

Securing the Information Disclosure Process

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Lei Zhang
Master of Engineering

Tsinghua University, 2004
Bachelor of Engineering

Tsinghua University, 2001

Co-director: Sushil Jajodia, Professor
Center for Secure Information Systems

Co-director: Alexander Brodsky, Associate Professor
Department of Computer Science

Summer 2010
George Mason University

Fairfax, VA

Copyright c© 2010 by Lei Zhang
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my wife Ying Wu and my parents.

iii

Acknowledgments

I would like to express my sincere gratitude to my advisors, Professor Sushil Jajodia and
Professor Alexander Brodsky, for their guidance, encouragement, and support in every stage
of my graduate study. I am deeply grateful to Professor Sushil Jajodia, who gave me the
opportunity to work in the prestigious Center for Secure Information Systems (CSIS) and
guided me through the journey of becoming a scholar. His knowledge, vision, and discipline
provided me lifetime benefits. I am also very grateful to my co-advisor, Professor Alexander
Brodsky. He is always willing to help, both on academic development and on personal issues.

I thank my committee members, Professor Duminda Wijesekera and Professor Songqing
Chen, for their wonderful class materials and their support and time. I thank Professor
Angelos Stavrou for his great help on my research and his precious friendship.

I thank my colleagues who have graduated from George Mason University: Dr. Lingyu
Wang, Dr. Xinwen Zhang, Dr. Shiping Chen, and Dr. Sankardas Roy.

I also thank the members of our research center for their suggestions: Dr. Pierangela
Samarati, Dr. Xiaoyang Wang, and Dr. Bo Zhu. I also want to thank Jiang Wang for his
helpful discussions with me.

Finally, I owe everything to my wife and my parents for their support.

iv

Table of Contents

Page

List of Tables . viii
List of Figures . ix

Abstract . xi
1 Introduction . 1

1.1 Problem Statement . 1
1.1.1 Online Query Auditing of Numerical Data 2

1.1.2 Micro-Data Disclosure Through Generalization 3

1.1.3 Multi-Source Micro-Data Disclosure 4
1.2 Summary of Contributions . 4

2 Related Work . 9
3 Optimized Online Query Auditing . 11

3.1 Introduction . 11
3.1.1 The Failure of a Simple Strategy . 11

3.1.2 The Idea of Simulatable Auditing . 12

3.1.3 Unnecessary Loss of Utility in Simulatable Auditing 12

3.2 The Model of Simulatable Binding . 15

3.3 Two Practical Algorithms . 22

3.3.1 A Simulatable Binding Algorithm for Max Query Auditing 22

3.3.2 A Simulatable Binding Algorithm for Sum Query Auditing 24

3.4 Experiments . 27

3.5 Summary . 29

4 Securing the Micro-Data Disclosure Process . 31

4.1 Introduction . 31
4.2 Modeling the Problem . 35

4.3 Computing p-optimal DDFs . 40

4.3.1 Backward Traversal Algorithm . 42

4.3.2 Forward Traversal Algorithms . 44

4.3.3 Designing p-optimal Algorithms . 47

v

4.4 The Case of Micro-Data Disclosure . 48
4.4.1 The Problem Setting (D,D, T) . 48

4.4.2 The Safety Predicate p . 49

4.4.3 Disclosure Algorithm for Entropy l-Diversity 49

4.4.4 Application Example of Algorithm 4.5 53

4.5 Summary . 54

5 Efficient Micro-Data Disclosure . 59
5.1 Introduction . 59
5.2 Coincident Generalization . 63

5.2.1 Information Disclosure Through Public Generalization Algorithms . 63

5.2.2 Basic Model . 64
5.2.3 Disclosure Set and Distribution of Sensitive Values 66
5.2.4 Coincident Generalization . 67

5.3 Pair-Based Coincident Generalization . 69
5.3.1 A Family of Pair-Based Generalization Algorithms 69

5.3.2 Decomposition of Generalization Process 71

5.3.3 Two Pair-Based Generalization Algorithms 73

5.4 Interleaved Coincident Generalization . 75
5.4.1 A Sufficient Condition for Coincident Generalization Algorithms . . 76

5.4.2 Interleaved Generalization Algorithms 77

5.5 Experiments . 79

5.5.1 Performance of Pair-Based Coincident Generalization Algorithms . . 80

5.5.2 Performance of Interleaved Coincident Generalization Algorithms . . 81

5.5.3 Comparison with Unsafe Generalization Algorithm 81

5.6 Discussion . 82
5.7 Summary . 84

5.8 Proof of Theorem 15 . 85
6 Privacy Protection and Restoring in Multi-Source Micro-Data Disclosure 89

6.1 Introduction . 89
6.2 Modeling the Problem . 96

6.3 Relaxed γ-Privacy and Its Verification by Monte Carlo Simulation 102

6.4 Restoring Compromised Privacy . 110

6.4.1 Selecting an Additional Generalized Disclosure 110

6.4.2 Selecting the Number of Additional Disclosures 112

6.4.3 A Naive Efficient Algorithm To Restore Privacy 113

6.5 Experiments . 114

vi

6.6 Discussion . 115
6.7 Summary . 117

7 Conclusion and Future Research . 118
7.1 Conclusion . 118
7.2 Future Research . 119

Bibliography . 121

vii

List of Tables

Table Page

4.1 A Patient Table . 32
4.2 The DDF A1 . 37

4.3 The DDF A′1 . 43

4.4 The DDF A′′1 . 46

4.5 Patient Information 2 . 53
4.6 Table for node (Marital, Age, *) . 54

4.7 Patient Information 2 . 54
4.8 Final Disclosure Table . 55
5.1 A Patient’s Medical Information Table . 60
5.2 A Micro-Data Table with Three Generalizations 60
5.3 Two Disclosure Sets . 61
5.4 Notation Table . 65
5.5 An Example of the Notations . 65

5.6 An Example of Self-Symmetric Disclosure Set 77

6.1 Patient Information Table . 91
6.2 Information from Voters’ List . 91
6.3 Two Disclosed Views of Table 1 . 92
6.4 A Possible Patient Information Table Regarding the Disclosed Views Shown

in Table 6.2 and Table 6.3(A), where (any) represents any possible medical

condition . 93
6.5 Further Disclosed Views . 94
6.6 Extended Patient Information Table . 111
6.7 The Third Generalized Disclosure . 111
6.8 Another Additional Generalized Disclosure 112
6.9 Modified Patient Information Table . 116
6.10 Additional Disclosure Selection . 117

viii

List of Figures

Figure Page

3.1 Answering Two Max Queries . 12

3.2 Comparison of Simulatable Binding and Simulatable Auditing Frameworks 14

3.3 Queries as Partitions . 16

3.4 A Query that Asimple Cannot Answer Safely 17

3.5 A Safe Binding for Query q3 . 19

3.6 Algorithm 3.1 . 23

3.7 Algorithm 3.2 . 27

3.8 Performance of Algorithm 3.1 (Max Query Auditing) 28

3.9 Performance of Algorithm 3.2 (Sum Query Auditing) 29

4.1 Sequence of Disclosure Tables . 32

4.2 Instance Sets for Example 1 . 35

4.3 Algorithm 4.1 . 37

4.4 Algorithm 4.2 . 43

4.5 A none Tn-safe example . 44

4.6 Algorithm 4.3 . 56

4.7 Algorithm 4.4 . 57

4.8 An example of Entropy 2-diversity . 57

4.9 Algorithm 4.5 . 58

4.10 Traversing the Generalization Lattice . 58

5.1 Algorithm UU . 74

5.2 Algorithm UA . 75

5.3 A Special Case of Interleaved Generalization 77

5.4 Examples of Interleaved Generalization and Non-Interleaved Generalization 79

5.5 Performance of Algorithms UU and UA . 80

5.6 Performance of GI over Algorithms UU and UA 81

5.7 Comparing Two Algorithms: Algorithm UA and GI , with Mondrain 82

5.8 Algorithm UA with Different Group Size . 82

ix

5.9 Difference between Algorithms UA and UU 83

6.1 Algorithm 6.1 . 105

6.2 Algorithm 6.2 . 109

6.3 Privacy Restoring by a Single View . 113

6.4 Privacy Restoring by up to 2 Views . 113

x

Abstract

SECURING THE INFORMATION DISCLOSURE PROCESS

Lei Zhang, PhD

George Mason University, 2010

Dissertation Directors: Sushil Jajodia and Alexander Brodsky

In the problem of information sharing, two goals must be met to fulfill the require-

ments of both information providers and information consumers. That is, the information

providers have constraints of data security/privacy protection, while the information con-

sumers are interested in particular information and want to acquire such information as

much as possible.

To solve this problem, disclosure algorithms are applied in the information disclosure

process so information providers can compute what to share.

However, in a typical information disclosure process, the applied disclosure algorithm is

constructed to check the goals solely on the exact disclosed data of the algorithm’s output.

This leads to serious security problems in that a malicious information consumer, or namely,

the adversary, may be able to acquire additional information from the disclosure algorithm

itself that violates the security/privacy constraints of the information providers.

This dissertation presents a number of techniques for answering basic questions about

the problem of information sharing: how secure is an information disclosure process, when

the disclosure algorithm is known to the public, and if it is not secure, how can we make it

so?

This dissertation starts by extending an existing solution to the problem of online query

auditing, i.e., whether a posed information request from the information consumer should

be permitted or not.

In the problem of online query auditing, an adversary may acquire more precise infor-

mation than what has been disclosed by the information providers based on the knowledge

he or she obtained from the fact that some information requests have been denied. The

existing solution, called simulatable auditing, does solve the problem partially by achieving

the first goal, which is guaranteeing the security constraints of the information provider.

However, it fails to achieve the second goal. That is, many information requests from in-

formation consumers will be denied unnecessarily to cause a significant data availability

downgrade. This dissertation proposes a new solution that achieves both of the goals by

identifying a sufficient and necessary condition for guaranteeing the data protection of the

information providers.

This dissertation then studies a more relaxed problem, the problem of micro-data dis-

closure, in which the disclosure algorithm has to choose what to disclose from multiple

candidate data/datasets. The problem of checking whether the security/privacy protection

of the information provider has been violated turns out to be much harder in this case, i.e.,

the general case is an NP-complete problem. This problem has not been given enough atten-

tion, and most existing solutions suffer from a failure of the desired data security/privacy

protection. This dissertation presents a new model to design safe disclosure algorithms

that at least guarantee the data protection of the information providers. Heuristic algo-

rithm design is also proposed to achieve an acceptable good performance for real-life data

applications due to the hardness of the problem.

Finally, this dissertation addresses an open problem of how to restore the data secu-

rity/privacy when it has already been compromised by incidental data disclosure, which is

unavoidable when multiple information providers are disclosing the same set of information

without collaboration or centralized control. This dissertation shows that, under certain

conditions, this can be accomplished by applying a statistical approach.

Chapter 1: Introduction

1.1 Problem Statement

The problem of information sharing has drawn much attention in recent years. To support

sharing information on a large scale, we need to ensure privacy while providing as much

data utility as possible to users. This problem can be regarded as a game played between

two parties, the information provider and the information consumer.

Information providers will hold a set of constraints that the disclosed data/dataset must

satisfy. Typically, in a large scale database, the information providers may want to prevent

the value of each single item from being disclosed to the information consumers. Therefore,

sometimes the term privacy will be used instead of security when these data items refer to

the information of individuals.

The information consumers can be divided into two categories: active information con-

sumers and passive information consumers. Active information consumers will generate

queries for any information of interest to the information providers. Passive information

consumers simply transmit their target information or interests to the information providers,

who have full control of what and how the related information is disclosed.

Upon request, the information providers must decide, for either active information con-

sumers or passive information consumers, what information should be disclosed. This pro-

cess can be represented by the execution of an algorithm, namely, the disclosure algorithm

or a disclosure monitor.

The applied disclosure algorithm will take into account the information providers’s se-

curity constraints, as well as the information consumer’s data utility interests, and compute

the data items to be disclosed. Regardless of how the data is disclosed, the disclosed data

1

can be represented by a set (could be infinite) of instances, each of which represents a possi-

ble state of the entire data set of the information providers. When the disclosure algorithms

are non-deterministic, this set will also be associated with a defined PDF. 1

The typical and well-accepted definition of “safe” is defined by the satisfaction of the

security/privacy constraints in this disclosed instance set. And then “safe” disclosure al-

gorithms are compared by the data utility they can provide through the disclosed instance

set w.r.t. different interests of the information consumers in different data applications.

However, this dissertation will reveal that this typical view of “safe” in the problem of

information disclosure is problematic. To compute the disclosed information is only the

second step in the process of disclosing information. There is always a hidden first step

of decision making, i.e., the information consumers may have different choices of how to

disclose information and the information disclosure algorithm has to decide a proper one

and then compute the disclosed data in the second step.

In different data applications, the difficulty of decision making processes varies widely.

In this dissertation I focus on two data applications: numerical data disclosure and category

data disclosure, respectively.

1.1.1 Online Query Auditing of Numerical Data

Consider the information provider holds a numerical database and the information consumer

will pose customized aggregation queries (SUM, MAX, and so on) of a subset of the stored

data. The information provider has two choices for a posed query: give precise answer, or

simply deny it. The online query auditing problem refers to the following question being

asked of the information provider: given a posed query and a sequence of previous received

and processed queries, how to choose, such that (1) when the information provider chooses

to answer the query, the information consumer cannot determine the value of any individual

piece of data; (2) the information provider chooses to deny the query only when (1) is not

possible.
1Output of a deterministic disclosure algorithm may be also considered as a set associated with a PDF,

which is uniform.

2

Although this is the simplest case among all decision-making processes in the problem

of information disclosure, one may still be puzzled by the complexities hidden under it.

Assume the information provider uses a straightforward solution as follows: the information

provider will first compute the answer for a posed query, and then try to determine whether

an individual piece of data can be resolved from the answer and the answers to all the

previous queries; the information provider will deny the query if he succeeds in doing so

and answer the posed query otherwise.

One may think this solution is easy to understand and should be safe. However, as

I have discussed above, by doing so the information provider will fall into the trap of the

typical definition of “safe” that is not safe. I will discuss this problem in detail in Chapter 3.

1.1.2 Micro-Data Disclosure Through Generalization

In the problem described above, the information provider only has two choices during the

decision-making process. The situation becomes worse when information provider has to

choose the way to disclose among many more possibilities.

Consider that the information provider holds a database that contains micro-data about

people’s medical condition. The information consumer may ask for a set of people’s medical

conditions with their ages, sex, and living locations. The information provider holds the

privacy constraints such that any individual’s medical condition cannot be determined by

the information consumer. Therefore, the information provider may choose to remove the

names of individuals from the disclosed data and generalize tuples into groups by general-

izing values of other attributes into higher granularity.

Note that in this case, the information consumer does not have a particular query

and the information provider can choose any different generalization of the original data,

including disclosing nothing. The inherent rule is that the information provider will try to

disclose as much information as possible under the condition that the privacy constraints

are satisfied. The related work of how to define the privacy constraints and the data utility

property will be given in the next chapter. The idea here is that, even with these properties

3

precisely defined, the information provider still has to choose from all candidate disclosures,

the “best” one w.r.t. the data utility and privacy constraints.

Similar to what I have mentioned above, existing solutions to the problem of micro-data

disclosure always fall into the same trap where they consider only an unsafe “safe” definition.

Therefore, every one of them should be re-studied based on the framework discussed in this

dissertation.

Unfortunately, the underlying complexity in this multi-choice case leads to the fact

that, unlike the problem of query auditing, this micro-data disclosure problem cannot have

computationally feasible optimal solutions. Furthermore, even a heuristic solution is hard

to find when guaranteeing a certain level of data utility. Detailed discussion will be given

in Chapters 4 and 5.

1.1.3 Multi-Source Micro-Data Disclosure

The typical information disclosure algorithms could also be problematic when considering

a multi-source information disclosure. That is, when more than one information provider is

disclosing the same set of information without collaboration or centralized control, a desired

security/privacy constraint is most likely not able to be maintained. In this dissertation,

I will introduce a special kind of information disclosure algorithm to handle this kind of

problem that other solutions cannot handle. Detailed discussion will be given in Chapter 6.

1.2 Summary of Contributions

The contributions of this dissertation are summarized as follows.

For the Problem of Query Auditing in Numerical Databases

In Chapter 3, I propose a new model called simulatable binding, extending the existing

simulatable auditing model for the problem of online query auditing in numerical databases.

The intuition is to find a set of database states and bind them together when “denied” is

4

the answer to a posed query, under the condition that the binding set is “large” enough to

protect the privacy of its elements.

Both the proposed simulatable binding model and existing simulatable auditing model

guarantee privacy constraints for the information providers. However, the proposed sim-

ulatable binding model is able to answer the query q2 in more cases than the simulatable

auditing model does.

I should emphasize that the fundamental differences between the proposed model and

the simulatable auditing model are as follows:

• Under the simulatable auditing model, a decision whether to answer a newly posed

query is made solely on the knowledge that has already been disclosed.

• Under the simulatable binding model, selection of a safe binding for a newly posed

query is made solely on the knowledge that has already been disclosed; however, the

decision whether to answer the newly posed query is based on not only the disclosed

knowledge and the safe binding, but also the secret and true database state.

It is clear that the simulatable binding model provides a more relaxed condition for answer-

ing queries. However, I will prove that, the condition provided by this simulatable binding

model is not only sufficient, but also necessary to guarantee database privacy in the online

auditing problem. As a consequence, I prove that the algorithms applying the simulatable

binding model always provide better utility than algorithms applying the simulatable au-

diting model. It is worth noting that the simulatable binding model is independent of the

concerned privacy property, i.e., any privacy property can be applied to the simulatable

binding model, which makes the simulatable binding model widely applicable.

In order to show the practicality and efficiency of the simulatable binding model, I

present two algorithms for max query online auditing and sum query online auditing, re-

spectively. Each of those algorithms is built in a way that is comparable to an algorithm

applying the simulatable auditing model considering the same privacy property. I conduct

experiments to show the improved data utility of the simulatable binding model over the

simulatable auditing model.

5

For the Problem of Micro-Data Disclosure

In Chapter 4, I first model disclosed information under the assumption that the malicious

information consumer, i.e., the adversary, has the knowledge of what I call a deterministic

disclosure function (DDF), which is a formal notion of a function defined by a disclosure

algorithm. This is done by introducing a formal definition of a disclosure set. Intuitively,

all the adversary can infer from the disclosed data and the knowledge of the DDF is that a

true database state is one of the database states in the disclosure set.

Second, given a safety predicate p representing the security/privacy constraint of the

information provider, I define the notion of p-safety for a DDF. Intuitively, it means that for

any true database state, the DDF returns an answer, such that the disclosure set inferred by

the adversary (not just the disclosed answer!) satisfies the safety predicate p. I also define

the notion of p-optimality for a DDF. Intuitively, it means that, in addition to p-safety,

there does not exist a locally better DDF, in terms of data utility, that is also p-safe.

Third I prove that p-optimal DDF is computable, although the problem of deciding

whether a DDF is p-optimal is NP-hard. I then introduce two specific conditions under

each of which I prove that the problem of whether a DDF is p-optimal is P-time in the

size of the set of all possible database states and the size of the generalization sequence. I

do this by developing polynomial algorithms to compute a p-optimal DDF. Note, however,

that the size of all possible database states may be exponential, in the worst case, in the

size of a single database state. Clearly, computing p-optimal DDFs in such a general setting

would not be practical beyond a restricted number of considered database states.

Fourth, I turn to developing a disclosure algorithm for a specific setting of microdata

disclosure. For this case, the locally better relation on DDFs in terms of data utility is

provided by a sequence of quasi-identifier generalizations. I develop a p-safe algorithm that

is weakly p-optimal, and also polynomial with respect to the size of the original table and

the generalization lattice.

However, the heuristic algorithms in this family turn out not to have enough good

performances. I further discuss the problem of how to design an efficient heuristic algorithm

6

that also has a relatively good performance in Chapter 5.

I propose a novel concept of coincident generalization as an efficient solution to micro-

data disclosure using public algorithms. I derive necessary and sufficient conditions for any

generalization algorithm to be coincident in order to facilitate the design of such algorithms.

As the next step, I instantiate the concept by devising two classes of efficient generalization

algorithms: pair-based generalization algorithm, and interleaved generalization algorithm,

and prove them to be coincident. The effectiveness of the proposed algorithms is indepen-

dent of privacy properties, which makes them applicable to a wide range of applications.

Experiments show that those algorithms lead to good data utility and performance as well.

For the Problem of Multi-Source Information Disclosure

In Chapter 6, I first propose a new property, called γ-Privacy, for privacy protection in a

micro-data disclosure problem when multiple views are disclosed. Given the disclosed views

and publicly available information, the set PIS of “all possible worlds”(i.e., possible tables

that would yield the same disclosure results) is defined. γ-Privacy intuitively means that in

a randomly (uniformly) selected instance, the probability of any individual to be associated

with a sensitive value is at most γ. I then prove that, for the case of a single disclosed view,

γ-Privacy is equivalent to the property of Recursive (γ
1−γ , 2)-Diversity. This means that the

property is a “natural” extension of l-Diversity, which is defined only for a single disclosed

view, to multiple views.

Second, I prove that deciding on whether γ-Privacy is satisfied by a set of disclosed views

is #P-complete. Third, to mitigate the high computational complexity, I relax the property

of γ-privacy to be satisfied with (ε, θ) confidence, i.e., that the probability of disclosing a

sensitive value of an individual be at most γ + ε with statistical confidence θ, where ε is an

arbitrary small positive constant. I propose a Monte Carlo-based algorithm to check the

relaxed property in O((λλ′)4) time for constant ε and θ, where λ is the number of tuples in

the original table and λ′ is the number of different sensitive values in the original table.

Finally, I turn to the problem of restoring compromised privacy. Namely, given a set

7

of disclosed views that violates γ-Privacy, can we extend it to a superset of views that

jointly satisfy γ-Privacy. I propose heuristic polynomial time algorithms which are based on

enumerating and checking additional disclosed views. I conduct a preliminary experimental

study on heart disease records taken from the UCI data repository ([1]), which demonstrates

that the proposed polynomial algorithms restore privacy in up to 60% of compromised

disclosures. I also discuss how to apply the proposed technique under different assumptions

when the adversary is also aware of the proposed technique.

8

Chapter 2: Related Work

To solve the problem of protecting the data privacy in a statistical database [2], different

methods have been introduced. One way is to perturb the data in the answers for the posed

queries [3–5]. Another choice is to perturb the data in the database itself before answering

the posed queries [6–10].

Besides these noise-addition based approaches, work on the auditing problem, where

responses to queries are either true answers or “denied,” has also been proposed. An off-

line auditing problem [11–15] is to decide whether the database privacy has been breached

based on a set of posed queries and their answers. Complexity analyses on specific problems

on max/min [11,14] and sum [12–14] queries are given.

In [16–18], the authors target the online auditing problem, that is, to decide whether the

database privacy will be breached by giving a true answer to a newly posed query based on

a set of posed queries and their answers. [18] also provides a logic-oriented model for the

online auditing problem that combines modified answers and denials to enforce the database

privacy.

Recently, in [19], the authors uncover a fact that the database privacy may be breached

by an attacker with the help of information leaked in the online auditing process, i.e., to

decide how to answer a posed query. The authors also provide a model called simulatable

auditing [19,20] to prevent information leakage in an auditing process. However, because the

conditions provided by the simulatable auditing model are far from necessary to guarantee

the database privacy, the huge data utility loss in their solutions inspired my work.

The problem of micro-data disclosure has also been extensively studied [21–25], where

the security issue discussed in this dissertation is largely ignored. In particular, data swap-

ping [26–28] and cell suppression [29] both aim to protect micro-data released in census

9

tables. However, the amount of privacy is usually not measured in those earlier works.

Miklau et al. presents an interesting measurement of information disclosed through tables

based on the perfect secrecy notion by Shannon [30]. The important notion of k-anonymity

is proposed as a model of privacy requirement [31], which has received extensive studies

in recent years. To achieve optimal k-anonymity (with the most utility) is shown to be

computationally infeasible [32].

A model based on the idea of blending individuals in a crowd was proposed in [33]. A

personalized requirement for anonymity was studied in [34]. In [35], the authors approached

the issue from a different perspective, where the privacy property is based on generalization

of the protected data and could be customized by users. Many efforts have been made

around developing efficient k-anonymity algorithms [31,36–39], whereas the security of the

k-anonymity model is assumed. Two exceptions are the l-diversity notion proposed in [40]

and the t-closeness notion proposed in [41], which address the deficiency of k-anonymity

of allowing insecure groups with a small number of sensitive values. Algorithms developed

for k-anonymity can be extended to l-diversity and t-closeness, but they still share the

same security issue addressed in this dissertation because they do not take into account an

adversary’s knowledge about generalization algorithms. When such knowledge is assumed,

most existing generalization algorithms become insecure. In [42], the authors pointed out

the above problem and proposed a model for the adversary’s knowledge, but did not give any

efficient solution for the general micro-data disclosure problem. In [43], the authors studied

the problem of how k-anonymity is preserved in multiple views, which first addresses the

fundamental problem of Chapter 6 in this dissertation.

10

Chapter 3: Optimized Online Query Auditing

3.1 Introduction

Let X = {X1, X2, . . . , Xn} be a statistical database consisting of n variables. Generally, Xi

are all real numbers. I use the vector x = (x1, x2, . . . , xn), where xi ∈ R(1 ≤ i ≤ n), to

denote a database state. All queries over X take the form q : Rn → R.

The following problem is known as the online query auditing problem ([16–18]): Suppose

that a set of queries q1, q2, . . . , qT−1 has already been posed and the corresponding answers

a1, a2, . . . , aT−1 have been given, where each answer ai, 1 ≤ i < T , is either the true answer

to the query or “denied.” Given a new query qT , the database should give the true answer

if the privacy of the database is not breached (i.e., an xi cannot be determined); otherwise,

it should give “denied” as the answer.

3.1.1 The Failure of a Simple Strategy

A simple strategy, denoted as Asimple, is to deny qT if database privacy may be breached

when a true answer of qT is given, and provide the true answer otherwise. Surprisingly,

as observed recently by Kenthapadi, Mishra, and Nissim [19], the privacy of the database

could still be breached if Asimple is applied.

To see this, consider the following example: we have a database consisting of four

variables x = (x1, x2, x3, x4), all of which are integers. Suppose that the first query q1 :

max(x1, x2) has been posed and the true answer, say a1 = 5, has been given. Suppose the

next query is q2 : max(x2, x3, x4). Based on the strategy Asimple, if the true answer happens

to be a2 ≥ 5, then the database will return the true answer a2 for q2 because the database

privacy will not be breached. On the other hand, if the true answer is a2 < 5, the database

will deny q2 because by giving a2, the database will disclose the the true value of x1.

11

Figure 3.1: Answering Two Max Queries

Unfortunately, this is not enough to protect the database privacy. The problem is that

if q2 gets “denied,” an outside adversary can still determine that x1 = 5. This is because

the only reason for the denial of q2 under such condition is that a2 < 5, which leads to the

fact that x1 = 5.

3.1.2 The Idea of Simulatable Auditing

Intuitively, the reason that the simple strategy Asimple fails is that it does not take into

consideration the information flow from the true database state to the auditing decision. The

simulatable auditing model proposed by Kenthapadi, Mishra, and Nissim [19] guarantees

that the decision making process does not leak any information. This is because whether to

answer a newly posed query is decided based on knowledge that an adversary has already

acquired, including all posed queries and all given answers.

In general, the strategy of a Simulatable Auditor, denoted as Asa, can be stated as the

following: Given a set X of all possible database states that are consistent with previously

posed queries (q1, q2, . . . , qT−1) and their answers (a1, a2, . . . , aT−1), a newly posed query

qT will be denied if:

∃x′ ∈ X , the privacy of x′ will be breached if the true answer aT of qT (x′) is given.

If we apply Asa to the example shown in Figure 3.1, q2 will always be denied no matter

what possible answer a2 is.

3.1.3 Unnecessary Loss of Utility in Simulatable Auditing

Although strategy Asa prevents the information flow from the true database state to the

decision making process during auditing, it does so at a large cost of data utility, much

of which is unnecessary. In the example shown in Figure 3.1, in order to protect the data

12

privacy, Asa will always deny q2. Later I will show that we should be able to do much better

than this.

The situation gets much worse when the simulatable auditing model is applied to sum

queries. When there exist some database constraints, which happens in most cases, Asa

could become a strategy that will refuse all queries [19]. For example, in a database x =

(x1, x2, . . . , xn) ∈ Rn, if we have the database constraints xi ≥ 0, (1 ≤ i ≤ n), for any sum

query q :
∑n

i=0 bixi, (bi ∈ {0, 1}), we will give a “denied” answer based on Asa because there

always exists a possible database state x′ = (0, 0, . . . , 0) that if the true answer a = q(x′) is

given, some xi will be disclosed.

The problem of information disclosure can be regarded as an optimization problem, i.e.,

to maximize the data utility of the disclosed data under the constraint that data privacy

must be guaranteed. This key observation leads to the problem of finding the sufficient and

necessary condition to guarantee database privacy, which is the main focus of this chapter.

Indeed, the model of simulatable auditing model only provides a sufficient condition that

is far from necessary. Such a sufficient condition may lead to significant and unnecessary

data utility loss, as discussed above. I will show that, by applying the technique proposed

in this chapter, such unnecessary utility loss can be completely avoided.

Contribution

In this chapter, I propose a new model called simulatable binding. The idea is to find a set

of database states and bind them together when “denied” is the answer to a posed query,

under the condition that the binding set is “large” enough to protect the privacy of its

elements.

To illustrate, consider the example shown in Figure 3.1 I have discussed. The strategy

Asimple fails to guarantee the database privacy because the denial of q2 will lead to the fact

that a1 = 5. The strategy Asa of the simulatable auditing model deny q2 unconditionally

to protect the privacy of all possible database states. However, what we can do is to deny

q2 not only when the true answer of q2 satisfies a2 < 5, but also when a2 = 5. Therefore,

13

Figure 3.2: Comparison of Simulatable Binding and Simulatable Auditing Frameworks

an outside adversary cannot determine any of the {x1, x2, x3, x4} if he gets “denied” when

posing query q2.

The result of such a strategy, denoted as Asb, is shown in the following table with

comparisons:

a2 Asimple Asa Asb

a2 < 5 Deny Deny Deny

a2 = 5 Answer Deny Deny

a2 > 5 Answer Deny Answer

Privacy Guarantee? No Yes Yes

Both Asa and Asb guarantee privacy. However, Asb is able to answer the query q2 in

more cases than Asa does. Note that although a binding set can protect the privacy of

its element database states, the decision process for determining such a set may contain

additional information about the true database state.

Therefore we need to make sure this binding decision is made based on the knowledge

that is already known to the outside adversary, leading to the name simulatable binding.

Conceptually, the framework of the simulatable binding model compared to the simulatable

auditing model is shown in Figure 3.2. I should emphasize that the fundamental differences

between this model and the simulatable auditing model are as follows:

14

• Under the simulatable auditing model, a decision whether to answer a newly posed

query is solely based on the knowledge that has already been disclosed.

• Under the simulatable binding model, selection of a safe binding for a newly posed

query is solely based on the knowledge that has already been disclosed; however, the

decision whether to answer the newly posed query is based on not only the disclosed

knowledge and the safe binding, but also the secret and true database state.

It is clear that the simulatable binding model provides a more relaxed condition for answer-

ing queries. However, I will prove that the condition provided by this chapter’s simulatable

binding model is not only sufficient but also necessary to guarantee database privacy in

the online auditing problem. I also prove that the algorithms applying the simulatable

binding model always provide better utility than algorithms applying the simulatable au-

diting model. It is worth noting that the simulatable binding model is independent of the

concerned privacy property, i.e., any privacy property can be applied to the simulatable

binding model, which makes the simulatable binding model widely applicable.

In order to show the practicality and efficiency of the simulatable binding model, I

present two algorithms for max query online auditing and sum query online auditing, re-

spectively. Each of those algorithms is built in a way that is comparable to an algorithm

applying the simulatable auditing model considering the same privacy property. I conduct

experiments to show the improved data utility of the simulatable binding model over the

simulatable auditing model.

3.2 The Model of Simulatable Binding

To build intuition, I introduce the simulatable binding model through the following simple

graphical example:

• Consider a database state as a point and the current knowledge of an outside adversary

as a set of points X . Intuitively, X contains exactly all database states that are possible

from the point of view of an outside adversary.

15

• I state the database privacy requirement as that an outside adversary cannot de-

termine any point in X to be the true database state. Therefore, a set of possible

database states X ′ is safe if |X ′| > 1. I assume that X is safe at the beginning, which

means that |X | > 1.

• A newly posed query q over the database is a partition of X , q = {s1, s2, . . . , sn}. The

true answer to q is si, 1 ≤ i ≤ n such that x ∈ si. The database auditor has to decide

whether to give the true answer for q, or to deny it.

Figure 3.3: Queries as Partitions

Note that, in this toy example, we consider a very naive privacy requirement. In the

general problem setting, the privacy property can regarded as a predicate p and we say a

set of possible database states X is safe if p(X) = true.

As an example, let X = {b1, b2, . . . , b6}. Figure 3.3(A) shows a potential query q1 =

{{b1, b2, b6}, {b3, b4, b5}}. In (B), q2 = {{b1, b4}, {b2, b3}, {b5, b6}} denotes another potential

query.

If we follow the traditional simple strategy for the online auditing problem, we will give

the true answer for a newly posed query q if the size of the true answer, being a set, is safe.

In this case, the simple strategy can be stated as:

Asimple: Given X , x and a newly posed query q, let a denote the true answer for q:

(1) a “denied” answer is given if the set X ∩ a is not safe; (2) a is given otherwise.

In this example, the safety of a set means its size is larger than 1. Clearly, in both cases

(A) and (B), if the true answer of the newly posed query is given, an outside adversary still

16

cannot determine the true database state. Thus, we will give the true answer for q1 and q2

in the two cases, respectively.

The database privacy will certainly be guaranteed in any case where Asimple returns the

true answer for the newly posed query. In fact, all algorithms I discuss in this chapter will

meet this requirement.

However, the safety of a strategy requires guaranteeing privacy not only when the true

answer is given, but also when “denied” is given. Let η(A,X ,q) denote the subset of possible

database states in X where q will be denied by a strategy A. I define the following:

Definition 1 (deny-safe). A strategy A is said to be deny-safe if:

∀X , ∀q, |X | > 1 ⇒ η(A,X ,q) = φ ∨ η(A,X ,q) is safe

b
2
 b
3

b
1
 b
4

b
5
b
6

q
3

Figure 3.4: A Query that Asimple Cannot Answer Safely

Unfortunately, Asimple is not a deny-safe strategy. Figure 3.4 shows a situation, where

|η(Asimple,X ,q3)| = 1. In this case, if the newly posed query q3 is denied, an outside adversary

would determine the true database state to be b1.

Now we consider the strategy of the simulatable auditing model:

Asa: Given X , x and a newly posed query q: (1) a “denied” answer is given if

∃s ∈ q,X ∩ s is not safe; (2) the true answer of q is given otherwise.

It is clear that, in the situation in Figure 3.4, q3 will always be denied no matter which

point represents the true database state.

17

Theorem 1. Asa is deny-safe.

This is an obvious result because the definition of Asa naturally implies that η(A,X ,q) = φ

or η(A,X ,q) = X , where X is safe as assumed. But Asa denies more queries than what is

necessary. Instead, a better way is described as follows.

• we select another query (partition) q′ = {{b1, b6}, {b2, b3}, {b4, b5}} on X ;

• Let a and a′ denote the true answer for q3 and q′, respectively. We will deny q3 not

only if “a is not safe” but also if “a′ ∩ η(Asimple,X ,q3) 6= φ.”

As illustrated in Figure 3.5, by applying the above strategy, if q3 gets denied, an outside

adversary still cannot determine whether b1 or b6 is the true database state. This illustrates

the idea of a binding strategy. And the safety of such a strategy depends on the selected

query q′.

Definition 2 (safe binding). Given a set X and a query q, a safe binding q′ is a partition

of X such that:

(1) ∀s′ ∈ q′, s′ is safe, and

(2) ∀s ∈ q, if s is safe, then s\s∗ is either φ or a safe set, where s∗ =
⋃

s′∈q′,s′∩η(Asimple,X ,q) 6=φ s′.

A binding strategy can be stated as follows:

Ab: Given X , x, a safe binding q′, and a newly posed query q, let a′ denote the true

answer for q′:

(1) a “denied” answer is given for q if a′ ∩ η(Asimple,X ,q) 6= φ

(2) the true answer for q is given otherwise.

Note that a safe binding q′ protects the privacy of the true database state because

η(Ab,X ,q) is determined by “safe” elements of q′. However, in order to prevent inference

about the true database state, we still need to be aware of the potential information flow

from the true database state to the selection of q′.

18

b
2
 b
3

b
1
 b
4

b
5
b
6

q
3

Figure 3.5: A Safe Binding for Query q3

Definition 3 (simulatable binding). A binding strategy is said to be simulatable, if the safe

binding is selected based on X and the newly posed query.

Theorem 2. If the desired safety property satisfies:

∀X ′ ⊆ X ′′,X ′ is safe ⇒ X ′′ is safe

A simulatable binding, denoted as Asb, is deny-safe.

Proof: For any set X , any query q, let q′ denote the safe binding of Asb. Suppose that

η(Asb,X ,q) 6= φ. Then there exists a possible database state b ∈ X such that b ∈ η(Asb,X ,q).

Based on the definition of a binding strategy, there exists s ∈ q′ such that b ∈ s ∧ s ⊆
η(Asb,X ,q). Because q′ is a safe binding, we have that s is safe. Therefore η(Asb,X ,q) is safe.

I slightly extend this as follows:

Definition 4 (ultimate simulatable binding). A simulatable binding is said to be ultimate

if any selected safe binding q′ based on X and q satisfies:

∃s ∈ q′, η(Asimple,X ,q) ⊆ s

The following theorem is straightforward:

Theorem 3. An ultimate simulatable binding, denoted as Ausb, is deny-safe.

Until now, I have proven that both Asa and Asb are deny-safe. Also, they are both safe

in the case when true answers are given for a posed query. For Asb, this is guaranteed by

condition (2) in the definition of a “safe binding.”

19

However, the data utility provided by these two models is quite different. Next, I prove

that any Asb provides more data utility than Asa by means of the following theorem.

Theorem 4. Given X and a query q:η(Asb,X ,q) ⊆ η(Asa,X ,q).

Proof: Because η(Asa,X ,q) is either an empty set or the set X itself, it is sufficient to

prove that η(Asa,X ,q) = φ ⇒ η(Asb,X ,q) = φ. This is a natural implication by the definition

of Asa. Because if η(Asa,X ,q) = φ, there will be no b ∈ X for which Asimple will output

“denied.” Thus the condition for Asb to deny q will never be satisfied. Thus we will have

η(Asb,X ,q) = φ.

In the example shown in Figure 3.5, Asa will deny to answer q3 no matter what the true

database state is and Asb will deny to answer q3 only if the true database state is x = b1 or

x = b6. Furthermore, I prove that:

Theorem 5. Given any strategy A, X , and a newly posed query q, if for any x ∈ X , to

disclose the answer for q based on A does not violate the safety of the database, then:

(1) there exists a safe binding q′, such that A is identical to a binding strategy Ab based

on q′ with respect to the knowledge that any outside adversary could obtain, and

(2) q′ is independent of the true database state.

Proof: To prove (1), construct q′ as the follows:

• Let s1 = η(A,X ,q) and s1 ∈ q′;

• Let s∗ = X \ s1;

• While s∗ 6= φ:

– Select x ∈ X \ s1, let sx be the set of all possible database states that an outside

adversary could obtain after the true answer for query q based on A is given,

and sx ∈ q′;

– Let s∗ = s∗ \ sx;

20

Because A is safe, it is clear that q′ is a safe binding and (1) is true. (2) is also

clear because the following condition must be satisfied when considering an adversary’s

knowledge: ∀x, x′ ∈ X , x′ ∈ sx ⇔ x ∈ sx′

With Theorem 5, I have shown that the simulatable binding model provides not only a

sufficient, but also a necessary condition to guarantee the database privacy for the online

auditing problem.

However, we can see that the process of selecting a safe binding is only required to be

simulatable, which means that the safe binding that can be selected is not unique. Therefore,

the performance of a simulatable binding can be influenced by the way that a safe binding

is “simulatably” selected. The problem is that “what is the best safe binding given X and

q” cannot be uniformly defined. Because a “safe binding” naturally creates a dependency

between different possible database states within the set X , such preference in dependency

really depends on the real-time application and the users’ requirements.

Generally, there are two different ways to select a “safe binding” in a simulatable binding

with respect to the treatment to the set η(Asimple,X ,q):

• Bind the entire set η(Asimple,X ,q) together with other selected possible database states

in X \ η(Asimple,X ,q).

• Bind the elements in the set η(Asimple,X ,q) separately with different selected possible

database states in X \ η(Asimple,X ,q).

The first way represents the preference that tries to remain the data utility that can be

safely provided by the simple strategy Asimple for the elements in the set X \ η(Asimple,X ,q).

The second way represents the preference that tries to obtain a more balanced result, i.e.,

to provide better utility for the possible database states in the original none-guaranteed set

η(Asimple,X ,q) than the first way, by sacrificing a little more data utility for other possible

database states.

In next section, I discuss applications of these two different ways in two particular online

auditing problems.

21

3.3 Two Practical Algorithms

In this section, I provide algorithms based on the simulatable binding model for the problems

of auditing max query and auditing sum query, respectively. Note that, when considering a

practical problem, two changes are noticeable: 1) the set X is no longer a static set, but is

defined by all the previously posed queries and their answers; 2) the privacy property may

be quite different and involved in different applications. In fact, I consider two different

privacy properties for the two cases.

3.3.1 A Simulatable Binding Algorithm for Max Query Auditing

I consider the following online auditing problem of max query. This is the same problem

setting used in [19].

1. The database consists of n variables, all of which are real-valued, where a database

state is denoted as a vector x = (x1, x2, . . . , xn) ∈ Rn;

2. The database privacy is said to be guaranteed if an outside adversary cannot deter-

mine the value of any variable in the database. I say that a set of possible database states

X ′ is safe if: ∀i, 1 ≤ i ≤ n,∃x′, x′′ ∈ X ′, x′i 6= x′′i . Note that ∀X ′ ⊆ X ′′, therefore X ′ is safe

implies that X ′′ is safe.

3. A query q over the database is to ask the maximum value of a set of the variables in

the database. Let Q denote the corresponding set, the true answer a for q is computed as

a = max{xi|xi ∈ Q}.
4. The problem is: Given a set of queries q1, q2, . . . , qT−1 and their answers, how to an-

swer a newly posed query qT , providing as much data utility as possible, while the database

privacy is also guaranteed.

Theorem 6. There exists a simulatable binding algorithm for the max query auditing prob-

lem above that runs in O(T
∑T

i=1 |Qi|) time where |Qi| represents the number of variables

in qi.

22

Algorithm 3.1: MAX simulatable binding
For i = 1 to 2T + 1 do

Let aT be α[i];
If aT is consistent with previous answers a1, a2, . . . , aT−1 AND
there exists 1 ≤ j ≤ n such that xj is uniquely determined (using [11])

then set β[i] to “true”;
If all the β[i], (1 ≤ i ≤ 2T + 1) have been set to “true”

then return “denied”;
Select the least k ∈ [1..2T + 1] such that β[k] =“false”;
Let aT be the true answer for qT ;
If there does not exist 1 ≤ j ≤ n such that xj is uniquely determined (using [11])
AND aT 6= α[k]

then return the true answer aT ;
If all the β[i], (1 ≤ i ≤ 2T + 1) remain “false”

then return the true answer aT ;
Record the the answer for qT as α[k] (*);
Return “denied”;

*: This record serves only for future auditing.

Figure 3.6: Algorithm 3.1

I prove this theorem by providing Algorithm 3.1, which is built comparable to the algo-

rithm proposed in [19] for the same problem setting. I adopt the process that is proposed in

the work [11], which has already solved the off-line max auditing problem. Some of the pa-

rameters are set as follows: Let q′1, q
′
2, . . . , q

′
T−1 be the previous queries with a′1 ≤ · · · ≤ a′T−1

as the corresponding true answers. Let a′L = a′1−1 and a′R = a′T−1+1. Let α[1..2T +1] be an

array that takes the value of the sequence (a′L, a′1,
a′1+a′2

2 , a′2,
a′2+a′3

2 , a′3, . . . , a
′
T−2,

a′T−2+a′T−1

2 ,

a′T−1, a
′
R). Let β[1..2T + 1] be a boolean array with default values of “false.”

In [19], the authors have already shown that in order to check whether η(A,X ,q) 6= φ for

such a problem setting, it is sufficient to check whether it is not safe to answer qT under the

condition that the true answer for qT is any one of the values listed in the array α[1..2T +1].

Thus, the algorithm they proposed based on the simulatable auditing model is to deny qT

if η(A,X ,q) 6= φ.

Comparably, the Algorithm 3.1 that I propose, based on the simulatable binding model,

provides a way to select a safe binding that binds the entire set η(A,X ,q) together with the

23

set of possible true database states, which is consistent with X and the least “safe” answer

α[k] for qT . For other possible database states, the true answer will be given for the query

qT . Clearly, this applies the first kind of strategy to select a safe binding as I have discussed

in the previous section.

Note that by selecting a safe binding in this way, I need to log the returned answer of

qT as α[k] (in Algorithm 3.1) while the actually returned answer is “denied.” The logged

answer is used to define a new X ′ representing the knowledge contained in the denial for

future auditing. In order to guarantee the safety of the binding in future auditing, the

answers have to be consistent not only with q1, q2, . . . , qT−1 and their answers, but also

with qT and its answer α[k].

The selection of the α[k], bound with “denied,” is based on the order of α and indepen-

dent from the true database state. Thus I have that:

Lemma 1. Algorithm 3.1 is a simulatable binding.

Proof Sketch: Clearly, the selection of binding in Algorithm 3.1 is based on q1, . . . , qT

and a1, . . . , aT−1. It suffices to prove that the binding in Algorithm 3.2 is a safe binding.

Algorithm 3.1 tends to bind the entire denial set of Asimple with a set that already satisfies

the privacy requirement. Therefore, the proof of safe binding requires: (1) the desired

safety property satisfies that ∀X ′ ⊆ X ′′, X ′ is safe implies that X ′′ is safe, and (2) it is

sufficient to check values in the array α[1..2T + 1] to determine η(Asimple,X ,qT). (1) is clear

and (2) has already been proved in the work [19]. Besides, the complexity of Algorithm 3.1,

O(T
∑T

i=1 |Qi|) can be computed from the algorithm itself including the process from [11].

In fact, I have illustrated the result of Algorithm 3.1 in Section 3.1.4, when applying to

the example I discussed in the introduction.

3.3.2 A Simulatable Binding Algorithm for Sum Query Auditing

I consider the following online auditing problem of sum query:

24

1. The database consists of n variables, all of which are real-valued, where a database

state is denoted as a vector x = (x1, x2, . . . , xn) ∈ Rn.

2. There is a set of constraints C: for each xi: ci,l ≤ xi ≤ ci,r, (ci,l, ci,r ∈ R, ci,r−ci,l ≥ 1).

3. I adopt the similar privacy requirement used in [44]. The database privacy is said

to be guaranteed if an outside adversary cannot determine the value of any variable within

an interval of 1. I say that a set of possible database states X ′ is safe if: ∀i, (1 ≤ i ≤
n), ∃x′, x′′ ∈ X ′, |x′i − x′′i | ≥ 1. Note that ∀X ′ ⊆ X ′′, therefore X ′ is safe implies that X ′′ is

safe.

4. A query q over the database asks the sum value of a set of the variables in the

database. Let Q denote the corresponding set, the true answer a for q is computed as

a = sum{xi|xi ∈ Q}.
5. The problem is: Given a set of queries q1, q2, . . . , qT−1 and their answers, how to an-

swer a newly posed query qT , providing as much data utility as possible, while the database

privacy is also guaranteed?

Theorem 7. There exists a simulatable binding algorithm for the sum query auditing prob-

lem above that runs in polynomial time w.r.t. n, T .

I provide Algorithm 3.2 based on the following two tests:

Test 1: Given a set of sum queries q1, q2, . . . , qT−1 and their corresponding answers

a1, a2, . . . , aT−1, a set of constraints C = {ci,l ≤ xi ≤ ci,r, (1 ≤ i ≤ n)}, and a new query

qT , a real value r ∈ R satisfies Test 1 if: there exists x ∈ Rn such that x satisfies C and

x is consistent with the set of sum queries q1, q2, . . . , qT and their corresponding answers

a1, a2, . . . , aT , where aT = r.

Test 2: Given a set of sum queries q1, q2, . . . , qT−1 and their corresponding answers

a1, a2, . . . , aT−1, a set of constraints C = {ci,l ≤ xi ≤ ci,r, (1 ≤ i ≤ n)}, and a new query qT ,

a real value r ∈ R satisfies Test 2 if each of the values r − 1, r, r + 1 satisfies Test 1, given

the same setting.

As I have mentioned in the introduction, the problem of deciding whether a variable

25

can be determined by a sequence of answered sum queries under the condition that there is

no constraint on the database state, has been solved in [14]. For the sake of simplicity, in

Algorithm 3.2, I adopt the process proposed in [14] when checking the same problem. On

the other hand, when constraints exist, any simulatable auditing algorithm that guarantees

the safety of the entire database will never answer a single query.

In Algorithm 3.2, I apply this chapter simulatable binding model using the following

way to select a safe binding: I bind the set of possible database states that is consistent with

an “unsafe” answer r′, i.e., it does not satisfy Test 2, with another set of possible database

states that is consistent with a “safe” answer r′ + 1 or r′ − 1, i.e., it does satisfy Test 2.

Note that when r′ is an “unsafe” answer, at most one of r′ + 1 or r′− 1 could possibly be a

“safe” answer. Similar to Algorithm 3.1, I need to log the returned answer of qT as r′+1 or

r′−1 (corresponding to r in Algorithm 3.2) while the actually returned answer is “denied.”

The logged answer is used to define a new X ′ representing the knowledge contained in the

denial for future auditing. That is, in order to guarantee the safety of the binding, in future

auditing, the answers have to be consistent not only with q1, q2, . . . , qT−1 and their answers,

but also with qT and its answer as logged.

Also, it is clear that this selection applies the second kind of strategy to select a safe

binding as I have discussed in the previous section. And I have that:

Lemma 2. Algorithm 3.2 is a simulatable binding.

Proof Sketch: Clearly, the selection of binding in Algorithm 3.2 is based only on

q1, . . . , qT and a1, . . . , aT−1. It suffices to prove the binding in Algorithm 3.2 is a safe

binding. As shown in Algorithm 3.2, in the deny set η(Asb,X ,qT), where X is defined by

q1, q2, . . . , qT−1 and their corresponding answer a1, a2, . . . , aT−1, there always exist two set

of database states and a real value r′′ such that (1) one set of database states is consistent

with X , qT and its corresponding answer r′′ and (2) the other set of database states is

consistent with X , qT and its corresponding answer r′′+1. In each set, because the database

privacy has not been breached before qT is posed, regardless to qT and its answer, none

26

Algorithm 3.2: SUM simulatable binding
Use [14] to decide qT without considering C:

If [14] denies qT then return “denied”;
Let r be the true answer for qT computed from x;
If r satisfies Test 2 do

If both r − 1 and r + 1 satisfy Test 2, do
Let aT = r, return aT ;

Else do
Record the answer for qT as r (*);
Return “denied”;

Else do
If ∃r′, r′ = r − 1 ∨ r′ = r + 1, such that r′ satisfies Test 2, do

Record the answer for qT as r′ (*);
Return “denied”;

Else do
Return “denied”;

*: This record serves only for future auditing.

Figure 3.7: Algorithm 3.2

of xi can be determined within an interval of 1. Thus, for any i, there always exist two

possible database states, x′ = (x′1, x
′
2, . . . , x

′
n) and x′′ = (x′′1, x

′′
2, . . . , x

′′
n), in the two sets

above, respectively, such that |x′′i − x′i| = 1.

The complexity of Algorithm 3.2 depends on Test 1, which is a linear programming

problem, and the process I adopt from [14]. Both of them have been proved to be polynomial

w.r.t. n, T .

3.4 Experiments

I conducted experiments to show the better performance of the above two algorithms than

that of algorithms based on the simulatable auditing model.

For MAX query, Algorithm 3.1: The size of the database, n, is selected from 1000

to 2000. Each variable, as an integer, is randomly selected from [1..n] with uniform dis-

tribution. The sequence of queries q1, q2, . . . is also randomly selected from all possible

max queries such that the corresponding set |Qi| ≤ n
10 . In Figure 3.8, I show the large

performance improvement of Algorithm 3.1, compared to the reference algorithm based on

27

the simulatable auditing model in an average of 50 tests (performance of the unsafe Asimple

is also listed as reference). In Figure 3.8,

• Plot (A) shows the number of answered queries before the first denial.

• Plot (B) shows the number of answered queries for total 200 posed queries.

• Plot (C) shows the number of answered queries when different number of queries are

posed (from 50 to 250), in a data set with the fixed size 1000.

Figure 3.8: Performance of Algorithm 3.1 (Max Query Auditing)

In the above experiments, more than 50% sacrificed data utility (unnecessarily denied

queries) by the algorithm based on the simulatable auditing model is regained by Algo-

rithm 3.1 based on the simulatable binding model.

For SUM query, Algorithm 3.2: The size of the database, n, is selected from 1000 to

2000. Each real number variable is randomly selected from [0, 10] with uniform distribu-

tion. The database constraint is a set {0 ≤ xi ≤ 10, (1 ≤ i ≤ n)}. The sequence of queries

q1, q2, . . . , qn−1 is randomly selected from all possible sum queries such that all these n− 1

queries are independent and can be answered by the algorithm in [14], without considering

the existence of the constraints.

In this case, because an algorithm based on the simulatable auditing model cannot

even answer a single query, Figure 3.9 shows that the number of answered queries by

Algorithm 3.2 based on the simulatable binding model, is very close to the upper bound

28

determined by the original Asimple, which is safe in no-constraint cases, but not safe in this

case.

One may argue that I should compare Algorithm 3.2 with the algorithm proposed in

[19], based on their compromised privacy definition: (λ, δ, α, T)-Private. However, I claim

that:

(1) The utilities of all these algorithms are bound by the utility provided by the unsafe

Asimple.

(2) More importantly, the algorithm based on the aforementioned probabilistic private

definition, is not a safe algorithm. It is not able to guarantee the safety of all the

possible database states, and therefore not comparable to the safe algorithm with

data utility.

Figure 3.9: Performance of Algorithm 3.2 (Sum Query Auditing)

3.5 Summary

I address the fundamental issue in an online auditing problem that the decision on how

to reply to a posed query may leak information about the true database state. The newly

proposed simulatable auditing model can get around the problem, but does have a huge data

utility loss when applied. I suggest that it would be much better to control this information

leakage instead of totally denying it.

I propose a new model, called simulatable binding, which controls the information leakage

and is proved to provide a not only sufficient but also necessary condition to guarantee the

database privacy. Two practical simulatable binding algorithms are also given for max

29

query and sum query, respectively. Related experimental results are provided to show the

regaining, by the proposed algorithms, of great and unnecessary utility loss by previous

models. As future work, I believe that the simulatable binding model can be applied to

many other online auditing problems, including more sophisticated queries, than those I

have discussed in this chapter.

30

Chapter 4: Securing the Micro-Data Disclosure Process

4.1 Introduction

The problem of information disclosure has drawn much attention in recent years. To support

sharing information on a large scale, we need to ensure privacy while providing as much

data utility to users as possible. Typically, privacy requirements are expressed by a formal

safety condition. For example, the property l-diversity (e.g., [40]) is used to ensure privacy

in the micro-data disclosure.

There has been much work on maximizing data utility subject to the satisfaction of

a safety property. A typical approach is to enumerate a sequence of data generalizations

T = (T1, T2, . . . , Tn) in a non-increasing order of data utility. The first data generalization

Ti in the sequence that satisfies the desired safety property is disclosed. Because the first

such generalization is disclosed, intuitively, maximal data utility is achieved, while the

safety property is satisfied at the same time. This enumeration approach is used in many

algorithms for microdata disclosure, including [36–38,40].

Unfortunately, this approach does not take into account the fact that users may know

not only the disclosed data and the safety property it satisfies, but also the disclosure

algorithm used to produce the disclosed data. In conjunction with this knowledge, I claim

that the adversary can “break” the safety property.

To illustrate the problem, consider an example of microdata disclosure in Table 4.1

which contains medical records of six patients. The first three columns of the table are

assumed to be public knowledge. To protect patient privacy, suppose that we do not wish

that a condition of any patient can be determined from the disclosed data and the public

knowledge. Certainly, removing all the information of the Name attribute is not enough.

If the attributes Age, Sex and Condition are released, the patient who has a particular

31

Table 4.1: A Patient Table
Name Age Sex Condition
Alan Old M Heart Disease
Bob Old M Viral Infection
Clark Middle M Cancer
Diana Middle F Cancer
Ellen Young F Flu
Fen Young F Ulcer

Age Sex Cond
O M HD
O M VI
M M Ca
M F Ca
Y F Fl
Y F Ul

(a)

Age Sex Cond
O ∗ VI
O ∗ HD
M ∗ Ca
M ∗ Ca
Y ∗ Fl
Y ∗ Ul

(b)
Age Sex Cond
∗ M Ca
∗ M VI
∗ M HD
∗ F Fl
∗ F Ul
∗ F Ca

(c)

Age Sex Cond
∗ ∗ VI
∗ ∗ Ca
∗ ∗ HD
∗ ∗ Fl
∗ ∗ Ul
∗ ∗ Ca

(d)

Figure 4.1: Sequence of Disclosure Tables

condition can be still determined from the attributes Sex and Condition, which are so-

called quasi-identifiers [31]. For example, from the fact that there is only one patient who

is Middle Age and also Male, Clark’s medical condition can be determined.

Assume that we would like to release the patient table over (possibly generalized) quasi-

identifier and the sensitive attribute Condition, and guarantee the safety property of en-

tropy 2-diversity [40], which in this case means, intuitively, that each patient has at least

two equally likely choices of sensitive attribute values. Assume also that we traverse the

generalization lattice1 for the quasi-identifiers in this order: (Age, Sex), (Age, ∗), (∗, Sex)

and (∗, ∗), in which case we generate corresponding disclosure tables, as shown in Figure
1A generalization lattice consists of all the possible generalizations of quasi-identifiers and a partial order

defined by the generalization function.

32

4.1.

The first table in the sequence that satisfies Entropy 2-diversity is table (c). (In fact,

table (c) even satisfies entropy 3-diversity, more than the required 2-diversity.) Therefore,

a standard algorithm will disclose table (c). However, with the knowledge of the selection

algorithm and the generalization sequence, an adversary can infer that both Clark and

Diana have Cancer from the disclosed table, which is a violation of their privacy.

Indeed, an adversary can reason as follows: From the public knowledge, the adversary

knows that Alan and Bob are of old age, Clark and Diana are of middle age, and Ellen and

Fen are of young age. Furthermore, the adversary knows that the generalization (Age, *),

(corresponding to table (b)) was not selected because it does not satisfy entropy 2-diversity.

Therefore, at least one pair (Alan and Bob), (Clark and Diana), or (Ellen and Fen) must

have the same condition. Finally, from the disclosed table (c), the adversary knows that

the first 3 rows correspond to Alan, Bob and Clark (who are males), and the last 3 rows

correspond to Diana, Ellen and Fen (who are females). Therefore, Alan and Bob cannot

have the same condition, nor can Ellen and Fen. The only remaining possibility is that

Clark and Diana have the same condition. Since Clark and Diana belong to two separate

groups in table (c), the only common condition they may have is Cancer. This violates

their privacy (i.e., entropy 2-diversity).

The above example illustrates that the traditional method of selecting the first gen-

eralization in the sequence that satisfies the safety property cannot guarantee this safety

property when an adversary knows the disclosure algorithm and the generalization sequence.

I believe that it is unrealistic to assume otherwise in most cases. This situation is similar

in the cryptography area where encryption algorithms are typically assumed to be known

by the adversary.

This chapter is concerned with the problem of maximizing data utility subject to satis-

faction of a safety property. To the best of my knowledge, this is the first time a model and

algorithms that guarantee safety, under the more realistic assumption that the adversary

knows the disclosure algorithm and the generalization sequence, have been proposed.

33

More specifically, the contributions of this chapter are as follows. First, I model dis-

closed information under the assumption that the adversary has knowledge of what I call

a deterministic disclosure function (DDF), which is a formal notion of a function defined

by a disclosure algorithm. This is done by introducing a formal definition of a disclosure

set. Intuitively, all the adversary can infer from the disclosed data and the knowledge of

the DDF is that a true database state is one of the database states in the disclosure set.

Second, given a safety predicate p, I define the notion of p-safety for a DDF. Intuitively, it

means that for any true database state, the DDF returns an answer, such that the disclosure

set inferred by the adversary (not just the disclosed answer!) satisfies the safety predicate

p. I also define the notion of p-optimality for a DDF. Intuitively, it means that, in addition

to p-safety, there does not exist a locally better DDF, in terms of data utility, that is also

p-safe.

Third I prove that p-optimal DDF is computable, although the problem of deciding

whether a DDF is p-optimal is NP-hard. I then introduce two specific conditions under

each of which I prove that the problem of whether a DDF is p-optimal is P-time in the

size of the set of all possible database states and the size of the generalization sequence. I

do this by developing polynomial algorithms to compute a p-optimal DDF. Note, however,

that the size of all possible database states may be exponential, in the worst case, in the

size of a single database state. Clearly, computing p-optimal DDFs in such a general setting

would not be practical beyond a restricted number of considered database states.

Fourth, I turn to developing a disclosure algorithm for a specific setting of microdata

disclosure. For this case, the locally better relation on DDFs in terms of data utility is

provided by a sequence of quasi-identifier generalizations. I develop a p-safe algorithm that

is weakly p-optimal, defined formally in this chapter, and polynomial in the size of the

original table and the generalization lattice.

34

22040
(a)

22030
22031
22040
(b)

22030
22031
22040
23000
24000
(c)

Figure 4.2: Instance Sets for Example 1

4.2 Modeling the Problem

I denote by x the true database state. As an example, x could hold a single value, a vector of

values, or a relational database instance. Given a database type, I denote by D the domain

of x; i.e., the set of all possible database states. Furthermore, I denote by D a sub-domain

of D which is the set of states in D that satisfy given database constraints.

Consider the following Example 1: Let the true database state x = 22040, i.e., it consists

of a single ZIP code. The domain D is the set of all 5-digit integers. Assume D ={22030,

22031, 22040, 23000, 24000} is a sub-domain that represents the database constraint that

each ZIP code must belong to D.

When we do not want to disclose the true database state x, the system can instead

provide the user with a set s of database states that contains x. To formalize this, I next

introduce the notion of a disclosure schema, which defines, for a given true database state

x, the set s to be returned to the user.

Definition 5. A disclosure schema T over D is a partition of D; i.e., T = {s1, s2, . . . , snT },

where
⋃nT

i=1 si = D and si ∩ sj = φ ∀1 ≤ i < j ≤ n.

Intuitively, given a true database state x and a disclosure schema T , the “returned”

partial information will be a set s such that x ∈ s ∧ s ∈ T .

In Example 1: consider a possible disclosure schema Ti, 1 ≤ i ≤ 6, that partitions the

sets of all 5-digit zip codes into subsets such that each subset has zip codes that have the

same first 6− i digits. Intuitively, the disclosure schema Ti discloses the first 6− i digits of

the true database state x.

35

Many possible disclosure schemas can be used to disclose partial information on the

true database state to preserve privacy. However, it is important to provide maximal data

utility, i.e., disclose as much (”precise”) information on the true database state as possible.

For simplicity, I assume that we are provided with a candidate disclosure schema se-

quence T = (T1, T2, . . . , Tn), Ti = {si
1, s

i
2, . . . , s

i
ni
}, 1 ≤ i ≤ n where T1, . . . , Tn are disclosure

schemas, which appear in nonincreasing order of data utility. I always assume that the last

disclosure schema Tn is {D}. Here D is the only element of Tn, which, beyond what the

user knows from the database constraints, gives the system the choice to disclose nothing,

and thus always be able to satisfy the required safety property.

To represent the nonincreasing order of data utility in the candidate disclosure schema

sequence T , I write Ti < Tj to denote that Ti appears earlier than Tj in T (i.e., i < j).

Also, by a slight abuse of notation, I will sometimes refer to T as a set of all elements in

the sequence T . Given a specific problem, I call the correlated triple (D,D, T) the problem

setting.

In Example 1: one possible candidate schema sequence is T = (T1, T2, . . . , T6) where

the disclosure schema Ti, 1 ≤ i ≤ 6, discloses the first 6− i digits of the true database state

x.

Given a specific disclosure schema Ti and the assumption that the user already has the

knowledge that x ∈ D, the following definition formalizes the notion of a set of database

states that is actually returned.

Definition 6. Given a database with a domain D, a sub-domain D, and a candidate dis-

closure schema T = (T1, T2, . . . , Tn) over D, an instance set function t of a true database

state x is a mapping t : T ×D → 2D defined by:

t(Ti, x) = D ∩ si
j

such that si
j ∈ Ti and x ∈ si

j. I call t(Ti, x) an instance set.

For Example 1: given the true database state x = 22040 and the candidate schema

36

Input: D,D, T , x;
Var:

i:Integer;
Begin

For i = 0 to n− 1 Do
If |t(Tk, x)| > 1

Return Tk;
End If

End For
Return Tn;

End

Figure 4.3: Algorithm 4.1

Table 4.2: The DDF A1

d ∈ D A1(d)
22030 T2

22031 T2

22040 T3

23000 T5

24000 T5

sequence T = (T1, T2, . . . , T6) such that Ti discloses the first 6 − i digits of the true

database state x, the schema T1 and T2, T3 and T4, and T5 and T6 generate the instance

sets shown in Figures 4.2(a), 4.2(b), and 4.2(c), respectively.

Intuitively, given a problem setting (D,D, T) and a true database state x in D, an

algorithm of data disclosure will output one disclosure schema in T . Such an algorithm

defines a deterministic disclosure function (DDF).

Definition 7. A deterministic disclosure function (DDF) A over T is a mapping A : D →
T .

For Example 1: consider a variant of the “traditional” disclosure algorithm given in

Figure 4.3. Algorithm 4.1 defines a DDF A1 shown in Table 4.2. For example, if the true

database state is x = 22040, Algorithm 4.1 will return T3.

Intuitively, the schema T3 carries the information that the first three digits of x is 220.

Note that the instance set function t gives an instance set associated with a database

state x. In Example 1, the instance set associated with x = 22040 is t(T3, 22040) =

37

{22030, 22031, 22040}.
If an adversary did not know the algorithm and the disclosure schema sequence it uses,

the information in the instance set would be all the adversary could infer from the dis-

closed data. The knowledge of the algorithm, however, provides an adversary additional

information that can be used to further restrict the set of choices in the instance set. More

specifically, a DDF A over T returns Ti as output, i.e., A(x) = Ti, the adversary will know

that the true database state x must be in A−1(Ti). This consideration gives rise to the

notion of the disclosure set.

Definition 8. The disclosure set DS of a database state x by a DDF A is a function

DS : A×D → 2D, where A denotes the set of all DDFs over T , defined by:

DS(A, x) = t(A(x), x) ∩A−1(A(x))

Intuitively, the disclosure set DS(A, x) is all the adversary can infer about the true

database state. That is, adversary knows that (1) x ∈ DS(A, x) and (2) DS(A, x) is the

minimal set that satisfies (1) (i.e., the adversary cannot infer that x is in any proper subset

of DS(A, x)).

For Example 1: as described earlier, the adversary already knows that x ∈ {22030, 22031,

22040}. Moreover, because T3 is returned, he or she also knows that x ∈ A−1
1 (T3) = {22040}.

Thus the adversary can conclude that x is in {22030, 22031, 22040} ∩ {22040} = {22040}.
Thus, the adversary can precisely determine the true database state x. Note that the

intersection above is exactly the disclosure set DS(A1, x):

DS(A1, 22040) = t(T3, 22040) ∩A−1
1 (T3) = {22040}

I assume that there is a safety predicate p : 2D → {true, false}. Intuitively, to satisfy a

safety property in the information disclosure problem means to satisfy the predicate p on

the disclosure set of a database state x.

38

In Example 1, the safety predicate p(D′) = true if |D′| > 1. For this p, if a set satisfies

the safety predicate, so does any superset. In this case, I say that the safety predicate p is

set-monotonic:

Definition 9. A safety predicate p is said to be set-monotonic if

∀D′ ⊆ D′′, p(D′) =⇒ p(D′′)

Not all safety properties are set-monotonic. For example, as I discuss later in Section 4.4,

the entropy l-diversity property is not.

Definition 10. Given a problem setting (D,D, T) and a safety predicate p, a DDF A is

said to be p-safe if

∀x ∈ D, p(DS(A, x)) = true

A deterministic algorithm is said to be p-safe if the DDF it defines is p-safe.

Note that algorithm 4.1, which is a representative of traditional disclosure algorithms,

is not p-safe for P (D′) : |D′| > 1. This is exactly the problem I intuitively described in the

patient information example in Section 4.1.

Since we are interested in maximizing data utility, we would like to choose a disclosure

schema that appears as early as possible in the candidate schema sequence.

Definition 11. Given two DDFs A and A′, I say that A′ is locally better than A, denoted

as A′ ≺ A, if:

∀x ∈ D, (A′(x) < A(x) ∨A′(x) = A(x))

and ∃x ∈ D,A′(x) < A(x)

Definition 12. Given a problem setting (D,D, T), a DDF A is said to be p-optimal if:

A is p-safe, and

∀A′ ≺ A, A′ is not p-safe

39

A deterministic algorithm is said to be p-optimal if the DDF it defines is p-optimal.

In the following section, I study the problem of finding a p-optimal DDF in terms of its

computability and complexity.

4.3 Computing p-optimal DDFs

For a given problem setting (D,D, T) and a safety predicate p, I assume that p(D) = true.

Note that if p(D) were not true, the safety predicate p would not be satisfied even if nothing

is disclosed. Since the last disclosure schema Tn ∈ T is {D}, the DDF that returns Tn for

every input x is p-safe.

Theorem 8. Given a problem setting (D,D, T), and a safety predicate p such that p(D) =

true, a p-optimal DDF exists and is computable.

Proof. To see this, note that the restricted sub-domain D of database states is finite. There-

fore, there are only finitely many DDFs, and hence only finitely many p-safe DDFs. Fur-

thermore, as observed earlier, at least one p-safe DDF exists. To compute a p-optimal

DDF, enumerate the set of all DDFs, then create the set of all p-safe DDFs by testing the

p-safety of each DDF. Then, complete the locally better partial ordering on the set of p-safe

DDFs into a total ordering. Finally, return the first DDF in the total ordering, which is

guaranteed to be p-optimal.

Clearly, the naive algorithm in Theorem 8 is exponential in the size of D, which, in turn,

is exponential in the size of a single database state. Moreover,

Theorem 9. The following decision problem, referred to as the p-optimality problem, is

NP-Hard: given a problem setting (D,D, T), a safety predicate p such that p(D) = true,

determine whether a given DDF is p-optimal.

Proof. I use the following decision problem, known to be NP-complete, referred to as the

Partition Decision Problem: given a set of numbers N = {d1, d2, . . . , dm}, to decide whether

40

there exists a set N1 ⊂ N that:
∑

d∈N1

d =
∑

d/∈N1

d

is NP-Complete.

Given a Partition Decision Problem instance I reduce it to the p-optimality problem by

constructing, in polynomial time, the following problem instance:

• Construct D = D = N ;

• Construct T = (T1, T2)(m = 2), where:

– T1 = {{d1}, D \ {d1}};

– T2 = {D};

• Compute λ =
∑

d∈D;

• Construct p such that p(D′) is true if
∑

d∈D′ d ≥ λ/2

• Define a DDF A as one that returns T2 for every d ∈ D

• The problem is to determine whether A is p-optimal.

It is easy to see that the answer to the input Partition Decision Problem is “yes” if the

answer to the constructed p-optimality problem is “no.” It is also clear that the construction

of the p-optimality problem takes polynomial time.

While the general p-optimality problem is NP-hard, it turns out the complexity can

be improved under certain assumptions on the safety predicate and the candidate schema

sequence. I have defined the set-monotonic safety predicate in Section 2. Here is a similar

property of the candidate schema sequence.

Definition 13. I say that a candidate schema sequence T is set-monotonic if ∀x ∈ D, ∀1 ≤
i < j ≤ n, t(Ti, x) ⊆ t(Tj , x).

41

Note that in the proof of NP-Hardness, I reduce the Partition Decision Problem into a

p-optimal Decision problem that has a set-monotonic safety predicate and a set-monotonic

candidate schema sequence. These two properties by themselves do not reduce the com-

plexity of the problem much. Instead, they provide a starting point to simpler situations.

4.3.1 Backward Traversal Algorithm

First, I try an approach that traverses the candidate schema sequence backward, i.e., start-

ing with the last Tn with the least data utility (nothing is disclosed) in the order of non-

increasing data utility. Suppose both the candidate schema and the safety predicate are

set-monotonic. Intuitively, the source of difficulty is in the computation that splits the set

D into two sets such that both satisfy the safety predicate p.

Definition 14. A safety predicate p is said to be easy-split if for any set D and D′ such that

p(D) = true, the following two computations can be done in polynomial time with respect

to |D|:

• Whether there exists D′′ ⊆ D′ ∩D that p(D′′) = p(D \D′′) = true;

• Generate a set D∗ ⊆ D ∩D′, called at-large-split of (D,D′), where:

(1) p(D∗) = p(D \D∗) = true;

(2) ∀D′′ ⊆ D ∩D′, D∗ \D′′, (1) does not hold.

Note that the instance of the p-optimality problem constructed in the NP-hardness

proof provides an example of p that is set-monotonic, but not easy-split. Thus, being

set-monotonic does not imply being easy-split.

Also, being easy-split does not imply being set-monotonic, as the following example

demonstrates. Let p(D) be true for a finite set D of integers if
∑

d∈D d mod 3 = 0. Clearly,

p is easy-split but not set-monotonic.

Under the assumption that a safety predicate p is easy-split and both p and T are set-

monotonic, Algorithm 4.2 in Figure 4.4 computes a p-optimal DDF in polynomial time.

42

01.Input: T ,D,p,n;
02.Output: t; //output DDF, represented by an array on D
03.Var: D′,D′′,D∗; //subset of D
04.Begin
05. t[D] ← Tn;
06. D′′ ← φ;
07. For i = n− 1 to 1 Step −1 do
08. D′ ← D \D′′;
09. For j = 1 to ni do
10. Compute at-large-split D∗ of (D′, si

j);
11. t[D∗] ← Ti;
12. D′ ← D′ \D∗;
13. End For
14. D′′ ← D′′ ∪D′;
15. End For
16. Return t[D];
17.End

Figure 4.4: Algorithm 4.2

Table 4.3: The DDF A′1
d ∈ D A′1(d)
22030 T3

22031 T3

22040 T3

23000 T5

24000 T5

Theorem 10. For a problem setting (D,D, T) and a safety predicate p such that both T
and p are set-monotonic and p is easy-split, Algorithm 4.2 returns a p-optimal DDF in

polynomial time in |D| = m and |T | = n.

This theorem follows from the algorithm. Table 4.3 shows the DDF A′ computed by

Algorithm 4.2 when applied to the problem setting of the previous Example 1, which I

discussed in Section 2. Note that in Example 1 the candidate schema sequence T is set-

monotonic, and the safety predicate p(D′) = (|D′| > 1) is set-monotonic and easy-split.

Note that, A′1 binds the output disclosure schema of 22030 and 22031 with 22040 and

therefore protects 22040 from being disclosed. This is not the case for the DDF A1 in

43

Figure 4.5: A none Tn-safe example

Table 2 (Section 2) computed by a “traditional” disclosure algorithm.

4.3.2 Forward Traversal Algorithms

Note that, in many cases the assumption that T is set-monotonic is not satisfied. Unfor-

tunately, Algorithm 4.2, which is based on backward traversal of T , would not necessarily

compute a p-optimal DDF if we relax this assumption on T . I now develop another al-

gorithm, which is based on forward traversal of T and for which we are able to relax the

assumption on T .

It is easier to check the p-safety property under the assumption that p is set-monotonic,

when T is forward traversed. However, as the following example shows, if a disclosure

algorithm does only one forward traversal of T , we cannot always guarantee p-safety.

Figure 4.5 gives an example of this situation. Assume that the safety predicate p is

true for D′ if |D′| ≥ 2. The diagram describes a DDF A based on the one-time forward

traversal. The leftmost column indicates that for the database state d1, the DDF returns Tn

(indicated with a solid circle). Similarly, the DDF returns Ti for d2, d3, and d4. Clearly, the

disclosure set DS(A, d1) = {d1} violates the safety predicate p. Therefore, DDF A is not

p-safe. Interestingly, in the case of database state d1, no information is explicitly returned

to the user. Yet, the adversary can still infer that the true database state is d1 from just

the knowledge of the algorithm.

44

To deal with this, I can modify the DDF as follows. I select a subset D′ = {d2, d3, d4}
of D, take the subset D′′ = D′ ∪ {d1}, and then split them into two sets (D′, D′′) using

the notion of at-large-split, where D′′ = {d3, d4}, D′ = {d1, d2}. For d3, d4, the new DDF

will return D′′ the same as the original DDF. For d1, d2, the new DDF will return Ti+1,

which is the earliest disclosure schema in which both d1 and d2 are in the same partition.

Algorithm 4.3 given in Figure 4.6 follows this intuition.

Theorem 11. Given a problem setting (D,D, T), a safety predicate p that is p set-monotonic

and easy-split, Algorithm 4.3 returns a p-optimal DDF in polynomial time in |D| = m and

|T | = n.

sketch. From the algorithm, observe that ∀d ∈ D:

∃D′ ⊆ D, p(D′) ∧ d ∈ D′ ∧ (∃Ti, s
i
j ∈ Ti, t[d] = Ti ∧D′ ⊆ si

j)

Also, because p is set-monotonic, we have

∀d ∈ D, p(DS(t, d)) = true

Thus, t[D] is p-safe. For p-optimality, observe from Algorithm 4.3 the following property

for any t′[D] such that t′[D] ≺ t[D]: if t′[D] is p-safe, then the Algorithm 4.3 returns t′[D]

instead of t[D]. Therefore, t[D] is p-optimal.

Finally, it is easy to see from Algorithm 4.3 that its complexity is O(mn), which com-

pletes the proof.

To illustrate Algorithm 4.3, I use the previous Example 1 again. Note that this example

satisfies the conditions of Algorithm 4.3. The output DDF A′′1 is shown in Table 4.4.

Note that a p-optimal DDF is not unique. Both A′1 generated by Algorithm 4.2 and A′′1

generated by Algorithm 4.3 are p-optimal DDFs.

The situation illustrated in Figure 4.5 would not arise if the following property is satis-

fied, which can be used to further simplify Algorithm 4.3.

45

Table 4.4: The DDF A′′1
d ∈ D A′′1(d)
22030 T2

22031 T2

22040 T5

23000 T5

24000 T5

Definition 15. Given a problem setting (D,D, T), and a safety predicate p that is set-

monotonic, I say that p is Tn-safe, if the following condition holds: there exists D′ ⊆ D

such that

∀d′ ∈ D′,∀Ti ∈ T \ {Tn}, ∀si
j ∈ Ti,

d′ ∈ si
j ⇒ p(si

j) = false;

p(D′) = true.

I say that p is Tn-safe for T .

In other words, there exists a set D′ that satisfies p and such that any p-safe DDF

returns Tn for every element in D′.

The property of p being Tn-safe is used in Algorithm 4.4 (Figure 4.7), which simplifies

Algorithm 4.3.

Theorem 12. Given a problem setting (D,D, T) and a safety predicate p that is set-

monotonic and Tn-safe, Algorithm 4.4 returns a p-optimal DDF in polynomial time in

|D| = m and |T | = n.

This theorem follows directly from the previous theorem and the Tn-safety property.

Note that here I no longer require the easy-split property for p.

So far I have discussed several specified simple cases to avoid solving an NP-hard prob-

lem. Each of Algorithms 4.2, 4.3, and 4.4 computes a p-optimal DDF under certain as-

sumptions. Note that the property of p being set-monotonic is common in all three. This

property plays a central role in reducing complexity. The typical ”counting”-based safety

predicates would always satisfy the set-monotonic property.

46

4.3.3 Designing p-optimal Algorithms

By definition, a p-optimal algorithm defines a p-optimal DDF. When we talk about a p-

optimal algorithm, we are more concerned with efficiency. Note that the algorithms pre-

sented so far do not define a p-optimal DDF, but rather compute a p-optimal DDF. Whereas,

in practice we typically need an algorithm that defines a p-optimal DDF; i.e., an algorithm

that given a problem setting, safety predicate p, and a database state, returns a disclosure

schema Ti.

A naive p-optimal disclosure algorithm can first compute a p-optimal DDF, e.g., using

algorithms given in Section 3, and then use the output DDF data structure to return a

disclosure schema for an input database state x. Such a disclosure algorithm, however, will

have the complexity of the algorithm to compute p-optimal DDF. A more efficient p-optimal

algorithm can be based on the following steps, under the assumption that p is set-monotonic

and Tn-safe.

• Traverse T from T1 to Tn−1:

– If p(t(T1, x)) return T1;

– Otherwise, for every Ti, construct a set D′ ⊆ t(Ti, x) such that no database state

in D′ has output schema prior to Ti;

– if p(D′) then return Ti;

• return Tn (i.e., no prior Ti was returned for x)

Note that an algorithm following the above steps will define a p-optimal DDF under the

specified conditions. Also, it has better average complexity than that of the naive algorithm,

which is based on computing the entire p-optimal DDF. However, the worst case complexity

is still the same as that of the algorithm to compute a p-optimal DDF, which is polynomial

in the size of D and T .

In some cases the size of D may be relatively small, in which case even the naive

algorithm may be acceptable. However, in the worst case, for the general problem setting

47

I have considered, the size of D may be exponential in the size of a single database state.

I therefore conclude that a more domain-specific problem setting is necessary for better

complexity.

4.4 The Case of Micro-Data Disclosure

4.4.1 The Problem Setting (D,D, T)

In a microdata disclosure problem, we are given an original table that contains a set of

attributes ID (such as SSN or name), a set of attributes Q that are non-sensitive but

serve as quasi-identifiers, and a sensitive attribute S. The attributes ID or Q can be used to

identify an individual. (For simplicity of presentation, I assume that S is a single attribute.)

Under this setting, a database state x is the association between the ID and the sensitive

attribute S (i.e., the projection of the original table on ID and S).

Let N be the number of tuples in the original table. I denote as x = {x1, x2, . . . , xN}
where each i, 1 ≤ i ≤ N corresponds to an ID in the table. Let B = {b1, b2, . . . , bnB} be the

set of all possible values of the sensitive attribute. The domain D of all possible values of the

database state x could be denoted as BN and has the size of nN
B . The restricted sub-domain

D here is equal to D, D = {d1, d2, ...dnN
B
}. For every d in the restricted sub-domain D, I

use d(xi) to denote the sensitive value of xi given by d.

The quasi-identifiers contained in the original table are used to generalize the disclosure

table by grouping people and their sensitive attributes with the same generalized quasi-

identifiers. Given a particular generalization, regardless of how it is obtained, I can have a

partition on the set of all tuples in the original table, denoted by G : {x1, x2, . . . , xN} → N.

G takes one tuple as input and outputs a group number. For example, G(x1) = G(x2)

means that for the generalization G, x1 and x2 are in the same group. Every generalization

G determines a partition on the domain D, defined as follows:

T = {s|∀d1, d2 ∈ s,∀xi, d1(G−1(G(xi))) = d2(G−1(G(xi)))}

48

where d1(G−1(G(xi))) represents the bag of sensitive attributes of the set G−1(G(xi)).

Traditionally, we traverse a generalization lattice, in which each node is a generalization,

based on some utility function [45]. The sequence of traversed nodes defines a sequences of

disclosure schemas. The candidate schema sequence T is defined as follows:

• (T1, T2, . . . , Tn−1) is the sequence determined by the sequence of the generalizations;

• Tn, the last schema, which discloses nothing.

4.4.2 The Safety Predicate p

There are two important safety requirements used in the micro-data disclosure problem:

k-anonymity [46] and l-diversity [40]. Satisfaction of k-anonymity requires that the size

of any group determined by the chosen generalization is at least k. There are multiple

variants of the l-diversity property [40]. For example, entropy l-diversity means, that the

entropy of the bag of all the possible values of any xi is greater than log2l. This is under

the assumption of uniform probability distribution of values in the bag (i.e., every value has

the same probability to be the true value).

Suppose I have a disclosure set DS for a given x, Note that k-anonymity is not a property

of a disclosure set. The property of entropy l-diversity is equivalent to the following predicate

p on the disclosure set DS:

Mini(Eni(DS)) ≥ log2l

where Eni(DS) is the entropy of the bag of all possible sensitive values for xi under the

assumption of uniform probability distribution.

4.4.3 Disclosure Algorithm for Entropy l-Diversity

In Section 4.3, I have shown that the set-monotonic property of the safety predicate p serves

as a key condition to achieve a P-Time p-optimal algorithm in the size of D.

Unfortunately, the safety predicate p for entropy l-diversity is not set-monotonic. To

see this, consider the following example of entropy 2-diversity shown in Figure 4.8, in which

49

only sensitive attributes of the generalized groups are listed.

For T1, observe that the generalization group that corresponds to the bag {A,A} of

sensitive attributes violates entropy 2-diversity. For T2 consider the set D′ of all possible

database states that violate entropy 2-diversity at T1. Note that, for every element in D′,

either the values of the sensitive attribute in Tuple 1 and Tuple 2 are both A, or are both

B. However, the probability of being A is 3 times the probability of being B. Thus,

En1(D′) = En2(D′) ≈ 0.81 < log2 2

Therefore, D′ violates entropy 2-diversity. Now, consider the following set D′′ ⊂ D′:

D′′ = {(A, A,B, B, A, E, C, D), (B, B,A, A, C,D, A,E)}

D′′ contains only two elements. It is easy to observe that

∀1 ≤ i ≤ 8, Eni(D′′) = log22

Thus D′′ satisfies entropy 2-diversity and therefore T2 can be returned as output for every

d ∈ D′′, which shows that the safety predicate p for entropy l-diversity is not set-monotonic.

As a result, we may not be able achieve a P-time p-optimal disclosure algorithm for a

microdata disclosure problem and entropy l-diversity without having more specialized con-

ditions. Furthermore, even if the safety predicate p for entropy l-diversity is set-monotonic,

we still have the problem that the achieved p-safe disclosure algorithm is P-time in the size

of D, which is exponential in the worst case in the size of the original table.

In the following, I develop an algorithm that is (1) polynomial in the size of the orig-

inal table (not the size of |D|!), (2) p-safe, but only (3) weakly p-optimal. The notion of

conservative p-safety and weak p-optimality is formalized in the following definitions.

Definition 16. Given a problem setting (D,D, T), I say that a predicate q is a conservative

50

approximation of a safety predicate p if

∀D′ ⊆ D, q(D) ⇒ p(D′)

I say that a DDF A is conservatively p-safe w.r.t. a conservative approximation q if

∀x ∈ D, q(DS(A, x)) = true

I say that a disclosure algorithm is conservatively p-safe w.r.t. q if it defines a conservatively

p-safe DDF.

Definition 17. Given a problem setting (D,D, T), I say that a DDF A is weakly p-optimal

for a conservative approximation q of p if:

A is p-safe, and

∀A′ ≺ A, A′ is not conservative p-safe for q

I say that a disclosure algorithm is weakly p-optimal for a conservative approximation q of

p if the DDF it defines is weakly p-optimal for q.

For the problem setting of microdata disclosure, I define a conservative approximation

q of entropy l-diversity as follows:

Mini(Eni(DS)) ≥ log2l

and

Eni(DS) ≥ EnG(i)

where EnG(i) denotes the entropy of the bag of sensitive attribute values in the generalized

group which contains ID i. I will refer to this predicate as conservative l-diversity.

Algorithm 4.5 for microdata and entropy l-diversity is given in Figure 4.9. In it, the

term rs(g) denotes the rotation set of the generalized group g of the original table.

51

Given a sequence of sensitive values associated with IDs in a generalized group β =

(b1, b2, . . . , bk) (i.e., ID(1) to ID(k) are generalized to one group), the rotation set means

the following:

rs(β) = {β′|β′ = (bi, . . . , bk, b1, . . . , bi−1), (1 ≤ i ≤ k)}

Note that the rotation set rs(g) is the smallest set such that for any ID i that is generalized

in group g,

Eni(rs(g)) ≥ EnG(i)

In Algorithm 4.5, I modified the candidate schema sequence of the original problem

setting to a new sequence T ′ constructed as follows. First, we traverse the original sequence

up to the first node that satisfies l-anonymity. From that node, select an arbitrary path up

the generalization lattice to the root node.

Theorem 13. Given the modified problem setting (D,D, T ′), Algorithm 4.5 is weakly p-

optimal, where p is entropy l-diversity, w.r.t. to conservative l-diversity. Furthermore,

Algorithm 4.5 is polynomial time in the size of the original table and the size of the gener-

alization lattice.

sketch. When a generalized group is checked to satisfy entropy l-diversity, the rotation set

of any possible database state in this generalized group must also satisfy entropy l-diversity.

Since the entropy function is monotonic [40], any conjunction of such rotation sets must also

satisfy entropy l-diversity. Observe from Algorithm 4.5, that the predicate p is guaranteed,

and so Algorithm 4.5 is p-safe.

Now, Algorithm 4.5 returns a disclosure schema as early as possible for the rotation sets

of all possible database states. Thus, for any DDF A′ that is locally better than the DDF

defined by Algorithm 4.5, the property of weak entropy l-diversity can not be satisfied for

A′.

Finally, it is easy to see that Algorithm 4.5 is polynomial in the size of the original table

and the size of the generalization lattice.

52

Table 4.5: Patient Information 2
Name Marital Age Sex Condition
Alan M Old M Heart Disease
Bob M Old M Viral Infection
Clark M Middle M Cancer
Diana M Middle F Cancer
Ellen M Middle F Flu
Fen M Middle F Ulcer

Grace S Middle F Gastritis
Helen S Middle F Pneumonia
Ian S Young F Gastritis
Jolie S Young F Pneumonia

4.4.4 Application Example of Algorithm 4.5

I now apply Algorithm 4.5 to a patient information disclosure example similar to the one

discussed in Section 4.1. The original table is shown in Table 4.5.

In this example, we are about to generate a disclosure table that satisfies Entropy 2-

diversity. First, we traverse the generalization lattice to find the first node that satisfies

2-anonymity.

The generalization lattice of quasi-identifiers and its traversal is shown in Figure 4.10.

We find the first node (Marital, Age, ∗), for which the disclosure table satisfies 2-anonymity

as shown in Table 4.6.

I then select a new sequence T ′ = (T1, T2, T3, T4) where T1 represents (Marital, Age, ∗),
T2 represents (Marital, ∗, ∗), T3 represents (∗, ∗, ∗) and T4 represents that nothing is dis-

closed.

Note that at T1, which corresponds to the node (Marital, ∗, ∗), the rotation set of the

original table contains one possible database state, i.e., the table given in Table 4.7. This

table does not satisfy the entropy l-diversity.

As a result, we will generate the final disclosure table based on T2, which corresponds to

the generalization node (Marital, ∗, ∗) as shown in Table 4.8. This delayed output schema

indeed protects the database state shown in Table 4.7.

53

Table 4.6: Table for node (Marital, Age, *)
Marital Age Sex Condition

M O * Viral Infection
M O * Heart Disease
M M * Cancer
M M * Cancer
M M * Flu
M M * Ulcer
S M * Gastritis
S M * Pneumonia
S Y * Gastritis
S Y * Pneumonia

Table 4.7: Patient Information 2
Name Marital Age Sex Condition
Alan M Old M Cancer
Bob M Old M Cancer
Clark M Middle M Flu
Diana M Middle F Ulcer
Ellen M Middle F Viral Infection
Fen M Middle F Heart Disease

Grace S Middle F Gastritis
Helen S Middle F Pneumonia
Grace S Young F Gastritis
Helen S Young F Pneumonia

4.5 Summary

To the best of my knowledge, this is the first time that the problem of maximal data utility

while guaranteeing safety under the assumption that the adversary may know the disclosure

algorithm and sequence has been studied.

Many interesting research questions remain open. One research question is how to

extend the “local optimality” property used in this chapter to “global optimality.” This

includes finding good measures of data utility that would define total (rather than partial)

ordering on possible ways to disclose data. Another research direction is using probabilis-

tic, rather than deterministic disclosure algorithms, and the related extended notions of

safety. I conjecture that some of the complexity hurdles may be eliminated. For the case of

54

Table 4.8: Final Disclosure Table
Marital Age Sex Condition

M * * Cancer
M * * Viral Infection
M * * Heart Disease
M * * Ulcer
M * * Cancer
M * * Flu
S * * Pneumonia
S * * Gastritis
S * * Pneumonia
S * * Gastritis

microdata disclosure and l-diversity in particular, a question remains whether I can define

conditions less restrictive than the notions of conservative p-safety and weak optimality. Fi-

nally, extending my techniques to more general settings beyond the setting of generalization

sequences is an interesting question that may be applicable to statistical databases.

55

01.Input: T ,D,p,n;
02.Output: t; //output DDF, represented by an array on D
03.Var: D′,D∗,C; //subset of D
04. T ′; //element of T
05.Begin
06. t[D] ← Tn;
07. D′ ← D;
08. T ′ ← Tn;
09. C ← D;
10. For i = 1 to n do //iterate schemas
11. For j = 1 to ni do //iterate elements in a schema
12. If p(D′ ∩ si

j) 6= φ do
13. C ← D′ ∩ si

j ;
14. T ′ ← Ti;
15. t[C] ← Ti;
16. D′ ← D′ \ C;
17. End If
18. End For
19. End For
20. If D′ 6= φ do
21. If ∃ at-large-split D∗ of (D′ ∪ C, C)
22. For i = 1 to n do
23. For j = 1 to ni do
24. If D′ ∪ C \D∗ ⊆ si

j do
25. t[D′ ∪ C \D∗] ← Ti;
26. End If
27. End For
28. End For
29. Else
30. For i = 1 to n do
31. For j = 1 to ni do
32. If D′ ∪ C ⊆ si

j do
33. t[D′ ∪ C] ← Ti;
34. End If
35. End For
36. End For
37. End If
38. End If
39. Return t[D];
40.End.

Figure 4.6: Algorithm 4.3

56

01.Input: T ,D,p,n;
02.Output: t; //output DDF, represented by an array on D
03.Var: D′,D∗,C; //subset of D
04. T ′; //element of T
05.Begin
06. t[D] ← Tn;
07. D′ ← D;
08. T ′ ← Tn;
09. C ← D;
10. For i = 1 to n do
11. For j = 1 to ni do
12. If p(D′ ∩ si

j) do
13. C ← D′ ∩ si

j ;
14. T ′ ← Ti;
15. t[C] ← Ti;
16. D′ ← D′ \ C;
17. End If
18. End For
19. End For
20. Return t[D];
21.End.

Figure 4.7: Algorithm 4.4

A
A
C
A
B
D
B
E
T1

A
B
A
D
C
A
B
E
T2

. . .

Figure 4.8: An example of Entropy 2-diversity

57

01.Input: B; //a set of all sensitive attributes
02. G; //a generalization lattice
03. x; //a current database state
04. l; //the l of Entropy l-diversity
02.Output: T ; //the output disclosure schema for x
03.Var: D′,D∗,C; //subset of D
04. T ′; //element of T
05.Begin
06. Traverse G using the original sequence T to

find g1 ∈ G that satisfies l-anonymity;
07. Select a new sequence (g1, g2, . . . , gn′) from g

to the top point of G;
08. Let T ′ = (T1, T2, . . . , Tn)(n = n′ + 1) where

(T1, T2, . . . , Tn−1) represents schema sequence based on
(g1, g2, . . . , gn′) and Tn represents that nothing is disclosed

09. Traverse T ′ to find the first Ti such that t(Ti, x) satisfies entropy l-diversity;
10. If Ti = Tn Return Tn;
11. For every j from n down to i + 1;
12. If for every generalized group g in Tj , rs(g) does not satisfy Entropy

l-diversity on Tj−1

13. Return Tj ;
14. End For;
15. Return Ti;
16.End

Figure 4.9: Algorithm 4.5

(Marital, Age, Sex)

(Marital, Age, *)(Marital, *, Sex)(*, Age, Sex)

(*, Age, *) (Marital, *, *)(*, *, Sex)

 (*, *, *)

Disclose Nothing

Figure 4.10: Traversing the Generalization Lattice

58

Chapter 5: Efficient Micro-data Disclosure

5.1 Introduction

In this chapter I study the problem of how to design an efficient and safe heuristic disclosure

algorithm for micro-data disclosure with good performances. To start, we recall the linking

attack through the following example.

Table 5.1 gives an example of a table containing several patients’ medical information.

Suppose the relation between the individuals’ names, namely, the identity attribute and the

medical conditions, namely, the sensitive value attribute, is considered sensitive. Simply

hiding the identity (Name) is not sufficient. A tuple’s sensitive value (Condition) may still

be linked to a unique identity in external publicized tables (such as a Voter’s List) through

common attributes (ZIP, Gender, and DOB in this case), namely, quasi-identifiers. Such

an inference is usually called the linking attack [31]. That is, even if we remove the name

attribute from Table 5.1, the identities of patients and hence their medical conditions could

still be determined through the unique combination of ZIP, Gender, and DOB. 1

To prevent the linking attack, such a micro-data table should be further blurred through

generalization, that is, transforming a quasi-identifier into a less precise version (although

not considered in this chapter, suppression can also be applied to provide protection against

the linking attack [29]). Table 5.2 demonstrates how a micro-data table can be generalized

(note that we have simplified the above patient information table into the leftmost table

T0 where we assume each individual can be identified through her unique age). To provide

enough protection against the linking attack, table T0 needs to be generalized to satisfy
1Based on the analysis [47], 87% (216 million of 248 million) of the population in the United States had

reported characteristics that likely made them unique based only on 5-digit ZIP, gender, and date of birth.

59

Table 5.1: A Patient’s Medical Information Table
Name
Alice

Brenda
Clare
Diana
Ellen
Fen

ZIP Gender DOB Condition
22030 Female 1949/03/01 flu
22030 Female 1959/05/07 tracheitis
22030 Female 1969/12/01 cancer
22030 Female 1974/07/09 cancer
22030 Female 1975/08/11 pneumonia
22030 Female 1976/02/23 gastritis

the k-anonymity property [31], that is, each individual shares the same generalized quasi-

identifier value with at least k− 1 other individuals in the table. In Table 5.2, g1(T0) shows

a generalized table that satisfies 2-anonymity.

Table 5.2: A Micro-Data Table with Three Generalizations
Micro-Data Table T 0 Generalization g1(T 0)

Name
Alice

Brenda
Clare
Diana
Ellen
Fen

Age Condition
60 flu
50 tracheitis
40 cancer
35 cancer
34 pneumonia
33 gastritis

Age Range Condition
50∼60 flu

tracheitis
35∼40 cancer

cancer
33∼34 pneumonia

gastritis
Generalization g2(T 0) Generalization g3(T 0)

Age Range Condition
40∼60 flu

tracheitis
cancer

33∼35 cancer
pneumonia
gastritis

Age Range Condition
35∼60 flu

tracheitis
cancer
cancer

33∼34 pneumonia
gastritis

Nonetheless, k-anonymity by itself is not sufficient, since linking an identity to the second

group already reveals the condition of this individual to be cancer. This situation can be

avoided by requiring the generalized table to also satisfy the property l-diversity [40]. If

generalization g2(T 0) is released instead of g1(T 0), then any identity can only be linked to

a group of three conditions, among which each is equally likely to be that identity’s true

condition. In this case, g2(T0) satisfies the property of 3-diversity (and at the same time,

3-anonymity).

60

However, as discussed in the previous chapter, the above statement is true, only if we

assume the adversary will never know the fact that g1(T 0) is first considered (but not

disclosed) by the algorithm before g2(T 0) is disclosed. Otherwise, an adversary can deduce

that since g1(T 0) is not disclosed, the two identities in one of the three groups must both

have cancer. Moreover, it must be the second group, because neither the first group nor

the third one can be associated with two cancers based on g2(T 0). That is, both Clare and

Diana have cancer. As a result, the adversary gets to know that the real micro-data table

must be among the four possible guesses depicted in the upper tabular in Table 5.3, namely,

the disclosure set.

Table 5.3: Two Disclosure Sets
The Disclosure Set of g2(T 0) after Considering g1(T 0)

Name Age Condition
Alice 60 flu tracheitis flu tracheitis

Brenda 50 tracheitis flu tracheitis flu
Clare 40 cancer cancer cancer cancer
Diana 35 cancer cancer cancer cancer
Ellen 34 pneumonia pneumonia gastritis gastritis
Fen 33 gastritis gastritis pneumonia pneumonia

The Disclosure Set of g3(T 0) after Considering g1(T 0)
Name Age Condition
Alice 60 flu tracheitis cancer cancer

Brenda 50 tracheitis flu cancer cancer
Clare 40 cancer cancer flu tracheitis
Diana 35 cancer cancer tracheitis flu
Ellen 34 pneumonia pneumonia pneumonia pneumonia
Fen 33 gastritis gastritis gastritis gastritis

Condition
flu tracheitis cancer cancer

tracheitis flu cancer cancer
cancer cancer flu tracheitis
cancer cancer tracheitis flu

gastritis gastritis gastritis gastritis
pneumonia pneumonia pneumonia pneumonia

To an adversary who obtains the above knowledge, in addition to the disclosed gener-

alized table g2(T0), the four guesses in the upper tabular in Table 5.3 are equally likely

61

to be the real micro-data table. Therefore, on the basis of the first row, the adversary’s

knowledge about Alice’s condition can be modeled as a uniform distribution over (flu, tra-

cheitis), namely, the inherent distribution. On the other hand, an adversary who does

not know about the generalization algorithm will determine Alice’s condition based on the

generalization g2(T 0) only, which leads to another uniform distribution (1
3 , 1

3 , 1
3) over (flu,

tracheitis, cancer), namely, the apparent distribution.

In most security-related problems, we usually do not consider the applied algorithm as

a secret.2 Therefore, a viable solution to micro-data disclosure using a public algorithm

has to enforce privacy properties on the inherent distribution, instead of the apparent

distribution. Unfortunately, the computation of inherent distribution is expensive. In fact,

it is an NP-hard problem to maximize the data utility of public generalization algorithms

while satisfying l-diversity. On the other hand, consider the disclosure set of g3(T 0) after

g1(T 0) is considered but not disclosed, as shown in the lower tabular in Table 5.3 (note

g2(T 0) is not involved). Interestingly, here every identity’s inherent distribution coincides

with its apparent distribution.

A question now naturally arises, that is, can we design algorithms that always produce

generalizations whose inherent distribution coincides with apparent distribution? If the an-

swer is yes, then for such algorithms, which I shall call coincident generalization algorithms

from now on, I can simply enforce any distribution-based privacy property on the apparent

distribution, even though such algorithms are publicly known. In other words, a public

algorithm can be as efficient as any secret algorithms, if only it is coincident.

The main contribution of this chapter is two-fold. First, I propose the novel concept

of coincident generalization as an efficient solution to micro-data disclosure using public

algorithms. I derive necessary and sufficient conditions for any generalization algorithm to

be coincident in order to facilitate the design of such algorithms. Second, I instantiate the

concept by devising two classes of efficient generalization algorithms, pair-based generaliza-

tion algorithm and interleaved generalization algorithm, and prove them to be coincident.
2This is also called Kerckhoffs’ Principle ([48]).

62

The effectiveness of the proposed algorithms is independent of privacy properties, which

makes them applicable to a wide range of applications. My experiments show that those

algorithms lead to good data utility and performance as well.

The rest of the chapter is organized as follows. Section 5.2 formally defines coincident

generalization. Section 5.3 proposes a family of pair-based coincident generalization algo-

rithms. Section 5.4 proposes a family of interleaved coincident generalization algorithms. I

evaluate the proposed algorithms in Section 5.5 through experimental results. We discuss

other relevant issues in Section 5.6, and finally conclude the chapter in Section 5.7.

5.2 Coincident Generalization

Section 5.2.1 first discusses knowledge that the adversary can obtain through a public

generalization algorithm. Sections 5.2.2 and 5.2.3 then formalize the necessary concepts,

and Section 5.2.4 introduces coincident generalization.

5.2.1 Information Disclosure Through Public Generalization Algorithms

In Section 5.1, I have shown that the knowledge obtained from a public generalization

algorithm can help the adversary break the privacy protection provided by the typical

k-anonymity and l-diversity properties. Now I consider how to formally model such a

phenomenon. Typically, given a micro-data table instance as the input, a generalization

algorithm will select a particular generalization function among all candidate functions in

order to optimize data utility. For example, such a generalization function can be a cut

of the taxonomy tree formed by the hierarchy of quasi-identifiers [49]. In selecting the

optimal generalization function, a generalization algorithm will typically only look at quasi-

identifiers but not sensitive values (for example, the Incognito [38]). Note that generalization

algorithms that select generalization functions based on the sensitive values are still under

development and are not covered in this chapter.

Therefore, for any input micro-data tables that share the same quasi-identifier attributes,

63

a typical generalization algorithm will go through the same sequence of candidate general-

ization functions (for example, a series of cuts of the taxonomy tree). Under the worst-case

assumption that the generalization algorithm and the quasi-identifiers are both publicly

known, such sequences of candidate generalization functions will be also known to the ad-

versary. This knowledge enables the adversary, in combination with the final disclosed

result, to determine the sequence of generalization functions checked by the applied gener-

alization algorithms for any micro-data table.

Without loss of generality, I shall formalize the algorithms from the adversary’s percep-

tion. That is, a generalization algorithm can be represented by a sequence of generalization

functions to be checked in order, assuming the input micro-data table is given. For the rest

of this chapter, I will abuse the term “generalization algorithms” for both a typical gener-

alization algorithm when discussing the algorithm design, and a generalization algorithm

from the adversary’s perception when discussing its privacy protection.

5.2.2 Basic Model

I formalize the micro-data disclosure problem as follows (the notations are summarized in

Table 5.4):

• Given a micro-data table T0, an instance is any one-to-one relation T ⊆ I× S where I

and S are the set of identities and the multiset of sensitive values in T0, respectively

(for the sake of simplicity, I shall omit quasi-identifiers). As typically assumed, both

I and S are public knowledge as they will appear in any disclosed generalization when

suppression is not considered. Let T be the set of all possible instances.

• A generalization is a triple 〈P(I), P(S),R〉, where P(I) is a partition on I, P(S)

is a partition on S, and R ⊆ P(I) × P(S) is a one-to-one relation satisfying that

∀I ∈ P(I)∀S ∈ P(S), 〈I, S〉 ∈ R ⇒
| I |=| S |. That is, R relates each group of identities to a group of sensitive values of

equal cardinality. Let G be the set of all possible generalizations.

64

Table 5.4: Notation Table
T0, T A given micro-data table, an instance
I, S, T The set of identities, the multiset of sensitive values,

and the set of all possible instances
P(I), P(S) A partition on a multiset I, a partition on a multiset S

g(T) = 〈P(I), P(S),R〉 A generalization of T using generalization function g()
G = 〈g1g2 . . . gn, p〉 A generalization algorithm

λI The same order on I as it appears in T0

M (S) The set of all possible permutations on a multiset S

T (λI , λ) An instance formed by two sequences λI and λ

ds Disclosure set

• A generalization function g() : T→ G, satisfies that if g(T) = 〈P(I),P(S),R〉, then

for every 〈I, S〉 ∈ R there must always exist a one-to-one relation T ′ ⊆ I×S satisfying

T ′ ⊆ T .

• Given a micro-data table T0, an adversary’s view of an applied generalization algorithm

(or simply a generalization algorithm) G is a pair 〈g1g2 . . . gn, p〉, where g1g2 . . . gn is a

sequence of generalization functions and p is a privacy property. Taking any instance,

say, T 0 as the input, G will evaluate each generalization gi(T 0) for i = 1, 2, . . . , n in

the given order. G returns either the first result satisfying p, or φ (indicating nothing

can be disclosed) if G terminates without p being satisfied.

Table 5.5: An Example of the Notations

I g1(T 0) g2(T 0) S
P1(I) P1(S) P2(I) P2(S)

Alice
I1
1 S1

1 I2
1 S2

1

flu
Brenda tracheitis
Clare

I1
2 S1

2
cancer

Diana
I2
2 S2

2

cancer
Ellen

I1
3 S1

3
pneumonia

Fen gastritis

Example 1. Table 5.5 rephrases the generalizations g1(T 0) and g2(T 0) in Table 5.2 using

the above notations.

65

5.2.3 Disclosure Set and Distribution of Sensitive Values

As illustrated in Section 5.1, when generalization algorithms are publicly known, I need the

concept of disclosure set to model what a disclosed generalization may allow an adversary

to deduce about the secret micro-data table. Seeing the fact that a public generalization

algorithm G = 〈g1g2 . . . gn, p〉 returns a generalization gi(T 0) (1 ≤ i ≤ n) for some unknown

T 0, an adversary’s mental image is that any instance T ∈ T could have been T 0, unless

either gi(T) 6= gi(T0), or, gi(T) = gi(T0) but taking T as the input, G would have returned

gj(T) for some j < i.

Example 2. In the upper tabular of Table 5.3, when g2(T 0) is returned, any instance T

in which both Alice and Brenda have cancer does not appear in the disclosure set, because

g2(T) 6= g2(T0). On the other hand, any instance T in which both Brenda and Clare have

cancer does not appear either, because the algorithm would have returned g1(T) instead of

g2(T), even if g2(T) = g2(T0).

Recall that in Table 5.3, I have adopted the following simplified notation. Instead of

enumerating all instances in a disclosure set, I use different permutations on the sensitive

values to represent the corresponding instances by assuming an arbitrary but fixed order

on identities. More precisely, I need the following notations. Given a micro-data table T 0,

I use λI for the same fixed order on I as it appears in T0. I use M (S) for the multiset of

all possible permutations on any given multiset S ⊆ S. Given a sequence of sensitive values

λ of the same length as λI , I use T (λI , λ) to denote the one-to-one relation {〈ID, α〉 : ID

and α are the jth (1 ≤ j ≤| λ |) element of λI and λ, respectively }. Using these notations,

Definition 18 formalizes the concept of disclosure set.

Definition 18. (Disclosure Set) Given a micro-data table T 0, a public generalization

algorithm G, and a generalization g(T 0) returned by G with T 0 as the input, I call ds =

{λ : λ ∈ M (S), G returns g(T0) with T (λI , λ) as the input } the disclosure set.

In Section 5.1, I have also shown that knowledge about the generalization algorithm will

affect an adversary’s belief in terms of the distribution of sensitive values corresponding to

66

each identity. Without the knowledge of the applied generalization algorithm, such distri-

bution is simply based on the disclosed generalization itself. However, if the generalization

algorithm is known to the adversary, such distribution must be computed based on the

disclosure set. These concepts are formalized in Definition 19.

Definition 19. (Apparent Distribution and Inherent Distribution) Given a micro-

data table T0, a public generalization algorithm that returns g(T 0) = 〈P(I), P(S),R〉 with

T0 as the input, let ds be the disclosure set. For any 〈I, S〉 ∈ R and any ID ∈ I, I say

• the distribution of distinct elements in the multiset S is the apparent distribution of

ID, and

• the distribution of distinct elements in the multiset {α : 〈ID, α〉 ∈ T (λI , λ), λ ∈ ds}
is the inherent distribution of ID.

Example 3. Following Example 2, to calcuate Alice’s apparent distribution, we need the

generalization g2(T 0) shown in Table 5.2. To calculate Alice’s inherent distribution, we need

the disclosure set of g2(T 0) shown in upper tabular in Table 5.3.

5.2.4 Coincident Generalization

I now formulate the important concept of coincident generalization. As illustrated in Sec-

tion 5.1, the main idea is to design generalization algorithms in such a way that the inherent

distribution of every identity under every generalization function always coincides with the

corresponding apparent distribution. This concept is formalized in Definition 20.

Definition 20. (Coincident Generalization) A generalization algorithm G is coinci-

dent, if when G takes any T ∈ T as the input and returns a generalization, the apparent

distribution and inherent distribution of every ID ∈ I are always identical.

Example 4. Following Example 3, we know the generalization algorithm 〈g1g2, 2-diversity〉
is not coincident. On the other hand, from the discussion in Section 5.1, we know the

algorithm 〈g1g3, 2-diversity〉 is coincident.

67

Interestingly, there exists an equivalent, but more straightforward, definition for co-

incident generalization, as stated in Lemma 3. That is, the inherent distributions of all

identities within the same group are always identical. The proof of the lemma is based on a

simple fact, that is, when the apparent distribution and the inherent distribution are identi-

cal, the total number of occurrences of any sensitive value in the disclosure set must remain

the same, whether counted horizontally (by identities) or counted vertically (by sequences

in the disclosure set).

Lemma 3. Given any generalization algorithm G = 〈g1g2 . . . gn, p〉, the following two ar-

guments are equivalent:

(1) G is coincident;

(2) For any instance T 0, any gi(T 0) = 〈P(I),P(S),R〉 (1 ≤ i ≤ n) returned by G

with the input T0, any I ∈ P(I), and any ID1, ID2 ∈ I, the corresponding inherent

distribution of ID1 is always identical to that of ID2.

Proof: (1)⇒(2) is straightforward. Suppose 〈I, S〉 ∈ R, then the inherent distributions of

ID1 and ID2 are both identical to the same apparent distribution calculated based on S.

For (2)⇒(1), also assume 〈I, S〉 ∈ R, and let ds be the disclosure set. For any α ∈ S

and ID ∈ I, use num(ID, α) for the total number of occurrences of α corresponding to ID

among all sequences in ds, and use num′(α) for the total number of occurrences of α in S.

The following must be true:

num(ID, α)
| ds | =

| I | ×num(ID, α)
| I | × | ds | =

∑|I|
j=1 num(ID, α)
| I | × | ds | =

num′(α)× | ds |
| I | × | ds | =

num′(α)
| I |

¤

Example 5. In the lower tabular of Table 5.3, Alice, Brenda, Clare, and Diana all have

the same inherent distribution. In addition, each subsequence corresponding to these four

68

identities in the disclosure set also has the same distribution. The percentage of, say, flu

must thus remain the same, whether counted horizontally or vertically: 2
8 = 4×2

4×8 = 1×8
4×8 = 1

4 .

5.3 Pair-Based Coincident Generalization

Section 5.3.1 proposes a family of pair-based generalization algorithms and proves them to be

coincident. Section 3.2 describes a decomposition of the generalization process. Section 5.3.3

devises two particular algorithms in this family.

5.3.1 A Family of Pair-Based Generalization Algorithms

I now turn to the design of coincident generalization algorithms. We start by observing that

in Table 5.2, g3(T 0) essentially merges two equal-size groups in g1(T 0) into a larger group,

and this merging leads to the coincident generalization algorithm described in Example 4.

More generally, I propose the family of pair-based generalization algorithms in Definition 21.

Definition 21. (Pair-Based Generalization Algorithms) A pair-based generalization

algorithm G = 〈g1g2 . . . gn, p〉 satisfies that

• g1 defines groups of the same size;3

• gi+1 (1 ≤ i < n) is constructed by merging pairs of equal-size groups defined by gi.

Next, I prove any pair-based generalization algorithm to be coincident in Theorem 5.3.2.

Note that Definition 21 does not specify how pairs of groups should be merged in construct-

ing generalization functions. This fact leaves plenty of possibilities for optimizing this family

of generalization algorithms. In Section 5.3.3, I will illustrate such optimization by studying

two specific pair-based algorithms.

Theorem 14. Any pair-based generalization algorithm G = 〈g1g2 . . . gn, p〉 is coincident.

Proof: I prove this theorem in two steps:
3To have equal-size groups, it is necessary to allow overlapping between groups in the space of quasi-

identifiers, which implies my generalization methods are not full-domain generalizations [31].

69

1. I first prove the case where g1 defines groups of size one. Consider any generalization

gi(T) = 〈P(I), P(S),R〉 (1 ≤ i ≤ n) and any group 〈I, S〉 ∈ R. By Lemma 3,

it suffices to show that any two identities ID1, ID2 ∈ I have the same inherent

distribution.

I shall interchangeably refer to an identity in I and its index encoded as a binary

string representing a value in [0, 2k − 1] for some k by assuming | I |= 2k. I say two

identities ID, ID′ form a pair if ID = ID1 ⊕ ID2 ⊕ ID′ is true, where ⊕ represents

the bit-wise X-OR operator. Note that ID1 and ID2 themselves also form a pair.

Let ds be the disclosure set. For any λ ∈ ds, we construct λT by swapping the

sensitive values of every pair of identities in I. The above definition of identities pair

then implies the following: ID1 and ID2 must correspond to the same two sensitive

values in λ and λT (in particular, the two sensitive values will be identical if λ and

λT are the same sequence). Therefore, ID1 and ID2 will have the same inherent

distribution, only if λT ∈ ds is also true. I prove this by mathematical induction on

k.

• The Inductive Hypothesis: λT ∈ ds holds if λ ∈ ds is true.

• The Base Case: The case of k = 0 is trivial since λ, λT are identical.

• The Inductive Case: Suppose the inductive hypothesis holds for all 1 ≤ j < k.

There are two cases.

– First, the first bit of ID1 and ID2 are identical. Consequently, only identities

whose first bits are identical can form a pair. In such a case, λT will be

constructed by only swapping values inside each of the two groups defined

in gi−1(T) (these two groups are merged to form S in gi(T)). The inductive

hypothesis can be applied to each such group since its size is 2k−1.

By the definition of disclosure set, the condition λ ∈ ds is true iff λ represents

an instance T for which the privacy property p holds on gi(T), and p does not

70

hold on any gj(T) for any 1 ≤ j < i. Let T ′ be the instance represented by

λT . Then p must also hold on gi(T ′) since in constructing λT , the sensitive

values are only swapped within the same group defined in gi(T). Moreover,

p must not hold on any gj(T ′) for any 1 ≤ j < i due to the inductive

hypothesis. Therefore, λT ∈ ds is true.

– Second, the first bit of ID1 and ID2 are different. In this case, we can

regard the construction of λT as a two-step process, as follows. First, we

swap the sensitive values corresponding to every pair of identities in I that

only differ in the first bit. Second, we swap values corresponding to every

pair of identities in I whose last k − 1 bits form a pair (with respect to

the last k − 1 bits of ID1 and ID2). Using a similar argument as in the

above case, it can be shown that neither steps will affect the evaluation of

the privacy property p. Therefore, λT ∈ ds also holds in this case.

2. For the case where g1 defines groups of size larger than one, the proof is similar except

that a pair of identities now changes to a pair of sets of identities.

¤

5.3.2 Decomposition of Generalization Process

It is important to note that, similar to most existing generalization algorithms[38, 49], a

pair-based generalization algorithm must form larger groups (by merging pairs of equal-size

groups) based on quasi-identifiers only, and independently of the sensitive values. This

requirement is necessary because otherwise additional inference channels will be available

from the particular way that the algorithm forms larger groups. The requirement also

implies that the generalization process can be decomposed into two separate stages.

First, the algorithm must determine which equal-size groups are to be merged (if neces-

sary) by looking at the quasi-identifiers only. Note that, at this stage, the algorithm does

not yet know which group will need to be merged with others because that will depend

71

on the sensitive values. Since the merging process is iterative and only pairs of equal-size

groups will be merged, the algorithm essentially constructs a (virtual) binary tree on all

of the starting groups (assume the total number of tuples is a power of two at this point).

Second, the algorithm checks each group’s sensitive values and starts to merge pairs of

equal-size groups that are siblings of the binary tree that has been pre-determined in the

first stage. Such a merging process is repeated iteratively until either all groups satisfy the

privacy property (a generalization will be disclosed) or the root of the tree is reached and

it does not satisfy the property (nothing will be disclosed).

Clearly, the assumption that the total number of tuples is a power of two is not always

true. Therefore, before the first stage of the algorithm, some starting groups that already

satisfy the privacy property should be excluded from further generalization. As long as these

groups are selected randomly, excluding them will affect neither the apparent distribution

nor the inherent distribution of the remaining groups. Therefore, Theorem remains true

when we apply a coincident generalization algorithm on the remaining groups of the original

table, that is, the algorithm is still coincident for the original input micro-data table.

It is worth noting that there exist plenty of choices in excluding starting groups from

further generalization. These choices lead to different algorithms. In the next section,

I will study two particular algorithms that show good performance with real-life data as

demonstrated in Section 5.5. Intuitively, the first algorithm (Unsafe with Unsafe) excludes

as many “safe” groups as possible, such that more groups will not be affected by further

generalization. The second algorithm (Unsafe with Any) excludes as few “safe” groups

as possible, such that those groups failing the privacy property can be generalized more

likely with other groups that have similar quasi-identifiers. Those two algorithms provide

different kinds of trade-off for data utility between the groups that already satisfy the

privacy property and those groups that do not.

72

5.3.3 Two Pair-Based Generalization Algorithms

In this section, I study two particular pair-based generalization algorithms. The goal of

this study is to demonstrate that by varying the way of merging groups, distinct pair-based

generalization algorithms can be designed to satisfy the different requirements of micro-data

disclosure applications.

First, given any generalization g(T) = 〈P(I), P(S),R〉 (1 ≤ i ≤ n) and any 〈I, S〉 ∈ R,

we say I is an unsafe group, if the privacy property does not hold on S; I is a safe group,

otherwise. Also, given any 〈I, S〉, 〈I ′, S′〉 ∈ R, by merging I and I ′, I mean to obtain a new

generalization 〈 P(I) \ {I, I ′} ∪ {I ∪ I ′}, P(S) \ {S, S′} ∪ {S ∪ S′}, R \ {〈I, S〉, 〈I ′, S′〉} ∪
{〈I ∪ I ′, S ∪ S′〉} 〉.

Unsafe with Unsafe Algorithm UU first obtains starting groups and excludes as many

safe groups as possible (line 1-2). It then determines which groups are to be merged by

constructing a binary tree (line 3). It merges an unsafe group with another equal-size group

(lines 5-6) or a new safe group created by merging existing groups of smaller sizes (lines

7-8), in the given order of preference. It returns an empty set indicating nothing should be

disclosed, if none of the above options is possible (lines 9-10).

Several observations can be made about Algorithm UU. First, although the result of

each iteration can be considered as a generalization function, this is not explicitly shown

because only the final generalization is important to a coincident generalization algorithm.

Second, in line 7 we only need to consider safe groups because the unsafe group chosen

in line 2 is already the smallest among all unsafe groups. Third, in line 7, we can decide

whether a new group of a required size can be obtained through recursively examining two

groups of half the size, which takes linear time in the size of the unsafe group. I shall delay

the discussion of the initial group size γ and the possibility of returning φ to Sections 5.5

and 5.6.

73

Algorithm UU Unsafe with Unsafe
Input: An instance, a distribution-based privacy property p, a starting size γ;
Output: A table generalization, or φ;
Method:
1. Obtain an initial generalization with group size γ;
2. Exclude a random collection of safe groups such that the number of remaining groups

is the least possible power of 2;
3. Construct a full binary tree where each leaf node is a remaining group;
4. while there exists an unsafe group I of the smallest size
5. if the sibling of I is already a generalized group I ′ then
6. Generalize I with I ′ to form a double-sized group at the father node;
7. else if the sibling of I is not a generalized group yet then
8. Generalize all children groups of I’s sibling to form a group I ′ and

then generalize I with I ′;
9. else if there is no sibling of I, that is, I is the root then
10. Return φ;
11. end if
12. end while
13. Return all generalized groups (including the groups excluded in line 2).

Figure 5.1: Algorithm UU

Unsafe with Any Algorithm UA shows a different approach to excluding safe groups,

that is, it excludes as few safe groups as possible (line 2).

Correctness and Performance Proposition 1 states the correctness of Algorithms UU

and Algorithm UA. Clearly, the different approaches to merging groups adopted by Algo-

rithms UU and Algorithm UA will lead to different performance in terms of data utility, for

example, the average size of groups in the final generalization. Note that such performance

depends on not only the privacy property p but also the overall distribution of sensitive

values in the given instance. For example, if the desired property p is set-monotonic (that

is, for any S ⊆ S′, S′ satisfies p if S does), then Algorithm UA is likely to produce a smaller

average group size, because merging an unsafe group with a safe group always yields a

safe group. On the other hand, if the sensitive values in the given instance are close to

a uniform distribution, then Algorithm UU may produce smaller groups, because merging

unsafe groups in the given instance is more likely to yield a safe group. I shall delay the

detailed study of such performance comparison to Section 5.5.

74

Algorithm UA Unsafe with Any
Input: An instance, a distribution-based privacy property p, a starting size γ;
Output: A table generalization, or φ;
Method:
1. Obtain an initial generalization with group size γ;
2. Exclude a random collection of safe groups such that the number of remaining groups

is the largest possible power of 2;
3. Construct a full binary tree where each leaf node is a remaining group;
4. while there exists an unsafe group I of the smallest size
5. if the sibling of I is already a generalized group I ′ then
6. Generalize I with I ′ to form a double-sized group at the father node;
7. else if the sibling of I is not a generalized group yet then
8. Generalize all children groups of I’s sibling to form a group I ′ and then

generalize I with I ′;
9. else if there is no sibling of I, that is, I is the root then
10. Return φ;
11. end if
12. end while
13. Return all generalized groups (including the groups excluded in line 2).

Figure 5.2: Algorithm UA

Corollary 1. Any generalization returned by Algorithm UU and Algorithm UA satisfies p.

Proof: This result directly follows from Theorem 5.3.2 and Lemma 3. Specifically, both

algorithms will only return a generalization in which all the groups are safe, that is, the

apparent distribution of sensitive values in every group satisfies the privacy property p. By

Lemma 3, p is also satisfied on the inherent distribution. ¤

5.4 Interleaved Coincident Generalization

In this section, I refine the pair-based coincident generalization algorithms by allowing

groups to be broken and re-organized. First, Section 5.4.1 introduces a sufficient condi-

tion for coincident generalization algorithms. Section 5.4.2 then introduces the family of

interleaved generalization algorithms.

75

5.4.1 A Sufficient Condition for Coincident Generalization Algorithms

Recall that in the proof of Theorem 5.3.2, the key to showing the inherent distribution of

any two identities to be identical is to construct a one-to-one mapping on the disclosure

set. Intuitively, the existence of such a mapping shows the disclosure set to be symmetric

with respect to the two identities. Therefore, both identities correspond to the same set

of sensitive values (but may be in different order) and their inherent distributions are thus

identical. I formalize such a symmetry property of the disclosure set in Definition 22.

Definition 22. (Self-Symmetric Disclosure Set) Given an instance T0, a generalization

algorithm G and the generalization 〈P(I),P(S),R〉 (1 ≤ i ≤ n) output by G with input T0,

the disclosure set ds is self-symmetric, if for any I ∈ P(I) and any ID1, ID2 ∈ I, there

always exists a one-to-one mapping F () : I→ I satisfying

• F (ID1) = ID2, F (ID2) = ID1, and

• for every λ ∈ ds, the sequence λT obtained by replacing the sensitive value correspond-

ing to ID with that corresponding to F (ID) must appear in ds.

Example 6. In Table 5.6, it can be verified that the disclosure set is self-symmetric. For

example, with respect to Alice and Diana, λ1 ∈ ds ⇔ λ4 ∈ ds and λ2 ∈ ds ⇔ λ3 ∈ ds.

Lemma 4 shows the self-symmetry of disclosure sets to be a sufficient condition for the

generalization algorithm to be coincident. I shall employ this fact in following discussions.

Lemma 4. A generalization algorithm G = 〈g1g2 . . . gn, p〉 is coincident, if for any T0

and gi(T0) (1 ≤ i ≤ n), where gi(T0) is output of G with input T0, the disclosure set is

self-symmetric.

Proof: This result is straightforward since the existence of a one-to-one mapping given in

the definition of a self-symmetric disclosure set implies that the number of occurrences of

any sensitive value in ds must be identical for any pair of identities within the same group.

¤

76

Table 5.6: An Example of Self-Symmetric Disclosure Set

I g1(T0) g2(T0) S
P1(I) P1(S) P2(I) P2(S)

Alice
I1
1 S1

1

I2
1 S2

1

cancer
Brenda cancer
Clare

I1
2 S1

2
flu

Diana tracheitis

ds
λ1 λ2 λ3 λ4

cancer cancer flu tracheitis
cancer cancer tracheitis flu

flu tracheitis cancer cancer
tracheitis flu cancer cancer

5.4.2 Interleaved Generalization Algorithms

I now study another family of coincident generalization algorithms, namely, interleaved

generalization algorithms. Informally, the algorithms studied in the previous section never

break any existing group in constructing generalization functions. In contrast, an interleaved

generalization algorithm may reorganize members of existing groups into different groups.

As I shall show in Section 5.5, this approach may provide better utility compared to pair-

based generalization algorithms.

A Special Case To build intuitions, I first describe a special case. Consider the following

simple algorithm G23 with two aggregation functions g1 and g2. First, G23 generalizes a

given instance using g1 into groups of size 2γ. Second, for every collection of three groups

that needs to be further generalized, G23 generalizes the three groups into two new groups

both of size 3γ, using g2, as illustrated in Figure 5.3. The algorithm returns φ if the result

of g2 does not satisfy the privacy property.

Figure 5.3: A Special Case of Interleaved Generalization

77

Lemma 5. Any generalization returned by the above algorithm G23 has a self-symmetric

disclosure set, and thus G23 is coincident.

Proof: I only show the case of γ = 1. The generalization given by g1 clearly has a self-

symmetric disclosure set. For the generalization given by g2, without loss of generality, let

ID1 and ID2 be the left and middle identities in I2
1 , respectively, and ID′

1 and ID′
2 the left

and middle identities in I2
2 , respectively. Let λ be any sequence in the disclosure set ds. I

construct λT by swapping the sensitive values between ID1 and ID2 and also between ID′
1

and ID′
2. Clearly, if each pair of swapped values is identical, then λ = λT . Otherwise, I

have that λT ∈ ds because of the following. By swapping values as described above, I have

essentially reordered the two groups I1
1 and I1

2 . None of the membership relationships of the

six groups are affected. Therefore, the algorithm will still return the same generalization

(or φ) after the swapping. That is, λT ∈ ds, and ds is self-symmetric. ¤

Definition 23. (Interleaved Generalization Algorithms) An interleaved generaliza-

tion algorithm G = 〈g1g2 . . . gn, p〉 satisfies that, for any input instance T0 and gi(T)

(1 ≤ i ≤ n) where gi(T0) is output of G with input T0, for any ID1, ID2 that appear

in any group Ii
a defined in gi(T 0) (1 ≤ i ≤ n), one of the following must hold for all j < i:

• ID1 and ID2 both appear in some group Ij
b defined in gj(T 0), or

• ID1 ∈ Ij
b , ID2 ∈ Ij

c , and there exists a one-to-one mapping f() : Ij
b → Ij

c satisfying

– f(ID1) = ID2, and

– any ID ∈ Ij
b and f(ID) both appear in some group Ii

d defined in gi(T 0).

Theorem 15. Any interleaved generalization algorithm G = 〈g1g2 . . . gn, p〉 is coincident.

Proof: See the Appendix. ¤

Example 7. Figure 5.4(A) illustrates an interleaved generalization algorithm with five gen-

eralization functions. It can be verified that for any two identities, we can always swap the

78

Figure 5.4: Examples of Interleaved Generalization and Non-Interleaved Generalization

sensitive values so that the two identities may exchange their sensitive values without break-

ing any group. Therefore, the resulting sequence of sensitive values must lead to the same

generalization result and thus appear in the disclosure set. This shows the disclosure set

to be self-symmetric. It is worth mentioning that an appealing but incorrect definition of

interleaved generalization is that we only require the two conditions in Definition 23 for

i − 1 instead of all j < i. As illustrated in Figure 5.4(B), swapping values between the

i− 1 groups can potentially break lower level groups, which means this is not an interleaved

generalization algorithm.

5.5 Experiments

In this section, I present experimental results on the performance of the proposed coincident

generalization algorithms in terms of data utility. I used the popular Adult Data Set taken

from the UCI data repository [1]. The quasi-identifier attributes used to form groups of

individuals include Age, education, and workclass. The sensitive attribute is occupation,

which has 14 different values. Our experiments are repeated over three samples of the

dataset: all tuples, and tuples having at least one of the most frequent 8 and 5 sensitive

values, respectively. I test two popular privacy properties: p-sensitive [50] and Entropy

l-diversity [40] between which p-sensitive is set-monotonic. I regard the average group size

in the final generalization as the data utility metric, which is similar to the DM metric [51]

when suppression is not taken into consideration.

79

5.5.1 Performance of Pair-Based Coincident Generalization Algorithms

Algorithm UU

Algorithm UA

Figure 5.5: Performance of Algorithms UU and UA

Figure 5.5 shows the performance of Algorithm UU (Unsafe with Unsafe) and Algo-

rithm UA (Unsafe with Any), respectively. In Figure 5.5, the x-axis is the parameter of

each privacy property, that is, p in p-sensitive and l in Entropy l-diversity. The y-axis

represents the average group size in the final generalization. Each line represents one of the

three sampled datasets with a different number of distinct sensitive values, 14, 8, and 5,

respectively. From the experiments, we can observe that the average group size generally

increases with the parameter of a privacy property. This is because a larger parameter

represents a more rigid requirement that demands larger groups. The group size decreases

as the number of sensitive values increases, because in general a privacy property becomes

easier to satisfy with more sensitive values. Also, there is a slight difference between the

performances of Algorithms UU and UA, which is discussed in the next section.

80

GI over Algorithm UU

GI over Algorithm UA

Figure 5.6: Performance of GI over Algorithms UU and UA

5.5.2 Performance of Interleaved Coincident Generalization Algorithms

Figure 5.6 shows the performance improvement of two interleaved generalization algorithms,

both having the size sequence GI = (2, 3, 6, 6∗2, 6∗22, 6∗23, . . .). Compared to Algorithm UU

is the one applying the same “Unsafe with Unsafe” strategy as Algorithm UU. Compared to

Algorithm UA is the one applying the same “Unsafe with Any” strategy as Algorithm UA.

The y-axis is the percentage of reduction in average group size when comparing the above

two interleaved algorithms to the two pair-based algorithms. We can see a significant im-

provement in terms of reduced average group size by applying the interleaved generalization

algorithms. There are exceptions when the optimal starting group size is very small, which

indicates that the selection of the interleaved generalization size sequence should be based

on the anticipated optimal starting group size.

5.5.3 Comparison with Unsafe Generalization Algorithm

I now compare the performance of the proposed coincident generalization algorithms with

that of the Mondrain generalization method [52] on the whole adult data set with the same

81

setting described above. It is important to note that the method in [52] can only guarantee

a privacy property when the algorithm itself remains secret, whereas my coincident gen-

eralization algorithms will remain safe even when publicized. Therefore, this experiment

essentially shows the additional cost, in terms of loss in data utility, of guaranteeing privacy

using public algorithms. As shown in Figure 5.7, such a cost is only marginal with either

of my coincident algorithms.

Figure 5.7: Comparing Two Algorithms: Algorithm UA and GI , with Mondrain

5.6 Discussion

Starting Group Size:

I study the effect of the starting group size γ on the performance of the generalization

algorithms with the experiment shown in Figure 5.8. I tested Algorithm UA with Entropy

8-diversity on the whole dataset. We can observe that the starting group size only has a

minor effect on performance. Note that for Algorithms UU and UA, a starting group size

Figure 5.8: Algorithm UA with Different Group Size

82

γ smaller than the parameter of privacy property will be meaningless since every pair of

groups will be immediately merged and thus the performance will be identical to the case

of 2γ.

Distribution of Sensitive Values:

As I discussed in Section 5.2, if the distribution of the sensitive values is relatively balanced

(e.g., a uniform distribution), Algorithm UU is more likely to have better performance

than Algorithm UA; under an unbalanced distribution, such as binomial distribution, Al-

gorithm UA is likely to have better performance than Algorithm UU. This is evidenced

by the experimental results based on randomly generated data, with uniformly distributed

sensitive values and binomially distributed sensitive values, respectively. The results are

shown in Figure 5.9, where the y-axis shows the difference between the average group size

of Algorithm UA and that of Algorithm UU.

Uniform Distribution

Binomial Distribution

Figure 5.9: Difference between Algorithms UA and UU

83

Other Data Utility Metrics:

In this chapter, I consider data utility in terms of average group size in the generalization

result. In some applications, the group size in the space of generalization attributes is

much more important. If so, Algorithm UA will be more practical than Algorithm UU.

That is, Algorithm UA can be used to optimize such utility metrics. The reason is that,

with the “Unsafe With Any” combining strategy, Algorithm UA can always generalize an

“Unsafe” group with its neighbor group, that is, the closest group measured in the space of

generalization attributes, to form a “safe” group.

Possibility to Disclose Nothing:

My generalization algorithms all have a possibility of returning φ, which means nothing can

be disclosed. This is necessary because it is always possible that even after generalizing

all identities into one group, the desired privacy property still cannot be satisfied. For

example, consider a case where we want to guarantee entropy 2-diversity and the number

of different sensitive values is 2. Then if the number of occurrences of the two sensitive

values is not identical, any generalization, including the one with a single group, cannot

satisfy the desired entropy 2-diversity. In this case, which obviously happens with a very

low probability, suppression is a must to solve the problem. To extend my technique with

suppressions remains a future work.

5.7 Summary

A common assumption made by existing information disclosure solutions is that the dis-

closed data is the only source of information available to an adversary. However, with

knowledge of the algorithm used for computing the disclosed data, an adversary may de-

duce more information to violate a desired privacy property. In this chapter, I studied

this issue in the context of generalization-based micro-data disclosure algorithms. I then

introduced two families of efficient coincident generalization algorithms to guarantee that

84

the knowledge about algorithms will not help an adversary improve his/her guess about the

distribution of sensitive values. The algorithms are efficient, and experimental results show

that they provide reasonably good data utility. It is my belief that this technique can be

extended to a broader range of data applications.

For future work, I shall investigate the case where a generalization algorithm selects

a generalization function to apply based on sensitive values of the given table instance

(more inference channels will be available to adversaries). I will also extend the proposed

coincident generalization algorithms to support suppression.

5.8 Proof of Theorem 15

By Lemma 4, I only need to show that the disclosure set of gi is self-symmetric. I prove the

result by mathematical induction on i.

The Inductive Hypothesis: Under every gi, the disclosure set ds is self-symmetric.

The Base Case: I need two base cases, that for i = 1 and i = 2.

• For any group I1
j generalized by g1, let S be the corresponding group of sensitive

values and ds(S) be the multiset {λ : λ is the subquence corresponding to I1
j in some

λ′ ∈ ds}. In this case, the theorem obviously holds, because ds(S) = M (S). For any

λ ∈ ds(S), I can construct F as F (ID1) = ID2, F (ID2) = ID1 and F (ID) = ID for

all ID 6= ID1, ID 6= ID2.

• For any group I2
j generalized by g2 and any ID1, ID2 ∈ I2

j , let I1
b be the group

generalized by g1 such that ID1 ∈ I1
b ,

– If ID2 ∈ I1
b , I construct F as follows:

∗ F (ID1) = ID2, F (ID2) = ID1;

∗ for any ID ∈ I other than ID1, ID2, F (ID) = ID.

85

– If ID2 6∈ I1
b , let I1

b′ be the group generalized by g1 such that ID2 ∈ I1
b′ . By

definition, there exists a one-one mapping f() : I1
b → I1

b′ such that f(ID1) =

ID2 and for any pair ID, f(ID), there exists I2
a′ such that ID, f(ID) ∈ I2

a′ . I

construct F (λ) as follows:

∗ For any ID ∈ I1
b , F (ID) = f(ID);

∗ For any ID ∈ I1
b′ , F (ID) = f−1(ID);

∗ For any else ID, F (ID) = ID.

– In either case, I have that for any λ ∈ ds, the sequence λT defined on F also

satisfies λT ∈ ds. Therefore, ds is self-symmetric.

The Inductive Case: Suppose the inductive hypothesis holds for any j ≤ i−1: I show that

it also holds for i. For any group Ii
a generalized by gi and any ID1, ID2 ∈ Ii

a, we construct

F recursively using the following procedure ConsF (i) with the parameter i(i > 2).

Procedure ConsF(i)

• Let Ii−1
b be the group generalized by gi−1 such that ID1 ∈ Ii−1

b ;

• If ID2 ∈ Ii−1
b :

– Based on the inductive hypothesis, let F ′ be the constructed one-to-one mapping

(either using ConsF or the two base cases) for ID1 and ID2 under gi−1;

– Construct F as:

∗ For any ID ∈ I, F (ID) = F ′(ID).

– Return F .

• If ID2 6∈ Ii−1
b , suppose ID2 ∈ Ii−1

b′ :

– Let Ii−2
c be the group generalized by gi−2 such that ID1 ∈ Ii−2

c ;

– If ID2 ∈ Ii−2
c :

86

∗ Based on conditions of the theorem, let f : Ii−1
b → Ii−1

b′ be the one-to-one

mapping such that every pair ID ∈ Ii−1
b , f(ID) ∈ Ii−1

b′ is generalized in the

same group by gi−2;

∗ Note that, such f exists because one-one mapping f ′ : Ii−2
d → Ii−2

d′ exists for

any two identities ID′ ∈ Ii−1
b ∩ Ii−2

d and ID′′ ∈ Ii−1
b ∩ Ii−2

d′ ;

∗ Based on the inductive hypothesis, let F ′ be the constructed one-to-one

mapping (either using ConsF or the two base cases) for ID1 and ID2 under

gi−2;

∗ Construct F as:

For any ID ∈ I, F (ID) = F ′(ID);

For any ID ∈ Ii−1
b and f(ID) ∈ Ii−1

b′ that have not been swapped by F ′, let

F ′′ be the constructed one-to-one mapping (either using ConsF or the two

base cases) for ID and f(ID) under gi−2, replace F as:

For any ID ∈ I, F (ID) = F ′′(F (ID));

Note that, based on conditions of the theorem, this will not affect any iden-

tities whose sensitive values have already been swapped.

∗ Return F .

– If ID2 6∈ Ii−2
c , suppose ID2 ∈ Ii−2

c′ :

∗ Select ID(w) ∈ Ii−2
c , ID(w′) ∈ Ii−2

c′ and the one-to-one mapping f : Ii−1
b →

Ii−1
b′ , such that every pair ID ∈ Ii−1

b , f(ID) ∈ Ii−1
b′ is generalized in the

same group by gi−2, and f(ID(w)) = ID2, f(ID1) = ID(w′);

∗ Construct F ∗ in a similar way as the above case but for ID1, ID(w′) instead

of for ID1 and ID2;

∗ Based on the inductive hypothesis, let F ′′ be the constructed one-to-one

mapping (either using ConsF or the two base cases) for ID1 and ID(w)

under gi−1;

87

∗ Construct F as:

For any ID ∈ I, F (ID) = F ′′(F ∗(ID));

∗ Return F .

From the construction above, I have that for any λ ∈ ds, the λT defined on F also

satisfies λT ∈ ds. Therefore, ds is self-symmetric under gi. This concludes the proof. ¤

88

Chapter 6: Privacy Protection and Restoring in

Multi-Source Micro-Data Disclosure

6.1 Introduction

We have been faced with an information explosion in recent years. Search and data mining

have been extensively used to help information consumers to filter and absorb the informa-

tion to which they are exposed. However, the vulnerability of privacy protection has not

been adequately addressed and remains a major concern. It is alarming that, for exam-

ple, the medical information of a person can be easily identified just by linking a public

voters’ list with some anonymized datum in medical research ([31, 46]). There has been

a considerable body of research on how to mitigate such a rising threat to privacy, i.e.,

to prevent the relation between individuals and sensitive attributes from being identified

([31, 34, 40, 46, 53, 54]). The standard way to preserve privacy is based on monitoring the

entire information disclosure process and rejecting any request with a potential privacy

violation.

However, there are multiple reasons for failure in preventing privacy violations. First,

multiple sources may release information on individuals without centralized disclosure con-

trol. In this case, even if information disclosed by each source preserves privacy, the com-

bined information may violate privacy. For example, as shown in ([46]), anonymized disclo-

sure of medical records from a hospital, combined with general information from a voters’

list, can be used to infer medical conditions of individuals, which clearly violates their pri-

vacy. Second, the requirements for privacy may increase over time due, for example, to new

legislation, while sensitive information has already been disclosed. Third, privacy violation

may also arise in practice due to exceptions in information disclosure control.

89

To address the problem, I investigate the following question in this chapter. When a

desired privacy property is already compromised due to accidental information disclosure,

is there a way to restore it? At first glance, the answer seems to be negative, because the

information disclosure process is irreversible. That is, the more information about secret

data is disclosed, the more constrained the set of “possible worlds” becomes.

However, for privacy properties that are related to probability distribution or entropy,

there is a way to restore the compromised privacy under certain conditions. Although

we cannot reverse the disclosure process, we may still be able to restore the compromised

privacy by disclosing more true information.

More generally, the question I investigate in this chapter is as follows. Given a set of

information objects that jointly violate a desired privacy property, can we extend it to a

superset that satisfies the same privacy property. Note that this question is important not

only for restoring accidentally compromised privacy as described above, but also for the

centralized disclosure control to provide better data availability. For example, if the cen-

tralized disclosure control cannot release a collection of data because of privacy violation, we

may be able to disclose the data collection in conjunction with additional data; if disclosed

together, the privacy can be preserved.

It is worth noting, before giving a concrete example, that apparently the theorem above

seems very counter-intuitive. However, as I will also explain in the following example, the

idea is not contradicting with the common intuition at all, i.e., in general, more disclosed true

information should always lead to worse privacy. The truth is, in an information disclosure

problem where privacy of a small group of people does not have enough protection due to

some well-defined regulations, there may exist another group of people whose privacy is

“over-protected.” I observe that in this case, it is possible to sacrifice the “over-protected”

privacy of the latter group of people, as long as they meet the regulations and, in return,

the privacy of the former group of people can be restored. At the same time, the privacy

protection in general is still getting worse. Intuitively, by disclosing more true information,

we will always decrease the privacy protection in general but may be able to increase the

90

privacy protection on a small part of the entire group.

A Motivating Example

I limit the scope here to the problem of micro-data disclosure and I consider only generalization-

based view disclosure. Some other techniques like data swapping and perturbation ([26–29])

that can also be utilized in the micro-data problem, as discussed in the related work, are not

covered in this chapter. To explain the basic idea, consider a medical information disclosure

example. A table of patients’ medical information is shown in Table 6.1, part of which is

publicly accessible through, say, a voters’ list, shown in Table 6.2.

Table 6.1: Patient Information Table
Name Sex Age Employer Condition
Alan M 23 ABC, Inc. Heart Disease
Bob M 24 ABC, Inc. SARS
Clark M 25 ABC, Inc. Viral Infection

Donald M 26 ABC, Inc. SARS
Ellen F 27 ABC, Inc. Viral Infection
Fen F 28 ABC, Inc. SARS

Garcia F 28 ABC, Inc. Flu

Table 6.2: Information from Voters’ List
Name Sex Age Employer
Alan M 23 ABC, Inc.
Bob M 24 ABC, Inc.
Clark M 25 ABC, Inc.

Donald M 26 ABC, Inc.
Ellen F 27 ABC, Inc.
Fen F 28 ABC, Inc.

Garcia F 28 ABC, Inc.

Now assume one view of Table 6.1 is disclosed by a data authority (e.g., hospital) upon

request as shown in Table 6.3(A). Note that this view is generalized enough not to reveal the

individuals’ medical conditions, which are considered sensitive. More formally, Table 6.3(A)

satisfies the property of Recursive (1,2)-Diversity ([40]). This means that, in any group of

individuals present in the view and indistinguishable by non-sensitive attributes (i.e., four

91

tuples in the view having the same Sex Attribute “Male” form a group), the maximum

frequency of any sensitive value cannot exceed 0.5. To calculate the frequency of a sensitive

value, the number of occurrences of the sensitive value in the multiset of sensitive values,

which are associated with the group, are counted and then divided by the size of the multiset.

In the example, the condition SARS has the maximum appearance frequency of 0.5.

Table 6.3: Two Disclosed Views of Table 1
Sex Condition
M Heart Disease
M SARS
M SARS
M Viral Infection

Age Condition
26˜28 Flu
26˜28 SARS
26˜28 SARS
26˜28 Viral Infection

(A)Male-Cond in ABC, Inc. (B)Age-Cond in ABC, Inc.
(first four tuples) (last four tuples)

Recall that we want to prevent any individual’s medical condition from being identified

through the combined disclosed and public information. As I will prove in Section 6.2, the

satisfaction of Recursive (1,2)-Diversity by Table 6.3(A) guarantees that any adversary can-

not win the following game to infer any individual’s medical condition with the probability

of 0.5. Assume the adversary has a random oracle ([55]) whose output domain is the set of

all possible patient information tables that yield the same result as the original Table 6.1

in both the disclosed views (Table 6.3(A)) and public information (Table 6.2), if computed

the same way. For example, Table 6.4 could be one of the possible outputs. Intuitively, a

random oracle will respond to every query with a random response chosen uniformly from

its output domain. The adversary is interested in knowing whether an individual, id, that

appears in Table 6.2, is associated with a medical condition s. He or she will query the

random oracle for an answer. The adversary wins if in the outcome (a possible table), id

is associated with s. I say that there is a violation of privacy if, for any individual and

medical condition, the probability for the adversary to win this game is higher than 0.5

or another pre-established bound. Clearly, the adversary can estimate the probability of

winning the game within any desired statistical confidence interval by playing the game

sufficiently many times.

92

Table 6.4: A Possible Patient Information Table Regarding the Disclosed Views Shown in
Table 6.2 and Table 6.3(A), where (any) represents any possible medical condition

Name Sex Age Employer Condition
Alan M 23 ABC, Inc. SARS
Bob M 24 ABC, Inc. Heart Disease
Clark M 25 ABC, Inc. Viral Infection

Donald M 26 ABC, Inc. SARS
Ellen F 27 ABC, Inc. (any)
Fen F 28 ABC, Inc. (any)

Garcia F 28 ABC, Inc. (any)

In this example, the output domain of the adversary’s random oracle is rather simple.

It can be shown that the probability of Alan having SARS, Heart Disease, or V iral

Infection in an outcome is 0.5, 0.25, or 0.25, respectively. The same result applies to Bob,

Clark, and Donald.

Similar to Table 6.3(A), Table 6.3(B) presents another generalized view that also sat-

isfies the desired Recursive (1,2)-Diversity. That is, by disclosing Table 6.3(B) (and also

Table 6.2) to the adversary, we will not have a violation of privacy. However, if the ad-

versary gets both Table 6.3(A) and Table 6.3(B), privacy will be violated. Note that a

property defined on a single view, such as Recursive (1,2)-Diversity, cannot be applied to

this multiple view disclosure case to protect the privacy. Still, we can check privacy viola-

tion through the above game based on the adversary’s random oracle. In this case, based

on the disclosed information, Donald can only be associated with either SARS or V iral

Infection. With the constraint of Donald being associated with SARS, there are 3! × 3!

such tables in the output domain of the adversary’s random oracle. With the constraint of

Donald being associated with V iral Infection, there are 3 × 3 such tables in the output

domain of the adversary’s random oracle. Therefore, we can compute that the probability

of Donald having SARS in an outcome is 0.8 and the desired privacy property is violated.

Based on the above observation, it is clear that Table 6.3(A) and Table 6.3(B) should not

be disclosed together in order to protect Donald’s privacy. However, as I have discussed

in the beginning, without a centralized data disclosure control authority, it may happen

93

that two distributed data authorities, hospital and insurance company, for example, may

disclose the two views above without notifying each other. In this case, all of the privacy

protection techniques based on preventing unsafe disclosures in advance would fail.

Unfortunately, once Tables 6.3(A) and 6.3(B) have been disclosed, we cannot revoke

them from the adversary’s knowledge. But we can discover that in this case, when Donald’s

privacy is not well protected, the privacy of Alan, Bob, Clark, Ellen, Fen, and Garcia are

“over protected.” That is, Alan can be associated with Heart Disease, SARS, and V iral

Infection, and when checking with the adversary’s random oracle, the probabilities of Alan

having Heart Disease, SARS, and V iral Infection in an outcome are 1/3(≈ 0.3), 2/5(=

0.4), and 4/15(≈ 0.3), respectively. This also applies to Bob and Clark. And when checking

with the adversary’s random oracle, the probabilities of Ellen having Flu, SARS, and

V iral Infection in an outcome are 1/3(≈ 0.3), 2/5(= 0.4), and 4/15(≈ 0.3), respectively.

This also applies to Fen and Garcia. Clearly, the privacy protection of these six people is

not close to the desired bound (a probability of 0.5). This gives us a chance, by sacrificing

the “over-protected” part, to restore the violated privacy of Donald, in a way of disclosing

more true information about the original Table 6.1. One way to do it is to disclose the

following two views of Table 6.1 (shown in Table 6.5).

Table 6.5: Further Disclosed Views
Age Condition
25˜26 Viral Infection
25˜26 SARS

Age Condition
26˜27 SARS
26˜27 Viral Infection

(A)Age-Cond in ABC, Inc. (B)Age-Cond in ABC, Inc.

Now with the four views (Tables 6.3(A,B) and Tables 6.5(A,B)) disclosed, we can com-

pute that the probability of Donald having SARS in an outcome is reduced to 0.5 and the

probability of Donald having V iral Infection is also 0.5. This result occurs because, in

the updated output domain of the adversary’s random oracle, there are 2 × 2 tables with

Donald being associated with SARS (at the same time, both Clark and Ellen being asso-

ciated with V iral Infection), and there are 2×2 tables with Donald being associated with

V iral Infection (at the same time, both Clark and Ellen being associated with SARS).

94

Similarly, it can be shown that the probability for any other person to have any medical

condition in an outcome is equal to 0.5 in the worse case. Therefore, the desired privacy

property is now satisfied. Clearly, at the same time, the privacy protection in general is still

getting worse, i.e., there are 45 different tables in the outcome of the adversary’s random

oracle with Tables 6.3(A,B) disclosed and there are only 4 different tables in the outcome of

the adversary’s random oracle with all four tables disclosed. This illustrates the ability of

the proposed technique to restore the compromised privacy through additional information

disclosure.

Clearly, it is not always possible to restore compromised privacy by the same technique.

For example, in the extreme case, if we have disclosed to the adversary that Donald has

SARS, nothing can be done to restore the privacy.

I should also clarify that in the above example, I assume that the adversary cannot

differentiate the disclosure of Tables 6.3(A,B) and the disclosure of Tables 6.5(A,B), i.e.,

the adversary does not have the knowledge that the disclosure of Tables 6.5(A,B) is to

restore the violated privacy by the disclosure of Tables 6.3(A,B). This can be reasonable in

practice when, for example, two disclosures are executed from different information sources

for different purposes or Tables 6.5(A,B) can be just disclosed instead of Tables 6.3(A,B)

when the disclosure control monitor finds out the potential privacy violation by disclosing

Tables 6.3(A,B). I will also discuss how to apply the proposed technique under more flexible

assumptions.

Summary

In this chapter, I study the problem of restoring compromised privacy for micro-data dis-

closure with multiple disclosed views. More specifically, the contributions of this chapter

are as follows.

First I propose a new property, called γ-Privacy, for privacy protection in a micro-

data disclosure problem when multiple views are disclosed. Given the disclosed views and

publicly available information, the set PIS of “all possible worlds”(i.e., possible tables that

95

would yield the same disclosure results), is defined. γ-Privacy intuitively means that in a

randomly (uniformly) selected instance, the probability of any individual being associated

with a sensitive value is at most γ. I then prove that, for the case of a single disclosed view,

γ-Privacy is equivalent to the property of Recursive (γ
1−γ , 2)-Diversity. This intuitively

means that the proposed property is a “natural” extension of l-Diversity, which is defined

only for a single disclosed view, to multiple views.

Second, I prove that deciding on whether γ-Privacy is satisfied by a set of disclosed views

is #P-complete. Third, to mitigate the high computational complexity, I relax the property

of γ-privacy to be satisfied with (ε, θ) confidence, i.e., that the probability of disclosing a

sensitive value of an individual be at most γ + ε with statistical confidence θ, where ε is an

arbitrary small positive constant. I propose a Monte Carlo-based algorithm to check the

relaxed property in O((λλ′)4) time for constant ε and θ, where λ is the number of tuples in

the original table and λ′ is the number of different sensitive values in the original table.

Finally, I turn to the problem of restoring compromised privacy. Namely, given a set of

disclosed views that violates γ-Privacy, can we extend it to a superset of views that jointly

satisfy γ-Privacy. I propose heuristic polynomial time algorithms, which are based on

enumerating and checking additional disclosed views. I conduct a preliminary experimental

study on heart disease records taken from the UCI data repository ([1]), which demonstrates

that the proposed polynomial algorithms restore privacy in up to 60% of compromised

disclosures. I also discuss how to apply the proposed technique under different assumptions

when the adversary is also aware of this technique.

6.2 Modeling the Problem

In this chapter, I focus on the problem of micro-data disclosure. Consider a micro-data table

baseT with schema D = (ID, QI1, . . . , QIa, SA1, . . . , SAb), where: (1) ID is an attribute

used to identify an individual, such as Name or SSN ; (2) QI1, . . . , QIa are attributes that

serve as quasi-identifiers of the ID attributes (i.e., they can be used to identify an individual

96

or a small set of individuals.), such as Age, Employer, or Address; (3) SA1, . . . , SAb are

attributes that are considered private information, such as a medical condition. In this

chapter, I limit the scope to the cases such that ID is a key of baseT and there is only one

SA attribute in baseT . Also, I use a multiset version of the relational model and algebra

([56]).

I assume that information disclosures about baseT are limited to the following two

forms:

• Public Knowledge disclosure, publicT is a projection of baseT without the private

attribute. I.e., publicT = πID,QIs(baseT).

• Generalized disclosure, (V, ψ), is a generalized view of baseT that is disclosed upon re-

quest. I.e., V = πSA(σψ(baseT)), where ψ is a propositional formula on QI attributes

that represents a generalization and is also publicly known. Note that we may have a

sensitive value appearing multiple times in V .

Note that, for a particular table baseT , there can be only one Public Knowledge disclo-

sure but multiple generalized disclosures. For the sake of simplicity, I will call the com-

bination of the Public Knowledge disclosure and the multiple generalized disclosures a

“micro-disclosure” of baseT , denoted by ∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)}). In the

previously discussed medical information example, Table 6.2 is a Public Knowledge dis-

closure of Table 6.1, while Table 6.3(A) and Table 6.3(B) are two generalized disclosures.

For Table 6.3(A), Sex = Male is the selection condition and 26 ≤ Age ≤ 28 is one for

Table 6.3(B).

I assume that an adversary is able to collect all the disclosed information. To obtain the

relation between ID and SA of the original table baseT , for every generalized disclosure

(V, ψ), the adversary can compute a new view V I = πID(σψ(publicT)). The adversary

then gets to know that the sensitive values associated with the IDs that appear in V I are

the values that appear in V . All of these disclosed information serve as constraints on the

adversary trying to correctly guess the original table. In other words, we can represent

97

the adversary’s knowledge of the original table baseT by a possible instance set, defined as

follows:

Definition 24. Given a micro-disclosure ∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)}), the Pos-

sible Instance Set, PIS, is the set of all tables T such that:

• πID,QI(T) = publicT and

• ∀i(1 ≤ i ≤ n), πSA(σψi
(T)) = Vi

Without loss of generality, in the remainder of this chapter, I assume that in any micro-

data disclosure problem, the generalized disclosures (V1, ψ1), . . . , (Vn, ψn) of a given baseT

always satisfy the following two properties:

(1) The generalized disclosures provide a cover for the tuples in baseT . That is, for

any id ∈ πID(baseT), there exists at least one generalized disclosure (Vi, ψi)(1 ≤
i ≤ n) such that id ∈ πID(σψi(baseT)). In fact, if an ID value appears in the Public

Knowledge disclosure but does not appear in any of the generalized views, there would

be no information for the adversary to infer the sensitive value associated to that ID

value. Therefore, the adversary can just eliminate this ID value from the Public

Knowledge disclosure and potentially the original table baseT . This does not affect

how the adversary can infer the sensitive values associated with other individuals.

Consequently, this property guarantees the corresponding possible instance set, PIS,

to be a finite set.

(2) The generalized disclosures are well connected, i.e., we cannot divide the set of the se-

lections functions of the generalized disclosures into two non-empty sets, {ψi1 , . . . , ψik}
and {ψik+1

, . . . , ψin}, such that:

(∨k
j=1ψij) ∧ (∨n

j=k+1ψij) = false

Given a micro-data disclosure problem, if the generalized disclosures do not satisfy

98

this property, we will be able to decompose this problem into two independent prob-

lems. The given Public Knowledge disclosure publicT can be divided into two tables,

publicT ′ = σψ′(publicT) and publicT ′ = σ¬ψ′(publicT). Correspondingly, the gen-

eralized disclosures can be divided into two groups (with ψi ⇒ ψ′ or ψi ⇒ ¬ψ′),

along with the two Public Knowledge tables above to form two micro-data disclosure

problems, respectively.

With all of the collected information, the adversary can try to understand the sensitive

values that are associated with each individual that appears in publicT . To formalize this

process, consider the following (PIS, id, s)-guessing game. To determine whether an ID

value id is associated with a sensitive value s, the adversary randomly selects a table,

using uniform distribution, from the PIS with respect to a given micro-disclosure. The

adversary wins the game if, in the selected table, id is associated with s. Therefore, to

protect the individual’s privacy, my goal is to guarantee that the adversary cannot win this

(PIS, id, s)-guessing game for any id, s with a high probability.

Definition 25. A micro-disclosure ∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)}) is said to be γ-

Private (0 ≤ γ < 1) if the possible instance set PIS with respect to ∆ satisfies the following:

for any id and s, an adversary cannot win the (PIS, id, s)-guessing game with a probability

higher than γ. In this case, I will also say that the PIS is γ-Private.

Recall from the medical information example discussed in the previous section that: (1)

the PIS with respect to Table 6.2 (Public Knowledge) and Table 6.3(A) (generalized) is a

0.5-Private (N > 0), and (2) the PIS with respect to Table 6.2 (Public Knowledge) and

Table 6.3(A,B) (generalized) is not.

As I show in Theorem 16, the 0.5-Private property can be regarded as an extension to the

Recursive (1, 2)-Diversity for multiple generalized disclosures, i.e., they are equivalent when

applied to the problem with a single generalized disclosure. Clearly, the 0.5-Privacy can be

applied to multiple generalized disclosures, while the Recursive (1, 2)-Diversity cannot. It

is worth noting that if we have multiple generalized disclosures such that any two of them

99

do not intersect with each other, a property like Recursive (1, 2)-Diversity can be applied.

However, as I have previously assumed in the well-connectivity of PIS, such a multiple

generalized disclosure case can be decomposed into multiple independent cases of single

generalized disclosure. Theorem 16 states the relation between two properties.

Theorem 16. The possible instance set PIS, with respect to a Public Knowledge disclosure

publicT and a single generalized disclosure (V, ψ), is a γ-Private, if and only if, V satisfies

Recursive (γ
1−γ , 2)-Diversity.

Proof. For any ID value id and sensitive value s that appear in publicT or V , the fact that V

satisfies Recursive (γ
1−γ , 2)-Diversity guarantees that the probability of id to be associated

with s in an output of the adversary’s random oracle is less than or equal to γ. This is true

because in a single view disclosure case, the possible instance set PIS can be regarded as a

set of all possible permutations of sensitive values appearing in V (with a fixed order of ID

values appearing in publicT). Therefore, among all |PIS| possible instance tables, there are

at most γ|PIS| tables having a particular id associated with a particular sensitive value s.

Therefore, PIS is γ-Private.

On the other hand, if V does not satisfy Recursive (γ
1−γ , 2)-Diversity, there must exist

an ID value id and a sensitive value id, such that the number table among PIS having id

associated with s is greater than γ|PIS|. Consequently, PIS cannot be a γ-Private.

Clearly, the property of γ-Private can be regarded as an extension of the property

of Recursive (γ
1−γ , 2)-Diversity. It can be understood that we can design similar private

properties as the γ-Private to extend the rest of properties in the l-Diversity family ([40])

and even other privacy properties like t-Closeness ([53]). However, in this chapter, I limit

my discussions to the γ-Private only.

Theorem 17. The problem of whether a micro-disclosure ∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)})
is γ-Private is decidable.

100

Proof. Note that because of the two properties of generalized disclosures I previously dis-

cussed, the PIS with respect to ∆ is finite. Theorem 17 is then straightforward because I

can verify the property of γ-Privacy through enumeration, i.e., ∀id, s,

|{T |T ∈ PIS, (id, s) ∈ πID,SA(T)}|
|PIS| ≤ γ (6.1)

Note that the set {T |T ∈ PIS, (id, s) ∈ πID,SA(T)} in (1) can also be regarded as a

possible instance set PIS′ with respect to a new micro-disclosure including ∆ and the fact

that id is associated with s. Recall the medical information example discussed in Section 6.1.

Besides the Public Knowledge disclosure, Table 6.2, if we have two generalized disclosures

(Table 6.3(A) and Table 6.3(B)), the corresponding PIS1 will have 45 tables, among which

there are 36 tables containing the relation (Donald, SARS); if we have four generalized

disclosures (Table 6.3(A,B) and Table 6.5(A,B)), the corresponding PIS2 has only 8 tables,

among which there are 4 tables containing the relation (Donald, SARS). Therefore, PIS2

is a 0.5-Private, while PIS1 is not. Theorem 17 guarantees the computability of the decision

problem to check the proposed γ-Private property. However, in practice, it is not always

feasible to achieve this goal through enumeration.

Theorem 18. The problem of whether a micro-disclosure ∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)})
is γ-Private is #P-complete.

Sketch. I prove this by showing that it is #P-complete to compute |PIS| with respect to ∆.

This is true because any polynomial algorithm to verify γ-Privacy will lead to a polynomial

algorithm to compute |PIS| and γ-Privacy can certainly be verified by computing |PIS|.
Clearly, computing |PIS| is #P because whether a given table T is in PIS can be verified

in polynomial time. To prove the hardness of computing |PIS|, I show that to compute

|PIS| even in a special case is #P-hard. Let baseT contain four sets of IDs, V I
1 , V I

2 , V I
3 , V I

4 ,

where |V I
1 | = |V I

3 | and |V I
2 | = |V I

4 |. Let (V1, ψ1), . . . , (V4, ψ4) be four generalized disclosures

101

such that V1 = V2 = V3 = V4 and πIDσψ1(publcT) = V I
1 ∪ V I

2 , πIDσψ2(publcT) = V I
2 ∪ V I

3 ,

πIDσψ3(publcT) = V I
3 ∪V I

4 , πIDσψ4(publcT) = V I
4 ∪V I

1 . Let s1, . . . , sλ′ be the set of different

sensitive values. To compute |PIS|, I have to compute how many different assignments of

n1, . . . , nλ′ , where ni(1 ≤ i ≤ λ′) represents the number of times that the sensitive value

si is associated with V1. (If ni is fixed, the number of times that the sensitive value si is

associated with V I
2 , V I

3 , V I
4 is also fixed.)

I reduce the problem of computing the number of contingency tables with prescribed

row and column sums in the 2 × λ′ case, which is proved to be #P-complete in the work

[57] on this problem.

Consider an arbitrary 2×λ′ contingency table counting problem with variables n1, . . . , nλ′ ,

n′1, . . . , n
′
λ′ and the corresponding constraints: Σλ′

i=1ni = a1, Σλ′
i=1n

′
i = a2, and ni + n′i =

bi(1 ≤ i ≤ λ′).

Let |V I
1 | = a1, |V I

2 | = a2, appear(si) = bi(1 ≤ i ≤ λ′), where appear(si) is the number

of appearances of si in V1. It is clear that to compute the number of different contingency

tables, it is equivalent to compute the number of different assignment of n1, . . . , nλ′ in this

problem of Mirco-Disclosure.

Therefore, to verify the proposed privacy property efficiently, in a given micro-data

disclosure problem with multiple generalized disclosures and a large original table, I need

to seek an alternative approach.

6.3 Relaxed γ-Privacy and Its Verification by Monte Carlo

Simulation

In this section, I discuss a stochastic approach to verify the proposed privacy property. By

Theorem 17, I show that, in order to verify whether a given PIS is γ-Private, I have to

102

compute the left side of inequality (1). We denote it by p(id ∼ s):

p(id ∼ s) =
|{T |T ∈ PIS, (id, s) ∈ πID,SA(T)}|

|PIS|

Instead of computing p(id ∼ s) through an enumeration process, we can estimate it

with a pre-defined statistical confidence, using a Monte Carlo simulation. More formally,

let T1, . . . , TN be N tables that are randomly sampled from the given PIS, I investigate

the statistical properties of the sample mean p̄(id ∼ s), to approach the population mean

p(id ∼ s):

p̄(id ∼ s) =
ΣN

i=1f(Ti)
N

(6.2)

where f(T) is defined as:

f(T) =





1, (id, s) ∈ πID,SA(T);

0, otherwise.

Correspondingly, I define a new stochastic version of the γ-Private property as follows,

based on the fact that the distribution of p̄(id ∼ s) will approximate a normal distribution

with a large number N . (Note that we have 0 ≤ p̄(id ∼ s) ≤ 1, which requires γ should not

be close to either 0 or 1.)

Definition 26. Given a micro-disclosure ∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)}), two con-

stants ε and θ, where 0 < ε, θ < 1, and an unbiased estimator p̄(id ∼ s) of p(id ∼ s) for

every id and s in ∆, I say that ∆ is γ-Private with (ε, θ)-Confidence if for any id and s,

we have

• p(id ∼ s) ≤ γ with statistical confidence greater than or equal to θ, OR

• γ − ε ≤ p(id ∼ s) ≤ γ + ε with statistical confidence greater than or equal to θ.

103

I say that ∆ is non-γ-Private with (ε, θ)-Confidence if:

• for any id and s, we have p(id ∼ s) > γ with statistical confidence greater than or

equal to θ, AND

• there exist id and s, we have γ − ε ≤ p(id ∼ s) ≤ γ + ε with statistical confidence less

than θ.

Note that by the second condition of Definition 26, if p(id ∼ s) is close enough to

the security bound γ (within ε), a satisfaction of the privacy property will be granted.

The reason for having this major difference from Definition 25 is that if p(id ∼ s) = γ,

we will meet the problem of endless sampling when checking only the first condition. By

Definition 26, we can immediately obtain the following:

Theorem 19. Given a micro-disclosure ∆ and the value of unbiased estimator p̄(id ∼ s) of

p(id ∼ s), if for any id, s in ∆, there exist γ1, γ2(γ2 − γ1 < ε) such that p(id ∼ s) ∈ [γ1, γ2]

with confidence θ, we have either (1) ∆ is γ-Private with (ε, θ)-Confidence or (2) ∆ is

non-γ-Private with (ε, θ)-Confidence.

Next, I discuss how to construct the random input generator for the Monte Carlo simu-

lation. In the problem setting, the ideal random input generator would be the adversary’s

random oracle. However, in practice, it is not easy to obtain such a random oracle, because,

as I have shown in the previous section, to decide a bound for the number of sensitive values

that can be associated with an ID value in a given PIS is #P-hard. To mitigate this prob-

lem, I adopt a weighted sample mean using a simpler version of Markov chain sampling,

instead of the regular sample mean.

For the sake of simplicity, I first discuss how to compute a weighted sample mean

through Markov chain sampling based on an abstractively constructed tree structure over

PIS. Then I discuss how to construct such a tree structure in practice to fulfill the entire

solution.

Given a possible instance set PIS, which is finite, I construct a Tree T such that:

104

• the height of T is λ, where λ is the size (i.e., number of tuples) of the original table

baseT ;

• each non-leaf node has at most λ children;

• T has |PIS| leaf nodes and each leaf node represents a different element of |PIS|.

I call any tree that satisfies all of the three properties above a Constructing Tree of the

given PIS. I denote by a a node of T , d(a) the number of children of a and a0 the root of

T . I use the following Algorithm 6.1 to select a leaf node, i.e., an element of PIS through

T .

Algorithm 6.1: Sampling a Table from PIS (abstraction)
1. Let i = 0, w = 1;
2. While (ai is not a leaf node) Do
3. Randomly select(with uniform distribution) ai+1

from the children of ai;
4. Let w = w ∗ d(ai);
5. Let i = i + 1;
6. End While
7. Output (w, T), where T = ai.

Figure 6.1: Algorithm 6.1

I then can construct a weighted sample mean given a number N of sampled result

(w1, T1), . . . , (wN , TN). Equation (6.2) can be rewritten as follows:

p̄(id ∼ s) =
ΣN

i=1f(Ti)wi

ΣN
i=1wi

(6.3)

Theorem 20. p̄(id ∼ s) defined in (3) is an unbiased estimator of p(id ∼ s).

Proof. This result can be obtained easily by the fact that the probability of a given Ti(1 ≤
i ≤ N) to be selected by Algorithm 6.1 is 1/wi.

By Liapounov’s Central Limit Theorem ([58]), the probability distribution of p̄(id ∼ s)

approaches a normal distribution. We then can decide whether a given micro-disclosure is

105

γ-Private with (ε, θ)-Confidence or non-γ-Private with (ε, θ)-Confidence in polynomial time

by means of the following result.

Theorem 21. Given a micro-disclosure ∆, and the corresponding PIS and its construct-

ing tree T , it is sufficient to collect d(α
ε)2e samples (by Algorithm 6.1) to decide whether

∆ is γ-Private with (ε, θ)-Confidence or non-γ-Private with (ε, θ)-Confidence, where α =

2
√

2erf−1(θ) and erf() is the Gauss Error Function.

Proof. For every id and s in ∆, the variance estimator of p̄(id ∼ s) can be computed and

bounded as:

ν2 =
1

N(ΣN
i=1|wi| − 1)

ΣN
i=1|wi|(f(Ti)− p̄(id ∼ s))2 <

1
N
≤ (

ε

α
)2

This is true because, in this case, when N ≥ 4 (which should be true), we have:

1
(ΣN

i=1|wi| − 1)
ΣN

i=1|wi|(f(Ti)− p̄(id ∼ s))2 < 1

where for all 0 ≤ 1 ≤ N , wi > 1 and f(Ti) values either 0 or 1. Therefore, we have:

ν <
ε

α
=

ε

2
√

2erf−1(θ)
(6.4)

Note that the bound ε
2
√

2erf−1(θ)
is independent from the (id, s) pair. Based on the properties

of normal distribution, we have:

p(id ∼ s) ∈ [p̄(id ∼ s)−
√

2erf−1(θ)ν, p̄(id ∼ s) +
√

2erf−1(θ)ν]

with a statistical confidence θ. Based on Equation (6.4), we have:

(p̄(id ∼ s) +
√

2erf−1(θ)ν)− (p̄(id ∼ s)−
√

2erf−1(θ)ν) < ε.

106

Theorem 19 completes this proof.

Note that Theorem 21 shows that a constant number of samplings is enough to verify

the satisfaction of the proposed privacy property by a given micro-disclosure. However, we

have to be aware of the computational complexity of the sampling process itself. Clearly,

we cannot construct entirely a constructing tree of the PIS with respect to the micro-

disclosure, because the number of nodes of a constructing tree can be exponential to λ, the

size of baseT . Next, I discuss how to execute Algorithm 6.1 efficiently, more specifically, in

O((λλ′)4) time, through a constructing tree T without actually constructing it.

The Sampling Process

How to efficiently sample a possible solution to a combinatorial problem where exact count-

ing is #P-hard has been well studied (e.g., [57,59]). The work [57] shows how to uniformly

sample a contingency table. In this section, I show that the sampling can be done efficiently

in the problem.

First, I introduce some preliminary notations. Given a micro-disclosure ∆ = (publicT,

{(V1, ψ1), . . . , (Vn, ψn)}), I call the following linear equation system with constraints the

solver of ∆, denoted by SOL(∆).

Let s1, . . . , sλ′ be the complete list of different sensitive values appearing in ∆, and

naively, λ′ ≤ λ. Let id1, . . . , idλ be the complete list of ID values appearing in ∆. Let

Xλλ′ = {xi,j}, (1 ≤ i ≤ λ, 1 ≤ j ≤ λ′) be the variable representing whether an ID value

is associated with a sensitive value, i.e., xi,j = 1 means that idi is associated with sj and

xi,j = 0 otherwise. Therefore, any possible instance table in the PIS with respect to ∆

can be represented by a different assignment of Xλλ′ (an assignment can be regarded as a

vector of size λλ′). The SOL(∆) includes the following two kinds of equations, based on

the requirements of the given micro-disclosure:

• ∀i(1 ≤ i ≤ λ), Σλ′
j=1xi,j = 1. That is, each ID value can be associated to only one

sensitive value in one possible instance table;

107

• ∀k, j(1 ≤ k ≤ n, 1 ≤ j ≤ λ′), Σidi∈πIDψk(publicT)xi,j = app(Vk, sj), where app(Vk, sj)

represents the number of times sj appears in Vk. That is, a possible instance table

must yield the same result as baseT for any generalized disclosure.

• Note that in SOL(∆), I assume each variable xi,j , (1 ≤ i ≤ λ, 1 ≤ j ≤ λ′) can be any

real number within the interval [0, 1].

Theorem 22 follows easily from the properties of micro-disclosure and the proof of The-

orem 16 in the work [57].

Theorem 22. Given a micro-disclosure ∆, its solver SOL(∆) defines a polyhedron, of

which every vertex A = (a1,1, . . . , aλ,λ′) is an integral point, i.e., ai,j = 0∨ ai,j = 1, (1 ≤ i ≤

λ, 1 ≤ j ≤ λ′.

Sketch. Assume there is a vertex represented by an assignment vector A (of Xλλ′), in which

there exists 0 < ai1,jj < 1. Consider all ai,j in A such that ai,j = 1 or ai,j = 0, assume

the corresponding variable xi,j = ai,j to be a constant in SOL(∆). I now reduce to a

polyhedron with smaller dimension, where the projection A′ of A should still be a vertex.

However, every constant coefficient of this new linear equation system is an integer and

every variable coefficient is 1, therefore, either (1) there exists a small vector ε̄ such that

A′− ε̄ and A′ + ε̄ are both in the polyhedron, or (2) A′ is the only solution. However, (1) is

contradicted to the fact that A′ is a vertex, while (2) is contradicted to the micro-disclosure

∆ itself because of the existence of the baseT , i.e, baseT (with all variables to be 0 or 1) is

always a solution to SOL(∆). This step completes the proof.

I describe the sampling process by Algorithm 6.2. In it, I denote by T a table over 2

attributes for id and s. I denote by ∆¢T the new micro-disclosure in which both ∆ and T

are disclosed. Note that T can be also regarded as a generalized disclosure where nothing

is indeed generalized.

Theorem 23. Given a micro-disclosure ∆ and its corresponding PIS, (1) Algorithm 6.2

has the same functionality as Algorithm 6.1 through a constructing tree of the PIS; (2)

108

Algorithm 6.2: Sampling a table from PIS (instantiation)
1. Let T = φ,w = 1;
2. For i = 1 to λ do
3. Let S = φ;
4. For j = 1 to λ′ do
5. If SOL(∆ ¢ (T ∪ {(idi, sj)})) is not solvable
6. Continue;
7. End If;
8. Find a vertex A of the resulting polyhedron;
9. If A is not an integral point

10. Continue;
11. End If;
12. S = S ∪ {sj};
13. End For;
14. Let w = w ∗ |S|;
15. Random select s from S;
16. Let T = T ∪ {(idi, s)};
17. End For;
18. Output (w, T);

Figure 6.2: Algorithm 6.2

Algorithm 6.2 generates an output in O((λλ′)4) time, where λ is the size of baseT and λ′

the number of different sensitive values appeared in baseT .

Proof. Part (1) is clear because for any T ∈ PIS, it must be contained in a possible

output (w, T) of Algorithm 6.2. Also, based on Theorem 22, in every output (w, T) of

Algorithm 6.2, we know that T ∈ PIS and 1/w is the probability of T to be output by

Algorithm 6.2.

For (2), note that it cost O((λλ′)3) to solve a linear equation system, and finding a vertex

of a polyhedron can be done in O(λλ′), where λλ′ is the number of variables (dimension).

Therefore, Algorithm 6.2 will output in λλ′O((λλ′)3 + λλ′) = O((λλ′)4) time.

Note that in Algorithm 6.2 (line 12), if the vertex point that we found is an integral

point, there exists a possible instance table consistent with the disclosures. That is, sj is a

valid choice for idi. Theorem 21 says that for a constant ε and θ, we need a constant number

of samplings to be able to verify a γ-Privacy with (ε, θ)-Confidence. With Theorem 21 and

109

Theorem 23, we have the following result:

Theorem 24. Whether a micro-disclosure of a table baseT is γ-Private with (ε, θ)-Confidence

or non-γ-Private with (ε, θ)-Confidence is decidable in O(d2
√

2erf−1(θ)
ε e(λλ′)4) time, where

λ is the size of baseT , λ′ the number of different sensitive values appeared in baseT and erf

the Gauss Error function.

6.4 Restoring Compromised Privacy

In this section, I discuss how to restore compromised privacy, given a micro-disclosure

∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)}), which violates the desired γ-Privacy or γ-Privacy

with (ε, θ)-Confidence by releasing additional generalized disclosures. That is, we would

like to find a new micro-disclosure ∆′ = (publicT, {(V1, ψ1), . . . , (Vn, ψn), (Vn+1, ψn+1), . . . ,

(Vn+K , ψn+K)}) which extends ∆, such that ∆′ satisfies the desired privacy property. To

do that, we need to answer the following two questions:

• How many additional generalized disclosures do we want to disclose?

• What generalized disclosures should be disclosed?

6.4.1 Selecting an Additional Generalized Disclosure

Besides the generalized disclosures that have been disclosed, we can construct any general-

ized disclosure which by itself satisfies the desired privacy property. Note that the original

table baseT has a limited size λ. Therefore, we have at most 2λ − (λ + 1) different choices

of additional disclosures. The problem of whether there exists one of them such that we

can restore the privacy by disclosing it is thus decidable. However, whether there exists an

efficient algorithm to decide (for γ-Privacy with (ε, θ)-Confidence) is still an open research

question. Note that enumeration is not computationally practical, because, in the worst

case, we can have 2λ − (λ + 1)− n different candidates.

110

In this section, I propose heuristic algorithms in which additional generalized disclosures

are restricted to the refinements of the previously disclosed ones. To illustrate, I extend

the medical information example from Section 6.1. The original table baseT is shown in

Table 6.6.

Table 6.6: Extended Patient Information Table
Name Sex Age Employer Condition
Alan M 23 ABC, Inc. Heart Disease
Bob M 24 ABC, Inc. SARS
Clark M 25 ABC, Inc. Viral Infection

Donald M 26 ABC, Inc. SARS
Ellen F 27 ABC, Inc. Viral Infection
Fen F 28 ABC, Inc. SARS

Garcia F 28 ABC, Inc. Flu
Helen F 29 ABC, Inc. SARS
Jessica F 30 ABC, Inc. Viral Infection
Kathy F 30 ABC, Inc. Heart Disease
Lucy F 33 ABC, Inc. Viral Infection

Besides the Public Knowledge disclosure, we have three released generalized disclosures.

Two of them are exactly the same two views shown in Table 6.3(A) and Table 6.3(B). The

third generalized disclosure is shown in Table 6.7.

Table 6.7: The Third Generalized Disclosure
Age Condition

29˜33 SARS
29˜33 Viral Infection
29˜33 Viral Infection
29˜33 Heart Disease

Note that in this example we will have the corresponding possible instance set PIS that

is not well-connected, as discussed in previous sections. Assume that, as in Section 6.1, we

consider 0.5-Privacy. It can be computed that in this example, the adversary will win the

(PIS,Donald, SARS)-guessing game with a probability higher than 0.5, which violates the

0.5-Privacy.

To restore the compromised privacy, one possibility is to disclose Table 6.5(A) and

Table 6.5(B) as discussed in Section 1. Another possibility, in this example, is to disclose

111

the following generalized disclosure shown in Table 6.8, together with either Table 6.5(A)

or Table 6.5(B) to restore the compromised privacy.

Table 6.8: Another Additional Generalized Disclosure
Age Condition

26 or 33 SARS
26 or 33 Viral Infection

However, from the information consumer’s point of view, Table 6.8 is a worse choice

than any of the Table 6.5(A) or Table 6.5(B), because the latter two provide the desired

information in a more precise way. That is, Table 6.5(A) is a refinement of Table 6.3(A)

and Table 6.5(B) is a refinement of Table 6.3(B).

Therefore, in practice, it may make sense to limit the choices of additional generalized

views to such a category. Following this restriction, in this chapter, I consider an additional

generalized disclosure selected from the set R(∆), where R(∆) is called a single refinement

set: for a given micro-disclosure ∆ = (publicT, {(V1, ψ1), . . . , (Vn, ψn)}), it is computed as

R(∆) = {(V, ψ)|∃i(1 ≤ i ≤ n), σψ(baseTbl) = σψσψi(baseT)}, where ψ is a propositional

formula without negation, disjunction, and “6=”. Therefore, we have |R(∆)| ≤ nλ2 ≤ λ3,

where λ = |publicT |.

6.4.2 Selecting the Number of Additional Disclosures

Next, we need to decide how many additional generalized disclosures we need to release in

order to restore a compromised privacy. Note that, because the original table baseT has the

size λ, we at most disclose λ additional generalized disclosures. Therefore, we have up to

(|R(∆)|
1)+ · · ·+(|R(∆)|

λ) different choices, which are computationally infeasible to enumerate.

Unfortunately, for any constant K, we can construct an example, in which, in order

to restore the compromised privacy, we need to disclose exact K additional generalized

disclosures from R(∆), as follows.

Let the baseT contain 3K + 1 ID values id1, . . . , id3K+1 and K + 2 different sensi-

tive values s1, . . . , sK+3, in which for any i(i 6≡ 0 mod 3, i 6= 3K + 1), idi is associated

112

with si mod 3; for any i(i ≡ 0 mod 3), idi is associated with si/3+2; id3K+1 is associated

with s1. We have K generalized disclosures (V1, ψ1), . . . , (VK , ψK), where πIDσψi
(baseT) =

{id3(i−1)+1, id3(i−1)+2, id3(i−1)+3, id3K+1}, (1 ≤ i ≤ K). It can be computed that the corre-

sponding micro-disclosure ∆ is not 0.5-Private, because the probability for an adversary to

win the (PIS, id3K+1, s1)-guessing game is 2K

2K+1
.

In this case, the only way to restore the 0.5-Privacy is to disclose K additional generalized

views, each containing two tuples from a single previously disclosed view and satisfying 0.5-

Privacy by itself.

6.4.3 A Naive Efficient Algorithm To Restore Privacy

Based on the discussion above, I design a naive algorithm to restore privacy, given a micro-

disclosure ∆ that violated a desired γ-Privacy with (ε, θ)-Confidence, as follows: given a

constant parameter K, the algorithm simply enumerates all possible 1-combinations, 2-

combinations, . . . , K-combinations of R(∆), the single refinement set of ∆, and outputs

the first possible set of generalized disclosures that leads to a new micro-disclosure that is

γ-Private with (ε, θ)-Confidence or outputs “fail” otherwise. Clearly, this naive algorithm

will stop in O(λ3K+4λ′4) time, where λ is the number of ID values in the original table and

λ′ is the number of sensitive values. I will show that, through experiments in Section 6.5,

in practice we can have a good percentage of successful privacy restoring by this naive

algorithm, even with K = 1.

Figure 6.3: Privacy Restoring by a Single View Figure 6.4: Privacy Restoring by up to 2 Views

113

6.5 Experiments

I conducted preliminary experiments based on the heart disease records datum borrowed

from the UCI data repository ([1]). Each of the four repository tables has such attributes as

person’s name, age, and level, which classifies a heart disease into 5 categories. I consider the

attribute level as sensitive and select 4 other attributes including age as the QI attributes.

Each time, I consider one of the four repository tables, each having around 200 tuples.

Queries in the study are selections on a single QI attribute that require the value to be

in an interval [a, b]. The interval is selected randomly, with a selected uniformly from the

interval range of the attribute, and b − a chosen uniformly (1) from 3.5% to 7% or (2)

from 2% to 4% of the size of the attribute range. If a query by itself violates 0.5-Privacy,

it is discarded. If not, I check if all queries so far collectively satisfy 0.5-Privacy with

(ε, θ)-confidence, where ε ≤ 0.1 and θ ≥ 0.95, and stop the iterative process if they do not.

I then check whether it is possible to restore the violated 0.5-Private with (ε, θ) confi-

dence. Figure 6.3 refers to the case when I use a single additional view to try and restore

privacy. The set of all views considered are all possible refinements (in terms of the interval

in the selection condition) of previously disclosed views. Note that because all QI attributes

in the study are integers, there is a finite number of considered views. Figure 6.3 gives the

percentage of cases (in 1000 runs), in which privacy was restored for the cases of 1,2,3, and

4 QI attributes, and for both ranges (1) from 3.5% to 7% (2) from 2% to 4% used in the

original views. Figure 6.3 shows that the percentage of restored cases grows to about 50%

when there are 4 QI attributes.

Figure 6.4 gives the same information as Figure 6.3 for the case when I use up to two

(rather than one) additional views to restore privacy. For this case, Figure 6.4 shows that

the percentage of restored cases grows to about 60% when there are 4 QI attributes.

Note that when the privacy was not restored, we did not know if the restoration was

indeed not feasible. It may be feasible if we disclose more flexible additional views (not

just the refinements of the previously disclosed ones) and/or disclose a larger number of

114

additional views (not just 1 or 2). Clearly, the percentage of restored cases out of all

restorable cases is higher or equal to that in the diagram. Note that while the study is

preliminary, it indicates that the percentage of restored cases is significant, even with a

single additional disclosed view.

6.6 Discussion

In this section I discuss and provide more justification for the assumptions that are made for

the adversary model. Recall that the definition of the γ-Private is based on the assumption

that the adversary will try to compromise an individual’s privacy contained in a private

table through a random guessing game. What is hidden is that we assume the adversary

will collect all of the disclosed information, including Public Knowledge disclosure and

generalized disclosures of the private table. The following two assumptions have not been

addressed: (1) the adversary may acquire only part of the published information; and (2)

the adversary may acquire even more information about the privacy restoring process. In

this section, I discuss, in two different cases, how the process of privacy restoring can be

affected by (2).

Intention of Privacy Restoring: The adversary may get to know the intention of

trying to restore a compromised privacy. In this case, to safely restore a compromised

privacy, in a given micro-data disclosure problem, whether to perform a privacy restoring

should not depend on the original baseT . Formally, the decision should be “simulatable”

to the adversary. To explain the idea, consider a modified example of medical information

disclosure that has been discussed in Section 6.1. Assume that we have a different baseT

shown in Table 6.9, but the Public Knowledge disclosure (Table 6.2) and the two generalized

disclosures (Tables 6.3(A, B)) remain the same. Note that in this example, the adversary

may be misled by the disclosed information and find out that there is a high probability of

Donald having SARS. One may think that it could be a good choice to stay with such a

status. However, this is not a safe decision, because if the adversary acquires the knowledge

that we have been trying to restore a compromised privacy, the fact that we have done

115

nothing in this example will immediately reveal the fact that Donald has V iral Infection.

This problem can be solved simply by making the privacy restoring decision independent

from the original baseT .

Table 6.9: Modified Patient Information Table
Name Sex Age Employer Condition
Alan M 23 ABC, Inc. SARS
Bob M 24 ABC, Inc. SARS
Clark M 25 ABC, Inc. Heart Disease

Donald M 26 ABC, Inc. Viral Infection
Ellen F 27 ABC, Inc. SARS
Fen F 28 ABC, Inc. SARS

Garcia F 28 ABC, Inc. Flu

Preferences in Disclosure Selection: The adversary may obtain the following two

facts: (1)when we are trying to restore a compromised privacy, we may have some prefer-

ences in the selection of additional generalized disclosures; and (2) among all the released

generalized disclosures, some are used to restore a compromised privacy. In this case, the

adversary may also have an opportunity to compromise an individual’s privacy immediately.

To illustrate, consider the same example shown in Table 6.9. To restore the compromised

privacy for Donald as discussed above, we may disclose two additional generalized disclo-

sures: one is the same as shown in Table 6.5(B) and the other one is shown in Table 6.10(A).

This works fine under the assumptions discussed in previous sections. However, if the ad-

versary discovers that we are trying to minimize generalization for the additional disclosure,

the fact that Table 6.10(B) is not disclosed as the additional generalized disclosure will im-

mediately reveal that Clark is highly probable to have Heart Disease. This is true because

if Donald has V iral Infection and Clark has SARS, Table 6.10(B) should be disclosed

instead of Table 6.10(A). Therefore, under such strong assumptions of the adversary model,

we should be very careful to select an additional generalized disclosure. A complete solution

for this case remains future work.

116

Table 6.10: Additional Disclosure Selection
Age Condition

24 or 26 Viral Infection
24 or 26 SARS

Age Condition
25 ∼ 26 Viral Infection
25 ∼ 26 SARS

(A) (B)

6.7 Summary

In this chapter, I studied the problem of restoring compromised privacy for micro-data dis-

closure with multiple disclosed views by disclosing more views, in terms of both theoretical

foundation and practical solutions. Many research questions remain open. One is a more

comprehensive study on heuristic algorithms to restore privacy in terms of their complex-

ity and efficacy. Another direction is the notion of optimality, i.e., given multiple ways to

restore privacy, how do we decide on the best. Also important is extending the results to

additional, possibly more relaxed, adversary models.

117

Chapter 7: Conclusion and Future Research

7.1 Conclusion

This dissertation presents a number of techniques that address a basic question in the

problem of information sharing: how secure is an information sharing process, including

the applied information disclosure algorithms, and if it is not, how to make it secure? Or

more intuitively, what information does an applied information disclosure algorithm really

disclose with respect to a particular input?

This problem has been overlooked by the research community for a long time. However,

it is extremely important to all data applications that deal with the information disclosure

problem. In any case that the information providers do not carefully address this problem,

serious security/privacy violation may take place.

This dissertation discusses the problem in the environment of two major information

sources, numerical databases and relational category databases (micro-data).

For numerical data disclosure applications, this dissertation first studies the existing

solution to a similar problem proposed in the work of simulatable auditing. This dissertation

shows that the existing solution does have a security guarantee but far from the best with

respect to data utility.

This dissertation then proposes a new model, called simulatable binding. Based on

which, this dissertation develops several algorithms for popular queries that are proved to

have the locally-best performances.

For category data disclosure applications, this dissertation first studies the existing

solutions to define the proper notion of security/privacy properties. This dissertation then

shows that the existing notions only guarantee the declared properties when the applied

118

disclosure algorithms remain secret to anyone other than the information providers. This

assumption is, however, too strong to be practical.

This dissertation then proposes a general notion, called p-safety, where p is any se-

curity/privacy constraint the information providers want to assure. Any algorithm that

guarantees the p-safety will at the same time guarantee “p” when the algorithm itself is

known to the public.

However, this dissertation proves that, in general (and most cases in practice), algo-

rithms that guarantee the proposed p-safety property cannot optimize their results with

respect to the data utility. That is, it is an NP hard problem.

This dissertation gives a discussion in detail of how to design an efficient heuristic

algorithm such that it guarantees the p-safety property and can produce outputs that are

close to the optimal ones with respect to the inputs.

In the end, this dissertation discusses the problem of protecting security/privacy when

multiple information providers are disclosing the same set of information without collabo-

ration or centralized control. It is shown that under such conditions, the security/privacy

constraint of any information provider is not guaranteed. This dissertation opens another

way to solve this problem. That is, under certain conditions, the violated security/privacy

constraints of the information providers can be restored by disclosing more information.

This is then able to be done by any third party information providers in a truly distributed

fashion.

7.2 Future Research

There are still a number of problems that have not been solved and are open to future

research. In the numerical databases, when the information providers have to answer com-

prehensive categories of aggregation queries from the information consumers, how to design

correspondingly efficient disclosure algorithms based on the model of simulatable binding

is still open. This dissertation only solves the problem for a limited family of queries.

In the problem of micro-data disclosure, the way to approach the optimal algorithms

119

with respect to data utility is never ending. Although the heuristic algorithms designed in

the dissertation produce outputs with relative good performances in general, there are still

data applications with high data utility requirements that need more specially well-designed

disclosure algorithms.

In a more general range, how to secure the information disclosure process deserves to be

discussed in all kinds of data applications related to information disclosure or information

sharing. For example, in the model network environments, information is more likely to

be disclosed in streaming or a more distributed fashion. How to extend the real “safe”

information disclosure framework discussed in this dissertation into these problem settings

is very challenging and important.

120

Bibliography

121

Bibliography

[1] A. Asuncion and D. Newman, “UCI machine learning repository (Data Provider:
Andras.Janosi, hungarian institute of cardiology; William.Steinbrunn, university
hospital, zurich, switzerland; Matthias.Pfisterer, university hospital, basel, switzerland;
Robert.Detrano, v.a. medical center, long beach and cleveland clinic foundation.),”
2007. [Online]. Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html

[2] N. Adam and J. Wortmann, “Security-control methods for statistical databases: a
comparative study,” ACM Computing Surveys, vol. 21, no. 4, pp. 515–556, 1989.

[3] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in Proceed-
ings of ACM PODS, 2003, pp. 202–210.

[4] C. Dwork and K. Nissim, “Privacy-preserving data mining on vertically partitioned
databases,” in Proceedings of CRYPTO, 2004, pp. 528–544.

[5] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical privacy: the sulq frame-
work,” in Proceedings of ACM PODS, 2005, pp. 128–138.

[6] S. Warner, “Randomized response: A survey technique for eliminating error answer
bias,” Journal of American Statistical Association, vol. 60, no. 309, pp. 63–69, 1965.

[7] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in ACM SIGMOD, 2000,
pp. 439–450.

[8] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches in privacy pre-
serving data mining,” in Proceedings of ACM PODS, 2003, pp. 211–222.

[9] R. Agrawal, R. Srikant, and D. Thomas, “Privacy-preserving olap,” in SIGMOD, 2005,
pp. 251–262.

[10] N. Mishra and M. Sandler, “Privacy via pseudorandom sketches,” in Proceedings of
ACM PODS, 2006, pp. 143–152.

[11] J. Kleinberg, C. Papadimitriou, and P. Raghavan, “Auditing boolean attributes,” Jour-
nal of Computer and System Sciences, vol. 66, no. 1, pp. 244–253, 2003.

[12] F. Chin and G. Ozsoyoglu, “Auditing for secure statistical databases,” in Proceedings
of ACM’81 conference, 1981, pp. 53–59.

[13] J. B. Kam and J. D. Ullman, “A model of statistical database and their security,”
ACM TODS, vol. 2, no. 1, pp. 1–10, 1977.

122

[14] F. Chin, “Security problems on inference control for sum, max, and min queries,”
Journal of ACM, vol. 33, no. 3, pp. 451–464, 1986.

[15] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R. Srikant, “Au-
diting compliance with a hippocratic database,” in Proceedings of ACM VLDB, 2004,
pp. 516–527.

[16] D. Dobkin, A. K. Jones, and R. J. Lipton, “Secure databases: protection against user
influence,” ACM TODS, vol. 4, no. 1, pp. 97–106, 1979.

[17] S. P. Reiss, “Security in databases: A combinatorial study,” Journal of ACM, vol. 26,
no. 1, pp. 45–57, 1979.

[18] J. Biskup and P. A. Bonatti, “Controlled query evaluation for known policies by com-
bining lying and refusal,” Annals of Mathematics and Artificial Intelligence, vol. 40,
no. 1-2, pp. 37–62, 2004.

[19] K. Kenthapadi, N. Mishra, and K. Nissim, “Simulatable auditing,” in Proceedings of
ACM PODS, 2005, pp. 118–127.

[20] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani, “Towards robust-
ness in query auditing,” in ACM VLDB, 2006, pp. 151–162.

[21] A. Dobra and S. E. Feinberg, “Bounding entries in multi-way contingency tables given
a set of marginal totals,” in Foundations of Statistical Inference: Proceedings of the
Shoresh Conference 2000. Springer Verlag, 2003.

[22] A. Slavkovic and S. E. Feinberg, “Bounds for cell entries in two-way tables given
conditional relative frequencies,” Privacy in Statistical Databases, 2004.

[23] I. P. Fellegi, “On the question of statistical confidentiality,” Journal of the American
Statistical Association, vol. 67, no. 337, pp. 7–18, 1993.

[24] L. H. Cox, “Solving confidentiality protection problems in tabulations using network
optimization: A network model for cell suppression in the u.s. economic censuses,” in
Proceedings of the Internatinal Seminar on Statistical Confidentiality. International
Statistical Institute, Dublin, 1982, pp. 229–245.

[25] L. H.Cox, “New results in disclosure avoidance for tabulations,” in International Sta-
tistical Institute Proceedings of the 46th Session. Tokyo, 1987, pp. 83–84.

[26] G. T. Duncan and S. E. Feinberg, “Obtaining information while preserving privacy: A
markov perturbation method for tabular data,” in Joint Statistical Meetings. Ana-
heim,CA, 1997.

[27] P. Diaconis and B. Sturmfels, “Algebraic algorithms for sampling from conditional
distributions,” Annals of Statistics, vol. 1, pp. 363–397, 1998.

[28] T. Dalenius and S. Reiss, “Data swapping: A technique for disclosure control,” Journal
of Statistical Planning and Inference, vol. 6, pp. 73–85, 1982.

123

[29] L. H. Cox, “Suppression, methodology and statistical disclosure control,” Journal of
the American Statistical Association, vol. 90, pp. 1453–1462, 1995.

[30] G. Miklau and D. Suciu, “A formal analysis of information disclosure in data exchange,”
in ACM SIGMOD, 2004.

[31] P. Samarati, “Protecting respondents’ identities in microdata release,” in IEEE TKDE,
2001, pp. 1010–1027.

[32] A. Meyerson and R. Williams, “On the complexity of optimal k-anonymity,” in ACM
PODS, 2004.

[33] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee, “Toward privacy in public
databases,” in Theory of Cryptography Conference, 2005.

[34] X. Xiao and Y. Tao, “Personalized privacy preservation,” in ACM SIGMOD, 2006.

[35] J. Byun and E. Bertino, “Micro-views, or on how to protect privacy while enhancing
data usability: concepts and challenges,” SIGMOD Rec., vol. 35, no. 1, pp. 9–13, 2006.

[36] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and
A. Zhu, “k-anonymity: Algorithms and hardness,” Technical report, Stanford Univer-
sity, 2004.

[37] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,” in
IEEE ICDE, 2005.

[38] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Incognito: Efficient fulldomain k-
anonymity,” in ACM SIGMOD, 2005.

[39] Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu, “On multidimensional k-anonymity with
local recoding generalization,” 2007.

[40] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “l-diversity:
Privacy beyond k-anonymity,” in IEEE ICDE, 2006.

[41] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-anonymity
and l-diversity,” in IEEE ICDE, 2007.

[42] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei, “Minimality attack in privacy
preserving data publishing,” in ACM VLDB. VLDB Endowment, 2007, pp. 543–554.

[43] C. Yao, X. S. Wang, and S. Jajodia, “Checking for k-anonymity violation by views,”
in ACM VLDB. VLDB Endowment, 2005, pp. 910–921.

[44] Y. Li, L. Wang, X. Wang, and S. Jajodia, “Auditing interval-based inference,” in
Proceedings of the 14th International Conference on Advanced Information Systems
Engineering, 2002, pp. 553–567.

[45] D. Kifer and J. Gehrke, “Injecting utility into anonymized datasets,” in ACM SIG-
MOD, 2006.

124

[46] P. Samarati and L. Sweeney, “Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression,” Technical
report, CMU, SRI, 1998.

[47] L. Sweeney, “Uniqueness of simple demographics in the u.s. population,” in LIDAP-
WP4, Carnegie Mellon University, Laboratory for International Data Privacy, Pitts-
burgh, PA, 2000.

[48] A. Kerckhoffs, “La cryptographie militaire,” Journal des Sciences Militaires, vol. 9,
pp. 5–38, 1883.

[49] K. Wang and B. C. Fung, “Anonymizing sequential releases,” in ACM SIGKDD. New
York, NY, USA: ACM, 2006, pp. 414–423.

[50] T. Truta and B. Vinay, “Privacy protection: p-sensitive k-anonymity property,” in
Data Engineering Workshop 2006.

[51] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,” in
IEEE ICDE. Washington, DC, USA: IEEE Computer Society, 2005, pp. 217–228.

[52] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multidimensional k-
anonymity,” in IEEE ICDE. Washington, DC, USA: IEEE Computer Society, 2006,
p. 25.

[53] N. Li and T. Li, “t-closeness: Privacy beyond k-anonymity and l-diversity,” in IEEE
ICDE, 2007.

[54] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in ACM SIGMOD, May
2000, pp. 439–450.

[55] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing
efficient protocols,” in ACM CCS, 1995.

[56] P. W. P. J. Grefen and R. A. d. By, “A multi-set extended relational algebra - a formal
approach to a practical issue,” in IEEE ICDE, 1994, pp. 80–88.

[57] M. Dyer, R. Kannan, and J. Mount, “Sampling contingency tables,” in CCC, 1997, pp.
487–506.

[58] M. Mether, “The history of the central limit theorem,” Sovelletun Matematiikan
erikoistyöt, vol. Mat-2, no. 108, 2003.

[59] A. Bertoni, M. Goldwurm, and M. Santini, “Random generation and approximate
counting of ambiguously described combinatorial structures,” in STACS, 2000, pp.
567–580.

125

Curriculum Vitae

Lei Zhang has been a PhD student in the Center for Secure Information Systems at George
Mason University (GMU) since 2004. His major is Information Technology. Before joining
GMU, he received a B.E. degree in Computer Science and Engineering from Tsinghua
University, China, in 2001, and a M.E. degree in Computer Science and Engineering from
Tsinghua University, China, in 2004. His research focuses on information security, privacy,
and databases.

126

