultural evolution.

• NumGood: A list of length n where n is the number of possible tag variants. The list

is used to store the total number of successful interactions with others possessing the

associated tag variant throughout the agent’s entire lifetime.

• NumBad: Analogous to NumGood, the difference being that the total numbers of

unsuccessful interactions are stored.

• FirstGood: A list of length n where n is the number of possible tag variants. The list

is used to store the number of steps since the first successful interaction with another

agent possessing the associated tag variant.

• FirstBad: Analogous to LastGood, the difference being that the times since the last

unsuccessful interactions are stored.

• LastGood: A list of length n where n is the number of possible tag variants. The list

is used to store the number of steps since the last successful interaction with another

agent possessing the associated tag variant.

• LastBad: Analogous to LastGood, the difference being that the times since the last

unsuccessful interactions are stored.
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Apart from the Fitness variable, the dynamic variables relate to agents’ preferences. The

preferences are modified through the mechanism of guided variation, which rests on weighing

previous experiences. The above variables code for these experiences.

The second type of entity is the model controller which deploys and manages the processes

throughout a simulation. The overview of the processes themselves and their scheduling is

given in the following subsection. Table 3.2 provides an overview of the model parameters,

while table 3.3 offers brief descriptions.

Table 3.2: Model Parameters

Name Domain Scale

Configuration Integer Categorical
NumAgents Integer Cardinal (ratio)
NumGenerations Integer Cardinal (ratio)
NumRounds Integer Cardinal (ratio)
NumTags Integer Cardinal (ratio)
NumTraits Integer Cardinal (ratio)
SuccessPayoff Integer Cardinal (ratio)
FailurePayoff Integer Cardinal (ratio)
AdjacencyMatrix Matrix of Booleans Categorical (Boolean)
MutationRate Floating-point number Cardinal (ratio)

Table 3.3: Model parameter descriptions

Name Description

Configuration Type of simulation (see Sec. 2.3)
NumAgents Number of agents in the simulation
NumGenerations Number of generations executed
NumRounds Number of rounds in each generation
NumTags Size of the tag variant set from which each agent is assigned one
NumTraits Size of the trait variant set from which each agent is assigned one
SuccessPayoff Fitness payoff for a successful interaction
FailurePayoff Fitness payoff for an unsuccessful interaction
AdjacencyMatrix Adjacency matrix of the graph which defines the agents’ neighborhoods
MutationRate Probability of a mutation in a single heritable characteristic of an offspring
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3.3.3 Process Overview and Scheduling

The main processes in the model consist of agent activity during which agents choose

partners and interact with them. After a certain number of activations the agent population

is processed by an evolutionary algorithm, which creates offspring through the recombination

and mutation of heritable characteristics of selected parent agents. These processes are

repeated for a number of generations.

Algorithm 1 Top-level Simulation Flow

1: params← {Configuration, NumAgents, NumGenerations, NumRounds, NumTags,
NumTraits, SuccessPayoff, FailurePayoff, AdjacencyMatrix, MutationRate}

2: procedure CultureModel([params])
3: agents← initializeAgents([params])
4: i← 1
5: while i ≤ NumGenerations do
6: j ← 1
7: while j ≤ NumRounds*NumAgents do
8: agent← selectRandomFrom(agents)
9: potentialPartners← getPotentialPartners(agent, agents, Configuration)

10: partner← getPartner(agent, potentialPartners)
11: agent, partner← interact(agent, partner)
12: j ← j + 1
13: end while
14: offspring← createOffspring(agents, [params])
15: agents← offspring
16: i← i+ 1
17: end while
18: return agents
19: end procedure

The top-level flow of the model is described in pseudocode in algorithm 1. Each generation

consists of NumRounds*NumAgents activations, so that in effect each round consists of

NumAgents agent activations. During each activation event one randomly chosen agent is

activated. Each agent has an equal probability of being activated. Thus, for each agent the

expected value of activations is one per round, although actual results may vary due to the

stochasticity involved.

Figure 3.1 shows a rough outline of the logic of agent activity in the model. Once an agent

is activated, it will first select a subset of agents from its neighborhood which it designates

as potential interaction partners (as shown in algorithm 2). If the model configuration is of
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Figure 3.1: An outline of the logic of agent activity

Algorithm 2 Selection of Potential Partners

1: procedure GetPotentialPartners(agent, Configuration)
2: if Configuration = “Unbiased” then
3: potentialPartners← agent.Neighborhood
4: else
5: baseline← calculateBLA(agent, “good”)
6: retrievedTags← {tag|baselinetag > 0}
7: preferredTag← selectRandomFrom(retrievedTags)
8: potentialPartners← {i|i ∈ agent.Neighborhood ∧ i.Tag = preferredTag}
9: end if

10: return potentialPartners
11: end procedure
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the Unbiased type, then the entire neighborhood is selected. Under any other configuration

the selection is done with the use of the calculateBLA routine, which calculates a list of

base-level activations for each possible tag T . Here the agent takes into account its history

of successful interactions. Let us denote the base-level activation for successful interactions

with tag T as τ+
T . The calculation is as follows:

τ+
T = ln

[
n∑
i

t−di

]
≈ ln

[
t−0.5
n +

2(n− 1)√
t1 +

√
tn

]
(when d = 1/2) (3.1)

Here ti is the time elapsed since the i-th interaction with an agent bearing tag T , while

n = NumGoodT is the total number of such experiences, tn = LastGoodT is the time since the

most recent experience and t1 = FirstGoodT is the time since the first experience. Finally, d

is the rate of decay. Due to the computational infeasibility of the above relationship when n

is large, I implement a widely-used approximation (Anderson & Lebiere, 1998). In line with

convention, I use d = 1
2 (Petrov, 2006).

Once these calculations are carried out, the agent randomly selects a single tag from the

set of all tags of type T , such that τ+
T > 0 (if there are any)2. Finally the agent identifies

all of its neighbors that possess this tag (if there are any), and selects them as potential

interaction partners.

From these candidates the agent attempts to acquire an actual interaction partner (as

shown in algorithm 3). The first step is to simply select a random neighbor from the list

of candidates. If the model configuration is of the Unbiased type, then this is all that

needs to be done and the selected candidate becomes the agent’s partner. Under any other

configuration the selected candidate must decide whether it agrees to become the partner.

The candidate does this by comparing its base-level activation for the agent’s own tag

calculated on its successful interactions to the BLA values calculated on its unsuccessful

2the threshold value 0 is used as a default in the ACT-R framework, although it has been pointed out
that the retrieval threshold should be estimated for each task separately (Anderson et al., 2004). Here, we do
not estimate the threshold, as we rather focus on other parameters. However, we overcome this shortcoming
later, in chapter 4.

67



interactions with the given tag3. If the levels for successful interactions exceed those for the

unsuccessful interactions, the candidate agrees to become the agent’s partner. Otherwise,

the agent is left without an interaction partner.

Algorithm 3 Selection of Partner

1: procedure GetPartner(agent, potentialPartners, Configuration)
2: partner← NULL
3: if potentialPartners is not empty then
4: candidate← selectRandomFrom(potentialPartners)
5: if Configuration = “Unbiased” then
6: partner← candidate
7: else
8: positiveBLA← calculateBLA(candidate, “good”)
9: negativeBLA← calculateBLA(candidate,“bad”)

10: if positiveBLA[agent.Tag] > negativeBLA[agent.Tag] then
11: partner← candidate . if candidate has good experience with agent’s tag

it will agree to become its interaction partner
12: end if
13: end if
14: end if
15: return partner
16: end procedure

The interaction itself proceeds according to the pseudocode laid out in algorithm 4. If

the agent was not successful in acquiring a partner it receives the FailurePayoff. If the agent

was able to acquire a partner the two of them compare their cultural trait variants. If the

variants agree both agents receive the SuccessPayoff, however, if the variants differ they

both receive the FailurePayoff. Moreover, under the Lamarckian model configuration the

agents update either their LastGood and NumGood fields, or LastBad and NumBad fields,

depending on whether the interaction was successful or unsuccessful.

After a single generation has elapsed, the evolutionary algorithm is invoked (as shown in

algorithm 9). The algorithm creates NumAgents offspring, which then replace the entire

agent population from the recently executed generation. Although in real-world cases human

populations consist of overlapping generations, here, without a clearly defined distribution

of longevity and a set of influencing factors, I simply model non-overlapping generations.

I introduce overlapping generations in Chapter 6. Reproduction is local, and the network

3this is done in the same way as in equation 3.1, only instead of NumGood, FirstGood and LastGood the
values for NumBad, FirstBad and LastBad are used.
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Algorithm 4 Agent interaction

1: procedure Interact(agent, partner, Configuration, SuccessPayoff, FailurePayoff)
2: if partner is NULL then
3: agent.Fitness← agent.Fitness + FailurePayoff
4: else if agent.culturalTrait = partner.CulturalTrait then
5: agent.Fitness← agent.Fitness + SuccessPayoff
6: partner.Fitness← partner.Fitness + SuccessPayoff
7: if Configuration = “Lamarckian” then
8: agent.LastGood[partner.Tag]← 0
9: partner.LastGood[agent.Tag]← 0

10: agent.numGood[partner.Tag]← agent.numGood[partner.Tag] + 1
11: partner.numGood[agent.Tag]← partner.numGood[agent.Tag] + 1
12: end if
13: else
14: agent.Fitness← agent.Fitness + FailurePayoff
15: partner.Fitness← partner.Fitness + FailurePayoff
16: if Configuration = “Lamarckian” then
17: agent.LastBad[partner.Tag]← 0
18: partner.LastBad[agent.Tag]← 0
19: agent.numBad[partner.Tag]← agent.numBad[partner.Tag] + 1
20: partner.numBad[agent.Tag]← partner.numBad[agent.Tag] + 1
21: end if
22: end if
23: return agent, partner
24: end procedure
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structure of the population is preserved. Thus for each agent occupying a node i one offspring

will be produced, which will then take its place on the node i. The parents of this offspring are

selected from the set containing the agent currently occupying the node i and its neighbors.

The selection mechanism is a tournament of size 3. To select a single parent, three agents

are randomly selected from the set of candidates and the one of the three with the highest

fitness becomes the parent. Each offspring has two parents 4. I use tournament selection

for a couple of reasons. First, it represents the imperfect information that agents possess

when selecting behavioral models, in the sense that sub-optimal models may be selected. It

is also independent of the distribution of absolute fitness, unlike other mechanisms such as

fitness-proportionate selection (we only care about relative fitness). Furthermore, I model

two-parent reproduction as a baseline, although multi-parent configurations are possible in

cultural evolution. I explore this concept in Chapters 5 and 6.

When the parents are selected the offspring is created by performing unbiased uniform

crossover on their heritable characteristics (see De Jong, 2005, p.64-65). This includes all

of the fields listed in table 3.1, apart from Neighborhood which is always defined by the

immutable AdjacencyMatrix and Fitness which is set to 0 for all agents at the beginning of

a generation. After the offspring is created it undergoes potential mutation. This consists of

changing each of its fields with a 1% probability5. The probability is applied element-wise

in the case when fields are lists. In the case of cardinal variables the mutations are done in

the form of small Gaussian perturbations. If the variable is categorical, mutation is carried

out via random resetting of values within the allowed range.

3.4 Design Concepts

• Sensing: The agents only sense their direct neighbors. The agents’ positions in the

4If the candidate set contains two agents only, then no selection takes place and the two automatically
become the parents. If the candidate set only contains one agent then the offspring will be its exact copy
(barring any subsequent mutations).

5As the goal of this EA is not optimization, there is no optimal level of mutation. Similarly, it is beyond
the scope of this work to estimate the true rate of mutation of cultural traits in individuals. Therefore, the
consensus “appropriate” rate of mutation is applied here.

70



Algorithm 5 Evolutionary Algorithm

1: procedure CreateOffspring(agents, TournamentSize, MutationRate)
2: i← 1
3: offspring← ∅
4: while i ≤ length(agents) do
5: parents← ∅
6: agent← agents[i]
7: while length(parents) 6= 2 do
8: candidates← agent
9: j ← 1

10: while j ≤ TournamentSize do
11: candidates← candidates ∪ selectRandomFrom(agent.Neighborhood) .

including checks for ensuring non-duplicit candidates
12: j ← j + 1
13: end while
14: bestCandidate← tournament(candidates)
15: parents← parents ∪ bestCandidate
16: end while
17: thisOffspring← uniformCrossover(parents)
18: thisOffspring← mutation(thisOffpsring, MutationRate)
19: offspring← offspring ∪ thisOffspring
20: i← i+ 1
21: end while
22: return offspring
23: end procedure
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network remain fixed throughout their lifetimes. Before an interaction takes place the

agents are only able to directly sense their neighbors’ tags.

• Interaction: Upon activation an agent is compelled to interact with one of its neighbors.

The choice of its interaction partner differs based on the model configuration. In the

unbiased configuration the agent simply chooses randomly. The selected partner then

always agrees to the interaction. This configuration was implemented as a baseline

and a means of comparison against the other configurations.

In the remaining configurations the agent chooses to interact with neighbors based

on their preferences for certain tag variants. These preferences are formulated by their

prediction and adaptation mechanisms.

The interaction choice must be mutual: When a candidate is selected as a preferred

partner by an agent, the candidate must decide whether it is comfortable interacting

with the agent as well. Once again, the decision is made by judging the preference for

the agent’s tag.

The interaction is done by comparing the cultural trait variants of the two agents.

The interaction is deemed a success if the two variants are equal, otherwise it is deemed

unsuccessful. Thus, one can think of the interaction as an n × n pure coordination

game with n Nash equilibria, where n is the number of trait variants present in the

model. The coordination game is a natural choice, because I assume the cultural trait

variants represent beliefs, behaviors or knowledge related to a particular domain and

that these are functionally equivalent to their alternatives and therefore selectively

neutral. If two agents are forced to solve a problem together in the given domain, I

assume that they are more likely to succeed if their beliefs and behaviors align. For

example, if two agents need to compare measurements it usually does not matter

whether they are in metric or imperial units as long as both agents are familiar with

the scale being used, and know that it is in fact being used. However, if one of the

agents is only familiar with inches, and the other is only familiar with centimeters,
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the measurement problem becomes more difficult6. Many domains in today’s world

are rife with such cultural differences that make effective cross-cultural collaboration

difficult, often involving stakes much higher than incorrect measurements7.

• Prediction: Since the interaction depends on the trait variants of the agents and

because these are unknowable by the agents in advance, an agent can only help itself

by attempting to predict a neighbor’s trait variant through means other than direct

observation. As communication between agents is not allowed in this version of the

model, the only information the agents can use to infer the others’ trait variants

are the directly observable tags. Thus, the agents use their past experience to form

predictions whether the possession of any given tag correlates with the possession of

a particular trait variant. This prediction is done via equation 3.1. The relationship

and its derived estimate which represent the process of reinforcement learning is taken

directly from the ACT-R cognitive architecture (Anderson & Lebiere, 1998). The

ACT-R framework is the most influential cognitive architecture, and is well suited

towards modeling cognitive phenomena such as memory. The quantity computed in

equation 3.1 is very sensitive to recent experiences, while the importance of older

experiences progressively decays with time. A new positive (negative) experience with

a given tag results in a spike in its base-level activation, meaning that the agent will

associate it more strongly with positive (negative) experiences in the future. A lack of

positive (negative) experience over an extended period of time will result in the gradual

decrease in the tag’s base-level activation and a weakening association with positive

(negative) results. Notice that the quantities NumGood, F irstGood, LastGood and

the corresponding negative equivalents are inherited by offspring. Taken literally,

this would mean that offspring inherit the actual memories and experiences of their

ancestors. While this is certainly not possible in the human world, I argue here that

this is valid from a modeling perspective. In the model, these values are not used in

6Difficulties could also arise if both agents know both scales, but each assume that a different scale is
being used by the other.

7To give just one example consider the effect that ideological and religious differences have on the
contemporary social and political landscape both on a national as well as international level.
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themselves, they are simply a means in expressing the salience of positive/negative

associations with tags. Such associations are commonly inherited in cultural evolution

through socialization processes (Berger & Luckmann, 1966). The agents thus inherit

the means for expressing them. True prediction, in the sense that newly acquired

information during an agent’s lifetime (i.e. the agent’s own interactions) is used to

update the predicted outcomes, is only present in the “Lamarckian” configuration of

the model. As mentioned before, there is no prediction in the unbiased configuration.

In a third “genetic” configuration, also devised as a baseline to control for Lamarckian

processes in cultural evolution, the prediction calculation does take place, but the

input variables are not updated after interaction events. Hence, while offspring still

inherit preferences from their parents, they are not plastic and can only change from

one generation to another through forces of recombination and mutation.

• Adaptation : As described above, one way the agents are able to adapt to a changing

environment, particularly in the Lamarckian configuration, is the continual updating of

their trait variant predictions for others, by incorporating newly acquired information

from recent interactions into their calculations. This type of individual learning falls

under the category of what Boyd and Richerson (pp. 6, 82) define as guided variation:

learning in the form of trial and error in which the trials are self-generated and explored

by the individual itself, the results of which can be transmitted to other generations.

Another level of adaptation, present in all model configurations, is that on the

inter-generational, evolutionary scale. Because parent selection is fitness-dependent,

individuals who do not perform well in the current environment, either because they

possess a rare trait variant, an unpopular tag, or because they form predictions

that are inconsistent with reality, are less likely to pass on their traits in favor of

better-performing individuals.

• Stochasticity: There are three stages of the model that are affected by stochasticity.

The first stage consists of certain choices the agents make (for example which one

neighbor from the possibly many sharing the same preferred tag is selected as a
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potential partner in a given round). In this case the stochasticity is simply a proxy

for unknown parameters that go beyond the scope of the model. The other two

stages include agent initialization and the recombination and mutation phases of the

evolutionary algorithm. Here stochasticity serves the purpose of injecting additional

diversity into the agent population, as well as simulating evolutionary mechanisms.

• Emergence: The model is designed to explore whether and how any regularities in the

distribution of cultural trait variants and external markers arise from the decentralized

actions of agents possessing limited information and cognitive abilities. The intent is

to give a dynamic explanation of how long-term, stable trends emerge from the myopic

agent-level adaptations and the non-teleological forces of cultural evolution.

• Observations: In accordance with the above stated goals the model output tracks the

population-wide distributions of cultural traits variants and tags, as well as a number

of statistics derived from them as a function of time and of the simulation parameters.

3.5 Initialization and Inputs

The model is initialized by providing the values of model parameters given in table 3.2.

The possible configurations are (a) unbiased, (b) genetic, and (c) Lamarckian. The agents

are initialized before the start of the first generation. Their Fitness is set to 0 and their

neighborhoods are created based on the provided AdjacencyMatrix. Tags, denoted by their

integer values, are assigned to agents randomly from the uniform distribution over the

set of integers from 1 through NumTags. In analogous fashion, the cultural trait variants

are also assigned randomly from the uniform distribution over the set of integers from 1

through NumTraits. It is important to note that tag assignment is not correlated with the

assignment of the cultural trait variants in any way during the initialization process. The

NumGood and NumBad values are initialized randomly from the uniform distribution over

the integers from the set from 1 through NumRounds. Finally, the values of FirstGood,

FirstBad, LastGood, and LastBad are initialized randomly from the uniform distribution

75



over the integers 1 through NumRounds*NumAgents (while ensuring a valid sequence of

events for each agent). This in essence creates fictional memories for the first generation of

agents on a scale naturally tied to their lifetime. The number of generations is given by the

NumGenerations parameter. Each agent is placed on a single node in a network given by

the AdjacencyMatrix parameter. This matrix can define any network structure that the user

wishes to use. After initialization the model requires no further input from the user.

3.6 Verification and Validation

The model was coded in MATLAB. The model was verified with the use of extensive and

detailed code walkthroughs and debugging. Validation of the model was performed to the

extent that distribution moments of important network statistics of the simulated agent

networks were compared to stylized network characteristics of plausible real-world scenarios,

i.e. high modularity, moderate trait diversity, and low tag entropy. Validation in the sense of

direct quantitative comparisons with specific empirical observations was not carried out at

this point. This is the focus of Chapters 5 and 6. The source code along with documentation

can be accessed in the OpenABM model database at the following link:

https://www.openabm.org/model/5813.

3.7 Experimental Design

I perform extensive experimentation on the model implemeneted as described in previous

sections by executing a large number of simulations. The simulations were initialized with

parameter values as shown in table 3.4. For each individual parameter setting 100 simulation

runs were executed.

The three parameters that were varied during experimentation were the Configuration,

NumRounds and the AdjacencyMatrix. The configurations were varied to control for the

effects of the indirect bias and the guided variation mechanisms. The AdjacencyMatrix

8The three types of networks used. For each type a concrete adjacency matrix must be provided as input.
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Table 3.4: Model parameter values

Name Value

Configuration {unbiased, genetic, Lamarckian}
NumAgents 210

NumGenerations 100
NumRounds {1, 5, 10, 20, 30}
NumTags 10
NumTraits 10
SuccessPayoff 1
FailurePayoff -1
AdjacencyMatrix {complete, random, small-world}8
MutationRate 0.01

parameter was varied to control for different network structures which could hypothetically

affect the nature of trait diffusion throughout the population. Finally, the number of rounds

per generation was varied to elucidate the effect of the ratio between horizontal and vertical

transmission of information in the system. Because time in the model is abstract there is

no “natural” length of a generation. It must also be acknowledged that different cultural

domains operate at different time scales: some phenomena occur regularly and frequently

throughout actors’ lifetimes (for example trading resources with others), while others, such

as weddings, or searching for a job, occur infrequently or perhaps only once in a lifetime.

The potential effect of the ratio of horizontal to vertical transmission was demonstrated in

Santos, et al. (2006) .

Table 3.5: Network parameters

Network type Parameter Description Values

Random k̂ average degree 1,. . . ,5

Small-world
k̂ average degree 50,100,150,200
β edge rewiring probability 0.01,. . . ,0.1
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Complete networks are networks in which every node is linked to every other node. In

the case of random and small-world networks further parameters need to be specified. For a

random network one must provide the average node degree k̂. Then, k̂ = np, where n is

the number of nodes and p is the probability of an edge existing between any given pair of

nodes. The Erdős-Rényi algorithm is used to generate the random network (Erdős & Rényi,

1959). The algorithm proceeds by cycling through all possible unordered pairs of nodes and

generating an edge between each pair with probability p.

Small-world networks are considered good approximations for many types of social and

biological networks (Watts & Strogatz, 1998). Here the Watts-Strogatz algorithm is used to

generate them. The algorithm is seeded with the average degree k̂ and an edge rewiring

probability parameter β. In the first phase the algorithm generates a regular ring lattice of

nodes each connected to k̂ neighboring nodes, k̂/2 on each side. It then cycles through all

the edges in the form (ni, nj) where i < j, and with probability β replaces them with edges

of the form (ni, nk) where k is taken with uniform probability from all possible values that

avoid self-loops and link duplication.

Table 3.5 shows the values of the relevant network parameters that have been tested

in conjunction with the other model parameter settings. The values were chosen in an

attempt to study those regions that demonstrated the highest rates of sensitivity based on

preliminary exploratory simulations.

For each parameter setting, 100 simulation runs were executed. One hundred random

seeds were generated and in the case of random and small-world networks 100 different

adjacency matrices were generated for each set of network parameters9. For comparability

purposes the same random seed was used for the k-th run for each parameter setting. In an

analogous fashion,the same adjacency matrix Ak was used for the k-th run for each of the

parameter settings for a given network type.

In order to perform thorough analysis a number of measures were calculated and collected

as output from the simulations. The foremost task is to track the distribution of the cultural

9There is only one possible adjacency matrix of a complete graph on n vertices.
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trait variants and the tags in the agent population over time. To express the nature of the

distribution in relevant terms with a single quantity, the population skewness is calculated.

The skewness γ1 of a random variable X is defined as follows:

γ1 =
µ3

σ3
. (3.2)

Here µ3 is the third central moment of the distribution and σ is the standard deviation.

Because the tags and trait variants are expressed in terms of categorical values the skewness

is measured on the distribution of counts of the respective values10. A high skewness thus

indicates that a small number of variants, perhaps even a single one, dominate the population.

A low skewness value, on the other hand, indicates that the variants are more equally spread

across the population (i.e. a more culturally diverse society).

The skewness of the agents’ fitness distribution over time is also measured. This is an

important indicator of the level of selective pressure in the evolutionary algorithm (Eiben

& Smith, 2007, p. 59). In the case of fitness, the skewness is calculated directly on the

(cardinal) values.

To track whether certain tags become associated with specific trait variants over time a

measure of tag “entropy” is calculated. As is the case with Shannon’s Entropy (Shannon,

1948), upon which it is based, it too measures the (un)predictability of specific states. The

resulting quantity expresses how well the tag “alphabet” encodes different trait variants. It

is defined as follows:

E =
1

NumTags

NumTags∑
j=1

Ej

nj
, where Ej = −

NumTraits∑
i=1

pi ln pi. (3.3)

10Note that because the number of agents and the number of tag types is constant throughout the
simulation, the sum of the counts as well as the mean of the counts is also constant. Because of this we
can compute an upper bound on the skewness. Assuming we have n agents, the most skewed distribution
occurs when one tag is present n times in the population, while the other ones occur zero times. Calculating

the moments in equation 3.2 with these values we obtain a skewness of γ1 = 2.7 at 210 agents. The same
observations apply, of course, to the cultural trait variants.
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Here i iterates over the set of trait variants, pi is the probability of encountering the i-th

variant in an agent possessing the tag j, Ej is the entropy of the j-th tag, and finally the

size of each tag sub-population, nj , is used to normalize the values and obtain the average

metric entropy E.

Finally, to explore the degree of clustering of sub-populations defined by specific tags and

cultural traits, the modularity of the agent networks is measured in terms of both attributes.

Network modularity measures how “neatly” the network decomposes into communities

defined on the possession of a shared attribute (Newman, 2006) and is defined as:

Q =
1

2m

∑
vw

[
Avw −

kvkw
2m

]
δ(cv, cw). (3.4)

Here m is the edge count of the network, v, w are nodes, A refers to the adjacency matrix,

kv and kw are the degrees of the nodes, cv and cw are the attributes of the nodes, and δ

refers to the Kronecker delta function. Modularity is measured in random and small-world

networks only, as it makes little sense to report it in complete networks.

3.8 Results

Figure 3.2 shows simulation results for complete networks. One can observe that there

is no discernible trend in the skewness of tag distributions, neither as a function of the

transmission ratio, nor as a function of the model configuration. The trait skewness is

shown to rise with the transmission ratio, although this increase is not substantial in relative

terms. In any case, the distinctive features are a fairly low skewness of the tag distribution

throughout, and a very high skewness of the trait distribution which is achieved relatively

early on in the simulations. In fact, in most simulations a single trait variant comes to

dominate the population after the first few generations, with occasional mutations providing

for the small number of other variants. This renders the tag entropy measure much less

informative. Unsurprisingly, it remains very low in all cases and it is negatively correlated
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with trait skewness (see part (c) of figure 3.2). This owes to the fact that any encoding is

relatively noiseless when one character becomes predominant in the input stream (i.e. every

tag can encode for the same dominant trait variant with relative success). Part (d) shows

the total fitness skewness values in different configurations. One may observe that the fitness

distributions are for the most part negatively skewed. This may hint at an undesirable lack

of selective pressure, as most agents are tightly clustered around average fitness levels with

a minority of them trailing behind. Such a fitness distribution may contribute to effects

related to the phenomenon known as genetic drift (see section 3.9 for details). This could

subsequently explain the rapid convergence to a single trait variant.

Parts (e) and (f) show the most significant differences between the biased and the

unbiased configurations. By design, there are no rejected interactions by the agents in the

unbiased configuration (since they interact randomly, and thus there is basis on which to

reject interactions). On the contrary, in both of the biased configurations the agents reject

a significant amount of interaction proposals over the course of the simulations. This is

especially pronounced in simulations with shorter generations. This shows that agents are

in fact “picky” about the tags, and evolve strong preferences for interacting with agents

possessing only certain kinds of tags. Part (f) shows the share of the most common tag

type as a function of time for one particular parameter setting. Here it can be seen that the

evolved biases towards specific tags coupled with the convergence in the cultural trait result

in a single dominant tag emerging, especially in the Lamarckian configuration. However, as

the trait population eventually settles on a single variant, selective pressure ceases to act on

the tags, and the tag population diversifies once again due to mutation. This is in contrast

with the unbiased configuration in which selective pressure never acts on the tags, and thus

their distribution remains largely undisturbed.

Next, I turn to the random network configurations. Figures 3.3 and 3.4 show simulation

statistics as a function of average degree k̂ and the transmission ratio H/V . When k̂ is high,

the model demonstrates characteristics similar to the complete network configurations. This

includes the high trait skewness levels throughout, as well as high tag skewness levels in the
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biased configurations coupled with low skewness in the unbiased version. The tag entropy

also remains low in all cases, for the same reasons given above. Here I introduce modularity

results for the first time: One can note that the values are also very low for high k̂. As is the

case with tag entropy, this too is a direct consequence of the high skewness levels. When a

single trait variant or tag dominates almost the entire population, the modularity equation

(3.4) is reduced to a simple difference between the expected and the actual edges in the

graph. Because the networks are random these differences are usually close to zero.

As network density decreases along with k̂, so do the skewness levels of both the tag and

the trait distributions regardless of the type of bias (or lack thereof). On the other hand,

tag entropy never drops in this scenario. Finally, the tag and trait modularity values are

increased. These results suggest that while on a local level agents tend to share the same

characteristics as their neighbors, there is no clear association between specific tags and

trait variants across the whole population.

Although all three types of bias result in more or less similar outcomes, differences

remain between the configurations in terms of fitness distribution and interaction frequency

(as shown in figure 3.3 g–l).

Finally, I shift the focus to the small-world configurations. Figures 3.5 and 3.6 show the

simulation results as a function of the rewiring probability β, and average degree k̂. The

skewness of the trait distribution shows a clear trend that is once again independent of

bias configuration: the distributions remain diverse in regions of low average degree and

low edge rewiring probability. As network density increases and the networks become more

random in their nature (as a result of the rise in edge rewiring), the distribution becomes

highly skewed as previously observed. Identical trends hold for trait and tag modularity

measures. Thus far, the outcomes are qualitatively aligned with those from the random

network configuration. The main difference, however, can be observed in the tag entropy

levels. While the unbiased and genetic configurations, in line with previous results, only

experience a decrease in entropy in the “straight-forward” cases where trait distribution

is highly skewed, the Lamarckian configuration demonstrates fairly low entropy values no

82



matter how diverse the trait variant population remains. Furthermore, figures 3.7 and 3.8

show the small-world configuration results as a function of rewiring probability β and the

transmission ratio H/V . Here one may observe that the sustained decrease in entropy in the

Lamarckian configuration is also dependent upon longer generations (i.e. higher transmission

ratios). However, apart from the nature of the tag distribution in the case of the Lamarckian

configuration, the transmission ratio does not produce any significant variation in model

behavior.

3.9 Discussion

The aim of the model was to show the cultural dynamics in networks of agent interaction

driven by the mechanisms of indirectly biased transmission and guided variation.

Overall the results show that the social network structure of the agent population plays

a significant role in the outcome of cultural evolution. This is especially true in the case of

complete and random networks, for which the tracked measures display little sensitivity to

the particular bias implementation or to the transmission ratio. There are exceptions to this

generalization, for example the trait distribution skewness and tag entropy levels show some,

if small, trends with respect to the transmission ratio. One explanation for these changes is

the fact that longer generations with more activity will tend to produce more negatively

skewed fitness distributions which only exacerbate the effects of genetic drift in trait variants

(the tag entropy is then a direct effect of the peaking trait distribution skewness).

Genetic drift is the change in the frequency of a gene variant in a population due to

random sampling of genotypes (Masel, 2011). If a random sample contains a disproportionate

frequency of a specific variant, this irregularity will only become more pronounced in the long

run when sampling iteratively, until eventually the variant takes over the entire population.

It should be noted, that when I invoke genetic drift here as a cause for population take-over,

what I have in mind is not pure random genetic drift, which is entirely selectively neutral.

Rather, the invocation implies that small differences in fitness levels give an initial boost

in frequency to a particular variant which is then exacerbated further by random drift in
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conjunction with relatively small population sizes. Indeed, pure random drift would not

be able to achieve the high levels of skewness alone on the observed time scale. This is

demonstrated by the lasting diversity of the tag distribution under the unbiased configuration,

which is in fact unaffected by selection biases.

Apart from the minor points sketched out above, network structure, and particularly

network density is the main explanandum. As the networks grow more dense one may

observe an increase in skewness of the trait variant distribution. If small irregularities

in trait variant frequency appear locally, they are able to spread faster in a more denser

network. Thus, the effects of genetic drift once again become more prominent. Furthermore,

in configurations in which the selection of trait variants is biased by possession of tags, the

tag distribution becomes very skewed as well. This hints at an association between tags and

trait variants existing already during the phase leading up to the convergence to a particular

trait variant. As a matter of fact we cannot attribute the skew in the tag distribution to

a similar but independent random drift effect, because we see no such convergence in the

unbiased configuration on the observed time scale. The variation in fitness distributions and

interaction frequency also indicates that significantly different processes may be at play in

the unbiased and biased configurations. However, none of this translates into differences in

the cultural makeup of the agent populations. The modularity plots show that regardless of

bias implementation, the model achieves clustering of tags and trait variants only in sparse

networks, which is a relatively “easier” task than in denser networks, as small changes can

have a dramatic effect. Similarly, in none of the model configurations, whether biased or

unbiased, is the system able to solve the problem of encoding trait variants via tags when

the trait variant distribution is diverse.

I note a few similar trends in the small-world configurations. First, the denser the

networks are, the more skewed the trait distributions become which in turn promotes

low entropy and low modularity. The same can be said for increasing the edge rewiring

probability used in generating the small-world networks which essentially makes them more

akin to random networks. However, there are two notable departures from previous dynamics
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in the small-world case: (1) The agent networks are highly modular both in terms of tags

and trait variants even if the average degree is one order of magnitude higher than in the

random case and (2) low levels of entropy are maintained even when the trait population is

diverse in both biased configurations. Both of these phenomena are made possible by the

small-world structure. The individual clusters or “worlds” evolve as in previous networks:

the trait population converges on a single variant and a single tag emerges with it. But

because the clusters are partially isolated from others, links between them being sparse, as

dictated by their small-world nature, they are able to evolve along independent trajectories.

This results in a mosaic of communities, each defined by possibly different pairs of prevailing

tags and trait variants.

3.10 Conclusion

I have developed an agent-based model of cultural evolution. I carried out a large number of

experimental simulations to test the hypothesis that indirectly biased cultural transmission

together with guided variation contribute to the emergence of social clusters marked by

the possession of specific pairs of cultural traits and external markers. Our simulations

have shown some promise for this hypothesis as I was able to generate such clusters under

certain parameter regimes. I have found that the chosen network structure and the ratio

between horizontal and vertical transmission both play an important role in the resulting

distributions of cultural trait variants and external markers. However, more work is needed

to account for the effect of the social networks that we have used in our simulations.

The model ultimately contributes to the study of cultural evolution by combining the use

of evolutionary algorithms and network analyses to study the interplay of hidden cultural

traits, observable external markers and learned cultural preferences, where other models

have only focused on a smaller subset of these concepts.
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Figure 3.2: Simulation statistics for complete networks as a function of the horizontal/vertical
transmission ratio (a–e). Each point in parts a–e represents the average of the sum of the
values for the given measure at the end each of the 100 generations. Part f shows the average
share of the most common tag as a function of time when H/V = 20.
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Figure 3.3: Simulation statistics for random networks as a function of the horizontal/vertical
transmission ratio and average degree for the unbiased (left), genetic (center), and Lamarckian
configurations (right). Each point represents the average of the sum of the values for the
given measure at the end each of the 100 generations. Images show linearly interpolated
values across the entire range of tested parameter values. Parts (a)-(c) show tag skewness.
Parts (d)-(f) show trait skewness. Parts (g)-(i) show fitness skewness. Parts (j)-(l) show
percentage of rejected interactions.
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Figure 3.4: Simulation statistics for random networks as a function of the horizontal/vertical
transmission ratio and average degree for the unbiased (left), genetic (center), and Lamarckian
configurations (right). Each point represents the average of the sum of the values for the
given measure at the end each of the 100 generations. Images show linearly interpolated
values across the entire range of tested parameter values. Parts (a)-(c) show tag entropy.
Parts (d)-(f) show tag modularity. Parts (g)-(i) show trait modularity.
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Figure 3.5: Simulation statistics for small-world networks as a function of the edge rewiring
probability and average degree for the unbiased (left), genetic (center), and Lamarckian
configurations (right). Each point represents the average of the sum of the values for the
given measure at the end each of the 100 generations. Images show linearly interpolated
values across the entire range of tested parameter values. Parts (a)-(c) show trait skewness.
Parts (d)-(f) show tag skewness. Parts (g)-(i) show fitness skewness. H/V = 10.
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Figure 3.6: Simulation statistics for small-world networks as a function of the edge rewiring
probability and average degree for the unbiased (left), genetic (center), and Lamarckian
configurations (right). Each point represents the average of the sum of the values for the
given measure at the end each of the 100 generations. Images show linearly interpolated
values across the entire range of tested parameter values. Parts (a)-(c) show tag entropy.
Parts (d)-(f) show trait modularity. Parts (g)-(i) show tag modularity.H/V = 10.
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Figure 3.7: Simulation statistics for small-world networks as a function of the edge rewiring
probability and transmission ratio for the unbiased (left), genetic (center), and Lamarckian
configurations (right). Each point represents the average of the sum of the values for the
given measure at the end each of the 100 generations. Images show linearly interpolated
values across the entire range of tested parameter values. Parts (a)-(c) show trait skewness.

Parts (d)-(f) show tag skewness. Parts (g)-(i) show fitness skewness. k̂ = 100.
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Figure 3.8: Simulation statistics for small-world networks as a function of the edge rewiring
probability and transmission for the unbiased (left), genetic (center), and Lamarckian
configurations (right). Each point represents the average of the sum of the values for the
given measure at the end each of the 100 generations. Images show linearly interpolated
values across the entire range of tested parameter values. Parts (a)-(c) show tag entropy.

Parts (d)-(f) show trait modularity. Parts (g)-(i) show tag modularity. k̂ = 100.
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Chapter 4: Modeling the Co-Evolution of Culture, Signs and

Network Structure

Abstract: Culture structures human conduct in countless aspects. Identifying drivers of

cultural dynamics in human societies is important if we wish to understand the sources of

collaboration and conflict in social interactions. Here I present and test an evolutionary

agent-based model of cultural evolution that rests on interplay of unknown cultural traits,

directly observable external markers, and the structure of the agents’ social networks. I

draw from dual-inheritance theory and implement the mechanisms of guided variation and

indirectly biased cultural transmission into our model. Crucially, I allow the agents to adjust

their social networks based on their cultural preferences. I show that under these assumptions

the agent populations evolve into small-world communities of clusters where specific pairs

of traits and tags become dominant. I also show that the model is sensitive to the cost of

maintaining social ties and the ratio of horizontal and vertical cultural transmission.
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4.1 Introduction

Humans are a cultural species, meaning that they can acquire and transmit shared sets of

values, knowledge and behaviors during their lifetimes (Boyd & Richerson, 1985). Often the

acquired attitudes and behaviors are equivalent to their alternatives from an adaptive point

of view. Consider the example of dress codes at receptions. Ultimately it does not matter

what the guests wear. The party could be an equal success whether the guests don formal

or casual wear. What matters is that the dress code is observed equally by all of the guests.

If one guest arrives in a pair of jeans and a T-shirt to a black tie event, the situation might

prove equally awkward for both the denim-clad standout as well as the dress code abiding

guests. There are two aspects to this problem: one is knowing the dress code, the other is

the person’s willingness and capacity to abide by it.

Another aspect of culture are sign systems. Languages are the most complex sign systems,

but other more rudimentary forms exist as well, such as flags representing nations. Signs can

be used to mark the possession of cultural traits that can be difficult to ascertain directly.

For example, an accent might be a sign of the speaker’s place or class of origin. In fact, the

dress code conundrum could be resolved via language, by simply stating it on the invitation.

If the invitation is less explicit, one is left to infer the dress code from a variety of available

cues, which can act as signs in themselves.

Finally, culture is local in its nature. While their purpose is to generalize, cultural

systems vary across physical and social space, forming more or less defined clusters. Thus,

while gowns and tuxedos are considered traditional formal wear in the West, this is not

necessarily the case in other regions of the world.

In this study I examine the relationship between cultural evolution and the evolution of

social network structure. In particular, I investigate the interplay between selectively neutral

cultural trait variants, selectively neutral external markers (“tags”), and the maintenance of

social ties in environments where collaboration is necessary and coordination of efforts is

crucial to success.

I argue that these phenomena are interconnected and have co-evolved over time through
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the mechanisms of indirectly biased transmission and guided variation. Transmission

of cultural trait variants is defined as indirectly biased when it is driven by preferences

for unrelated external markers. Guided variation is the individual in-life adaptation via

evaluation of self-generated and self-explored possibilities (Boyd & Richerson, 1985).

Hence, I assume conditions under which it is (a) necessary to coordinate efforts of multiple

actors to solve complex problems, (b) costly to maintain meaningful social connections

necessary for cooperation, (c) disproportionately difficult for actors to ascertain possession

of cultural traits in others directly, (d) possible for actors to direct their behavior based on

the possession of observable markers, and I hypothesize that over time such populations will

form distinct cultural clusters and meaningful cultural signs will emerge.

To test this hypothesis I build an evolutionary agent-based model under the above

assumptions. In the model, every agent possesses a selectively neutral variant of a cultural

trait representing equally adept approaches to solving problems in an abstract domain, and

a tag which represents the agent’s observable characteristics. The agents are periodically

faced with tasks, which can only be carried out by successfully coordinating their efforts

with another agent. The agents cannot deduce the specific variants of the trait possessed by

others, however they may periodically choose to abandon partners or find new ones.

In the following section I give a brief overview of previous work. Next, in sections 4.3-4.5.

I describe the design of the agent-based model in detail. Section 4.6 then comments on the

design of the simulation experiments. I present the results of the simulations in section 4.7.

Finally, I provide a discussion of the main findings and concluding remarks in section 4.8.

4.2 Background

Many studies have investigated cultural evolution in an agent-based simulation environment

(see Bianchi & Squazzoni, 2015) and a number of them have approached this from the

perspective of cooperation (e.g. Hales, 2000; Janssen, 2005; Hammond & Axelrod, 2006).

The co-evolution of network structure and cooperation has also been explored (Santos et al.,
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2006). Most of these studies use the Prisoner’s Dilemma to simulate the interplay between

individual and social utility, although others have used the ultimatum game (Shutters, 2009)

or the stag hunt and snowdrift games as well (Santos et al., 2006). Moreover, the fact

that social networks are malleable on an individual level has been empirically determined

(Kossinets & Watts, 2006). I assume some form of cooperation is necessary for the agents’

survival, but I also assume that cooperative behavior is only successful when agents align

their strategies, all n of which are equally adept at solving the task at hand. The problem

thus becomes an n×n pure coordination game with n Nash equilibria. The assumption that

agents’ strategies are hidden to their interaction partners has been explored in some of the

studies, and there have been several models where the connection between hidden traits and

tags has been examined (Hales, 2000; Janssen, 2005; Hammond & Axelrod, 2006). However,

it is the case in these studies, that the tags are “ready-made” signs, in that agents either

recognize them as indicators of group membership (Hales, 2000; Hammond & Axelrod, 2006)

or are able to learn a pre-existing relationship between the tag and another trait (Janssen,

2005). I take a different approach and assign the tags randomly and observe whether any

signifying quality emerges from the dynamics of the system. The role of indirect bias and

guided variation with tags has been studied with mathematical models (Boyd & Richerson,

1985), even on small groups of live subjects (Efferson et al., 2008). Here I add to the study

of human cultural dynamics by analyzing their effects via an agent-based simulation on a

large social network.

4.3 Overview

In the following sections I give a detailed description of the design of the agent-based model

used to test the hypothesis. The description follows the ODD protocol (Grimm et al., 2006).
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4.3.1 Purpose

In this chapter I explore the link between evolution of culture and the evolution of social

network structure. Particularly, I use an agent-based model to study the interplay between

selectively neutral cultural traits, selectively neutral external markers (or ‘tags’ as they are

commonly referred to in ABM literature, e.g. Hales, 2000; Janssen, 2005; Hammond &

Axelrod, 2006) and the maintenance of costly social ties in an environment which requires

cooperation and coordination of efforts. The model is a direct extension of the model

described and analyzed in Chapter 3. As in the previous model, agents possess cultural trait

variants which are hidden to other agents and which are equivalent to choices in coordination

games that the agents play with each other. They also possess tags, which are directly

observable by the other agents, and a set of preferences for the tags. However, simulations

of the original model demonstrated that the results heavily depend on the chosen network

structure of the agent population. Moreover, the original assumption that social networks

remain fixed throughout agent’s lifetimes, even for entire generations, is barely realistic in

real-world scenarios (for an example one may refer to the evolving co-authorship networks in

Barabasi et al., 2002). Therefore, the purpose of this model is to elucidate how the dynamics

differ in the case when social networks are allowed to change during simulations, and if it is

assumed that the cultural makeup of the agents and their cultural preferences have a direct

effect on the deletion and creation of social ties.

4.3.2 Entities and Variables

The model consists of a single type of agents. The agents are defined by their state variables,

which are summarized in table 4.1. For the most part, the state variables are identical

to those in Chapter 3. Nonetheless, there are three new variables and the Neighborhood

variable is now dynamic. I comment on these changes in detail:

• PositiveThreshold and NegativeThreshold: The thresholds refer to the retrieval thresh-

olds in the ACT-R memory model, and thus essentially represent the threshold

necessary for recall of particular tags. In the previous model the retrieval threshold for
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each tag was simply set to zero for every agent. To eliminate this somewhat arbitrary

parameter I now assign each agent its own retrieval threshold. The thresholds are

initialized stochastically in a way so that they are on the same scale as the agents’

initial base-level activations. Each agent is assigned two different thresholds. The

PositiveThreshold is used in the creation of new ties, while the NegativeThreshold is

used in the deletion of ties. The thresholds are inherited by offspring and subject to

selection. Thus, they add another dimension to the natural selection mechanism.

• LastOutcome: This variable stores a pair of values regarding the agent’s last interaction–

whether it was a success (1) or not (0), and the index of the agent with whom the

interaction took place.

• Neighborhood: As in the previous model, the Neighborhood is a list of other agents with

whom the agent is able to interact. In this case, however, the agents may choose to

remove agents or add new new ones to their neighborhood, based on their preferences.

Table 4.1: Agent variables

Name Domain Scale Type

CulturalTrait Integer Categorical Static
Tag Integer Categorical Static
PositiveThreshold Integer Cardinal (ratio) Static
NegativeThreshold Integer Cardinal (ratio) Static
Neighborhood List of agents Categorical Dynamic
Fitness Integer Cardinal (ratio) Dynamic
NumGood List of integers Cardinal (ratio) Dynamic
NumBad List of integers Cardinal (ratio) Dynamic
FirstGood List of integers Cardinal (ratio) Dynamic
FirstBad List of integers Cardinal (ratio) Dynamic
LastGood List of integers Cardinal (ratio) Dynamic
LastBad List of integers Cardinal (ratio) Dynamic
LastOutcome Ordered pair of integers Boolean/categorical Dynamic

For a complete description of the other state variables see Chapter 3. The model

parameters are summarized in table 4.2. The one new parameter introduced in this version
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Table 4.2: Model Parameters

Name Domain Scale

Configuration Integer Categorical
NumAgents Integer Cardinal (ratio)
NumGenerations Integer Cardinal (ratio)
NumRounds Integer Cardinal (ratio)
NumTags Integer Cardinal (ratio)
NumTraits Integer Cardinal (ratio)
SuccessPayoff Integer Cardinal (ratio)
FailurePayoff Integer Cardinal (ratio)
AdjacencyMatrix Matrix of Booleans Categorical (Boolean)
MutationRate Floating-point number Cardinal (ratio)
MaintenanceCost Floating-point number Cardinal (ratio)

of the model is MaintenanceCost. This refers to the cost of maintaining links (i.e. social

ties) to other agents over time. The parameter value represents the cost of maintaining a

single link per one round. The link cost is constant throughout the entire agent network. The

total costs for each agent are subtracted from their fitness at the conclusion of every round.

The value represents the unavoidable costs of maintaining functional social relationships with

other actors (e.g. gifting economies, as described by Mauss, 2000), so that these “connections”

(in both the literal and the figurative sense) are subsequently willing to collaborate when the

need arises. Once again a detailed description of the remaining parameters may be found in

Chapter 3.

4.3.3 Process Overview and Scheduling

The main flow of the model consists of three types of events. First, agents are randomly

activated in turn and they decide whether to cut any links to current neighbors and whether

to add links to any new ones. Next, agents are randomly activated and they initiate

interactions with their neighbors. Finally after a predetermined number of activations the

agents are processed by an evolutionary algorithm, which creates offspring through the

recombination and mutation of heritable characteristics of selected parent agents. These
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processes are repeated for a number of generations.

Algorithm 6 Top-level Simulation Flow

1: params← {Configuration, NumAgents, NumGenerations, NumRounds, NumTags,
NumTraits, SuccessPayoff, FailurePayoff, AdjacencyMatrix, MutationRate,
MaintenanceCost}

2: procedure CultureModel([params])
3: agents← initializeAgents([params])
4: i← 1
5: d← rowMean(AdjacencyMatrix)
6: while i ≤ NumGenerations do
7: j ← 1
8: while j ≤ NumRounds do
9: k ← 1

10: while k ≤ NumAgents do
11: agents← rewire(agentsk, agents, d)
12: k ← k + 1
13: end while
14: AdjacencyMatrix← connectSingletons(AdjacencyMatrix)
15: agents← applyMaintenanceCosts(agents)
16: k ← 1
17: while k ≤ NumAgents do
18: agent← selectRandomFrom(agents)
19: partner← selectRandomFrom(agent.Neighborhood)
20: agent, partner← interact(agent, partner)
21: k ← k + 1
22: end while
23: j ← j + 1
24: end while
25: offspring← createOffspring(agents, [params])
26: agents← offspring
27: i← i+ 1
28: end while
29: return agents
30: end procedure

Figure 4.1 shows a rough outline of the logic of agent activity in the model. Algorithm 6

lays out these processes in more detail. The agents are first initialized by setting the values of

their state variables. The exact mechanics of initialization are described in section 4.5. After

the initialization phase, rewiring and interaction procedures are carried out NumRounds

times. In each round, every agent is first given a chance to modify its neighborhood. Network

evolution is a common occurence on the individual level of social networks (Kossinets &

Watts, 2006). The details of the rewiring mechanism are given in algorithm 7. In the

unbiased configuration (see section 4.4 for details) the agents use a simple heuristic to update
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Figure 4.1: An outline of the logic of agent activity
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their network. The agents only “remember” their last interaction. If that interaction was

negative, the agent will cut ties with that neighbor. If the last interaction was positive, the

agent, emboldened by its recent success, will create an additional connection to a randomly

selected agent. In other configurations the decision regarding which ties to cut and whom to

connect to is biased by the possession of certain tags. Our preferences for things are arguably

shaped by our previous experiences with them, both positive and negative. From a cognitive

perspective, both the frequency and recency of those experiences figures significantly in

determining the precise levels of preference. To account for this, each agent first calculates its

so-called base-level activation for each of the possible tag variants. The base-level activation

τ−T for unsuccessful interactions with tag T is calculated as follows:

τ−T = ln

[
n∑
i

t−di

]
≈ ln

[
t−0.5
n +

2(n− 1)√
t1 +

√
tn

]
(when d = 1/2) (4.1)

Here ti is the time since the i-th unsuccessful interaction with an agent possessing tag T ,

while n = NumBadT is the total number of these experiences, tn = LastBadT is the time

since the most recent experience and t1 = FirstBadT is the time since the first experience.

Finally, d is the rate of decay. Due to the expensive nature of the above calculation for

large n, I implement a well-known approximation (Anderson & Lebiere, 1998). In line

with convention, I use d = 1
2 (Petrov, 2006). The agent then retrieves those tags whose

base-level activation exceed its NegativeThreshold value and subsequently cuts ties to any

neighbors possessing such tags. Ties are deleted unilaterally—the neighbor has no say

in the decision. To create new connections, the agent’s base-level activation of positive

experiences is calculated1. The agent retrieves all tags whose base-level activation exceed its

PositiveThreshold value. After this a random subset of agents possessing any one of these

tags is selected. The size of this subset is given so that the number of candidates together

with the size of the agent’s current neighborhood does not exceed the average degree of the

1this is done in the same way as in equation 4.1, only instead of NumGood, FirstGood and LastGood the
values for NumBad, FirstBad and LastBad are used
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AdjacencyMatrix used during initialization2. Unlike link deletion, creation is a mutual act.

Thus, every candidate will perform the same base-level activation calculation as the agent

who proposed the connection. If the activation of the agent’s tag is above the candidate’s

PositiveThreshold value, the candidate will accept the proposal and the connection will be

created.

Algorithm 7 Network Rewiring

1: procedure Rewire(agent, agents, d)
2: if Configuration = “Unbiased” then
3: if LastOutcome = 0 then
4: neighbor← agent.LastOutcome[2]
5: agent.Neighborhood← agent.Neighborhood \ neighbor
6: neighbor.Neighborhood← neighbor.Neighborhood \ agent
7: else if LastOutcome = 1 ∧ agent.Neighborhood < d then
8: newNeighbor← selectRandomFrom(agents)
9: agent.Neighborhood← agent.Neighborhood ∪ newNeighbor . while making

sure this is not a self-loop or duplicate link
10: newNeighbor.Neighborhood← new Neighbor.neighborhood ∪ agent
11: end if
12: else
13: negativeBLA← calculateBLA(agent,“bad”)
14: retrievedTags← {tag|negativeBLAtag < agent.NegativeThreshold}
15: agent.Neighborhood ← agent.Neighborhood \ {i|i ∈ agent.Neighborhood ∧ i.Tag ∈

retrievedTags}
16: positiveBLA← calculateBLA(agent, “good”)
17: retrievedTags← {tag|positiveBLAtag > agent.PositiveThreshold}
18: candidates← {i|i ∈ agents ∧ i.Tag ∈ retrievedTags}
19: candidates = randomSample(candidates, size = d− |agent.Neighborhood|))
20: for candidate ∈ potentialNeighbors do
21: candidatePositiveBLA← calculateBLA(candidate,“good”)
22: if candidatePositiveBLAagent.Tag > candidate.PositiveThreshold then
23: agent.Neighborhood← agent.Neighborhood ∪ candidate
24: candidate.Neighborhood← candidate.Neighborhood ∪ agent
25: end if
26: end for
27: end if
28: return agents
29: end procedure

Once the rewiring stage is finished the population enters the interaction stage. This

consists of NumAgents activation events, during which a single agent is activated. All of the

agents have an equal probability of being activated. Thus, for each agent the expected value

2This is done to prevent bloating of the network in terms of density
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of activations is one per round, although this will vary due to the stochasticity involved.

A single interaction between two agent proceeds as outlined in algorithm 8. The two

agents compare their cultural trait variants. If the variants agree both agents receive the

SuccessPayoff; if the variants differ they both receive the FailurePayoff. Also, under the

Lamarckian model configuration the agents update either their LastGood and NumGood

fields, or LastBad and NumBad fields, based on whether the interaction was a success or a

failure.

Algorithm 8 Interaction

1: procedure Interact(agent, partner, Configuration, SuccessPayoff, FailurePayoff)
2: if agent.culturalTrait = partner.CulturalTrait then
3: agent.Fitness← agent.Fitness + SuccessPayoff
4: partner.Fitness← partner.Fitness + SuccessPayoff
5: if Configuration = “Lamarckian” then
6: agent.LastGood[partner.Tag]← 0
7: partner.LastGood[agent.Tag]← 0
8: agent.numGood[partner.Tag]← agent.numGood[partner.Tag] + 1
9: partner.numGood[agent.Tag]← partner.numGood[agent.Tag] + 1

10: end if
11: else
12: agent.Fitness← agent.Fitness + FailurePayoff
13: partner.Fitness← partner.Fitness + FailurePayoff
14: if Configuration = “Lamarckian” then
15: agent.LastBad[partner.Tag]← 0
16: partner.LastBad[agent.Tag]← 0
17: agent.numBad[partner.Tag]← agent.numBad[partner.Tag] + 1
18: partner.numBad[agent.Tag]← partner.numBad[agent.Tag] + 1
19: end if
20: end if
21: return agent, partner
22: end procedure

At the end of every generation the evolutionary algorithm is used to re-seed the model

with a new population of offspring agents (as shown in algorithm 9). In the EA each offspring

is created by the recombination of two selected parent agents. Reproduction is local and the

existing network structure is preserved during this phase. Specifically, for each node in the

agent network one offspring will be created. Upon completion of the EA phase this offspring

will replace the agent currently occupying said node. For each node, the parents are selected

from a set of candidates which consists of the current occupant of the node and all of its
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immediate neighbors. Each parent is selected via a tournament of size 3: Three agents are

chosen from the candidate set with uniform probability and the fittest of the three becomes

the parent3.

Once the selection phase is carried out the offspring is produced via unbiased uniform

crossover (see De Jong, 2005, p. 64-65) acting on the heritable characteristics of the parents.

The heritable characteristics include all of the fields listed in table 4.1, apart from Fitness

which is reset to zero for all offspring, and the LastOutcome field which is left empty at

the beginning of the generation. Once the offspring are generated they undergo mutation.

Mutation is applied to each field individually with a 1% probability. Mutation is carried

out element-wise if the fields are lists. The mutation itself consists of a “small” change

in the value of the field. Cardinal variables are modified by introducing small Gaussian

perturbations to the current value. Categorical variables are modified by resetting the

current value to another value in the allowed range with uniform probability.

4.4 Design Concepts

• Sensing: The agents can only sense their direct neighborhood. Their neighborhoods

may, however, change over time. Until an interaction between an agent and its neighbor

takes places the agent is only able to sense the neighbor’s tag.

• Prediction: The agents have an interest to surround themselves with neighbors who

possess the same trait variant as them, otherwise interactions will result in decreasing

fitness. However, because the agents cannot sense the others’ trait variants directly,

they must decide on their preferred neighbors based on other criteria. These criteria

vary based on the model configuration.

In the Lamarckian configuration of the model, the agents use the directly observable

tags and their past experiences to formulate predictions regarding correlations between

the possession of a specific tags and specific trait variants. This prediction is governed

3If there are only two candidates, then no tournament takes place and the two automatically become
parents. If there is only one candidate then the offspring will be an exact copy of that candidate (barring any

subsequent mutations).
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Algorithm 9 Evolutionary Algorithm

1: procedure CreateOffspring(agents, TournamentSize, MutationRate)
2: i← 1
3: offspring← ∅
4: while i ≤ length(agents) do
5: parents← ∅
6: agent← agents[i]
7: while length(parents) 6= 2 do
8: candidates← agent
9: j ← 1

10: while j ≤ TournamentSize do
11: candidates← candidates ∪ selectRandomFrom(agent.Neighborhood) .

including checks for ensuring non-duplicit candidates
12: j ← j + 1
13: end while
14: bestCandidate← tournament(candidates)
15: parents← parents ∪ bestCandidate
16: end while
17: thisOffspring← uniformCrossover(parents)
18: thisOffspring← mutation(thisOffpsring, MutationRate)
19: offspring← offspring ∪ thisOffspring
20: i← i+ 1
21: end while
22: return offspring
23: end procedure
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by equation 4.1. The relationship and the derived estimate represent the process of

reinforcement learning and is adopted from the ACT-R cognitive framework (Anderson

& Lebiere, 1998). The base-level activation represents the ability to retrieve the

associated “chunk” from memory when given a cue (such as the question “which tags

do I associate with my own trait variant?”, or its converse). A chunk, in this case a

particular tag, is retrieved when its base-level activation surpasses a certain threshold,

which results in the agent perceiving it as associated with the given trait variant.

The quantity is very sensitive to recent experiences, while the importance of older

experiences progressively decays with time. A new positive experience with a given

tag results in a spike in its base-level activation. A lack of experience over an extended

period of time will result in the gradual decrease in the tag’s base-level activation (see

figure 4.2 for an illustration). It should be noted that the offspring inherit their parents’

values in all of the fields that keep track of past experiences. A literal interpretation of

this would suggest that the offspring inherit their ancestors’ memories. However, the

correct interpretation in this case is that the parents’ attitudes and associations are

being inherited. These can in fact become internalized by offspring through processes

of socialization (Berger & Luckmann, 1966). The inputs being inherited and stored do

not matter themselves, what matters is that they produce the same result in equation

4.1.

To control for the effects of guided variation and indirect bias I introduce two other

model configurations. In the “genetic” configuration, I eliminate the plasticity of the

tag associations. Thus, agents’ preferences for the individual tags are set at birth and

they do not change throughout their lives as a result of interaction. The preferences

can only be modified from one generation to another through forces of recombination

and mutation.

Finally I devise an unbiased configuration, one in which the agents do not take tags

into consideration at all. However, the agents still display some ability to maximize

their interaction utility, as described in section 4.3.3. This version of agent behavior
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Figure 4.2: Example of a base-level activation for some input over time. The spikes in the
chart coincide with instances of processing the input, followed by gradual decay.

was chosen because it did not involve any tag-related bias, nor any complex predictive

calculations, while still allowing for some network rewiring dynamics.

• Adaptation: The agent population as a whole adapts on an inter-generational scale

through evolutionary processes. Parent selection is biased by fitness and therefore

under-performing agents, e.g. those who possess a locally rare trait variant, an

unpopular tag, or whose learned predictions do not align well with their current

environment, do not get a chance to pass on their traits in favor of fitter individuals.

Moreover, on the individual and intra-generational level the agents adapt by

choosing whom to “neighbor” with. A creation of a link between two agents represents

the initiation of a relationship which allows either of them to demand collaboration

from the other, knowing that the other will do the same in the future. For the link

to endure, the agents must periodically signal their commitment to the relationship.

This is what the maintenance cost represents: temporal, emotional, even financial

investments such as small talk, phatic communication, gift exchange etc. Link deletion,
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on the other hand, signifies a divestment from a particular social relationship.

In the Lamarckian configuration, the agents adapt individually by updating their

predictions after every interaction, incorporating the most recent experiences into their

calculations. This sort of in-life adaptation based on self-generated and self-explored

possibilities is essentially what Boyd and Richerson (1985) define as guided variation.

• Interaction: An interaction between two agents consists of the two comparing their

cultural trait variants. If their variants are equal, the interaction is successful. If the

variants differ, it is unsuccessful. Thus the interaction is essentially an n × n pure

coordination game with n Nash equilibria (where n is the number of possible trait

variants). The trait variants represent cultural preferences in a given domain, and

we assume that when two actors collaborate in an attempt to solve a problem in this

domain, the probability of a successful outcome is increased when their preferences

are aligned. Moreover, I assume that it does not matter on which approach they

coordinate as they are all equally equipped to solve the problem. For example when

two individuals compare measurements it does not matter whether they are in inches

or centimeters as long as both use the same scale. Miscommunication could, however,

prove disastrous, as it did, for example, in the case of the Mars Climate Orbiter probe

crash (NASA, 1999). Similarly, if two people go out for dinner together the evening

will be more enjoyable in the end, if their expectations of who pays for whom are the

same.

Finally, it should be noted, that unlike in chapter 3, the agents do not directly

choose their interaction partners. Instead, the agents interact with a randomly selected

neighbor. Thus, the strategic component shifts from choosing partners from a fixed

neighborhood, to choosing the neighbors themselves.

• Stochasticity: The model is affected by stochasticity in two ways. It affects agent

decision-making: the choice of interaction partner from among neighbors etc. Here

stochasticity stands in for unknown parameters beyond the scope of the model. Second,

stochasticity is present during the initialization and EA phases. In this case stochasticity
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is a tool for boosting and maintaining diversity in the agent population.

• Emergence: The purpose of the model is to track how the distributions of external

markers and cultural trait variants, and the dynamic social network structure are

affected by choices made by boundedly-rational agents on the individual level.

• Observations: The model tracks the distributions of the tags and the cultural trait

variants and their change in time, as well as a number of measures derived from these

distributions.

4.5 Initialization and Inputs

The model is fully determined by giving the values of model parameters shown in table 4.2

as input. The agent population is initialized at the onset of the simulation. Every agent

has its Fitness set to zero, and its neighborhood initially set according to the provided

AdjacencyMatrix. Furthermore, every agent is assigned a single tag, denoted by an integer

value, chosen with uniform probability from the set of integers from 1 through NumTags.

Equivalently, every agent is assigned one cultural trait variant, chosen with uniform prob-

ability from the set of integers from 1 to NumTraits. It should be noted, that for every

agent the choice of tag is in no way correlated to the choice of cultural trait variant during

the initial assignment. The values of NumBad and NumGood are assigned with uniform

probability from the set of integers from 1 through NumRounds. The variables FirstGood,

FirstBad, LastGood and LastBad are initialized with values chosen with uniform probability

from the set of integers from 1 through NumRunds*NumAgents. This has the effect of

creating random fictional memories for the newly created agents. The variable ranges are

chosen so that the memories are on the scale of an agent’s lifetime.

4.6 Verification and Validation

The model was developed and implemented in the MATLAB computing environment. The

model was verified by way of detailed and comprehensive code walkthroughs and debugging.
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Validation of the model was undertaken in the sense that distribution of significant network

characteristics of the evolved social networks were compared to generally accepted attributes

of empirical social networks, such as high clustering coefficients, short path lengths, high

levels of modularity, etc. Validation of the code in the sense of direct quantitative comparisons

to relevant sources of empirical data was not performed at this point, as this is the focus of

Chapters 5 and 6. The source code together with documentation can be accessed in the

OpenABM model database at the following link: https://www.openabm.org/model/5815.

4.7 Experimental Design

I carry out a large number of simulation experiments on the model which is implemented

as described in previous section. The simulations were initialized with parameter values as

shown in table 6.3. For each parameter setting 100 simulations were run.

Table 4.3: Model parameter values

Name Value

Configuration {unbiased, genetic, Lamarckian}
NumAgents 210

NumGenerations 100
NumRounds {1, 5, 10, 20}
NumTags 10
NumTraits 10
SuccessPayoff 1
FailurePayoff -1

AdjacencyMatrix {k̂|k̂ = 2i, i = 2, . . . , 6}4

MaintenanceCost {c|c = 2i

100 , i = 0, . . . , 9}
MutationRate 0.01

I varied the Configuration,NumRounds,AdjacencyMatrix and MaintenanceCost

parameters. The configurations were varied to control for effects of the indirect bias

and guided variation mechanisms, which I set out to study. The average degree of the

4The average degree of the network. For each value of k̂ a specific adjacency matrix must be provided.
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AdjacencyMatrix was varied to control for a diverse range of possible initial conditions–I

wanted to see whether populations that are densely connected evolve into states different

from those that are connected only sparsely. For each value of k̂, I created 100 different

adjacency matrices using the Erdős-Rényi algorithm. The algorithm assumes that k̂ = np,

where n is the number of nodes and p is the probability of an edge existing between any

given pair of nodes. The network is then generated by iterating over all unordered pairs of

nodes and creating an edge between each pair with probability p. I varied the number of

rounds in one generation to test the model’s sensitivity to the ratio of horizontal and vertical

transmission. The reasoning behind this is the abstract definition of time in the model

coupled with the fact that cultural domains may operate at significantly different time scales.

For example people tend go out for dinner with their friends many times during their lives,

but most will only get married once. The frequency of the cultural practice certainly adds

to what is at stake. I make a similar argument for varying the MaintenanceCost. Different

types of cooperation require a different type of relationship. For example a person might

ask even some of their casual friends to help them move, and they might accept. On the

other hand when asking for a personal loan, people usually turn to family or their closest

friends–relationships in which they tend to be heavily personally invested. I executed 100

simulations with different random seeds for each parameter setting.

A number of measures were calculated from the simulation outputs for purposes of

analysis. The population skewness of the trait variant distribution and the tag distribution

were calculated, giving us a single quantity that summarizes the nature of the distributions.

Skewness γ1 of a random variable is defined as:

γ1 =
µ3

σ3
. (4.2)

Here µ3 is the third central moment of the distribution and σ is the standard deviation.

Because the tags and trait variants are categorical variables, skewness is measured on the

distribution of counts of the values. Low skewness suggests that each variant is represented
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more or less equally in the population, while high skewness suggest that one or perhaps a

few variants dominate the population.

I also measure tag entropy (based on information entropy) to give a sense of how well

the tag types align with the trait variant population. I define it in the following way:

E =
1

NumTags

NumTags∑
j=1

Ej

nj
, where Ej = −

NumTraits∑
i=1

pi ln pi. (4.3)

Here i iterates over the set of trait variants, pi is the probability of encountering the i-th

variant in an agent possessing the tag j, Ej is the entropy of the j-th tag. The size of each

tag sub-population, nj , is used to normalize the values, which gives us the average metric

entropy E.

Furthermore, to express the degree of clustering of tag types and trait variants on the

networks I measure network modularity. The quantity represents how neatly the graph

decomposes into communities defined by a common attribute (Newman, 2006). It is defined

as follows:

Q =
1

2m

∑
vw

[
Av,w −

kvkw
2m

]
δ(cv, cw). (4.4)

Here m is the edge count of the network, v, w are nodes, A refers to the adjacency matrix,

kv and kw are the degrees of the nodes, cv and cw are the attributes of the nodes, and δ

refers to the Kronecker delta function.

Finally, to track the evolution of the network structure itself I measure two important

graph metrics. One of them is the average local clustering coefficient. It represents how

tightly-knit and inter-connected the network is. It is defined in the following way:

C =
∑
i∈V

Ci where Ci =
number of closed triplets containing i

number of triplets containing i
. (4.5)
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Here i is a single node in the network. The second network measure is the average shortest

path length L. It simply measures the average number of edges needed to travel between

every pair of nodes i, j when traveling along the shortest route. Pairs of nodes that are

mutually unreachable are excluded from the calculation. Ultimately, I measure the clustering

coefficients and the path lengths as their ratio to the clustering coefficient and average path

length achieved on a regular ring lattice of the same size and same average degree. This

essentially measures the “small-worldness” of the network. Small-world networks are defined

by clustering coefficients relatively similar to those of the regular lattices, while having

significantly shorter path lengths (Watts & Strogatz, 1998).

4.8 Results

Figure 4.3 shows the differences in evolutionary dynamics using the three different model

configurations with a single choice of parameters. Here, I initialize the agent population

on a random network with average degree k̂ = 8, link maintenance cost c = 0.16 and 10

rounds of interaction per generation. Figures 4.3(a),(b) illustrate the distribution of tags

and trait variants over time. I observe that the unbiased configuration results in the most

heavily skewed trait distribution, actually drifting away towards a single variant. The tag

population is fairly similar in all cases, remaining relatively equally distributed. This is to

be expected in the unbiased configuration, because there is no selective pressure exerted on

the tags. However, the lack of skew in tag distribution in the other configurations requires

further analysis.

Figure 4.3(c) shows tag entropy values for the different configurations. While the

Lamarckian configuration is able to evolve into a state with low entropy, meaning that

each tag more or less faithfully encodes for a specific cultural trait variant, the unbiased

configuration shows even lower values of entropy. This is surprising at first glance, as the tags

are an afterthought in the unbiased configuration, possessing no real significance. However, it

is important to note, that this is a result of the convergence in the trait variant distribution.
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Once there is only one trait variant present it can be encoded equally well by any of the

tags.

I thus further analyze the interplay of tags and cultural trait variants by measuring the

modularity of the agent networks in terms of both attributes. Figures 4.3(d),(e) show that

in the biased configurations I observe the emergence of communities that are well defined by

both their tags and the trait variants that they share. Such communities do not appear in

the unbiased configuration.

To make the evolution of the network clearer I inspected the changes in the social networks

of the agents visually over the course of the simulations. Figure 4.4 shows illustrative examples

of the network evolution. I observe that in the early stages, the networks become very sparse

in both cases which causes social interaction to decrease dramatically. The behavior in the

two configurations diverges as the simulation progresses, and the differences become clear.

The unbiased configuration results in a single giant component; meanwhile the Lamarckian

configuration evolves a network organized into clear communities marked by possession of

distinct tags and trait variants. Furthermore, each tag locally strongly correlates with a single

trait variant (even if the associations are not perfect). The presence of clearly defined clusters

suggests the “small-worldness” of these networks. To confirm this, I compute the average

clustering coefficients and the average path lengths of the networks. Figures 4.3(f),(g) show

these measures, and I observe that while all three configurations show significantly shorter

path lengths than regular lattices, the Lamarckian configuration demonstrates significantly

higher clustering coefficients than the other two. This indicates a small-world quality of the

networks when using the Lamarckian configuration. Meanwhile, the other configurations

result in networks that are more random in nature.

Having sufficiently illustrated the temporal dynamics on a single example, I now continue

with assessing the sensitivity of these outcomes to the choices of parameters as described

in section 4.7. Figure 4.5 shows the dependence of some of the measured quantities on the

maintenance cost and the transmission ratio. I observe that the Lamarckian configuration

demonstrates higher clustering coefficient values than the other configurations across a
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Figure 4.3: Model statistics for 〈k〉 = 8, c = 0.16 and H/V = 10.

major part of the parameter space, especially in cases with very low maintenance costs. In

similar fashion, the Lamarckian configuration evolves networks with consistently shorter

path lengths, while in other configurations the path lengths increase either with generation

length (i.e. the genetic configuration) or with maintenance cost (i.e. the unbiased model).

Moreover, both of the biased versions display consistently higher rates of tag modularity than

the unbiased configuration. Once again, this is especially pronounced in low maintenance

cost regimes. A similar narrative applies to trait modularity, although it is worth noting

that in high maintenance cost regions the Lamarckian model now performs worse than the

unbiased model.

Finally, figure 4.6 shows the sensitivity of the model behavior as a function of the

maintenance cost and the average degree of the initial network. I note that in the case of the

Lamarckian configuration the clustering coefficient increases with average degree. Similarly,

the path length increases with the average degree, this time in all three configurations. On

the other hand, the change in average degree does not seem to matter for the modularity

values of any of the evolving networks. Neither tag nor trait modularity is significantly
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Figure 4.4: Visualizations of the agent network in the Lamarckian bias (left) and un-
biased (right) configurations after 5, 20 and 100 generations. The border color of a node
determines its external marker, while the inner color determines its cultural trait variant.
〈k〉 = 8, c = 0.16, H/V = 10.

117



H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(a)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(b)

H/V

5 10 15 20

C
o
s
t

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

(c)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(d)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(e)

H/V

5 10 15 20

C
o
s
t

0.5

1

1.5

2

2.5

0.2

0.3

0.4

0.5

0.6

(f)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(g)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(h)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

10

30

50

70

(i)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(j)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

(k)

H/V

5 10 15 20

C
o

s
t

0.5

1

1.5

2

2.5

10

30

50

70

(l)

Figure 4.5: Model statistics as a function of maintenance cost and interaction/transmission
ratio (H/V ) for the unbiased (left), genetic bias (centre), and Lamarckian bias (right). Parts
(a)-(c) show the average local clustering coefficients at the end of runs compared to regular
lattices. Parts (d)-(f) show average path lengths at the end of runs compared to regular
lattices. Parts (g)-(i) show the sum of tag modularity values at the end of each generation.

Parts (j)-(l) show the sum of trait modularity values at the end of each generation. k̂ = 32.
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affected.

4.9 Discussion

The goal of this work was to derive the effect of indirectly biased cultural transmission and

guided variation dynamics on the co-evolution of hidden cultural traits, observable external

markers and network structure in multi-agent populations.

I have shown that indirectly biased transmission coupled with guided variation can have

a significant effect on social network structures in the long run. This is especially true

when the two mechanism work in tandem, that is if the bias acquired through individual

learning is inherited by offspring, and when the cost of social tie maintenance is low. In

the early stages, we do not observe significant differences in system dynamics. The random

assignment of tags and trait variants together with the random placement of agents onto

nodes of the network results in a low probability of successful interaction at the onset of the

simulation. Thus, in the biased configurations, forces of evolution will tend to select agents

that minimize social interaction by cutting their ties as a result of their strict activation

thresholds. So far this does not differ from the unbiased configurations where agents simply

cut ties with neighbors after every failed interaction. Both of these processes explain the

abrupt decrease in network density in the first several generations. The network dynamics

diverge after this point. The low network density produces a very localized environment

in which adaptations cannot spread far very quickly. Thus, in the biased versions, small

connected groups of agents converge on a single trait variant and a single tag, undisturbed

by what is hapenning elsewhere. I argue that the convergence in trait variants is due to

drift effects, which become exacerbated in small populations, and most importantly due

to kin selection (Hamilton, 1963). As offspring are always born in their parents’ vicinity,

agents become surrounded by neighbors that are increasingly homogeneous with respect to

agent attributes. If, by chance, the dominant phenotype possesses a strong preference for

its own tag, the dynamics are only reinforced. When the preference for a particular tag

is established early within the group, it grows by attaching to agents possessing the same
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Figure 4.6: Model statistics as a function of maintenance cost and average degree of the
seed network for the unbiased (left), genetic bias (centre), and Lamarckian bias (right).
Parts (a)-(c) show the average local clustering coefficients at the end of runs compared
to regular lattices. Parts (d)-(f) show average path lengths at the end of runs compared
to regular lattices. Parts (g)-(i) show the sum of tag modularity values at the end of
each generation. Parts (j)-(l) show the sum of trait modularity values at the end of each
generation. H/V = 10.
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tag, while drift effects correct for any disturbances in its trait distribution. These processes

emerge in parallel within the many disjoint network components, and thus multiple clusters

defined by a dominant tag-variant pair emerge. Due to these processes, the tags become

imbued with meaning, transforming into cultural signs representing possession of specific

variants. I further note that due to the local nature of network coalescence the meaning is

also local: the same variant can be represented by different tags in different clusters, and

different variants can be represented with identical tags in separate communities.

In the unbiased configuration the network evolves very differently. The lack of distinct

tag groups is self-explanatory, but the absence of clustering of trait variants warrants more

attention. I argue that the main driver of the network structure in this case are drift effects.

In the absence of bias, link creation between pairs of agents is random. If one particular

trait variant owns a slight edge in frequency, agents possessing that variant will have a

better chance of meeting their counterparts. As this trait group grows so does its advantage,

attracting and infecting smaller components more easily.

Additionally, low tie maintenance costs were a significant factor in exacerbating the

clustering phenomena. When costs were high the “small-worldness” of the biased networks

was diminished and trait variant distributions displayed higher takeover rates. I argue that

the increase in costs amplifies the effects of drift at the expense of kin selection. As the

maintenance cost becomes high relative to interaction payoffs, mistakes—nearly ubiquitous

at the onset—become cruelly punished. This results in a more or less uniform distribution of

fitness. The higher costs also push the agent population to become more guarded, keeping

their neighborhoods smaller as a result. Both of these facts contribute to higher rates of

drift and lower rates of modularity and clustering.

Today the effect of cultural differences is as significant as ever. We see conflicts emerging

at the boundaries of otherwise fairly segregated cultural clusters as a result of disjoint sets of

belief or values, whether it is the current tension between the Judeo-Christian West and the

Muslim world, or the political and cultural divide between so-called red states and blue states

in the United States. Meanwhile, in the cores of these clusters individuals become more and
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more isolated from outside influences in what amounts to “echo-chambers” (Quattrociocchi

et al., 2016). As new modes of networking appear, they quickly become pervaded by our

own cultural matrices. Does culture factor in transactions between strangers on apps such

as AirBnB, Uber or Craigslist? How does large-scale collaboration on open-source software

projects emerge? I believe that my model could be applied to such real-world scenarios and

validated with the help of empirical data.

The simulations analyzed in this study have provided considerable insight into the effect

of indirectly biased transmission and guided variation on the evolution of network and

community structure. However, questions worthy of further investigation remain. It is

natural to ask how and to what extent does kin selection affect the observed dynamics. It

is therefore worthwhile considering studies in which the effects of kin selection would be

clearly isolated from other factors. Furthermore, I did not attempt to adjudicate whether

the mechanism of bias and the proposed form of individual learning are evolutionarily viable

and robust. In the future, it will be important to identify conditions from which bias-driven

strategies appearing as random mutations are able to “infect” populations while themselves

resisting invasion.

Finally, unlike in other tag-based models, where external markers were essentially pre-

fabricated signs of group membership, my model contributes to the line of cultural evolution

ABMs by showing that populations can cluster into communities defined by possession of

distinct cultural traits and tags, even in the case when tags are assigned randomly, and

homophily is not assumed.
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Chapter 5: Cultural Aspects of Political Polarization:

Simulating U.S. Congress Co-Sponsorhip Networks

Abstract: Political polarization is becoming a prominent issue in the United States and

across the world. Here, I attempt to explain the root causes of political polarization from an

evolutionary, cultural perspective. I adapt and modify my ABM of cultural evolution in

an attempt to show the effect of indirectly biased transmission, guided variation and social

network structure acting on agents’ political ideologies. I use longitudinal congressional data

on bill co-sponsorship to validate the model. I show that the hypothesized mechanisms of

cultural evolution result in ideological dynamics that are closely aligned with the empirical

data.

123



5.1 Introduction

One does not need to search too hard for evidence of growing concern over increasing

political polarization in the United States. Today, the issue is front and center on the

pages of newspapers, both national and local, on cable television news programs, even

within the increasingly relevant Twittersphere (e.g. Conover et al., 2011; Prior, 2013). The

rising polarization of U.S. politics has been a topic of academic research for over three

decades, dating back to Poole and Rosenthal’s (1984) study, which analyzed the variance

of liberal-conservative positions of U.S. politicians between 1959 and 1980. Interest in the

issue of polarization and heightened partisanship has only been exacerbated by some of the

most recent events in U.S. politics.

The concept of polarization has many operational definitions. Bramson et al. (2016)

give examples of several of these: A distribution of a variable can be identified as polarized

based on metrics including the range of the distribution, its variance, as well as group-based

measures such as overlap (in the distributions over the distinct groups in the population), or

a combination thereof. However, all of these definitions rely solely on the distribution(s)

of the actors’ positions on some pre-defined scale. What these measures do not take into

account is the attitudes of the actors towards others holding different positions. Here, I

would like to measure both of these aspects. I thus define polarization as both the distance

between the positions of a population of actors and as the extent of tolerance towards other

positions.

The model rests on a number of assumptions which I now enumerate explicitly:

1. I assume that legislators socialize and interact with their colleagues on a regular basis,

and that they are able to initiate social interactions with any other member of the

House. These interactions might be political or entirely non-political in their nature. I

further assume that maintaining meaningful social connections is costly and that each

connection is associated with a considerable expense of time, effort and/or resources.

2. I posit that legislators interact strategically, in that they form preferences for interaction
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partners based on past experience.

3. I assume that for a variety of reasons and under a wide range of circumstances it might

be difficult or too expensive for a legislator to become aware of a fellow representative’s

ideological position prior to their interaction taking place.

4. I conjecture that in the absence of knowledge regarding ideological positions of others,

legislators will choose interactions based on other known information, notably party

affiliation.

5. I assume that legislators will recruit potential co-sponsors solely from the ranks of

their active social connections.

6. Finally, I presume that legislators possess a certain degree of tolerance towards

ideological positions other than their own, and that they will only co-sponsor legislation

that is within their bounds of tolerance. Similarly sponsors will only accept co-sponsors

from within their tolerated range.

Based on these assumptions I form hypotheses about the model, and thus by extension

about the nature of the social and ideological dynamics in the U.S. House of Representatives:

• H1: The model based on the above listed assumptions and implemented as described

in the Methods section reproduces the co-sponsorship networks empirically observed

in the U.S. House of Representatives over the past four decades. In other words, bill

co-sponsorship is driven by the complex inter-dependencies of social network structure,

party affiliation, ideology and their evolution in time.

• H2: The reliance on party affiliation as a sign of closeness at the expense of underlying

ideological considerations leads to increasing polarization, as evidenced by lower levels

of tolerance to other opinions and deepening chasms in the ideological positions among

legislators.

I also devise and later test three alternative hypotheses:
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• A1: Legislators do not form social connections (which serve as a necessary foundation

for potential political cooperation) with their colleagues based on ideological position

or party affiliation, but rather solely on the relationships that they share with others.

• A2: Legislators do not form social connections with their colleagues based on party

affiliation, rather, they keep track of individual interactions, and disassociate themselves

from those with whom they have had negative experiences on the past.

• A3: Legislators do not form social connections with their colleagues based on party

affiliation, instead they are aware of everyone’s exact ideological positions, and associate

themselves only with those with whom they are close from an ideological perspective.

I begin with a brief overview of related work in section 5.2. In section 5.3, I specify the

model in full detail. I then extensively describe the experiments that I have executed on the

model in section 5.4. Next, in section 5.5, I present the results and in section 5.6 I conclude

with a discussion of findings as they relate to the assumptions and hypotheses stated above.

5.2 Background

Although some argue that the idea of polarization is more an issue of perception and access

to information rather than a real problem (see Fiorina, 2006), many studies have yielded

quantifiable findings, suggesting that the increase in polarization constitutes an objective

reality. The evidence ranges from surveys administered to voters (e.g. Abramowitz and

Saunders, 2007) to quantitative analyses of co-sponsorship networks (e.g. Fowler, 2006a;

Fowler, 2006b; Zhang et al., 2008) and roll-call voting patterns in both chambers of the U.S.

Congress (Andris et al., 2015).

The causes of political polarization have also been extensively debated. Dalton (2008) has

highlighted the polarizing effects of party system quantity and quality. Moreover, Baldassari

and Gelman (2008), as well as Lachat (2008) have shown that increasing partisanship among

the political elites has an effect on the polarization of the entire voter population, while others
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point out the significance of media bias on the ideological structure of society (Bernhardt et

al., 2008), or the clash of different moral communities (Alizadeh et al., 2016).

Here, I focus solely on U.S. political elites, namely the congressmen and congresswomen

of the U.S. House of Representatives, and I attempt to quantify and explain the causes of

rising polarization with the use of an-agent based model. The basis of the model rests on

the complex web of social interactions among the legislators and the way in which they

drive aggregate ideological trends over a prolonged period of time. I specifically single out a

special type of interaction among legislators: the co-sponsoring of bills. Bill sponsorship

and co-sponsorship is considered an important aspect of political activity among legislators.

Campbell (1982) notes that most legislators along with their staff expend a considerable

amount of time and effort to draft and distribute “Dear Colleague” letters, which are

traditionally used to recruit potential co-sponsors for the legislator’s own legislature. Co-

sponsorship has been often viewed as a low-cost opportunity for legislators to signal their

policy stance to their constituency or the median voter in their district (e.g. Mayhew, 1974;

Campbell, 1982; Kessler & Krehbiel, 1996). The effect of co-sponsorship on legislators’

success (ultimately measured in terms of re-election) has also been studied. Campbell

(1982) notes, that co-sponsorship can be used by legislators to political advantage in seeking

re-election. Furthermore, Ansolabehere and Jones (2010) find that most constituents hold

beliefs about the ideological positions of their representatives and that they hold them

accountable based on these beliefs. In fact, research has shown that co-sponsorship is more

prevalent among legislators that are relatively more electorally vulnerable (Koger, 2003).

Thus, I take co-sponsorship activity as a measure of electoral success.

The model represents the latest addition to a growing tradition of agent-based modeling

of political and legislative processes. Kollman et al. (1992) started this trend with their

model of two-party elections in a spatial environment. They represent parties as boundedly-

rational agents who adapt their strategies in an effort to capture votes in a changing electoral

landscape. Subsequently, Laver (2005) extended the agent-based approach to multi-party

cases. Laver and Sergenti (2011) have further extended this line of research and developed
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a comprehensive agent-based modeling framework of party competition. The concept of

party strategy is also explored in Fowler and Laver’s (2008) study, which pits competing

party decision rules in a tournament, akin to Axelrod’s PD tournament (1984). Others have

focused on voters as agents and specifically on voter behavior and decision-making (Bendor

et al., 2003; Fowler, 2006c).

5.3 Methods

I design a model of congress bill co-sponsorship and of the resulting political and ideological

landscapes, which rests on the co-evolution of social networks, ideological positions and party

affiliation as cultural signs. For the purpose of testing this model, I devise an agent-based

simulation whose foundation is based on the framework described in Chapter 4. There are

several changes from the original design, most of them relatively minor. The one significant

change lies in the way in which cultural trait variants are represented. While the nature of

these was thought to be categorical in the original model (as described in section 3.3.2), here

I assume that the variants represent different measurable levels of the absence or presence of

a particular trait. Specifically, because I am modelling the behavior of legislators, I take

them to represent their ideological position on a one dimensional liberal–conservative scale.

I also fix the concept of “tag” to represent the agent’s party affiliation, as this is the single

most defining observable marker of a political actor.

5.3.1 Entities and Variables

The model consists of 438 agents, each of them representing a member of the U.S. House

of Representatives. The agents are very similar to those in Chapter 4 (see table 5.4).

The only change in their design is the addition of a new Tolerance variable, which I here

denote as t. This is because I now assume that trait variants are cardinal, so we can

draw comparisons between them. For example, if we enumerate the variants with the

integers 1 through n, we may say that two agents that possess variants 3 and 7 are closer

to each other in this aspect than a pair of agents with variants 2 and 11. Here, the trait

128



variants refer to the agent’s position on the liberal–conservative spectrum and I assume

that agents have a natural tendency to cooperate with those who are closer to them on

this spectrum rather than those that are further away. An agent’s tolerance value t thus

defines a range [v − t, v + t] ∪ [minv,maxv] where v is the value of the agent’s own trait

variant and minv,maxv are the minimum and maximum trait variant values respectively.

The agent is then willing to cooperate with others whose trait variants fall within this range.

Furthermore, unlike in Chapters 3 and 4, I will also assume that the distribution of trait

variants is biased to a certain extent by the possession of specific tags. Figure 5.2 shows an

illustration of this.

Table 5.1: Agent variables

Name Domain Scale Type

CulturalTrait Integer Cardinal (interval) Static
Tag Integer Categorical Static
Tolerance Integer Cardinal (ratio) Static
PositiveThreshold Integer Cardinal (ratio) Static
NegativeThreshold Integer Cardinal (ratio) Static
Neighborhood List of agents Categorical Dynamic
Fitness Integer Cardinal (ratio) Dynamic
NumGood List of integers Cardinal (ratio) Dynamic
NumBad List of integers Cardinal (ratio) Dynamic
FirstGood List of integers Cardinal (ratio) Dynamic
FirstBad List of integers Cardinal (ratio) Dynamic
LastGood List of integers Cardinal (ratio) Dynamic
LastBad List of integers Cardinal (ratio) Dynamic

For a complete description of the other agent state variables see Chapter 3. Table 5.2

summarizes the global model parameters. Apart from RewiringLambda the other parameters

have been introduced in the original model and their description can be found in Chapter 3.

Furthermore, for the specific purposes of this version, I have fixed several quantities which

previously figured in the model as parameters. Here, the number of agents remains fixed at

438 (the number of representatives in the House) and the number of tags remains fixed at 2

(the number of parties represented in the House; by convention, I group all Independents with
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Table 5.2: Model Parameters

Name Domain Scale

NumTraits Integer Cardinal (ratio)
SuccessPayoff Integer Cardinal (ratio)
FailurePayoff Integer Cardinal (ratio)
AdjacencyMatrix Matrix of Booleans Categorical (Boolean)
MutationRate Floating-point number Cardinal (ratio)
MaintenanceCost Floating-point number Cardinal (ratio)
RewiringLambda Integer Cardinal (ratio)

the Republicans). In later sections I comment on how I derive the number of generations,

rounds and trait variants. The new RewiringLambda parameter defines the typical rate at

which agents delete and create links in their social networks. In the original model agents

simply cut the links with agents possessing disliked tags all at once (similarly they filled

all their available slots for new links all at once with a random sample of agents possessing

preferred tags). Since in this case we are limited to only two tags, the mechanism appears to

become both unrealistic and highly disruptive. Instead, I define the number of links that an

agent will delete or create in any given round to be a random variate obtained from a Poisson

distribution with parameter λ which is given by the value of the agent’s RewiringLambda

parameter1.

5.3.2 Process Overview and Scheduling

The model is divided into a certain number of “generations”. Each generation represents

one two-year electoral period. A generation is then divided into a certain number of rounds.

During every round, each legislator is given a chance to act. The order in which legislators

are activated is randomized at the beginning of every round. When legislators are activated,

they perform two types of actions. They will interact by reaching out to another legislator

1I choose the Poisson distribution to model this behavior because it best defines the probability of a given
number of independent discrete events occurring in a fixed time interval.
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Figure 5.1: Illustration of the function of the tolerance attribute (T). In the above example
the top case results in a failed interaction, while the bottom case results in a success.
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Figure 5.2: An example of how the ideological position of legislators could be biased by
party affiliation.
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within their social network and asking them to co-sponsor their bill2. They will also network

with other legislators. The networking aspect of legislator activity can be further broken

down into two equally important parts. First, legislators may choose to cut previously

existing ties to others. Second, legislators may choose to create new connections with others

in the House. At the end of each generation the House is re-populated by members new and

old, whose characteristics are generated or modified by means of an evolutionary algorithm.

A legislator will interact with one randomly chosen network connection each round.

The nature of the interaction process between two legislators in the model is simple. The

legislators check each others ideological positions pi, pj against their tolerance levels ti, tj .

If |pi − pj | < min(ti, tj) then the interaction is successful, meaning that the legislator

agrees to co-sponsor the other’s bill (as illustrated in figure 5.1). Both legislators then

receive the SuccessPayoff. If the interactions is unsuccessful, then both legislators receive

the FailurePayoff. This represents the idea that co-sponsorship increases the chances of a

legislator’s re-election, as hypothesized by Campbell (1982).

The flow of the networking process is illustrated in Algorithm 10. As in the original

model (as described in section 3.3), the decision regarding which ties to cut and whom to

connect to is biased by the possession of particular tags. In this context it simply means

that certain legislators will prefer to maintain connections with Democrats, while others

will prefer to connect with Republicans, and yet others will be equally prone to connect

with members of either party3. To determine these preferences, I use the ACT-R memory

model (Anderson & Lebiere, 1998) and calculate the base-level activations for both tags

for each legislator individually. The base-level activation τ−P for a legislator’s unsuccessful

interactions with party P is calculated as follows:

τ−P = ln

[
n∑
i

t−di

]
≈ ln

[
t−0.5
n +

2(n− 1)√
t1 +

√
tn

]
(when d = 1/2) (5.1)

2The actual nature and identity of the bill is beyond the scope of the model and I leave this concept in
the abstract simply as “a bill”.

3To exhaust the list of possibilities, this also allows for legislators who dislike both parties and would
simply prefer to go at it alone and forego connecting with anyone at all.
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Algorithm 10 Network Rewiring

1: procedure Rewire(agent, agents, rewiringLambda)
2: negativeBLA← calculateBLA(agent,“bad”)
3: retrievedTags← {tag|negativeBLAtag < agent.NegativeThreshold}
4: n← randomPoisson(rewiringLambda)
5: dislikedNeighbors← {i|i ∈ agent.Neighborhood ∧ i.Tag ∈ retrievedTags}
6: neighborsToCut← randomSample(dislikedNeighbors, size = n)
7: agent.Neighborhood← agent.Neighborhood \ neighborsToCut
8: positiveBLA← calculateBLA(agent,“good”)
9: retrievedTags← {tag|positiveBLAtag > agent.PositiveThreshold}

10: candidates← {i|i ∈ agents ∧ i.Tag ∈ retrievedTags}
11: n← randomPoisson(rewiringLambda)
12: candidates = randomSample(candidates, size = n)
13: for candidate ∈ potentialNeighbors do
14: candidatePositiveBLA← calculateBLA(candidate,“good”)
15: if candidatePositiveBLAagent.Tag > candidate.PositiveThreshold then
16: agent.Neighborhood← agent.Neighborhood ∪ candidate
17: candidate.Neighborhood← candidate.Neighborhood ∪ agent
18: end if
19: end for
20:
21: return agents
22: end procedure

Here ti is the time elapsed since the i-th unsuccessful interaction with any legislator

from party P , while n = NumBadT is the total number of such experiences, tn = LastBadT

is the time since the most recent experience, and t1 = FirstBadT is the time since the first

experience. Finally, d is the rate of decay. Due to the computational complexity of the

quantity when n is large, I implement a sufficiently accurate approximation (Petrov, 2006).

By convention, I use d = 1
2 . If the base-level activation of a party drops below the legislator’s

NegativeThreshold it will designate it as disliked.

Once the base-level activations for negative interactions are calculated, a random variate

n is generated from the Poisson distribution with λ = rewiringLambda. The legislator then

randomly selects n of its existing connections from the disliked party (or parties) and cuts

ties to them.

In a similar manner I compute base-level activations for successful interactions and

compare them to the legislator’s PositiveThreshold to designate preferred parties. The

legislator then selects a random sample of colleagues from the preferred parties, the size of
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which is once again determined by a random Poisson variate. Unlike cutting ties, creating

them is a mutual act. Thus, in the same fashion, a candidate will only agree to create the

new connection if the proposing legislator is a member of one of the candidate’s preferred

parties.

At the end of each round everyone’s fitness levels are adjusted by the maintenance costs

for their network connections. Each legislator incurs a fixed cost per connection per round,

the value of which is given by the MaintenanceCost parameter. At the end of each generation

a new House is populated. This is done by considering each “seat”, that is, each node in the

network separately. For each seat we take into account the current legislator along with its

network connections. From this set we then randomly select a subset, whose size is given by

the value of the TournamentSize parameter. This subset is then ranked by the legislator’s

fitness values. The seat is then filled with a “new” legislator whose attributes at first exactly

match those of the top-ranked member of the selected subset. Finally, I introduce mutation.

This has the effect that each attribute of the legislator is modified with 1% probability. In

the case of party affiliation this modification amounts to switching parties. In the case of

cardinal variables the mutation is done by introducing small Gaussian perturbations to the

current value4. Mutation excludes fitness which is always set to zero at the beginning of

a generation and the legislator’s neighborhood, as I fix the global network structure when

transitioning between generations.

I measure the success of legislators by their fitness, because it represents their ability

to gain co-sponsors for their own bills as well as their willingness to co-sponsor others’

legislation. As noted in the Introduction, bill co-sponsorship has an effect on the continued

success of a legislator.

The mechanism for creating “new” legislators can then be interpreted in two ways. The

clone that is created can either represent the old legislator being re-elected for the new

two-year period, or it could represent a new legislator being elected for the first time while

adopting the attributes of a previously successful legislator5. However, I remain agnostic

4For discrete variables the perturbations are taken from discretized Gaussian distributions.
5The fact that representatives can be (and very often are) elected for multiple congresses , i.e. survive for

134



regarding interpretation in the case of individual seats.

The mutation then represents both the natural shift in positions that sometimes occurs

over the course of a politician’s career as well as the imperfections in attempts at mimicking

others.

5.3.3 Initialization and Inputs

The model is fully specified by providing the values of model parameters shown in table 5.2

as input. The initial agent population is generated at the beginning of the simulation. The

fitness of every legislator is set to zero and their social networks are instantiated based on the

provided AdjacencyMatrix. Party affiliations are distributed uniformly among the legislators

at first. The ideological trait variants are then instantiated based on the party affiliations.

As in a real-world scenario, I assume that Republicans will be more conservative on average,

and that they will never take extremely liberal positions. Similarly, I expect Democrats to

take more liberal positions on average, while never occupying the conservative extremes of

the ideological scale. However, I assume that there will be some overlap in the middle of the

spectrum. Specifically, for a scale with n levels, where n is the most liberal, I randomly assign

each Republican an ideological variant from the uniform distribution on the interval [1, 2n
3 ].

Similarly, each Democrat is randomly assigned a variant from the uniform distribution on the

interval [n3 , n]. The values of NumBad and NumGood are assigned with uniform probability

from the set of integers from 1 to NumRounds. The variables FirstGood, FirstBad, LastGood

and LastBad are initialized with values taken from the uniform distribution on the set

of integers from 1 to NumRunds*NumAgents. In essence, this creates random fictional

memories for the newly created legislators. The ranges of the relevant variables are chosen

so that the memories are on the scale of electoral periods. Finally, each legislator is assigned

a Tolerance value from the uniform distribution on the interval [0, n− 1].

multiple generations, is the reason why there is no recombination in this version of the EA.
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5.4 Verification and Validation

The model code has been thoroughly verified by performing code walkthroughs and standard

debugging practices. The model was developed in the MATLAB computing environment.

To elicit external validity, the model results are compared with the empirical evidence taken

from the House co-sponsorship dataset. The process of model validation has been carried out

by comparing the real-world co-sponsorship network statistics with the simulated networks,

and is thoroughly described in the Results and Discussion sections.

5.5 Experimental Design

The parameter values that I have tested are shown in table 5.3. The number of generations

is equal to the number of congresses between the tracked period from 1973 to 2008 (93rd to

110th Congress). I set the number of rounds by taking the average number of bills sponsored

and co-sponsored by a single legislator over the entire period and round to the nearest

hundred.

Table 5.3: Model parameter values

Name Value

NumGenerations 18
NumRounds 300
NumTraits 9
SuccessPayoff {fixed, uniform}
FailurePayoff {fixed, uniform}
AdjacencyMatrix random, k̂ = 70
MutationRate 0.01
MaintenanceCost 0.1, 0.2, . . . , 1
RewiringLambda 1, 5, 10, 15, . . . , 50

I chose to divide the ideological scale, somewhat arbitrarily, into 9 levels. I believe

this is more than enough granularity and it allows for the levels to be split evenly among

Republican-only, Democrat-only and mixed types.
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The choice of the payoff parameters is important, because it does have the potential

to significantly drive the dynamics of the model. One natural choice is to fix the payoffs

to a value that remains constant for all interactions regardless of the actors involved. We

may therefore choose +1 for the SuccessPayoff and -1 for the FailurePayoff. However, it

should be noted that under this payoff schedule agents positioned closer to the middle of the

ideological spectrum as well as more tolerant agents should expect to collect more positive

payoff assuming a uniformly random distribution of agents on a random network (see figure

5.3). It may well be the case that such types of agents are predisposed to fare better in

the scenarios that I simulate, but we cannot be certain of it. One way to circumvent this

artifact is to normalize an agent’s payoffs from a given interaction based on its tolerance and

ideological variant; simply dividing the unit payoff by its expected payoff under the fixed

schedule. This choice is not entirely free of assumptions either. The normalization scheme

posits that any single instance of co-sponsorship activity is relatively less valuable to more

tolerant and more ideologically centric legislators. Because it is difficult to speculate on the

relative payoffs of co-sponsorship to different types of legislators, I decide to test both payoff

schedules.

For the AdjacencyMatrix of the initial social network I choose one that represents an

unweighted, undirected, random Erdős-Rényi network with average degree k̂ = 70. It should

be noted that the social network of House members in the beginning of the tracked period

was probably not random. However, because it is close to impossible to determine its

structure precisely, I choose to proceed with the random network as a baseline. The value of

k̂ was chosen based on the average number of unique cosponsors per legislator in the 93rd

congress. It is possible, and in fact probable, that an average legislator has other connections

in the House apart from those that actively cosponsor their bills. Once again, the accurate

numbers are unknown, but since any cosponsor should be considered a social tie, this value

practically serves as a lower bound.

I vary the values of the MaintenanceCost parameter because I believe that it has a

significant affect on the dynamics of system. I thus test values ranging from close to
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Figure 5.3: Expected relative payoffs on a random network as a function of tolerance and
ideological positions

negligible up to 1, at which point the potential payoff from any given social connection

cannot exceed the cost of maintaining it under either of the payoff schedules. Similarly, I

vary the RewiringLambda parameter within what I believe is a range of sensible values6.

The mutation rate is set to 1% as is standard practice in evolutionary modeling of social

systems (as shown in section 2.5.4).

Finally, to be able to compare the performance of the party-based model I devise and

introduce three simple alternative models of co-sponsorship activity which will serve as

benchmarks. These are based on the the alternative hypotheses stated in section 5.1. The

models are identical to the party-based model, apart from the networking mechanisms.

In the model based on A1 the agents’ choice of connections depends on ties shared with

others. The agents do not form preferences based on party affiliation, rather they cut ties

with others once the ratio of common connections drops below a certain threshold value.

Vice versa, they consider new connections only if the ratio of common connections exceeds

6At λ = 50 an agent would, on average, cut ties with and create new connections to about 11% of the
entire House during any given rewiring action.
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a certain threshold. To be exact, an agent cuts ties with someone if r > F (−w, s) and

they attempt to connect to someone if r < F (w, s). Here, r is a random variate from the

uniform distribution on the interval [0, 1], w is a weight, and s is the ratio of common

connections between the two agents. The function F (x, y) then gives the value of the

cumulative distribution function of the truncated normal distribution on the interval [0, 1] at

the point y, with µ = 0, σ = 1 + x when x < 0 and µ = 1, σ = 1− x when x > 0. Figure 5.4

shows the shapes of the cumulative distribution functions for several values of w. The weight

w controls the direction and the strength of the attracting force of shared connections. As

w gets closer to 0, the probability of cutting and creating ties becomes more proportional to

the ratio of common connections. As w increases towards 1 an agent will be less likely to

create new connections unless the ratio of shared connections gets progressively closer to 1.

It will also be less likely to cut existing ties unless the ratio drops progressively closer to 0.

On the other hand as w decreases to -1 the agent will require a progressively smaller ratio

of shared connections to become likely to attempt creating a new tie, and a progressively

larger ratio of shared connections to be likely to keep an existing tie. I test values ranging

from w = 0, representing an undirected, proportional social force, to w = −0.9, representing

a strong positive social force. I will refer to this model as the social model.

A third model, based on A2 has the agents employ a strictly individual approach to

rewiring their social networks. In this version the agents simply keep a record of their

interactions with every single legislator separately (which is arguably still somewhat feasible

with at most 437 connections). If they have a negative experience with a certain legislator,

they cut ties with them and never re-connect again during the current generation. They

create new ties randomly at rate λ = RewiringLambda.

Finally, the model based on A3 assumes that the agents have perfect information regarding

the position of all other legislators on the ideological spectrum. I thus allow the agents

to re-connect at once to their preferred partners based on their tolerance and ideological

position. I then calculate all of the payoffs and maintenance costs based on a hypothetical 300

round generation and finally re-seed the agent population using the evolutionary algorithm
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Figure 5.4: Examples of the the social force function F for different values of x.

to complete a single generation7. I refer to this as the ideological model.

To test the second hypothesis I devise two measures of polarization, each capturing a

different aspect of the concept. The first measure is the average pairwise ideological distance

between legislators. I simply consider every pair of legislators (not just those connected to

each other), mark their distance on the ideological spectrum and calculate the mean. This

measure is sensitive to both the variance and the range of the distribution of ideological

variants, both of which increase with the average pairwise distance. The second measure I

use is average tolerance. Here, I take the tolerance of each legislator as defined in section

5.3.1 and once again take the population mean.

Our analysis is performed on the co-sponsorship network of the legislators. It should be

noted that this is different from the social network of the legislators. The co-sponsorship

network is a directed, weighted network and it is generated through events occurring during

the simulation: If there is a successful interaction between two actors (i.e. one has agreed

to co-sponsor the other’s bill), a link with a weight of 1 initiating at the co-sponsor and

7Because the networking phase is executed all at once, there is no use for the RewiringLambda parameters,
and thus in this case I only vary MaintenanceCost when performing the sensitivity analysis.
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terminating at the sponsor is created. If a link between the two already exists in that

direction, then the weight is increased by 1.

I then calculate several network statistics on the co-sponsorship network. The first of

these is the average local weighted clustering coefficient (Barrat et al., 2004). This is an

extension of the standard clustering coefficient measure devised by Watts and Strogatz

(1998), applied to weighted networks. In our case, when measuring the local clustering

coefficient of any given actor I only consider the incoming links. Thus, I effectively measure

the probability that a pair of legislators who co-sponsor bills by the same legislator also

have an active co-sponsoring relationship between them. In the remainder of this paper I

will refer to this measure simply as the clustering coefficient.

Furthermore, I compute the modularity of the weighted co-sponsorship network. As in

the above case this extends the standard modularity calculation by considering the weights

of the links per Newman’s (2004) approach. I also track the number of unique co-sponsors

for each legislator. In essence, this is the average in-degree of the unweighted version of the

co-sponsorship network (i.e. all weights are made equal to 1 prior to the calculation). For

the sake of simplicity, I refer to this statistic as the average degree. Finally, I measure the

average shortest path lengths between pairs of actors in the unweighted, undirected version

of the co-sponsorship network.
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Figure 5.5: Cosponsorship networks in the 95th Congress. Part (a) shows the empirical
networks. Remaining parts show networks simulated by different models under the fixed
payoff scheme: (b) party-based (RewiringLambda = 20, cost = 0.5), (c) social (w = −0.5,
cost = 0.5), (d) individual (cost = 0.5), (e) ideological (RewiringLambda = 20, cost = 0.5).
In the simulated networks the different shades of red and blue reflect the agents’ positions
on the ideological spectrum.

142



●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

(a)

●
●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

(b)

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●
●

●

●

●
●

●

(c)

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

(d)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

● ● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

(e)

Figure 5.6: Cosponsorship networks in the 108th Congress. Part (a) shows the empirical
networks. Remaining parts show networks simulated by different models under the fixed
payoff scheme: (b) party-based (RewiringLambda = 20, cost = 0.5), (c) social (w = −0.5,
cost = 0.5), (d) individual (cost = 0.5), (e) ideological (RewiringLambda = 20, cost = 0.5).
In the simulated networks the different shades of red and blue reflect the agents’ positions
on the ideological spectrum.

143



5.6 Results

Table 5.4: Co-sponsorship network statistics in the U.S. House of Representatives

Congress Avg. In-Degree Avg. Path Length Clustering Coeff. Modularity

93rd 70 1.95 0.41 0.15
94th 79 1.89 0.44 0.13
95th 93 1.83 0.47 0.14
96th 111 1.76 0.50 0.15
97th 132 1.72 0.56 0.13
98th 157 1.65 0.63 0.12
999th 171 1.61 0.67 0.12
100th 174 1.60 0.67 0.13
101st 84 1.58 0.68 0.14
102nd 172 1.61 0.66 0.14
103rd 144 1.67 0.59 0.19
104th 105 1.77 0.47 0.23
105th 127 1.73 0.54 0.21
106th 151 1.67 0.60 0.18
107th 143 1.68 0.59 0.17
108th 147 1.67 0.60 0.19

I first visualize and inspect the networks evolved under the four different models and

compare them to the true co-sponsorship networks in different U.S. congresses. Figures

5.5 and 5.6 show illustrative snapshots of the network evolution. It is immediately clear

that each model produces different types of network structures. However, beyond this it

is difficult to ascertain the degree to which these networks vary and in which particular

aspects. It is equally impossible to tell which of the models produces networks that most

closely resemble the data, or even if any of the models come close to re-creating the true

co-sponsorship network. I thus turn towards a more rigorous and quantitative analysis of

the networks.

Figure 5.7 shows how the networks created by the four different models differ in four

important network characteristics. The violin plots show the distributions of resulting values

obtained from simulations across the entire search space. Despite this aggregation, one will
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Figure 5.7: Violin plots of the distribution of measured network statistics for the four models
across the entire search space.
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notice that there exist clear-cut quantitative differences among the four models. Furthermore,

we note that the party-based model stands out the most: It vastly outperforms the other

three models in terms of error in the case of average node degree and clustering coefficient.

It also fares better than the other models with respect to network modularity, as only the

ideological model achieves similarly low error levels. The only case in which the party-based

model is outperformed by any of the remaining models is average shortest path length, where

only the social model edges it out. However, I believe it is safe to conclude that overall the

party-based model performs substantially better than any of the baseline models in terms of

goodness of fit with the historical data. Moreover, we can consider this result highly robust,

because it holds regardless of the position in the search space.

To gauge how the goodness of fit varies through time I present results for a single point

in the search space for each of the four models. Figure 5.8 shows the temporal variation of

the tracked measures. Once again we note that all three baseline models perform poorly on

one or more of the four measures. Meanwhile, not only does the party-based model perform

the best in terms of error, it also seems to pick up on some of the trends present in the

data. For example, the clustering coefficient of the simulated networks exhibits a distinct,

increasing trend after the first handful of generations, similar to the empirical data (although

the trend appears noticeably earlier in the data). In the same vein, the simulations appear

to foretell the increase in empirical network modularity in the middle stages of the observed

period, before eventually leveling off.

From here on I therefore only consider the party-based model. Figures 5.9 and 5.10 show

the sensitivity of the model to its location in the search space. In the case of the uniform

payoff schedule, we observe that the model is especially sensitive to tuning the parameter λ.

As we increase λ, the error in average path length also increases, while the error in clustering

coefficient decreases. Meanwhile the error in average degree becomes more prominent as we

move toward both extremes of the tested λ values. The fit in terms of network modularity

does not appear to be as sensitive to either of the varied parameters, apart from very small

regions in the extremes of the search space.
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Figure 5.8: Time series of the measured network statistics for the four models at a single point
in the search space (RewiringLambda = 20, MaintenanceCost = 0.5, SocialWeight = −0.5,
uniform payoff schedule).

When employing the fixed payoff schedule one may notice that lower λ values contribute

to poorer fit of the model in terms of average degree as well as clustering coefficient.

Furthermore, we see that error in average path lengths increases with both λ and the

maintenance cost. In the case of modularity it is difficult to discern any clear trend as either

of the parameters are varied. Finally, we observe that the fixed payoff model variation shows

better goodness of fit with respect to average degree and average path lengths. Conversely,

the uniform payoffs perform better with respect to modularity, while the difference in

clustering coefficient fit is negligible.
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Figure 5.9: Gradient fields of the measured network statistics for the party-based model
under the uniform payoff scheme as a function of and t.

Finally, I comment on how the position in the search space affects our previously defined

measures of partisanship and polarization. Figures 5.11 and 5.12 display the dependence

of the resulting average tolerance and average pairwise ideological distances on the link

maintenance cost and the λ parameter. We first note that, under the uniform payoff regime,

the average tolerance is below the expected value of the initial uniform distribution, regardless

of position in the search space. Furthermore, as the cost decreases and as λ increases the

actors become less tolerant on average. On the other hand, the populations become invariably

closer on average in the ideological space compared to the initial distribution of ideologies8.

8Assuming a population that is uniformly distributed on an ideological spectrum with levels from 1 to 9,
the average pairwise distance will be approximately 2.97.
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Figure 5.10: Gradient fields of the measured network statistics for the party-based model
under the fixed payoff scheme as a function of and .

However, the actors tend to become further apart on average, as both λ and link maintenance

costs increase.

The situation is different when considering the fixed payoff regime. Here the population

ends up being substantially more tolerant than in the previous case, although it is still below

the expected value for a uniform distribution. The average pairwise distance remains low,

albeit somewhat higher than under the uniform payoff regime.
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Figure 5.11: Gradient fields of average tolerance and average pairwise distance for the
party-based model under the uniform payoff scheme as a function of and .

5.7 Discussion

The findings from our experiments show that a model in which legislators rely on party

affiliation as a proxy for complex ideological positions in hopes of collaborating on legislation

results in co-sponsorship networks that closely resemble the empirical evidence. Moreover,

models in which legislators rely on strategies that take into account attributes other than

party affiliation show poorer fit with the actual co-sponsorship networks found in the U.S.

House of Representatives. This tells us that party affiliation is indeed an important driver

of the collaboration dynamics in the House, even in those cases where certain legislators

across the aisle might be ideologically closer than many fellow party members.

There are a few potential reasons why party affiliation is such a strong driving force. As

I eluded earlier, it could be because close evaluation of others’ positions is too expensive

and legislators thus resort to sticking with party lines as a cheap and dirty heuristic. It may

also be the case that legislators are forced to obey party lines by mechanisms out of their

own control, such as party leadership (Rohde, 2010), electoral change (Jacobson, 2000), etc.

Adjudicating these underlying causes is, however, beyond the capability of the model and

thus beyond the scope of this study.
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Figure 5.12: Gradient fields of average tolerance and average pairwise distance for the
party-based model under the fixed payoff scheme as a function of and .

Furthermore, the party-based model shows the system evolving towards low levels of

ideological tolerance among the body of legislators under the uniform payoff schedule. On

the other hand, the average ideological distance decreases towards minimal levels. This

suggests that increased partisanship leads towards a certain type of polarization, but actually

suppresses others. When fixed payoffs are assumed ideological proximity tends to be high

and tolerance remains moderate. This indicates that ideological tolerance will suffer on the

aggregate level in contexts where the act of co-sponsorship is individually more valuable to

legislators who assume more extreme positions. This notion is supported by the findings of

Kessler and Krehbiel (1996) who report that policy extremists on both sides of the spectrum

are more likely to support legislation in its initial phases.

The higher aggregate tolerance levels under the fixed payoff schedule confirm our intuition

supported by the calculus of expected payoffs in a randomly networked body of legislators:

more tolerant and middle-of-the-road actors will fare better. In the case of uniform payoffs,

less tolerant legislators end up faring better, although from a mathematical point of view

they should hold no advantage over others in a randomly connected body of legislators. This

reflects on the importance of the network structure itself. As the networks become significantly
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Figure 5.13: Violin plots of ideological trait assortativity distributions across the entire
search space over time in the party-based model.

clustered and modular in terms of ideology (see figure 5.13), the payoff expectations change:

steadfast adherence to party lines rewards intolerant attitudes over more open-minded ones.

In general, the combination of low tolerance and close ideological proximity is intriguing,

yet plausible. Downs (1957) shows from an economic perspective, that convergence towards

the ideological center is an equilibrium state in a two-party system. Furthermore, comments

on the ideological similarity between the two parties are well-documented, dating as far

back as the 19th century, when Tocqueville (2000 [1835]) proclaimed that while America

has had great parties, it no longer has any, as they do not adhere to particular principles or

generalities.

The findings hold interesting implications for further research. Several factors contributing

to the model remain unexplored. Here, I have represented ideological position as a simple

one-dimensional scale. In reality ideology is almost certainly multi-dimensional. It is

therefore natural to wonder how the dimensionality of ideology representation would affect

the behavior of the model. Furthermore, the model framework allows researchers to consider

a wide range of hypothetical scenarios. For example, this creates the opportunity to the
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test how the quantitative and qualitative characteristics of party systems contribute to

polarization dynamics in legislative bodies.

Finally, it is worth noting that although this model does not take voter behavior or

constituency factors into account, these are probably also important factors which may

contribute to or feed back into the dynamics of partisanship and polarization.

5.8 Conclusion

I have used an agent-based model of cultural evolution to explain the dynamics of bill

cosponsorship and, by extension, of political polarization in the U.S. House of Representatives.

I have found that the proposed model based on the imperfect knowledge of actors

regarding the ideological dispositions of others and their reliance on party affiliations as

an alternative heuristic to garner support for proposed legislation performs well against

empirical evidence. Moreover, I have determined that it fares better compared to several

alternative models. As the model pertains to our definitions of political polarization, I

gathered mixed results, finding that the proposed mechanisms lead to decreased tolerance,

as well as decreased ideological distance. Overall, I believe that the model provides increased

confidence in the hypothesis that bill co-sponsorship, and the underlying social and cultural

processes which lead to it, contribute to certain aspects of polarization in the U.S. House of

Representatives.
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Chapter 6: Cultures of Collaboration: Simulating Scientific

Co-Authorship Networks

Abstract: Modern science has become a team effort. Collaboration and co-authorship is

the new standard in most disciplines. Pathways of collaboration between scientists have

been studied previously. Here I take a novel approach where I combine the agent-based

modeling paradigm and a cultural, dual inheritance perspective to develop a model of the

dynamics of scientific collaboration. I study the performance of the model by comparing it

to an extensive empirical dataset on academic publishing. I show that there are significant

differences in model performance across different disciplines, suggesting that the cultures of

collaboration may differ across fields.
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6.1 Introduction and Background

Scientific collaboration is a complex phenomenon that is crucial to the effective diffusion,

communication and exchange of scientific knowledge. Scientific collaboration has arguably

only increased in complexity and effect since the advent of modern information technology.

It is perhaps for this reason, that research into networks of scientific collaboration has surged

in frequency in recent decades. One of the most direct manifestations of the pathways of

scientific collaboration is the co-authorship of scientific literature. The study of scientific

co-authorship networks has originated in the social sciences (e.g. Endersby et al. 1996;

Moody, 2004) but has since been joined by efforts in the natural sciences as well (e.g.

Barabasi et al., 2002; Newman, 2004). The focus in most studies has always been the

analysis of the structure of the co-authorship networks, whether quantitative or qualitative.

Barabasi et al. (2004) have compared networks generated from different datasets and noted

the scale-free structure of such co-authorship networks. They then applied the preferential

attachment model to successfully generate similar structures. Newman (2004) has further

corroborated the scale-free nature of co-authorship networks in his study. Many other efforts

to probe the underlying mechanisms of scientific collaboration through network analysis

have appeared since: from analyzing the choice of data (De Stefano et al., 2013) and network

definitions (De Stefano et al., 2011), through community detection approaches (Perianes-

Rodrigues et al., 2010), qualitative approaches (Velden et al., 2010), to investigating the

effects of network position on scientific performance (Abbasi et al., 2011, Abbasi et al., 2012).

Explanatory models of scientific collaboration have also been proposed. Barabasi et al.’s

(2002) application of the preferential attachment mechanism is perhaps the most influential.

Morris and Goldstein (2007) have developed a mathematical model based on concept of

weak ties (Granovetter, 1973), while De Lange and Glanzel (1997) use a series expansion

approach.

These research efforts have two important elements in common: First, the focus is

almost exclusively on network concepts or social forces as causal explananda, and second,
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the studied networks are either historical snapshots or cumulative graphs. I take a new

approach to the study of collaboration. I study the issue of scientific collaboration as a

multi-faceted one, and perceive co-authorship networks as a result of a combination of social

mechanisms, cultural mechanisms, network structure effects and temporal (evolutionary)

effects. Furthermore, I am interested in the analysis of co-authorship networks as constantly

evolving structures, such, where pathways of collaboration can be forged, but also abandoned

over time. I also aprroach the issue from an agent-based modeling perspective. Agent-based

models are well-suited to explaining trends emanating from individual decisions as well as

elucidating gradual change over time (Gilbert & Troitzsch, 2005).

I thus propose and test a model of scientific co-authorship. In this model I assume that

actors (scientists) make choices regarding collaboration with others based on both their

cultural and social preferences, which are in turn affected by their current position in the

network and past experiences of their own, as well as those of their previous collaborators.

To test the model I develop an agent-based simulation.

The cultural aspect of the model rests on the logic of dual inheritance theory, specifically

on the mechanisms of indirectly biased transmission and guided variation; both being

suggested drivers of cultural evolution (Boyd & Richerson, 1985). Here, indirectly biased

transmission refers to the evaluation, adoption and subsequent diffusion of specific cultural

behaviors and attitudes on the basis of possession of initially unrelated external markers.

Meanwhile, guided variation refers to the evaluation and adoption of cultural behaviors

based on self-generated and self-explored alternatives. I introduce these concepts into the

model, because I posit (a) that cultural considerations, such as the actor’s approach to

research organization and management, communication, or writing, not to mention the

choice of scientific paradigm (from potentially many within any given discipline) are all

important determinants of successful collaborations, as measured by the actors’ satisfaction

with the process and the end result, and (b) that these cultural factors are often unknown to

others beforehand. Therefore, I assume, that the actors are often forced to rely on externally

observable markers, or cultural signals, such as institutional affiliation, rank, past publication
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record, etc., as proxies for actual cultural behavior.

The social aspect of the model then rests on the observation that actors in social

networks tend to cluster together (Watts & Strogatz, 1998), i.e. the probability of two

actors collaborating increases with the degree to which their ego-based networks overlap.

In fact, today we see many scientific collaborations where the individual actors do not

necessarily know each other, and participate in the effort together solely on the basis of a

shared acquaintance that also happens to be part of the project.

Finally, I model temporal and structural effects via an evolutionary algorithm. Evolu-

tionary algorithms are used both as optimization tools, but also as a means to simulate

the evolutionary dynamics of social systems (De Jong, 2005, p. 28). In this case, I assume

that current actors may leave the network entirely (e.g. retirement), and that new actors

may enter it at any point. Furthermore, I assume that new actors joining the network

adopt cultural behaviors and preferences of current actors to a certain extent (e.g. graduate

students from their advisors, post-docs from PIs, or junior faculty from senior faculty), and

that successful, high-performing actors gain relatively more “disciples” on average than

others. Finally, I assume that the maintenance of active scientific collaborations is costly in

terms of time, effort and resources.

To test the model I compare its output to empirical data on scientific publishing.

Specifically, I use the Microsoft Academic Graph1 (Sinha et al., 2015) which is a large

database that includes information on over 126 million scientific publications, written by

over 114 million different authors, from over 50,000 fields, over the course of more than 150

years. Despite certain shortcomings of the dataset, such as the extent of missing, incorrect,

or duplicate data, it correlates well with other major publishing databases (e.g. CORE,

Scimago, or Mendeley), and is currently considered the most comprehensive publicly available

dataset of its kind (Herrmannova & Knoth, 2016).

In the following sections I first describe the agent-based implementation of our model

in full detail (section 6.2). I then proceed to outline the experiment design and the data

1I will further refer to the Microsoft Academic Graph by the abbreviation MAG.
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manipulation process (6.4). Finally, I report the observed results and discuss the most

important findings (6.6-6.7).

6.2 Methods

I devise a model of the evolution of academic co-authorship networks which rests on cultural

(or institutional) forces, as well as social forces. To test the model I carry out multi-agent

simulations that are based on the model introduced in Chapter 4 and extended further

to control for the specifics of the academic publishing context. As in the original cultural

evolution model, the agents possess one of many possible variants of a trait that is unknowable

to other agents a priori ; similarly, the agents possess one of several possible tags, i.e. directly

observable external markers. The agents seek to collaborate with others, but are only

successful if their trait variants match those of their partners. The agents are therefore

forced to rely on the tags to select adequate partners, and as a result they form distinct

preferences for different tags over time.

There are two major departures from the original model in this version. The first change

is related to population size. Unlike in the original model, here the population sizes are

not necessarily constant. In fact, the populations keep growing as time progresses. This is

true not only of the agent population, but also of the populations of possible trait variants

and tags. As time progresses I assume that new variants and tags will be “discovered” or

“invented”. In the case of scientific collaboration this might represent the founding of new

institutes and journals, or the development of new paradigms and methodologies. The second

major change comes with the addition of a social attraction mechanism, which seconds the

cultural mechanism of indirect bias as a driving force for the agent network evolution. I will

discuss these additions in greater detail later in this section.

6.2.1 Entities and Variables

The model consists of a number of agents who are interested in collaborating to produce

value. The agents are defined by a list of state variables. These are presented in table
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6.1. Most of these are identical to the agent state variables described in Chapter 4. I have

already discussed the CulturalTrait and Tag. As before, the PositiveThreshold is defined as

the minimum base-level activation that a tag has to clear, for it to be considered by the

agent when creating new ties. Similarly the NegativeThreshold is the minimum base-level

activation a tag has to clear, for it to be considered when deleting ties. The Neighborhood is

simply the set of all of the other agents that connect to the ego via an immediate link and

Fitness is the sum of all successful interactions during an agent’s lifetime minus the number

of unsuccessful interactions. Here, fitness represents an author’s ability to collaborate with

others and thus publish articles. The implied assumption is that the more published the

author, the more successful they will be in attracting disciples. The LastOutcome variable

keeps track of whether the most recent interaction was successful or not. The sole addition

to the list of state variables is the variable YearsLeft. Unlike before, this version of the

model is non-generational. Instead, new agents are introduced into the simulation and old

agents leave on a step-by-step basis. This is certainly the case in scientific communities,

where individuals have finite careers. The agent’s lifetimes are initiated at their “birth” into

the YearsLeft variable, and its value is decremented every step (or “year”) to keep track of

the agent’s remaining lifetime, before it is retired from the population. Finally, as in the

original model, the remaining variables figure in calculating the preference levels for different

tags (their meaning is described in subsection 6.2.2).

Table 6.2 lists the global model parameters. I experiment with two configurations of the

model. One in which both the social and the cultural mechanism are in play, which I will

refer to as the biased configuration, and a baseline configuration, in which these mechanisms

are omitted. I refer to the baseline as the unbiased configuration. I explain the differences

between the two configurations in subsection 6.2.2. The InitPopsize, InitTraits, and InitTags

give the initial number of agents, available trait variants and tags at the beginning of the

simulation. The PopGrowth, TraitGrowth, and TagGrowth variables control the rates at

which new agents, trait variants or tags are introduced into the simulation at each step. As

before, the AdjacencyMatrix represents the initial configuration of the agent social network
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Table 6.1: Agent variables

Name Domain Scale Type

CulturalTrait Integer Categorical Static
Tag Integer Categorical Static
PositiveThreshold Integer Cardinal (ratio) Static
NegativeThreshold Integer Cardinal (ratio) Static
Neighborhood List of agents Categorical Dynamic
Fitness Integer Cardinal (ratio) Dynamic
LastOutcome Ordered pair of integers Boolean/categorical Dynamic
YearsLeft Integers Cardinal ratio Dynamic
NumGood List of integers Cardinal (ratio) Dynamic
NumBad List of integers Cardinal (ratio) Dynamic
FirstGood List of integers Cardinal (ratio) Dynamic
FirstBad List of integers Cardinal (ratio) Dynamic
LastGood List of integers Cardinal (ratio) Dynamic
LastBad List of integers Cardinal (ratio) Dynamic

and the SuccessPayoff and FailurePayoff give the fitness increments (decrements) for each

successful (unsuccessful) interaction between two agents. Similarly, the MaintenanceCost

refers to the cost the agent bears every step for maintaining a single link to another agent

and the MutationRate defines the probability with which agent states are stochastically

modified after each step. The value of SocialWeight indicates the relative strength of the

social attraction mechanism in the model. Finally, the TimeMatrix holds information on

the next scheduled activation of links between agents: the value stored in position (i, j)

refers to the next activation of the link between agents i and j. The TagInnovation and

TraitInnovation variables give the probabilities of adopting newly discovered trait variants

and tags by surviving agents. The Lifespans distribution is used for sampling lifetimes when

agents are created. Similarly, the ActivationIntervals distribution is used to sample times

remaining until the next activations of links in the agent networks.
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Table 6.2: Model Parameters

Name Domain Scale

Configuration Integer Categorical
InitPopsize Integer Cardinal (ratio)
InitTraits Integer Cardinal (ratio)
InitTags Integer Cardinal (ratio)
PopGrowth Floating-point number Cardinal (ratio)
TraitGrowth Floating-point number Cardinal (ratio)
TagGrowth Floating-point number Cardinal (ratio)
SuccessPayoff Integer Cardinal (ratio)
FailurePayoff Integer Cardinal (ratio)
AdjacencyMatrix Matrix of Booleans Categorical (Boolean)
TimeMatrix Matrix of integers Cardinalratio
MaintenanceCost Floating-point number Cardinal (ratio)
SocialWeight Floating-point number Cardinal ratio
TraitInnovation Floating-point number Cardinal ratio
TagInnovation Floating-point number Cardinal ratio
Lifespans Histogram of integers Cardinal (ratio)
ActivationIntervals Histogram of integers Cardinal (ratio)
MutationRate Floating-point number Cardinal (ratio)

6.2.2 Process Overview and Scheduling

The model processes can be broken into three distinct parts. This includes neighborhood

maintenance along with interaction done by the agents, and the evolutionary algorithm

which controls the nature of the agent, trait and tag populations over time. In each step

every agent is activated and gets a chance to maintain its neighborhood, and potentially to

interact with one other agent. The order in which agents are activated is randomized at the

beginning of each step.

The neighborhood maintenance phase is carried out similarly as in Chapter 4. First,

each agent determines its sets of preferred and disliked tags. Additionally, the agent then

computes a social score for each of its current neighbors. The social score largely depends on

the degree to which the neighborhoods of the two agents overlap. If a current neighbor fails

to reach a certain threshold degree of overlap and it possesses a disliked tag, the agent will
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cut ties to it. In a similar fashion, the agent will propose to create a new link to anyone with

whom it is not yet connected, if their neighborhoods overlap sufficiently and the other agent

possesses a preferred tag. Once more, link creation is a mutual act, and thus, the link is

created only if the other agents accepts by following the same protocol. At the conclusion of

this phase we adjust the agents’ fitness values by the maintenance costs, which is determined

by the number of their connections.

The preference for a given tag is determined by calculating its base-level activation value.

This quantity is taken from the ACT-R memory model (Anderson & Lebiere, 1998). The

base-level activation τ+
T for successful interactions with tag T is calculated as follows:

τ+
T = ln

[
n∑
i

t−di

]
≈ ln

[
t−0.5
n +

2(n− 1)√
t1 +

√
tn

]
(when d = 1/2) (6.1)

Here ti is the time elapsed since the i-th successful interaction with an agent bearing tag

T , while n = NumGoodT is the total number of such experiences, tn = LastGoodT is the time

since the most recent experience, and t1 = FirstGoodT is the time since the first experience.

Finally, d is the rate of decay. Due to the computational complexity of the above relationship

for large n, I use the above approximation (Petrov, 2006). In line with convention, I use

d = 1
2 . Dislike for a given tag is calculated in the same way, using unsuccessful interactions

as input. Figure 6.1 shows an example of the change in base-level activation for some input

over time.

The social score of an ordered pair of agents (i, j) is computed in multiple steps. First,

the overlap O in their neighborhoods is defined as:

O =
|Ni ∩Nj |
|Ni|

.

Here, |Ni| is the size of i’s neighborhood. Next, we take the truncated normal distribution

on the interval [0, 1] with µ = 0, σ = 1 +w, if w < 0, and µ = 1, σ = 1−w, if w > 0. Finally,
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Figure 6.1: Example of a base-level activation for some input over time. The spikes in the
chart coincide with instances of processing the input, followed by gradual decay.

we take the value s of the CDF of the chosen distribution at O (Figure 6.2 shows examples

of the CDFs for several values of w). This gives us the social score.

When deleting links, we take w = −SocialWeight and the social condition for deletion is

met when s < r, where r is a random draw from the uniform distribution on the interval

[0, 1). When creating new links, we set w = SocialWeight, and the condition is met when

s ≥ r.

The interaction phase of the simulation is executed exactly as in Chapter 4: The two

agents simply compare their trait variants, and if they match they both increment their

fitness by the SuccessPayoff. If the trait variants do not match, the fitness of both agents is

decremented by the FailurePayoff.

Once every agent has taken its turn in the current step, the evolutionary algorithm is

invoked. First, the number of new trait variants, tags and agents is calculated. Next, any

agents scheduled for removal are removed from the simulation. Finally, new agents are

created and added to the network.
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Figure 6.2: Examples of the the social force function F for different values of x.

Reproduction is performed locally. For each new agent that is set to enter the population

a random node location in the network is chosen. A set of candidates for that location

is assembled by taking the agent occupying the chosen node itself along with all of its

immediate neighbors. Once the candidate set is defined, we calculate the mean and standard

deviation of the fitness distribution within this set. Next, we select those candidates whose

fitness is at least one standard deviation above the set mean to become the parents of the

new agent. The agent is created by performing uniform attribute-wise crossover on the

parent set, i.e. for each attribute the new agent copies its value from one of the parents,

chosen with uniform probability. I model multi-parent recombination, because in cultural

evolution it is possible for offspring to have more (or conversely less) than two parents.

The truncation point is chosen so that agents always select above average models, in a way

that makes the selection mechanism less sensitive to the distribution of absolute fitness (we

are only interested in relative fitness). Finally, mutation is introduced by modifying each

agent attribute by a small amount with probability equal to MutationRate. For categorical

variables mutation amounts to uniformly random switching. In the case of cardinal variables
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mutation is carried out by adding small perturbations sampled from Gaussian distributions.

The Fitness of a new agent is set to zero. Once the agent is created it is automatically

linked to its parents.

The links between surviving agents remain intact during the evolutionary procedure.

However, the trait variants and tags of surviving agents may be modified with a small

probability equal to TraitInnovation and TagInnovation respectively, to reflect occasional

in-life adoption of new tags or variants.

6.2.3 Initialization and Inputs

A complete specification of the model is given by providing the values of the model parameters

in table 6.2. The agents are placed on nodes of the network specified by the initial

AdjacencyMatrix. The trait variants and tags are assigned to agents uniformly from the

initial distributions, and independently of each other. Each agent is assigned a lifetime by

sampling the Lifespans distribution. The TimeMatrix tracks the times to the next scheduled

activation of specific links in the network (i.e. interactions between specific pairs of agents).

Once a link is activated and the interaction between agents i and j takes place, the value of

TimeMatrixij is re-seeded with a random variate from the ActivationIntervals distribution.

6.3 Verification and Validation

The model was implemented in code in the MATLAB computing environment. The model

code has been verified by performing thorough code walkthroughs and standard debugging

practices. To ascertain the external validity of the model, the resulting distributions of

important characteristics of the simulated networks are compared to empirical observations

extracted from the House co-sponsorship dataset. The process of model validation has been

carried out by comparing the empirical co-sponsorship networks to the simulation results,

and is described in greater detail in the Results and Discussion sections.

165



6.4 Experiment Design and Data Processing

The tested model parameter values are listed in table 6.3. I tested the sensitivity of the

model to four variables: the model configuration (biased, unbiased), the cost of maintaining

social relationships, the weight of the social mechanism and, crucially, the scientific field.

To control for differences between scientific disciplines I randomly chose the fields of

Economics and Artificial Intelligence. The only requirements for the choices of fields were

that they are not too obscure (i.e. that the number of authors and publications in the field

is substantial) and that they have a significant history. The MAG database holds records

of over 50,000 scholarly publications by thousands of different authors in both Economics

and Artificial Intelligence. However, certain differences remain: Artificial Intelligence (first

appearing in the database in 1946) is younger than Economics (first appearing in 1931), and

AI is currently just reaching its peak volume and popularity, while Economics has been long

considered an established discipline.

Working with the MAG, I first interrogated the Fields of Study table and filtered out all of

the fields whose name included the strings “economics” or “artificial intelligence” respectively

(ignoring case). I then filtered the Papers table to include only those publications whose

Field value matched one of those extracted in the previous step. Finally, I then joined the

Papers and the Authors tables on the Title, Author and Year fields, to create a table of

unique Paper–Author–Year triplets for each of the two field groups.

The population growth rates were established by analyzing the totality of authors and

their appearances in the MAG for the two respective fields. The counts of new author

appearances in given years were then fitted with exponential models for each field separately,

using non-linear least squares. These models were then used to generate the number of new

agents introduced into the simulation at each time step. I took a similar approach when

modelling the lifespans and activation intervals for the two fields. I measured the career

span of each author by noting the time elapsed between their first and last publications

in the given field. I also measured the interval lengths between successive co-authored

publications for all pairs of co-authors in the respective fields. I then created histograms
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from the observed values (binned by year). I ran the simulations for 70 steps, which is equal

to the number of years for which Artificial Intelligence (the “younger” of the two fields)

appears in the MAG prior to 2015 (the last complete year in the database at the time of

experimentation).

The initial population size was set, somewhat arbitrarily to 8 agents. In both fields, there

were only a few active authors in the beginning years. However, I chose a slightly higher

number, because for lower initial population sizes the number of runs that went “extinct”

prematurely in the first few steps (due to stochasticity in the agent lifespans coupled with

the chosen growth models) was inconveniently high. However, preliminary observations

concluded that final results were not significantly affected by slight changes in the initial

population size. The values of the InitTraits, InitTags, TraitGrowth and TagGrowth variables

were also chosen with a degree of arbitrariness. I initially intended to deduce these values

from analyzing the MAG as well (by observing variables such as the numbers of unique

journals, institutional affiliations, etc.), however I soon learned that the records for the

relevant fields were insufficiently reliable, with an excessive number of duplicities, missing

values and errors. I was thus forced to provide my own values, which I believe represent

reasonable estimates (I posit that growth in cultural trait variants is faster than in relevant

external markers, such as institutional affiliation, rank, possible publication venues, etc.). I

carried out 100 simulations for each tested parameter combination.

6.5 Results

I measure three important attributes of the agent networks as they evolve over time: the

average local clustering coefficients, average node degree, and the average shortest path

lengths. I then compare the simulated values with the values observed in the data extracted

from the MAG. Figure 6.3 shows the longitudinal trends in different networks statistics for

the Economics and the AI networks. Figures 6.4 and 6.5 show the root-mean-squared errors

between the simulated and empirical time series for each of the three attributes as a function
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Table 6.3: Model parameter values

Name Value

Configuration biased, unbiased
NumSteps 70
InitPopsize 8
InitTraits 3
InitTags 3
PopGrowth Economics, AI
TraitGrowth 0.04
TagGrowth 0.02
TraitInnovation 0
TagInnovation 0
Lifespans Economics, AI
ActivationIntervals Economics, AI
SuccessPayoff 1
FailurePayoff -1
AdjacencyMatrix random
MutationRate 0.01
MaintenanceCost (0, 1]
SocialWeight (−1, 0]

of MaintenanceCost, SocialWeight and the model configuration. The root-mean-squared

error is measured only after the first 20 steps (years), once the empirical populations are large

enough and the trends settle sufficiently (see figures 6.6 and 6.7 for comparison of the actual

time series). We first notice that there are significant differences in both the performance

and the sensitivity of the models between the two fields. One may observe, for example, that

while the Economics simulations seem to be sensitive only to the value of MaintenanceCost,

the AI simulations show sensitivity with respect to both the MaintenanceCost and the

SocialWeight. Furthermore, the scale of the errors differs as well: where the average degree

RMSE ranges from negligible levels to over 20 in the case of Economics, it remains between

0.7 and 2.1 for the AI runs. Similar discrepancies can be seen in the clustering coefficients

and the average path lengths of the networks.

As we focus on the AI simulations, we note that in the biased model the error in terms
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Figure 6.3: Observed statistics for the empirical co-authorship networks in given years.
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Figure 6.4: Gradient fields of the RMSE in terms of (a) average degree, (b) clustering
coefficient and (c) average path length relative to the Economics data for the biased
(right) and the unbiased (left bar) model configurations as a function of social weight and
maintenance cost.

of the clustering coefficient as well as the average path length decreases with both the

SocialWeight and the MaintenanceCost. A similar trend appears at first in the case of

average degree, however it becomes noticeably reversed at the furthest extremes of the tested

ranges. Nonetheless, we observe that the unbiased model is able to follow the empirical

trends in network evolution just as well, if not better, in terms of average path length and

average degree. It also performs well in terms of clustering coefficient, relative to the biased

model.
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Figure 6.5: Gradient fields of the RMSE in terms of (a) average degree, (b) clustering
coefficient and (c) average path length relative to the AI data for the biased (right) and the
unbiased (left bar) model configurations as a function of social weight and maintenance cost.

The situation is different when considering the Economics simulations. First, we notice

that in certain regions of the search space the biased model produces a better bit fit than

the unbiased configuration in terms of clustering coefficient and average path length. It also

performs similarly well in specific regions in terms of average degree.

Moreover, I point out that the biased model seems to achieve the best goodness of fit in

the critical region of MaintenanceCost ≈ 0.6. In fact, one may observe distinct trifurcations

in the resulting network characteristics (see figure 6.6), with one of the branches following the

empirical trends significantly better than the others. As we move away from this region into

lower values of MaintenanceCost, the error increases both in terms of clustering coefficient

as well as average path length. In the opposite direction, as MaintenanceCost increases,

the clustering coefficient error increases once again. Meanwhile, the unbiased model does

not seem to be significantly sensitive to changes in the MaintenanceCost parameter; this

observation holds in the AI simulations as well.

6.6 Discussion

The model results are illustrative in multiple aspects. First, they suggest that different

scientific fields are marked by different sets of mechanisms driving collaboration. Our
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Figure 6.6: Time series of the (a) average degree, (b) clustering coefficient and (c) average
path length for the Economics biased model runs (blue) and the Economics data (red).
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Figure 6.7: Time series of the (a) average degree, (b) clustering coefficient and (c) average
path length for the AI biased model runs (blue) and the AI data (red).

model performed very differently when applied to the Economics networks rather than

the Artificial Intelligence networks. In the case of the Artificial Intelligence populations,

neither the cultural nor the social mechanisms showed any significant effect on the resulting

co-authorship networks. The parameters that seemed to matter were the cost of maintaining

relationships and the weight of social forces. Conversely, the Economics populations showed

good fit with the biased model, but demonstrated sensitivity only to costs of collaboration

and not with respect to the social weight. This result further carries the implication that in

certain scientific populations the hypothesized social and cultural mechanisms do potentially
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guide the dynamics of the system.

The fact that the AI and Economics cultures is different, are reflected in the empirical

measures of their network structures. This is not as surprising, considering that the field

of Artificial Intelligence is rooted mainly in computer science, while Economics is mostly

categorized among the social sciences. The cultural differences between the social and the

natural, or exact sciences have been noted before. For example, the rate of co-authorship

(as opposed to sole authorship) is significantly higher in the natural sciences (Moody, 2004).

This is perhaps reflected in the higher observed clustering coefficient and the higher average

observed degree in the AI networks. Moreover, computer scientists are specific in that

they give disproportionately more weight to conference articles rather than journal articles,

relative to other disciplines. Other cultural differences might be at play, such as thresholds

for co-authorship, or the number of appropriate publication venues.

I also suspect that another reason for the seemingly different modes of collaboration is the

time of maturation of both fields. As Economics matured earlier, any culture that has been

established in the field in the past is potentially deeply rooted in the ways collaborations

are forged. Meanwhile, the younger field of AI could be potentially more influenced by the

recent proliferation of modern channels of communication and knowledge exchange.

Although the model that I have developed and analyzed has shown some promise,

I remain wary to draw any hard conclusions, as I was forced to leave a large region of

the parameter space unexplored. This was mostly due to the lacking availability of data.

Although the MAG dataset is currently the most extensive and complete database of its

kind, it still has its shortcomings. This is reflected in our limited ability to operationalize

concepts such as the growth in cultural and external markers, or the rates of innovation. I

believe that, as the Information Age matures, availability of data of this nature will only

increase, in turn extending the possibilities for testing and validating models such as the

one presented here.
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6.7 Conclusion

The aim of this work was to explain the dynamics of scientific collaboration from a perspective

of cultural evolution. I have developed and tested an agent-based model of scientific

collaboration founded on social, cultural, as well as evolutionary principles and the complex

interactions among them. I have validated the performance of our model against extensive

empirical co-authorship data in two scientific disciplines. The results show that there are

large differences in the underlying mechanisms of collaboration between scientific fields.

They also demonstrate that under certain assumptions the proposed model fits well with

the empirical data. However, further refinement of the model with respect to its parameters

is needed, resulting in an antecedent need for higher quality and higher resolution data.

Nevertheless, the model shows promise, as it has shown a good fit with the empirical evidence

in the case of the Economics networks.
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Chapter 7: Conclusion

7.1 Main Contributions

In this work I contribute to the study of culture by developing a formal framework for

cultural evolution in the form of an agent-based model, its implementation in computer

code, and its thorough and rigorous description, aided by the use of tools such as the ODD

protocol. In this way, the model stands out from a series of agent-based models of culture,

in that it is more formal, more likely reproducible, and more thoroughly justified in the

implementation of particular assumptions and mechanisms (cf. Chapter 2).

Furthermore, I offer a stronger argument for the validity of dual inheritance theory and

some of its postulated drivers of cultural evolution, namely indirectly biased transmission

and guided variation. Dual inheritance theory is both established and formalized in terms of

mathematical models and system dynamics. In this work, I have extended the validation

effort to account for the complex webs of interaction in populations of social actors and

demonstrated the emergence of empirically observed macro-phenomena from individual-level

behavioral dynamics.

Finally, I show that my model of cultural evolution, which uses only two simple mecha-

nisms, is robust in that it can explain empirical evidence coming from qualitatively different

domains of human culture. Where other cultural models are specialized and narrow-focused,

my model proves to be more general.

7.2 Discussion

The diffusion of cultural traits and the emergence of cultural signs is a complex phenomenon

whose root causes are potentially numerous and multi-faceted. For this reason it is crucial to
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adopt a complex systems, bottom-up approach to the modeling of its dynamics. In this work,

I have taken advantage of several distinct computational social science approaches to better

understand the problem. I have used agent-based modeling, evolutionary computation,

network analysis, as well as statistical and Big Data analysis methods, coupled with a

theoretical perspective adopted from social and biological anthropology.

Specifically, I focus on the effect of the use of external markers as signals for the underlying

cultural attitudes and behaviors in agents’ decisions regarding cooperation, coupled with the

dynamics of cultural inheritance and individual learning. This work is a first step towards

a more formal, computational study of the dynamics of the diffusion and reproduction of

cultural values, beliefs and behaviors.

I set out to answer how the mechanisms of indirectly biased transmission and guided

variation affect the distribution of cultural traits and external markers in a multi-agent

population in the long run. The research in Chapter 3 shows that they indeed affect the

dynamics significantly, and that both mechanisms contribute to the emergence of clustered

and modular communities defined in terms of shared tags and trait variants. This effect was

visible on small-world networks, however, not so much on other types of networks.

This prompted me to investigate how culture and network structure co-evolve. When

I adjusted the model, to allow agents to dynamically adjust their neighborhoods, I found

once again, that the two mechanisms were sufficient to produce social network that plau-

sibly resemble real-world social networks. Moreover this resemblance vanished when the

mechanisms were absent from the model.

I then sought to show whether a further modified version of the ABM could explain

the dynamics of political polarization in the U.S. House of Representatives from a cultural

perspective. The model demonstrated good fit with empirical evidence (bill co-sponsorship

data from 1973-2008), and although it showed increasing levels of polarization in terms of

a decline in average population tolerance it also showed, somewhat counter-intuitively, a

decline in average ideological distance within the agent populations.

Finally, I set out to explore whether a modified version of the cultural evolution model
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could be applied to explain the dynamics of scientific collaboration. I have compared the

model’s performance to empirical evidence extensive records of academic publishing in the

disciplines of Economics and Artificial Intelligence. The results showed that the cultures of

collaboration are potentially very different across disciplines.

7.3 Summary of Results

The work presented here has revealed some interesting findings regarding the evolutionary

drivers of cultural dynamics in groups of humans. Chapter 2 provided a broad survey of

Evolutionary Computation methods and their use in agent-based models. To my knowledge

it is the only such survey focusing on this topic, which is increasingly attracting more

interest within computational social science. Chapters 3 and 4 then presented a detailed

agent-based implementation of the dual-inheritance model of cultural evolution focused on

the mechanisms of indirectly biased transmission and guided variance. In Chapter 4 these

mechanisms were coupled with the agents’ ability of adjusting their social ties. Chapter 3

showed that the resulting distributions of cultural traits and tags heavily depend on the

chosen network structures. In Chapter 4, I further demonstrated that in a dynamic social

environment, the above mechanisms resulted into plausible configurations of social linkages,

closely resembling small-world networks. Under a wide range of parameter settings, the

model showed that the postulated evolutionary mechanisms lead to the association of certain

tags with specific tags, thus giving rise to cultural signs.

Chapters 5 and 6 then extended the original model and validated it against empirical

datasets. Chapter 5 extends the model to account for the ideological position of actors and

uses a historical dataset (1973-2008) of bill co-sponsorship in the U.S. House of Representa-

tives to test its performance. Experimentation has shown that the cultural evolution model

performs better in reproducing the empirical networks than several alternatively formulated

models. It also provides and explanatory framework for the increasing polarization and

partisanship in U.S. politics. Finally, Chapter 6 extends the model to account for growing

populations of actors and uses a scientific co-authorship dateset to validate the findings.
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Interestingly, I find that the model performance varies significantly across different disciplines,

suggesting that the drivers of scientific collaboration may vary from one field to another.

7.4 Limitations and Future Work

There are a few limitations to the current work. First, in the original model I never explore the

effects of genetic drift and of kin selection, which, I believe, potentially contribute significantly

to the resulting dynamics. Next, the robustness and viability of the different interaction

strategies (unbiased, genetic, Lamarckian) has not been determined. This could potentially

be done by simulating mixed populations with multiple strategies. In the polarization study,

I use a one dimensional ideological scale, although recently multi-dimensional scales have

been preferred in political science. It would be beneficial to test the sensitivity of the model

to the dimensionality of the scale. As a final drawback, I was unable to properly calibrate

several of the untested parameters in the collaboration study. This was limited by the

granularity of the available empirical data.

Moreover, apart from the two datasets used in this dissertation, it will be interesting to

see what other domains of culture are susceptible to the same vein of explanations that the

cultural evolution model affords. Other possible sources of data include sharing economies,

financial markets, communication networks, open-source collaborations, etc.

Other considerations are physical and environmental conditions limiting or supporting

the spread of culture. For this reason it is worth examining the dynamics of the current

model in a spatially explicit environment on different scales.

Furthermore, in the current model I have only considered the effect of a single cultural

trait and a single external marker. In reality, every actor possesses a large number of these.

Moreover, there are significant interactions among the individual traits. The effect of the

interactions on the resulting population-level dynamics is potentially considerable. Thus,

assessing the interplay of actor networks and cultural trait networks is a natural next step

in this line of research.
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7.5 Conclusion

I have carried out an extensive review of literature concerning Evolutionary Computation in

ABMs of social systems. Subsequently, I developed an agent-based modeling framework of

cultural evolution based on the co-evolution of hidden traits, independent external markers

and network structure that shows qualitative alignment with empirical social networks.

This agent-based framework is publicly available for replication and further use by other

researchers. Finally, I applied the framework to the cases of political polarization in Congress

as well as scientific collaboration, yielding promising results and different degrees of validation.

The work contained herein is original in the sense that it presents a novel agent-based model

founded on a previously unexplored combination of theoretical concepts relating to cultural

evolution, and it benefits a broader audience by providing a unique view on some of the

current cultural issues our society faces.
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Appendix A: Model Version Overview

Table A.1: Overview of differences in implementation of selected model concepts in individual
model versions

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Pop. size fixed fixed fixed variable (growth)

Network fixed dynamic dynamic dynamic
Cultural trait categorical categorical cardinal categorical

No. of variants/tags fixed fixed fixed variable (growth)

Survival generational generational generational age-based

Selection tournament tournament tournament local truncation

Recombination 2-parent 2-parent cloning multi-parent
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Appendix B: Mathematical Representation of the Basic Agent-Based Model

In this appendix I outline a mathematical representation of the original agent-based model

introduced in Chapter 3, with some commentary. In its most abstract form the model is

an evolutionary algorithm EA, composed of its basic operators, acting on a sequence of

coordination games between pairs of agents i and j:

EA = Mutation◦Recombination◦Selection◦Survival◦Evaluation
(
{Coord(i, j)}tmax

t=1

)
(B.1)

Here t denotes the time step and tmax is the number of rounds in each generation. In

each time step the pair i, j is chosen as follows:

i = X(ω) where X ∼ U(A) (B.2)

j = P t
i

(
{Tk}k∈Ni

)
(B.3)

Here ω is an outcome of sampling from the random variable X distributed uniformly

over the set of agents A. P t
i is then the preference function of agent i in time step t acting

on the set of tags Tk, possessed by some agent k in the agent’s neighborhood Ni.

Furthermore, if we let Tr denote the trait variants of agents i and j, the payoffs from

the coordination game can be expressed as:
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Coord(i, j) =


[1, 1] if Tri = Trj

[−1,−1] otherwise

(B.4)

Moreover, the functional P t
i maps from the set of i’s base-level activations for the tags

Tk at time t in its neighborhood to a single tag T :

P t
i : {BLAt

Tk
}k∈Ni

7→ T (B.5)

T = X(ω) where X ∼ U({Tk|BLATk
> τ}) (B.6)

Here τ is some given threshold. As described in Chapter 3, the base-level activation for

tag T is defined as follows:

BLAT = ln

[
n∑

l=1

t−dl

]
(B.7)

Here tl is the time elapsed since the agent’s l-th positive experience with tag T , the total

number of such interactions is n, and d is a decay parameter. Thus, the state of the model

M at time t can be perhaps most tellingly written as:

M(t) = EA

({
Coord

(
i, P t

i ({Tk}k∈Ni
)
)}tmax

t=1

)
(B.8)

This notation reveals the model’s reliance on the evolutionary algorithm, the coordination

between the agents, and most importantly the guided variation mechanism (here represented

by the time dependent preference mapping as a function of previous experiences) and the

indirect bias mechanism (here represented by the set of tags as the only direct inputs to the

preference mapping).
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Appendix C: List of Abbreviations

ABM – agent-based model

ACT-R – Adaptive Control of Thought–Rational

AI – Artificial Intelligence

CSS – Computational Social Science

CDF – cumulative distribution function

EA – evolutionary algorithm

EC – Evolutionary Computation

ES – evolutionary strategy

GA – genetic algorithm

GP – genetic programming

IEEE – Institute of Electrical and Electronics Engineers

JASSS – Journal of Artificial Societies and Social Simulation

MAG – Microsoft Academic Graph

MASON – Multi-Agent Simulator of Neighborhoods

ODD – Overview, Design Concepts, Details (protocol)

PD – prisoner’s dilemma

RMSE – root-mean-square error
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Erdős, P., & Rényi, A. (1959). On Random Graphs I. Publicationes Mathematicae, 6 ,

290-297.
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