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Abstract

TOWARDS LARGE-SCALE AND HIGH-PERFORMANCE DEEP LEARNING COM-
PUTING

Fuxun Yu, PhD

George Mason University, 2022

Dissertation Director: Dr. Xiang Chen

Deep Learning (DL) has achieved superior performance than human in complex cognitive

tasks like vision, speech, language, medical, game, etc. With the ever increasing market

demands, DL applications and the underlying computing hardware have demonstrate strong

scaling trends in terms of Model Scaling and Computing Scaling (e.g., increased computing

parallelism, memory and storage to serve larger models).

On the one hand, deep neural network (DNN) models are becoming increasingly big-

ger with higher structure complexity, larger parameter sizes, and increased computational

workloads so as to strive for better accuracy. For example, one of the biggest model VGG16

in 2017 has only 138M parameters, while in 2021, the largest model MT-NLG has reached

530B parameters, which shows a 4,000× increase. On the other hand, high-performance

computing hardware demonstrates strong scaling trends and provides the core support for

both DL model training and inference. For example, NVIDIA GPUs have maintained 2×

increase in the number of transistors for each generation, which demonstrates exponential

performance gain like throughput and memory bandwidth scaling in the past decade.

Such a double scaling trend greatly complicates the high-performance deep learning

computing system, including model design, kernel compiling and runtime scheduling, etc.



In this dissertation, we introduce several of our works in high-performance deep learning

computing from a full-stack optimization point of view. This includes not only algorithm-

level compression and acceleration: Antidote and DCCNN, but also the hardware-software

co-design perspectives like GPU-aware DNN design, TA-DNN, and the multi-tenant DL

runtime scheduling, MT-Graph. Finally, we summarize our prior works and share our vision

and insights towards the future large-scale deep learning systems. Through introducing

these works and sharing our understanding, we hope that this dissertation could shed some

light on the future high-performance deep learning computing research.



Chapter 1: Introduction

The past recent years have witnessed a great surge of AI technology development cover-

ing a wide-spectrum of domains and applications. At the core of such AI development

are tons of deep learning (DL) algorithms emerging in computer vision, speech, language,

remote sensing, and point cloud, etc., which revolutes the horizon of machine intelligence

by enabling smart vehicles, smart city, smart medical, and smart agriculture etc. Behind

the superior performance of these applications, high-performance computing on powerful

hardware provides the most fundamental support, and optimizing the runtime performance

for compute-intensive DL algorithms is the key to provide the assurance to model accuracy,

satisfying execution speed, real-time performance, user experience, etc.

In fact, before we dive into technical backgrounds, there is an interesting history that

reveals the importance of computing to the AI development.

AI Emergence and Winter As shown in Figure 1.1, the first concept related to deep

neural networks (DNNs) was proposed in 1940s that referenced a net of neurons with soma

and axon to conduct the logical calculus [4]. The network is designed with thresholded

logic unit with hard-coded weights, which intended to mimic “integrate and fire” model

of neurons. The concept of “perceptron” is then proposed in 1957 by F. Rosenblatt that

could learn adjustable weights and could recognize letters and numbers [5]. Rosenblatt

implemented the perceptron in custom hardware, and showed it could be used to learn to

classify simple shapes correctly with 20×20 pixel-like inputs, essentially a computer that

could approximate a classification function. The success of the idea of “machine intelligence”

rapidly opened up the next ten years of golden age for AI.

1



50,000 X

The SOTA Nvidia GTX580 GPU in 2010
• 512 processing cores
• 72MHz clock rate

“AI recurrence”

The Intel 4004 is the SOTA 4-bit CPU in 1971.
• Single core
• Maximum clock rate is 740 kHz

“AI Winter”

AlexNet, 2012

ImageNet, 2009

Figure 1.1: The recent recurrence of AI is largely related to the powerful hardware.

“The perceptron is the embryo of an electronic computer that the Navy expects will be

able to walk, talk, see, write, reproduce itself and be conscious of its existence.”

– Frank Rosenblatt, 1958.

However, researches for more complex cognitive AI applications soon ran into another

10-year of “AI winter” since further increasing the capacity of perceptron encountered many

bottlenecks including the inefficient weight learning algorithm, the lack of large amounts

of data, and the performance-limited computing hardware. As a fact, the most powerful

hardware in early 1970s is the Intel 4004 CPU that has a single core and can only conduct

4-bit arithmetic instructions with a maximum clock rate of 740 kHz. And the training

algorithm by differentiation methods (the essential method for neural network training) is

not implemented and being able to compute on CPUs until 1976 as discussed in [6].

Although the backpropagation algorithm is re-discovered and improved in 1980s, the

enthusiasm for deep neural networks cooled down in the research community and more

efforts were devoted into traditional machine learning theories and algorithms like SVM.

2



Figures of 2017
VGG Model Parameters: 138 Millions

Figures of 2021
MT-NLG Model Parameters: 530 Billions4,000 X

Figure 1.2: Deep learning with model scaling [1].

AI Recurrence and The New Double Scaling Era The real AI recurrence happened

in 2010s as one of the major problems of computing bottleneck is addressed by the recent

great advance of parallel computing capability of GPUs. For comparison, the most powerful

GPU in 2010 is NVIDIA GTX580 GPU which has 512 processing cores with each single

core frequency at 72MHz, which showed more than 50,000× computing capability compared

to the 1970s. The adoption of GPU computing for deep neural network model training is

firstly applied in AlexNet, which won the first prize in ImageNet 2012 competition, and soon

the wave of deep learning strikes back and maintains the prosperous development. There

are tons of deep learning (DL) algorithms emerging in computer vision, speech, language,

remote sensing, and point cloud, etc., which revolutes the horizon of machine intelligence

by enabling smart vehicles, smart city, smart medical, and smart agriculture, etc.

Despite the widespectrum of application domains, the key to the success of deep neural

networks is simple and effective, i.e., by designing increasingly deeper and larger models.

Figure 1.2 shows the comparison of state-of-the-art model size statistics before 2017 and the

recent redrawing of it in 2021. The model sizes increased by 4,000× from 138M parameters

of VGG16 [7] to the recent 530B parameters of MT-NLG [8]. With the rapid growth of

model size, the computing workload for model training and inference also demonstrates

3



(a) DL Model Compute Scaling (b) CPU and GPU Compute Scaling

Figure 1.3: Deep learning with computing scaling [2].

exponential scaling. As shown in Figure 1.3, the computing workload comparison between

model at 2013 and 2019 also demonstrates a 300,000× increase.

Such huge growth in DL model computing also motivates the performance scaling of

high-performance hardwares, especially the graphic processing units (GPUs) with massive

computing parallelism. With the strong market needs, the capacity of recent generations of

GPUs shows exponential growing, which demonstrates the overwhelming computing power

compared to the common model workload. The detailed computing scaling statistics could

be found in recent works [9], but one concrete example is: From K80, P40, and P100

to recent T40, V100, A100, GPUs maintain the trend of doubling in performance since

2010s. The last generation of V100 [10] offers 120 Tera floating point operations per sec-

ond (TFLOPS) and 900 GB/s memory bandwidth, and the numbers further increase to

312 TFLOPS and 1.6TB/s memory bandwidth for the newly released A100 [11], which

reports the ResNet50 [12] inference speed of 36,436 images/second and meanwhile provides

continuously increasing energy efficiency.
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This Dissertation Such a double scaling trend of DL model and compute capacity brings

great opportunities for novel types of DL models and applications development, and mean-

while incurs lots of challenges to performance optimization for large-scale high-performance

deep learning computing. In this dissertation, we start with deep learning algorithm level

computing optimization, i.e., convolutional neural network (CNN) model compression and

acceleration, and then delve into the software and hardware co-optimization to achieve

ult-most computing efficiency and performance.

Specifically, we start by introducing two algorithm-level compression works that tar-

gets at the fundamental model type, convolutional neural networks. Different from many

research works that focus on weight or filter pruning, our work targets at the other two

novel components of CNNs: feature maps and connectivity. We thus propose an attention-

based dynamic feature map pruning framework, Antidote; and the structural decoupling

framework by connectivity pruning, DC-CNN.

Then to the hardware level, we propose two software-hardware co-optimization works.

Specifically, the first work targets at the graph and runtime co-optimization that conducts

resource-aware multi-tenant runtime scheduling, MT-Graph; and the second work targets

at GPU-aware DNN design by tail effect analysis and elimination, TA-DNN.

Finally, we summarize our dissertation and analyze the future trend by sharing our

understanding and vision. We hope by sharing these works and understandings, this disser-

tation could shed some light on the future large-scale deep learning computing research.
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Chapter 2: Backgrounds and Related Works

2.1 Convolutional Neural Network Basis

Overview As one of the major types of deep learning models, convolutional neural net-

work (CNN) is the fundamental model structure that serves as the basic backbone in various

of applications like computer vision. There are several types of layers: convolution layers,

pooling layers, and the fully connected layers. Among these types of layers, convolutional

layers are the most computing-intensive layer types and thus computing optimization works

usually focus on convolutional layers.

Figure 2.1 shows a overview of the CNN structure, there are three basic computing

components in a convolutional layer: convolutional filter, feature map, and the connectivity.

2.1.1 Convolutional Filter

The convolutional computation is conducted by convolving the filter with feature maps in

a sliding-window way. As shown in Figure 2.2, we could convolve a filter with 3×3 kernel

Dog

…

Cat

Filter

Feature map

Connectivity

Figure 2.1: CNN Structure Overview.
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Input Feature Map Filter Output Feature Map

Figure 2.2: Convolution operation.

size on a input feature map with 7×7, which could produce a output feature map with 5×5

output feature map. There are also several other factors like padding, and striding that

affects the output feature map size, as well as the computation workload. Also note that,

one convolutional layer could have many filters to increase the capacity of the model and

meanwhile to capture the different and various patterns of the input, so as to improve the

model accuracy.

2.1.2 Feature Map

The feature map is the intermediate data generated by the convolutional operator. Specif-

ically, the output feature map will serve as the input of the next layer. Since there can

be multiple filters in one convolutional layer, the output feature maps can become multiple

channels stacking together, as shown in Figure 2.1.

2.1.3 Connectivity

The connectivity denotes the convolutional connection between convolutional filters and

feature maps. In general cases, the filters and feature maps are fully connected as shown in

Figure 2.1. However, our investigation shows that such fully-connected convolutional layers

have many redundancy in their connection, partial of which could be removed without

hurting the model accuracy.
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Deep Learning Frameworks

Graph Optimization

Runtime Optimization

Operator Optimization

Layer, Data Flow Definition

Op Fusion, Graph Substitution

Op Dispatch, Kernel Invoke

Tiling, Unrolling, Reordering 

VGG ResNets InceptionV3…

Op1

Op2

Op3 sc
he
du
le
r

Resource Optimization

Figure 2.3: DNN optimization stack overview.

2.2 DNN Performance Optimization Stack

Overview We first expand the backgrounds of DNN execution stack as shown in Fig. 2.3,

that is composed of multiple architecture levels [13].

2.2.1 Algorithm-level

The top algorithm level includes different deep learning frameworks and algorithms, such

as the most commonly-used DL libraries, TensorFlow and PyTorch. This level also defines

various DNN model structures like VGG, ResNets, InceptionNets, etc. Many computing

optimization works in this level focuses on DNN compression [14–17], and new architecture

design like neural architecture search [18–21].

2.2.2 Graph-level

The graph level untangles model structures to abstract individual operators and identify

the data processing flow as directed acyclic graphs (DAG) [22]. Graph-based optimization

is thus introduced into this level to achieve operator fusion and sub-graph substitution,

and therefore reduce memory access/operator invoking overheads, etc. There are many

8



graph-level optimization works including [13,22,23], etc.

2.2.3 Runtime-level

Down to the runtime level, it controls when and how operators are dispatched onto physical

computing units and is critical in our balanced resource utilization. This is usually done

by the native black-box GPU scheduler, but we could leverage certain APIs to adjust the

dispatching results. Here runtime optimization [24–26] aims to wisely dispatch operators

of varied resource consumption to appropriate processing units, thus optimizing different

objectives like maximizing the utilization, reducing contention, etc.

2.2.4 Kernel-level

The kernel level is the lower level that conduct per-operator execution, such as tiling,

unrolling, reordering, etc., to improve the computing efficiency. Such intra-operator op-

timization has a distinct scope and is orthogonal to the concurrent operator scheduling

such as runtime scheduling. There are many kernel-level optimization works like TVM [13],

Ansor [27], Cortex [28], etc.

2.2.5 Resource-level

The resource level is the bottom level that conduct resource partition, allocation or pro-

visioning. Such resource-level management may be trivial in single-tenant settings when

resource is exclusively assigned, but it is drawing increasing attention recently with the

trend of multi-tenant computing scenarios where multiple models co-run on the same hard-

ware. Especially, resource partition is highly needed to improve the utilization and enhanc-

ing the computing throughput in the recent trend of large-scale computing hardware like

TPUs/GPUs. There are many emerging works in this direction that conducts dedicated

resource-level optimization like [29–32].

9



Chapter 3: Algorithm-level Compression and Acceleration

In this chapter, we first introduce our works in algorithm-level compression and acceleration:

Antidote and DCCNN. Specifically, Antidote mainly aims to conduct dynamic feature map

pruning to reduce the DL workloads. DCCNN not only conducts connectivity pruning

to both reduce workload, it meanwhile designs and enables novel and efficient computing

paradigms on multi-core CPU and mobile platforms.

3.1 Antidote: Attention-based Feature Map Pruning

3.1.1 Problem Motivation

In the past few years, Deep Neural Networks (DNNs) have achieved extraordinarily accuracy

boost on various cognitive tasks, such as image classification [33, 34], object detection [35,

36], speech recognition [37–39], etc. However, the increasingly larger model structure also

introduces tremendous computation load, causing considerable performance issues [40–43].

For example, one of the largest model for language tasks— GPT-3 [39] consists of 175

billion parameters, whose huge memory occupancy makes it even impossible to be trained

on the server with eight V100 GPUs with 16GB memory [39].

To reduce the DNN computation resource requirement, many optimization works have

been proposed to reduce the model redundancy by identifying and removing insignificant

components. Han et al. considered the weight magnitude as the significance criteria and

introduced weight sparsity regularization for model compression [44]. As such weight spar-

sity is irregular during hardware computation, structural pruning was also proposed in [44]

to remove regular sparsity achieve practical computation acceleration [16, 45]. Further, Li

et al. defined the ℓ1-norm of the convolutional filter weights for significance evaluation and

removed small filters for less computation load [15,46].

10



Although these works demonstrate good performance, all these works only evaluate

model components’ static significance with parameter (a.k.a. weights) information, ignoring

their dynamic interaction with external inputs. As DNN models are trained for discrim-

inating different input features, different single input may have certain feature activation

variance. This will lead to circumstances that certain generic significant neurons (such

as filters with large ℓ1 norm) may not be activated by particular inputs [47], while some

insignificant neurons with smaller norms are specifically activated [48]. Such a variance

suggests that, instead of static importance evaluation, the model components’ significance

should be evaluated with a dynamic manner in the inference process with different inputs.

Recently, certain research works have leveraged such a dynamic manner for DNN model

optimization with different goals. For example, the ImageNet-2017 winner SENET found

that different inputs have significant impact on the feature channel significance. And dy-

namic feature channel scaling can achieve outstanding accuracy improvement [49]. Yu et

al. also reveal that regardless of filter weight, certain filters contain particular class-specific

features with significant activation impact. Therefore, filters with significant weight can be

also aggressively pruned according to different class inputs [50]. Fig. 3.1 shows two examples

that demonstrate the spatial attention, which could effectively capture the major feature of

the objects which is very sparse but aligns well with human vision system.

Compared to the conventional static component significance based works, the dynamic

optimization provides several advantages: (1) Qualitatively, it can identify every compo-

nent’s significance more accurately in the practical testing phase by considering the dynamic

input-feature interaction. (2) Quantitatively, dynamic optimization enables more aggressive

redundancy elimination with per-input component significance evaluation, while the static

methods can only identify a general redundancy based on the whole training dataset. (3)

Meanwhile, benefited from the dynamic mechanism, the model optimization degree (such

as feature pruning ratio) could be adaptively adjusted to meet different resource budgets,

while an static optimized model cannot be changed unless with heavy retraining and re-

optimization cost.
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Figure 3.1: Attention iillustration [3].

To achieve such benefits, there are also several challenges: (1) How to design an effective

and efficient evaluation metric for dynamic feature significance evaluation? (2) How to apply

the dynamic optimization in different model dimensions, especially the non-structured ones?

(3) How to develop an effective co-optimization scheme on both testing and training phases

to achieve comprehensive performance improvement? (4) How to flexibly and adaptively

adjust the optimization level to meet the inference requirement (such as resource constraints

in practical deployment) with minimum re-training overheads?

To solve the above challenges, we propose Antidote : an attention-based dynamic DNN

optimization framework. Fig. 3.2 gives a systematical overview of our proposed method.

Antidote targets at dynamic feature map pruning by identifying the feature map redun-

dancy associated with every different input. Specifically, between any two consecutive

convolutional layers, we utilize the attention-based mechanism to evaluate the importance

of different components of feature map and then generate the feature pruning mask. The

mask will be applied back onto the feature map and to remove the channel-wise and spatial-

wise redundancy structurally. By doing so, we could remove the non-essential computation

in the next layer for runtime efficiency optimization.
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3.1.2 Attention Formulation

We first give the formal definition of channel and spatial attention. Given an intermediate

feature map F ∈ R C∗H∗W (here, C,H,W is the channel depth, height, width of the feature

map), the channel attention coefficient can be obtained by calculating the average of feature

map entries in the spatial dimension H ∗W :

Achannel(F, c) =
1

H ∗W

H∑
i

W∑
j

Fc(i, j), (3.1)

where Achannel(F, c) is channel attention for the selected channel c. For a given feature

map F ∈ R C∗H∗W , the channel attention Achannel(F ) is a C−dimensional vector, each

entry of which corresponds to one channel of the feature map F . In a neural network, the

channel attention is usually calculated by adding a global average pooling layer behind the

convolution and ReLU layer.

Similarly, the spatial attention coefficient calculates feature map’s mean in the dimension

of depth C:

Aspatial(F, h,w) =
1

C

C∑
i

Fh,w(i). (3.2)

As such, a feature map F ∈ R C∗H∗W would have a spatial attention matrix Aspatial(F )

of H ∗W size (so-called attention heat map), each entry of which corresponds to a spatial

location of the feature map.

In previous works [49, 51], such attention coefficients are usually passed through a sig-

moid layer to be normalized into a (0, 1) range, and then be multiplied back to the feature

map. It guides the model to dynamically put better attentions, but it can hardly remove

feature components for neural network acceleration. In this work, we propose to overcome

the above challenge by using a further-binarized mask to improve the attention mechanism

in pruning context. Based on this, two dynamic feature map pruning schemes are developed:

channel-wise pruning and spatial-wise column pruning.
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Figure 3.2: Attention-based dynamic feature map pruning framework.

3.1.3 Inference Optimization: Dynamic Feature Pruning

Dynamic channel pruning: During neural network forward phase, a common convolu-

tional layer will generate a 3-dimensional feature map F ∈ R C∗H∗W (the first batch dimen-

sion is omitted for simplicity). Based on Eq. 3.1, channel-wise attention vector Achannel(F )

is obtained to evaluate the importance of each channel. With these coefficients, a binary

mask Mchannel(F ) will be generated, which is a C-length binary vector to determine the

redundancy removal. The channel-wise mask can be generated by setting the mask of top-k

attention entries to be True or False, as shown in Eq. 3.5.

M(F, c) =


True, If c ∈ topk(Achannel), k = int(p ∗ C);

False, Otherwise.

(3.3)

Here, topk returns to the indexes of all top-k entries in the channel attention vector. The

channel mask True indicates the current feature map channel will be reserved, while the

other channels whose masks are set to False will be masked out and not participate in the

next layer’s convolution computation. The value of k depends on the overall feature map

channels C and the reserved feature percentage p. Note that, the selection of k is dependent

on both input images and models, e.g., some images can have more empty backgrounds while
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others may not. In this work, we select the per-layer feature reserving percentage based

on our later layer sensitivity analysis. There are also other filter-pruning works that adopt

self-adaptive global thresholding, which we will consider as future work.

Different from static channel pruning that the selected channels are permanently pruned,

in our case the pruned channels are dynamically pruned based on the attention w.r.t. the

current input. More specifically, for other inputs which use this channel, it can be fully

recovered by the input dependent new binary mask. As such, the proposed method can

achieve per-input redundancy removal and larger pruning ratio than static methods.

Dynamic spatial column pruning: Similar to the channel pruning, dynamic spatial

column pruning removes feature map columns at different spatial locations according to the

spatial attention coefficients. Based on the spatial attention coefficients, a mask Mspatial(F )

will also be generated. For spatial column pruning, the mask Mspatial(F ) is a H ∗W matrix,

each entry of which corresponds to reserving or removing a column of the feature map:

M(F, h,w) =


True, (h,w) ∈ topk(Aspatial), k = int(p ∗ H ∗ W );

False, Otherwise.

(3.4)

topk here returns to all the 2-dimension indexes with the top attention coefficients. The

same as channel pruning, the spatial mask will be applied onto the feature map and the

unimportant columns will be removed from the feature map.

Note that both of the dynamic channel and spatial column pruning target at pruning

redundant feature maps, which is different from previous filter weights pruning: the re-

moved feature map components skip the further convolution operation and hence reduce

the computation load in the next layer.

Dynamic control unit overhead: The dynamic feature channel and spatial column

pruning requires extra computation to derive the top-k channels and columns, which po-

tentially poses certain overhead to the original DNN model. In this part, we analyze such
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overhead and demonstrate that such overhead is negiligible compared to the overall con-

volution workload. Specifically, we randomly select a common convolutional layer setting

from the middle layers of VGG network, e.g., 256 filters with 3×3 filter size, and 256 fea-

ture channels with 14×14 feature map size. In such case, the original convolution takes

256 × 3 × 3 × 256 × 12 × 12 = 84M multi-add operations. However, our channel-wise and

column-wise aggregation (Eq. 3.1 and Eq. 3.2) only involves 2 × 256 × 14 × 14 = 0.1M

add operations and two top-k operations. Therefore, the overhead of our dynamic unit

constitutes less than 1% of the original convolutional computation.

3.1.4 Training Optimization: Targeted Dropout

To relieve the model’s dependency on less important feature components, we concurrently

propose a optimized training algorithm TTD: Training with Targeted Dropout. With the

new training algorithm, model’s accuracy drop resilience against dynamic pruning hurt will

be greatly improved, thus providing better dynamic pruning performance.

Training with Targeted Dropout The design motivation of TTD is to relieve the

target model’s prediction dependency on less important feature components, so that pruning

these components will induce less damage to the model performance. Therefore, we propose

to integrate dropout mechanism into the model training process. By doing dropout, the

model inference process can gradually become robust to the dynamic feature map dropping.

Meanwhile, to mimic the similar dropping effects as attention-based pruning, the dropout

must also target at dropping attention-based less-important feature components. Note

that, in this targeted dropout, the targeted dropped channels and spatial locations can

dynamically change and be potentially recovered during future rounds of training. This is

different from filter pruning and fine-tuning (in which the filters are permanently pruned)

but more similar to the filter dropout method that filters are dropped and recovered in

different iterations. Therefore, we name our method as the training with targeted dropout

(TTD) method. This is also the main difference between our targeted dropout and random
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dropout: the latter one is usually used for different purposes, e.g. to avoid over-fitting.

For implementation, the main difference of our TTD training algorithm with traditional

training is we add a dynamic targeted dropout layer after each convolutional layer. Dur-

ing the forward phase, the targeted dropout layer will dropout the non-important feature

map components (channels and columns). This can be done by conducting element-wise

multiplication with the generated attention binary mask in Eq. 3.5:

F ′ = F ⊗Mspatial(h,w),

F ′′ = F ′ ⊗Mchannel(c),

(3.5)

where ⊗ denotes the element-wise multiplication. During multiplication, the mask values

will be broadcasted: spatial attention coefficients will be broadcasted and multiply with

every entry along the channel dimension, and vice versa. F ′′ is the final feature map output

with targeted channel-wise and column-wise sparsity. During the backward phase, the

dynamic dropout layer will conduct the regular back-propagation without any operations.

By introducing the attention-based targeted dropout effect, the TTD training will grad-

ually relieve the model’s prediction dependency on less-important features (since they are

often dropped during training), but increase their focus on most important ones. Therefore,

the dynamic pruning of those non-important feature components will induce minimum or

no effects to the model accuracy during test-phase inference.

Layer Sensitivity Analysis and Dropout Ratio Ascent The TTD algorithm intro-

duces the targeted dropout into the training process to enable the dynamic pruning during

test. Whereas, different layers of a model can have varied amount of redundancy. This

requires the targeted dropout ratios to be carefully tuned otherwise it will greatly hurt the

model convergence speed and final accuracy. Therefore, we draw some experience from

previous static pruning works and follow the layer sensitivity analysis practice to set the

dropout ratio for different layers.

Take VGG16 network as an example. VGG16 has 5 convolutional blocks with [2, 2,
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Figure 3.3: Block Sensitivity Analysis.

3, 3, 3] convolutional layers and one 2x2 MaxPooling layer at the end of each block. To

avoid massive hyper-parameter tuning and to maintain policy consistency with block-wise

ResNet structure, we analyze the average block sensitivity and set an aggressive dropout

upper bound for each block. For example, Fig. 3.3 shows the block sensitivity analysis for

VGG and ResNet. Take VGG as an example: An aggressive pruning ratio per block e.g.

[0.2, 0.2, 0.6, 0.6, 0.9] can cause the pruned model’s accuracy dropping to less than 70%,

which can be hardly recovered back. Therefore, we set this threshold as the upper bound

pruning ratio, and then use dropout ratio ascent during TTD training. The dropout ratio

will start with a warm-up ratio, for example 0.1 for each block. After the model converges

during the current ratio, we will ascent the ratio for each block with a small step-size (e.g.

0.05) to try reaching the maximum pruning ratio. And the training will stop when the

target pruning ratio and a satisfying accuracy is achieved.
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Table 3.1: Experiment Results on CIFAR and ImageNet Datasets.

CNN

Models

Pruning

Methods

Baseline

Accuracy(%)

Baseline

FLOPs

Final

FLOPs

FLOPs

Reduction(%)

Final

Accuracy(%)

Accuracy

Drop(%)

VGG16

(CIFAR10)

L1 Pruning* [46] 93.3 - 2.06E+08 34.2 93.4 -0.1

Taylor Pruning* [52] 93.3 - 1.85E+08 44.1 92.3 1.0

GM Pruning* [53] 93.6 - 2.11E+08 35.9 93.2 0.4

FO Pruning* [48] 93.4 - 1.85E+08 44.1 93.3 0.1

Proposed 93.3 3.13E+08 1.46E+08 53.5 93.1 0.2

ResNet56

(CIFAR10)

L1 Pruning* [46] 93.0 - 0.91E+08 27.6 93.1 -0.1

Taylor Pruning* [52] 92.9 - 0.71E+08 43.0 92.0 0.9

FO Pruning* [48] 92.9 - 0.71E+08 43.0 93.3 -0.4

Proposed 93.0 1.28E+08 0.80E+08 37.4 93.2 -0.2

VGG16

(CIFAR100)

L1 Pruning* [46] 73.1 - 1.96E+08 37.3 72.3 0.8

Taylor Pruning* [52] 73.1 - 1.96E+08 37.3 72.5 0.6

FO Pruning* [48] 73.1 - 1.96E+08 37.3 73.2 -0.1

Proposed: Setting-1 73.1 3.13E+08 1.87E+08 40.4 73.2 -0.1

Proposed: Setting-2 73.1 3.13E+08 1.72E+08 44.9 72.9 0.2

VGG16

(ImageNet100)

L1 Pruning* [46] 78.5 - 0.76E+10 50.6 76.6 0.8

Taylor Pruning* [52] 78.5 - 0.76E+10 50.6 77.3 0.6

FO Pruning* [48] 78.5 - 0.76E+10 50.6 79.5 -1.0

Proposed: Setting-1 78.5 1.52E+10 0.74E+10 51.2 79.6 -1.1

Proposed: Setting-2 78.5 1.52E+10 0.69E+10 54.5 79.4 -0.9

MobileNetV2

(ImageNet-1K)

AMC [54] 71.8 - 2.49E+8 30.0 70.8 1.0

ThiNet [55] 71.8 - 1.96E+8 44.7 63.7 6.4

DC Pruning [56] 71.8 - 1.96E+8 44.7 64.2 5.9

Proposed 71.8 3.56E+8 1.96E+8 44.7 69.4 2.2

* Method performance is referred from [48,53].

3.1.5 Experimental Evaluation

Experimental Setup We evaluate our proposed attention-based dynamic feature prun-

ing methods on multiple common benchmarks, e.g. VGG and ResNet on CIFAR10/100,

as well as ImageNet. By comparing the commonly used floating point operations (FLOPs)

reduction and the accuracy, we show that our attention-based dynamic pruning method

could outperform previous SOTA pruning methods with large margins.

We then evaluate our attention-based OFA model deployment optimization. Specifically,

19



we demonstrate that one unified trained OFA model could be flexibly reconfigured to be

multiple models to meet different computing resource requirement, meanwhile achieving

similarly optimal computing-accuracy trade-offs as individually trained models, and most

importantly, without any re-training cost.

Throughout our experiments, we use the deep learning framework PyTorch. For model

training settings, we use the same data augmentation including random horizontal flip, ran-

dom crop and 4-pixel padding. For the model optimizer, we use the default SGD optimizer

with momentum factor as 0.9. The learning rate scheduling policy is cosine decaying [57]

with 0.1→0 for training process of all models.

Attention-based Feature Pruning Evaluation

We first evaluate our attention-based feature pruning method. Several state-of-the-art static

pruning methods are chosen as baseline for comparison, including ℓ1-norm Pruning [46], Tay-

lor Pruning [52], Geometric Mean Pruning (GM) [53], Function-Oriented Pruning (FO) [48],

AMC Pruning [54], ThiNet [55] and DC Pruning [56].

VGG16 on CIFAR10 The first model we evaluated is the VGG16 on CIFAR10. VGG16

has 13 convolutional layers in 5 blocks. For each block, there are 2-2-3-3-3 layers with 64-

128-256-512-512 filters (of 3x3 filter size) per layer. The experimental results are shown in

Table 3.1. On this model, the best channel pruning ratio per block we find is [0.2, 0.2, 0.6,

0.9, 0.9], which matches the sensitivity analysis. Beyond this ratio, the accuracy can hardly

be compensated by TTD training. Since the feature map spatial size is too small (e.g. the

last 9 layers’ feature map size are ranged from 8x8 to 2x2), pruning spatial columns on

VGG16 always brings unrecoverable accuracy drop. Therefore, spatial pruning ratio for

this model is set to 0 for all layers.

Comparing our pruning ratio with previous work, our channel pruning ratios [0.2, 0.2,

0.6, 0.9, 0.9] greatly outnumber the previous state-of-the-art static methods: The best

FO pruning [48] can only achieve [0.17, 0.1, 0.1, 0.45, 0.65]. This proves our hypothesis
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that our dynamic method can aggressively and accurately remove more dynamic per-input

redundancy which static method fails to. As a result, our best performance of dynamic

pruning is 53.5% FLOPs reduction with 0.2% accuracy drop, 9.4% higher FLOPs reduction

than the best FO Pruning with only 0.1% accuracy difference.

ResNet56 on CIFAR10 The next model we evaluated is ResNet56 on CIFAR10. Differ-

ent from VGG16 with wide layers, ResNet56 has three groups containing 16 convolutional

layers per group. And it has at most 64 convolutional filters in one layer. Thus, the channel

redundancy in ResNet56 is relatively limited compared to VGG16. By contrast, its feature

map size are from 32×32 to minimum 8×8, which can contain more redundancy. There-

fore, for this network, we prune less channels but more spatial columns. Due to the skip

connection, we need to maintain the same size of input and output channels of even layers

in every group. Therefore, the dynamic pruning is only conducted in the odd layers in the

group. The dynamic pruning setting for this network is channel-wise pruning ratio: [0.3, 0.3,

0.6], and spatial-wise pruning ratio: [0.6, 0.6, 0.6]. The final performance is 37.4% FLOPs

reduction with slight 0.2% accuracy improvement, which is comparable with previous FO

pruning results.

VGG16 on CIFAR100 We also test our dynamic pruning method’s performance using

VGG16 on CIFAR100. One conservative pruning setting (Setting-1) is [0.2, 0.2, 0.2, 0.8,

0.9] channel-wise ratio, with zero spatial pruning ratio for all layers due to the same reason

of small feature map size. Compared to all baseline methods, this setting could achieve the

highest FLOPs reduction (40.4%) as well as the highest accuracy (73.2%). We also conduct

a more aggressive pruning setting (Setting-2) with [0.3, 0.2, 0.2, 0.9, 0.9] channel-wise ratio

and zero spatial ratio. In this setting, a 0.5% accuracy drop is observed but we could push

the FLOPs reduction to 44.9%, which is 4.5% more than Setting-1 model.

VGG16 on ImageNet100 To validate our method’s performance on large-scale image

datasets, we test our pruning methods using VGG16 model on ImageNet100 dataset with
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the same setting as [48]. Different from CIFAR datasets, images in ImageNet has a size

of 224×224×3. Therefore, the spatial dimension of the feature map in this model is much

larger than CIFAR model. With the similar FLOPs reduction as the baseline, our setting-1

model brings 51.2% FLOPs reduction. The setting is [0.1, 0, 0, 0, 0.2] for channel-wise

ratio, and [0.5, 0.5, 0.5, 0.5, 0.5] for spatial ratio. In Setting-2, we further achieve 54.5%

FLOPs reduction with increased spatial ratio [0.5, 0.5, 0.5, 0.6, 0.6] and without accuracy

drop. This further proves our method’s good capability in removing model redundancy on

large-scale datasets.

MobileNetV2 on ImageNet-1K We finally validate our method’s performance on light-

weight models such as MobileNetV2 on ImageNet. We compare our method with several

previous SOTA works [54–56]. The results are shown in the last row in Table 3.1. As

the table shows, AMC pruning achieves relatively less FLOPS reduction (30%) with 1%

accuracy drop. And the other two methods achieve more FLOPS reduction but incurs

larger accuracy drop, e.g., 5.9%∼6.4%. With the similar settings, our proposed method

achieves same FLOPS reduction (i.e., 44.7%) but only incurs 2.2% accuracy drop, which

shows our method’s capability in removing feature redundancy on large-scale datasets.

Feature Map Redundancy Existing Dimensions

Channel Reundancy Spatial Reundancy

VGG16-IMGNET100

VGG16-CIFAR100

ResNet-CIFAR10

VGG16-CIFAR10

0.2 0.4 0.6 0.8 10

Figure 3.4: The feature redundancy varies in channel and spatial dimensions.
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The Redundancy Composition in Various Dimensions In this part, we demonstrate

that different neural network models on varied datasets can have distinct feature map

redundancy composition. To show it, we calculate the channel and spatial redundancy

separately for each of our previous experiments, the results of which is shown in Fig. 3.4.

We could find that the model redundancy can exist in very arbitrary dimensions. For

example, VGG-style plain network on small-resolution datasets (VGG-CIFAR10 and VGG-

CIFAR100) mostly have over-redundant channels and thus more channels can be pruned

without hurting accuracy. While for large-resolution datasets like VGG-ImageNet100, more

spatial redundancies can be easily pruned without hurting accuracy since larger background

areas could be removed in 224x224 resolution images without hurting the classification

information. ResNet is more special, as this network shows similar spatial and channel

redundancy (ResNet-CIFAR10). Our hypothesis is that due to the skip connection, the

spatially pruned features can still pass onto next blocks by the skip connection. Therefore,

pruning spatial features incurs less information loss for ResNets than plain VGG networks.

Effectiveness of Channel+Column Composed Pruning The above difference of fea-

ture redundancy distribution highlights the fact that the feature map redundancy exist in

various of dimensions for different input resolutions and model structures. For example, im-

ages of ImageNet resolution can have more spatial redundancy lying in the background spa-

tial areas. While for lower-resolution CIFAR images, channel-wise redundancy exists more

due to the simplicity of the dataset. Therefore, previous channel-only pruning [46,48,52,53]

can hardly remove the spatially existed redundancies in the feature maps. By contrast, our

novel spatial-column-wise pruning and its combination with channel-wise pruning enables

more flexible and thorough feature map redundancy removal, which thus help us achieve

the optimal performance for most test settings.
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Figure 3.5: Core under-utilization during CNN inference

3.2 DCCNN: Structural Decoupling by Connection Pruning

3.2.1 Problem Motivation

With excellent learning capability and classification accuracy, CNNs have been widely

adopted in various cognitive applications and systems. However, such satisfying CNN func-

tionalities are usually based on massive neuron volumes and multi-layer interconnections.

These complex structures and huge workloads bring significant concerns regarding the com-

putation performance, such as computation latency, memory occupation, energy consump-

tion, etc. Previously, many works have been proposed to optimize the CNN computation

performance by reducing the computation load through model compression (e.g., filter prun-

ing [58–60], weight sparsity [61]), hardware specific optimization (e.g., loop-untiling [62],

fuse-layer [63]), etc.

Although these optimization works have demonstrated their effectiveness, they are

mostly limited by the sequential CNN computation flow in a sequential layer-by-layer man-

ner [64, 65]. Such a layer-based computation flow is defined by the inevitable inter-layer

data dependency. Specifically, the subsequent layers have to wait for the previous layer’s

whole output feature map for further computation. Therefore, certain performance issues

may occur: (1) For high-performance multi-core platforms, the CNN inference may suffer

from resource under-utilization if without good parallelism support. Fig. 3.5 shows a pro-

filed CPU time-line when running VGG-16 inference on an Intel 16-core Xeon CPU. While
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Figure 3.6: DC-CNN framework overview

the first core keeps running for 720ms, the other 15 cores are almost idle during 98% pro-

cessing time. (2) For small embedded systems like mobile platforms, the limited capacity

like memory resources can also become the bottleneck for running CNNs.

To tackle these challenges, in this work, we first propose to resolve the data dependency

in Fig. 3.6 (a)-like CNN models. As shown in Fig. 3.6 (b), leveraging effective neuron

functionally interpretation, we can group the class-specific filters and identify the critical

model structure (i.e. critical paths) for individual classes. Then by structural connectivity

pruning, we could decouple a CNN model into independent class-specific sub-networks as

shown in Fig. 3.6 (c). Based on this CNN structural decoupling method, we then propose

a novel CNN computation framework – DC-CNN. Two computing paradigms are proposed

for different computing scenarios: For large-scale multi-core systems, as shown in Fig. 3.6

(d), we introduce the novel path-based parallelism into the computation flow. By deploying

the independent sub-networks into parallel cores, the resource utilization is significantly

enhanced, which brings much inference latency reduction. For small-capacity systems like

mobile platforms, as shown in Fig. 3.6 (e), we propose a cascade computation flow, which
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processes independent sub-networks in a sequential manner. In this way, the sub-layer

convolution could bring significant memory reduction compared to conventional full-layer-

wise computation flow. With these two paradigms, the CNN computation flow is redefined

by a general software-system co-design methodology for better computation performance.

Filter Functionality Interpretation

For the ith filter in the lth convolutional layer – F l
i , we can interpret its functionality by

analyzing its activation and gradients of the nth class. First, given an input x, the confidence

of the nth class can be formulated as:

Zn(x) = FL ◦ · · · ◦ F l ◦ · · · ◦ F 1(x),

where Al(x) = F l ◦ · · · ◦ F 1(x) =
∐

Al
i(x),

(3.6)

where Zn(x) is the nth class’s confidence output in the final logit layer L, F l is the lth layer’s

full convolutional computation, Al is lth layer output feature maps consisting of each filter

i’s output feature map Al
i, and

∐
denotes the stack operation of feature maps. Based on

this definition, the filter functionality can be interpreted by two approaches:

Activation Preference Interpretation

Given different sets of test images xn from N classes, the filter’s mean activation of each

class can be formulated as:

Actni = E(||Al
i(x

n
p )||1), p is the pool size of nth class, (3.7)

where ||.||1 is the ℓ1 norm, E is the mean function. If the images from the n-th class can

cause a significant Actni value than other classes, we can assume the filter F l
i has a higher

class preference to the n-th class.
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Activation Significance Analysis

According to the first-order Taylor expansion [52], a filter’s activation significance can be

evaluated by the gradients of the output. In other words, the gradient Gradni can describe

the differential impact of filter i’s feature map to the nth class’s confidence:

Gradni = ||
∂Zn(Al

i)

∂Al
i

||1, Zn(Al
i + δ) ≈ Zn(Al

i) +
∂Zn(Al

i)

∂Al
i

· δ (3.8)

where a larger Gradni indicates that a small change of δ on Al
i will cause big influence to

Zn. Similarly, if filter i has a significant Gradni , we can interpret that the filter i has more

contribution to the n-th class.

Filter’s Class-Specific Index

Combining both activation preference and activation significance based on Taylor Expan-

sion, we derive the class-specific index – Sn
i to identify a convolutional filter’s function

exclusiveness to a specific class:

Sn
i = Actni ∗Gradni , n∗ = Argmaxn(S

n
i ), (3.9)

where n∗ is the priori functional target class of the filter i.

Functionality Interpretation Cross-Verification

We conduct a series of experiments to validate the proposed class-specific index and explore

the potential functionality divergence and independence between different classes. Fig. 3.7

shows a pair of interpretation examples for the classes of “cat” (a) and “dog” (b) in the

Conv5 1 layer. For each figure, the left column shows the distribution maps of all the filters’

Actni and Gradni values corresponding to each class. It’s clear that:

(1) The same distribution patterns of activation and gradient maps indicates the con-

sistency of the two interpretation approaches. Combining two distribution maps according
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to Eq. 3.9, we select out the top-3 filters with maximum Sn
i , and their visualization pat-

terns demonstrate clear corresponding class objects with distinct features. Therefore, three

methods cross-verify the correctness of our functionality analysis.

(2) Meanwhile, the most activated neurons for two classes are barely overlapped when

we compare two sets of distribution maps in Fig. 3.7 (a) and (b). Such exclusiveness

between classes implies there exists great independence between different set of class-specific

convolutional filters.

Independent Class-Specific Critical Path Distillation

Based on the filter’s functional exclusiveness analysis, we then propose to group all the fil-

ters with the same class activation preference together across different convolutional layers.

These filter groups thus form critical paths, which can be regarded as the meta-architecture

for the corresponding class. Since the convolutional filters in different critical paths have

significantly diverged activation preferences and very less shared features to share, the crit-

ical paths in deeper layers should have rare data dependency with each other. Therefore,

we conduct the connectivity pruning between different paths and assure each path is inde-

pendent from the other paths.

As shown in Fig. 3.8, in the VGG-16 model trained on CIFAR-10, we identified and

Neuron#431

Neuron#44

Neuron#20

(a) Class-3: Cat

3.Visualization1. Activation

2. Gradient

Neuron#473

Neuron#294

Neuron#125

(b) Class-5: Dog

3. Visualization1. Activation

2. Gradient

Figure 3.7: Class-specific filter functionality interpretation
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Figure 3.8: Per-Class Critical Path’s Classification Confidence

tested the critical paths’ classification performance. Each sub-figure shows one path’s pre-

diction confidence distribution, where green lines denote input from its functional target

class, red lines otherwise. Clearly, even without other filter’s support, each critical path

alone can effectively detect corresponding class inputs with distinctively high confidence.

In other words, the strong activation along the critical path can directly trigger the corre-

sponding classification result without relying on other paths.

Based on the function interpretation, we can now successfully distill the independent

class-specific critical paths. Based on this, we next propose a structural model decoupling

method for flexible model optimization.

3.2.2 Overview of Structural Model Decoupling

Fig. 3.9 shows a conceptual model decoupling overview and the detailed implementation

between two consecutive layers (the blue shadowed part). Our model structural decoupling

transforms a CNN model into three parts: the shared layers, the decoupled layers, and the

final logits, as shown in the upper part. (1) The shared layers are kept as the original model

structure without decoupling, since these layers mainly extract multi-functional features

that are generally utilized by all classes. (2) In the decoupled layers, we decouple the

original convolutional layers into N independent critical paths. This is finally implemented

by group convolution with N groups. (3) The logit node of each class is connected at the
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(a) Conventional Structure (b) Decoupled Structure
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Figure 3.9: Comparison of original and decoupled structures

end of each corresponding path to generate the confidence for each class.

In the original structure in Fig. 3.9 (a), each filter needs to convolve with all feature

maps produced by the previous layer. While in the decoupled structure in Fig. 3.9 (b), every

class-specific filter only convolves with intra-path feature maps, which is a very small por-

tion. Therefore, the decoupled model eliminates many conventional model’s inter-layer data

dependency but conducts the same classification functionalities. Without these inter-path

data dependency, the novel decoupled structure enables us to conduct flexible computation

flow redefinition as we will show in the next section.

Decoupling Configuration Optimization

For a pre-trained CNN, it is critical to properly determine how many layers to be decoupled

(decoupling depth), as well as how many filters should be chosen for each critical path

(filter ratio). Higher depth and lower filter ratio mean more layers are decoupled with

less filters in each path, reducing more computation workload but inducing larger accuracy

drop. Therefore, optimizing the configuration to trade-off the performance and accuracy is
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critical to model decoupling.

Specifically, we use configuration search to determine the optimal parameters: (1) The

decoupling depth D: we conduct a line-search (one to the maximum model depth); (2) The

per-layer filter ratio FR: we search the global filter ratio for each layer to reduce the search

space. And then a line-search from 20% to 1% is conducted. We then retrain the decoupled

models and record their retrain accuracies. Fig. 3.10 shows the search space and results

with VGG-16 on CIFAR10. As expected, the increasing decoupling depth and reducing

filter ratio gradually downgrade the model accuracy. In most cases, accuracy drop can be

effectively compensated by the retraining process until the optimal point: 7 layers decoupled

with 1% filters reserved per path. Therefore, this configuration will be selected for the best

computation efficiency and the smallest accuracy drop.

3.2.3 Parallel Computing Paradigm for Multi-Core Systems

The model decoupling method reforms a CNN model into a set of independent sub-networks,

which introduce a new type of intrinsic model parallelism. Therefore, we design a novel

parallel paradigm to enhance the resource utilization and improve computation performance

for multi-core systems.

Figure 3.10: Structural decoupling configuration search space

31



Parallel Computing Paradigm Overview

As illustrated in Fig. 3.6 (d), the major difference of our parallel computing paradigm

from convention flow is within the decoupled model layers. Due to the decoupling-enabled

parallelism, each critical path can be easily deployed to different cores of multi-core sys-

tem. Meanwhile, it does not require dedicated hardware parallelism supports, such as core

synchronization or inter-core communication mechanism since these paths are independent

with each other. Compared with previous parallelism works [66,67], our proposed paradigm

serves as a software-level solution with no need of developing specialized architectural par-

allel assistance, which is an great advantage for generality on different systems.

Performance Enhancement Analysis

Computation Reduction Given a base CNN model, suppose we could decouple N sub-

networks in the latter D layers, each with 1/N of original number of filters per layer. Then

in each sub-network, one neuron only convolves with 1/N slices of the original full-size

feature maps as illustrated in Fig. 3.9 (b). Thus, the computation workload reduction is:

C−(N,D) = (1−
1

N
)

D∑
d=2

Cd. (3.10)

Cd is the original FLOPs of the d-th decoupled layer. And d starts from 2 since the first

decoupled layer convolve with full-size feature map and thus has no workload reduction.

Latency Reduction The latency reduction comes from two sources: computation work-

load reduction and the multi-core parallelism. (1) The computation reduction factor is N

times for the decoupled layers as mentioned before. (2) The parallelism reduction factor

depends on N sub-networks and P parallel cores: When number of cores is larger than

number of paths (P ≥ N), partial cores will be utilized with full-path parallelism factor

N . Otherwise, all cores will be fully utilized to process the sub-networks with full-core
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parallelism factor P . Therefore, the expected latency reduction is:

T−(N,P ) = α×
D∑

d=2

Td, where α =


(1− 1

P×N
), if N ≥ P ,

(1− 1

N×N
), if N < P ,

(3.11)

α is the latency reduction ratio, and Td is the original computation time for each layer d.

3.2.4 Cascade Computing Paradigm Overview

As illustrated in Fig. 3.6 (e), the major contribution of our cascade flow is we enabled the

network to run critical paths in a sequential manner, instead of layers. By doing so, the

small-capacity system only needs to store feature maps for a small subnetwork at any time,

which greatly reduces the runtime memory occupation and the potential memory access

overhead [67]. Here we analyze the theoretical latency and memory reduction.

Latency Reduction Analysis Without parallelism, the latency reduction in cascade

flow only comes from the computation workload reduction in Eq. 3.10. Therefore, the

latency reduction can be directly formulated:

T− = (1− 1

N
)

D∑
d=2

Td. (3.12)

And as we will show later, the theoretical latency reduction matches our real performance

quite well in real mobile testing.

Runtime Memory Reduction Analysis In the shared layers of our decoupled models,

the cascade computing flow occupies the same runtime memory as the conventional struc-

ture. While in the decoupled layers, the output feature map size is deducted to 1/N of

original size (if one path is 1/N of original layer), since we only run one path per time.
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Table 3.2: Scalability Test of Proposed Model Structural Decoupling

Dataset Classes Baseline Acc. Scratch Acc. #FLOPs Retrain Acc. Final #FLOPs FLOPs Reduc.

CIFAR10 10 92.1% 92.1% 3.13E+08 92.1% 1.56E+08 50.2%

ImageNet10 10 70.2% 93.2% 1.54E+10 92.8% 1.08E+10 29.8%

CIFAR100

100 73.1% 73.1% 3.13E+08 72.3% 2.08E+08 33.5%

40 72.1% 79.4% 3.13E+08 78.1% 1.98E+08 36.7%

30 72.8% 82.3% 3.13E+08 81.8% 1.96E+08 37.4%

20 71.2% 85.1% 3.13E+08 84.7% 1.86E+08 40.6%

3.2.5 Experimental Evaluation

Scalability with Image Data Complexity

We test our method with ImageNet datasets (10 classes are randomly chosen) to show

the scalability for input data complexity. The baseline model is a full-size pre-trained

model trained on the whole ImageNet datasets, and baseline accuracy is its test accuracy

on the subset of classes. We then train a model from scratch on the chosen ImageNet

subset (with higher scratch accuracy 93.2%). The structural decoupling results are shown

in Table 3.2. By decoupling 6 layers with 10% filter ratio, our decoupled model maintains

92.8% accuracy (with 0.4% accuracy drop compared to high scratch accuracy) but reduces

model computation workload by 35.2%, which proves our generality on large-scale inputs.

Scalability with Class Composition Complexity

To verify the scalability for more complex class composition, we generalize previous 10

classes to 100 classes scenario. Experiments on CIFAR100 proves our method’s high scal-

ability with more classes: under the 100-class setting, the optimal decoupled configuration

is D = 6, FR = 1%, providing 33.4% FLOPs reduction with only 0.8% accuracy drop.
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Table 3.3: Parallel Performance for CIFAR

Inference Latency Reduction

Mode Orignal Ours. Theory Practical

CPU-1 4175ms 3163ms 29.8% 24.2%

CPU-2 4321ms 2864ms 32.5% 33.7%

CPU-4 4298ms 2857ms 32.9% 33.5%

CPU-8 4290ms 2845ms 33.3% 33.6%

CPU-16 4275ms 2831ms 33.6% 33.7%

Add-on: Customizable Class Composition

The proposed structural decoupling also supports users to further reduce model’s compu-

tation workload according to their customization needs. To do so, it requires the fully

interpretation of the model parameters, which can hardly be done by previous pruning

methods. To demonstrate our high flexibly, we evaluate three such customized settings: re-

serving a random subsets of classes (20, 30, 40) in CIFAR100. To optimize for such settings,

we flexibly remove all unnecessary critical paths of non-required classes. Experiments show

that, our decoupled models with flexible class composition can provide 36%∼41% FLOPs

reduction on all settings with negligible accuracy loss.

Performance of Parallel Paradigm

Then we evaluate the proposed parallel computing paradigm performance on the server-

level Intel Xeon 16-core CPU. The experimental results on CIFAR and ImageNet are shown

in Table 3.3 and Table 3.4. Both models are decoupled with decoupling depth D = 6,

filter ratio FR = 10% with no accuracy loss. The model inference latency is tested on one

batch of images (CIFAR: 128, ImageNet: 32). CPU-i means the model inference process

can utilize up to i physical cores of the CPU, which is done by setting the number of

parallel threads. The theoretic latency reduction is calculated according to Eq. 3.11, and

the practical reduction is averaged on 100 running.
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Table 3.4: Parallel Performance for ImageNet

Inference Latency Reduction

Mode Orignal Ours. Theory Practical

CPU-1 14.95 s 11.35 s 29.8% 24.1%

CPU-2 15.12 s 11.01 s 31.5% 27.2%

CPU-4 15.08 s 10.38 s 32.3% 31.2%

CPU-8 15.06 s 10.33 s 32.7% 31.4%

CPU-16 15.10 s 10.21 s 32.8% 32.4%
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Figure 3.11: Parallel flow: multi-core utilization enhancement

As Table 3.3 shows, our parallel computing paradigm on CIFAR brings a 24∼34%

latency reduction compared to original sequential computation flow. The ImageNet results

in Table 3.4 show similar latency reduction rates. With increasing parallelism from CPU-2

to CPU-16, the latency reduction ratio increases to the maximum ∼33.7%, which exactly

matches the theoretic analysis result (33.6%) calculated by Eq. 3.11.

Finally, to better illustrate our parallel paradigm, Fig. 3.11 shows the decoupled layers’

parallel computation details, which demonstrate the great enhancement of core utilization.
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Table 3.5: Performance of Cascade Computation for CIFAR10 and ImageNet10

Original Model Decoupled Model Theoretical Practical

Dataset &

Model Settings

Mobile

Platforms

Latency

(ms)

Memory

(MB)

Latency

(ms)

Memory

(MB)

#FLOPs

Reduction

Latency

Reduction

Latency

Reduction

Memory

Reduction

CIFAR10

(D=7, FR=1%)

Nexus-5X* 95 155.1 56 55.2 50.68% 53.24% 41.05% 64.41%

Pixel-XL* 98 161.3 57 58.8 50.15% 50.15% 41.84% 63.55%

Honor-8 137 164.3 75 52.5 50.15% 50.15% 45.26% 68.05%

Nexus-4 330 158.5 185 58.4 50.15% 50.15% 43.94% 63.15%

CIFAR10

(D=6, FR=1%)

Nexus-5X* 95 155.1 65 70.2 33.54% 33.54% 31.57% 54.74%

Honor-8 137 164.3 85 68.5 33.54% 33.54% 37.96% 58.31%

ImageNet

(D=6, FR=10%)

Nexus-5X* 1455 281.1 1122 223.2 29.81% 31.30% 22.86% 20.60%

Honor-8 1532 290.3 1145 226.5 29.81% 31.30% 25.26% 21.98%

Note: [*] denotes evaluation is done on Android Studio Emulator, otherwise evaluation is done on real mobile phones.

Performance of Cascade Paradigm

We then evaluate our cascade computation paradigm on four different mobile platforms and

evaluate their real latency and memory reduction performance. Specifically, the Tensor Lite

models are loaded into an Android application, and the inference latency is on one single

image. The memory evaluated here is the average peak runtime memory of the application

monitored by Android Studio tracing.

Table 3.5 shows the overall performance comparison of cascade computation of the de-

coupled model and the original model. On all four test platforms, our decoupled cascade

model consistently provides lower latency and memory occupation than original model.

For quantitative comparison, we calculate the theoretic latency reduction ratio based on

Eq. 3.12. Take the settings of CIFAR10 (D=7, FR=1%) as an example: The theoreti-

cal latency reduction is 50.68%, and the practical latency results demonstrate a range of

41.1%∼45.3% latency reduction on different platforms. Considering different platforms’

runtime dynamics, the latency reduction is roughly consistent with our theoretical analysis.
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Figure 3.12: Cascade flow: memory reductions on Nexus-5X.

The memory reduction gain is also significant and consistent for different settings ac-

cording to the results. Fig. 3.12 shows the runtime memory traces by Android Studio to

better illustrate the memory reduction. Each spike on the memory traces denotes the peak

allocated memory for one inference. Through our structural decoupling and cascade com-

puting, we can bring the CIFAR10 model average 64.4% memory reduction (and 20.6% for

ImageNet model) on Nexus-5X, which is a significant reduction for mobile devices.
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Chapter 4: Software-Hardware Co-Optimization

In this chapter, we then introduce our works in software-hardware co-optimization, MT-

Graph and TA-DNN. Specifically, MT-Graph aims to conduct runtime-aware operator graph

scheduling for inference speedup. TA-DNN aims to renovate the DNN design procedure by

considering the GPU micro-architecture and compiling information.

4.1 MT-Graph: Runtime-Aware Multi-Tenant Scheduling

4.1.1 Problem Motivation

As deep neural networks (DNNs) have demonstrated superior performance in vast cognitive

tasks [37, 68, 69], the expectations for DNN-powered intelligence have grown rapidly over

the past few years. In addition to the real-time needs of DNN optimization regarding its

deep structures and heavy workloads [70–72], recent real-world applications further require

multi-tenant DNN computation for even compound tasks [73–75]. For example, it is critical

for an autonomous driving system to inference multiple DNN models simultaneously on the

same hardware for segmentation [76], detection [77], and classification [78]. And for larger-

scale cases, such multi-tenant computing necessity also emerges in cloud computing clusters

and industrial-level data centers for resource utilization improvement, drawing significant

attention from intelligence services providers, such as Microsoft and NVIDIA [11,79,80].

The multi-tenant DNN inference exacerbates the computational complexity on top

of existing DNN problems. However, the corresponding computing support is still rela-

tively backward. As the major platform for the multi-tenant inference — current GPUs’

computing strategies are still limited to traditional approaches of sequential execution (e.g.,
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MPI-processing [81]) and parallel/concurrent execution1 (e.g., NVIDIA multi-Stream exe-

cution [82]). As demonstrated in Fig. 4.1, these limited strategies cannot achieve satisfying

performance for multi-tenant DNN inference: (a) Although the sequential execution dedi-

cates the entire GPU’s resource to each model and achieves the shortest per-model inference

latency as shown in Fig. 4.1 (a), continuous resource under-utilization is inevitable due

to the single-operator execution (e.g., conv, pooling), not to mention the cumulative overall

runtime latency. (b) For the concurrent execution in Fig. 4.1 (b), though indispensable

parallelism for multiple models earns latency optimization to a certain degree, it hasn’t

touched the particular computing complexity in multi-tenant DNN inference. Taking the

first round of convolution from the three DNN models (i.e., A1, B1, C1 ) as an example,

simple parallelism would introduce considerable contention overhead as operators can

compete for computing resources simultaneously. While looking into later stages of this con-

current execution, GPU under-utilization strikes back due to the unbalanced scheduling

for different model depths.

Thus, to strive for optimal runtime latency and resource utilization, the multi-tenant

DNN inference raises particular GPU scheduling requirements not only for analyzing and

relieving local operator contention, but also for managing global model concurrency balance

as per model structure divergence. Bringing this “local-global” need into the existing DNN

execution stack as shown in Fig. 2.3, we can see that, it calls for comprehensive collaboration

from the graph-level operator scheduling, the runtime-level resource awareness,

as well as the hardware scheduler support. However, most existing DNN scheduling

methods are limited in a single-level optimization scope. For example, many works are

proposed singularly for low-level intra-operator optimization, such as loop tiling and un-

rolling [13, 83, 84]; Similarly, many graph-based scheduling works focus only on high-level

inter-operator fusion/substitution optimization [22, 23, 85]. As a result, these methods fail

to meet the cross-level scheduling requirement by the multi-tenant DNN inference.

In this work, we propose a runtime-aware scheduling framework for efficient multi-tenant

1We treat “parallel” and “concurrent” as the same meaning in our work, according to the definition of
“concurrency” in the NVIDIA document [82].
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Figure 4.1: Scheduling for multi-tenant DNN inference on a single GPU

DNN inference on GPU, which automatically coordinates concurrent DNN computing in

different execution levels. As shown in Fig. 4.1 (c), the proposed method could take both

the local operator contention and the global model structural divergence into consideration.

The final scheduling method wisely adjusts model concurrency by interleaving operators for

less contention overhead, maintaining a continuously balanced resource utilization across the

entire inference process, and eventually improving the runtime efficiency. To achieve such a

scheduling target, we make the following contributions: We first abstract the multi-tenant

DNN inference scheduling as a fine-grained concurrency control problem. Incorporating the

GPU multi-stream and synchronization mechanisms, multiple concurrency control levels are

identified in the GPU inference flow to provide the fundamental support for the scheduling

optimization; Based on the problem abstraction, a unified scheduling Intermediate Repre-

sentation (IR) is specified to formulate the scheduling factors by taking both graph-level

and the runtime-level execution mechanism into consideration, and eventually build a struc-

tural search space for the final scheduling optimization; In the established scheduling search

space, we transform multi-tenant scheduling into an optimization problem and propose an
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automated ML-based searching algorithm to find the optimal scheduling strategy on GPU.

Specifically, the GPU runtime resource is profiled and adopted as the searching cost, grant-

ing the whole solution with expected runtime awareness.

4.1.2 The Scheduling Framework

Fine-grained Scheduling Problem Abstraction

This work targets at efficient multi-tenant DNN inference on GPUs. Considering the appli-

cations such as autonomous driving systems, we specify it as a compound task consisting

of N independent DNN models sharing the same input for different inference sub-tasks.

Demonstrated as Fig. 4.2 (a), each DNN inference sub-task consists of a series of operators,

such as conv, bn, relu, pooling, etc, which must be performed in certain order according to

the data flow dependency. While across DNN models, operators are independent and thus

could be flexibly scheduled with certain degrees of concurrency. Our optimization objective

is to minimize the overall latency of N inference sub-tasks, which is the overall time from

the earliest starting time of the tasks to the latest ending time.
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Figure 4.2: Overview of our automated scheduling strategy search framework.
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The key of multi-tenant scheduling is to manage the concurrency for consistent and bal-

anced resource utilization. Therefore, we abstract the multi-tenant DNN inference schedul-

ing as a fine-grained concurrency control problem through the following steps: (a) Achieving

the stream-level concurrency : We allocate one GPU processing stream for each model to

achieve the concurrency (Fig. 4.2 (b)). However, even with certain concurrency, native GPU

stream-based scheduling dispatches operators without dedicated scheduling management.

(b) Finer-grained stage splitting : To achieve finer-grained operator-level concurrency

control, we insert synchronization barriers, namely pointers, to split each stream’s oper-

ator sequence into several shorter stages (Fig. 4.2 (c)). Such stage splittings ensure the

operators to only share the assigned resources in the same stage, thus supporting the stage-

level concurrency control. (c) Stage-level concurrency control : By adjusting where the

pointers are inserted, we could control how many operators are assigned in each stage. This

enable us to reduce or increase the concurrency in a fine-grained manner to manage the

resource utilization (Fig. 4.2 (d)). (d) Intra-stage operator invoking optimization: Af-

ter deciding the scheduling strategy, our final step is the scheduling deployment. During

this implementation, we also optimize the operator invoking logic to prevent the invoking

overhead of early streams from stalling later ones (4.2-e), as we will introduce later.

Unified Intermediate Representation Design

As a multi-tenant DNN inference task consists of N parallelable models: M1,M2, ...,MN .

We represent each DNN model by one stand-alone operator sequence2:

M1 : [1, 2, ..., a],

M2 : [1, 2, ..., b],

MN : [1, 2, ..., c],

(4.1)

2For multi-branch models like ResNets, we also serialize the operators into one sequential sequence as
their intra-model concurrency is limited. Such a representation enables us to better optimize the inter-model
concurrency in the multi-tenant inference scenario.
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where M indicates a DNN model, each number in one list indicates one operator’s index,

and a (or b, c) is the largest index of the DNN’s operators.

Stream : To satisfy the sequential dependency per model, we assign each model to one

stand-alone GPU processing stream:

Si ← Mi, i ∈ (1, 2, ..., N), (4.2)

where Si indicates the i-th stream. An example with three streams is shown in Fig. 4.2

(b). Operators in one stream can only be launched sequentially, while operators in different

streams could be executed concurrently.

The multi-stream mechanism enables the maximum concurrency of DNN inference

streams. However, as aforementioned, scheduling by streams alone can only have stream-

level concurrency control, which is still coarse-grained and does not suffice to manage each

operator’s associated concurrency during its life span. To control the concurrency in a finer

granularity, we then use synchronization barriers to split each stream’s full sequence into

several shorter stages.

Pointer : We use pointers to annotate the appropriate positions where we insert synchro-

nization barriers. An illustrated pointer-based stage splitting is shown in Fig. 4.2 (c)(d).

Taking the first stream as an example, a pointer set with three pointers divides the first

stream sequence into four shorter ones:

ρ1 : (3, 5, 7) + S1 : [1, 2, 3, ..., 9, 10] =

S
′
1 : [1, 2, 3], [4, 5], [6, 7], [8, 9, 10],

(4.3)

where ρ1 is the pointer indexes, S1 is the original operator sequence, and S
′
1 is the split

sequence with synchronization barriers inserted. Each pointer set splits one stream sequence

into several shorter ones, thus enabling a finer-grained concurrency scheduling.

Stage : Between each two pointers, the launched operators form a stage. Due to the sync

barriers, all operators in the same stage must all finish so as to step into the next stage.
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Thus, by controlling how many operators are launched in each stage, we could precisely

manage the concurrency in the most fine-grained operator level. An example is given in

Fig. 4.2 (d). By inserting the first synchronization barrier, we could enable six operators to

concurrently execute in the first stage:

Stage 1 : [S1(1, 2, 3), S2(1), S3(1, 2)]. (4.4)

By contrast, we could also reduce the concurrency in the second stage by assigning no

operators in the third stream:

Stage 2 : [S1(4, 5), S2(2), S3(None)]. (4.5)

Similarly, all stages can be generated with a desired concurrency, thus enabling operator-

level concurrency control.

Schedule : The final scheduling strategy is composed of multiple stages in the synchroniza-

tion barriers’ ordering, which is represented as a multi-stage nested list:

Schedule τ : [Stage 1, Stage 2, Stage 3, ...], (4.6)

where τ indicate the composed scheduling strategy, which can have multiple stages, depend-

ing on the number of synchronization barriers (i.e., pointers) we used to split each stream

sequence. Fig. 4.2 (d) shows an example that uses three sync pointers for four stages. More

synchronization enables finer-grained concurrency control, but at the price of potentially

higher synchronization overhead.

4.1.3 Automated Scheduling Search

The IR design explicitly defines the scheduling factor and the corresponding strategy for

multi-tenant GPU inference. However, it is still challenging to identify the particular

scheduling controls given various compound tasks with uncertain DNN structures. As afore-

mentioned, considering the complexity, manual schedule tuning can take considerable efforts
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Figure 4.3: The automated scheduling search framework overview.

and also cannot scale with more complicated models’ combination and varied GPU plat-

forms. Therefore, we propose to use an ML-based search approach to solve the scheduling

problem in an automated manner.

Formulation: Formally, our primary search target is to find an optimal scheduling strategy

that yields the lowest latency:

τ∗ = argmin
τ

f(τ), for τ ∈ Dτ , (4.7)

where τ∗ is the optimal scheduling strategy, f is the cost model that evaluates the latency

of the current schedule τ , and Dτ is the search space of all potential schedules. Specifically,

to solve this search problem, three basic components need to be clarified, namely, the search

space, the cost model and the searching algorithm.

Search Space is supposed to enumerate all possible scheduling strategy candidates. To

represent such a search space, we adopt the scheduling factors from the proposed IR design

(i.e., streams, pointers and stages).

As defined in Eq. 4.6, τ can be formulated as a nested list and can be treated as a graph-

level scheduling strategy. Although such a nested list is easy to understand and facilitates

the deployment process onto GPU, the list-based search space Dτ is non-structural with

varied list lengths and can be hard to directly optimize. To solve this problem, we leverage
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the one-to-one mapping property between pointer indexes ρ and the schedule lists τ , and

shrink the search space to a lower-dimensional pointer index matrix by building an 1:1

schedule mapping function, as shown in Fig. 4.3:

ρ∗ = argmin
ρ

f(τ),

s.t. τ = T (G, ρ), for ρ ∈ Dρ.

(4.8)

Here the scheduling generation function T (·) generates one schedule τ based on two inputs:

the graph G and the pointer matrix ρ. As G is usually fixed in a given task, the schedule

generation function T (·) maps each pointer matrix to one schedule. Thus, searching schedule

could be transformed to searching the pointer index matrix, the latter of which has a much

more structural input space. By such transformation, we could thus greatly reduce the

optimization difficulty.

Cost Model : With the search space defined, we then require a cost model f(τ) to evaluate

the performance of each schedule candidate. There are two major ways to construct the cost

Algorithm 1 Coordinate Descent Search Algorithm.

1: Input: The IR of N models M [N ], the number of pointers in each model P , the rounds
of search R.

2: Output: The optimal pointer matrix ρ [N,P ].
3: Initialize a dictionary D{schedule:cost} to store records.
4: for rounds r = 1 to R do
5: for model i = 1 to N do
6: Sample M candidates ρ1:M [i] for the i-th row.
7: for the m-th candidate ρm[i] do
8: Profile the latency latm by multiple runs.
9: Append {ρm : latm} to the records D.

10: end for
11: Update the i-th row ρ[i] of pointer matrix to the one with the lowest latency by

argmin(latm).
12: end for
13: end for
14: Sort the global records D by the profiled latency.
15: Return the schedule ρ with the globally lowest latency.
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model: modeling-based or profile-based. The modeling-based method [23] builds hardware-

specific modeling to estimate the real runtime performance, which is efficient but can be

inaccurate in complex scenarios. The profiling-based method [13] is more accurate but

requires physical hardware execution, which can be more time-consuming if the search

space is very large.

In this work, we use the profiling-based cost model since our empirical case study shows

that, our searching time can be maintained at small scale (∼mins) benefited from our

dedicated search space abstraction. Therefore, the profiling-based model can give accurate

runtime-aware performance cost and lead to better search performance in our case. For

the cost model implementation, we leverage our built infrastructure, which could efficiently

generate and deploy each candidate schedule onto the target GPU and obtained the profiled

latency during multiple averaged runs. The averaged latency is then used as the cost of

each candidate schedule.

Search Algorithm : With the input space and cost model defined, we could then use

ML-based methods to search for the optimal schedule with the minimal latency.

In this work, we mainly implement two search algorithms, the random search and the

coordinate descent search. The random search method samples scheduling solutions (differ-

ent pointer matrices) randomly from the search space and profiles their latency as the cost.

A memory module will record all schedules and costs, and after certain rounds of search, the

algorithm will return the schedule with the lowest latency. As we will show later, though

the random search algorithm is simple, it could greatly reduce the multi-tenant runtime

latency by large margins, highlighting the advantages of our problem abstraction and the

search framework design.

Based on a similar process, the coordinate descent search algorithm improves the sam-

pling efficiency by adopting a coordinate-alternated search philosophy. The overview of the

coordinate descent search algorithm is shown in Algorithm 1. It treats different streams’

pointer index vectors (rows in the pointer matrix) as different coordinates. Then it al-

ternatively finds the optimal pointer index vector for each coordinate, during when other
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coordinates’ solution are kept as the previous optimal one. The optimal pointer index vec-

tors for all streams are updated for each round, and after certain rounds, the algorithm

returns the optimal schedule from all previously searched schedules. Generally, the coordi-

nate descent search algorithm could yield slightly performance than random search. Both

methods yield near-optimal schedule within short time as we will show later.

4.1.4 Experimental Evaluation

Experiment Setup: We construct various multi-tenant scenarios by leveraging the follow-

ing neural network models: AlexNet (Alex), VGG16 (V GG), ResNet18 (R18), ResNet34

(R34), ResNet50 (R50) and ResNet101 (R101). These models have distinctive model depths

with operator numbers varying from 7 ∼ 20 to 86 ∼ 216. In addition, operators from dif-

ferent models also have particular computing and memory requirements. For example, the

convolution operators have a wide range of computing complexity, e.g., from 32 ∼ 64 filters

per layer to 256 ∼ 512 filters per layer. Therefore, each different multi-tenant combination

based on the above models will pose its unique resource utilization imbalance challenges

and has distinctive optimal scheduling strategies, mimicking the varied and complex multi-

tenant scenarios of real-world applications.

We mainly compare the acceleration ratio with three baselines: CuDNN-based sequen-

tial execution (CuDNN-Seq), TVM-based sequential execution (TVM-Seq), Stream-based

parallel execution (Stream-parallel). Ours-R and Ours-G denotes the performance of our

framework with random and coordinate descent search. Our test platform is Titan-V GPU.

Overall Speed-up: It can be observed that our scheduling framework could consistently

yield 1.3× ∼ 1.6× speed-up compared to the sequential baselines across all five model

combinations. Although the Stream-Parallel solution also yields a certain speed-up than

CuDNN-Seq, its acceleration ratio is only 1.1× ∼ 1.3×, which is much less than ours.

Higher Speed-up in Highly Non-balanced Scenarios: It is worth noting that our
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Figure 4.4: Runtime performance of the proposed framework.

Table 4.1: Our Framework Overhead (Titan-V).

#Search Rounds 100 300 500 1000

Alex + VGG + R18 ∼9.8s ∼28.9s ∼51.4s ∼1min35s

VGG + R18 + R50 ∼10.3s ∼27.1s ∼48.9s ∼1min28s

R18 + R50 + R101 ∼16.2s ∼45.3s ∼1min32s ∼2min42s

method achieves the highest acceleration ratio, i.e., 1.5× and 1.6×, on the two most chal-

lenging scenarios R18+R34+R101 and R18+R50+R101. However, the Stream-Parallel

performs poorly (only 1.1×) in these two settings. The reason is that such two multi-tenant

combinations introduce extremely distinctive model lengths from 29 operators (ResNet18)

to 200 operators (ResNet101), which brings significant resource imbalance between early and

later stages across the entire processing. The native hardware scheduler in Stream-Parallel

cannot take this into consideration and push all operators into the beginning stages, and

thus cannot balance the resource utilization effectively.

Framework Overhead Analysis: Our framework could usually yield near optimal sched-

ule solutions within short search time. The framework’s running time is demonstrated in

Table 4.2. We profile the coordinate descent search with different search rounds from 100

to 1000, which are general settings for most aforementioned multi-tenant scenarios. As the

results show, our framework’s running overhead maintains in the range of ten seconds to
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Figure 4.5: An example of ineffective latency optimization by filter pruning.

several minutes at most. Meanwhile, as such automated schedule can be pre-conducted

offline given a defined multi-tenant scenario, we consider such offline tuning overhead is

highly acceptable.

4.2 TA-DNN: Tail-Aware DNN Design on GPU

Deep Neural Networks (DNNs) have achieved remarkable progress on cognitive applica-

tions [37,68,69] and have drawn attentions from both industry and academia on deploying

DNN inference service on the cloud, edge and mobile devices [86,87]. However, the superior

performance of DNNs is largely built upon growing model volume and structure complexity.

Consequently, how to run these bulky DNNs on accelerators efficiently becomes the key to

meet the ever-growing user experience, e.g., DNN model inference latency.

To relieve the computation cost and improve runtime performance, many research efforts

have been made in different design perspective and implementation levels. These works in-

clude model-level optimization [54,88–90], compiler-level computing optimization [13,84,91],

and architecture-level optimizations [29,30,92]. Among these works, model-level design so-

lutions are usually the most flexible and straightforward way, since such methods can reduce
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model volume and computation workload like FLOPs, which can directly translate to la-

tency reduction. However, recent hardware-aware works questioned the effectiveness of these

optimization works by revealing a widespread concept, i.e., the lower amount of FLOPS

does not equal to small latency during actual deployment on certain hardwares [19, 90],

which underlines the importance of understanding of the hardware execution mechanisms

for DNN design optimizations.

In this work, we re-examine the effectiveness of model design works for latency optimiza-

tion on the general processing units (GPUs). By delving into the DNN to GPU deployment

and execution mechanisms, we reveal a series of findings that current model design fails to

recognize and thus lead to sub-optimal latency optimization performance.

Figure 4.5 illustrates such an ineffective latency optimization case with a structural fil-

ter pruning example. Specifically, two layer configurations (config#1, #2) are compared, in

which the config#2 conducts filter pruning and reduces partial workloads of this layer. Sur-

prisingly, although config#2 reduces the filters, it ends up having the exact same runtime

latency as config#1. In fact, as we keep pruning filters, Figure 1 (c) shows that the execu-

tion time exhibits an interesting non-linear latency staircase phenomenon. Why does filter

pruning not always lead to latency reduction? In this paper, We identify the root cause of

this phenomenon as the lack of awareness of the GPU tail effect — a classic parallel system

issue that causes the resource under-utilization in the last processing cycle [93].

In particular, during execution on GPUs, a DNN layer’s computation workload will be

translated into massive parallel threads and allocated to GPU for processing on CUDA

cores (Figure 4.5 (a)). However, due to the resource limit (e.g., number of cores, maxi-

mal concurrency), the excessive parallel threads would be partitioned into multiple waves

(Figure 4.5 (b)). Threads in each wave run concurrently while these multiple waves exe-

cute sequentially. Due to such an execution mechanism, although layer config#2 reduces

the number of threads in the last wave, it takes the same runtime latency as config#1.

Figure 4.5 (c) verifies the above execution analysis by showing a latency staircase pattern.

Comparing layer config#2 to config#1, pruning certain amounts of filters brings no latency
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gain, but rather significantly lower down the GPU utilization and throughput due to the

last partial wave.

Motivated by such an observation, we conduct comprehensive benchmarking

analysis and reveal the systematic mechanism that causes such inefficiency in DNN

inference: (i) Due to massive CUDA core parallelism, GPU presents a large hardware-level

compute granularity. This is one major factor that causes the non-linear DNN workload to

GPU runtime latency translation, and lead to the latency staircase phenomenon; (ii) Most

current works are non-aware of such a GPU compute granularity and their DNN optimiza-

tion can easily lead to the runtime tail effect ; (iii) Furthermore, due to common DNN’s

deep layer structure, such tail effect accumulates and amplifies with hundreds of layers,

resulting in significant overall resource under-utilization.

Based on such tail effect analysis, we rethink the current DNN design optimiza-

tion and propose following insights: (i) For DNN structure design, the observation

of latency staircase implies DNN architecture design should take GPU compute granularity

into consideration, which would help enable more efficient hardware utilization for model

optimization, e.g., help defining the search space in NAS solutions; (ii) For DNN struc-

ture optimization, the tail effect implies that there are free runtime resources for potential

accuracy boost, e.g., by fulfilling each layer’s tail wave of workload to utilize idle SMs but

without increasing the latency; (iii) For complex DNNs with hundreds of layers, accumu-

lated tail effects within these layers implies great chances for non-trivial latency reduction

while maintaining accuracy.

Performing the design insights above could guide both DNN pre-design and

DNN post-optimizations. We demonstrate our optimization approaches regarding two

common design-level solutions, neural architecture search and structural pruning: (i) For

NAS solutions, we enhance the current design space with expected GPU granularity aware-

ness. Such a GPU granularity-aware configuration discretizes previous continuous layer

width design space, thus greatly reducing the search candidates and the searching complex-

ity. Meanwhile, as the design space already avoids the tail effect, the DNN structure could
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also achieve better GPU runtime efficiency and thus better latency performance. (ii) For

structure post-optimization like pruning, we can also leverage the GPU-aware layer design

space to fine-tune the sub-optimal pruned models. Specifically, we adopt layer growing

and layer pruning two operations to utilize the free resources and to eliminate the GPU

tail effect. Featured with such flexibility, our structural post-optimization can achieve both

accuracy lifting and latency reduction, which is one major difference from previous works.

4.2.1 Revealing the GPU Computing Granularity for Runtime Latency

In this work, we first dive into the DNN latency analysis to reveal the underlying GPU com-

puting mechanisms. A particular DNN latency issue is identified through detailed observa-

tion as the latency staircase phenomenon, which triggers our rethinking of the latency-aware

DNN model design.

DNN Latency Staircase Phenomenon

We profile the inference latency of two representative DNN model settings on an NVIDIA

Titan-V GPU: (a) VGG16 [7] on CIFAR10 dataset; (b) ResNet50 [12] on ImageNet dataset.

For each DNN model, we investigate the latency impact from different model volumes by

gradually pruning the layer width step by step and measure the runtime latency in each

layer width setting. All experiments are conducted using PyTorch 1.5 with CUDA 10.2 and

CuDNN 7.6.5 backend.

Through the analysis, we identify a distinct DNN runtime issue, i.e., the latency stair-

case phenomenon. Specifically, Figure 4.6 illustrates the latency of five randomly selected

DNN layers (denoted by conv-N) of VGG16 and ResNet50, respectively. For each layer’s

dataset, although the layer volume is gradually shrunk by filter pruning, runtime latency

doesn’t reduce linearly but demonstrates a “staircase” trend, are changes occurring only

after a certain plateau period.

Such results reveal several findings in DNN latency optimization: (i) the layer vol-

ume and workload reduction by conventional structural pruning cannot directly translate to
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Figure 4.6: DNN runtime latency profiling.

GPUs’ runtime latency optimization; (ii) such an issue is prevalent across DNN models

and layer configurations; (iii) DNN latency optimization requires a deeper investigation of

the hardware computing mechanism than a pure software perspective.

A Reflection of GPU Computing Granularity

Through dedicated analysis, we find that the above latency staircase is a reflection of specific

GPU computing granularity due to the huge-parallelism execution mechanism. Specifically,

we dive into fundamental GPU computing primitives (e.g., number of GPU thread blocks

B and waves W ) using NVIDIA Nsight Compute [94], and reveal the DNN deployment and

GPU computing mechanism.

Latency Staircase Analysis Figure 4.7 shows the GPU computing changes when we

vary a layer’s width from 64 to 512 filters 3. As we can see, the number of thread blocks B

3Specifically, the filter shape and input feature map sizes are set to 3×3 and 64×64×512. And we keep
the batch size to 1 throughout the experiment.
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grows with increasing number of filters F (top figure), which is expected. Correspondingly,

the number of waves also increase. However, due to the granularity mismatch (i.e., one

filter’s workload doesn’t equal to one block, and not equal to one wave.), the number of

wave increase in a discrete way (step-by-step), forming the staircase growing trend and with

a larger granularity (middle and bottom figure).

As highlighted by the blue box in Figure 4.7, the number of waves W grows gradually

from 1 to 2 with increasing workload. However, the runtime latency however stays still

until the workload grows to above 2 waves, and then GPU will consume a new processing

cycle to process the new wave of workload. We thus see a jump in the runtime latency as

highlighted in the red box, i.e., the latency transition point.

4.2.2 Latency Formulation with GPU Granularity

Similar staircase patterns continuously emerge with growing workloads, which reflects a

GPU-specific compute granularity. We can thus model the latency staircase based on the
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above analysis. For a given DNN layer, its GPU runtime latency L can be represented by:

L = ∆L× ⌈ #W ⌉, where #W =
B

S
, (4.9)

where ∆L represents the latency for the GPU to finish one wave of workload, #W is the

number of waves and B is the number of blocks that the overall workload being translated

to. S is processing capacity of the GPU, e.g., the maximal number of blocks that can

be concurrently executed. ⌈·⌉ is the rounding-up operation that returns the least integer

greater than or equal to the input (e.g., ⌈2.1⌉ = 3), which reveals the impact of tail effect

on the runtime latency, that is, one underutilized tail wave still leads to the latency of one

full computing cycle for each DNN layer.

Eq. 4.9 demonstrates that the DNN execution latency on GPUs is highly dependent on

a GPU-specific compute granularity, i.e., the wave W . Such a granularity is not only

a hardware-level concept to describe the GPU capacity, but also an important factor for

latency-aware DNN design. Without being aware of this, DNN structure design can easily

generate granularity-unmatched models, thus resulting in sub-optimal GPU efficiency and
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DNN inference latency.

4.2.3 Latency-Aware DNN Design with GPU Granularity Awareness

In this section, we summarize the lessons learned from our analysis and characterization to

guide DNN design on GPUs. We then demonstrate that by eliminating the GPU tail effect,

we can enhance DNN optimizations with better GPU awareness and better performance.

DNN Design Insights for Latency-Awareness

By understanding the GPU granularity-based latency modeling and the inefficiency caused

by the tail effect, we can illustrate a series of DNN design insights:

• Latency-aware DNN optimization on GPUs should consider a new basic unit, i.e., the

GPU computing granularity, instead of individual filters. Previously, many DNN design and

latency optimization works consider filters as the primary structural unit. However, our la-

tency staircase analysis shows that, as one filter’s workload is usually much smaller than the

GPU computing granularity, workload measured by filters fails to translate to the latency

consistently. By understanding this, latency-oriented DNN design could improve both their

latency modeling effectiveness and design efficiency. For example, given a targeted GPU,

each DNN layer’s design only needs to consider a discrete design space, i.e., with a step size

of a certain number of filters that matches the GPU computing granularity.

• For existing DNN structures, the existence of tail effects is prevailing, which exposes

many opportunities for both accuracy and latency performance improvements. The reason

of prevalence is that, as the GPU platform (and other factors like compilers) can vary, the

unified DNN structure design can hardly avoid tail effects in all different settings. In such

a case, tail effect accumulation in DNNs can incur huge inefficiency, meanwhile exposing

many optimizations potentials. Specifically, the GPU resource under-utilization enables us

to increase DNN workload and utilize the “free” tail resources4 to boost accuracy while

without affecting the runtime latency. In addition, as tail effect can emerge in many layers,

4Here we mainly denote latency-wise “free”. The power consumption may still show differences, which
is out of scope of this work.
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by simultaneously pruning certain tail waves and filling up other ones, we can also obtain

certain latency gains while maintain the overall DNN capacity and accuracy.

The above design insights can guide various DNN design optimization approaches. In

this work, we mainly include approaches: GPU-aware NAS design space enhancement and

lightweight DNN structure fine-tuning.

GPU-aware NAS Design Space Enhancement

The first optimization we can apply is to enhance the design space of NAS methods with

the proposed GPU awareness.

Previous NAS works mainly heuristically choose layer width in the design space, which

may have sub-optimal GPU runtime performance. Therefore, one direct way of utilizing our

GPU granularity-aware modeling is to find the optimal layer configurations and integrate

into the NAS design space. The benefits are twofold: (i) our granularity-based modeling dis-

cretizes a continuous layer width design space and reduces the amount of search candidates

for each layer, reducing the searching complexity; (ii) meanwhile, as each configuration

already avoids the tail effect, our design space brings better GPU runtime performance

without the tail effect related inefficiency.

Profiling-Guided Identification We take a profiling strategy, i.e., profiling the GPU

latency staircase offline to identify the optimal design space for each layer.

Based on the layer runtime modeling in Eq. 4.9, the tail effect diminishes when DNN

layer workload matches the GPU compute granularity, i.e., the last wave of workload fully

occupies the GPU. In such case, the GPU achieves optimal utilization, and the throughput

also reaches local maximum in the range of current wave. Therefore, we leverage the

GPU throughput T to identify the existence of tail effect in each layer and further detect

its optimal layer configurations. Taking a retrospect of Figure 4.5 (c), we can see the

throughput always peaks its local maximal (denoted by the green triangle) at the optimal

layer size setting without tail effect and thus can serve as a reliable clue to track the optimal
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configurations. Specifically, we obtain the optimal configuration C⋆
i for each layer i based

on the following rule:

C⋆
i = argmax

m
(Ti,m) (4.10)

where Ti,m denotes GPU throughput of layer i in the mth layer width configuration. We

then use Eq. 4.10 to identify optimal configurations in different layer width intervals.

Overhead Analysis Table 4.2 shows the offline profiling overhead on different DNN

models. For each layer, we sample 16 different layer width configurations (from 1/16 to

16/16 with respect to the default layer size) and record their throughput. We observe

the overall profiling overhead stays in the range of one to three minutes, which shows the

efficiency of our design space identification method.

Lightweight DNN Structure Fine-Tuning

Besides the end-to-end DNN design apporach of NAS, we can also conduct lightweight DNN

structure fine-tuning to obtain the optimal pruned models in structural pruning methods.

Structure pruning without GPU awareness can generate pruned models with excessive

tail effects. Therefore, we can leverage pruning and grafting two operations to eliminate

the tail effect. An overview of our method is shown in Figure 4.10. Specifically, layer

pruning reduces the number of filters to remove the remaining workload on the last wave

Table 4.2: Offline Profiling Overhead.

Model BS=32 BS=64 BS=128

CIFAR

(32x32x3)

VGG16 2m22s 2m23s 2m25s

ResNet56 1m27s 1m30s 1m40s

Model BS=1 BS=2 BS=4

ImageNet

(224x224x3)

VGG16 2m14s 2m15s 2m18s

ResNet50 2m50s 2m51s 2m56s
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Figure 4.10: We leverage two operations (pruning and grafting) to eliminate the tail effect.

and thus can effectively harvest latency gain by an entire GPU wave processing cycle. Layer

grafting instead increases the number of filters in other laters to fill up the GPU capacity in

the last wave, which can compensate the accuracy loss of layer pruning without sacrificing

the latency (i.e., accuracy gain). These two operations provide us flexible opportunities

to match the GPU granularity and thus eliminate the tail effect. Meanwhile, they also

provides DNN optimization flexibility towards two optimization targets: latency reduction

and accuracy lifting, which is one major difference from traditional pruning works.

Here one challenge remains, i.e., how to select two operations between layer pruning and

grafting across multiple layers regarding different optimization objectives? We propose a

lightweight fine-tuning algorithm to flexibly balance the corresponding operations to reach

different objectives.

Optimization Objectives Formulation We first define the DNN inference accuracy

and runtime latency optimization objectives. We define the latency gain LG to indicate

the latency being saved, and parameter gain PG (amounts of parameters been deleted or

added) to indicate the model capacity as a guidance for retaining accuracy. The two metrics
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Algorithm 2 Lightweight DNN Structure Fine-tuning.

1: Input: Model’s initial layer configs r[l], latency L[l] and throughput profiling T [l].
2: Output: New config Rnew.
3: Identify design space Cl for each layer l by Eq. 4.10.
4: for layers i = 1 to l do
5: Get LGi, PGi estimation through profiling results.
6: end for
7: Sort the layer index list [1,2...i...l] by LGi or PGi.
8: while layer index list is not empty do
9: Pop out layer j with argmaxj LG[l].

10: Prune layer j with one step in design space Cl.

11: while ΣlPG(Rnew) /∈ (−τ, τ) do
12: Pop out layer k with argmink LG[l].
13: Grow layer k with one step in design space Cl.
14: end while
15: end while
16: Get runtime latency evaluation Lnew of config Rnew.
17: if Lnew achieves the target latency then
18: Train and evaluate the model accuracy.
19: else
20: Set τ *= 2 and repeat the algo. from line 9.
21: end if
22: Return Fine-tuned config Rnew.

could be estimated by the change in different layer widths Ri and their latency profiling Li.

Accuracy-Oriented Optimization aims to improve the model accuracy without extra latency

overhead. Therefore, it can be formulated as maximizing the parameter gain while con-

straining latency gain:

Maximize
∑l

i
PGi, s.t.

∑l

i
LGi ≥ 0. (4.11)

Latency-Oriented Optimization aims to reduce the runtime latency without accuracy drop,

i.e., maximizing latency gain while maintaining parameter gain in a tolerable range (τ):

Maximize
∑l

i
LGi, s.t.

∑l

i
PGi ∈ (−τ, τ). (4.12)

Algorithm Walk-through Without loss of generality, we take the latency-oriented op-

timization as an illustrate example to explain the algorithm. The accuracy-oriented op-

timization follows the same principle by simply switching the optimization objectives as

defined in Eq. 4.11–4.12.
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Step 1. Layer Candidates Identification (Line 3): Given a DNN model structure, we first

identify the optimal layer configurations, i.e., design space Ci by Eq. 4.10.

Step 2. Intra-Layer Performance Gain Estimation (Line 4–6): For each layer, we get the

latency and parameter gain estimation assuming conducting layer pruning and layer growing

operations by one step in the design space Ci. These performance estimation will guide the

inter-layer adjustment.

Step 3. Inter-Layer Adjustment Strategy (Line 7–13): To achieve latency optimization, we

maintains a bi-directional queue of layer indexes, and greedily prune layers with maximal

LGj (max latency gain) and minimal LGk for growing (balanced capacity) . Same procedure

applies to accuracy optimization by switching the objective/constrain in Line-9, 11.

Step 4. Model Structure Determination (Line 14–18): Finally, we return the new configura-

tion if it reaches the targeted latency. Otherwise, we can adjust the constraints, e.g., with

larger parameter gain tolerance (τ∗ = 2), to allow more aggressive layer pruning for latency

reduction.

4.2.4 Experimental Evaluation

We conduct experiments using the common software stack including PyTorch 1.5, CUDA

10.2 and CuDNN 7.6.5. For GPU hardwares, we select three GPUs from high-end (Titan-V,

P6000) to embedded ones (Jetson Nano). The specification of them is shown in Table 4.3.

We apply our method into two common model optimization approaches, i.e., struc-

tural filter pruning and NAS. For pruning, two state-of-the-art pruning methods including

HRank [95] and SoftPruning [96] are chosen as baselines. For NAS, we apply our model

optimization method onto the EfficientNet series of structures [21], which are one type of

the SOTA efficient model architectures. For model performance evaluation, we compare

the model’s accuracy and runtime latency. Without specific mentioning, the batch sizes for

latency evaluation on CIFAR10 and ImageNet are set to 128 and 1 to observe the latency

variations5. Meanwhile, we also collect the GPU throughput (FLOP/s) information as a

5As CIFAR has a small resolution (32x32x3), we set batch size=128 in CIFAR to maintain a roughly
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Figure 4.11: Our DNN optimization illustration.

indicator to demonstrate the GPU runtime efficiency comparison.

Evaluation on the Structural Pruning Approach

A Proof-of-Concept Case Study As a proof-of-concept, we first apply our optimization

to a prevalent DNN benchmark model VGG16 and compare the results with one SOTA

pruning competitor HRank [95] to illustrate our algorithm mechanism. The result is shown

in Figure 4.11.

Our results (orange bar) consistently outperform HRank (blue bar) on run-time latency

reduction, as shown in Layer 0∼5. We further showcase the latency and throughput of three

randomly selected layers for both layer pruning and growing operations (bottom figure). As

similar DNN computation workload as batch size=1 in ImageNet (224x224x3) experiments.
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Table 4.3: The Evaluated GPUs and Specifications.

GPU Name Archicture #SMs #Cores Peak FLOP/s

Titan-V Volta 80 5120 14.9T

Quadro P6000 Pascal 30 3840 12.0T

Jetson Nano Maxwell 1 128 0.24T

shown in CONV-1,3,4, we successfully remove one tail latency by conducting layer pruning

operation. At the same time, the GPU throughput achieves its local maximal. The layer

growing actions, on the other hand, brings little to no latency overhead, as shown in CONV-

6,9,11. Taking a further scrutiny on their latency results, we can see that the layer width

is increased by a proper amount such that the layer’s runtime latency stays similar with

HRank. Overall, we can achieve 17.7% latency reduction compared to HRank with only

0.2% accuracy drop (93.1%→92.9%), as shown in the first two rows in Table 4.4.

General Benchmarks We then apply our model optimization method in more pruning

benchmarks. The result comparisons are shown in Table 4.4. Note that, SOFT method [96]

has two pruning configurations (denoted by SOFT-1 and SOFT-2) with varied pruning

degrees, which we compare separately. The latency evaluation is conducted on Titan-V.

Latency Reduction: As Table 4.4 presents, by optimizing the model structure configurations,

our method achieves consistently lower latency than baseline methods (11.3%-17.7% la-

tency reduction in all settings). Different from previous work that focuses on reducing

workload to reduce latency, our method’s latency reduction mainly comes from the higher

GPU runtime efficiency, e.g., GPU throughput improvement.

GPU Throughput Improvement : As Table 4.4 shows, our method shows consistently higher

GPU throughput than the baselines, i.e., in the (FLOP/s) column. For VGG16, our op-

timized model achieves 3.90 TFLOP/s, 1.6× throughput than the baseline method, 2.41

TFLOP/s. For ResNet56, our models also achieve 1.2× throughput than HRank (1.00
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Table 4.4: Latency Optimization on SOTA Pruning Works.

Method Params #FLOPs FLOP/s Acc.% Time (ns)

VGG16

(CIFAR10)

HRank [95] 1.90M 67.0M 2.41T 93.1 2.50E6

Ours 2.85M 104.1M 3.90T 92.9 2.05E6 (-17.7%)

ResNet56

(CIFAR10)

HRank [95] 0.48M 65.9M 0.83T 93.6 4.20E6

Ours-1 0.50M 79.1M 1.00T 93.8 3.72E6 (-11.3%)

Ours-2 0.50M 75.1M 0.95T 93.5 3.51E6 (-16.3%)

ResNet56

(CIFAR10)

SOFT-1 [96] 0.53M 68.8M 0.88T 93.1 4.08E6

Ours-1 0.43M 71.4M 0.91T 93.2 3.52E6 (-13.7%)

SOFT-2 [96] 0.45M 53.1M 0.68T 92.3 3.64E6

Ours-2 0.43M 66.0M 0.79T 92.3 3.01E6 (-17.3%)

vs. 0.83 TFLOP/s) and SOFT-2 (0.79 vs. 0.68 TFLOP/s). Such throughput enhance-

ment indicates the GPU runtime efficiency improvement, and shows the advantages of our

configuration optimization by tail effect elimination.

Accuracy Maintenance: In addition to lower latency, our method also maintains the model

accuracy change within negligible ranges (±0.2%). This is benefited by constraining the

parameter gain (PG) in the algorithm. As (Params) column in Table 4.4 shows, our opti-

mized models have maintained the amount of parameters either in positive range or very

small negative range. By doing so, we ensure the models’ capacity to be well-maintained,

thus keeping the model accuracy during the optimization process.

Evaluation on the NAS Approach

In this part, we apply our optimization method to further optimize the NAS network’s per-

formance on GPUs. Specifically, we optimize the EfficientNet [21] series of model structures

to achieve better accuracy latency trade-offs. The evaluation results are shown in Table 4.5.

The latency evaluation is conducted on both Titan-V and P6000 GPUs with batch size =

1 to simulate the real-time performance.
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Table 4.5: Accuracy Optimization on EfficientNets.

Method Acc.%
GPU:Titan-V GPU:P6000

Time(ms) FLOP/s Time(ms) FLOP/s

EfficientNet

(ImageNet)

B0 77.52 12.6 61.9G 13.8 56.5G

Ours 81.49 (+3.97) 12.7 414.2G 14.1 373.0G

EfficientNet

(ImageNet)

B1 79.38 17.8 78.7G 19.8 70.7G

Ours 82.08 (+2.7) 18.0 442.7G 19.9 396.0G

EfficientNet

(ImageNet)

B2 80.18 18.2 109.9G 19.9 100.5G

Ours 82.72 (+2.54) 18.4 547.3G 20.4 488.2G

Accuracy Maximization: As Table 4.5 shows, with the similar runtime latency, our opti-

mized EfficientNet model could achieve much better accuracy (+3.97%, +2.7%, +2.54%,

respectively) on the challenging ImageNet dataset.

Better Latency Accuracy Trade-offs: We composedly compare the model accuracy-latency

performance with original EfficientNets [21], and several major types of DNN structures

including ResNets [12], ResNeXts [97], InceptionNet [98], and Dense Net [99]. The results

are shown in Fig. 4.12. From the accuracy perspective, our optimized B0 to B3 models

achieve the highest accuracies than most baselines under the same latency. From the latency

perspective, our model B2’s latency is 1.5× less than the models which achieve the same

accuracy level, e.g., EfficientNet-B3 and B4. Therefore, both perspectives demonstrate the

effectiveness of our method in achieving better accuracy latency trade-offs on GPUs.

Optimization Explanation: Here we explain our optimization mechanisms for the Efficient-

Net series of networks. When conducting EfficientNet inference on GPUs, we observe that

most of layers in these models consume less than one GPU wave of workload, i.e., highly

under-utilizing the GPUs. The GPU throughput is only 61.9 - 109.9 GFLOP/s for B0 to B2

as shown in Table 4.5. Such under-utilized GPU capacity allows us to conduct layer growing

to reach one full wave for each layer without latency increment, thus bringing higher model
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Figure 4.12: ImageNet accuracy and latency compared to EfficientNets.

capacity and model accuracy.

For implementation, EfficientNet series of networks have three scaling dimensions in

their initial design: layer width (w), input resolution (r) and network depth (d) [21]. Out

of the three, we balanced scale up both (w) and (r) to increase the network capacity. The

depth (d) dimension, however, is kept same with the baseline model, as network layers

are run sequentially and depth scaling would inevitably incur latency increase. By width

and resolution growing, the optimized models have higher accuracy as well as improved

GPU throughput, e.g., 414.2 - 547.3 GFLOP/s, while maintaining the similar latency with

baselines, as shown in Table 4.5.

Generalizability across GPUs

We further extend the generalizability evaluation to different high-end GPU, P6000 and

embedded GPU, Jetson Nano. The detailed GPU specifications can be found in Table 4.3.
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Table 4.6: Generalizability Evaluation on Pascal P6000 GPU.

Method Params FLOP/s Acc.% Time (ns)

VGG16

(CIFAR10)

HRank 1.90M 1.68T 93.1 4.15E6

Ours 2.04M 1.86T 92.9 3.02E6 (-27.2%)

ResNet56

(CIFAR10)

HRank 0.48M 0.84T 93.6 5.84E6

Ours 0.50M 1.00T 93.7 5.32E6 (-9.0%)

Table 4.7: Generalizability Evaluation on Jetson Nano GPU.

Method Params FLOP/s Acc.% Time (ms)

VGG16

(CIFAR10)

HRank 1.90M 35.5G 93.1 60.5

Ours 2.04M 39.4G 92.9 48.1 (-20.5%)

ResNet56

(CIFAR10)

HRank-1 0.48M 25.6G 93.6 82.1

Ours 0.50M 28.8G 93.7 68.0 (-17.1%)

HRank-2 0.24M 16.7G 92.3 67.2

Ours 0.39M 24.3G 92.5 58.1 (-13.3%)

The overall results are shown in Table 4.6 and Table 4.7. On the P6000 GPU (Ta-

ble 4.6), our method could achieve 9.0% to 27.2% latency reduction than SOTA methods

while maintaining similar accuracy for VGG16 and ResNet56, demonstrating the generality

across different high-end GPU architectures. For Jetson Nano GPU (Table 4.7), although

it has relatively smaller computing capacity, our method still achieves 13.3% to 20.5% la-

tency reduction, demonstrating the generalizability for both high-end and embedded GPU

platforms. Without any GPU-specific assumptions, our profiling-guided design could be

applied to a spectrum of GPUs to enhance the DNNs’ accuracy-latency trade-offs.
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Chapter 5: Conclusion and Future Work

5.1 Summary of Dissertation

With the strong scaling of DL model and compute capacity, the current era of deep learning

shows great opportunities and challenges for more novel types of DL models and applica-

tions, and meanwhile incurs lots of challenges to performance optimization for large-scale

high-performance deep learning computing.

In this dissertation, we start with deep learning algorithm level computing optimiza-

tion, i.e., convolutional neural network (CNN) model compression and acceleration, and

then delve into the software and hardware co-optimization to achieve ult-most computing

efficiency and performance. Specifically, we introduce two different algorithm-level com-

pression works. Different from traditional works that focus on filter or weight pruning, our

work targets at the other two novel components of DNNs: feature maps and connectivities.

We thus propose an attention-based dynamic feature map pruning framework, Antidote;

and the structural decoupling framework by conenctivity pruning, DC-CNN. On the hard-

ware side, we also propose two software-hardware co-optimization works. Specifically, the

first work targets at the graph and runtime co-optimization that conducts resource-aware

multi-tenant runtime scheduling, MT-Graph; and the second work targets at GPU-aware

DNN design by tail effect analysis and elimination, TA-DNN.

5.2 Vision and Insights

Besides the optimization works introduced in the dissertation, there are also some important

trends in the current deep learning era.
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Figure 5.1: The trends towards the larger scale DL system.

5.2.1 Architecture Design with Full Stack in the Loop

Specifically, one important future trend is the “full stack in the loop”, i.e., to remove the

vertical boundaries in the modern DL system stack and conduct full-stack integration to

strive for both optimal performance and flexibility. One example of compiler-oriented efforts

is the tvm unity [100] as shown in Figure 5.1 (a). As current system stack conducts separate

layer-wise optimization (graph-runtime-kernel-resource) and single-directional deployment,

it usually prohibits necessary cross-layer interactions and feedback between different levels.

In such cases, unifying the abstraction between layers and automation would greatly facil-

itate the new full-stack optimization as a loop, not only for multi-tenant computing, but

also for future wider DL application.

5.2.2 A Taxonomy of Future Large-Scale DL Computing

Our disseration has introduced one multi-tenant DL computing scenario. In fact, multi-

tenant is a natural generalization result due to the significant computing scaling trend of

GPU and other types of accelerators. However, if we take into the recent model scaling

trend into consideration, a new DL & system interaction mode could be observed, that is
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to conduct multi-device co-computing for a single model. For example, the recent SOTA

giant AI model Megatron-NLG [8] has reached 500 billions of parameters and requires tens

of GPUs to conduct multi-node distributed inference.

We predict the future large-scale DL system landscape by using a taxonomy shown in

Figure 5.1 (b). Using Instance (I) to denote one DNN model and Device (D) to denote

the compute hardware, traditional DL system mostly comes within the Single Instance

Single Device (SISD) domain and only constitute the top-left quarter of the full-spectrum.

Multi-tenant computing emerges as the Multiple Instances Single Device (MISD) with the

computing scaling trend, as we summzrized in this survery. Whereas diagonally, with the

model scaling trend, the Single Instance Multiple Devices (SIMD) interaction mode also

emerges for DL & System and are attracting more and more attention for large model

distributed inference [101] such as language models, recommendation models, etc. Finally,

Multiple Instances Multiple Devices (MIMD) would eventually combine all these modes

together, which can be a practical case for future efficient DL-centric data centers.

72



Appendix 6: List of Publications

6.1 High-Peformance Deep Learning Computing

• [TCAD’22] F. Yu, Z. Xu, C. Liu, D. Stamoulis, D. Wang, Y. Wang, X. Chen. AntiDo-

teX: Attention-based Dynamic Optimization for Neural Network Runtime Efficiency.

In the Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 2022.

• [ICDCS’22] Ardestani, E.K., Kim, C., Lee, S.J., Pan, L., Rampersad, V., Axboe, J.,

Agrawal, B., Yu, F., Yu, A., Le, T. and Yuen, H., 2021. Supporting Massive DLRM

Inference Through Software Defined Memory. In the Proceedings of International

Conference on Distributed Computing Systems 2022.

• [ICCAD’21] F. Yu, S. Bray, D. Wang, L. Shangguan, X. Tang, C. Liu and X. Chen.

Automated Runtime-Aware Scheduling for Multi-Tenant DNN Inference on GPU.

in the Proceedings of the 40th IEEE International Conference on Computer Aided

Design (ICCAD), Nov. 2021.

• [DATE’20, Best Paper Nomination] F. Yu, C. Liu, D. Wang, Y. Wang, and X. Chen.

AntiDOte: Attention-based Dynamic Optimization for Neural Network Runtime Ef-

ficiency. in the Proceedings of the 23rd Design Automation and Test in Europe

Conference, Mar. 2020.

• [DATE’20] F. Yu, Z. Qin, D.Wang, P. Xu, C. Liu, T. Zhi, and X. Chen. DC-

CNN: Computational Flow Redefinition for Efficient CNN Inference through Model

Structural Decoupling. in Proc. of the 23rd Design Automation and Test in Europe

Conference, Mar. 2020

• [TCAD’20] Z. Qin, F. Yu, Z. Xu, C. Liu, X. Chen. CaptorX: A Class-Adaptive

Convolutional Neural Network Reconfiguration Framework. in the Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2020.

73



• [TCAD’20] Z. Xu, F. Yu, Z. Qin, C. Liu, X. Chen. DiReCtX: Dynamic Resource-

Aware CNN Reconfiguration Framework for Real-Time Mobile Applications. in the

Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

2020.

• [DAC’19] Z. Xu, F. Yu, C. Liu, and X. Chen. ReForm: Static and Dynamic Resource-

Aware DNN Reconfiguration Framework for Mobile Devices. in the Proceedings of

the 56th Design Automation Conference, Jun. 2019.

• [BMVC’19] Z. Qin, F. Yu, C. Liu, and X. Chen. Functionality-Oriented Convolutional

Filter Pruning. in the Proceedings of the 30th British Machine Vision Conference,

Sep. 2019.

• [ASPDAC’19] Z. Qin, F. Yu, C. Liu, and X. Chen. CAPTOR: A Class Adaptive Filter

Pruning Framework for Convolutional Neural Networks in Mobile Applications. in the

Proceedings of the 24th Asia and South Pacific Design Automation Conference, Jan.

2019.

• [ISLPED’18] Z. Xu, Z. Qin, F. Yu, C. Liu, and X. Chen. DiReCt: Resource-Aware

Dynamic Model Reconfiguration for Convolutional Neural Network in Mobile Systems.

in the Proceedings of the 23rd ACM/IEEE International Symposium on Low Power

Electronics and Design, Jul. 2018.

• [ISVLSI’18] C. Liu, Q. Dong, F. Liu, F. Yu, and X. Chen. ReRise: An Adversarial

Example Restoration System for Neuromorphic Computing Security. in the Proceed-

ings of the 17th IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.

470-475, Jul. 2018.

• [ISLPED’20] C. Liu, F. Yu, Z. Qin, and X. Chen. Enabling efficient ReRAM-based

neural network computing via crossbar structure adaptive optimization. in Proceed-

ings of the 25th ACM/IEEE International Symposium on Low Power Electronics and

Design (ISLPED), Aug. 2020.

74



• [ASPDAC’20] X. Ma, G. Yuan, S. Lin, C. Ding, F. Yu, T. Liu, W. Wen, X. Chen, Y.

Wang. Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar

Framework for Ultra Efficient DNN Implementation. in Proceedings of the 25th Asia

and South Pacific Design Automation Conference, Jan. 2020.

6.2 AI Security and Robustness

• [WACV’22] F. Yu, D. Wang, Y. Chen, Nikos. Karianakis, P. Yu, D. Lymberopoulos,

S. Lu, W. Shi, X. Chen, SC-UDA: Style and Content Gap Aware Unsupervised Do-

main Adaptation for Object Detection, in Proceedings of the Winter Conference on

Applications of Computer Vision (WACV), Jan. 2022.

• [IJCAI’19] F. Yu, Z. Qin, C. Liu, L. Zhao, Y. Wang, and X. Chen. Interpreting and

Evaluating Adversarial Robustness. in Proceedings of the 28th International Joint

Conference on Artificial Intelligence (IJCAI), Aug. 2019.

• [DAC’19] F. Yu*, Z. Xu*, C. Liu, and X. Chen. MASKER: Adaptive Mobile Security

Enhancement against Automatic Speech Recognition in Eavesdropping. in Proceed-

ings of the 56th Design Automation Conference (DAC), Jun. 2019.

• [ASPDAC’19] F. Yu, C. Liu, and X. Chen. REIN: A Robust Training Method for En-

hancing Generalization Ability of Neural Networks in Autonomous Driving Systems.

in Proceedings of the 24th Asia and South Pacific Design Automation Conference

(ASPDAC), Jan. 2019.

• [ASPDAC’19] Z. Xu, F. Yu, C. Liu, and X. Chen. HAMPER: High-Performance

Adaptive Mobile Security Enhancement against Malicious Speech and Image Recog-

nition. in Proceedings of the 24th Asia and South Pacific Design Automation Con-

ference (ASPDAC), Jan. 2019.

• [ASPDAC’20] Z. Xu, F. Yu, X. Chen. LanCe: A Comprehensive and Lightweight

75



CNN Defense Methodology against Physical Adversarial Attacks on Embedded Mul-

timedia Applications. in Proceedings of the 25th Asia and South Pacific Design Au-

tomation Conference (ASPDAC), Jan. 2020.

• [TCAD’20] F. Yu, Z. Qin, C. Liu, D. Wang, X. Chen. REIN the RobuTS: Robust

DNN-based Image Recognition in Autonomous Driving Systems. Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2020.

6.3 Deep Learning Interpretability

• [MFC’18] Z. Qin, F. Yu, C. Liu, X. Chen. How convolutional neural networks see

the world - A survey of convolutional neural network visualization methods. Journal

of Mathematical Foundations of Computing, pp.149-180, May 2018.

• [BMVC’19] Z. Qin, F. Yu, C. Liu, and X. Chen. Functionality-Oriented Convolutional

Filter Pruning. in Proceedings of the 30th British Machine Vision Conference, Sep.

2019.

6.4 Federated Learning

• [KDD’21] F. Yu, W. Zhang, Z. Qin, Z. Xu, D. Wang, C. Liu, Z. Tian, and X. Chen.

Fed2: Feature Aligned Federated Learning. in Proc. of the 27th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD), Aug. 2021.

• [DAC’21] Z. Xu, F. Yu, J. Xiong, X. Chen. Helios: Heterogeneity-Aware Federated

Learning with Dynamically Balanced Collaboration. in Proceedings of the 58th Design

Automation Conference (DAC), Jun. 2021.

• [KDD’19] J. Wang, F. Yu, X. Chen, L. Zhao. ADMM for Efficient Deep Learning

with Global Convergence, in Proceedings of the 25th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD), Aug. 2019.

76



Bibliography

[1] U. Harvard, “Deep learning 101,” Tech. Rep., 2017, http :
//beamlab.org/deeplearning/2017/02/23/deep learning 101 part1.html.

[2] Y. Sun, N. B. Agostini, S. Dong, and D. Kaeli, “Summarizing cpu and gpu design
trends with product data,” arXiv preprint arXiv:1911.11313, 2019.

[3] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordv-
intsev, “The building blocks of interpretability,” Distill, vol. 3, no. 3, p. e10, 2018.

[4] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[5] F. Rosenblatt, “Perceptron simulation experiments,” Proceedings of the IRE, vol. 48,
no. 3, pp. 301–309, 1960.

[6] S. Linnainmaa, “Taylor expansion of the accumulated rounding error,” BIT Numerical
Mathematics, vol. 16, no. 2, pp. 146–160, 1976.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu,
S. Prabhumoye, G. Zerveas, V. Korthikanti et al., “Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale generative language model,” arXiv
preprint arXiv:2201.11990, 2022.

[9] M. Reports, “Global data center accelerator market size, status and forecast 2020-
2025,” 2021, https://www.mynewsdesk.com/brandessence/pressreleases/data-center-
accelerator-market-size-2021-cagr-38-dot-7-percent-3112488.

[10] N. Coorporation, “Nvidia tesla v100 gpu architecture,” Tech. Rep., 2017,
http://www.nvidia.com/object/volta-architecture.

[11] “Nvidia a100 whitepaper,” 2020, https://images.nvidia.com/aem-dam/en-
zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[13] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze et al., “{TVM}: An automated end-to-end optimizing compiler for

77



deep learning,” in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 578–594.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[15] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 1389–1397.

[16] Y. Wang, S. Ye, Z. He, X. Ma, L. Zhang, S. Lin, G. Yuan, S. H. Tan, Z. Li, D. Fan
et al., “Non-structured dnn weight pruning considered harmful,” arXiv preprint
arXiv:1907.02124, 2019.

[17] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning for efficient
convolutional neural networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[18] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2820–
2828.

[19] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam,
“Netadapt: Platform-aware neural network adaptation for mobile applications,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 285–
300.

[20] J. Fang, Y. Shen, Y. Wang, and L. Chen, “Optimizing dnn computation graph using
graph substitutions,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 2734–
2746, 2020.

[21] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” arXiv preprint arXiv:1905.11946, 2019.

[22] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken, “Taso: opti-
mizing deep learning computation with automatic generation of graph substitutions,”
in Proceedings of the 27th ACM Symposium on Operating Systems Principles, 2019,
pp. 47–62.

[23] Y. Yang, P. M. Phothilimtha, Y. R. Wang, M. Willsey, S. Roy, and J. Pienaar, “Equal-
ity saturation for tensor graph superoptimization,” arXiv preprint arXiv:2101.01332,
2021.

[24] F. Yu and et al., “Automated runtime-aware scheduling for multi-tenant dnn inference
on gpu,” in Proceedings of the 40th IEEE International Conference on Computer Aided
Design (ICCAD), 2021.

[25] H. Shen, J. Roesch, Z. Chen, W. Chen, Y. Wu, M. Li, V. Sharma, Z. Tatlock, and
Y. Wang, “Nimble: Efficiently compiling dynamic neural networks for model infer-
ence,” Proceedings of Machine Learning and Systems, vol. 3, 2021.

78



[26] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling algorithm for pre-
emptible neural processing units,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2020, pp. 220–233.

[27] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang, D. Zhuo,
K. Sen et al., “Ansor: Generating high-performance tensor programs for deep learn-
ing,” in 14th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 20), 2020, pp. 863–879.

[28] P. Fegade, T. Chen, P. B. Gibbons, and T. C. Mowry, “Cortex: A compiler for
recursive deep learning models,” arXiv preprint arXiv:2011.01383, 2020.

[29] Nvidia, “Nvidia multi process service (mps),” 2020,
https://docs.nvidia.com/deploy/pdf/CUDA-Multi-Process-Service-Overview.pdf.

[30] NVIDIA, “Nvidia multi instance gpu (mig),” 2020,
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/.

[31] A. Dhakal, S. G. Kulkarni, and K. Ramakrishnan, “Gslice: controlled spatial sharing
of gpus for a scalable inference platform,” in Proceedings of the 11th ACM Symposium
on Cloud Computing, 2020, pp. 492–506.

[32] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Multi-model machine learning
inference serving with gpu spatial partitioning,” arXiv preprint arXiv:2109.01611,
2021.

[33] J. Deng and et al., “Imagenet: A large-scale hierarchical image database,” in Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.
IEEE, 2009, pp. 248–255.

[34] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International Conference on Machine Learning. PMLR, 2019, pp.
6105–6114.

[35] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-
tection with region proposal networks,” in Advances in neural information processing
systems, 2015, pp. 91–99.

[36] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2961–2969.

[37] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in 2013 IEEE international conference on acoustics, speech and
signal processing. Ieee, 2013, pp. 6645–6649.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[39] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,”
arXiv preprint arXiv:2005.14165, 2020.

79



[40] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware accel-
eration for neural networks: A comprehensive survey,” Proceedings of the IEEE, vol.
108, no. 4, pp. 485–532, 2020.

[41] Y. Cheng and et al., “A survey of model compression and acceleration for deep neural
networks,” arXiv preprint arXiv:1710.09282, 2017.

[42] R. Mishra, H. P. Gupta, and T. Dutta, “A survey on deep neural network compression:
Challenges, overview, and solutions,” arXiv preprint arXiv:2010.03954, 2020.

[43] F. Yu, D. Stamoulis, D. Wang, D. Lymberopoulos, and X. Chen, “Exploring the design
space of efficient deep neural networks,” arXiv preprint arXiv:2011.10912, 2020.

[44] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections
for efficient neural networks,” arXiv preprint arXiv:1506.02626, 2015.

[45] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep
neural networks,” arXiv preprint arXiv:1608.03665, 2016.

[46] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient
convnets,” arXiv preprint arXiv:1608.08710, 2016.

[47] C.-K. Yeh, I. E. Yen, H.-Y. Chen, C.-P. Yang, S.-D. Lin, and P. Ravikumar, “Deep-
trim: Revisiting l1 regularization for connection pruning of deep network,” 2018.

[48] Z. Qin, F. Yu, C. Liu, and X. Chen, “Functionality-oriented convolutional filter prun-
ing,” in The British Machine Vision Conference, 2019.

[49] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.

[50] F. Yu, Z. Qin, and X. Chen, “Distilling critical paths in convolutional neural net-
works,” arXiv preprint arXiv:1811.02643, 2018.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762, 2017.

[52] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional
neural networks for resource efficient inference,” in 5th International Conference on
Learning Representations, ICLR, 2019.

[53] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric median for
deep convolutional neural networks acceleration,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 4340–
4349.

[54] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model com-
pression and acceleration on mobile devices,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 784–800.

[55] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep
neural network compression,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 5058–5066.

80



[56] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu,
“Discrimination-aware channel pruning for deep neural networks,” arXiv preprint
arXiv:1810.11809, 2018.

[57] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,”
arXiv preprint arXiv:1608.03983, 2016.

[58] J.-H. Luo and et al., “Thinet: A filter level pruning method for deep neural network
compression,” arXiv:1707.06342, 2017.

[59] H. Li and et al., “Pruning filters for efficient convnets,” arXiv:1608.08710, 2016.

[60] Y. He and et al., “Channel pruning for accelerating very deep neural networks,” in
Proc. of ICCV, 2017.

[61] S. Han and et al., “Deep compression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” arXiv:1510.00149, 2015.

[62] C. Zhang and et al., “Optimizing fpga-based accelerator design for deep convolutional
neural networks,” in Proc. of FPGA, 2015.

[63] M. Alwani and et al., “Fused-layer cnn accelerators,” in MICRO, 2016.

[64] G. Li and et al., “Block convolution: towards memory-efficient inference of large-scale
cnns on fpga,” 2018.

[65] Y. Ma and et al., “Optimizing loop operation and dataflow in fpga acceleration of
deep convolutional neural networks,” in FPGA, 2017.

[66] H. Dogan and et al., “Accelerating graph and machine learning workloads using a
shared memory multicore architecture with auxiliary support for in-hardware explicit
messaging,” in IPDPS, 2017.

[67] M. Peemen and et al., “Memory-centric accelerator design for convolutional neural
networks,” in Proc. of ICCD, 2013.

[68] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision and
pattern recognition. Ieee, 2009, pp. 248–255.

[69] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

[70] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam,
“Netadapt: Platform-aware neural network adaptation for mobile applications,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 285–
300.

[71] X. Li, Y. Zhou, Z. Pan, and J. Feng, “Partial order pruning: for best speed/accuracy
trade-off in neural architecture search,” in Proceedings of the IEEE Conference on
computer vision and pattern recognition, 2019, pp. 9145–9153.

81



[72] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and
K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10 734–10 742.

[73] X. Chang, H. Pan, W. Sun, and H. Gao, “Yoltrack: Multitask learning based real-time
multiobject tracking and segmentation for autonomous vehicles,” IEEE Transactions
on Neural Networks and Learning Systems, 2021.

[74] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Dar-
rell, “Bdd100k: A diverse driving dataset for heterogeneous multitask learning,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 2636–2645.

[75] S. Chowdhuri, T. Pankaj, and K. Zipser, “Multinet: Multi-modal multi-task learn-
ing for autonomous driving,” in 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE, 2019, pp. 1496–1504.

[76] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral segmen-
tation network for real-time semantic segmentation,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 325–341.

[77] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” arXiv preprint arXiv:1506.01497, 2015.

[78] Z. Kim, “Robust lane detection and tracking in challenging scenarios,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 16–26, 2008.

[79] Microsoft, “Deep learning inference service at microsoft,” 2020,
https://www.usenix.org/system/files/opml19papers-soifer.pdf.

[80] NVIDIA, “Nvidia triron inference server,” 2020, https://developer.nvidia.com/nvidia-
triton-inference-server.

[81] “Mpi for python,” 2020, https://mpi4py.readthedocs.io/en/stable/.

[82] NVIDIA, “Cuda streams,” 2020, https://developer.download.nvidia.com/CUDA/training/
StreamsAndConcurrencyWebinar.pdf.

[83] TensorFlow, “Tensorflow xla (accelerated linear algebra),” 2020,
https://www.tensorflow.org/xla.

[84] NVIDIA, “Nvidia tensorrt,” 2020, https://docs.nvidia.com/deeplearning/tensorrt/developer-
guide/index.html.

[85] Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. Ma, Q. Xu, H. Liu, M. P. Phothilimtha,
S. Wang, A. Goldie et al., “Transferable graph optimizers for ml compilers,” arXiv
preprint arXiv:2010.12438, 2020.

[86] microsoft, “Deep learning inference service at microsoft,” 2020,
https://www.usenix.org/system/files/opml19papers-soifer.pdf.

82



[87] P. Yu and M. Chowdhury, “Salus: Fine-grained gpu sharing primitives for deep learn-
ing applications,” arXiv preprint arXiv:1902.04610, 2019.

[88] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 1389–1397.

[89] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric me-
dian for deep convolutional neural networks acceleration,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 4340–4349.

[90] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and
K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10 734–10 742.

[91] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: a language and compiler for optimizing parallelism, locality, and recomputa-
tion in image processing pipelines,” Acm Sigplan Notices, vol. 48, no. 6, pp. 519–530,
2013.

[92] NVIDIA, “Nvidia titan v — volta architecture,” 2020, https://www.nvidia.com/en-
us/titan/titan-v/.

[93] ——, “Cuda pro tips (page 13),” 2020, https://on-
demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-
Performance-Analysis.pdf.

[94] Nvidia, “Nsight compute — nvidia,” 2020, https://developer.nvidia.com/nsight-
compute.

[95] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao, “Hrank: Filter
pruning using high-rank feature map,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1529–1538.

[96] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accelerating
deep convolutional neural networks,” in Proceedings of the 27th International Joint
Conference on Artificial Intelligence, 2018, pp. 2234–2240.

[97] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1492–1500.

[98] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2818–2826.

[99] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

83



[100] A. Sampson, T. Chen, and J. Roesch, “Apache tvm unity: a vision for the ml software
and hardware ecosystem,” 2022, https://tvm.apache.org/2021/12/15/tvm-unity.
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