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Abstract

HIGH-SPEED IMPLEMENTATION OF POST-QUANTUM CRYPTOGRAPHY MULTI-
VARIATE SIGNATURE SCHEMES

Ahmed Ferozpuri

George Mason University, 2017

Thesis Director: Dr. Kris Gaj

Multivariate cryptosystems belong to the five most promising families of post-quantum

cryptography (PQC) schemes. Among them, the Unbalanced Oil and Vinegar (UOV) and

the Rainbow signature schemes have been extensively studied since 1999 and 2005, respec-

tively. The main advantage of UOV is high confidence in its security; the disadvantages

include large key and signature sizes. Rainbow is a multi-layer version of UOV that offers

better performance, smaller keys, and smaller signatures. In this thesis, we present and com-

pare hardware implementations of both schemes in high-performance Field Programmable

Gate Arrays (FPGAs). The optimization is for the minimum signature generation and

verification time. The generation of keys is assumed to be done in software. Compared to

the previous state-of-the-art high-speed implementation, the proposed design for Rainbow

is more than twice as fast, and introduces two architectural innovations: a novel pivot cal-

culation circuit and a memory based microprogrammed architecture. Additionally, in order

to make benchmarking easier and fairer, our design follows a universal PQC hardware API,

which allows for fair comparison with other post-quantum signature schemes, in particular

those submitted to the NIST PQC Project. The design is intended to be made open-source



to speed-up further optimizations. Additionally, we will provide a projection of scalability

for larger security levels and future optimizations.



Chapter 1: Introduction

In the mid-1990s Peter Shor published his ground-breaking paper detailing a quantum

algorithm capable of solving factoring problems in polynomial time. The idea of a quantum

computer may have seemed more like science fiction then, but recent developments indicate

that we may be only a few decades away from a reliable and scalable quantum computer. In

2015, the United States National Security Agency (NSA) announced that those who have

not yet switched over to Suite B recommendations, should hold off and instead wait for

future post-quantum algorithms [1].

Is this really enough? Would a quantum computer armed with a sufficient number of

qubits be capable of attacking larger key size versions of RSA, ECDSA, ECDH, and DSA?

As pointed out in [2] and [3], only McEliece, NTRU, and Lattice-based schemes would not be

broken by a large-scale quantum computer and AES and SHA with large key and output size

respectively would be considered secure. For factoring based algorithms, it may be possible

that a larger key size allows for some level of security until quantum systems advance far

enough to support large-scale computation, and this may be what NSA was intending with

their recommendation. However, public key systems requiring forward-secrecy would still

be vulnerable because a large-scale quantum may be capable of obtaining keys for past

data/key communications.

Those who require forward-secrecy must consider adopting a scheme now, which offers

resistance to quantum and classical cryptanalysis in the near future. There are five major

classes of post-quantum algorithms: lattice, code, hash, isogeny and multivariate-based.

Practical post-quantum schemes can be used today to allow a forward-secure key exchange,

such as, Ring-LWE, which is a lattice-based cryptosystem [JCMD 15]. Of course other

possibilities exist, but require investigation and research and a comprehensive analysis of

performance, security, and parameter set trade-offs.
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In December 2016 the National Institute of Standards and Technology (NIST) made

an announcement regarding their “Post-Quantum Cryptography Project”, where they are

accepting proposals for “quantum-resistant” public-key cryptographic algorithms [4]. There

are many likely candidates based on hash functions, codes, lattices, elliptic curve isogenies,

and multivariate quadratic systems, and as of this writing there have been 82 submissions

with 2 withdrawals. Those that have withstood attacks for the longest are the most promis-

ing. Many experts agree that multivariate signature schemes offer a great potential to be

used as quantum-resistant public key cryptosystems [2].

1.1 Multivariate-based Cryptography

Multivariate systems utilize a multivariate quadratic polynomial system to perform the

cryptographic operations of a multivariate public key cryptosystem (MPKC). The earliest

paper presenting a MPKC was that of Shigeo Tsujii and Hideki Imai in the early 1980s [2].

The system of multivariate polynomials is known as the central map, and is used as part of

the private key for signature schemes. The structure of this central map is hidden by affine

transformations, which are also included in the private key. During signature generation,

inverting this map is required and is equivalent to solving a system of multivariate poly-

nomials. The hardness of MPKC systems is based on the difficulty in solving multivariate

polynomial system of equations over a finite field. Indeed, the key to a secure MPKC is

the design of the central map and the corresponding trap door. Additionally, for efficiency,

quadratic equations are used.

1.2 Early Multivariate-based Cryptography

The earliest standard (bipolar) construction seems to be relatively intact in modern mul-

tivariate cryptography. The public is key is made up of m polynomials with n variables,

making an m-by-n matrix. Using two affine maps, S and T, the central map F can be hid-

den, which is an idea introduced in 1988 by Matsumoto and Imai. The central map is a class

2



of quadratic maps, whose inverse is easy to compute. The secret key consists of S, T, and

information about F. It is obvious that this cryptosystem suffers from an issue with large

public key sizes, but “formidable” private key sizes. The first multivariate cryptosystem

used to generate a signature, which also initiated research into multivariate cryptosystems,

used two quadratic variables and a prime modulus made up of large prime factors. It did

not take long for this cryptosystem to be shown unsecure through cryptanalysis.

Pollard and Schnorr, showed that the first multivariate cryptosystem, could be broken

without knowing the prime factors. It was shown that in fact, it is very difficult to build a

practical system with two variables. Matsumoto, Imai, Harashima and Miyagawa, built a

multivariate system with four variables and public keys are given by quadratic polynomials,

but it was also broken shortly after by [5], and it was realized that more than four variables

are required. The balanced oil-vinegar technique was introduced in [6] and broken shortly

after by [7]. It was determined for the oil-vinegar method to work, we must select o = 2v,

where o is the number of oil terms and v is the number of vinegar terms. Since then, UOV

has remained unbroken. Rainbow was introduced in [8] and uses a layering technique to

reduce key sizes. Similarly, Perturbed Matsumoto-Imai (PMI+) was developed to improve

efficiency, where polynomials are perturbed and added [9]. However, these two schemes

was defeated shortly after being proposed by [10] by using differential cryptanalysis, but

Rainbow was reparameterized in [11] and since then has remained unbroken.

1.3 Security and Efficiency Improvements

Multivariate cryptography initially suffered from security problems, which were addressed

through many improvements. Therefore, a necessary skepticism exists for currently pro-

posed multivariate schemes, which are proposed recently, due to a lack of research. Pa-

rameter sets for higher security are available and methods to generate parameter sets are

available in [12] and [13]. However, as pointed out by [14], some schemes such as ABC

Encryption may have difficulty in scaling to larger security levels, and indeed the size of the

3



system solver becomes a limiting factor in high-speed implementations.

While other post-quantum categories discussed so far offer higher security levels, se-

curity reductions, and efficient implementations, one of the multivariate schemes biggest

challenges is confidence in its security. Part of the difficulty is that it is more recently

introduced into the cryptography community and awaits cryptanalysis. However, there are

a number of attacks on multivariate schemes, most notably the MinRank attack, Grobner

bases and the brute force attack with a gray-code representation for efficiency. In fact,

the MQ Challenge website [15] shows many parameter sets for Multivariate schemes that

have currently been broken for which many used Gray-code enumeration running on 128

Spartan 6 FPGAs. However, there is a threshold to what parameter sets can be attacked,

and therefore, choosing a higher security level parameter set is sufficient.

One of the early efficiency improvements for multivariate schemes were triangular, oil

and vinegar, and similar constructions that were directly vulnerable to rank attacks. These

early constructions are known as single-field, and later big-field constructions were used that

allow the central map to be hidden by two invertible affine linear maps. Big-field construc-

tions require solving a system of equations in order to invert the central map, and this may

be a time consuming process. One example of these is the Quartz algorithm, which was sub-

mitted to the New European Schemes for Signatures, Integrity and Encryption (NESSIE)

and had the record for the slowest execution time for signing of half a minute. Improvements

in speed have been demonstrated by HFEv- schemes, such as Gui, which reduce the signa-

ture time by a factor of 1000! The efficiency improvement was done by carefully choosing

the parameters that affect the central map. In general, Internal Perturbation (IP) is known

as using vinegar variables with projection, and prevents against differential attacks [9].

Another security improvement was the plus and minus method, where random poly-

nomials were added or removed from the central map and denoted with a + or - symbol

in the name of the algorithm. The minus method is limited to signature schemes, where

a one-to-one mapping is not needed. This is due to the significant slowdown required to

guess the missing coordinates. The plus method can be used in encryption, but causes a

4



slowdown for signature generation. The goal of Rainbow was to reduce the key size, which

it does effectively. In general, there is much more confidence in Multivariate systems as a

signature scheme, and therefore our focus will be on UOV and Rainbow, which is a layering

scheme based on UOV.
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Chapter 2: Previous Work

To fit different device constraints, some targeted hardware implementations for multivariate

schemes have been implemented: [16], [17] and [18]. The goal in [17] is similar to our aim in

this thesis - to optimize mainly for speed. The time-area optimized implementations [18] and

[16] require more clock cycles but are optimal for smaller devices, such as those required

in the Internet of Things (IoT). Alternatively, implementing a system solver capable of

processing the entire matrix in parallel requires comparatively a lot of resources, but allows

the most time savings in terms of clock cycles.

2.1 Systolic Arrays

The systolic array architecture for system solving was introduced in [19] as an array of pro-

cessors, or processing elements, able to perform system solving using backward substitution.

The physical structure is similar to an upper triangular matrix, and it uses two different

PEs one type along the diagonal elements and the others to perform elimination. Using

shift registers, the input matrix is inputted to the PE array, and operations are performed

on the input and the results are stored in the PEs. Data can be moved between rows and

columns, and all inputs/outputs of are registered. Therefore, the critical path is determined

soley by the critical path of the largest PE. Their architecture requires a total of 3n clock

cycles to solve a system and another n clock cycles to read out the solution, amounting to

4n total clock cycles to obtain the solution.

6



2.2 Systolic Network

In [20], the systolic network for system solving was described. The authors eliminate, the

shift registers required for data input/output and registers in between PEs. This allows

signals to propagate through the PE array in one clock cycle at the cost of a much larger

critical path, which is directly related to the size of the matrix. Therefore, as n grows, this

method becomes unfeasible. It takes 2n clock cycles to solve a system.

2.3 Systolic Line

Parallel systolic line architectures for system solvers in GF (2) include SMITH [21], which

solves a system using Gaussian Elimination with simultaneous backward substitution, and

it offers a tradeoff between systolic arrays and networks. For a n × n system it takes

on average 2n clock cycles and worst-case time complexity of O(n2). Balasubramanian

et al. [16], [22] extend SMITH directly to solve matrices in multivariate schemes such as

Rainbow, and call their new architecture G-SMITH. This architecture can solve a system

with elements in GF (2t), in about 2n clock cycles without pipelining and about n clock

cycles with pipelining. However, the pipelined version would not save clock cycles in UOV

and Rainbow because only one system is solved followed by block multiplications.

2.4 Parallel Designs

Tang et al. [17] base their work on [19], [20] and [21], which can solve a system in 4n,

2n, 2n (average) clock cycles, respectively, and they were the first to provide a hardware

architecture that solves a system in n clock cycles, after the first pivot is calculated. We

provide a similar parallel architecture requiring a greatly reduced number of multiplexers

and with the same time complexity of n + 1 clock cycles. Additionally, it includes key

improvements that give a significant speed up for signature generation and verification

along with a more regular structure for the system solver.

7



2.5 Our Contribution

2.5.1 Speedup

The goal of this thesis is to focus on speeding up the execution time of UOV and Rainbow,

without consideration to area. Compared to previous work by Tang et al., this implementa-

tion completes signature generation and verification more than twice as fast. This speedup

is enabled by hardware support for the reuse of all multipliers in the system solver (through

multiplexing) and a reduction in the total number of multiplications required for signature

generation and verification, which will be elaborated in Section 6.3.3. This allows for simul-

taneously increasing the number of multiplications per clock cycle and reducing the total

multiplications required. These enhancements significantly effect the signature generation

and verification time. This is evident from observing timing results from [17] that show the

total percentage of clock cycles spent on solving a system becomes only (12.12%) of total

execution time. We effectively reduce the time for the other 87.88% of execution time using

the same number of processing elements.

2.5.2 Novel Pivot Circuit

The benefits of a swapless pivot in this high-speed architecture will be described briefly

in comparison to the Tang et al. architecture. First, many multiplexers are eliminated,

which are required for the Tang et al. design and indicated in the functional description

as the internal “sending” of rows and elements to elimination, normalization, and inverse

components after the matrix is “sent” to the system solver. This removes the strong depen-

dence of the architecture to the matrix size, since there is an exponential growth in the size

these multiplexers with larger systems. Obviously with a swapless design, the multiplexers

required for swapping positions are eliminated.

Next, multiplexers required to perform elimination and normalization on the correct

rows, which required choosing between using either the current or next row, are eliminated

by utilizing a processing array that gives the system solver a more regular structure. This

8



array is made up of uniform processing elements (PE) that can perform both normalization

and elimination on any row and is configured by the pivot circuit, which effectively eliminates

the need to internally “send” rows or elements within the system solver. Lastly, multiplexers

required to obtain the current pivot row and column are eliminated by instead generating

indexes that an external circuit uses, such as memory, to provide the pivot row and column

as inputs to the system solver. Similar to the Tang et al. design, we can generate the pivot

for the next iteration, but also require registering the PE array’s operation. The operation

of the pivot circuit is described in Section 5.

2.5.3 Memory-based microprogramming

The benefit of using a memory-based microprogramming approach is the ease of scheduling

operations. It is used in this architecture based on temporary values stored, such as the

selection of a pivot from the matrix or the current line of the public or private key being

processed. In our architecture, we apply memory-based microprogramming in both the

system solver and the scheduling of inputs for block multiplication. In the system solver, it

will be shown how memory is used to instruct the PE array to operate on the input data.

The scheduling of inputs for block multiplication uses circular shift registers that contain

the proper input sequences required for the current line of memory. This approach is also

extensible for variable width multiplier arrays, however, we target the maximum re-use of

multipliers in this thesis.

2.5.4 Matrix Binarization

We introduce a new concept called Matrix Binarization (MB), that can convert a system

with elements in GF (2t) in to an equivalent binary system with elements in GF (2). MB

can be extended to the Affine Transformation, Polynomial Evaluation and System Solving

steps, and can be applied to the keys in a form of preprocessing or performed on the fly.

This allows operations required for signature generation and verification to be performed

using only AND/XOR gates. Also, there is no need for inversion when System Solving is

9



performed. There are modifications required to the PEs, to support only AND/XOR gates

with multiplexers, and to PivotCalc to control the new PE array. The resulting circuit

will have a much smaller critical path and would require less area. System Solving would

require t more clock cycles, but there can be a drastic decrease in the number of clock

cycles required for Affine Transformation, Polynomial Evaluation, which will be discussed

in Section 9.2. This is important since more than 70% of execution time is spent on these

operations, which can make up for the increase in clock cycles required for System Solving.
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Chapter 3: Multivariate Cryptography

3.1 Background, Notation, and Operations

Multivariate cryptography uses a system of non-linear multivariate polynomials to perform

signature generation, encryption, and key exchange. In multivariate cryptography, a set of

polynomials, P, represents the public key and is made up of m polynomials in n variables

as shown in (3.1). Additionally, the degree of the system, d, is 2, in order to constrain the

key size and the amount of computations.

p(1)(x1, ..., xn) =

n∑
i=1

n∑
j=i

p
(1)
ij xixj +

n∑
i=1

p
(1)
i xi + p

(1)
0

p(2)(x1, ..., xn) =
n∑

i=1

n∑
j=i

p
(2)
ij xixj +

n∑
i=1

p
(2)
i xi + p

(2)
0

. . .

p(m)(x1, ..., xn) =
n∑

i=1

n∑
j=i

p
(m)
ij xixj +

n∑
i=1

p
(m)
i xi + p

(m)
0

(3.1)

For all multivariate public key cryptosystems, the size of the public key is based on

the number of terms in the polynomial, which depends directly on m, n, and d. Using

(3.1), there are
(
n
2

)
+ n =

(
n+1
2

)
p
(k)
ij terms, n p

(k)
i terms and 1 constant for any given kth

polynomial in P. Therefore, the size of the public key, s, for m polynomials, is shown in

(3.2).

11



s = m

((
n+ 1

2

)
+ n+ 1

)
= m

(
n+ 2

2

)
(3.2)

As shown in (3.1) the basic operations are addition and multiplication of elements

p
(k)
ij , p

(k)
i , xi, xj , which are elements of finite field Fq, where we choose the parameter q =

pt = 28. The choice of p = 2 allows for addition to be only an XOR operation. Multi-

plication between field elements is done using polynomial multiplication and more detail

is given in section 4. Additionally, the system of multivariate equations must be solved,

and system solvers are covered in section 5. In order to generate the public and private

key pairs, invertible affine transformations must be determined, however, this operation is

assumed to occur in software as specified in [23], and the hardware receives inverted affine

transformations as part of the private key input.

3.2 Unbalanced Oil and Vinegar (UOV)

The original Oil and Vinegar scheme [6] is described below.

Let Fq be the finite field and o and v be integers such that n = o+v. Let S = 1, ..., v and

O = v + 1, ..., n be sets of integers representing the indices of variables. Let S be the set of

variables, (xi | i ∈ S) called Vinegar variables. Let O be the set of variables (xi | i ∈ O),

and are the Oil variables. Let x = x1, x2, . . . xn, where each xi ∈ Fq. The central map,

F , where F : Fn → Fo, contains o polynomials in n variables, p(1), p(2), . . . , p(o) ∈ F[x] in

the form;

p(k)(x) =
∑

i,j∈V,i≤j
α
(k)
ij xixj +

∑
i∈V,j∈O

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k), (3.3)

where k is the number of a specific polynomial in the map.

12



Public Key: In order to hide the composition of the central map, one affine transfor-

mation, T , where T : Fn → Fn, is composed with F . Therefore, the public key is defined as

P = F ◦ T where P : Fn → Fo. Since the composition in a standard bi-polar construction

does not change the structure of F it is not needed for the security of UOV [13].

Private Key: The private key is made up of F and T −1 and therefore the size is |F| + |T |,

which contains randomly generated coefficients, where T is ensured to be invertible. Let

f = |F| and t1 = |T |.

Using (3.3), the types of the coefficients in a given polynomial will be further identified

to derive the size of the F . Let terms corresponding to coefficients αij be denoted as

vinegar-vinegar (V V ). Let terms corresponding to coefficients βij be denoted as vinegar-oil

(V O). Let terms corresponding to coefficients γi be denoted as vinegar-oil-only (V OO).

Let the term corresponding to the coefficient η be denoted as a constant (C). The number

of coefficients of each type is given by; |V V | =
(
v+1
2

)
, |V O| = v ∗ o, |V OO| = v + o = n,

|C| = 1

For each polynomial, p(k);

|p(k)| = |V V |+ |V O|+ |V OO|+ |C| =
(
v + 1

2

)
+ v ∗ o+ n+ 1 (3.4)

Since F contains o polynomials, |F| = o ∗ |p(k)|.

Since T is an affine transformation it is made up of a matrix MT ∈ Fn×n and a vector

cT ∈ Fn, |T | = n · (n+ 1)

Therefore, the size of the private key is:

o ·
((

v + 1

2

)
+ v ∗ o+ n+ 1

)
+ n · (n+ 1) (3.5)
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Signature generation: Prior to generating the signature, a hash, msg in, of the message,

msg, is generated, such that, H : {0, 1}? → Fo and msg in = H(msg) ∈ Fo. In order

to calculate the signature, sgn out, the following calculations using the private key are

performed: sgn out = (T −1 ◦ F−1)(msg in). The first step is to find O = F−1(msg in).

In order to do this, the Vinegar variables, S, must be chosen at random. Polynomial

Evaluation is used to reduce the quadratic polynomials into a linear system of equations,

called F ′, which can be solved by the System Solver to obtain the set of Oil variables, O. The

system may fail to be solved with low probability and the process will have to be repeated.

Next, matrix multiplication and vector addition is performed in Affine Transformation to

find the signature sgn out = T −1(O). This process is illustrated in Fig. 3.1. Note: Bus

widths for diagrams in the Background section are a multiple of the parameter t = 8, and

bolded arrows represent multi-bit signal buses.

Affine 

Transformation
System Solver

msg_in

sgn_out

S

v

no

O

t1

Polynomial 

Evaluation

F S

v

o2

f

F’

T-1

o

Figure 3.1: UOV Signature Flow Diagram

Signature verification: Prior to verifying a signature is valid, a hash is computed such

that msg in = H(msg). Next the signature, sgn in, is used to produce msg out =

P(sgn in) through Polynomial Evaluation. If msg in = msg out the signature is valid

and the is valid signal is set to 1, otherwise 0. This process is illustrated in Fig. 3.2. Note,

for UOV m = o.

In the original scheme, v = o, but it was proposed in [24] to set v = 2o to defend against

new attacks.
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Polynomial 

Evaluation

sgn_in n

P
msg_out

m

==?

msg_in

m

is_valid

s

Figure 3.2: UOV and Rainbow Verification Flow Diagram

3.3 Rainbow

The original Rainbow scheme [8] is very similar to UOV, but introduces a layering technique

to reduce the signature, public and private key sizes.

Let Fq be a finite field and S be the set {1, 2, . . . , n}. Let v1, v2 . . . , vn be integers such

that 0 < v1 < v2 . . . < vu < vu+1 = n. Define sets Si = {1, 2, . . . , vi} for i = {1, 2, . . . , u}.

Let oi = vi+1−vi and Oi = {vi +1, vi +2, . . . , vi+1} for i ∈ U such that U = {1, 2, . . . , u}.

Therefore, |Si| = vi and |Oi| = oi. Let x = x1, x2, . . . xn, where each xi ∈ Fq.

The central map, F : Fn → Fm and containsm = n−v1 polynomials, p(1), p(2), . . . , p(m) ∈

F[x] in the form;

p(k)(x) =
∑

i,j∈S`,i≤j
α
(k)
ij xixj +

∑
i∈O`,j∈S`

β
(k)
ij xixj +

∑
i∈S`∪O`

γ
(k)
i xi + η(k), (3.6)

where k is a specific polynomial in the map and ` is the only integer such that k ∈ O`.

Let S` be the set of variables (xi | i ∈ S`) called the Vinegar variables for layer `. Let

O` be the set of variables (xi | i ∈ O`) called the Oil variables for layer `. Additionally, let

S and O be the set of all vinegar and oil variables, respectively. If u = 1, the central map

is the same as the UOV central map described in 3.2.

Public Key: In order to hide the composition of the central map, two affine transfor-

mations are composed with F , L1 : Fm → Fm and L2 : Fn → Fn. Therefore, the public key

is defined as P = L1 ◦ F ◦ L2 where P : Fn → Fm.
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Private Key: The private key is made up of F , L−11 and L−12 and therefore the size

is |F| + |L1|+ |L2|, which contains randomly generated coefficients, where L1 and L2 are

ensured to be invertible. Let F` be the set of polynomials for a given layer, and f` = |F`|.

Let l1 = |L1| and l2 = |L2|.

Since L1 is an affine transformation it is made up of a matrix ML1 ∈ Fm×m and a vector

cL1 ∈ Fm, |L1| = m · (m + 1) and since L2 is an affine transformation it is made up of a

matrix ML2 ∈ Fn×n and a vector cL2 ∈ Fn, |L2| = n · (n+ 1).

Using the UOV private key size shown in equation (3.5) and extending it to the Rainbow

layering scheme, the size of the private key is:

u∑
l=1

ol ·
((

vl + 1

2

)
+ vl ∗ ol + vl+1 + 1

)
+m · (m+ 1) + n · (n+ 1) (3.7)

Signature generation: Prior to generating the signature, a hash, msg in, of the message,

msg, is generated, such that, H : {0, 1}? → Fm and msg in = H(msg) ∈ Fm. In order

to calculate the signature, sgn out, the following calculations using the using the private

key are performed: sgn out = (L−12 ◦ F−1 ◦ L
−1
1 )(msg in). For simplicity, assume u = 2,

and therefore ` ∈ (1, 2). The first step is to apply a matrix multiplication and vector

addition using Affine Transformation to find Y = L−11 (msg in), where Y = Y1|Y2, such

that Yl ∈ Fol . Next, the central map must be inverted through a recursive process that

produces each layer’s Oil set O` = F−1` (Y`). Polynomial Evaluation is used to reduce the

quadratic polynomials into a linear system of equations, called F ′`, which can be solved

by the System Solver to obtain O`. This process continues until we obtain the last set of

Oil variables Ou. Next, matrix multiplication and vector addition is performed in Affine

Transformation to find the signature sgn out = L−12 (S|O). In order to avoid re-doing all

steps if an inconsistent system is detected, vinegar variables can optionally be chosen at

each layer, and this is denoted in Fig. 3.3 as a dashed arrow for the set of vinegar variables
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chosen in the second layer, called S′2.

Affine 

Transformation

Polynomial 

Evaluation
System Solver msg_in

sgn_out

m 

F1 S1

v1 

Layer 1

Polynomial 

Evaluation
System Solver

F2

f2 v1

Layer 2

Affine 

Transformation

L2
-1 

l2

n

o1*(o1+1) 

o1 

o2 o2*(o2+1) 

S1

o2 

Y1

o1 

Y2

O1f1

L1
-1

l1

F1’

v2'

S2'

F2’ O2

S1

v1 o1

O1

v2'

S2'

Y2

o2 
o1 

Y1

Figure 3.3: Rainbow Signature Flow Diagram

Signature verification: The process of Rainbow signature verification is identical to the

one described above for UOV, shown in Fig. 3.2.

3.4 Parameter Sets

For each scheme Fq = GF (28) = GF (256). The parameters for each scheme are shown in

Table 3.1
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Table 3.1: UOV Parameter Selection

Sec Pub Key Priv Key Hash Sign
level ( o, v ) size size size size
(bits) (kB) (kB) (bits) (bits)

80 (28, 56) 99.9 95.8 224 672

128 (45, 90) 409.4 381.8 360 1,080

All parameter sets taken from [13].

Table 3.2: Rainbow Parameter Selection

Sec Pub Key Priv Key Hash Sign
level (v1,o1),(v2',o2)/ size size size size
(bits) (v1,o1,o2) (kB) (kB) (bits) (bits)

80[11] (17,12),(1,12)* 22.17 17.06 192 336

128[12] (28, 20, 20) 94.3 62.9 320 544

*For comparison with [17].
Note: v2′ indicates the number of vinegar variables chosen
in the second layer, which is equivalent to S′2 in Fig. 3.3
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Chapter 4: Polynomial Multipliers

The basic operations in multivariate cryptography include multiplication and addition over

a finite field, q. Additionally, multiplications of elements in q are reduced using a reduction

polynomial. Similar to [17], and for efficiency reasons, the reduction polynomial used in

this thesis is x8 +x6 +x3 +x2 + 1. Several state-of-the-art multipliers were created, verified

in VHDL and will be compared at the end of this section.

4.1 Mastrovito Multiplier

Zhang et al describe a method to create Mastrovito multipliers using general irreducible

polynomials in [25]. There are two methods proposed, while the latter one, called “Modified

Mastrovito Multiplier” works better with high-Hamming weight reduction polynomials. The

first “Mastrovito Multiplier” method is used in this thesis. Their paper provides a theorem

and method to construct a product matrix M. Next, an algorithm is presented to compute

M using a series of Toeplitz matrices, where subexpression sharing is utilized to create a

highly modular architecture that works for any irreducible polynomial.

The general algorithm produces a weighted tree, D, based on the irreducible reduction

polynomial. The weights of nodes in the tree D are used to create a multiset, H, which

can contain duplicates. Next, each value j ∈ H is added to seperate multisets, Sj . If

|Sj | mod 2 = 1, then j is inserted in to N . The set N is the final result of this algorithm

and it is used to produce inputs for an XOR Array in the Product Matrix Module. This is the

only modular component in the design, which changes based on the irreducible polynomial.

Upon specification of the XOR Array an appropriate circuit for polynomial multiplication

can be constructed.
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Results are given for both a two and three-input Mastrovito multiplier, where a couple

of two-input Mastrovito multipliers were connected together to produce a single three-input

multiplier.

4.2 Multiply-then-Reduce Multiplier

Tang et al describe a novel three-input multiplier to speed up Rainbow in [17]. The main

idea is that in GF (28) it is “faster” to multiply the three inputs first, then perform reduction

using the irreducible polynomial, and as such this type of multiplier will be referred to as

Multiply-then-Reduce (MTR). They claim that this method is “anti-intuitive” and only

works for small fields, such as GF (28) and is not applicable for large fields. However, the

algorithm is quite straight forward, and Python was used to produce the corresponding sum-

of-products form for both a two-input and three-input multiplier. For clarity, the algorithm

is defined briefly here below;

Let a(x) =
7∑

i=0
aix

i, b(x) =
7∑

i=0
bix

i, and c(x) =
7∑

i=0
cix

i such that a(x), b(x), and c(x) ∈

GF (28) and in the standard polynomial basis. Let d(x) = (a(x)×b(x)×c(x))(mod(f(x))) =

7∑
i=0

dixi, where f(x) is the irreducible polynomial.

1. Compute vij for i = 0, 1, . . . , 21 and j = 0, 1, . . . , 7 such that xi mod f(x) =
7∑

j=0
vijx

j

2. Compute Si for i = 0, 1, . . . , 21 such that Si =
7∑

j+k+l=i

ajbkcl

3. Compute di for i = 0, 1, . . . , 7 such that di =
21∑
j=0

vijSj

4. Obtain the result d(x) =
7∑

i=0
dix

j
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The sum of products expression in Step 3 is obtained for output bits of d(x) in order to

create a circuit for the corresponding three-input multiplier. Additionally, the same process

was used to create a two-iput multiplier for comparison shown below in Table 4.1. Note

that MTR-2 is an MTR multiplier with 2 inputs, MTR-3 is an MTR multiplier with 3

inputs and MTR-2x2 is two MTR-2 multipliers connected in series to produce a 3-input

multiplier.

4.3 Multiplier Results

Table 4.1: GF (28) Polynomial Multiplier Comparison

Name Number of Area Max Frequency
Operands (LUTs) (MHz)

Mastrovito 2 34 444.44

MTR-2 2 38 500.00

Mastrovito 3 81 235.29

MTR-2x2 3 90 250.00

MTR-3 3 312 235.29

MTR-? [17] ? 37∗ 92.87
∗This value is given in ALUTs, for the Altera Stratix II family.
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Chapter 5: System Solvers

5.1 Our Approach

In order to solve a system of equations, the Gauss-Jordan elimination method is used, which

requires three basic operations: inversion, normalization and elimination. In order to solve

a system in o` clock cycles, pivoting plus the basic operations must be completed each clock

cycle. Additionally, to speedup the multiplication process for affine transformation and

polynomial evaluation, all multipliers are re-used and this requires allowing a dual-mode

operation at the cost of multiplexers and an additional input port denoted aux in. Note,

adders in LSS are not reused.

5.2 Interface and Operation

The interface diagram for the linear system solver (LSS) component is shown in Fig. 5.1, and

bus widths are expressed in bits. The mat in and aux in have a width of 2×o`×(o`+1)×t

bits, and the thinner buses are single bit inputs. Data signals mat1 in, mat2 in, aux1 in,

and aux2 in are used in subsequent diagrams and are equal sized parts of mat in and aux in

signals. These signals are used to represent inputs for solving a system or performing a batch

of multiplications. Multiplication output data signals are mat1 out and mat2 out, jointly

represented as mat out. The data signals are assumed to be a row vector form of a matrix

consisting of elements data(i, j) ∀i, j ∈ O` , where data is any of the aforementioned data

signal names. Additionally, pi, pj, pi seq and valid will be discussed in Section 5.2.2, and

p = dlog2(o`)e. Additionally, when p is used in figures, it will represent bits.
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LSS

mat_in
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mat_out

m

aux_in

p

pj
p

pj_col
t*ol

pi_row
t*(ol+1)

en

pi_seq
p*t*ol

rst

valid

Figure 5.1: LSS interface diagram
Note: p = dlog2(o`)e

5.2.1 Multiplication operation

When input m = 1, LSS is in the batch multiplication mode, where all data inputs are

used. By utilizing all multipliers in the PEs, there are 2 × o` × (o` + 1) multiplications

possible per clock cycle. For each clock cycle the result is available on the data output

bus mat out corresponding to the element-wise multiplication of mat1 in × aux1 in and

mat2 in× aux2 in, respectively.

5.2.2 System solving operation

When input m = 0, LSS is in the system solving mode, where only mat1 in is required to

have valid data for a system that needs to be solved. Data from mat1 in is used as input to

the PEs and the appropriate operations are performed based on the op. Upon every rising

edge of the clk input after determining the first pivot, new iterations of the Gauss-Jordan

elimination are produced, until the o` clock cycle - where the solution vector is available in

the last column of mat2 out. The detailed operation is shown in Algorithm 1.

Although this algorithm is shown sequentially, it is executed in parallel as illustrated in

Fig. ??. The first step is to set default values for the pivot column index, pj, and the pivot
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Algorithm 1 Gauss-Jordan Elimination using LSS

1: INPUT: mat1 in, pj col, pi row
2: OUTPUT: mat2 out, pi, pj, pi seq, valid . Outputs available per iteration
3: pj ← 0 . Assign pivot column
4: pi← 0 . Assign pivot row (may change)
5:
6: while pj < o` + 1 do . The first iteration produces initial pivot
7: (pi, pj, op, pi seq, valid)← pivotCalc(pj col) . Execute pivotCalc
8: β ← pj col(pi) . β is the current pivot

9: β−1 ← I(β) . Use inverse component to calculate β−1

10: mat2 out← PE ARRAY(op,mat1 in, pj row, pi col, β−1)
11: end while
12:
13: return (pi seq,mat2 out(:, o`)) . Last column in mat2 out is the solution

row index, pi. Then a while loop is run for o` + 1 iterations. The first iteration is used

to generate the signals shown in line 7. The op signal sets the PEs into the correct mode

of operation to perform either elimination or normalization. The pi based on the current

pivot is calculated and pi seq has the current pi shifted in. However, pi seq is not useful

until the system is solved, and is used to reorder the solution column to obtain an ordered

solution set. Lastly, the valid bit indicates if the system is inconsistent.

Next, the current pivot, β, is selected using multiplexers and the previously regis-

tered value of pi, which is not illustrated. The inverse, β−1 is computed using the in-

verse component, I. On line 10, the PE ARRAY function call indicates a block normal-

ization and elimination operation on the mat1 in by the PE array using the specified

inputs. Normalization and Elimination are defined by operations on elements found in

the inputs: mat1 in, pi row, pj col and β−1. Let PEi,j indicate a processing element

at a the ith row and jth column in the PE array. Then elimination is mat2 out(i, j) =

pi row(j)× pj col(i)× β−1 +mat1 out(i, j), which is equivalent to taking the appropriate

multiple of the corresponding element in the pivot row and normalizing it using β−1 and

then adding. Normalization is mat2 out(i, j) = mat1 in(i, j) × β−1, which is equivalent

to multiplying the current element by the inverse of the pivot. It is worth noting that all

PEs use β−1 to eliminate the dependency of elimination operations on normalization, which
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Figure 5.2: LSS Top-level Diagram

eliminates n clock cycles.

Finally, pj is incremented in order to process the next column in the system and the

loop continues until iteration o` + 1, where the solution is available in the last column of

mat2 out denoted, mat2 out(:, o`). Additionally, an ordered solution can be obtained using

pi seq.

5.2.3 Operational Example

This section gives an example of solving a 5×5 system with elements in GF (28) using LSS.

The detailed steps for Gauss-Jordan elimination on a matrix is shown in Table 5.1. For

each iteration, important rows and columns are bolded. The first iteration is required to

determine the first pivot, and the only part of the matrix used is the pivot column. The

”X” in mat2 out indicates a don’t care because the result is not used. Iterations 2-6 bold

the pivot row and pivot column based on the pj and pi indexes generated by PivotCalc.
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Additionally, each step also shows the internal values of PivotCalc that are used to control

the PE array. The final result is shown on in the last column of mat2 out on iteration 6.

5.2.4 Pivot Circuit

A pivot component that keeps track of previous pivot locations and can seamlessly compute

new pivots was created. The diagram for the pivot calculation component called, PivotCalc,

is shown in Fig. 5.3. It takes as input, each element in the current pivot column, pj col.

Each element is input into o` comparators, denoted by a “! = 0” block with a corresponding

enable, eni. If the eni signal is 1, then the output of the comparator will always be 0, and

otherwise, it will function normally. Based on the output of the comparators, an o` bit

signal, neq0i, is sent to a priority encoder. The priority encoder will output the pivot row

index, pi.

In order to generate eni, the output pi is sent to a decoder to produce a local signal

dec out, which is registered to produce op that programs the PE array for the next clock

cycle. Also, the decoder is necessary because neq0i may have more than one new potential

pivot, and therefore, op will have a 1 at only the newly selected pivot position, which is

exactly the same row of elements that needs to perform normalization. Next, dec out is

XOR’d with previously stored values of eni and the result will be stored in the eni register.

Each clock cycle, the calculated pi is stored in a SIPO and produces pi seq once the system

is solved. Additionally, the valid flag indicates if the system is inconsistent, and allows the

controller to break out of the current system solving operation immediately. It only checks

if all bits in neq0i are all set to 0, and if so, the system is inconsistent.

5.2.5 Inversion

This design uses a partial multiplicative inverse (PMI) based on Fermat's theorem as de-

scribed in [17]. Fig. 5.4 shows the block diagram of the partial multiplicative inverse com-

ponent (PMI), denoted as (I), and otherwise noted the bus width is t bits. The input to

this component are all the possible elements in the pivot column, denoted as pi col and
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Table 5.1: Steps for solving a system using LSS

it# mat1 in mat2 out Signals

1


1b 43 d6 42 41 e6
13 4d 5e a9 17 81
12 83 79 02 17 df
f3 67 f2 5d 67 f5
1e 98 f6 39 97 ef

 X

pj=0 , pi=0

2


1b 43 d6 42 41 e6
13 4d 5e a9 17 81
12 83 79 02 17 df
f3 67 f2 5d 67 f5
1e 98 f6 39 97 ef




01 f4 4b 2b 07 11
00 00 4a fe 6e ef
00 3a 26 7e 69 a0
00 82 61 eb 24 6a
00 28 0a fc cd 5c


pj=1 , pi=2

neq0=
[
1 1 1 1 1

]
op=

[
1 0 0 0 0

]
eni=

[
0 1 1 1 1

]

3


01 f4 4b 2b 07 11
00 00 4a fe 6e ef
00 3a 26 7e 69 a0
00 82 61 eb 24 6a
00 28 0a fc cd 5c




01 00 69 cf d8 78
00 00 4a fe 6e ef
00 01 a9 6e a4 23
00 00 10 2f 2c 48
00 00 cb 5d 89 10


pj=2 , pi=1

neq0=
[
0 0 1 1 1

]
op=

[
0 0 1 0 0

]
eni=

[
0 1 0 1 1

]

4


01 00 69 cf d8 78
00 00 4a fe 6e ef
00 01 a9 6e a4 23
00 00 10 2f 2c 48
00 00 cb 5d 89 10




01 00 00 ef e5 75
00 00 01 52 d5 ae
00 01 00 be 92 ad
00 00 00 3b ba c0
00 00 00 51 fb 68


pj=3 , pi=3

neq0=
[
0 1 0 1 1

]
op=

[
0 1 0 0 0

]
eni=

[
0 0 0 1 1

]

5


01 00 00 ef e5 75
00 00 01 52 d5 ae
00 01 00 be 92 ad
00 00 00 3b ba c0
00 00 00 51 fb 68




01 00 00 00 b4 54
00 00 01 00 9f 4e
00 01 00 00 aa 9a
00 00 00 01 da 52
00 00 00 00 92 7e


pj=4 , pi=4

neq0=
[
0 0 0 1 1

]
op=

[
0 0 0 1 0

]
eni=

[
0 0 0 0 1

]

6


01 00 00 00 b4 54
00 00 01 00 9f 4e
00 01 00 00 aa 9a
00 00 00 01 da 52
00 00 00 00 92 7e




01 00 00 00 00 4f
00 00 01 00 00 00
00 01 00 00 00 25
00 00 00 01 00 22
00 00 00 00 01 31


pj=X , pi=X

neq0=
[
0 0 0 0 1

]
op=

[
0 0 0 0 1

]
eni=

[
0 0 0 0 0

]
pi seq=

[
0 2 1 3 4

]
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Figure 5.3: PivotCalc Component

using the pivot row index, pi, to choose the appropriate pivot element. In order to compute

the partial multiplicative inverse, each component β2, β4, . . . , β128 must be calculated. The

PMICalc component produces the values of (β2, β4, β8) and (β16, β32, β64), which are sent

to two three-input multipliers to produce S1 and S2. The triple (S1, S2, β
128) are used in

the PE components and are equivalent to β−1.

5.2.6 PEs for Elimination, Normalization and Multiplication

The processing element shown in Fig. 5.5 is capable of producing both the elimination and

normalization of any element in the matrix. There are in total, 8 multiplexers, which are

required for batch multiplication mode. If the select is not labeled, it is only the signal

m. Fig. 5.5 depicts a positionally fixed processing element, which has a row value of i

and a column value of j. These indices are used to connect appropriate elements from

inputs with subscript i and/or j. When m = 1 and op = 1, the component performs
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PMICalc

ₓ ₓ
β2 β4 β8 β16 β32 β64

β128S1 S2

β

pi

 β-1=(S1, S2, β128)

pj_col

p

t*ol

Figure 5.4: Inverse Component

mat1 out = mat1 in× aux1 in and mat2 out = mat2 in× aux2 in.

When m = 0, the PE is in system solving mode and performs either normalization or

elimination when op = 0 and op = 1, respectively. In both cases, the result is available on

mat2 outi,j , where i and j represent a position in the matrix. When op = 0, the inputs are

the corresponding matrix element, denoted mat1 inij and β−1, which are used by the PE

to produce the normalized result. When op = 1, the inputs are the corresponding element

in the pivot column, denoted pj coli, the corresponding element in the pivot row, denoted

pi rowj , and β−1. The result of this multiplication is added to mat1 inij to produce the

result of elimination.
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Chapter 6: High-Speed Implementations

Table 6.1: Rainbow (17, 12)(1, 12) Signature Steps

Step Desc Operation Mults Cycles Mults* Cycles*

1 AT msg in+ c1 = a1 N/A 1 N/A 1

2 AT L−11 × a1 = Y = Y1|Y2 576 2 576 4

3 PE F1(S1) = F ′1 4641 16 6324 45

4 SS Solve F ′1 = Y1 N/A 13 N/A 12

5 PE F2(S1|S′2|O1) = F ′2 10725 35 15840 111

6 SS Solve F ′2 = Y2 N/A 13 N/A 12

7 AT (S1|S′2|O1|O2) + c2 = a2 N/A 1 N/A 1

8 AT L−12 × a2 = sgn out 1764 6 1764 12

Total 87 198

Let AT = Affine Transformation, PE = Polynomial Evaluation
SS = System Solving, Desc = Description,
Mults = Total Multiplications, Cycles = Total Clock Cycles
*Taken from [17]

The high-speed implementation capable of using the LSS component described above

must be able to provide data inputs as required to perform each step of the UOV and

Rainbow algorithm. For brevity and comparison to [17], only the Rainbow (17, 12), (1,

12) scheme’s signature generation will be discussed in detail. However, a similar top-level

implementation is used for both schemes and the process for verification is only a Polynomial

Evaluation followed by a comparison, as shown in Fig. 3.2. The operations and timing

of Rainbow, as shown in Fig. 3.3, are detailed in Table 6.1, which gives the number of

multiplications and clock cycles required to execute each operation of signature generation.

The total clock cycles required is 87, compared to 198 by [17].

LSS can of solve an o` × o` system in o` clock cycles after the first pivot is determined,
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and since it uses all multipliers it can compute 2 × o` × (o` + 1) multiplications per clock

cycle. For the chosen parameter set of Rainbow, o` = 12, therefore, it takes 13 clock

cycles for system solving, and it can compute 312 multiplications per clock cycle, which is

double compared to Tang et al. The other speedup occurs by registering the result of VV

multiplications that are reused in each polynomial. Total, there is a significant reduction in

the number of multiplications required for polynomial evaluation and the number of clock

cycles compared to [17].

6.1 Architecture Overview and Operation

All steps described above will be executed on the architecture shown in Figure 6.1. The

Figure is split in to parts for the Preprocessor, Rainbow Core, Postprocessor, and external

RAM. The the middle section represents the Rainbow core area that will be used for sub-

sequent area calculations. The processes of executing Affine Transformation, Polynomial

Evaluation and System Solving used in Table 6.1 are described below. This section will

describe a functional overview of the top-level operation, but excludes error handling for

inconsistent systems, which is handled by the controller.

Affine Transformation: The first AT is performed by reading lines of memory from

SIPORamLBS corresponding to L−11 and producing inputs to LSS that are made up of

data from a1, which is provided by SeqGen. Once LSS performs multiplication, the corre-

sponding result is sent to RowSum to produce Y 1 and Y 2, which contain a value for each

polynomial in L−11 . Similarly, in step 8, from SIPORamLBS corresponding to L−12 are

multiplied with values from SeqGen, that are combined by RowSum to produce the sgnout.

Polynomial Evaluation: The first PE is performed by reading lines of memory from

SIPORamLBS corresponding to each polynomial in F1 and producing inputs to LSS that
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Figure 6.1: Rainbow Top-Level Diagram

are made up of data from S1, which is provided by SeqGen. Once LSS performs multipli-

cation, the corresponding result is sent to RowSum to produce the reduced form of each

polynomial in F1 made up of oil variable coefficients and a constant term, which is sent to

memory. In this fashion, the entire matrix, F ′1 is produced. Similarly, in step 5, lines from

SIPRamLBS corresponding to F2 are multiplied with values from from SeqGen, which

are combined by RowSum to produce F ′2.

System Solving: Prior to running the system solver to solve F−11 = Y1, the constant terms

in the system are summed with Y1 or Y2 and input to mat1 in of LSS from RowSum. The

system solver will provide the solution vector, O`, in o` + 1 clock cycles and the result will

be stored in RAM. The solution vector is then reordered using the SwapSoln component.
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6.2 Sequencing via Memory-based Microprogramming

The process of applying Affine Transformation and Polynomial Evaluation requires data

from memory representing the public and private keys. For this reason, when the sys-

tem is executing AT and PE, it does so by operating on one line of memory at time from

SIPORamLBS. The pattern operation executed on the architecture depends on the spe-

cific line. For example, the operations in AT will require the multiplication of known

variables and their coefficients from memory followed by an XOR of fixed groups in the

result. These groupings depend on the particular AT and are equal in size to a row in

the corresponding matrix. The pattern of inputs matching each coefficient are specified by

SeqGen. The sequences are generated by a circular shift register that is loaded with an

initial pattern that represents all variables required, in order, for a row of the matrix being

operated on. The subsequent polynomial evaluation is performed on the result of LSS by

RowSum, which also sends the result in to memory.

6.3 Components

In order to provide data for all operations in Table 6.1 and maintain compliance with

[23], the top-level design shown in Fig. 6.1 was used. This section provides an overview of

components that are used to accomplish signature generation and verification.

6.3.1 Protocol Processing

Loading data: The rdi data, pdi data and sdi data ports read in data at w = sw = 32 bits

and can operate independently. The smaller block width causes large load times as shwon

in Table 8.1. The pdi data port is connected to the input data conversion unit used in both

signature generation and verification (IDCU-SV), and this component parses the protocol

defined in [23]. The sdi data port is connected to the input data conversion unit for only

signature generation (IDCU-SGN), and is used to parse the secret key. The rdi data port is

used to read the random vinegar variables used for signature generation, which are stored
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in a SIPO. The public data port, pdi data, is used to read msg in for signature generation

or the public key for verification. The msg in value is stored in a SIPO and sent to the

msg in register, msg reg. Once c1 is available, it is XOR’d with msg reg and available for

SeqGen on the mc input port.

Outputting Signature / Verification: After the sgn out is ready for transmission,

it is stored in a PISO, and each block is sent out across do data after passing through the

output data conversion unit for signature generation and verification (ODCU-SV). This

component will produce the appropriate segments for compliance with [23], and transmit

sgn out. Similarly, for verification, the PASS or FAIL segment is generated to indicate the

status of verification.

6.3.2 SipoRamLBS

Both the public and private key are generated in software, as required by [23] and stored

in the SIPORamLBS component, which reads in w-bit blocks of data and stores it in a

SIPO. Once the SIPO is full, it loads the data to an internal RAM component. The RAM is

incrementally populated with a line of the the public and private key that is 2×o`× (o` +1)

bytes wide, which is used in signature verification or generation, respectively. Additionally,

when in read mode, the SIPORamLBS also outputs an associated code for the memory

location being read using a look-up table. This code is a crucial part of the memory-based

microprogrammed architecture used to generate sequences and is connected to SeqGen and

RowSum. All subsequent operations will operate on a line of memory at a time.

The top-level diagram for SIPORamLBS is shown in Fig. 6.2. Lines of the key will

be written to RAM1 for the public key and RAM2 for the private key depending on the

mode signal. The memory height of the private key is (mhpv) and the memory height of

the public key is mhpb. These values are used to initialize a decrementer, mem decr, which

is keeps track of the next memory location to write to. Since w is chosen as 32 a write to

RAM occurs only when a word counter, block incr, is equal to mwdw, setting load word to
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Figure 6.2: SIPORamLBS Top-Level Diagram

true, and writing the contents of LoadSIPO to either RAM1 or RAM2. Once mem decr

reaches 0, the fw reg is used to load the last blocks of memory corresponding to c1 and c2.

Once the private or public key is read, c1 and c2 are available for use. Then SipoRamLBS

is intended to be used in the read mode, where addr in is used to read a line of the public or

private key from key out and the corresponding memory-code is output on the code signal.

6.3.3 SeqGen

The sequence generator circuit (SeqGen) is able to provide the appropriate inputs across

the aux in bus that correspond with coefficients contained in the line of memory being

processed from SIPORamLBS for the private or public key based operations. It provides

precise multiplicands corresponding to each byte in the current line of memory. For example,

during the affine transformations, it will provide the correct sequence of bytes required to

perform the matrix-vector multiplication. In Table 6.1, the matrices are L−11 and L−12

multiplied by the vectors are a1 and a2, respectively. Additionally, to perform Step 2 in

Table 6.1, would require 2 clock cycles that correspond to processing two lines of memory.

The data inputs to LSS are summarized in Table 6.2, and for brevity, the matrix L−11 is
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shown as A, and the parenthesis represent elements in side the matrix or vector. The signal

aux in is generated by SeqGen and mat in is produced by SIPORamLBS.

Table 6.2: Affine Transformation steps

it# aux in mat in

1 [ a1(0) a1(1) ... a1(23) a1(0) ... a1(23)] [ A(0) A(1) ... A(23) A(24) ... A(311)]

2 [ a1(0) a1(1) ... a1(23) a1(0) ... a1(23)] [ A(312) A(313) ... A(335) A(336) ... A(575)]

The sequences required for aux in are generated using a circular shift register that

rotates by the multiplier width, 2× o`× (o` + 1), each clock cycle. Similar to AT, matching

inputs for each line of memory is used in polynomial evaluation. However, there is a SIPO

available in SeqGen that stores the VV multiplications, which are reused for subsequent

polynomial evaluations - effectively eliminating the need to perform these multiplications

with each polynomial as done in [17].

The top-level diagram for SeqGen is shown in Fig. 6.3. The outputs are mat out and

aux out, which are inputs to LSS required to process the corresponding parts of the key.

The input code is used to choose the appropriate sequence for loading, seq load, and shifting

seq shift, which are used to load the initial sequence based on the data inputs mc, v vars,

c2, o2o1, vv vars and sign in, and shift sequences by the number of multipliers, 2 × o` ×

(o` + 1). The vv vars signal is generated by first queuing the vinegar variables, v vars

for multiplication in LSS. On the next clock cycle, the next sequence is queued and

the lss in signal is is used to store the VV variables iteratively in to vv sipo, and this

allows for a large reduction in multiplications by instead reusing the result in vv sipo in

subsequent polynomials. The size of vv sipo must support the maximum number of VV

variables possible, which is s. The patterns seqV V 0, seqL1, seqPK, etc are generated from

components as shown in Fig. 6.3, where PK stands for public key. Additionally, the logic

for these functions were generated by a parameterizable Python scripts.
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Figure 6.3: SeqGen Top-Level Diagram
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6.3.4 RowSum

All outputs from LSS are sent to RowSum for bulk elimination. For AT, all lines of

memory are stored in a SIPO. At most this will be 6 lines of memory for L−12 . The affine

transformations produce Y = Y 1|Y 2, which is stored in RowSum, the signature sgn and the

verification message ver. For PE, only one polynomial is reduced at time, and the matrix

is updated accordingly (per row).
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Figure 6.4: RowSum Top-Level Diagram

The top-level diagram for RowSum is shown in Fig. 6.4. The input lss in is used

to read the output of LSS of size 2 × o` × (o` + 1). These results are stored in a SIPO,

which is connect to the summing logic, producing L1 sum, F1 row sum, F2 row sum,

sgn and PK row sum. Note, the summation logic is generated by parameterizable Python

scripts. These sums are used to produce the results of summing the entire L1 or L2 or a

row corresponding to a polynomial in F1, F2 or PK. In the case of PK, each summation

results in a byte that is stored in SIPO used to generate msg out. The summation of L1

is stored in the Y register, which has a separate output for Y 1 and Y 2. The incremental

constant values of row updates for F1 and F2 are combined with the appropriate byte from
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Y 1 or Y 2, respectively.

6.3.5 SwapSoln
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Figure 6.5: SwapSoln Top-Level Diagram

The top-level diagram for SwapSoln is shown in Fig. 6.5. It includes multiplexers

controlled by the corresponding byte in pi seq. The outputs solni correspond to the ordered

solution set.
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Chapter 7: Binarized Systems

7.1 Matrix Binarization Theorem

Let M be a n × n matrix and z is the solution vector both with coefficients defined in

GF (2t)

r(x)
and using the standard polynomial basis, where r(x) is the reduction polynomial.

There exists an equivalent binary matrix, Mb, with elements in GF (2) and of dimension

(n× t)× (n× t), such that Mb has a binarized solution that is equivalent to the solution of

M .

7.1.1 Corollary

This leads to an expansion factor of t in terms of additional time (clock cycles) required

to solve Mb and the space requirement stays the same. However, solving the system only

requires XOR/AND operations, without the need for inversion and normalization, and this

can significantly reduce the critical path size. However, there is overhead required to perform

the transformation in to the binarized form, which can be preprocessed or performed on

the fly.

7.1.2 Proof

Binarization of an n× n matrix, M , with coefficients in GF (2t) and in the standard poly-

nomial basis:

Let i ∈ {0 . . . n − 1} and j ∈ {0 . . . t − 1} and ρ ∈ M such that ρ = aibi, where

ai ∈ GF (2t) is the coefficient in M and bi ∈ GF (2t) is the unknown variable. Therefore, we

have ai = (ai,0 + ai,1x + · · · + ai,t−1x
t−1) and bi = (bi,0 + bi,1x + · · · + bi,t−1x

t−1), and aibi

mod r(x) = ci = (ci,0 + ci,1x + · · · + ci,t−1x
t−1), where ai,j , bi,j ∈ GF (2). Multiplication
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followed by reduction using r(x) normally produces a value ci,j ∈ GF (2), but since bi,j are

unknown bits of bi, only an expression dependent on bi,j can be derived. This expression is

the basis for the binary transformation, or binarization, using r(x), and can be expressed

as t equations for each ci,j as shown in (7.1);

ci,0 = h0(bi,0, bi,1, . . . , bi,t−1)

ci,1 = h1(bi,0, bi,1, . . . , bi,t−1)

. . .

ci,t−1 = ht−1(bi,0, bi,1, . . . , bi,t−1)

(7.1)

where hi is a binary function made up of binary coefficients with t variables, denoted bi,j .

Additionally, the coefficients, ci,j , are made up of summations (XOR) containing one or

more known bits from ai,j , denoted ai,j,k, and are dependent on r(x). For example, for any

given ci,j we can write ci,j = ai,j,t−1× bi,t−1 + ai,j,t−2× bi,t−2 + ...+ ai,j,1× bi,1 + ai,j,0× bi,0.

Applying binarization to each polynomial in M allows for grouping like terms that amounts

to adding corresponding ci,j terms, as shown in (7.2).

p
(k)
i = (c0,0 + c1,0 + · · ·+ cn−1,0)

+ (c0,1 + c1,1 + · · ·+ cn−1,1)x +

. . .

+ (c0,t−1 + c1,t−1 + · · ·+ cn−1,t−1)x
t−1

(7.2)

Equivalently, we can write p
(k)
i = di,0 + di,1x+ · · ·+ di,t−1x

t−1 = zi = zi,0 + zi,1x+ · · ·+
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zi,t−1x
t−1, where zi is the corresponding element in the solution vector. Equating each di,j

to the corresponding zi,j by using the standard polynomial form, we can derive t equations.

Applying this to all n polynomials, we can obtain Mb, containing n× t equations in n× t

binary variables to equivalently represent M .

7.2 Practical Example and Testing

In this section, the result of converting a 5x5 matrix with elements in GF (28) in to a binary

matrix via the binarization method will be shown. In order to produce the following results

Python scripts were used that can solve any matrix in both GF (28) and GF (2) using Al-

gorithm 1.

Starting with the following matrix, M ;

1b 43 d6 42 41 e6

13 4d 5e a9 17 81

12 83 79 02 17 df

f3 67 f2 5d 67 f5

1e 98 f6 39 97 ef



Algorithm 1 produces the matrix shown below with the solution in the last column;

01 00 00 00 00 4f

00 00 01 00 00 00

00 01 00 00 00 25

00 00 00 01 00 22

00 00 00 00 01 31



The corresponding pi seq signal is;[
0 2 1 4 5

]
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Reordering the solution column based on pi seq produces soln;[
4f 25 00 22 31

]

Matrix binarization produces Mb;
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0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1
1 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1
0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1
0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1
0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1
0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0
1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0
1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0
1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1
1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1
0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1
1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0
1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1
1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1
1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1
1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1
1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1
0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1
1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1
1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1
0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0
1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1
1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1
0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1
0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1
1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0
1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1
1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1
0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1
0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1



Using a swapless pivot method, similar to Algorithm 1, produces the following matrix with

the binarized solution in the last column;
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


The corresponding pi seqb signal is;[
1 2 0 4 5 6 3 7 17 16 19 20 21 22 23 18 10 8 9 12 11 14 15 13 24 26 27 25 30 31 28 29 32 33 35 36 37 34 39 38

]

Reordering the solution column based on pi seqb produces;
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[
0 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1

]

Grouping t bits and using hex notation we obtain solnb;[
4f 25 00 22 31

]

Therefore, it has been shown that the solution for Mb is equivalent to the solution for M

(ie soln = solnb).

7.3 Discussion

Once Mb is obtained, LSS must change accordingly. Let the versions of PE and PivotCalc

that are able to process Mb be called PEb and PivotCalcb, respectively. PEb is in an array,

and contains only a single AND gate and a single XOR gate with control multiplexers as

shown in 7.1. PivotCalcb has to support only two control modes: no change and eliminate,

which removes any control dependency of the row operation on the current pivot row,

represented by pi. However, the pivot row, pivot row, will still be used as the row added

to all PEs in elimination mode. Additionally, this requires a signal like neq0i, but without

the eni, and it shares the same comparators used in the pivot calculation.

Extending the binarization method to apply to Affine Transformation and

Polynomial Evaluation is possible as well, and will require a change to the design of the

original binarized processing element, PEb. Additionally, the binary transformation could

be performed by preprocessing the keys, which would allow AT, PE, and SS to be performed

using only XOR/AND gates. However, this will be left for future work and discussed further

in Section 9.2.
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Figure 7.1: Processing Element for Mb
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Chapter 8: Implementation Results

All results were generated for the Xilinx Virtex 7 FPGA (tbd).

The full system implementations for 80-bit security, UOV-80 and Rainbow-80, and 128-

bit security, Rainbow-128 are shown in Table 8.1. For Rainbow-80, the signature generation

time is 1450 ns, compared to 3120 ns from [17]. Not only does UOV have larger key sizes,

but a larger system solver requirement, which comparatively significantly increases it's area

and decreases the maximum frequency.

Table 8.1: Full Implementation Results

Sign Verify PubKey PrivKey

Algorithm N LUTs FFs Time Time Load Load

Name (µs) (µs) Time (µs) Time (µs)

Rainbow-80 12 58,942 14,103 1.45 1.27 9.10 11.83

Rainbow-128 20 168,728 41,273 3.70 3.58 66.06 91.48

UOV-80 28 334,591 76,217 3.68 2.64 127.96 122.64

8.1 Component Results

Implementation results for system solvers are shown in Table 8.2. The N column corre-

sponds to the sizes of N×N system solvers, which correspond to the different oil parameter

sizes shown in Table 3.1 and Table 3.2.

Implementation results for components in the system solver are shown for Rainbow-80

and Rainbow-120 in Table 8.3 and Table 8.4, respectively.
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Table 8.2: Linear System Solver results

N LUTs FFs Max Freq (MHz)

12 37,448 78 240

20 99,116 125 240

28 205,712 125 240

Note: N > 28 was not implemented.

Table 8.3: Rainbow-80 Component Breakdown

Name LUTs FFs Max Freq (MHz)

PivotCalc 62 76 >357

I 67 0 >357

Table 8.4: Rainbow-120 Component Breakdown

Name LUTs FFs Max Freq (MHz)

PivotCalc 113 125 >357

I 67 0 >357
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8.2 Pipelining Components

Pipelining components can increase maximum frequency of the design while using the same

area and using registers. In the case of FPGAs these registers are already available in the

device fabric. Unfortunately, the PE elements cannot be pipelined since the next clock

cycle results for System Solving require the complete computation of the PE Array in order

to select the pivot row. However, the RowSum component may be pipelined, and this will

be helpful for larger paramter sets. Additionally, the size of RowSum should scale the same

as the number of terms in polynomials used in UOV or Rainbow. However, pipelining was

not needed in these implementations.

8.3 Binarization Results

The results for using PEb are shown in Table 8.5. It is clear that PEb takes much less area,

however, it will require t2 more processing elements. However, the PE Array would still

require less area.

Table 8.5: Binarized PE

Name LUTs FFs WNS (ns)

PEb 1 0 2.28

PE 278 0 0.01
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Chapter 9: Conclusions

9.1 Summary

In this thesis, we have demonstrated a high-speed architecture capable of executing the

UOV and Rainbow signature schemes. We introduced a novel pivot calculation circuit,

PivotCalc, that helped to produce a regular PE array structure. Furthermore, the PE

array is controlled by a memory-based microprogramming technique to set the correct array

operation and also significantly reduces multiplexing. The architecture is able to generate

signatures and perform verification more than twice as fast as the previous state-of-the art

high speed implementation. As shown in Table 6.1, it takes only 87 clock cycles to perform

a Rainbow-80 signature generation compared to 198 clock cycles by [17]. This speed up is

due to registering VV variables and because the architecture reuses all multipliers in LSS.

In order to schedule appropriate inputs with respect to lines of memory corresponding to

the key, a novel method was created to generate memory-based sequences that are used

to perform appropriate block multiplications followed by the corresponding additions for

Affine Transformation and Polynomial Evaluation.

By removing the multiplexers in the design we have greatly reduced the dependence of

the critical path to the size of the system solver, LSS. Furthermore, the regular structure of

the PE array allows to constrain the critical path to that of a PE. However, PivotCalc may

grow larger due to the use of parameter dependent encoders and decoders. The size of inputs

in to these components is only o` and dlog2(o`)e, respectively, so we could expect a linear

scaling, which is much better in contrast to the previous exponential increase in multiplexers.

The reduction in critical path allows for utilization of larger systems solvers in high-speed

implementations required by larger parameters sets offering more security. Additionally,

the complexity of SeqGen and RowSum may be reduced, and it should be noted that MB
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eliminates the need for RowSum. A design space exploration will be conducted to assess

the best trade off for throughput/area adjusting the number of rows in the PE array, and

consequently, the number of multipliers in the system. The use of composite field multipliers

may further reduce the critical path, and pipelining may also help.

We introduced a binarization method that is applied to matrices with elements in

GF (2t), and show that it has a potential to reduce the critical path of system solvers

required for Multivariate systems. Traditionally, all system solvers used in Multivariate

systems are explicitly designed or extended to operate on elements in GF (2t), and this

requires additional area overhead of the inverse component and multipliers. For the first

time, we eliminate this requirement for all Multivariate schemes, and demonstrate a circuit

capable of operation using only AND/XOR gates, which will support either SS only or AT,

SS and PE, respectively. This allows for a large number of system solver architectures,

aimed at GF (2) matrices, to be useful in Multivariate schemes.

9.2 Future Work

Future work will include further reduction in area for high-speed implementations by reduc-

ing the complexity of SeqGen and RowSum and using a limited number of rows (ie < o`)

in LSS. This will result in a reduction of multipliers available at the cost of an increase

in the latency required for signature generation and verification, effectively trading off area

for latency. Additionally, the critical path can be improved by exploring composite field

multipliers, such as in [26], and implementing the full design with pipelined components.

Additionally, MB eliminates RowSum, but still requires SeqGen. Implementing PEb1

would require additional multiplexers for the dual mode of operation (ie system solving and

block multiplication), and redesigning the PE array to support adder reuse in order to add

like terms without RowSum. The pattern of addition among PEs can be controlled by

multiplexers, and it can be generated by SeqGen. This new PE array also can drastically

speed up the process of Affine Transformation and Polynomial Evaluation, which are still

53



more than 70% of the execution time, at the cost of area. The speedup in AT and PE

would be possible at the cost of increased area due to a larger PE array. However, this

would offset the increase in clock cycles for SS, which would be t times larger than LSS,

and decrease the latency and the critical path.
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