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Extreme weather events can have serious impacts on society, infrastructure, and human

life. Evidence is growing that the frequency and intensity of extreme weather events will

increase in response to rising greenhouse gas concentrations. However, a consensus has

yet to be reached as to whether these changes can be explained by a simple shift in the

underlying probability distribution, or by a change in shape of the distribution (namely vari-

ance) as well. Previous studies have investigated this question by aggregating data across

space, but aggregation requires normalizing data in some way to allow data from different

geographic regions to be combined into a single distribution. Unfortunately, subsequent

studies showed that the normalization procedure introduces biases. This dissertation pro-

poses a new methodology for quantifying changes in variance that is rigorous, multivariate,

and invariant to linear transformation (and thus independent of normalization). The new

methodology is applied to simulations from state-of-the-art climate models and reveals sig-

nificant changes in seasonal- and annual-mean 2m temperature and precipitation in response

to anthropogenic forcing. The models consistently predict decreases in temperature vari-

ance in regions of seasonal sea-ice formation and across the Southern Ocean by the end of

the twenty-first century. While more than half the models also predict significant changes



in variance over ENSO regions and the North Atlantic Ocean, the direction of this change

is model dependent. Models also consistently predict widespread increases to precipitation

variability, particularly in the tropics, extratropics, and polar latitudes. Some models pre-

dict more than a doubling in variance, raising questions about the adequacy of doubling

uncertainty estimates to test robustness in detection and attribution studies.



Chapter 1: Introduction

Prolonged heatwaves and persistent droughts are inherent to our climate system and can

have a serious impact on society, infrastructure, and human life (IPCC, 2012). Observa-

tional records show that as greenhouse gas concentrations increase, global mean temper-

ature also rises, increasing the frequency of extreme weather events. Since the middle of

the twentieth century, most land areas for which there are sufficient observational records

have experienced increases in the frequency and intensity of warm extremes, and decreases

in the frequency and intensity of cold extremes (Collins et al., 2013a; IPCC, 2012). These

changes are consistent with the hypothesis that anthropogenic global warming acts to shift

the distribution of temperature toward a warmer climate. An illustration of this shift is

given by the top panel of fig. 1.1, which was published in the Special Report on Extreme

Events (IPCC, 2012). However, changes in extreme weather could also result from changes

in the variance of climate variability. The purpose of this dissertation is to investigate how

internal climate variability will change in a future climate.

There is a general consensus that as global mean temperature rises, the global hydrolog-

ical cycle intensifies and thus, the amount of rainfall increases (Trenberth et al., 2007). The

moisture-holding capacity of the atmosphere increases at about 7% per degree C. However,

the spatial distribution of that rainfall, as well as the frequency, intensity, duration, and

type of rainfall can be geographically-dependent. For example in the tropics, where atmo-

spheric convection leads to frequent thunderstorms, increased availability of water vapor

leads to more intense precipitation. In the subtropics, or regions of subsidence, increased

temperature leads to greater evaporation and thus enhanced surface drying. This precipita-

tion pattern has been coined the ’rich get richer and poor get poorer’ hypothesis in response

to global warming (Held and Soden, 2006). On the one hand, these changes could be ar-

gued as due to simple shifts in the distribution of precipitation for regional climate zones.
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Figure 1.1: Reproduced from the IPCC Special Report on Extreme Events Chapter 1:
Illustration of the effect on temperature distribution, specifically on extremes, of a warming
climate; (a) effects of a simple shift of the entire distribution toward a warmer climate; (b)
effects of an increase in temperature variability with no shift in the mean.
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For instance, the subtropics receiving less rain could be explained by a simple shift toward

drier weather, but it is also possible that drier conditions could be explained by changes in

variance as well.

The middle panel in fig. 1.1 illustrates the affect of increased variability; notice that

a wider distribution would mean more extreme weather events. The IPCC Special Report

on Extreme Events states that the frequency of heavy precipitation (or the proportion of

total rainfall from a heavy rain event) will likely increase for high latitudes and the tropics

(IPCC, 2012). While at a medium confidence level, droughts are projected to intensify in the

21st century due to reduced precipitation and/or increased evapotranspiration in marginal

convective zones. However, at other latitudes, projected changes in drought intensity are

at a lower confidence (based on model inconsistencies and definitional issues).

While the observational record supports a shift in the mean distribution of tempera-

ture, the variability of temperature might also be changing, however, methods for quan-

tifying global-scale changes in variance have been criticized. For instance, Hansen et al.

(2012) claimed that the distribution of globally aggregated summer temperatures has both

shifted toward a higher mean and broadened. Subsequent studies have supported Hansen

et al. (2012) with respect to a shifting mean, but disagree that changes in variance have

contributed to observed summer mean hot extremes (Coumou and Robinson, 2013; Hunt-

ingford et al., 2013; Rhines and Huybers, 2013). One source of disagreement is the procedure

for normalizing temperatures at different geographic locations before aggregating them to

obtain a distribution. In particular, removing the mean temperature in one period based

on temperature statistics of an earlier period, as done in Hansen et al. (2012), imparts a

positive bias to the variance because the sample mean does not vanish in the study pe-

riod (Rhines and Huybers, 2013; Tingley, 2011). Another complicating factor is that the

number of surface stations in a geographic region has changed over time. In particular,

a decline in station density implies fewer stations for averaging, which in turn leads to

larger variance (Rhines and Huybers, 2013). Finally, differences in trends between different

geographic regions also contributes to differences in variance. After accounting for issues
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related to normalization, trends, and data density, Rhines and Huybers (2013) find that

changes to the variance of summer mean temperature cannot be detected. Consistent with

this conclusion, Huntingford et al. (2013) find that if trends are removed by computing

temperature anomalies relative to an 11-year local running mean, then changes in variabil-

ity of seasonal/annual mean temperature also cannot be detected in observations. Looking

at a high emissions scenario, Coumou and Robinson (2013) show that the exceedences of

extreme monthly mean temperatures during summer are projected to increase and that

those changes can be explained by a shift in the local mean temperature. Their results

imply that local variability does not change.

Cold-season variability also has been investigated. Francis and Vavrus (2012) hypothe-

size that the decline of sea ice extent, due to Arctic warming, causes the jet stream to grow

more wavy, resulting in more frequent cold extremes. If the frequency of cold extremes

were increasing, and one accepts that the frequency of warm extremes also are increasing

(IPCC, 2012), then these two changes cannot be explained solely by a shift in the mean

because if cold and warm extremes are both increasing, this indicates a distribution is

broadening and thus overall variance increases. However, Barnes (2013) showed that trends

in planetary-scale waviness are sensitive to methodology and thus inconclusive. Similarly,

Screen and Simmonds (2013) find that trends in wave amplitude are sensitive to whether

they are measured in the zonal or meridional direction.

Screen (2014) examined a different quantity, namely zonal means of the local variance

of daily temperature over Northern Hemispheric land, and concluded that temperature

variance had decreased since 1979 for fall, winter, and spring. Screen (2014) argues that

this decrease in variance is caused by Arctic amplification. Specifically, cold extremes in the

Northern Hemisphere are invariably associated with winds that blow from the north. Arctic

amplification, however, increases temperatures more in the Arctic than at low-latitudes,

thereby reducing cold advection by northerly winds. Consequently, Arctic amplification

causes the coldest days to warm faster than the warmest days, thus reducing variance.

Consistent with this mechanism, climate models project less variable land temperatures
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Figure 1.2: Reproduced from Boer (2009) fig. 4. The percentage change in the multimodel
standard deviations for the last 150 years of the A1B stabilization simulation, relative to
multimodel preindustrial control simulations, after removal of the forced component. Values
are statistically different from zero at the 1% level with the exception of a narrow band about
the zero lines (see colorbar).

in northern latitudinal bands during fall, winter, and spring, and models with stronger

Arctic amplification tend to exhibit stronger decreases in variance (Screen, 2014). Other

independent studies support this conclusion. For instance, Huntingford et al. (2013) showed

that climate models predict, on average, a decrease in total variability of annual mean

temperature in high emissions scenarios relative to an 11-year running mean, with some of

this decrease associated with reductions in sea-ice cover. Also, Boer (2009) showed that

climate models predict, on average, that the variance of temperature anomalies (relative to

a low-order polynomial in time) will decrease in mid-latitudes and increase slightly in the

tropics (see fig. 1.2).

As is the case with the studies discussed above, temperature anomalies at different

geographic locations are often combined using spatial aggregation or averaging methods in

order to draw a single conclusion about an overall change in variance. In addition to the

loss of information about local changes in variance, these methods must also standardize
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temperature anomalies to remove local differences in the means, variances, and trends prior

to aggregating or averaging. Unfortunately, there is no unique normalization procedure and

so criticisms can be raised about any chosen normalization procedure. Furthermore, there

appears to be no rigorous significance test to evaluate the changes seen from these methods.

An alternate approach to combining data is to compute local changes in variance and

then display maps of those changes. While this approach preserves information about local

changes, it leads to a field significance problem in which the likelihood of the computed

field of changes needs to be quantified relative to the null hypothesis of no local change in

variance. Standard field significance techniques (e.g. Livezey and Chen (1983)) are designed

for correlation maps and it is not clear how to apply them to variance ratio maps to test

for field significance.

This dissertation was motivated by these challenges and sets forth two new methodolo-

gies for assessing spatially distributed changes in internal variability in response to increasing

greenhouse gases. One approach is well-suited for identifying changes in a single mode of

climate variability, while the other approach can determine if multiple components of vari-

ability are changing variance. While changes in variance have been quantified previously

in a univariate or aggregate sense, the tests presented here are distinct, yet complimentary,

approaches that account for spatial and temporal relationships within the chosen domain.

In addition, the tests are invariant to normalization procedures or any other affine trans-

formation of the data. While these tests do avoid certain problems that arise in spatial

aggregation and have well-defined significance measures, they require severely restricting

the dimension of the state space. Since no single test can capture all possible changes in

variance, it is argued that applying these two tests is a reasonable and comprehensive ap-

proach to advancing our understanding of how the climate system responds to increasing

greenhouse gases.
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Chapter 2: Methodology

In this chapter, the data and the methodologies used to investigate changes in internal

variability in a future climate are presented. Also presented, the rationale and techniques

applied to check assumptions made about the data (e.g., that the data is distributed as a

Gaussian or normal). In addition, the techniques applied to derive significance thresholds

are also detailed.

2.1 Data

Global climate model simulations from phase 5 of the Coupled Model Intercomparison

Project (CMIP5) are evaluated for changes in variance. Two types of simulations are

analyzed: preindustrial control runs, in which the forcings do not change from year to year,

and projections based on Representative Concentration Pathway 8.5 (RCP8.5), in which

concentrations and emissions increase such that the radiative forcing peaks at 8.5 W m−2 in

2100 (Collins et al., 2013b). Seasonal- and annual- mean 2m temperature and precipitation

are analyzed. Only the models with at least a 500-year long preindustrial control simulation

and at least three ensemble members for their RCP8.5 simulations covering the period

2006 to 2095 are used in this study. These criteria resulted in a selection of seven global

climate models (see Table 2.1 for details). All data were interpolated onto a common 5 x

5 degree grid, yielding 2592 total grid points for each model. The control simulations were

detrended to remove the effects of model drift. To demonstrate robustness, the simulations

were partitioned and the analyses were performed in each half separately. For instance,

the 500 year control simulations were partitioned such that each half contains 250 years.

Similarly, each member of the RCP8.5 90-yr simulations were divided into a first half (45
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years) and second half (also 45 years). This yields 135 total years (3 * 45) for each half of

an RCP8.5 simulation.

Table 2.1: List of climate models used in this study. Included in the table is the model-
ing center, the long-form model name, and the short-form model name generated for this
investigation and referenced herein.

Coupled Global Cimate Models

Model Center: Model name: Short name:

Canadian Centre for Climate Modelling
and Analysis CCCMA CanESM2 CCCma

Centre National de Recherches
Meteorogiques Centre Europeen
de Recherche et Formation
Avancee en Cacul Scientifique CNRM-CERFACS CM5 CNRM

Institut Pierre-Simon Laplace IPSL-CM5A-LR IPSL

Atmosphere and Ocean Research Institute
(The University of Tokyo), National
Institute for Environmental Studies,
and Japan Agency for Marine-Earth
Science and Technology MIROC5 MIROC5

Met Office Hadley Centre MOHC HadGEM2-ES HadGEM2

Max-Planck-Institut for Meteorology MPI-M ESM-LR MPI

National Center for Atmospheric Research NCAR CCSM4 NCAR

2.2 Statistical Model

To quantify changes in internal variability due to anthropogenic forcing, assume that a

climate variable, such as 2m temperature, t, can be modeled as

t = F + u, (2.1)

where F is the forced response and u is a random term representing internal (or unforced)

variability. The statistical model (2.1) is commonly used in climate change detection and

attribution studies and it assumes that the statistics of internal variability are independent

of time, have a known distribution, and are additive relative to the variability of the forced
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component (e.g., Allen and Tett (1999), Jones et al. (2013), and Imbers et al. (2013)).

To the extent that this statistical model is correct, changes in internal variability due

to anthropogenic forcing can be evaluated using ensemble techniques and then compared

with estimates of internal variability simulated from preindustrial control runs. To see this,

consider an ensemble of simulations initialized from different states but driven by the same

forcings. For such an ensemble, F in (2.1) is the same for different ensemble members,

hence the difference between ensemble member and ensemble mean leads to cancellation of

the forced response (i.e., cancellation of F), in which case, the residual can be considered

internal variability. The residual has slightly less variance than the true internal variability

because the ensemble mean that is removed also contains some internal variability due

to the finite ensemble size. In this work, the ensemble mean from a 3-member RCP8.5

simulation is evaluated and subtracted from each member. The future emissions scenario

is shorthanded as “21C.” Let t21Cs,y,e be a climate variable from the eth ensemble member at

the sth spatial grid point and the yth year. Then, a (slightly damped) realization of internal

variability in the twenty-first century is

U21C
s,y,e = t21Cs,y,e − [t]21Cs,y , (2.2)

where the ensemble mean of the twenty-first century simulations is

[t]21Cs,y =
1

E

E∑
e=1

t21Cs,y,e, (2.3)

and E is the total ensemble size. For the preindustrial control runs, let tctrs,y be a climate

variable from the preindustrial control simulation (“ctr”) at the sth spatial grid point and

the yth year. Since the forcing does not change from year to year in the preindustrial control

run, F in (2.1) is constant. Therefore, internal variability in the control run can be estimated

from the residual about the time mean. Again, the residual has slightly less variance than
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the true internal variability because the time mean contains internal variability due to

finite sample size. A (slightly damped) realization of internal variability in the absence of

anthropogenic forcing is

U ctr
s,y = tctrs,y − t̄ctrs , (2.4)

where the climatological mean is

t̄ctrs =
1

Yctr

Yctr∑
y=1

tctrs,y. (2.5)

2.3 Univariate Test for Changes to Internal Variability

At each grid point, s, changes in variability caused by anthropogenic forcing can be assessed

by testing the null hypothesis that (2.2) and (2.4) were drawn from populations with equal

variances. Standard Analysis of Variance (ANOVA) techniques show that an unbiased

estimate of the variance from a realization of internal variability in a twenty-first century

simulation can be determined from

σ2s,21C =
1

Y21C(E − 1)

Y21C∑
y=1

E∑
e=1

(U21C
s,y,e)

2, (2.6)

and an unbiased estimate of variance in the control simulations is

σ2s,ctr =
1

Yctr − 1

Yctr∑
y=1

(U ctr
s,y )2. (2.7)
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If the samples are independent and identically distributed (iid) as a Gaussian (or normal

distribution), then standard statistical theory states that the statistic

Fs =
σ2s,21C
σ2s,ctr

, (2.8)

has an F-distribution with Yctr−1 and Y21C(E−1) degrees of freedom. The above statistic

will be called the 21C-noise to control ratio. A priori, it is unknown which direction the

internal variability may change, so two-tailed test is used to determine the significance of

the ratio in (2.8). If the null hypothesis is true, this ratio should be close to one, whereas

values far from one indicate that the variances differ and suggest that anthropogenic forcing

changes internal variability. The statistic (2.8) is univariate because it compares variances

at a single grid point. The spatial distribution of the variance ratios, Fs, can be visualized

as a field of individual ratios, referred to as a variance ratio map.

2.4 Null Hypothesis for Field Significance

The F-test defined above determines the significance of changes in internal variability at

individual grid points. The next step is to quantify the likelihood that a collection of

variance ratios, Fs, could have occurred by random chance under a null hypothesis of no

change in local variance and no change in the covariance between grid points. The central

issue in testing field significance is accounting for dependencies between grid points. These

dependencies can be quantified by a covariance matrix. It is proposed that the appropriate

null hypothesis for testing differences between fields of variances is that the respective

distributions have the same covariance matrix. Thus, if Σ21C and ΣCTR are the covariance

matrices of internal variability in the 21C and preindustrial control simulations, respectively,

then the null hypothesis is

H0 : Σ21C = ΣCTR. (2.9)
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In each covariance matrix, the diagonal elements give the variances at different spatial

locations and the off-diagonal elements quantify the degree of dependence (covariance)

between locations. The off-diagonal elements are included in the null hypothesis because

these elements define the dependencies between grid points that are essential to determining

field significance.

Testing hypotheses about covariance matrices requires estimating the covariance matrix

itself. Unfortunately, sample covariance matrices estimated from gridded data will be sin-

gular because the number of grid points far exceeds the number of samples. The standard

approach to this problem is to project the data onto a smaller dimensional subspace and

then apply the test in the reduced space. Let the basis vectors for this subspace be de-

noted e1, e2, . . . , eT . Borrowing terminology from machine learning, the basis vectors will

be called feature vectors, and the space spanned by these vectors will be called the feature

space. These vectors can be collected as column vectors of the matrix

E =

(
e1 e2 . . . eT

)
. (2.10)

The standard choice for feature vectors are the leading empirical orthogonal functions

(EOFs, also known as principal components) of the data. Unfortunately, the EOFs are

model dependent and comparison between models is not straightforward. To avoid these

problems, basis vectors are chosen based on a truncated set of eigenvectors of the Laplace

operator. Laplacian eigenvectors are orthogonal in space and can be ordered by a measure

of length scale. Thus, representing data with a truncated set of Laplacian eigenvectors

is equivalent to filtering out variability on small spatial scales. In addition, Laplacian

eigenvectors depend only on the geometry of the domain and therefore will be the same

for each model. Over a global domain, Laplacian eigenvectors are equivalent to spherical

harmonics. Over limited domains on a sphere, the Laplacian eigenvectors are determined

numerically using the method of DelSole and Tippett (2015).

Time series for the Laplacian eigenfunctions are derived from the pseudo-inverse, Ei,
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which has the property

ETEi = I. (2.11)

It is convenient to use the matrix notation

(
U21C

)
s,y+Y (e−1)

= U21C
s,y,e, (2.12)

where the ensemble members of a 21C simulation have been “stacked” into a single time

series. Similarly, the matrix notation for a control run is,

(
Uctr

)
s,y

= U ctr
s,y . (2.13)

Then, projecting the pseudo-inverse on a twenty-first century simulation yields a matrix

with Y21C years for each T time series, referred to as feature variables,

(
U21C

)T
Ei = F21C . (2.14)

Also, projecting the pseudo-inverse on a control simulation yields a matrix with Yctr years

for each T time series, (
Uctr

)T
Ei = Fctr. (2.15)

Recalling that estimates of a realization of internal variability have zero sample mean,

an unbiased estimate of the covariance matrix of internal variability in a twenty-first century

simulation is

Σ̃21C =
1

Y21C(E − 1)
FT
21CF21C , (2.16)

where the tilde indicates a sample covariance matrix in feature space. Similarly, an unbiased
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estimate of the covariance matrix of a control simulation is

Σ̃CTR =
1

Yctr − 1
FT
ctrFctr. (2.17)

2.5 Discriminant Analysis

Discriminant analysis is an optimization technique that finds a linear combination of vari-

ables that maximize a variance ratio. Let the weights for the linear combination be repre-

sented by the vector q, such that the variates for the 21C and CTR simulations are

r21C = F21cq and rctr = Fctrq. (2.18)

Since both variates are centered, the sample variance is simply the sum square of a variate

divided by the number of degrees of freedom:

σ2q,21C =
1

Y21C(E − 1)
rT21Cr21C =

1

Y21C(E − 1)
qTFT

21CF21Cq = qT Σ̃21Cq (2.19)

σ2q,ctr =
1

Yctr − 1
rTctrrctr =

1

Yctr − 1
qTFT

ctrFctrq = qT Σ̃ctrq. (2.20)

By using (2.18), it follows that the ratio of variances and covariances between the 21C

and CTR can be written as,

λ =
σ2q,21C
σ2q,ctr

=
qT Σ̃21Cq

qT Σ̃CTRq
. (2.21)

If the null hypothesis of equal covariances is true, then λ = 1 for all possible q. Conversely,

if the null is not true, then λ 6= 1 for at least one q. The goal, then, is to find the weighting
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coefficients that makes λ an extremum. The extremum can be found by solving ∂λ/∂q = 0:

∂λ

∂q
=

2Σ̃21Cq

qT Σ̃CTRq
− 2

qT Σ̃21Cq

(qT Σ̃CTRq)2
Σ̃CTRq

=
2

qT Σ̃CTRq

(
Σ̃21Cq− λΣ̃CTRq

)
= 0. (2.22)

Since Σ̃CTR is positive definite, the derivative vanishes if

Σ̃21Cq = λΣ̃CTRq. (2.23)

Equation (2.23) is a generalized eigenvalue problem. Solving this problem yields T distinct

eigenvector solutions, or weighting vectors, denoted as q1,q2, . . . ,qT . The corresponding

eigenvalues, or discriminant ratios, characterize differences between the covariance matrices

and, by convention, are ordered largest to smallest as λ1 ≥ λ2 ≥ · · · ≥ λT . The largest

ratio, λ1, is called the leading discriminant ratio and gives the maximum variance ratio out

of all the possible weighting vectors q. The last ratio, λT , is called the trailing discriminant

ratio and gives the minimum variance ratio out of all possible weighting vectors.

Discriminant analysis is an attractive technique because if the covariance matrices dif-

fer, then the differences can be diagnosed with a set of variates and spatial patterns. In

particular, the variates can be plotted as time series to facilitate a physical interpretation of

the differences. To see this, let the eigenvectors q1,q2, . . . ,qT , obtained from the optimal

weight vectors, be collected into the matrix

Q =

(
q1 q2 . . . qT

)
. (2.24)

The variates, which are time series in this application, can be derived from (2.18). The
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entire collection of variates for the 21C simulation are given by the columns of

R21C = F21CQ. (2.25)

Similarly, the variates for the control simulation are

RCTR = FCTRQ. (2.26)

For each variate, there is a corresponding pattern, or loading vector. To find the loading

vector, let P be an S × T matrix that minimizes

‖U21C −R21CPT ‖2 (2.27)

where ‖A‖2 denotes the Frobenius norm of matrix A. Equation (2.27) presents a standard

least squares problem with the following solution,

P = (U21C)TR21C

(
RT

21CR21C

)−1
=

1

Y21C(E − 1)
(U21C)TR21C . (2.28)

The j’th loading vector is merely the j’th column of P, which is

pj =
1

Y21C(E − 1)
U21Cr21C,j . (2.29)

This expression reveals that each spatial point of the loading vector is simply the sample

regression coefficient (i.e., the slope) between the data at that location and the j’th variate.

It is convenient to normalize the variates to have unit variance in the control simulation.

According to (2.20), this normalization implies

qT
k Σ̃CTRqk = 1. (2.30)
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Because the covariance matrices in the generalized eigenvalue problem (2.23) are symmetric,

the eigenvectors satisfy the orthogonality constraints

QT Σ̃21CQ = Λ and QT Σ̃CTRQ = I. (2.31)

where Λ is a diagonal matrix whose diagonal elements equal the eigenvalues. These orthog-

onality constraints imply that the variates satisfy the constraints

RT
21CR21C = Λ and RT

ctrRctr = I, (2.32)

which in turn imply that the variates r21C,k and r21C,j are uncorrelated for k 6= j, and

similarly, the variates from the control simulation rctr,k and rctr,j are uncorrelated for k 6= j.

Another property of the eigenvalues is that they are invariant to affine transformations

of the data. For instance, centering and normalizing by a standard deviation are special

cases of affine transformations. This invariance property means that any function of the

eigenvalues is also invariant to affine transformations. Additionally, the invariance property

means that the sampling distribution of the eigenvalues are independent of the mean and

covariance matrix of the population. As such, significance thresholds can be estimated by

straightforward Monte Carlo methods, as discussed below. However, significance is also

tested under non-normal assumptions. These procedures are discussed in detail in sec. 2.6.

Finally, as with all statistical optimization procedures, overfitting is a concern when

the number of parameters being estimated (e.g., the eigenvectors) is not a small fraction

of the sample size. To guard against overfitting, conclusions are checked for robustness by

comparing results across independent data sets.

2.6 Deriving Significance Thresholds

In order to evaluate the significance of the eigenvalues themselves, or functions of the

eigenvalues, it is necessary to estimate the sampling distribution of the eigenvalues. Recall
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that eigenvalues are invariant to non-singular linear transformations of the data. Since

any positive definite matrix can be transformed into any other positive definite matrix

(of the same dimension) by a suitable linear transformation, it follows that the sampling

distribution of the eigenvalues is independent of the covariance matrix of the population.

Therefore, one can choose the most convenient covariance matrix, which is the identity

matrix. Accordingly, a random number generator is used to produce normally distributed

and independent and identically distributed (iid) numbers. These numbers are used to

fill up data matrices of the same size as those in (2.14) and (2.15), then the covariance

matrices (2.16) and (2.17) are computed and discriminant analysis is performed. These

steps are repeated 1000s of times to build an empirical distribution of the eigenvalues or

functions of the eigenvalues, from which significance thresholds can be derived.

The above Monte Carlo method assumes a normal distribution. An alternate way to

evaluate significance, with fewer assumptions, is based on permutation methods, in which

the data is repeatedly sampled to build the sampling distribution. For instance, a con-

trol simulation is randomly sampled (without replacement) to create two matrices with

dimensions that match (2.14) and (2.15). Then the covariance matrices (2.16) and (2.17)

are computed and discriminant analysis is performed. These steps are repeated 1000s of

times to build an empirical distribution of the eigenvalues, or functions thereof, from which

significance thresholds can be derived. Comparing significance thresholds derived from the

permutation method and from the Monte Carlo procedure then allows us to check if the

normal and iid assumptions made about the data via the Monte Carlo method, are a good

fit for the data.

The permutation method can also account for auto-correlations. After performing an

auto-correlation test on the preindustrial control simulations (not shown), serial correlations

ranging from 2 - 5 years were discovered that violate the assumption that the data are

independent in time. To account for such autocorrelations, the permutation procedure

samples consecutive blocks of data in order to preserve the autocorrelation structure. By

adjusting the block size from 1- to 5-year blocks, serial correlations could be accounted for
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when deriving the significance thresholds.

2.7 Union-Intersection Test

A standard test for differences in covariance matrices is the union-intersection test (Flury,

1985). This test is based on evaluating the significance of the leading and trailing discrim-

inant ratios, λ1 and λT . In essence, H0 in (2.9) is rejected if λ1 is too large or λT is too

small (i.e., if the ratio is far from 1 in either direction). In this application, a significant λ1

implies anthropogenic forcing increases internal variability, while a significant λT implies

anthropogenic forcing decreases internal variability. If a change in variance is detected, the

associated eigenvector can be used to derive a spatial pattern and time series that explains

the difference, thereby facilitating visualization and physical interpretation of those changes

in internal variability.

The union-intersection test is well suited for identifying changes in variance caused by

a single component of internal variability. For example, if anthropogenic forcing causes a

global-scale ENSO teleconnection pattern to change variance, then the union-intersection

test has the potential to detect this change. Shown in the following chapter, the results from

applying the union-intersection test to CMIP5 simulations led to conclusions that were, for

the most part, sensitive to truncation and thus difficult to interpret. In addition, projecting

the discriminants onto an independent data set led to variance ratios that were mostly

marginally significant. The fact that the leading or trailing discriminant ratios tended to

be insignificant, or only marginally significant, implies that changes to internal variability

in a single component are weak or non-existent. This result, however, does not imply that

internal variability does not change. For instance, numerous independent modes might

change their variances, but the change in any individual mode might be too small to satisfy

statistical significance using the union-intersection test. Therefore, a test that can detect

relatively small changes in variance that might be “spread” across many independent modes

is needed.
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2.8 Divergence

Another measure of the difference between two covariance matrices is the following:

DT =
1

2
tr
[
(Σ̃

−1
21C + Σ̃

−1
CTR)(Σ̃CTR − Σ̃21C)

]
. (2.33)

This measure will be called divergence. For Gaussian distributions, this measure can be

derived from the Kullback-Leilber Divergence, which itself is fundamental to a wide range

of applications, including information theory, finance, coding theory, and quantum entan-

glement (Cover and Thomas, 1991; Jaeger, 2007; Kullback, 1968). An equivalent expression

for divergence can be written in terms of a sum of discriminant ratios,

DT =
1

2

T∑
i=1

(
λi +

1

λi
− 2

)
, (2.34)

where λi is the ith eigenvalue from (2.21) (see Kullback, 1968, ch 9 Eq. 6.7, and note the

means are zero). Notice that if the covariance matrices are equal, then all the eigenvalues

equal 1 and DT = 0. More specifically, the function λ + 1/λ is a minimum when λ = 1

and becomes large when λ is either very large or close to zero because the function involves

both the eigenvalue and its inverse. In contrast to the union-intersection test, DT depends

on the whole spectrum of eigenvalues up to the cutoff T . Thus, changes in variance that

are “spread” across many independent feature variables will inflate individual eigenvalues

and thereby accumulate in the sum to produce a large value of DT .
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Chapter 3: Results

In this chapter, the methodologies presented in chapter 2 are applied to model simulations of

temperature and precipitation, for annual and seasonal means, to assess changes in internal

variability in response to anthropogenic forcing. Changes in the absence of anthropogenic

forcing are also investigated and discussed. In addition to global-scale changes, changes on

sub-global scales, such as land and ocean only domains, are also presented.

3.1 Annual Mean 2m Temperature

3.1.1 Changes in Internal Variability Due to Anthropogenic Forcing: Global

The local changes in internal variability of annual mean 2m temperature due to anthro-

pogenic forcing in a future climate are shown in fig. 3.1 for the 7 models investigated in this

study (see Table 2.1 for model long-form names). The changes are quantified by the ratio

of variance of twenty-first century residuals (relative to an ensemble mean) from an RCP8.5

emissions scenario over the variance of a preindustrial control run (for the respective model).

Insignificant values at the 10% significance level (according to a standard F-test) are not

colored. Along with the model name, in the title of each F-map is the percentage of total

grid points that are deemed significant for that model.

All the models project significant local changes in internal variability for their RCP8.5

emissions scenario (relative to the model’s control variability). Statistically speaking, one

could expect to find 10% of the area (or about 25 grid points, in this study) to be sig-

nificant just by random chance, but clearly fig. 3.1 shows more than that. In particular,

the models show between 39% (NCAR) and 66% (MIROC5) of their respective total area

are significantly changing variance. Grid points where the ratios are greater than 1 (warm
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colors) indicate 21st century variability increases in response to anthropogenic forcing. For

instance, a value of 2 indicates that variance is projected to double relative to control vari-

ability. Conversely, ratios less than 1 (cool colors) indicate anthropogenic forcing decreases

variability. Consistently, each model projects decreases in variability in regions of seasonal

sea-ice formation such as the Southern Ocean, the seas around Greenland, and the Bering

Sea. This decrease could be explained by the loss of sea-ice due to a warmer future climate;

sea-ice loss exposes the underlying sea surface, which has a larger effective heat capacity

relative to sea-ice, thereby reducing temperature differences with the overlying atmosphere.

Huntingford et al. (2013) and DelSole et al. (2013) also noted variance decreases associated

with areas of sea-ice formation.

Other local changes in variance are model dependent. For instance, most models project

significant changes in variability in the tropical oceans and in regions of the El Niño Southern

Oscillation (ENSO), but the direction of these changes is model dependent. The North

Atlantic Ocean exhibits significant changes in variance, but again, the direction of that

change is also model dependent. At the North Pole, a majority of the models indicate

increases in variability. There are several interesting, smaller-scale changes, like those in

the Amazon Basin, however, the scale and model-dependent direction of these changes

makes them difficult to interpret.

Climate variability is often expressed in terms of “modes” of variability. Accordingly,

the above changes in variance are investigated to determine if they can be explained by a few

patterns of internal variability. Instead of guessing a pattern and investigating its variability

as a function of forcing, the pattern that maximizes the variance ratio is identified first,

and then the union-intersection test is applied to assess the statistical significance. It turns

out, however, that the union-intersection test led to results that were difficult to interpret

because the significance of the leading (or trailing) ratios were marginally significant for

most models. For instance, fig. 3.2 shows a representative example for one model, CCCma.

The maximized ratio as a function of the accumulated number of Laplacian eigenvectors

is shown by the blue circle-dashed curves, and the corresponding 5% and 95% significance
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thresholds are shown as solid blue curves (derived from Monte Carlo techniques). It can be

seen that the maximized ratio is sometimes inside and sometimes outside the significance

band, depending on the number of Laplacian eigenvectors. This behavior was deemed to

characterize marginally significant, sensitive, and/or not robust results. The minimized

ratio is shown in red and exhibits similar, marginally significant behavior. Note that the

solid curves are monotonic functions of the number of Laplacians. This monotonic behavior

reflects the impact of overfitting, in other words, the variance ratio moves farther from 1

as a mathematical necessity, even under a no-change hypothesis, because each additional

Laplacian provides extra freedom to fit differences in variances.

To confirm the lack of robustness, the variance ratio computed from the first half of the

21C and the first half of the control simulation was maximized (via discriminant analysis),

then the resulting weights were projected onto the second halves of a 21C and control simu-

lation. The resulting variance ratios computed from the independent data are shown as the

square-dash curves in fig. 3.2. The blue and red square-dash curves show the independent

maximized and minimized ratios, respectively. The corresponding significance lines (black

straight dashed lines) were derived from an F-distribution at the 10% significance level. It

is clear that the independent ratios also move in and out of the significance thresholds as a

function of the number of Laplacian eigenvectors. Thus the component that maximized the

variance ratio in the first half of the data set exhibits no significant change in variance in the

second half of the data, consistent with the conclusion that the discriminants are not robust.

Similar (marginally significant) results occurred for all the models in this study. These re-

sults indicate that the differences in internal variability of annual mean 2m temperature

that were displayed in fig. 3.1, cannot be explained by changes in any single component of

climate variability. This result suggests that large scale components of variability, such as

ENSO, are not significantly changing variance.

However, this result does not imply that internal variability is not changing in response

to anthropogenic forcing. For instance, changes in individual components could be small and

insignificant on an individual basis, but large and significant in an overall aggregate sense.
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As explained in sec. 2.8, an alternate multivariate approach for measuring variance changes

is based on divergence. More precisely, divergence measures the difference in covariance

matrices and vanishes if and only if all covariances are identical.

The divergence of annual mean 2m temperature in the model simulations is shown in

fig. 3.3. Again, to check robustness, the divergence procedure was repeated on two separate

halves of the 21C and preindustrial control simulations. The divergence for the first half is

given by the blue curve and the divergence results for the independent half is given by the

red curve. Also plotted in each panel is a yellow-brown curve, the relevance of which will

be explained in the next section. The conclusions hold for truncations beyond 40, but for

clarity a cutoff was chosen. Both divergence curves lie above the solid significance curves

(at a 10% significance level), except for one model, IPSL, which indicates that the first half

is marginally significant for this model. In LaJoie and DelSole (2016 accepted), the same

divergence test was applied, however in that study, the discriminants were calculated from

empirical orthogonal functions (EOFs) instead of Laplacians. With EOFs, both divergence

results were significant for IPSL (fig. 3 LaJoie and DelSole (2016)). This difference reflects

that changes in variability project more strongly on EOFs compared to Laplacian eigenvec-

tors and, with regard to IPSL, this difference highlights that changes in variability in that

model are more small scale relative to other models.

The impact of overfitting also can be seen in the monotonic increase of the significance

curves as a function of the number of Laplacians used in the computation. However notice

that for each model, the actual divergence increases faster than that of the significance

curves, indicating that the change in variance is larger than expected by random chance.

Note also that changes are larger in the second half of the century for all but one model

(MIROC5), indicating that simulated changes in internal variability are generally larger in

the second half of the 21st century as compared to the first half (as one would expect).

The significance thresholds (at 10%) shown in fig. 3.3 were computed three different ways

with the intent to test the sensitivity of certain assumptions about the population. First, the

significance thresholds were estimated by Monte Carlo methods in which independent and
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identically distributed (iid) random numbers were drawn from a normal distribution (solid

brown curve). The upper and lower 5% significance thresholds are hard to see because they

fit nearly perfectly beneath the significance threshold derived from a permutation method

using a 1-year block size (solid black curve). Recall that the permutation method randomly

draws years in a control run to construct sample covariance matrices and therefore assumes

only that the data are independent in time and identically distributed; it does not make the

assumption that the data are normally distributed. The similarity between the brown and

black significance thresholds implies that the assumption that the control data is normally

distributed is reasonable. On the other hand, differences between the thresholds derived

from the permutation method with 1-year blocks and 5-year blocks (solid gray curves)

indicates that internal variability in the leading Laplacians are autocorrelated to some

extent. However, it is important to note that even after accounting for auto correlations,

changes in internal variability in response to anthropogenic forcing are much greater than

those expected under a no-change null hypothesis, even when serial correlations are present:

this is indicated by noting that the blue and red curves are above the gray curves.

A final remark: the results in fig. 3.1 show that two models (MIROC5 and MPI) exhibit

widespread areas in which the variance of internal variability more than doubles by the end of

the twenty-first century. Some detection and attribution studies artificially inflate a model’s

internal variability by a factor of two to assess the robustness of uncertainty in the estimates

of internal variability (Hegerl et al., 2007). Such studies also assume that the statistical

properties of internal variability do not change in response to climate forcing. Thus, for

these models, not only is the assumption of constant internal variability incorrect, but

doubling the internal variability may not be sufficient to account for changes in variability

due to anthropogenic forcing.

3.1.2 Changes in Control Variability

Previous studies find that internal variability can change on multicentennial timescales even

in the absence of anthropogenic forcing (e.g., Wittenberg, 2009). It is reasonable, then, to
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question if the projected changes in variance for the 21C might occur “naturally”. This

question is investigated by using the methods discussed in chapter 2 to quantify changes

in variance solely within preindustrial control simulations. In particular, a 500-yr control

simulation is partitioned such that there are two segments, each with 250-years. The local

differences in variance between the segments can be quantified with an F-test. The resulting

F-ratios are shown in fig. 3.4 and insignificant values (according to an F-test distribution

at a 10% significance level) are masked out. The color scale and tick marks are the same as

those in fig. 3.1 and can be interpreted as the percent change in variance between the two

halves of a given control run. The percent of total grid points deemed significant is given in

the title of each F-map. There are numerous (locally) significant changes for each model.

In general, one might expect to find 10% of any given field of F-ratios to be significant just

by random chance and for two models (CCCma and NCAR) the percentage of significant

grid points falls into this random category. However, for the remaining 5 models, fig. 3.4

shows more changes than would be expected by random chance.

Recall that an F-test assumes the data are normally distributed and iid. To determine if

the differences in variance could be explained by non-normal behavior or serial correlations,

significance thresholds were derived for each grid point individually using a permutation

method with a 1-yr and a 5-yr block size. Recall that the permutation method with a 1-yr

block only assumes iid, but not normal. Permuting with a 5-yr block does not make either

the normal or iid assumption and can account for autocorrelations. After applying the

1-yr permutation method, the significance thresholds at each grid point were close to those

derived from an F-distribution (not shown). Repeating permutation with a 5-year block,

again revealed little difference relative to an F-distribution. As such, the assumptions made

by the F-test were deemed appropriate for these control simulations, even after accounting

for possible autocorrelations by resampling with 5-yr blocks.

The union-intersection test was applied to determine if the changes displayed in fig.

3.4 could be explained by changes in a single component of variability. The resulting

leading and trailing discriminant ratios are given in fig. 3.5 (log plot). Also shown are the
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significance thresholds (at 10%) derived from Monte Carlo techniques. A majority of the

models indicate that the significance of the leading discriminant is sensitive to truncation,

and with the exception of one model, the trailing ratios are not significant (MIROC5 dark

green curve). These results indicate that the local changes in variance displayed in fig.

3.5 cannot be explained by changes in a single component of variability (for a majority of

models).

Next, the divergence was computed for two segments of each control run. The resulting

values are shown for each model in fig. 3.6. Also shown are the significance thresholds

via permutation methods (at 10%). For most of the models, the divergence curves lie

just above the 1-yr significance curves (black), indicating that there are some significant

changes in variance present in these control runs. However, for all but two models (IPSL

and HadGEM2), those curves become insignificant when compared to the 5-yr significance

curves (gray). This finding contrasts with conclusions from LaJoie and DelSole (2016),

in which the same analysis was performed, however as already noted, LaJoie and DelSole

(2016) used EOFs instead of Laplacians. In that study, the divergence computed for some

control runs were significant (CCCma, CNRM, IPSL, HadGEM2, and MPI), even after

applying the thresholds derived from the 5-yr permutation method. Nonetheless, as noted

by the authors, changes in control variability were considerably less than changes in the

presence of anthropogenic forcing.

Having examined changes in the absence of anthropogenic forcing, and finding that

there are some locally significant changes, it is worth comparing comparing figs. 3.1 and

3.4 and noting that changes in the presence of anthropogenic forcing are double or triple

the changes that occur in the absence of anthropogenic forcing. However, this comparison

is not perfect because the sample sizes differ. To explore this fully, the control simulations

were sampled to mock the dimensions of (2.16) and (2.17) and the divergence of these mock

covariance matrices was evaluated for each model. The resulting divergence as a function

of accumulated Laplacians is plotted as the yellow-brown curve in each panel in fig. 3.3.

Comparing this curve with the other divergence curves reveals that changes in the presence
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of anthropogenic forcing (red and blue curves) are much greater than changes that occur

naturally in the unforced climate system (yellow-brown curve), even when the sample sizes

are the same. Also note that most of the yellow-brown curves lie below the gray curves in

each panel, indicating that the unforced changes estimated from the smaller sample size in

that model would still not be significant after accounting for autocorrelations.

3.1.3 Changes in Internal Variability: Sub-global Domains

The result of applying the union-intersection test to different geographic domains is shown

in fig. 3.7. Each panel in the figure displays the leading discriminants for each model as a

function of the number of Laplacians for the specified domain, where the domain is identified

in the title of the panel. Most domain names are self explanatory, others names, such as

NH, NALAND, and NASS, are shorthand for the Northern Hemisphere, the land area of the

North American continent, and the sea surface area defined by the North Atlantic Ocean,

respectively. For details on each domain, please refer to Table 3.1. Different domains are

investigated to gain further insight into the source of changes in variance and to identify

changes that may occur on sub-global scales, but not project on the global domain. Note

that the global domain has been included and although these results have already been

discussed (and shown), the panel is provided again for convenience. In short, the figure

shows that there are no robustly significant leading discriminants in any domain for annual

mean 2m temperature. There are also no significant trailing ratios (not shown). It is worth

noting that one model shows significant ratios for nearly every truncation in each domain

(MIROC5 dark green). These results suggest that while there are many locally significant

changes in variance for each model, as computed by an F-test and displayed in fig. 3.1,

significant changes to any single component of variability cannot be detected within the

global or sub-global domains considered in this study.

Divergence was computed from the same domain-specific data and the results from the

second half of the 21C are provided in fig. 3.8. The conclusions for the first halves are
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generally consistent (not shown), with exceptions discussed shortly. The same domain-

name conventions apply and the global domain results are repeated for convenience. While

significant changes in variance for a global domain have already been discussed, this figure

shows that there are also robust significant changes in variance detected in the ocean, NH,

and NASS domains. For the remaining domains: land, NHLAND, and NALAND, the

changes are significant for a majority of models. These results suggest that global-scale

changes in the variability of annual mean 2m temperature are predominantly influenced by

changes over ocean-surfaces. Changes in variance over land-only surfaces are more robust

in the second half of the 21C, indicating that land-based changes get stronger in time as

greenhouse gas concentrations increase.

3.2 Seasonal Mean 2m Temperature

The above sections considered changes in variability of annual means. Now changes in

individual seasons is considered. The local changes in internal variability of seasonal mean

2m temperature are plotted in the following figures: JFM in fig. 3.9, AMJ in fig. 3.10,

JAS in fig. 3.11, and OND in fig. 3.12. The seasonal mean changes are quantified by

an F-test between twenty-first century residuals (relative to an ensemble mean) from an

RCP8.5 emissions scenario and a preindustrial control. Insignificant values (at the 10%

significance level) are not colored. Each season generally shows the same spatial pattern of

change as was quantified by the annual mean (and displayed in fig. 3.1). For example, the

robust annual mean decreases in variance found in regions of sea-ice formation appear to

be largely explained by the changes in OND, JFM, and AMJ. Other regional and tropical

ocean changes remain model-dependent, with the possible exception of summer (fig. 3.11),

in which a majority of models indicate increases in either the tropical or extratropical

latitudes.

Changes in the polar latitudes are model-dependent. HadGEM2, for instance, shows

few to no significant changes in variance in its annual mean at polar latitudes, but the
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seasonal-mean analysis reveals that there are large decreases in variance at polar latitudes

in OND, followed by large increases in variance in JAS (see figs. 3.12 and 3.11, respectively,

for the HadGEM2 panels). The lack of annual mean changes at polar latitudes for this

model might reflect a cancellation between the opposing changes detected in OND and JAS.

CNRM shows strong increases in annual mean variability for the northern-most latitudes

and the seasonal mean analysis indicates that those changes are likely influenced by the

strong changes in JAS; in fact, in JAS the variance doubles in some of those latitudes.

Again, raising questions about the adequacy of doubling uncertainty estimates. CCCma

shows many more widespread changes in each seasonal mean, however, the direction of these

changes is seasonally-dependent as such, the annual mean F-map shows comparably fewer

local changes in variance. The widespread increases in variance in the annual mean F-map

for IPSL can be linked to the increases in local variance in JFM. Both MIROC5 and MPI

project increases in variance in tropical and subtropical latitudes. This dominant structure

appears in each season for both models. Differences in the direction of change occur in the

northern-most latitudes for the transitional seasons. For NCAR, the annual mean structure

is consistent with each season, however, there are significant decreases in variance which

appear in AMJ and JAS that are not evident in this model’s annual mean variance ratio

map.

The union-intersection test was applied to these seasonal-mean data. There are no

robustly significant leading or trailing discriminants for any season or domain for 2m tem-

perature. Figure 3.13 is provided as a representative example of the results that led to

this conclusion. One model is again consistently significant (MIROC5 dark green). Over-

all, however, these results indicate that significant 21C changes in variance in any single

component of variability cannot be identified in the seasonal mean 2m temperature data.

Divergence was computed for the seasonal mean data and the results for each domain

are given in separate, season-specific figures: JFM in fig. 3.14, AMJ in fig. 3.15, JAS in fig.

3.16, and OND in fig.3.17. In each seasonal figure, the models robustly agree on significant

changes in variance in the global and ocean domains. The models also robustly agree on
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significant changes in variance in the NH in every season, except JAS, in which case only

the second half of the century is robustly significant. The other domains appear to exhibit

seasonally-dependent changes. For example, in the land-only related domains, the JAS and

OND seasons show more robust changes when compared to JFM and AMJ for the same

domains.

3.3 Annual Mean Precipitation

The previous sections examined changes in temperature variability due to anthropogenic

forcing. This section examines changes in precipitation variability.

3.3.1 Changes in Internal Variability Due to Anthropogenic Forcing

The local changes in the internal variability of annual mean precipitation between twenty-

first century residuals (relative to an ensemble mean) from an RCP8.5 emissions scenario

and a preindustrial control run are shown in fig. 3.18. The changes are quantified by an F-

test and insignificant values (at the 10% significance level) are not colored. Along with the

model name, in the title of each F-map is the percentage of significant grid points. Again,

grid points where the ratios are greater than 1 (warm colors) indicate increases in response

to anthropogenic forcing and ratios less than 1 (cool colors) indicate anthropogenic forcing

decreases variability.

All the models project locally significant changes in variance. A general comment about

the changes displayed in fig. 3.18: there appears to be robust agreement that the changes

in variance are in the positive direction for most of the globe, in other words, the internal

variability of annual mean precipitation is projected to increase in the 21C. Consistently at

the polar latitudes, the models project significant increases in variance. A majority of the

models project significant increases in the tropical Pacific Ocean, as well. For the most part,

the models show that middle-latitudes are also projected to see increases in the variability

of annual mean precipitation. While the results primarily suggest that significant increases

in variance are widely projected for the 21C, there are some equatorial latitudes in the
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North Atlantic Ocean in which a majority of models project decreases in the variability of

annual mean precipitation. The direction of other changes, like those in the Sahel of Africa,

are model dependent.

To determine if these changes could be explained by changes in a single (or a few)

components of climate variability, the union-intersection test was applied to the annual

mean precipitation data. The leading discriminants for each model as a function of the

number of Laplacians, are displayed for specified domains in fig. 3.19. For the global

domain, the leading discriminants are consistently significant after T = 35 (marked by

vertical red line), for 5 out of 7 models. These results indicate that a single component

of variability significantly changes variance. The trailing ratios were not significant (not

shown). Recall that weighting vectors q can be used to construct a time series and a spatial

map that help visualize the changes detected in that component. When the leading ratios

are deemed not sensitive to truncation, it turns out that the leading variates are also not

sensitive to truncation.

To demonstrate this finding, fig. 3.20 shows a representative set of leading variates from

one ensemble member for one model at T = 35, however, the individual variates are difficult

to see because they are virtually identical. This finding was true for the other ensemble

members (not shown) and for all the ensemble members in the other models as well (also not

shown). This figure is provided to illustrate that the variates are not sensitive to choosing

truncation T = 35. Shown in fig. 3.21 is a segment of the corresponding time series for both

the significant control variate (blue curve) and the significant 21C variate (one ensemble

member; red curve) at T = 35. This figure is provided to demonstrate that variance appears

to increase with time, i.e., the variance of the 21C (red curve) is greater than the variance

of the control (blue curve). This finding was also true for the same significant component

identified in the other models (not shown).

Recall that discriminant analysis finds a linear combination of time series that maximize

(or minimize) a variance ratio. The resulting time series, called the variates (eq. (2.25)),

can then be used to construct regression patterns to describe the spatial structure of the
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component. As shown above, the variates are not sensitive to the number of Laplacian

eigenvectors, hence the regression pattern derived from the variates is also insensitive to

truncation. The regression pattern for the component that increases in variance over the

global domain is displayed for each model in fig. 3.22. Note that the phrase ‘Not Significant’

appears on the map of two panels, identifying that the conclusions for that model were

sensitive to truncation (see CNRM and NCAR). In general, the spatial patterns are confined

to the tropical Pacific Ocean, with some expansion to the subtropical and middle latitudes.

These results suggest that on a global-scale, a significant change in the variability of annual

mean precipitation may occur in the tropical Pacific Ocean. Based on these findings, it

may not be surprising that the leading discriminants are also significant in the ocean-only

domain (see OCEAN panel in fig. 3.19). The leading pattern that explains the significant

component of change in the ocean domain (at T = 30) is displayed for each model in fig.

3.23. Note that conclusions were sensitive to truncation for the same two models (CNRM

and NCAR). The models generally agree on a dipole of changes in the western portion of

the equatorial and subtropical Pacific Ocean. A few models show changes extend toward

the middle latitudes. Other changes, like those in the Indian Ocean, are model-dependent.

Divergence was computed for the annual mean precipitation data and those results are

shown in fig. 3.24. Of particular notice, the robustly significant results for the NASS

domain, indicating that several components are significantly changing their variance in

that area. The divergence results also indicate that significant changes in variance can be

detected in the NALAND domain. In the land, NH, and NHLAND domains, all but one or

two models indicate significant changes in variance. In all the domains, the changes in the

second half of the 21C are robust among models.

3.3.2 Changes in Control Variability

As previously discussed, studies have shown that significant changes in the variability of

annual mean temperature can occur in the absence of anthropogenic forcing. To determine if

this may also be true in the annual mean precipitation data, the 500-yr control simulations
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were partitioned into equal halves and the local differences in variance were quantified

with an F-test. The resulting F-ratios are displayed for each model’s precipitation control

simulation in fig. 3.25. The percentage of significant grid points is given in the title of

each F-map and, speaking broadly, those percentages are close to what one might expect

due to random chance (about 10% of the total area). Also, the spatial distribution of the

significant grid points lacks structure, i.e., they appear to be randomly scattered throughout

the domain. However, there are two models (MIROC5 and MPI) which show that about

20% of their total area is deemed to be significantly changing variance and the changes

appear to be concentrated in the tropical Pacific Ocean.

To determine if these changes could be explained by a single component of climate

variability the union-intersection test was performed on these data. Figure 3.26 shows the

leading and trailing discriminant ratios for the global domain. It is interesting to note

that MIROC5 (dark green) exhibits significant trailing ratios for all truncations, indicating

that the tropical-Pacific “zone” of decreasing variance displayed in it’s F-map can likely be

explained by changes in a single component of climate variability in this model. Similarly,

MPI (dark blue) exhibits significant leading ratios for all truncations beyond 1. These

results indicate that the tropical-Pacific “zone” of increasing variance displayed in MPI’s

F-map, could likely be explained by changes in a single component of climate variability

present in that model. The union-intersection results imply that for these two models, the

local changes displayed in the F-map are likely explained by changes in a single component of

variability, however, while these results are noteworthy and demonstrate a straight-forward

result from applying the union-intersection test, these findings are not robust among the

models, as such, the corresponding spatial patterns that explain these significant ratios are

not shown. Divergence was also applied to the control discriminants and those results are

shown in 3.27. With the exception of MIROC5 and MPI, the other models indicate variance

in the control simulations is not significantly changing in an aggregate sense (although single

isolated components may experience significant changes).
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3.4 Seasonal Mean Precipitation

The local changes in the internal variability of seasonal mean precipitation between twenty-

first century residuals (relative to an ensemble mean) from an RCP8.5 emissions scenario

and a preindustrial control run are shown in the following figures: JFM in fig. 3.28, AMJ

in fig.3.29, JAS in fig. 3.30, and OND in fig. 3.31. The local changes are quantified by an

F-test and insignificant values (at the 10% significance level) are not colored. Each season,

respectively, shows generally the same spatial pattern of changes as their annual mean coun-

terparts (displayed in fig. 3.18). For example, the robust increases in variance for middle

and polar latitudes are evident in every season. Some differences include that in summer,

fig. 3.30, HadGEM2 displays tropical Pacific changes that are in a different direction than

its annual mean counterpart. Also, generally speaking across models, the changes in AMJ

are weaker compared to the annual mean (but still significant). In OND, fig. 3.31, the gen-

eral pattern of increased variance at polar latitudes is most pronounced. Also, in contrast

to the annual mean, in OND most of the models agree about the direction of change along

the tropical Pacific; suggesting increases in variance are projected for precipitation in that

region for autumn in a warmer climate.

Other differences between the annual and seasonal means, can be found in the tropics

and extratropics. For instance in JFM, fig. 3.28, there are comparably more extratropical

latitudes showing decreases in variability, especially in the lower section of the North At-

lantic Ocean, in which case, the decreases are robust across models. Similar decreases are

also found in AMJ for 5 out of 7 models (fig. 3.29).

To determine if these changes could be explained by changes in a single (or a few)

component(s) of climate variability, the union-intersection test was performed on these

data. In two cases, the leading discriminants were significant. Figure 3.32 shows the leading

discriminants as a function of the number of Laplacians for JAS in the global domain and

JFM in the land-only domain. The trailing ratios were not significant (not shown). In the

global domain for JAS, the ratios were significant for 5 out of 7 models after T = 15 (marked

35



by a vertical red line). In the land-only domain for JFM, the ratios were significant for 6

out of 7 models after T = 50 (marked by a vertical red line).

The time series associated with the leading variates for the significant components indi-

cate that variance increases with time (not shown). The leading pattern that explains the

significant component of change in the global domain for JAS is displayed for each model

in fig. 3.33. Note that the phrase ‘Not Significant’ appears on the map of two panels,

identifying that the conclusions for that model were sensitive to truncation (see CNRM

and NCAR). In general, the spatial patterns are confined to the tropical Pacific Ocean,

with some expansion to the subtropical and middle latitudes. These results suggest that

significant changes in the variability of JAS mean precipitation may occur in the tropical

Pacific Ocean in the 21C, which supports conclusions from the annual mean study that

were displayed in fig. 3.22.

The leading pattern that explains the significant component of change in the land-only

domain for JFM is displayed for each model in fig. 3.34. Note that conclusions were sensitive

to truncation for only one model, HadGEM2. In general, the spatial patterns are confined

to the subtropical latitudes in both hemispheres, suggesting that significant changes in the

variability of JFM mean precipitation over subtropical land-areas are projected for the 21C

in these models.

Divergence was also computed for the seasonal mean precipitation data. Some results

were consistent not only across models, but also across season and domain. For instance,

the NASS domain was significant for every season; suggesting the models robustly agree

on 21C changes in the variability of seasonal mean precipitation over the North Atlantic

Ocean. For practical reasons, these results are demonstrated for only two seasons, JFM

and OND; the results are similar for AMJ and JAS, but not shown. For JFM, JAS, and

OND, the changes in the NHLAND domain were also robustly significant. In addition, in

the JFM season, every domain was significant for all 2nd-halves, and significant for at least

5 out of 7 models in all the 1st-halves (see fig. 3.35). For OND, fig. 3.36, changes were

robust in the following domains: ocean, land, NHLAND, and NASS (as previously noted).
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CCCma: Sig Area 39.5% CNRM: Sig Area 41.8% IPSL: Sig Area 52.4%

MIROC5: Sig Area 66.2% HadGEM2: Sig Area 44.2% MPI: Sig Area 57.1%

NCAR: Sig Area 38.9%

0.05 0.1 0.2 0.35 0.6 1 1.6 2 2.7 4.5 7

Figure 3.1: Change in internal variability of annual mean 2m temperature due to anthro-
pogenic forcing, as quantified by the local ratio of variance in the 21st century (21C) to
preindustrial control internal variability in each model (via eq. (2.8)). The variance of
internal variability during the 21C is computed from residuals about the ensemble mean of
a three member ensemble using a high emissions scenario (RCP8.5) for the 90-year period
from 2006 to 2095. The variance of internal variability for preindustrial forcing is computed
from the same model’s 500-year control simulation. A ratio larger than one indicates inter-
nal variability increases in the 21C. Insignificant values (according to the F-test distribution
at a 10% significance level) are masked out (i.e., not colored). Total percent of significant
grid points is listed in the title along with the model name.
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21CNtC UIT Example of Marginal Lead & Trail Log Ratio Annual Mean TAS: CCCma

Figure 3.2: An example of results from applying the union-intersection test to the discrim-
inant 21C-noise to control ratios for the annual mean 2m temperature (TAS) data set is
shown for one model: CCCma. The log of the leading discriminant ratios, as a function of
accumulated Laplacians, are given by the blue circle-dash curve. The analysis was repeated
in an independent data set and the results for the independent leading ratios are given by
the blue square-dash curve. The log of the trailing discriminant ratios are given by the
red circle-dash curve and the trailing ratios from the independent analysis are given by
the red square-dash curve. Also shown are the upper and lower 5% significance thresholds
computed from Monte Carlo techniques (blue and red, respectively) and the significance
thresholds derived from an F-distribution (straight dashed black lines). The results appear
to be sensitive to truncation.
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First Half 21C Noise to Control
Second Half 21C Noise to Control
Control Sampled as 21C Noise to Control
Significance Threshold via Monte Carlo
Significance Threshold 1−yr Permutting
Significance Threshold 5−yr Permutting
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Figure 3.3: The divergence DT of internal variability of annual mean 2m temperature
between 21st century and preindustrial control simulations, as a function of the number of
Laplacians included in the computation. The divergence for the first half of the 21st century
and first half of the preindustrial control run are given by blue curves and the remaining
halves are given by red curves. The yellow-brown curves show the divergence within a
climate model’s preindustrial control simulation, in particular, with dimensions that match
those of the other divergences. Also shown are the upper and lower 5% significance threshold
computed from Monte Carlo techniques (black curve) and permutation techniques; 1-yr
(gray curve) and 5-yr (brown curve). Significant results lie outside the solid curves.
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CCCma: Sig Area 10.1% CNRM: Sig Area 14.6% IPSL: Sig Area 14.2%

MIROC5: Sig Area 25.2% HadGEM2: Sig Area 18.3% MPI: Sig Area 23.5%

NCAR: Sig Area 10.1%

0.05 0.1 0.2 0.35 0.6 1 1.6 2 2.7 4.5 7

Figure 3.4: Local changes in internal variability of annual mean 2m temperature between
two non-overlapping, 250-year segments of each model’s preindustrial control simulation.
Insignificant values (according to an F-test distribution at a 10% significance level) are
masked out (i.e., not colored). Total percent of significant grid points is listed in the title
along with the model name. Changes in variance occur mostly in the tropical oceans.
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Leading and Trailing Ratios: Annual Mean TAS Control to Control Ratio

CCCma
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HadGEM2
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Figure 3.5: Log of the leading and trailing discriminant ratios from the union-intersection
test on control to control ratios, as a function of the accumulated number of Laplacians.
Note the curves are color-coded by model (see legend). Also shown are the upper and lower
5% significance thresholds computed from Monte Carlo techniques (solid black curve). The
significance of the leading discriminants is sensitive to truncation and the trailing ratios are
generally not significant, with the exception of MIROC5 (dark green). These results indicate
that, for the most part, changes in any single component of variability is not significant.
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Annual Mean 2m Temperature
Divergence: Control to Control Ratio
Significance Threshold 1−yr Permutting
Significance Threshold 5−yr Permutting
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Figure 3.6: The divergence DT of internal variability within each model’s preindustrial
control simulation as a function of the number of Laplacians included in the computation.
The divergence is given by the yellow-brown curves. Also shown are the upper and lower
5% significance threshold computed from permutation techniques; 1-yr (black curve) and
5-yr (gray curve). Notice that after accounting for 5-yr autocorrelations (gray curves) the
results are generally not significant. Also notice the comparably smaller range of the y-axis,
indicating that changes in variance in the absence of anthropogenic forcing are considerably
less than in the presence of anthropogenic forcing.
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UIT Annual Mean TAS Log of Lead Discriminants
for 21C Noise to Control By Domain
Significance Threshold via Monte Carlo

0 20 40 60 80

−
0
.5

1
.0

2
.0

2m Temperature over GLOBE

0 20 40 60 80

−
0
.5

1
.0

2
.0

0 20 40 60 80

2m Temperature over LAND

0 20 40 60 80 0 20 40 60 80

−
0
.5

1
.0

2
.0

2m Temperature over OCEAN

0 20 40 60 80

−
0
.5

1
.0

2
.0

0 20 40 60 80

2m Temperature over NHLAND

0 20 40 60 80 0 20 40 60 80

−
0
.5

1
.0

2
.0

2m Temperature over NH

0 20 40 60 80

−
0
.5

1
.0

2
.0

0 20 40 60 80

2m Temperature over NALAND

0 20 40 60 80 0 20 40 60 80

−
0
.5

1
.0

2
.0

2m Temperature over NASS

0 20 40 60 80

−
0
.5

1
.0

2
.0

Accumulated Number of Laplacians

Figure 3.7: Shown by domain, indicated in the title of the individual panels, is the log of the
leading discriminant ratios for internal variability of annual mean 2m temperature between
the first half of the 21st century and the first half of the preindustrial control simulations,
as a function of accumulated number of Laplacians. Note the curves are color-coded for
each model (see legend inset fig. 3.5). Also shown are the upper and lower 5% significance
thresholds computed from Monte Carlo techniques (black curves). For the domain specified
in the title, only the grid points in that domain were considered in the computation. For
example, in the panel marked ’LAND’, only the land-based grid points were used to compute
the covariance matrices. The results indicate that in each domain, the significance of the
leading discriminants is sensitive to truncation, with the exception of one model, MIROC5
(dark green), which appears to be significant in all domains and for every truncation. The
trailing discriminants are not significant (not shown). These results indicate that changes
in variability in any single component of variability are not significant.
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DIV Annual Mean TAS 21C Noise to Control By Domain
2nd Half
Significance Threshold 1−yr Permutting
Significance Threshold 5−yr Permutting
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Figure 3.8: Shown by domain, indicated in the title of the individual panels, is the di-
vergence DT of internal variability of annual mean 2m temperature between 21st century
residuals and preindustrial control simulations, as a function of the number of accumulated
Laplacians. The divergence for the second half of the 21st century and second half of the
preindustrial control run are given by the colored square-dash curves. Note the curves are
color-coded by model (see legend inset fig. 3.5. Also shown are the upper and lower 5%
significance thresholds computed from permutation techniques; 1-yr (black curves) and 5-
yr (gray curves). There are significant changes in variance in each domain, indicating that
variability significantly changes in an aggregate sense.
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JFM CCCma: Sig Area 71.9% JFM CNRM: Sig Area 64.5% JFM IPSL: Sig Area 76.3%

JFM MIROC5: Sig Area 75% JFM HadGEM2: Sig Area 66.4% JFM MPI: Sig Area 75.4%

JFM NCAR: Sig Area 64.4%
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Figure 3.9: The local changes in internal variability of January-February-March (JFM)
mean 2m temperature due to anthropogenic forcing and as quantified by an F-test between
the 21C and preindustrial control simulations for each model. The variance of internal
variability during the 21C is computed from residuals about the ensemble mean of a three
member ensemble using a high emissions scenario (RCP8.5) for the 90-year period from
2006 to 2095. A ratio larger than one indicates internal variability increases in the 21st
century. Insignificant values (according to the F-test distribution at a 10% significance
level) are masked out. The percent area of significant grid points is indicated in the title of
each panel.
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AMJ CCCma: Sig Area 65.6% AMJ CNRM: Sig Area 65.2% AMJ IPSL: Sig Area 71%

AMJ MIROC5: Sig Area 74.2% AMJ HadGEM2: Sig Area 69.9% AMJ MPI: Sig Area 74.5%

AMJ NCAR: Sig Area 69.6%
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Figure 3.10: The local changes in internal variability of April-May-June (AMJ) mean 2m
temperature due to anthropogenic forcing and as quantified by an F-test between the 21C
and preindustrial control simulations for each model. The variance of internal variability
during the 21C is computed from residuals about the ensemble mean of a three member
ensemble using a high emissions scenario (RCP8.5) for the 90-year period from 2006 to
2095. A ratio larger than one indicates internal variability increases in the 21st century.
Insignificant values (according to the F-test distribution at a 10% significance level) are
masked out. The percent area of significant grid points is indicated in the title of each
panel.
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JAS CCCma: Sig Area 70.1% JAS CNRM: Sig Area 70.5% JAS IPSL: Sig Area 70.3%

JAS MIROC5: Sig Area 77.5% JAS HadGEM2: Sig Area 68.6% JAS MPI: Sig Area 77.1%

JAS NCAR: Sig Area 69.1%
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Figure 3.11: The local changes in internal variability of July-August-September (JAS) mean
2m temperature due to anthropogenic forcing and as quantified by an F-test between the 21C
and preindustrial control simulations for each model. The variance of internal variability
during the 21C is computed from residuals about the ensemble mean of a three member
ensemble using a high emissions scenario (RCP8.5) for the 90-year period from 2006 to
2095. A ratio larger than one indicates internal variability increases in the 21st century.
Insignificant values (according to the F-test distribution at a 10% significance level) are
masked out. The percent area of significant grid points is indicated in the title of each
panel.
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OND CCCma: Sig Area 70.3% OND CNRM: Sig Area 70% OND IPSL: Sig Area 76.1%

OND MIROC5: Sig Area 79.9% OND HadGEM2: Sig Area 68.8% OND MPI: Sig Area 78%

OND NCAR: Sig Area 72.1%
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Figure 3.12: The local changes in internal variability of October-November-December
(OND) mean 2m temperature due to anthropogenic forcing and as quantified by an F-
test between the 21C and preindustrial control simulations for each model. The variance of
internal variability during the 21C is computed from residuals about the ensemble mean of
a three member ensemble using a high emissions scenario (RCP8.5) for the 90-year period
from 2006 to 2095. A ratio larger than one indicates internal variability increases in the
21st century. Insignificant values (according to the F-test distribution at a 10% significance
level) are masked out. The percent area of significant grid points is indicated in the title of
each panel..

48



UIT Seasonal Mean TAS Log of Lead Discriminants
for 21C Noise to Control By Domain
Significance Threshold via Monte Carlo
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Figure 3.13: Shown by domain, indicated in the title of the individual panels, is the log
of the leading discriminant ratios for internal variability of annual mean 2m temperature
between 21st century residuals and preindustrial control simulations as a function of the
accumulated number of Laplacians for the October-November-December mean (OND). Note
the curves are color-coded by model (see legend inset fig. 3.5). Also shown are the upper and
lower 5% significance thresholds (for a 10% significance level) computed from Monte Carlo
techniques (solid black curves). The significance of the leading discriminants is sensitive to
truncation for all the models except MIROC5 (dark green), which appears to be significant
in all domains except NALAND. The trailing discriminants are not significant (not shown).
These results are shown in order to provide a representative sample of the results found
in each season and domain after applying the union-intersection test to the discriminants
derived from the seasonal mean 2m temperature data. This figure exemplifies the conclusion
that the variability of any single component is not significantly changing variance in any
season.
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Divergence: Seasonal Mean TAS 21C Noise to Control By Domain
1st Half
2nd Half
Significance Threshold 1−yr Permutting
Significance Threshold 5−yr Permutting
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Figure 3.14: Shown for domain, indicated in the title of each panel, is the divergence DT

of internal variability of JFM mean 2m temperature between 21st century residuals and
preindustrial control simulations as a function of accumulated Laplacians. The divergence
for the first half of the 21st century and first half of the preindustrial control run are given
by circle-dash curves and the remaining halves are given by square-dash curves. Note the
curves are color-coded by model (see legend inset fig. 3.5). Also shown are the upper and
lower 5% significance thresholds computed from permutation techniques; 1-yr (black curves)
and 5-yr (gray curves). There are significant changes in variance in each domain, indicating
that several components significantly change variance in each domain for the JFM season.
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Divergence: Seasonal Mean TAS 21C Noise to Control By Domain
1st Half
2nd Half
Significance Threshold 1−yr Permutting
Significance Threshold 5−yr Permutting

0 10 20 30 40

0
1
0

2
0

3
0

AMJ 2m Temperature over GLOBE

0 10 20 30 40

AMJ 2m Temperature over LAND

0 10 20 30 40
0

1
0

2
0

3
0

AMJ 2m Temperature over OCEAN

0 10 20 30 40

AMJ 2m Temperature over NHLAND

0 10 20 30 40

0
1
0

2
0

3
0

AMJ 2m Temperature over NH

0 10 20 30 40

AMJ 2m Temperature over NALAND

0 10 20 30 40

0
1
0

2
0

3
0

AMJ 2m Temperature over NASS

Accumulated Number of Laplacians

Figure 3.15: Shown for domain, indicated in the title of each panel, is the divergence DT

of internal variability of AMJ mean 2m temperature between 21st century residuals and
preindustrial control simulations, as a function of accumulated Laplacians. The divergence
for the first half of the 21st century and first half of the preindustrial control run are given by
circle-dash curve and the remaining halves are given by square-dash curves. Note the curves
are color-coded by model (see legend inset fig. 3.5). Also shown are the upper and lower
5% significance thresholds computed from permutation techniques; 1-yr (black curves) and
5-yr (gray curves). There are significant changes in variance in the global, ocean, NH, and
NASS domains, indicating that several components significantly change variance in those
domains for the AMJ season.
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Divergence: Seasonal Mean TAS 21C Noise to Control By Domain
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Figure 3.16: Shown for domain, indicated in the title of each panel, is the divergence DT

of internal variability of JAS mean 2m temperature between 21st century residuals and
preindustrial control simulations, as a function of accumulated Laplacians. The divergence
for the first half of the 21st century and first half of the preindustrial control run are given
by circle-dash curves and the remaining halves are given by square-dash curves. Note the
curves are color-coded by model (see legend inset fig. 3.5). Also shown are the upper and
lower 5% significance thresholds computed from permutation techniques; 1-yr (black curves)
and 5-yr (gray curves). There are significant changes in variance in the global, ocean, NH,
and NASS domains, indicating that several components significantly change variance in
those domains for the JAS season.
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Divergence: Seasonal Mean TAS 21C Noise to Control By Domain
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Figure 3.17: Shown for domain, indicated in the title of each panel, is the divergence DT

of internal variability of OND mean 2m temperature between 21st century residuals and
preindustrial control simulations, as a function of accumulated Laplacians. The divergence
for the first half of the 21st century and first half of the preindustrial control run are given
by circle-dash curves and the remaining halves are given by square-dash curves. Note the
curves are color-coded by model (see legend inset fig. 3.5). Also shown are the upper and
lower 5% significance thresholds computed from permutation techniques; 1-yr (black curves)
and 5-yr (gray curves). There are significant changes in variance in each panel, indicating
that several components significantly change variance in each domain for the OND season.
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CCCma: Sig Area 60% CNRM: Sig Area 51.5% IPSL: Sig Area 59.5%

MIROC5: Sig Area 50.2% HadGEM2: Sig Area 62.8% MPI: Sig Area 54.9%

NCAR: Sig Area 57.3%
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Figure 3.18: The local changes in internal variability of annual mean precipitation due
to anthropogenic forcing as quantified by an F-test between the 21C and preindustrial
control simulations for each model. The variance of internal variability during the 21C is
computed from residuals about the ensemble mean of a three member ensemble using a
high emissions scenario (RCP8.5) for the 90-year period from 2006 to 2095. The variance
of internal variability for preindustrial forcing is computed from the same model’s 500-year
control simulation. A ratio larger than one indicates internal variability increases in the
21st century. Insignificant values (according to the F-test distribution at a 10% significance
level) are masked out. The percent area of significant grid points is indicated in the title of
each panel along with the model name.
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UIT Annual Mean PRECIP Log of Lead Discriminants

for 21C Noise to Control By Domain

Significance Threshold via Monte Carlo
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Figure 3.19: Shown for domain, specified in the title of each panel, is the log of the leading
discriminant ratios for internal variability of annual mean precipitation between the 21st
century residuals and preindustrial control simulations as a function of accumulated Lapla-
cians. Note the curves are color-coded for each model (see legend inset fig. 3.5). Also shown
are the upper and lower 5% significance thresholds computed from Monte Carlo techniques
(black curves). In the global domain, 5 of the 7 models indicate significant ratios after
truncation T = 35 (marked by a vertical red line). For the ocean domain, the leading
discriminants are significant for 5 out of 7 models after T = 30 (marked by a vertical red
line). These results are consistent in the 2nd-halves (not shown) and indicate that a single
component of variability significantly changes variance. The trailing discriminants are not
significant (not shown).

55



0 10 20 30 40

−
4

−
2

0
2

4
6

Accumulated Number of Laplacians

A
m

p
lit

u
d
e

Converging Variates: T= 35 for GLOBAL PRECIP

Figure 3.20: Example of converging variates plotted as centered time series from one repre-
sentative model. The significant variate from one ensemble member for the first half of the
21C at T = 35 is plotted in black, and the leading variate for every following truncation
is plotted on top. The individual variates are difficult to see because they are virtually
identical. As such, it has been demonstrated that the significant ratio is not sensitive to
truncation after T = 35. Results were similar for all models at T = 35.
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Figure 3.21: An example of significant leading variates, plotted as centered time series,
from one representative model; the blue time series indicates a 250-yr segment from the
model’s preindustrial control simulation and the red time series indicates a 45-yr segment
from a 21C simulation (only one ensemble member is shown for clarity). Notice the variance
appears larger in the red time series as compared to the blue time series, indicating that
variance increases with time. Results were similar for all models at T = 35.
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CCCma Lead Pattern for Ann−Mean Precip: GLOBE CNRM Lead Pattern for Ann−Mean Precip: GLOBE

Not Significant

IPSL Lead Pattern for Ann−Mean Precip: GLOBE

MIROC5 Lead Pattern for Ann−Mean Precip: GLOBE HadGEM2 Lead Pattern for Ann−Mean Precip: GLOBE MPI Lead Pattern for Ann−Mean Precip: GLOBE

NCAR Lead Pattern for Ann−Mean Precip: GLOBE

Not Significant
−0.011 −0.01 −0.001 −1e−04 −1e−05 0 1e−05 1e−04 0.001 0.01

Figure 3.22: Spatial pattern that explains the significantly changing component of climate
variability in the annual mean precipitation data in the global domain at T = 35. For
two models, the phrase ’Not Significant’ appears on the map, indicating that the leading
component was sensitive to truncation (see CNRM and NCAR). Changes are across the
tropical Pacific Ocean in each model. Some models indicate that the tropical changes
expand to include subtropical and middle latitudes.
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CCCma Lead Pattern for Ann−Mean Precip: OCEAN CNRM Lead Pattern for Ann−Mean Precip: OCEAN

Not Significant
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Figure 3.23: Spatial pattern that explains the significantly changing component of climate
variability in the annual mean precipitation data in the ocean domain at T = 30. For the
same two models in the preceding figure, the phrase ’Not Significant’ appears on the map,
indicating that the leading component was sensitive to truncation (see CNRM and NCAR).
Changes are across the tropical Pacific Ocean in each model. Some models indicate that the
changes expand to include the subtropical ocean latitudes and the north-eastern portions
of the Pacific Ocean.
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DIV Annual Mean PRECIP 21C Noise to Control By Domain
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Figure 3.24: Shown for domain, specified in the title of each panel, is the divergence DT

of internal variability of annual mean precipitation between 21st century residuals and
preindustrial control simulations as a function of accumulated Laplacians. The divergence
for the first half of the 21st century and first half of the preindustrial control run are given
by circle-dash curves and the remaining halves are given by square-dash curves. Note the
curves are color-coded by model (see legend inset fig. 3.26). Also shown are the upper
and lower 5% significance thresholds computed from permutation techniques; 1-yr (black
curves) and 5-yr (gray curves). There are robust significant changes in variance detected in
the global, ocean, NH, NASS, and NALAND domains. In the land and NHLAND domains,
the results are slightly less robust in the first half of the century.
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CCCma: Sig Area 13.7% CNRM: Sig Area 13% IPSL: Sig Area 12.2%

MIROC5: Sig Area 18% HadGEM2: Sig Area 13.8% MPI: Sig Area 17.3%

NCAR: Sig Area 14.2%
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Figure 3.25: Local changes in the variance of annual mean precipitation in the absence of
anthropogenic forcing. The changes are quantified by an F-test between non-overlapping
(250 year) segments within each model’s preindustrial control simulation. Insignificant
values (according to an F-test distribution at a 10% significance level) are masked out (i.e.,
not colored). The percentage of grid points deemed significant in each F-map is provided
in the title along with the model name. The changes in variability are close to what
one would expect by random chance (about 10% of the area). In addition, the changes
appear scattered and lack spatial structure. There are notable exceptions; MIROC5 shows
significant decreases along the equatorial Pacific Ocean, while in the same area, MPI shows
increases.
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Leading and Trailing Ratios: Annual Mean PRECIP Control to Control Ratio
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Figure 3.26: Shown for only the global domain, the log of the leading and trailing dis-
criminant ratios computed from the internal variability of annual mean precipitation in
the preindustrial control runs as a function accumulated Laplacians. Note the curves are
color-coded for each model (see legend inset). Also shown are the upper and lower 5%
significance thresholds computed from Monte Carlo techniques (black curves). In the lead-
ing curves, MPI (dark blue) is significant for all but the first ratio, indicating that the
changes in its F-map can likely be explained by changes in a single, large-scale component
of climate variability present in this model. Similarly for the trailing ratios, MIROC5 (dark
green) is significant for all truncations, again indicating that the changes in its F-map can
also likely be explained by changes in a single, large-scale component of climate variability
present in that model. While these results are noteworthy and demonstrate a clear case in
which changes in variance can be captured by one or two, large-scale structures of climate
variability using the UIT, overall, the results are not robust across models.
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Figure 3.27: Shown for only the global domain, the divergence DT of internal variabil-
ity of annual mean precipitation in the preindustrial control simulations as a function of
accumulated Laplacians. Also shown are the upper and lower 5% significance thresholds
computed from permutation techniques; 1-yr (black curves) and 5-yr (gray curves). This
result demonstrates that changes in variance across several components is not significant
within the global domain and thus, changes in the associated F-maps are not significant in
an aggregate sense within the global domain.
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JFM CCCma: Sig Area 59.3% JFM CNRM: Sig Area 48% JFM IPSL: Sig Area 63.3%

JFM MIROC5: Sig Area 44.9% JFM HadGEM2: Sig Area 49.9% JFM MPI: Sig Area 51.8%

JFM NCAR: Sig Area 49.9%
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Figure 3.28: The local changes in internal variability of January-February-March (JFM)
mean precipitation due to anthropogenic forcing as quantified by an F-test between the 21C
and preindustrial control simulations for each model. The variance of internal variability
during the 21C is computed from residuals about the ensemble mean of a three member
ensemble using a high emissions scenario (RCP8.5) for the 90-year period from 2006 to
2095. A ratio larger than one indicates internal variability increases in the 21st century.
Insignificant values (according to the F-test distribution at a 10% significance level) are
masked out. The percent area of significant grid points is indicated in the title of each
panel. The models generally agree about the pattern and direction of change in the polar
latitudes. The direction of change in the tropics is model dependent.
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Figure 3.29: The local changes in internal variability of April-May-June (AMJ) mean pre-
cipitation due to anthropogenic forcing as quantified by an F-test between the 21C and
preindustrial control simulations for each model. The variance of internal variability during
the 21C is computed from residuals about the ensemble mean of a three member ensemble
using a high emissions scenario (RCP8.5) for the 90-year period from 2006 to 2095. A ratio
larger than one indicates internal variability increases in the 21st century. Insignificant val-
ues (according to the F-test distribution at a 10% significance level) are masked out. The
percent area of significant grid points is indicated in the title of each panel. The models
generally agree about the pattern and direction of change in the polar latitudes.
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JAS CCCma: Sig Area 61.7% JAS CNRM: Sig Area 38.2% JAS IPSL: Sig Area 56.2%
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Figure 3.30: The local changes in internal variability of July-August-September (JAS) mean
precipitation due to anthropogenic forcing as quantified by an F-test between the 21C and
preindustrial control simulations for each model. The variance of internal variability during
the 21C is computed from residuals about the ensemble mean of a three member ensemble
using a high emissions scenario (RCP8.5) for the 90-year period from 2006 to 2095. A ratio
larger than one indicates internal variability increases in the 21st century. Insignificant
values (according to the F-test distribution at a 10% significance level) are masked out.
The percent area of significant grid points is indicated in the title of each panel. The
models generally agree about the pattern and direction of change in the polar latitudes.
The increase in variance for the tropics is consistent across models for all but one model;
NCAR.
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OND CCCma: Sig Area 59.5% OND CNRM: Sig Area 41.9% OND IPSL: Sig Area 60.1%
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Figure 3.31: The local changes in internal variability of October-November-December
(OND) mean precipitation due to anthropogenic forcing as quantified by an F-test between
the 21C and preindustrial control simulations for each model. The variance of internal
variability during the 21C is computed from residuals about the ensemble mean of a three
member ensemble using a high emissions scenario (RCP8.5) for the 90-year period from
2006 to 2095. A ratio larger than one indicates internal variability increases in the 21st cen-
tury. Insignificant values (according to the F-test distribution at a 10% significance level)
are masked out. The percent area of significant grid points is indicated in the title of each
panel. The models generally agree about the pattern and direction of change in the polar
latitudes. The increase in variance for the tropics is consistent across models for all but one
model; NCAR.
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UIT Seasonal Mean PRECIP Log of Lead Discriminants for 21C Noise to Control: Signifcant Domains
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Figure 3.32: Shown are the log of the leading discriminant ratios for select seasons for pre-
cipitation as a function of accumulated Laplacians. The top panel displays the leading ratios
for July-August-September (JAS) for the global domain and the bottom panel displays the
leading ratios for January-February-March (JFM) for the land-only domain. Trailing ratios
were not significant (not shown). Note the curves are color-coded by model (see legend inset
fig. 3.26). Also shown are the upper and lower 5% significance thresholds computed from
Monte Carlo techniques (black curves). These conclusions were verified in the independent
data (not shown). A vertical red line in each panel marks the significant truncation. For
JAS the significant truncation is T = 15 for 5 out of 7 models; note that NCAR (purple
curve) and CNRM (yellow curve) are marginally significant for all truncations. For JFM
in the land domain, the significant truncation is T = 50 for 6 out of 7 models; note that
HadGEM2 (light blue curve) is the only model that becomes marginally significant beyond
this truncation.

68



CCCma Lead Pattern for JAS Mean Precip: GLOBE CNRM Lead Pattern for JAS Mean Precip: GLOBE
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Figure 3.33: Spatial pattern that explains the significantly changing component of climate
variability in the JAS mean precipitation data in the global domain at T = 15. For two
models, the phrase ’Not Significant’ appears on the map, indicating that the leading com-
ponents were sensitive to truncation (see CNRM and NCAR). The changes are generally
confined to the tropical Pacific Ocean, with some expansion to the subtropical and middle
latitudes displayed by some models. These results suggest that significant changes in the
variability of summer precipitation may occur in the tropical Pacific Ocean in a warmer
climate, which supports conclusions from the annual mean study that were displayed in fig.
3.22
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Figure 3.34: Spatial pattern that explains the significantly changing component of climate
variability in the JFM mean precipitation data in the land domain at T = 50. For one model,
the phrase ’Not Significant’ appears on the map, indicating that the leading component
was sensitive to truncation (see HadGEM2). The models indicate that winter changes in
variability are projected for the land-areas between subtropical zones.
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Figure 3.35: Shown for domain, specified in the title of each panel, is the divergence DT

of internal variability of JFM mean precipitation between 21st century residuals and prein-
dustrial control simulations, as a function of accumulated Laplacians. The divergence for
the first half of the 21st century and first half of the preindustrial control run are given
by circle-dash curves and the remaining halves are given by square-dash curves. Note the
curves are color-coded by model (see legend inset fig. 3.26). Also shown are the upper
and lower 5% significance thresholds computed from permutation techniques; 1-yr (black
curves) and 5-yr (gray curves). In every domain the 2nd-halves are robustly significant, and
for the 1st-halves, at least 5 out of 7 models indicate significant changes in each domain.
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Figure 3.36: Shown for domain, specified in the title of each panel, is the divergence DT of
internal variability of OND mean precipitation between 21st century residuals and prein-
dustrial control simulations, as a function of Laplacians. The divergence for the first half
of the 21st century and first half of the preindustrial control run are given by circle-dash
curves and the remaining halves are given by square-dash curves. Note the curves are
color-coded by model (see legend inset fig. 3.26). Also shown are the upper and lower 5%
significance thresholds computed from permutation techniques; 1-yr (black curves) and 5-yr
(gray curves). Robustly significant changes are found in the ocean, land, NHLAND, and
NASS domains. In the remaining domains, changes are robust in the 2nd-half of the 21st
century.
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Table 3.1: Seven domains are used in this study. This table provides a description of
each domain, the short-form domain name, and the boundaries for each domain, given as
longitude range and latitude range. The terms ’seas’ refers to the Mediterranean, the Baltic,
and the Caspian seas in particular.

Domain Information

Description: Short-form: Lon and Lat:

Grid points for whole globe GLOBE 0 to 360; -90 to 90

Global ocean-only grid points; OCEAN 0 to 360; -60 to 90
no land or seas

Global land-only grid points; LAND 0 to 360; -60 to 90
no oceans or seas

Ocean and land grid points in the NH 0 to 360; 0 to 90
Northern Hemisphere

Land-only grid points in the NHLAND 0 to 360; 0 to 90
Northern Hemisphere

Land-only grid points in the NALAND 190 to 310; 15 to 70
North American continent

Ocean grid points in the NASS 285 to 352; 0 to 60
North Atlantic Ocean
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Chapter 4: Conclusions

4.1 Summary of Work and Discussion

A basic paradigm in climate science is that the variability of the climate system can be

split into two kinds: external variability that is driven by external forcings, such as human-

caused increases to greenhouse gases, and internal variability that arises naturally from

coupled atmosphere-ocean-land-ice interactions. This dissertation examined whether inter-

nal variability would change in response to changes in external forcing. This topic is both

an important and challenging area of research. For instance, a change in temperature vari-

ability would mean a change in the frequency and intensity of extreme hot and cold weather

events, which would have significant impacts on society.

In part, this dissertation is a response to studies like that of Hansen et al. (2012),

which claimed that the distribution of observed seasonal mean temperature anomalies has

shifted toward higher temperatures and that the range of anomalies also has increased.

This conclusion was based on a technique in which local temperatures were individually

normalized and then aggregated over space to obtain a distribution. Unfortunately, the

resulting distribution turned out to be sensitive to the chosen method of normalization.

This dissertation proposes a methodology for testing changes in variability that over-

comes the problems with spatial aggregation. This methodology requires using ensemble

climate simulations. The more difficult problem of estimating such changes in observa-

tional data is left for future work. Simulations known as RCP8.5 are examined. In these

simulations the carbon dioxide concentrations increase over time such that they reach 1250

ppm by 2100. Climate models suggest that global mean temperature will rise in response

to such increases by at least 2.6 degrees C, and as much as 4.8 degrees C, by the end of

the century. The internal variability in these simulations was estimated by subtracting a
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3-member ensemble mean from each ensemble member. The residual yields an estimate

of projected internal variability in the 21st century. The projected internal variability can

be compared to estimates of internal variability from preindustrial control simulations, in

which the forcing remains constant.

A straightforward approach to testing local changes in internal variability is to perform

a standard F-test. In this dissertation, an F-test was applied to a ratio of estimates of

internal variability, as projected by CMIP5 model simulations of the RCP8.5 emissions

scenario, and respective preindustrial control simulations in order to quantify future changes

in the internal variability of temperature and precipitation. Results show that there are

widespread, significant local changes in the variance of annual mean 2m temperature in

response to anthropogenic forcing (see fig. 3.1). The number of changes exceeds what

one would expect to occur by random chance (about 10%). In some cases, the number of

changes exceeded 60% of the total area (see MIROC5 in fig. 3.1). All the models predict

significant decreases in variance in regions of sea-ice formation and across the Southern

Ocean (see fig. 3.1). This decrease is a plausible consequence of disappearing sea-ice due

to global warming. In a warmer climate, melting sea-ice exposes the underlying sea surface

which has a much larger effective heat capacity than sea-ice due to its coupling with the

oceanic mixed layer. This interpretation also is consistent with previous research (e.g.,

DelSole et al., 2013; Huntingford et al., 2013; Screen, 2014; Screen et al., 2014).

The analysis also reveals that more than half the models predict significant future

changes in the variance of temperature over the tropical oceans, land-areas, and the North

Atlantic Ocean, but the sign of these changes is model dependent. ENSO’s global influence

on temperature and precipitation extremes makes it an important player in climate vari-

ability. Unfortunately, this study shows that the response of annual mean 2m temperature

in the ENSO region to increasing greenhouse gases is highly model-dependent; a result that

is in accord with other studies (e.g., Collins et al., 2010; Vecchi and Wittenberg, 2010).

Since the F-test is univariate, it cannot assess the field significance of the estimated

changes in variability. To be field significant, it should be demonstrated that the resulting

75



F-map is unlikely given the spatial and temporal relationships between the grid points.

Thus, a proper field significance test requires estimating the covarying properties of the

data (for example a covariance matrix).

Discriminant analysis provides an attractive approach to quantifying multivariate dif-

ferences in variance. Discriminant analysis is a method that identifies an uncorrelated set

of components and orders them such that the first maximizes the ratio of variances, the sec-

ond maximizes the ratio of variance subject to being uncorrelated with the first, and so on.

The method depends on the entire covariance matrix (i.e, the variances and the covariances

between grid points) and therefore takes into account the full spatio-temporal relations be-

tween grid points (multivariate). Also, the components and variance ratios derived from

discriminant analysis are invariant to invertible affine transformations, which implies that

the results from discriminant analysis are independent of how the data are normalized.

Unfortunately, discriminant analysis cannot be applied when the number of grid points

exceeds the number of samples, because then the covariance matrices are singular and

variance ratios like 0/0 can be obtained. To avoid this problem, the data were projected

into a reduced subspace spanned by a small number of eigenvectors of the Laplace operator.

These eigenvectors were chosen as a basis set because they quantify changes in variability

of large-scale spatial structures, which is the primary interest of this study. Laplacian

eigenvectors provide a natural, orthogonal set of vectors that can be ordered by length scale

and are independent of model data (unlike EOFs), which facilitates comparison between

models. Although projecting data into a reduced dimensional subspace avoids singularities,

it introduces a new concern, namely a model selection problem in which the dimension of

the subspace must be specified. The standard approach is to choose the dimension based

on some objective criterion. After a variety of criteria were explored, they were ultimately

rejected because the results were sensitive to the truncation parameter, as explained shortly.

A standard test for equality of covariance matrices is the Union-Intersection Test (UIT).

This test is based on the extreme value of the variance ratio, which as discussed above can

be obtained from discriminant analysis. If the covariance matrices of the two populations
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are equal, then any linear combination of variables yields the same variance in the two

populations. In such a case, the variance ratio would be one, or statistically indistinguishable

from one. Conversely, if the two covariance matrices differ, then some linear combination

can be found in which the ratio differs from one. The UIT is based on the most extreme

variance ratio obtained from all possible linear combinations. The UIT was applied to

climate model simulations of internal variability of annual mean 2m temperature. Notably,

the extreme variance ratio was found to be only marginally significant, if significant at all,

for most models. In other words, the significance of the variance ratio was sensitive to

the number of Laplacian eigenvectors used to represent the data. This result suggests that

changes in the variance of any single component of climate variability (e.g., ENSO) cannot

be identified in these model simulations.

Despite the above conclusion, the variance ratio maps (F-maps) clearly showed changes

in variance in response to anthropogenic forcing. These apparently contradictory results

can be reconciled if one considers that changes in variance can occur over a wide spectrum

of components, but that the change in variance in any single component may be too small

to be significant by itself. In other words, the change in variance could be significant in an

aggregate sense and not in an individual sense. For this reason, the UIT fails to detect a

change in variance because it relies on detecting such changes as would occur in a single,

maximized component. Accordingly a new test was proposed, namely, one that measures

the difference between covariance matrices in an aggregate sense. The chosen measure

is divergence, which can be derived from an information theoretic measure called relative

entropy for the case of Gaussian distributions with equal means. Divergence depends only on

the optimized variance ratios derived from discriminant analysis, implying that divergence

also is invariant to affine transformation. In addition, divergence can be written as a sum

of variance ratios plus a sum of inverse variance ratios, clearly demonstrating that it is an

aggregate measure of differences in variance. Divergence was also applied to climate model

simulations of internal variability of annual mean 2m temperature and it was found that

differences in variance could be easily detected.

77



To learn more about the source of these changes, the analyses were repeated in ocean-

only and land-only domains (as well as smaller domains). Since the F-test is performed on

individual grid points, the local data remains the same and does not change with domain

selection. In contrast, the UIT and divergence tests can depend on domain. Nevertheless,

the results were largely the same as in the global domain: changes in variance could be

detected over both ocean and land using the divergence measure. Recall that divergence

measures changes in variance without distinguishing the direction of the changes. Perhaps

local decreases in variance in regions of sea-ice are responsible for the significant changes

in variance detected by the divergence measure. Unfortunately, due to the nature of the

divergence measure and the limitations of the F-test, it is not possible to go beyond spec-

ulation when comparing the results from these two techniques. Also, while it is clear that

decreased variability over regions of sea-ice formation are robust, and likely explained by

melting sea ice, other changes in variance are model-dependent thus it is difficult to infer

mechanisms for those changes.

Some studies have argued that in a warmer climate, temperature variability can be

expected to decrease. In addition to melting sea-ice, another proposed mechanism for this

decrease is fewer, or less severe, cold days due to changes in cold-wind advection (e.g.,

Schneider et al., 2015; Screen, 2014). Screen (2014) argues that Arctic amplification (the

more rapid warming of the Arctic as compared to middle latitudes) leads to decreases

in Northern Hemisphere temperature variability. In particular, a warm Arctic leads to a

decreased temperature gradient in autumn and winter and thus weaker cold-air advection

from northern latitudes to the middle latitudes. This dissertation generally supports these

findings, especially with regard to projected decreases in temperature variability for the

North American continent and Greenland, however, not over Eurasia.

Seasonal mean changes were also investigated in this study and in general, the changes

were similar to the annual mean changes. For instance, the decreased variability of tempera-

ture that was found over regions of sea-ice formation in the annual-mean study could also be

found in the OND, JFM, and AMJ seasonal mean F-tests. Most of the differences between
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the annual and seasonal mean studies were found in the polar latitudes of the Northern

Hemisphere and/or were model dependent. For instance HadGEM2 showed very few lo-

cally significant changes at polar latitudes in the annual mean F-test, but in the seasonal

mean study, those same areas showed significant decreases in OND followed by significant

increases in JAS. Opposing changes, such as these, would likely cancel in an annual mean.

Changes in the variability of annual mean precipitation were also investigated. An F-

test demonstrates that there are widespread, significant local changes in the variance of

annual mean precipitation in response to anthropogenic forcing (see fig. 3.18). The models

robustly project increases in variance for northern-most and southern-most latitudes. In

general, changes in the tropics and subtropics are model dependent, however, a majority of

models indicate increased variability occurs there in a warmer climate. In particular, for

some models there are very strong increases in variability for the equatorial Pacific Ocean,

a result that is in accord with Power et al. (2013).

The union intersection test on this data indicated that a component of climate variabil-

ity was significantly changing variance in the global domain. In particular, a pattern of

increasing variability was identified for the western portions of the tropical Pacific Ocean.

Adjacent areas such as the Bay of Bengal, the South and East China Seas, as well as some

middle latitudes were also significantly changing variance. A similar component of change

was deemed significant in the ocean-only domain. Divergence revealed robust changes in

the annual mean variability of precipitation for the North Atlantic Ocean.

The seasonal mean changes in precipitation variability were similar to the annual mean

changes, particularly with respect to the robust polar increases in variability. The seasonal

mean results indicated that the annual mean changes were most influenced by the strong

increases in OND. Additionally, in OND, a majority of models agreed about the direction of

change along the tropical Pacific Ocean, indicating increased variability of autumn precip-

itation is projected in a warmer climate. In the equatorial latitudes of the North Atlantic

Ocean, the models robustly agreed on decreased variability of winter precipitation.

In the IPCC’s Special Report on Extreme Events (IPCC, 2012), it was reported at high
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confidence that heavy rainfall is expected to increase at higher latitudes while at those same

latitudes, there is low confidence that droughts will increase IPCC (2012). If both changes

occur together, i.e., heavy rainfall and increased drought-frequency, then this would be

characteristic of changes in variance for precipitation at those latitudes, namely, increasing

variance. Other research indicates that in both observations and model simulations, there

is a link between a warmer climate and an increase in extreme precipitation events in

the tropics (Allan and Soden, 2008). Lau et al. (2013) found a global increase in heavy

precipitation, decrease in moderate precipitation, and increase in light precipitation. If one

thinks of these results as describing changes in a globally aggregated PDF of precipitation,

then, they would indicate a broadening and flattening of the distribution of precipitation.

In this case, speaking broadly about global changes, the variability of precipitation could be

characterized as ’globally’ increasing in response to a warmer climate. Regionally speaking,

Lau et al. (2013) also found more heavy precipitation over climatologically wet zones and

more dry periods in the subtropics and marginal convective zones (e.g., the Sahel region in

Africa). The authors associate their results with the hypothesis of the “wet get wetter and

the dry get dryer” in a warmer climate (Held and Soden, 2006). The results presented in

this dissertation support the finding that precipitation variability is projected to increase

with global warming, especially for convergence zones, mid-latitude storm track zones, and

polar latitudes. In addition, for some models, there is also evidence of decreased variability

in the subtropics and marginal convective zones.

The possibility that variance changes in the absence of anthropogenic forcing was also

investigated. An F-test performed on only the preindustrial control simulations reveals that

most models exhibit significant changes in the variability of annual mean temperature and

precipitation in the absence of anthropogenic forcing. However, these changes are not as

large as the changes that occur in the presence of anthropogenic forcing. In some models,

the largest unforced, centennial-scale changes in variance occur along the equatorial Pacific

Ocean, suggesting a connection to ENSO. This finding is consistent with previous studies

that have shown significant changes to ENSO variability on centennial timescales in the
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absence of anthropogenic forcing (Wittenberg, 2009).

A final area of work also discussed in this dissertation is the validity of common as-

sumptions made about the internal variability of temperature and precipitation. On the

one hand, consistency between permutation and Monte Carlo techniques suggests that Gaus-

sian, iid assumptions are reasonable for both the seasonal- and annual-mean temperature

and precipitation data from these climate models. However, our results also suggest that

the practice of doubling uncertainty estimates, as is often done in detection and attribu-

tion studies (Hegerl et al. (2007)), may not be sufficient for some models in capturing the

amplitude of their variability changes in response to anthropogenic forcing.

The methods and analyses described in this dissertation can be used to investigate

changes in the internal variability of other important climate variables such as, sea-level

pressure, wind fields, and ocean salinity. Also, these tools can be adapted for various time-

means. For instance, changes in decadal-mean variance might reveal additional information

about the response of internal climate variability in response to anthropogenic forcing, while

3- to 5-yr means could help to further understand the future of ENSO variability.
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