


 

INTERGRATION OF REMOTE SENSING AND METEOROLOGICAL DATA FOR 

MONITORING AGRICULTURAL DROUGHT 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at George Mason University 

by 

Chunming Peng 

Master of Science 

George Mason University, 2010 

Director: Liping Di, Professor 

Department of Geography and Geoinformation Science  

Spring Semester 2014 

George Mason University 

Fairfax, VA 



ii 

 

 
This work is licensed under a creative commons  

attribution-noderivs 3.0 unported license. 

 

http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/


iii 

 

DEDICATION 

This is dedicated to my loving family and friends. 



iv 

 

ACKNOWLEDGEMENTS 

Special thanks go to my dissertation committee for their guidance in leading this 

research. I owe my deepest gratitude to my PhD advisor, Dr. Liping Di, who has always 

been innovative, encouraging and inspiring, and guided me through all stages of this 

dissertation with his wisdom and patience. I equally thank Dr. Ruixin Yang, Dr. Dan 

Carr, and Dr. Arie Croitoru for their invaluable help and support, instructing me towards 

creative thinking, idea delivery, experiment, and dissertation writing. 

Also, Dr. Meixia Deng, Dr. Wenli Yang, Dr. Weiguo Han, and Dr. Genong Yu have 

generously helped me with their excellent touch in Science and Technology, and guided 

me so much in multiple projects. Other wonderful colleagues at CSISS deserve my 

sincere gratitude as well, including Ali Yagci, Ziheng Sun, Dr. Yuanzheng Shao, Bei 

Zhang, Dr. Zhengwei Yang, Dr. Aijun Chen, Dr. Peisheng Zhao, Dr. Peng Yue, Ronjay 

Shrestha, Lingjun Kang, Weishu Gong, Xicheng Tan, Gil Heo, Huilin Wang and 

Xuanang Cheng. 

I would like to thank me dearest family and friends who have always stood behind me 

and given me strengths. My loving parents, Qiaohong Li, and Hongsi Peng, have always 

been the backbone of my life, and encouraged me to explore the unknown. 

Finally, thanks go out to Fenwick Library and University Writing Center for all the 

support in formatting and revising my dissertation. 

This research was partially supported by a grant from NASA Applied Science Program 

(Grant #: NNX09AO14G, PI: Dr. Liping Di). 

 



v 

 

TABLE OF CONTENTS 

Page 

List of Tables ..................................................................................................................... ix 

List of Figures .................................................................................................................... xi 

List of Equations ............................................................................................................... xv 

List of Abbreviations ....................................................................................................... xvi 

Abstract ........................................................................................................................... xvii 

Chapter 1 INTRODUCTION .............................................................................................. 1 

Section 1.1 Importance of agricultural drought monitoring ............................................ 1 

Section 1.2 Advantages and disadvantages of Remote Sensing based drought indicators

 ......................................................................................................................................... 2 

Section 1.3 Statement of Problem ................................................................................... 5 

Section 1.4 Objectives and Scopes .................................................................................. 7 

Section 1.5 Organization of dissertation ......................................................................... 8 

Section 1.6 Data source and study area ......................................................................... 10 

Subsection 1.6.1 Source of remotely sensed data ...................................................... 10 

Subsection 1.6.2 Source of Crop Mask ..................................................................... 16 

Section 1.7 Principal results .......................................................................................... 20 

Chapter 2 LITERATURE REVIEW: METHODS FOR MONITORING VEGETATION 

STRESSES, SOIL MOISTURE AND AGRICULTURAL DROUGHT ......................... 21 

Section 2.1 Monitoring vegetation stresses in cropland ................................................ 21 

Subsection 2.1.1 Vegetation Stresses ........................................................................ 21 

Subsection 2.1.2 Vegetation index (VI) for various crops ........................................ 30 

Section 2.2 Soil moisture estimation ............................................................................. 40 

Section 2.3 Methods for monitoring agricultural drought............................................. 43 

Subsection 2.3.1 Definition of drought ..................................................................... 43 

Subsection 2.3.2 Drought in the United States .......................................................... 47 

Subsection 2.3.3 Major methods of drought monitoring over large areas ................ 52 



vi 

 

Subsection 2.3.4 Key research issues in agricultural drought monitoring for the 

global communities.................................................................................................... 54 

Chapter 3 DETERMINATION OF VEGETATION PHENOLOGICAL PHASES FROM 

GROWING DEGREE DAYS (GDD) .............................................................................. 58 

Section 3.1 Determination of SOS and EOS by crop calendar ..................................... 59 

Section 3.2 Identification of crop phenologic stage with GDD .................................... 62 

Subsection 3.2.1 Calculation of GDD ....................................................................... 62 

Subsection 3.2.2 Mapping GDD to corn phenologic stages ...................................... 65 

Section 3.3 The relationship between crop phenologic stages and crop yields ............ 67 

Section 3.4 Summary .................................................................................................... 70 

Chapter 4 APPLICATION OF SATELLITE-BASED VEGETATION VIGOR ............. 71 

Section 4.1 Variation of vegetation vigor for the entire globe ...................................... 71 

Subsection 4.1.1 Data and Methods .......................................................................... 72 

Subsection 4.1.2 Results ............................................................................................ 76 

Section 4.2 Variation of vegetation vigor in latitudes ................................................... 77 

Section 4.3 Variation of vegetation vigor in climate zones .......................................... 80 

Subsection 4.3.1 Case study of Nile Delta ................................................................ 81 

Subsection 4.3.2 Case study of the Great Lakes ........................................................ 82 

Subsection 4.3.3 Case study of Texas ....................................................................... 83 

Subsection 4.3.4 Case study of SW China ................................................................ 96 

Section 4.4 Summary .................................................................................................. 103 

Chapter 5 RELATIONSHIP BETWEEN REMOTE SENSING BASED 

AGRICULTURAL DROUGHT INDICATORS AND ROOT ZONE SOIL MOISTURE

......................................................................................................................................... 105 

Section 5.1 Introduction .............................................................................................. 105 

Section 5.2 Methodology ............................................................................................ 109 

Subsection 5.2.1 Bivariate Linear Regression Model for Evaluation ..................... 109 

Subsection 5.2.2 Remotely Sensed Drought Indices ............................................... 110 

Section 5.3 Study Area and Data ................................................................................ 111 

Section 5.4 Results and discussions ............................................................................ 116 

Subsection 5.4.1 Temperature and Precipitation ..................................................... 116 

Subsection 5.4.2 Growing Season Time-series Soil Moisture and VI Profiles ....... 117 

Subsection 5.4.3 Correlation between soil moisture and VIs .................................. 124 



vii 

 

Section 5.5 Summary .................................................................................................. 129 

Section 5.6 Future Work ............................................................................................. 129 

Chapter 6 ASSESSING IMPACT OF AGRICULTURAL DROUGHT ON THE 

VARIATION OF VEGETATION VIGOR .................................................................... 131 

Section 6.1 Introduction .............................................................................................. 131 

Section 6.2 Methodology ............................................................................................ 133 

Subsection 6.2.1 Reversed Normalized Difference Drought Index (RNDDI) ........ 133 

Subsection 6.2.2 Combined Condition Index (CCI) ................................................ 135 

Subsection 6.2.3 Correlation and Regression Analysis ........................................... 140 

Section 6.3 Study area and data .................................................................................. 141 

Subsection 6.3.1 Study area ..................................................................................... 141 

Subsection 6.3.2 Remotely Sensed Indices as input ................................................ 144 

Subsection 6.3.3 Crop Mask Data ........................................................................... 145 

Section 6.4 Results and discussion .............................................................................. 147 

Subsection 6.4.1 Intermediate and Final Products .................................................. 147 

Subsection 6.4.2 Temporal Pattern of CCI .............................................................. 152 

Subsection 6.4.3 Spatial Pattern of CCI .................................................................. 154 

Subsection 6.4.4 CCI and Root-zone soil moisture Observations ........................... 156 

Section 6.5 Results and Conclusions .......................................................................... 162 

Section 6.6 Future Directions ...................................................................................... 163 

Chapter 7 AGRICULTURAL DROUGHT INFORMATION WEB SERVICES ......... 164 

Section 7.1 Background .............................................................................................. 164 

Section 7.2 Web Services for Aggregational Agricultural Drought Information ....... 166 

Subsection 7.2.1 Introduction .................................................................................. 166 

Subsection 7.2.2 Presentation of Agricultural Drought Information ....................... 169 

Subsection 7.2.3 The foundations of Web Service .................................................. 174 

Subsection 7.2.4 Implementation of Drought Information Web Service ................ 176 

Subsection 7.2.5 A case study of the U. S. Corn Belt ............................................. 183 

Subsection 7.2.6 Summary ...................................................................................... 186 

Subsection 7.2.7 Future Work ................................................................................. 187 

Section 7.3 Agricultural Drought Information Cluster ............................................... 189 

Subsection 7.3.1 Background .................................................................................. 191 

Subsection 7.3.2 Methodology ................................................................................ 191 



viii 

 

Subsection 7.3.3 Implementation ............................................................................ 193 

Subsection 7.3.4 Discussion & Summary ............................................................... 197 

Chapter 8 CONCLUSIONS AND DISCUSSION .......................................................... 198 

Section 8.1 Conclusions .............................................................................................. 198 

Subsection 8.1.1 Vegetation Stresses Evaluation .................................................... 199 

Subsection 8.1.2 Root-zone soil moisture for validation ......................................... 200 

Subsection 8.1.3 Web Services for Agricultural Drought Information ................... 201 

Section 8.2 Applications of this research .................................................................... 201 

Section 8.3 Limitations of this work ........................................................................... 203 

Section 8.4 Future works ............................................................................................. 204 

References ....................................................................................................................... 206 

 



ix 

 

LIST OF TABLES 

Table Page 

Table 1 Changes in crop type from 2010 to 2011 in the state of Iowa (top 5 in count of 

pixels) ................................................................................................................................ 19 

Table 2 Changes in crop type from 2011 to 2012 in the state of Iowa (top 5 in count of 

pixels) ................................................................................................................................ 20 

Table 3 The corresponding wavelength ranges for the seven bands of MODIS surface 

reflectance products. ......................................................................................................... 34 
Table 4 Drought timeline of the U. S. (source: 

http://www.circleofblue.org/waternews/2012/world/infographic-u-s-drought-impacts-

2012-corn-crops/) .............................................................................................................. 51 
Table 5 The usual planting and harvesting dates by crop in the state of Iowa based on 

observations of year 1996 (Source: 

http://www.nass.usda.gov/Publications/Usual_Planting_and_Harvesting_Dates/uph97.pdf

). ........................................................................................................................................ 61 

Table 6 The usual planting and harvesting dates by crop in the state of Iowa based on 

observations of year 2009 (Source: 

http://usda01.library.cornell.edu/usda/current/planting/planting-10-29-2010.pdf). ......... 61 
Table 7 The usual planting and harvesting dates of corn (for grain) by state based on 

observations of year 1996 (Source: 

http://www.nass.usda.gov/Publications/Usual_Planting_and_Harvesting_Dates/uph97.pdf

). ........................................................................................................................................ 61 
Table 8 Yearly Precipitation and Temperature for Texas (source: NOAA NCDC). ........ 87 

Table 9 Yearly Precipitation and Temperature for CD#1 (source: NOAA NCDC). ........ 87 
Table 10 Yearly Precipitation and Temperature for CD#5 (source: NOAA NCDC). ...... 88 
Table 11 The crop rotation patterns for the study site (SCAN site #2031) from year 2005 

to year 2011..................................................................................................................... 111 
Table 12 Top three soil types for the neighborhood of the study site............................. 112 

Table 13 Soil moisture and temperature parameters collected by SCAN (source: SCAN 

Website). ......................................................................................................................... 114 

Table 14 Averaged daily precipitation and temperature for the SCAN site 2031 for years 

2011, 2010, 2007 and 2006. ............................................................................................ 116 
Table 15 Correlation Coefficient (r) between soil moisture (SM) at 2, 4, 8, 20 and 40 

inches depths and corn VIs with time lags up to 64 days during the growing season of 

2006 and 2007. For each row, (a1, a2): NDVI vs. SM, (b1, b2): NDWI vs. SM, (c1, c2): 

EVI vs. SM, and (d1, d2): NDDI vs. SM. ....................................................................... 125 
Table 16 Regression models used to create trend lines for CCI vs. Soil Moisture. ........ 140 



x 

 

Table 17 Parameters for the seven SCAN sites chosen for the study. ............................ 141 
Table 18 The Crop type distribution for these seven SCAN sites. ................................. 142 
Table 19 Crop Mask surrounding study sites in year 2010. ........................................... 143 
Table 20 Regression Equations for dry and wet edges. .................................................. 150 

Table 21 Pearson Correlation Coefficient between CCI and precipitation or soil moisture 

at various depths. ............................................................................................................ 157 
Table 22 Pearson Correlation Coefficient between VCI and precipitation or soil moisture 

at various depths. ............................................................................................................ 158 
Table 23 Drought Intensity Scale used by USDM (source: 

http://www.drought.gov/drought/content/understanding-drought-printable-version#p2_4)

......................................................................................................................................... 170 
Table 24 Alternate representation of the Drought severity classification used by USDM.

......................................................................................................................................... 171 
 



xi 

 

LIST OF FIGURES 

Figure Page 

Figure 1 The optical (land) channel band widths for NOAA AVHRR, LANDSAT ETM+, 

and MODIS instruments (Brown et al., 2008). ................................................................. 12 

Figure 2 Major and minor corn areas in the U.S. (source: 

http://www.usda.gov/oce/weather/pubs/Other/MWCACP/Graphs/USA/Corn2006to2010.

pdf) .................................................................................................................................... 17 
Figure 3 Major and minor soybeans fields in the U.S. (source: 

http://www.usda.gov/oce/weather/pubs/Other/MWCACP/Graphs/USA/Corn2006to2010.

pdf) .................................................................................................................................... 17 

Figure 4 Changes in crop type from 2010 to 2011 in the state of Iowa (the color of red 

signifies change). .............................................................................................................. 19 

Figure 5 Changes in crop type from 2011 to 2012 in the state of Iowa (the color of red 

signifies change). .............................................................................................................. 19 
Figure 6 Vegetation stresses can be classified as moisture, nutrient, thermal stresses, etc.

........................................................................................................................................... 24 
Figure 7 The NDVI curves of corn and soybeans for IL, IA, and WI (Johnson, 2010). .. 31 

Figure 8 Even for the same crop in different states, the amplitude of NDVI differs. Also 

the timing could vary up to two months for some crops (Johnson, 2010). ....................... 32 

Figure 9 Even for the same crop in the same state, the NDVI performance could vary 

across years (Johnson, 2010). ........................................................................................... 32 

Figure 10 Jackson et al. (2004) pointed out that, for corn alone, NDVI reaches saturation 

during the middle of research period while the NDWI continues to change. ................... 35 

Figure 11 Jackson et al. (2004) pointed out that, for corn alone, NDVI reaches saturation 

during the middle of research period while the NDWI continues to change. ................... 35 
Figure 12 Spatial distribution patterns of pixels with positive, negative, or insignificant 

correlations for the (a)–(c) three sub-periods (April-May, June-July, and August-Sept.) of 

the growing seasons (Karnieli et al., 2008). ...................................................................... 40 

Figure 13 Transitions between meteorological, agricultural and hydrologic droughts. ... 46 
Figure 14 The deviation from trend for non-irrigated corn yield since 1960 (USDA NASS 

Crop Report, 2013). .......................................................................................................... 49 
Figure 15 The corn yield for five states from 2007 to 2012. (Source: 

http://www.desdemonadespair.net/2012/10/in-aftermath-of-drought-us-corn.html) ....... 49 
Figure 16 The vegetative, reproductive, and mature stages of corn can be divided into 11 

sub-phases. ........................................................................................................................ 59 

Figure 17 Daily water use by corn as influenced by stage of development. Irrigation 

scheduling decisions should be adjusted to reflect changes in water consumption by the 



xii 

 

crop during the growing season (Image Source: 

http://www.bae.ncsu.edu/programs/extension/evans/ag452-4.html). ............................... 63 
Figure 18 GDD time-series made with the temperature data collected from SCAN site 

#2031................................................................................................................................. 65 

Figure 19 Generic maize growth stages for (1) those with no stresses and (2) those grown 

on dryland. As shown in the specific case of generic maize, the AGDD at maturity is 

1510 for the dryland, and 1635 when there is no drought and other stresses (source: 

http://www.cropscience.org.au/icsc2004/poster/2/8/607_mcmaster.htm). ....................... 66 
Figure 20 This bar chart is mapping DOY to corn growing stages of SCAN site #2031 in 

years 2006, 2008, 2009 and 2011. .................................................................................... 67 
Figure 21 Iowa corn planting progress (source: 

http://www.extension.iastate.edu/CropNews/2008/1208elmoreabendroth.htm) .............. 68 

Figure 22 Iowa corn silking dates (source: 

http://www.extension.iastate.edu/CropNews/2008/1208elmoreabendroth.htm) .............. 69 
Figure 23 Circled strips are from V6 to V11, each compositing 36 MODIS tiles from H00 

to H35 (source: http://nsidc.org/data/modis/data_summaries/landgrid.html). ................. 72 
Figure 24 The yearly average NDVI for the entire globe from 2001 to 2011. ................. 76 

Figure 25 The inter-annual change of global NDVI average of years 2003, 2009 and the 

11 year average from 2001 to 2011. ................................................................................. 77 
Figure 26 The yearly average NDVI value for parallel belts from V06 to V11. .............. 78 

Figure 27 The seasonal NDVI curves of belt V06 for years 2004, 2007 and the 12-year 

average NDVI. .................................................................................................................. 79 

Figure 28 The seasonal NDVI curves of belt V07 for years 2004, 2007 and the 12-year 

average NDVI. .................................................................................................................. 80 

Figure 29 The inter-annual NDVI average for Nile Delta from years 2001 to 2011........ 82 
Figure 30 inter-annual NDVI average for the Great Lakes from years 2001 to 2011. ..... 83 

Figure 31 The inter-annual NDVI average for Texas from years 2001 to 2011............... 84 
Figure 32 Climate divisions (CD) inside the state of Texas 

(http://www.nass.usda.gov/Statistics_by_State/Texas/Charts_&_Maps/cwmap.htm). .... 85 

Figure 33 Monthly Temperature (upper panel) and Precipitation (bottom panel) for CD1, 

CD5 and Texas from 2000 to 2011 (source: NOAA NCDC). .......................................... 86 

Figure 34 The VCI time-series for CD#1 (A), CD#5(B) and the state of Texas(C)......... 91 
Figure 35 PDSI time-series of CD#1(A), CD#5(B), and the entire state of Texas(C). .... 92 

Figure 36 The yearly VCI and PDSI values for CD#1(A), CD#5(B) and Texas(C). ....... 94 
Figure 37 Non-biased VCI (row 1) and the biased VCI (rows 2 &3). .............................. 95 
Figure 38 Yearly cotton yields for the state of Texas from 2000 to 2011. ....................... 96 
Figure 39 The study area compositing of Yunnan, Guizhou, Sichuan, and the city of 

Chongqin. .......................................................................................................................... 99 
Figure 40 The Severity Degrees of Agricultural Drought for China, 04/17/2010 (left) and 

05/12/2010 (right) (Source: CMA). ................................................................................ 100 

Figure 41 NDVI maps of the three provinces (Yunnan, Guizhou, and Sichuan) for the 

eight days periods (left) 05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010.

......................................................................................................................................... 101 



xiii 

 

Figure 42 VCI maps of the three provinces (Yunnan, Guizhou, and Sichuan) for the eight 

days period (left) (left) 05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010.

......................................................................................................................................... 101 
Figure 43 Day-time TCI maps of the three provinces (Yunnan, Guizhou, and Sichuan) for 

the eight days period 05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010. 102 
Figure 44 Night-time TCI maps of the three provinces (Yunnan, Guizhou, and Sichuan) 

for the eight days period 05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010.

......................................................................................................................................... 103 
Figure 45 Soil Type Classification map for the neighborhood near SCAN site #2031, in 

which soil types 507, 138B and 55 are shown in contours. (Source: 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx ) ..................................... 113 
Figure 46 Corn field’s soil moisture content at 5 depths (2, 4 and 8 inches (upper panel), 

20 and 40 inches (bottom panel)) from SCAN (year 2011, site #2031). ........................ 118 
Figure 47 Soybeans field’s soil moisture content at 5 depths (2, 4 and 8 inches (upper 

panel), 20 and 40 inches (bottom panel)) from SCAN (year 2010, site #2031). ............ 119 

Figure 48 Soybeans field’s soil moisture content at 5 depths (2, 4 and 8 inches (upper 

panel), 20 and 40 inches (bottom panel)) from SCAN (year 2007, site #2031). ............ 120 

Figure 49 Corn field’s soil moisture content at 5 depths (left: 2, 4 and 8 inches, right: 20 

and 40 inches) from SCAN (year 2006, site #2031). ...................................................... 121 
Figure 50 Temporal variations of rescaled VIs for corn during the growing season of 

2011 (left) and 2006 (right)............................................................................................. 123 
Figure 51 Temporal variations of rescaled VIs for soybean during the growing season of 

2010 (left) and 2007 (right)............................................................................................. 124 
Figure 52 The schematic plot of land surface temperature and RNDDI space, and the 

conceptual relationships with evaporation, transpiration, and fractional vegetation cover 

(RNDDI, units: 1; LST, units: Kelvin). .......................................................................... 137 

Figure 53 The NDWI images of Ames, Story on (a) 2009/193, (b) 2010/193, (c) 

2011/193, and (d) 2012/193. ........................................................................................... 144 
Figure 54 The NDVI images of Ames, Story on (a) 2009/193, (b) 2010/193, (c) 

2011/193, and (d) 2012/193. ........................................................................................... 145 
Figure 55 Crop Mask of tile h11v04 for year 2009. ....................................................... 146 

Figure 56 Crop Mask for tile h11v04 of various crop types in 2009: (a) Deciduous forest, 

(b) Grass, (c) Corn, and (d) Soybeans............................................................................. 147 

Figure 57 Scatter plot of pixels with the maximum, and minimum LST values, and the 

warm and cold edges derived via polynomial fit for the RNDDI/LST space of tile h11v04 

for (a) 2009/193 – 2009/208, (b) 2010/193 – 2010/208, (c) 2011/193 – 2011/208, (d) 

2012/193 – 2012/208, and (e) 2013/193 – 2013/208. ..................................................... 149 

Figure 58 The CCI maps of tile h11v04 for 2009/193, 2010/193, 2011/193, 2012/193 and 

2013/193. ........................................................................................................................ 151 
Figure 59 The CCI maps of tile h11v04 for the growing season of 2009 (which is from 

DOY 113 to 257). ........................................................................................................... 153 
Figure 60 The CCI maps (left) VS. VCI maps (right) of tile h11v04 for the first half 

growing season of 2009 (which is from DOY 113 to 193)............................................. 154 



xiv 

 

Figure 61 Areas with accumulated CCI values during peak growing seasons through 

multiple years, and seven points representing SCAN sites from multiple states. ........... 155 
Figure 62 The residuals vs fits plots for site #2031; estimated RZSM is displayed on the 

x-axis, while the residual of subtracting estimated from observed RZSM is shown on y-

axis. (Top) Estimation of RZSM is made with linear regression model of CCI; (Bottom) 

Estimation of RZSM is made with linear regression model of VCI. .............................. 160 
Figure 63 The residuals vs fits plots for site #2020; estimated RZSM is displayed on the 

x-axis, while the residual of subtracting estimated from observed RZSM is shown on y-

axis. (Top) Estimation of RZSM is made with linear regression model of CCI; (Bottom) 

Estimation of RZSM is made with linear regression model of VCI. .............................. 161 
Figure 64 An SOA model (source: IBM website) .......................................................... 176 
Figure 65 Schematic diagram showing generalized input and output of an agricultural 

drought information system. ........................................................................................... 178 
Figure 66 Functional modules of agricultural drought information system. .................. 178 
Figure 67 The data exchanged between the client requesting drought information and 

server side that is performing drought analysis. ............................................................. 179 
Figure 68 Sample WSDL snippet describing drawROI request. .................................... 180 

Figure 69 Sample SOAP message requesting drawROI service. ................................... 181 
Figure 70 Sample SOAP response returned by drawROI request. ................................. 181 
Figure 71 How server handles drawROI request at the back end. .................................. 182 

Figure 72 Drought maps returned from DrawROI Web Service (requested area: the U. S. 

Corn Belt, and requested day: 20XX/193). ..................................................................... 183 

Figure 73 (Left) Percentage of crop area suffering from different degrees of drought (D4 

to D0) in the period of 2001 to 2012. (Right) The mean VCI of the Corn Belt area from 

2001 to 2012 ................................................................................................................... 184 
Figure 74 Response per GetDroughtPercentageByStates request – bar charts of 

distribution of drought severity groups per state for Idaho, Illinois, Indiana, Iowa and 

Kansas for the day of 2012/05/08. .................................................................................. 185 
Figure 75 (Top Left) Percentage of crop area suffering from different degrees of drought 

(D4 to D0) in the period of 2011 and 2012 of day 129 in time series returned by 

GetDroughtTimeSeries request. ...................................................................................... 186 

Figure 76 Scheme of the Agricultural Drought Information Cluster. ............................. 194 
Figure 77 Dimensions to be considered include Vegetation Conditions, Soil Moisture, 

Combined Drought Indicators, Crop Phenology, and Meteorology. And for each 

dimension, user can choose none to all indicators for analysis. ..................................... 196 
Figure 78 Select from multi-variate linear regression model, or least squares model to fit 

the chosen independent variables (indicators) to the verification source (e.g. soil moisture 

observations). A web service is to be invoked to calculate the correlation coefficient. . 196 
Figure 79 the slider bar to adjust the weights of each variable to be used to define the new 

drought indicator. User can look at the automatically generated CC to find the most 

appropriate weights for each variable. ............................................................................ 196 
Figure 80 (Left) The global drought map based on the new combined drought indicator 

#1 which simulates the AMSR-E Vegetation Water Content. (Right) combined drought 

indicator #2 simulating the ECV Soil Moisture. ............................................................. 197 



xv 

 

LIST OF EQUATIONS 

Equation Page 

Equation 1 Temperature Condition Index (TCI). ............................................................. 29 
Equation 2 NDVI .............................................................................................................. 33 

Equation 3 NDWI ............................................................................................................. 34 

Equation 4 GDD ............................................................................................................... 63 

Equation 5 Vegetation Condition Index (VCI) ................................................................. 89 
Equation 6 The bivariate least square regression model used to simulate soil moisture 

using VI. .......................................................................................................................... 109 
Equation 7 Calculation of EVI (Huete et al., 2002) ........................................................ 110 

Equation 8 VI being rescaled to the range of 0~1. ......................................................... 122 
Equation 9 Normalized Drought Difference Index (NDDI). .......................................... 133 

Equation 10 Reversed Normalized Drought Difference Index (RNDDI). ..................... 134 
Equation 11 Scaled RNDDI. ........................................................................................... 135 
Equation 12 Warm and Cold Edges of RNDDI/LST space (polynomial fit) ................. 138 

Equation 13 Combined Condition Index (CCI). ............................................................. 139 
Equation 12 Drought Vagueness of any area residing in drought severity of median. .. 174 

Equation 13 multivariate linear regression model for simulation. .................................. 192 
Equation 14 The least squares model (polynomial fit) for simulation............................ 193 

 



xvi 

 

LIST OF ABBREVIATIONS 

National Oceanic and Atmospheric Administration .................................................. NOAA 

National Aeronautics and Space Administration ........................................................ NASA 

United States Department of Agriculture ................................................................... USDA 

United States Drought Monitor .................................................................................. USDM 

Advanced Very High Resolution Radiometer .........................................................AVHRR 

Moderate Resolution Imaging Spectroradiometer .................................................... MODIS 

Remote Sensing ................................................................................................................ RS 

Visible ............................................................................................................................. VIS 

Optical ............................................................................................................................ OPT 

Near-Infrared................................................................................................................... NIR 

Shortwave-Infrared ......................................................................................................SWIR 

Thermal-Infrared ............................................................................................................. TIR 

Vegetation Index ............................................................................................................... VI 

Drought Index ................................................................................................................... DI 

Normalized Difference Vegetation Index ....................................................................NDVI 

Normalized Difference Drought Index ........................................................................NDDI 

Normalized Difference Water Index ........................................................................... NDWI 

Vegetation Condition Index ............................................................................................ VCI 

Vegetation Health Index ................................................................................................ VHI 

Enhanced Vegetation Index ............................................................................................ EVI 

Growing Degree Days................................................................................................... GDD 

Agricultural Drought Knowledge Base ..................................................................... ADKB 

Rule-Based System ........................................................................................................ RBS 

Expert System  .................................................................................................................. ES 

 

 

 

 

 

 



xvii 

 

ABSTRACT 

INTERGRATION OF REMOTE SENSING AND METEOROLOGICAL DATA FOR 

MONITORING AGRICULTURAL DROUGHT 

Chunming Peng, Ph.D. 

George Mason University, 2014 

Dissertation Director: Dr. Liping Di 

 

Affecting more people than other natural hazards, drought may lead to enormous 

decrease in crop production and also in the amount of poultry and livestock, and thus 

endangering food security and economy. Developing an appropriate drought indicator 

and a timely and accurate drought monitoring system has been a motivation for scientists 

in the last two decades. Vegetation conditions valued via remotely sensed indices have 

been used as indicators for agricultural drought since the 1980s. However, the anomalies 

in vegetation performance do not always signify droughts. Wild fire, extreme 

temperature, flood, pesticides or lack of fertilizers can all cause the vegetation stress. One 

of the major goals for this dissertation is to evaluate and investigate vegetation drought 

stress and other vegetation stresses using remote sensing techniques. The other major 

goal is to estimate the root-zone soil moisture levels beneath various crop canopies using 

satellite data and ground observations. Since soil moisture is the primary indicator for 
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agricultural drought, accurate and reliable soil moisture estimates have important 

implications for drought monitoring. 

Recent technological advances in remote sensing have shown that vegetation vigor, land 

surface temperature (LST), vegetation water level and soil moisture (SM) can be 

measured by a variety of remote sensing techniques, each with its own strengths and 

weaknesses. This research is designed to combine the strengths of Moderate Resolution 

Imaging Spectroradiometer (MODIS) based visible/near-infrared (VIS/NIR), shortwave 

infrared (SWIR) and thermal infrared remote sensing approaches for detection of 

vegetation drought stress, and also to integrate VIS/NIR and microwave data from 

Aavanced Microwave Scanning Radiometer (AMSR-E) of the Earth Observing System 

(EOS) for soil moisture estimation. A vegetation drought stress estimation algorithm at 

moderate resolution was developed based on the existing "trapezoid" relation model by 

using MODIS-based LST as well as Normalized Difference Water Index (NDWI) and 

Normalized Difference Vegetation Index (NDVI).  

A new index, the Combined Condition Index (CCI) was proposed here for monitoring 

vegetation drought stress from space by interpreting the relationships between LST and 

Normalized Difference Drought Index (NDDI). Drought Condition maps from the U. S. 

Drought Monitor (USDM) and other reliable agencies are used to validate the spatial 

patterns of drought. Also, the feasibility of constructing a library of weighing factors for 

vegetation overall conditions, water, and temperature for each spatial and temporal unit 

across the U. S. will be discussed in the dissertation. The CCI will be compared with 

currently used indices, for example, Vegetation Health Index (VHI), for pros and cons. 
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Also, the departure from precipitation, Palmer Drought Severity Index (PDSI), and crop 

yield/progress will be used to validate this index. This new drought indicator is expected 

to show higher sensitivity to drought occurrences than the existing ones. 

Combining the proposed methods in detecting vegetation conditions and estimating soil 

moisture, we can obtain time-series profiles of vegetation conditions and soil moisture of 

various crops at different geo-spatial situations, and thus be able to monitor agricultural 

drought across the whole nation. 

Data, information, knowledge, and wisdom are the four basic steps humans use to 

perceive objects (Ackoff, 1989). Agricultural droughts being considered as objects can 

also be perceived in these four forms – drought data, information, knowledge, and 

wisdom. Hence it is necessary to extract drought information out of related data (e.g., 

remotely sensed data) and discover knowledge from the extracted information. Lastly, 

this dissertation is to explore advantages of geospatial Web services in providing on-

demand agricultural drought analysis and equipping experts, decision-makers and farmers 

alike with information, knowledge and even wisdom needed in the process of agricultural 

drought monitoring, assessment and management. Various Web services are established 

to support drought analysis and decision-making for the general public, which also 

illustrates the potential of Web services in automating geospatial knowledge discovery 

and dissemination within the Big Data era. 
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CHAPTER 1 INTRODUCTION 

Droughts can cause devastating impact to a region’s agriculture. Lack of proper 

drought warning and assessment systems may lead to enormous decrease in crop 

production and also in the amount of poultry and livestock, and thus endangering the 

security and economy. Early monitoring and detection of drought can help prepare 

farmers for vegetation drought, and thus mitigate drought impact. Researchers have 

noticed the importance of drought monitoring ever since the early 1900s, and have 

contributed many drought indicators, models, and methods to the area. However, 

accurately monitor drought is still challenging due to these reasons: (1) droughts are 

developing slowly (over months or years) and they exist before humans realize their 

occurrences, (2) the severity of a drought varies by precipitation deficit, spatial extent, 

and duration, and is hardly comparable to another drought, and (3) drought impacts are 

based on the range of economic, environmental and social resources within a region, and 

are not operationally capable to be quantified into a single index (Peters et al., 2002).   

Section 1.1 Importance of agricultural drought monitoring 
For decades, researchers have developed different methods to measure drought, 

using ground data and/or satellite imageries. Ground observed data alone is not sufficient 

for drought monitoring of an area, since weather data is usually untimely, sparse, and 
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incomplete (Peters et al., 2002). Utilizing the remote sensing data to provide large area 

coverage and rapid detection of drought is a trend.  

Different from meteorological or hydrological drought, an agricultural drought 

sets in when the soil moisture availability to plants has dropped to such a level that it 

affects the crop yield and hence agricultural production in a negative way. Since 

significant decrease in soil moisture availability and increase in leaf temperature can be 

seen during drought periods, quantifying these changes in vegetation based on satellite 

imagery records have proven to be an effective way to monitor agricultural drought. 

In the case of agricultural drought, the measurement of its determinant factor (e.g. 

soil moisture) is difficult, and for most of the time, the related data sets for historic 

periods are not available. Such droughts could be best studied through a complex regional 

analysis involving a battery of variables (e.g. soil moisture, crop yield, leaf area index, 

vegetative growth etc.) rather than a simple point analysis. The complexity is further 

increased by the intricate relationships that exist between the crop yield and the soil 

moisture deficit. Because of such multiple reasons, there have been very limited efforts 

towards evaluating agricultural droughts. It is noted that the impact of drought on 

agriculture is slower than on stream flows or reservoir levels.  

Section 1.2 Advantages and disadvantages of Remote Sensing based drought 

indicators 
The Normalized Difference Vegetation Index (NDVI) measures the amount and 

condition of vegetation on a per-pixel basis, while the LST calculates the energy balance 

at the Earth’s surface. Kogan (1990, 1995) used the Vegetation Condition Index (VCI) 

and the Temperature Condition Index (TCI), ratios derived from long-term Advanced 
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Very High Resolution Radiometer (AVHRR) NDVI and LST data, for 0.5/0.5 addition to 

measure the status of water- and temperature-related vegetation stress. The resulting 

index, Vegetation Health Index (VHI), can be used for drought measurement and 

reference to compare against other vegetation indicators. However, the VHI requires 

long-term data sets and certain issues complicate the evaluation of the ratio between the 

VCI and the TCI. One of the reasons is that VCI and TCI are not always positively 

correlated. It is generally believed that abnormally high temperatures intensifies the plant 

water demand, yet in some circumstances, especially at the beginning of the growing 

period, higher-than-normal temperatures can provide optimal environment for the plants 

to emerge. In this case, decrease in TCI values (caused by the increase of temperatures) is 

related to increase in VCI values since vegetation conditions at the germination/emerging 

stage are improved by warmth. The correlation relationship between TCI and VCI is 

largely determined by the current crop growing stage, soil moisture conditions, and the 

evapotranspiration of the surface, and changing from season to season. 

Five disadvantages observed from traditional NDVI/VCI methods are: (1) the 

amplitudes and phases of NDVI vary by crop type, but the traditional NDVI calculation 

ignores the difference of per-pixel crop type across years (VCI has remedied the second 

part); (2) There is always a lagging period between NDVI and precipitation, and the 

NDVI fails to pick up the vegetation moisture difference after saturation; (3) Soil type 

and wetness largely influence the NDVI values, so the NDVI is in fact a combined 

information of vegetation condition and soil situations; (4) NDVI/VCI is not directly 

related to the occurrence or the severity of drought. Drought can be due to moisture-stress 
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or thermal-stress. A lower NDVI/VCI could mean that the crop land is suffering from 

vegetation stress due to many reasons – drought, flood, extreme temperature, wild fire, 

pesticides or lack of fertilizers; (5) operational drought definitions were developed by 

fitting an appropriate distribution function to a drought index. Five drought thresholds 

(ranging from abnormally dry to exceptional drought) were defined based on the 

percentiles used by the USDM. Using an objective approach for determining drought 

definitions ensures that droughts are accurately and correctly identified at the local level. 

It is inappropriate to use a single set of drought definitions for an entire state (especially a 

state the size of Texas). Overall, no single index can represent all aspects of 

meteorological or hydrological/water supply drought so it is best to use a multi-index 

approach for operational drought monitoring. Due to these reasons, choosing the correct 

drought indicator and severity classification scheme, based on the geospatial and 

environmental characteristics, is the key to successfully monitoring and forecasting 

drought. 

Adopting a good drought indicator will enable us (1) to detect and monitor 

drought conditions, (2) to determine the timing and level of drought responses, (3) to 

characterize and compare drought events, and (4) to tie together levels of drought severity 

with drought responses thereby forming an operationally workable drought management 

plan. With a universally usable drought indicator, the next step is to establish a threshold 

for the drought indicator, which is also important because it aims to assess the change 

thereby to determine drought risk and vulnerability of an area. Normally, the thresholds 
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should be region specific and are subject to modifications in order to reflect market, 

climate, environment, public health and socio-economic changes (Nagarajan, 2009). 

A more accurate drought monitoring system is proposed here by (1) combining 

the vegetation conditions, VWC and LST into the detection of vegetation drought stress; 

(2) integrating microwave measurements and ground observations for estimation of the 

soil moisture levels; (3) fusing indicators for evaluation of vegetation drought stress and 

soil moisture levels to form drought condition reports. In practice, the way this system 

might work is as follows: A web-based GIS platform serves as a central data and 

information source for users throughout the State.  On this server, the necessary historical 

drought calculations have been performed for all geographical and jurisdictional 

boundaries likely to be of interest.  Users can request raw data at full resolution or 

aggregated data and products for any requested region.  An ideal system would also 

include options for time series analysis and cross-index comparisons for individual 

regions, as well as projections of future drought index values based upon high, medium, 

low, and historical worst case scenarios, with probabilities of each given by medium and 

long range forecasts. To sum up, this research is designed to combine vegetation 

condition detected from NIR/SWIR and TIR remote sensing approaches and the soil 

moisture levels estimated using AMSR-E and ground measurements, to provide refined 

agricultural drought monitoring, based on a pre-knowledge of the crop type per pixel. 

Section 1.3 Statement of Problem 
Monitoring drought stress of vegetation is a critical component of proactive 

drought planning designed to mitigate the impact of this natural hazard. Approaches that 
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characterize the spatial extent, intensity, and duration of drought-related vegetation stress 

provide essential information for a wide range of management and planning decisions. 

Among all the operational drought monitoring systems, which use remotely sensed 

vegetation indices and other information to determine the spatial, temporal extents and 

severity of vegetation stress, few can provide accurate, timely and comprehensive 

monitoring results. Either they use single index for the entire process, or they choose an 

unconvincing standard for drought/non-drought definitions.  

Two major challenges exist among all these satellite-based drought indicators 

(DI) in terms of applying them for drought monitoring. The first challenge is whether the 

method used can discriminate drought-impacted areas from other locations experiencing 

vegetation stress due to other causes solely from remotely sensed DI information. A 

number of environmental factors (e.g., wild fire, flooding, hail, pests, plant disease, and 

human-induced land cover/use changes) can produce negative DI anomalies (Peters et al., 

2002) that mimic a drought stress signal. And the second challenge is how to establish the 

appropriate threshold(s) that discriminates between drought and non-drought conditions, 

as well as varying levels of drought stress (e.g., moderate, severe, and extreme). 

Generally, lack/excessive of heat, nutrient, and moisture, etc. can all add up to 

vegetation stress. It is of great importance to identify areas which are suffering from 

drought stress (mostly moisture or thermal stress) and those suffering from other stresses 

(e.g. lack of nutrition, extreme weather, wild fire, etc.). In order to understand vegetation 

drought stress, the first priority should be to interpret the three-dimensional space of 

LST-NDVI-NDWI, and to see how these indices can reflect the drought impact on crops. 
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Also, root-zone soil moisture as a primary indictor for agricultural drought, can be used 

to validate whether the low VI value appears in accordance with low soil moisture (with 

or without time lag), and thus to indicate a real occurrence of agricultural drought. In all, 

this research uses temperature, vegetation water content, and soil moisture as facilitating 

tools in order to rule out the situations of false VI alarms. 

Section 1.4 Objectives and Scopes 
In general, the objectives of this research are to present remote sensing 

approaches to detect vegetation drought stress, estimate soil moisture, and thus perform 

more accurate diagnostics of agricultural drought in the crop lands. The Combined 

Condition Index (CCI) is a new drought indicator proposed to depict the status of 

agricultural drought via vegetation conditions at refined level.  In particular, the CCI 

integrates vegetation water status with thermal properties to monitor drought more 

precisely. It fuses NDVI, NDWI, and LST, which are derived from the VIS, NIR, SWIR 

and thermal infrared (TIR) bands of the MODIS data, to give an estimation of vegetation 

vigor that is solely determined by its water and temperature conditions. The specific 

objectives are proposed below: 

i. To estimate vegetation drought stress by combining the strengths of multi-

sensor and ground measurements to achieve higher accuracy and spatial resolution. 

ii. To investigate the potentials of using a combination of multiple VIS-NIR-

SWIR-TIR spectral signatures to estimate vegetation moisture, thermal, and health 

conditions from space and to find the algorithm that will be best-suited for monitoring 

vegetation drought stress. 
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iii. To estimate the soil moisture levels by combining the strengths of multi-

sensor and ground measurements in order to get more accurate results at finer spatial 

scales. 

iv. To investigate the relationship between soil moisture and vegetation 

greenness, particularly when there is drought, and thus rule out the false VI signals when 

VI is low but soil moisture level is high. 

v. To provide an integrated drought condition index and a flexible drought 

severity standard (D0 to D4 drought levels) as to form an accurate and comprehensive 

view for agricultural drought monitoring at the national or even global scale. 

vi. To facilitate the community with drought information Web Services that 

will offer drought severity and duration report for state, ASD, county, or user-customized 

area, so users can have a quantitative understanding of how the drought develops over a 

specific area.  

Section 1.5 Organization of dissertation 
The dissertation consists of eight chapters. In order to better understand the study, 

the background and literature review are presented in the second chapter of the 

dissertation. The following five chapters give various works related to the objectives of 

the study and the last chapter concludes with summary and discussion of future 

directions. 

Chapter 1 gives the general introduction, including the background for 

understanding the importance of using remotely sensed data for drought monitoring, 
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limitations of current methods for assessing drought conditions, research objectives, 

major data sources and principal results of the study. 

Chapter 2 gives the literature review of drought definition, historic droughts in the 

United States, and factors contributing to vegetation drought stress. The moisture and 

thermal stress will be explained in detail, as well as the complicated nature of vegetation 

drought. Chapter 3 describes how to determine crop phenologic stages using growing 

degree days (GDD), which is a function of surface temperature. In chapter 4, readers can 

find the performance curve of vegetation vigor change by latitude, climate zone, season, 

and crop type. Chapter 5 presents a new methodology to estimate the soil moisture by 

combining multi-sensor and ground measurements. 

A new drought index integrating vegetation, water and thermal stress is proposed 

in chapter 6. A trapezoid relation existing among vegetation condition and LST, and 

water level is presented in detail, and multi-year satellite measurements and ground 

observed data have been used to determine this relation. The relation, in conjunction with 

satellite measurements, is then applied to obtain drought conditions at moderate 

resolution. The drought condition indicator integrating LST and vegetation water content 

to vegetation conditions is shown to be correlated to precipitation departure index at a 

higher degree than a single VI, or VI and temperature integrated. Also from here, readers 

can see how the LST/NDVI relations change at different time, location or crop type.  

In chapter 7, methods to define drought severity thresholds and quantify 

confidence level of drought scales will be discussed. Various geospatial Web Services are 

proposed for the general users to extract drought information and knowledge from raw 
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data, to customize their own drought indicators, and validate the drought indicators with 

selected source of station-based observations. Chapter 8 summarizes the results from the 

previous chapters and gives limitations and discussions of future directions. 

Section 1.6 Data source and study area 
Repetitive measurements at the same location day after day, week after week, 

month after month, and year after year, are one of the most important requirements for 

operational drought monitoring. Another requirement is for the monitoring tools to 

provide reliable sources of time-series data at effective spatial and temporal scales for 

accurate and timely information. As an obvious data source meeting these two 

requirements, satellite remote sensing supplies synoptic coverage of the land surface with 

objective, automated data collections for use in spatially specific models. 

Among all satellite data products, spectral vegetation indices (VI) are the most 

commonly used for the monitoring, measurement, and evaluation of vegetation cover, 

condition, biophysical processes, change, and during the past two decades have been put 

into operational use in a broad variety of applications, including monitoring of drought 

effects at regional, national or even global scales. Details for accessing, downloading and 

handling satellite data can be found in section 1.6.1. 

Subsection 1.6.1 Source of remotely sensed data 

National Oceanic and Atmospheric Administration (NOAA)'s Advanced Very 

High Resolution Radiometer (AVHRR) has been the most commonly used remote 

sensing instrument for large area drought monitoring in its 30-year history, partially due 

to its sufficiently long time series which enables a relatively reasonable "normal" 
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reference line to be drawn, and hence anomalies to be identified (Brown et al., 2008). The 

AVHRR data records traces back to June 1979 (when NOAA-6 was launched), and 

covers the globe at 4 to 8 kilometers resolution (Tucker et al., 2005). The joint initiative 

of the U. S. Geological Survey (USGS) and the National Aeronautics and Space 

Administration (NASA) has launched the Landsat 7 Thematic Mapper (TM) and 

Enhanced Thematic Mapper Plus (ETM+) projects in the 1990s. The spatial resolution of 

the surface reflectance data collected by Landsat can get as refined as 30 meters. 

Similar to the AVHRR, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) launched by NASA has high temporal resolution and provides reliable drought 

monitoring data. The two platforms, Terra and Aqua, were launched in 1999 and 2002, 

respectively, as part of its Earth Observing System (EOS). The morning and afternoon 

overpasses collected by Terra and Aqua, respectively, combine to form a complementary 

source of daily global drought data. Its advancement from AVHRR and Landsat is in 

providing finer spatial resolution at 250-m, 500-m, and 1-km, higher spectral resolutions 

within the near-infrared and shortwave-infrared spectrums (as shown in Figure 1), more 

precise geolocation, and improved atmospheric corrections (Brown et al., 2008). 
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Figure 1 The optical (land) channel band widths for NOAA AVHRR, LANDSAT ETM+, and MODIS 

instruments (Brown et al., 2008). 

 

A variety of MODIS products are available on-line at the NASA’s Land Processes 

Distributed Active Archive Center (LP DAAC) (LPDAAC, 2006). To capture the 

agricultural drought occurred in the study region in the growing periods each year three 

kinds of MODIS products described in table below were employed.  

The NDVI and LST were derived from the MODIS data products MOD13Q1 and 

MOD11A2, respectively. MOD13Q1 provides per pixel NDVI values and Enhanced 

Vegetation Index (EVI) values (tile, 250m, and per 16 days), and MOD11A2 provides 

LST and emissivity (tile, 1km, and every 8 days).  

The MOD13Q1 is also a level-3 product. Among 11 SDSs of this product, 16-day 

composite NDVI, quality for each NDVI pixel, and view zenith angle for each NDVI 

pixel were employed. The NDVI is encoded in 16-bit signed integer, ranging from -2000 
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to 10000. With the “SCALE” field defined as 10,000 in the metadata for MOD13 

products, the pixel values need to be divided by 10000 to obtain NDVI in its original 

range from -0.2 to 1. In theory, NDVI takes values between -1 and 1, with values larger 

than 0.1 indicating vegetation, values larger than 0 and less than 0.1 indicating bare soils 

or cloud (that cloud is always very close to 0, e.g. 0.002), and values less than 0 

indicating water, snow and ice. However, because the MODIS products have assigned 

pixels located in ocean, lakes and other water bodies fill values (e.g. -10000, equivalent 

to null), the NDVI values lower than -0.2 will not be shown in the dataset, and thus the 

MODIS products only keep pixels whose values are no less than -0.2 for the sake of 

memory space. 

The quality and view zenith angle were used as criteria for the NDVI data for 

each pixel to be used in the analyses. The 16-bit VI quality can be used along with the VI 

dataset to assure the quality of each pixel: bits 0–1, MODLAND_QA; bits 2–5, VI 

usefulness; bits 6–7, Aerosol quantity; bit 8, Adjacent cloud detected; bit 9, Atmosphere 

BRDF correction performed; bit 10, Mixed Clouds; bits 11–13, Land/Water Flag, bit 14, 

Possible snow/ice; bit 15, Possible shadow. The VI usefulness field (bits 2-5) is giving 

users different levels of recommendation of whether the VI value for this pixel can be 

used, that “0000” signifying highest quality and “1111” signifying not useful for any 

other reasons. The same view zenith angle criterion as the LST was used for the NDVI. 

The reason for using 16-day-composite VIs in this research since there are 

numerous products with different temporal resolutions (e.g. daily, 7-day, 10-day, and 14-

day) is because the 16-day MODIS products are closest to our goal of fetching cloud-free 
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VI maps with minimal atmospheric and sun-surface-sensor angular effects (Holben, 

1986). The 16-day composited NDVI products take advantage of the maximum value 

composite (MVC) technique, which is to select, on a pixel-by-pixel basis, the input pixel 

with the highest NDVI value as output to the composited image, and the process includes 

cloud screening and data quality assurance (Goward et al., 1994; Eidenshink & Faundeer, 

1994). As a result, the maximum composite NDVI value has selected the least cloud- and 

atmospheric pixels. Also, since the increase in optical path length intensifies the influence 

of atmospheric contamination and residual cloud cover, choosing maximum NDVI 

composite values is to select the most near-nadir view and smallest solar zenith angle 

pixels (that is with least optical path length) (Holben, 1986; Cihlar et al., 1994). 

The MOD11A2 product is a level-3 product which consists of 12 Science Data 

Sets (SDSs), including 8-day composite LST, quality of each LST pixel, and view zenith 

angle of each LST pixel. The LST values in Kelvin are encoded in 16-bit unsigned 

integer, ranging from 7500 to 65535. To derive the actual value of temperature these 

values need to be multiplied with 0.02. With the lower and upper limits of the LST values 

rescaled to Kelvin degrees and converted to Fahrenheit degrees, the lowest and highest 

Fahrenheit degrees that can be represented in MOD11A2 product are -189.67 and 

1900.4°F. This range has been sufficient for daily temperatures collected from land 

surfaces; extremely high temperatures (e.g. 3.6 billion degrees Fahrenheit created by 

Sandia Laboratory) are not taken into consideration in this case. 

The quality and view zenith angle were used as criteria for LST pixel data to be 

included in the analyses. The quality information is represented in 8 bit data, in which 
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each of 2-bit combination (i.e. bit fields) represents different quality information. Only 

LST pixels with the highest quality (average LST error is less than 1 Kelvin) were used. 

The view zenith angles are in degrees and encoded in 8-bit unsigned integer. LST pixels 

within -45 to 45 degrees view zenith angle were employed. 

The NDWI is calculated using the reflectance data from the MODIS data product 

MOD09A1, which estimates surface spectral reflectance at a 500-m resolution in an 8-

day gridded level-3 product in the sinusoidal projection. The data used are from March to 

October of 2000 to 2012 as to provide uniform temporal resolution. Reflectance and LST 

data is rescaled to the 16-day temporal resolution and to a 500-m spatial resolution. The 

NDVI, LST and NDWI data sets are all subjected to geometric correction.  

Scatter plots were then prepared for each dataset with the LST, NDVI and NDWI 

and the least squares root method was used to determine the warm edge. The warm edge 

can be detected along the upper limit of the scatter plots, which are plotted with the 

maximum and minimum LST assigned the   same values as the NDVI, or the Vegetation 

Dryness Index (VDI), or the NDDI.  

Monthly precipitation data obtained by the Tropical Rainfall Measuring Mission 

(TRMM) satellite precipitation radar (PR) were used to generate a difference 

precipitation image (DPI) by deducting a drought period precipitation image from a 

normal period precipitation image. The DPI was then compared to the VTCI, VWTCI 

and CCI images. 
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Subsection 1.6.2 Source of Crop Mask 

Even being planted in the same soil and climate system, different crops have their 

own growing patterns. The first step for inspecting how crops respond to agricultural 

drought stress is to apply a crop mask to the study area and separate the drought image 

into several crop layers (depending on how many crops the research is concerned). The 

images below display the spatial distributions of corn and soybeans respectively. We can 

see that, five largest corn-producing states in the U. S. are Iowa, Illinois, Nebraska, 

Minnesota, and Indiana, each contributing to 18%, 17%, 12%, 10% and 7% of the 

nation’s total corn yields from 2006 to 2010 respectively. And the growing season for 

corn starts from end of April and lasts until the mid-November. These five states also are 

the largest soybeans-producing states, each contributing to 15%, 14%, 8%, 9% and 8% of 

the nation’s total harvested soybeans from 2006 to 2010 respectively. And the growing 

season for soybeans starts from early May and lasts until the early November. 
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Figure 2 Major and minor corn areas in the U.S. (source: 

http://www.usda.gov/oce/weather/pubs/Other/MWCACP/Graphs/USA/Corn2006to2010.pdf) 

 

 
Figure 3 Major and minor soybeans fields in the U.S. (source: 

http://www.usda.gov/oce/weather/pubs/Other/MWCACP/Graphs/USA/Corn2006to2010.pdf) 

 

http://www.usda.gov/oce/weather/pubs/Other/MWCACP/Graphs/USA/Corn2006to2010.pdf
http://www.usda.gov/oce/weather/pubs/Other/MWCACP/Graphs/USA/Corn2006to2010.pdf
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In order to assess agricultural drought, we can make use of the crop classification 

data provided by the United States Department of Agriculture (USDA) National 

Agricultural Statistics Service (NASS), namely the CropScape -- Cropland Data Layer 

(CDL). CDL is hosting the cultivated crop mask data at a 30m or 51m spatial resolution 

over the continental U. S. (CONUS). Prior to 2006, CDL products relied primarily on 

Landsat 4, 5 and 7. Beginning from 2006, the CDL program switched to using the 

sensor(s) on the IRS-P6 Resourcesat-1. And in year 2011, CDL added two more sensors, 

the Deimos-1 and the UK-DMC2 to its data retrieval. Since it is over costly to use higher 

resolution satellites for crop acreage estimation over large areas, the products used in 

CDL are from medium resolution satellites. 

The crop classifications provided by CDL are not one hundred percent faultless. 

For the dominant agricultural types, the accuracies can range from mid-80% to mid-90%. 

The detailed accuracy estimation for each crop type, state and year differs, and can be 

found out in the metadata file. For example, the accuracy for corn in Iowa of year 2012 is 

96.61%, while that for soybeans the same state and year is 95.56%. For more info, check 

the metadata page at http://www.nass.usda.gov/research/Cropland/metadata/meta.htm. 

CDL provides visualization for crop change between years, and displays in 

Figures 4 and 5 that the state of Iowa was subject to crop rotation during 2010 to 2012. 

The period of 2010 to 2011 tend to have less acreage of changed crop types compared to 

the period of 2011 to 2012. The tables (Tables 1 & 2) created by CDL’s change analysis 

tool also support such changes. More than 24% of corn areas remain unchanged from 

http://www.nass.usda.gov/research/Cropland/metadata/meta.htm
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2010 to 2011, while for 2011 to 2012, less than 23% of corn areas stay the same for the 

state of Iowa. 

 

 
Figure 4 Changes in crop type from 2010 to 2011 in the state of Iowa (the color of red signifies change). 

 

 
Figure 5 Changes in crop type from 2011 to 2012 in the state of Iowa (the color of red signifies change). 

 

Table 1 Changes in crop type from 2010 to 2011 in the state of Iowa (top 5 in count of pixels) 

From  To Percent of Count 

Corn  Corn 0.241 

Corn  Sorghum 0.224 

Corn  Soybeans 0.117 

Corn  Sweet Corn 0.071 

Corn  Pop or Orn Corn 0.046 
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Table 2 Changes in crop type from 2011 to 2012 in the state of Iowa (top 5 in count of pixels) 

From  To Percent of count 

Corn  Corn 0.226 

Corn  Sorghum 0.225 

Corn  Soybeans 0.136 

Corn  Sunflower 0.097 

Corn  Sweet Corn 0.077 

 

Section 1.7 Principal results 
The principal results of this dissertation include a new approach to monitor 

vegetation drought stresses with the triple assurance from vegetation moisture, thermal, 

and health stresses, a new drought index that combines VIS/NIR/SWIR/TIR spectrums 

and ground observations for accurate monitoring of vegetation conditions and agricultural 

drought with remote sensing techniques, and two sets of Web Services that will enable 

online users to extract drought information from remote sensing based data, and 

customize and validate their own drought indicator. 
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CHAPTER 2 LITERATURE REVIEW: METHODS FOR MONITORING 

VEGETATION STRESSES, SOIL MOISTURE AND AGRICULTURAL 

DROUGHT 

Section 2.1 Monitoring vegetation stresses in cropland 
An agricultural drought refers to a drought event that has negative influence upon 

crops and pastures. According to the drought severity classification scheme used by 

USDM, the drought levels from D0 to D4 indicate possible impact to crops and pastures 

at different degrees: D0 is to slow down planting, growth of crops or pastures; D1 is to 

cause some damages to crops and pastures; D2 is leading to crop or pasture losses; D3 

indicates major crop/pasture losses; and D4 refers to exceptional and widespread 

crop/pasture losses. This is to say, drought severity of an area can be determined from 

drought impact upon local vegetation conditions. For the past two decades, researchers 

have used remote sensing techniques along with ground measurements for monitoring, 

assessing and analyzing vegetation conditions (either stress or vigor). Numerous 

vegetation indices (VIs) have been adopted for these purposes. Subsections 2.1.1 and 

2.1.2 will talk about the usage of VIs in detecting vegetation stresses. 

Subsection 2.1.1 Vegetation Stresses 

Monitoring drought stress of vegetation is a critical component of proactive 

drought planning designed to mitigate the impact of this natural hazard. Approaches that 

characterize the spatial extent, intensity, and duration of drought-related vegetation stress 

provide essential information for a wide range of management and planning decisions. 
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Much of the focus has been laid upon obtaining the value of satellite -based VI 

observations to assess vegetation conditions and, the considerable emphasis that has been 

placed on developing new VIs in support of drought monitoring. However, two major 

challenges exist among all these satellite-based VIs in terms of applying them for drought 

monitoring.  

The first challenge is establishing the appropriate threshold(s) that discriminates 

between drought and non-drought conditions, as well as varying levels of drought stress 

(e.g., moderate, severe, and extreme). Typically, a relative VI value or a departure of a VI 

value from a baseline (e.g., low percentage of the average historical VI value) is used as 

an indicator of drought stress instead of classifying specific levels of drought severity. 

Selection of thresholds to classify drought conditions using VI information is difficult 

because they can vary by land cover types, geographic locations, and seasons. Also, the 

selection of thresholds shall be geo-location specific. 

Operational drought definitions were developed by fitting an appropriate 

distribution function to a drought index. Five drought thresholds (ranging from 

abnormally dry to exceptional drought) were defined based on the percentiles used by the 

United States Drought Monitor.  Using an objective approach for determining drought 

definitions ensures that droughts are accurately and correctly identified at the local level. 

It is inappropriate to use a single set of drought definitions for an entire state (especially a 

state the size of Texas). Also, because no single remote-sensing-based index can 

represent all aspects of drought including meteorological, hydrological and agricultural 

perspectives, integrating multiple indices into a “combined” drought indicator will 
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provide a more comprehensive and accurate result for operational drought monitoring 

compared with what a single-index-approach will generate, and the new drought 

indicator, Combined Condition Index (CCI) to be proposed in this dissertation manages 

to combine the water, heat, and vegetation conditions into a single representation, and 

will serve as a more sensitive drought indicator. 

The second challenge is the ability to discriminate drought-impacted areas from 

other locations experiencing vegetation stress due to other causes solely from remotely 

sensed VI information. A number of environmental factors (e.g., fire, flooding, hail, 

pests, plant disease, and human-induced land cover/use changes) can produce negative VI 

anomalies (Peters et al., 2003) that mimic a drought stress signal. Ancillary information 

such as climate data or ground observations (e.g., field reports of crop conditions) is 

needed to better define these negative VI anomalies within a drought context. 

Generally, lack/excessive of heat, moisture, nutrient and other factors can all add 

up to the vegetation stress. The goal in managing and mitigating the stress of crop species 

is not simply to keep plants alive when the water is deficit, but to produce a profitable 

yield at harvest. In order to do so, the stresses crops most often experience (a.k.a. 

moisture, heat and nutrient stresses) shall be carefully monitored and mitigated.  
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Figure 6 Vegetation stresses can be classified as moisture, nutrient, thermal stresses, etc. 

 

2.1.1.1 Vegetation Water Stress 

Studies have shown that crop water stress is directly affecting crop growth, 

development, and yield, and ultimately, farmers' profits. To achieve a delicate balance 

between water use and crop yield, farm managers need an operational means to quantify 

plant water deficit and evaluate the effects of stress on a given crop species at any stage 

of development.  

Over the past 30 years, remotely sensed data have been used successfully for 

deriving information useful for irrigation scheduling and management. The basic 

approaches have focused on parameters related directly to crop water status (e.g., crop 

water loss (evaporation), metabolism, conductance, and photosynthesis) and plant 

manifestations of chronic crop water stress (e.g., phenologic stage and leaf expansion and 

loss). 

For determination of crop water stress, several studies have proposed ratios of two 

complementary narrow-wavelength bands where the reflectance in one wavelength was 

sensitive to water or chlorophyll concentrations, and the reflectance of the other (a 

"reference") was relatively insensitive to such concentrations. Penuelas et al. (1997) 
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developed a water index (WI), defined as the ratio between reflectance at 0.97 and 0.90 

μm for measurement of the percent plant water content for drought assessment. Gao 

(1996) introduced the Normalized Difference Water Index (NDWI), defined as the 

difference between reflectance at 0.86 and 1.24 μm divided by their sum. In a qualitative 

demonstration, the NDWI appeared to be sensitive to the liquid water content of 

vegetation canopies. Carter and Miller (1994) showed that the ratio of reflectance at 

0.694 and 0.760 μm could be used to detect stress simultaneously with the crop 

physiological manifestation. Such indexes, based on narrow spectral bands, may have 

limited success with aircraft- and satellite-based sensors because they may be affected by 

atmospheric water absorption as well as plant water absorption. 

All three of the above-mentioned spectral indices were found to be sensitive to 

measurements of plant stress as well as variations in ground coverage by leaves. To 

minimize the effects of ground cover variations and to maximize the assessment of plant 

stress condition, both Gao (1996) and Penuelas et al. (1997) suggest that the WI and 

NDWI be further normalized using a ratio or multiple regression with a vegetation index 

(e.g., NDVI) to correct for changing vegetation cover. This multispectral approach could 

circumvent the complexity associated with hyperspectral sensors by allowing a sensor to 

be designed with only a few spectral bands at strategic narrow and broad wavelength 

bands (assuming that wavelength and radiance calibrations are reliable). On the other 

hand, these indexes have been tested only for selected crops and they may be crop 

specific. 
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There is evidence that crop water stress can either hasten (Turner, 1977) or delay 

(Idso et al., 1980) crop development, depending on the crop phenologic stage at the time 

of water stress. Also, the time and duration of stress are of critical importance to ultimate 

yield (e.g., if a period of water stress occurs during heading or during the grain-filling 

period, the reduction of the grain yield is much greater than if this same stress condition 

occurs at some other time). For these reasons, knowledge of phenologic stage relative to 

planting date could provide important information on crop stress. 

Multiple observations of the temporal-spectral characteristics of crops offer 

promise for use in estimating the crop development stages at the time of interest. Several 

approaches have been proposed to provide a spectral crop calendar. Tucker et al. (1979) 

showed that crop phenologic stage could be determined using a combination of spectral 

data and accumulated temperature units (growing degree-day). Badhwar and Henderson 

(1981) suggested that a given crop has a unique spectral profile in time and that the 

fractional area under the greenness profile curve was closely related to development 

stages in corn and soybeans. Malila et al. (1980) used the temporal changes in red and 

NIR reflectance of a wheat canopy related to crop development to develop a correlation 

between crop phenologic stage and canopy reflectance. That is, during the initial growth 

stage, NIR reflectance increased and red reflectance decreased due to corresponding 

differences in soil and green leaf reflectance. At heading, heads apparently cast shadows, 

causing both the NIR and red reflectance to decrease; and during ripening, the combined 

reflectance of the heads, the senescing leaves, and the exposed soil caused the red 

reflectance to increase while the NIR reflectance continued to decline. 
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There have also been attempts to determine stress effects by monitoring the 

temporal duration of specific phenologic stages. For example, Idso et al. (1980) reported 

that for wheat plots stressed for water, senescence appeared to be drawn out over a longer 

period of time than for well-watered plots. This was apparently due to an evolutionary 

strategy for annual plants to prolong their life span to increase grain production under 

stressful conditions. Idso et al. (1980) related the slope of the vegetation index (VI) over 

time to the rate of senescence and correlated this slope with final grain yield for wheat 

and barley under stressed and non-stressed conditions. In a similar study, Fernandez et al. 

(1994) found that the hydrologic stress of wheat could be determined by the slope of the 

NDVI along the maturity stage.  

Besides lack of water, excessive water supplies may also lead to water stress for 

vegetation. A sudden localized heavy rainfall or lack of average rainfall can easily tip the 

balance toward flooding or drought. Monitoring whether the vegetation crop water is 

within the healthy range is a way to assure that the crop is not suffering from either 

drought or flood.  

2.1.1.2 Vegetation Thermal Stress 

LST can provide information about surface physical properties and climate, which 

plays a role in environmental processes (Javed et al., 2008). Weng et al. (2003) shows 

that LST varies with surface soil water content and vegetation cover -- the higher latent 

heat exchange is found with vegetated areas while the sensible heat exchange found in 

sparsely vegetation and urban areas. Because the LST is sensitive to vegetation and soil 

moisture, it can be used to detect land use and land cover changes (Javed et al., 2008). 
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However, validation of LST is difficult because (i) The surface emitted radiance is altered 

by atmosphere before reaching the sensors; (ii) Radiance measured by sensors are made 

in one direction which is not necessarily representing the entire upper hemisphere; and 

(iii) Separation of temperature from surface radiance cannot be done. 

Traditionally, high temperature is believed to intensify the water stress for 

vegetation, and thus worsen the drought situations. The VHI raised by Kogan (1995) 

utilized the positive correlation between temperature index and vegetation index (i.e. 

when temperature increases, the vegetation performance worsens) to depict the 

vegetation vigor by 50% of temperature perspectives and other 50% of vegetation 

conditions. However, the pre-requisite might be wrong in many cases. High temperature 

is not making harm to vegetation performance all the time. For example, at the beginning 

of oats’ growing season in Poland, abnormally high temperatures can provide an optimal 

soil environment for the newly planted crop to emerge. Thus to say, whether the 

temperature condition is good for the crop growth depends on the specific crop type, crop 

growing stage and location. Vegetation with a high resistance to evapotranspiration can 

have high VI and LST at the same time. 

And also, during a specific growing stage of a crop when the optimal situation is 

to have lower temperature but the actual surface temperature appears higher than normal, 

the vegetation condition is not destined to reduce since the moisture level of the 

vegetation can be more than sufficient and the abnormal high temperature will not affect 

the water supply to the crop. For instance, though an area might be suffering from 
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abnormal high temperature, an accidental rainfall can save the situation and provide 

enough water that the crop might need at its specific growing stage. 

In summary, the relationship between surface temperature and vegetation 

condition is not linearly correlated. Many factors influence the way the change in 

temperature might interact with the change in vegetation conditions. Crop type, crop 

growing stage, soil type, soil moisture levels, wind speed, the evapotranspiration can all 

contribute to this issue. Among all, the soil moisture, or the vegetation water content is 

most important. When the vegetation is suffering from water stress, the thermal stress 

adding up to it might worsen the drought situations. However, when the vegetation is 

sufficient with water supply, abnormal high temperature might not cause such a disaster 

as when the water supply is deficient. There is no direct indication from high LST to 

severe drought.  

The TCI, a remote sensing based thermal stress indicator is proposed to determine 

temperature-related drought phenomenon (Kogan, 1995). TCI is based on the thermal 

band of MODIS converted to brightness temperature (BT) and used to determine 

temperature-related vegetation stress and also stress caused by excessive wetness. The 

TCI algorithm is similar to the VCI algorithm, and is given as 

 

Equation 1 Temperature Condition Index (TCI). 

𝑇𝐶𝐼 = 𝑆𝐶𝐴𝐿𝐸 ∗  
𝐵𝑇𝑚𝑎𝑥 −  𝐵𝑇

𝐵𝑇𝑚𝑎𝑥 −  𝐵𝑇𝑚𝑖𝑛
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Here, BT, BTmax and BTmin are the smoothed biweekly (or weekly) brightness 

temperature, maximum and minimum of the BT values for the same bi-week (or week) 

through multiple years, respectively, for each grid cell. The conditions are estimated 

relative to the maximum and minimum temperature envelopes. The above formula 

reflects different response of vegetation, to temperature. In most situations, high 

temperatures in the middle of the growing season indicate unfavorable conditions for 

drought, whilst low temperatures indicate mostly favorable conditions. Low TCI values 

correspond to vegetation stress due to high temperature and dryness. The TCI provides 

opportunity to identify subtle changes in vegetation health due to thermal effect as 

drought proliferates when moisture shortage is accompanied by high temperature (Kogan, 

2002). 

Subsection 2.1.2 Vegetation index (VI) for various crops 

2.1.2.1 Performance of time-series NDVI  

The NDVI, developed by Rouse et al. (1973), has been extensively used to 

monitor vegetation dynamics on a regional or continental scale (Tucker et al. 1985). 

However, the NDVI has its limitations when being applied for various locations different 

in latitude, elevation, climate zone, and other geospatial factors. If one compare the 

yearly NDVI time-series of any location (e.g. from 2000 to 2012), he/she can see that 

there is a fixed pattern of these NDVI peaks and valleys, no matter the studied year is 

suffering from drought or not. For example, the NDVI value of Corn Belt during drought 

period can still be higher than the NDVI value of Texas during normal times, and the 

NDVI value of wet winter is highly possible to be higher than that of dry summer as well. 
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NDVI can be considered as a variable consisting of two components – the short-term 

weather component and the long-term ecological component, and the weather component 

is weaker compared to the ecological component. Kogan (1990) thus introduced VCI to 

separate the weather-related fluctuations apart from the ecosystem changes. While 

NDVI’s ability to indicate drought/non-drought is limited to geospatial and temporal 

difference, VCI as a ratio of current NDVI versus multi-year NDVI, reflects relative 

change in moisture conditions. In Figure 7, Blue lines represent the NDVI curve of corn, 

and the brown lines represent the NDVI curve of soybeans. Considering the peaks of the 

three states (IL, IA, and WI), the peak NDVI for corn lands is always lower than the peak 

values of soybeans. Also, there is a 16-32 days lag for the soybeans comparing to corn at 

their peaks (Johnson, 2010). 

 

 
Figure 7 The NDVI curves of corn and soybeans for IL, IA, and WI (Johnson, 2010). 
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Figure 8 Even for the same crop in different states, the amplitude of NDVI differs. Also the timing could vary up 

to two months for some crops (Johnson, 2010). 

 

 
Figure 9 Even for the same crop in the same state, the NDVI performance could vary across years (Johnson, 

2010). 
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Three rules can be concluded from the results above: (1) the amplitude and timing 

of NDVI varies by crop type, (2) the NDVI behaves differently based on the geophysical 

conditions, and (3) for each year, the timing and amplitude of NDVI differs. 

2.1.2.2 Relationship between NDVI and NDWI 

The calculation of NDVI is shown in Equation 2. The NDVI data provided by 

MOD13 product is derived from two bands – RED (620~670 nm) and NIR (841~876 

nm), as listed in Table 3. Multiple studies have shown lagging NDVI responses to rainfall 

deficit and that, the red band used in NDVI calculation is highly absorbed by crop canopy 

and thus fails to return with strong signals (Chakraborty & Sehgal, 2010; Gao, 1996; 

Jackson et al., 2004). The NDVI value of a vegetated pixel getting saturated after the leaf 

area index (LAI) grows above three is another problem with NDVI, and therefore is not 

fully responsive during the full range of vegetation growing cycle. On the other hand, the 

Normalized Difference Water Index (NDWI), which is introduced by Gao (1996) and 

modified by Jackson et al. (2004), uses one band within NIR and the other within SWIR 

spectrum (as shown in Equation 3). And the two MODIS bands to represent NIR and 

SWIR spectrum are bands 2 and 6 (in Table 3), with spectral range of 841~876 nm and 

1628~1652 nm, respectively. 

 

Equation 2 NDVI 

𝑁𝐷𝑉𝐼 =  
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷
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Equation 3 NDWI 

𝑁𝐷𝑊𝐼 =  
𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊𝐼𝑅

𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊𝐼𝑅
 

 

Table 3 The corresponding wavelength ranges for the seven bands of MODIS surface reflectance products. 

Band No. Wavelength (nm) Division 

1 620-670 RED 

2 841-876 NIR 

3 459-479 BLUE 

4 545-565 GREEN 

5 1230-1250 NIR 

6 1628-1652 SWIR 

7 2105-2155 SWIR 

 

NDWI manages to pick up vegetation water information in stronger signals, 

because the short infrared has high penetration through canopy cover. Unlike NDVI and 

its derivatives (e.g. VCI), NDWI remains sensitive to vegetation water content (and thus 

rainfall) until the LAI value reaches eight, and thus the effective duration for NDWI to 

reflect changes made in vegetation water is much longer than that for NDVI. Jackson et 

al. (2004) has illustrated the strengths of NDWI over NDVI using their time-series line 

plots, and the scatter plots of them versus VWC. In Figure 10, the line plot of NDVI-

Corn series gradually ceases increasing and becomes constant after DOY 185, which 

means that NDVI for corn lands has reached saturation, while NDWI continues to change 

until several days after. The left plot of Figure 11 has shown that when corn VWC has 

risen above 4 kg/m2, any additional increase of VWC is not reflected in NDVI changes. 

On the other hand, increase of VWC is still reflected via the increase of NDWI until 

VWC is larger than 4.6 kg/m2, as shown in the right plot of Figure 11. The NDVI of 
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soybeans also reaches saturation faster than NDWI, but the time lag is not as obvious as 

that of corn lands (Figures 10 & 11). 

 

 
Figure 10 Jackson et al. (2004) pointed out that, for corn alone, NDVI reaches saturation during the middle of 

research period while the NDWI continues to change. 

 

 
Figure 11 Jackson et al. (2004) pointed out that, for corn alone, NDVI reaches saturation during the middle of 

research period while the NDWI continues to change. 

 

Because NDWI is more sensitive to vegetation moisture conditions in a longer 

span of time, adoption of NDWI and its derivatives will lead to better early detection and 

monitoring of agricultural drought in comparison to NDVI. This dissertation is to 

consider crop NDWI aside NDVI for drought monitoring. 
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2.1.2.2 Relationship between LST and NDVI 

A large number of water- and climate-related applications, such as drought 

monitoring, are based on space-borne derived relationships between LST and the NDVI. 

The majority of these applications rely on the existence of a negative slope between the 

two variables, as identified in site- and time specific studies. Karnieli et al. (2008) 

investigated the generality of the LST–NDVI relationship over a wide range of moisture 

and climatic/radiation regimes encountered over the North American continent (up to 60 

degrees North) during the summer growing season (April–September). Information on 

LST and NDVI was obtained from long-term (21 years) datasets acquired with the 

AVHRR. Research has found that when water is the limiting factor for vegetation growth 

(the typical situation for low latitudes of the study area and during the midseason), the 

LST–NDVI correlation is negative. However, when solar radiation is the limiting factor 

for vegetation growth (in higher latitudes and elevations, especially at the beginning of 

the growing season), a positive correlation exists between LST and NDVI.  

Multiple regression analysis revealed that during the beginning and the end of the 

growing season, solar radiation is the predominant factor driving the correlation between 

LST and NDVI, whereas other biophysical variables play a lesser role. Air temperature is 

the primary factor in midsummer. It is concluded that there is a need to use empirical 

LST–NDVI relationships with caution and to restrict their application to drought 

monitoring to areas and periods where negative correlations are observed, namely, to 

conditions when water, instead of heat, is the primary factor limiting vegetation growth.  

The validity of the VHI as a drought detection tool relies on the assumption that NDVI 

and LST at a given pixel will vary inversely over time, with variations in VCI and TCI 



37 

 

driven by local moisture conditions. However, when examined over spatially expanded 

areas and long periods, the relationship between LST and NDVI is found to be not only 

not a fixed one but also not always a negative correlation. The combination of 0.5*VCI + 

0.5*TCI to represent vegetation health conditions might not work as efficiently in all 

regions. Kawashima (1994) distinguished between urban and suburban sites and observed 

positive relationships on a clear winter night as a result of higher vegetation density in the 

suburban area than in the urban area. Lambin and Ehrlich (1996) worked on a continental 

scale in Africa and found positive correlations over an evergreen forest and negative 

correlations over drier biomes. A positive slope was also shown for the native evergreen 

forests in southern Australia (Smith and Choudhury 1991). Karnieli et al. (2006) 

demonstrated that the slope of LST versus NDVI over Mongolia changes with respect to 

geo-botanical regions and latitude. A negative slope was observed in the arid regions of 

southern Mongolia, whereas the slope was positive in the northern part of the country. 

Olthof and Latifovic (2007) showed that the NDVI of trees and shrubs in Canada 

correlates positively with LST, whereas Sun and Kafatos (2007) found that these 

correlations over the North American continent are season and time-of-day dependent. A 

positive correlation was found in winter, whereas strong negative correlations were found 

during the warm seasons. The global distribution of the LST and NDVI relations shows 

negative correlations over drylands and mid-latitudes and positive correlations over the 

tropics and high latitudes (Schultz and Halpert 1995; Churkina and Running 1998; 

Nemani et al. 2003; Julien and Sobrino 2009). 
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In summary, positive relationships between LST and NDVI tend to develop in 

areas where vegetation growth is energy or temperature limited. Several studies 

confirmed via warming experiments in high-latitude regions that warming generally 

induces an increase in plant biomass, abundance, height, cover, and net primary 

productivity (NPP) (Chapin et al. 1995; Graglia et al. 1997; Dormann and Woodin 2002; 

Van Wijk et al. 2003; Stow et al. 2004; Walker et al. 2006). In such areas, higher LST 

reflects conditions that are more conducive to plant development through various 

biochemical processes (Badeck et al. 2004). Increased LST also drives processes within 

the soil, such as microbial activity, nitrogen availability, and nutrient uptake (Nadelhoffer 

et al. 1991; Chapin et al. 1995). Therefore, in high latitudes, increasing LST should not 

be interpreted as a signal of vegetation stress. 

In general, prior studies suggest that the sign of the LST–NDVI slope may be 

governed by whether vegetation growth is water limited (negative slope) or temperature 

limited (positive slope). The latter condition is prevalent at high latitudes or in the 

evergreen tropical forests, whereas the former may occur at lower latitudes, especially in 

drylands (Nemani and Running 1989; Nemani et al. 1993; Lambin and Ehrlich 1996). 

Karnieli et al. (2008) studied the LST-NDVI relationship over continental United 

States (CONUS), from 25°N to 60°N, and found that, at the beginning of the growing 

season, the majority of the area was characterized by positive correlation; in the middle 

negative correlation; and at the end a weaker, yet statistically significant, correlation. The 

correlation relationship between LST and NDVI being classified into three groups r<-0.2, 

-0.2<r<0.2, and r>0.2, the spatial distribution of these three groups over the growing 
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period can be seen in Figure 12, in which red pixels are within group 1, white pixels 

within group 2, and blue pixels within group 3. From April to May, negative correlation 

between LST and NDVI is true for 67% of the studied area, the majority of which resides 

north of the 40°N (Figure 12(a)). From June to July, the LST-NDVI correlation is valid 

for 48% of the entire region, mostly south of the 45°N (Figure 12(b)).  Figure 12(c) 

shows that, from August to September, the entire study area is made up of 34% of group 

1 (negative correlation), 41% of group 2 (weak positive/negative correlation) and 25% 

(positive correlation), and overall indicates a relatively weaker correlation. Researchers 

need to pay attention to this changing correlation relationship.  
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Figure 12 Spatial distribution patterns of pixels with positive, negative, or insignificant correlations for the (a)–

(c) three sub-periods (April-May, June-July, and August-Sept.) of the growing seasons (Karnieli et al., 2008). 

 

Section 2.2 Soil moisture estimation 
Water held in the spaces between soil particles is called soil moisture. Surface soil 

moisture refers to the water being held in the upper 10 cm of soil, whereas root zone soil 

moisture is the water available to plants (generally considered to be) in the upper 200 cm 

of soil. Soil moisture is a limiting factor to vegetation growth in arid and semi-arid areas 

(Sandholt et al., 2002) where vegetation growth is heavily dependent on the water 

availability, and the vegetation index derived from satellite products may respond to the 

change of soil moisture and reflect the soil moisture to some degrees. Di (1991) has 

stated the complicated properties of soil moisture in that knowledge of soil moisture 

spans from surface to lower limit of root zone but most remote sensing methods can only 
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cover the uppermost few micrometers of the soil. Sensitive to short-term changes in 

weather, the soil moisture in the top soil cannot be a strong carrier of long-term climate 

information, e.g. to indicate drought or non-drought. For instance, only a few days of dry 

weather can take away moisture from the topsoil, while the soil moisture down beneath in 

the root zone is still ample. On the other hand, there will be large deficiencies of soil 

moisture in the root-zone during a prolonged drought, yet a fast rain will immediately 

bring back the moisture level at the surface when the drought condition is not changed at 

all.  

Among all methods to determine soil moisture, gravimetric sampling is the only 

direct and exact one; however, it is time and labor consuming to undertake, and therefore 

impractical to use for regional estimation (Wilson et al., 2003). Other ground-based 

methods can serve as alternative to save time and labor, e.g. Soil Climatic Analysis 

Network (SCAN) sites and COsmic-ray Soil Moisture Observing System (COSMOS) 

(Chrisman & Zreda, 2013) which take advantage of dielectric properties and neutron 

probes.  

The advancements in remote sensing technologies have provided thriving 

perspective for timely measurement of soil moisture content across a large area. Thermal 

emissions from soils in the microwave region (i.e. passive microwave) are sensitive to the 

fluctuation of surface soil moisture – as the amount of water in soil increases, the energy 

emitted into space decreases (Jackson et al., 1995, 1996; Wang & Marsettb, 2004). 

Launched in 2002, the Advanced Microwave Scanning Radiometer (AMSR-E) of the 

Earth Observing System (EOS) instrument measures radiation at six frequencies in the 
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range 6.9–89 GHz, all dual polarized. With its antenna scanning conically at a fixed 

incidence angle of 55 across a 1445-km swath, AMSR-E provides near-global coverage 

in two days or less. And its spatial resolution at the surface varies from approximately 60 

km at 6.9 GHz to 5 km at 89 GHz. Moreover, the Aqua orbit is sun-synchronous with 

equator crossings at 1:30 P.M. and 1:30 A.M. local solar time. As a representation of a 

new data source for global observations of soil moisture, AMSR-E extends the variability 

of soil moisture information from regional to global scale (Njoku et al., 2003).  

At moderate resolution, the soil moisture levels can be estimated from MODIS 

land parameters and ground measured soil moisture. With lower spatial resolution, 

AMSR-E microwave measurements provide a global picture of the soil moisture at the 

top soil layer. These measurements are typically less affected by clouds, and can be used 

as complementary to MODIS over regions of clouds. 

From 2002 to 2005 a series of Soil Moisture Experiments (SMEX) were 

conducted to validate the space borne soil moisture measurements (e.g. from the AMSR-

E instrument). Not only evaluation of the accuracy of AMSR-E soil moisture data is 

accomplished, but these objectives have also been realized with SMEX: to assess and 

refine soil moisture algorithm performance; to verify soil moisture estimation accuracy; 

to investigate the effects of vegetation, surface temperature, topography, and soil texture 

on soil moisture accuracy; and to determine the regions that are particularly useful for 

AMSR-E soil moisture measurements (SMEX Website, 2014). 
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Soil moisture, as a direct indicator for drought, can be used as a validation source 

to evaluate any agricultural drought indicator, either using the ground-based observations 

for points, or remotely sensed data for large areas. 

Section 2.3 Methods for monitoring agricultural drought 
Conventionally there are four types of defined droughts –meteorological, 

agricultural, hydrologic and socio-economic droughts.  Targeting at each different type of 

drought, methods used for monitoring and assessment shall be distinguished. The United 

States has long been bothered by droughts, one of the most recent happened in 2012, 

which caused millions of dollars of crop/pasture losses. With recent advancements in 

remote sensing and other technologies, scientists are better equipped to have droughts 

monitored and forecasted at higher temporal and spatial frequencies, and hence in a more 

timely and accurate fashion. These will be enunciated in subsections 2.3.1, 2.3.2, 2.3.3 

and 2.3.4. 

Subsection 2.3.1 Definition of drought 

Merriam-Webster Dictionary defines drought to be “a prolonged period of 

abnormally low precipitation; a shortage of water resulting from this”. The National 

Drought Mitigation Center (NDMC) has its own definition of drought – an insidious 

hazard of nature, creeping, with its impact varying region by region (NDMC website). 

And it further classifies the definitions into two types: conceptual and operational 

definitions. Conceptually drought is defined as “a protracted period of deficient 

precipitation resulting in extensive damage to crops, resulting in loss of yield”, which we 

can see how it emphasizes on the drought’s impact to agricultural productions. 
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Operationally drought definitions take into consideration: “drought frequency, severity, 

and duration for a given historical period” (NDMC website). As Tannehill (1947) wrote 

in Drought and Its Causes and Effects, “We have no good definition of drought. We may 

say truthfully that we scarcely know a drought when we see one. We welcome the first 

clear day after a rainy spell. Rainless days continue for a time and we are pleased to have 

a long spell of such fine weather. It keeps on and we are a little worried. A few days more 

and we are really in trouble. The first rainless day in a spell of fine weather contributes as 

much to the drought as the last, but no one knows how serious it will be until the last dry 

day is gone and the rains have come again … we are not sure about it until the crops have 

withered and died.”  

Everyone has a different definition for drought. However, more commonly, 

drought can be viewed as the result of when demands for water exceed the natural 

availability of water. Lack of any clear definition of drought has compounded the 

difficulty since drought can be defined by all sorts of elements such as rainfall, 

temperature, vegetation conditions, agricultural productivity, or soil moisture, levels in 

reservoirs and stream flows, or economic impact. 

In general, there are four main types of drought: meteorological, hydrologic, 

agricultural, and socio-economic droughts. By definition, a meteorological drought 

happens to a region when its level of precipitation is abnormally low, and duration of 

dryness is abnormally long. A hydrological drought is defined on a watershed or river 

basin scale and it measures the effects of periods of deficient water precipitation on 

surface and subsurface water supply, such as stream flow and groundwater. The National 
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Oceanic and Atmospheric Administration (NOAA) defines agricultural droughts as a 

combination of temperature and precipitation over a period of several months leading to 

substantial reduction (less than 90%) in yield. An agricultural drought is considered to 

have set in, when the soil moisture availability to plants has dropped to such a level that it 

adversely affects the crop yield and hence agricultural production. It emphasizes the 

response of the region’s soils, plants, and animals to water stress. However, the actual 

impact of drought on agricultural crops depends on the biological characteristics of crops, 

stage of growth, and the physical/biological properties of soil. And the socio-economic 

drought occurs when water supply falls short to meet human and environmental needs, 

and when a meteorological, hydrological or agricultural drought adversely affects the 

supply-demand chain of economic goods in the society (Nagarajan, 2009).  Other than 

this classification, drought can be sorted into long-term drought and short-term drought 

as well. 

The meteorological, agricultural and hydrologic droughts are inter-connected. As 

shown in Figure 13, precipitation deficiencies and abnormally high temperatures are two 

major reasons for meteorological droughts, and as the drought situation intensifies, with 

the emergence of plant water stress and biomass reduction caused by soil water 

deficiency, a meteorological drought can become an agricultural drought. Moreover, as 

the situation gets worse, with reduction in streamflow, inflow, wetlands and wildlife 

habitat, a hydrologic drought will come into being. 
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Figure 13 Transitions between meteorological, agricultural and hydrologic droughts. 

 

Researchers have a tendency towards a specific type of drought when they are 

representing the interest of a special group of people. For example, when farmers or 

ranchers’ interests are concerned, the research will focus on agricultural drought, because 

people in the grocery and meat business or farm communities depend on agricultural 

income for their livelihoods. Thus the spot light of assessing, monitoring, and predicting 

agricultural drought is around the drought impact to be seen on crops or livestock, and 

how these results into changes in food production and market price. On the other hand, 

urban planners are mostly concerned with hydrological drought because water supplies 

and reserves are key components in managing urban growth. In addition, mostly 

researchers care about meteorological drought, because that is the drought condition most 

familiar to the general public and the one most easily identified. Also, this is the set of 

information that decision makers will look into in the first place. 
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Subsection 2.3.2 Drought in the United States 

Compared to floods, tornadoes, and hurricanes, droughts can be less spectacular, 

yet they are often more costly than other types of natural disasters, and not a single region 

in North America has been immune to periodic drought. 

Drought has afflicted portions of North America for thousands of years. 

According to the NOAA, the year of 2012 is the hottest year, and July in 2012 is the 

hottest month ever recorded in the United States since 1895. The federal assessment in 

August 2013 has shown that the 2012 drought has affected 87% of the land dedicated to 

growing corn, 63% of land for hay and 72% of land used for cattle. The breadth of this 

2012 drought is particularly striking. From the weekly (dated 2012/10/02) report of U.S. 

Drought Monitor, about 65.45% of the CONUS (and about 54.77% of the U.S. including 

Alaska, Hawaii, and Puerto Rico) was experiencing a drought classified as moderate to 

exceptional (D1-D4) at the end of September. Also, the Palmer Drought Index for the end 

of August has revealed that severe to extreme drought affected about 39% of the 

CONUS, and about 55% fell into the moderate to extreme drought categories. According 

to government historic monitoring records, such area of impact is the largest since 1956.  

The worst drought in nearly half a century has set food prices up. After favorable 

spring weather in 2012, corn productions for the United States had been projected to hit 

record high (approaching nearly 15 billion bushels), as farmers had planted the most 

acreage since the late 1930s to profit from what were already the highest corn prices ever. 

Then the drought set in, projections of a bumper crop evaporated, and prices began to 

climb. As of mid-July, more than half of the corn in seven states was in poor condition or 

very poor condition, according to the U. S. Department of Agriculture (USDA). For corn 
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planting areas in Kentucky, Missouri, and Indiana, more than 70% of them were in poor 

or very poor conditions. Fewer crops were in good to excellent conditions in 2012 – for 

instance, 66% of the nation’s corn was in good to excellent condition in 2011 while in 

2012 only 31% was in good to excellent condition. Some farmers have been cutting their 

corn early to use for feed, which is to profit much less than the other venture. More just 

sit watching their cash crops “burn to the point of no return”. On June 25, 2012, corn 

prices on the Chicago Board of Trade rose 40 cents to $5.94 a bushel, as reported by 

Agriculture.com.  

Withering of corn has put stress on cattle farmers by increasing feed prices and 

depleting available feeding land. By record of the U. S. Dept. of Agriculture (USDA), 

54% of pasture and rangeland where cattle feed or hay is harvested for feeding, was in 

poor/very poor condition. Many farmers have not been able to keep their animals and 

have to sell them. 

Figure 14 shows the deviation from trend for non-irrigated corn yield since 1960. 

The 2012 drought had been devastating to the non-irrigated corn yields in the U.S. and 

the deviation below trend was 34.1 bushels, which can only be rivaled in the last half-

century by 1988 when yield dropped 33.8 bushels below trend. On the other hand, if 

deviation computation is based on percentage instead of bushels, then 2012 is the third 

worst of the last half-century with -29.3% below trend while 1988 is the worst with a -

44.5% shortfall. If this deviation of corn yields is split into separate states, some states are 

with higher loss in corn yields. For instance in 2012, as shown in Figure 15, Illinois and 

Indiana suffered a steep drop in their corn productions, while Mississippi encountered an 
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exceptionally good corn harvest. Illinois, the 2nd corn producing state by record, had to 

“import” corn from N. Dakota and Minnesota to make up for its shortfall. 

 

 
Figure 14 The deviation from trend for non-irrigated corn yield since 1960 (USDA NASS Crop Report, 2013). 

 

 
Figure 15 The corn yield for five states from 2007 to 2012. (Source: 

http://www.desdemonadespair.net/2012/10/in-aftermath-of-drought-us-corn.html) 

 

Besides this 2012 drought that devastated U. S. agriculture, during the past 

century, the nation had several experiences with “big” droughts in 1930s, 1950s and 
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1980s respectively. During the 1930s, the Dust Bowl drought which severely affected 

much of the United States came in three waves, 1934, 1936, and 1939-1940.  For some 

regions of the High Plains, the drought conditions lasted for as many as eight years. The 

cause of the “dust bowl” effect was the sustained drought conditions compounded by 

years of land management practices which left the topsoil susceptible to the forces of 

wind. After being depleted of moisture, wind lifted the soil into great clouds of dust and 

sand and thus was called “black blizzards”. Because of this drought, farmers of the Great 

Plains adopted new cultivation methods to help control soil erosion in dry land 

ecosystems. 

A five-year drought caused many residents of the Great Plains and southwestern 

United States to suffer during the 1950s and within three years the drought conditions 

expanded from coast to coast. The first signal of drought was felt in the south western 

United States in 1950 and by 1953 it had spread to Oklahoma, Kansas and Nebraska. 

Until 1954, the drought had swept a massive area consisting of 10 states, from mid-west 

to the Great Plains, and southward to New Mexico. Reaching a peak in 1956, the drought 

remained strong in the Great Plains area. It was not until the spring rains of 1957 had the 

drought conditions in most areas subsided. Characterized by both low rainfall amounts 

and excessively high temperature, the drought devastated the region’s agriculture – crop 

yields in some areas dropped as much as 50% (Smith et al., 2004). 

The drought from1987 to 1989, beginning along the west coast and extending into 

the northwestern U. S., had its greatest impact in the northern Great Plains. At its peak, 

the drought covered 36% of the states. Compared to the Dust Bowl drought which 
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covered about 70% of the states, this drought might not seem as significant. Yet it had not 

only been the most costly drought in the U. S. history, but also the most expensive natural 

disaster of any kind that impacted the U. S. during the 20th century. The total cost to 

energy, water, ecosystem, and agriculture was estimated to be at $39 billion. The 

vulnerability of the farm land was due in part to farming on marginally arable lands and 

pumping of ground water to the point of depletion.  

Scientists still cannot completely understand how and why these three drought 

episodes occurred. From a societal perspective, maybe the more important question we 

should ask is how unusual are these events? Because most instrumental records 

(thermometer and rain gauges) are only about 100 years old, we are short of historic data 

to answer this question.  Also, the characteristics and the conditions that lead to the 

persistence of drought remain unsolved. Although droughts related to El Niño and the 

Southern Oscillation (ENSO) are now more predictable on a seasonal scale, longer, 

multi-year droughts cannot be predicted still. 

 

Table 4 Drought timeline of the U. S. (source: http://www.circleofblue.org/waternews/2012/world/infographic-u-

s-drought-impacts-2012-corn-crops/) 

Year Event 

1930s The Dust Bowl -- Considered worst U. S. drought, covering 70% of nation 

at its peak. 

1932 Record Planting  -- 113 million acres (46 million ha). The next largest 

planting were in 1937 and 2012 at 97 million acres (39 million ha). 

1951-1956 Great Plains & SW Drought -- Crop Yields drop 50% in some areas of the 

country, and the PDSI reached a record low in Kansas during Sep. 1956. 

1987-1989 Costliest drought -- Covering 36% of the country, the costliest drought in 

U. S. history totaled $39 billion losses. 

2009 3.1% of corn planted was Monsanto's genetically modified insect-resistant 

or herbicide-tolerant corn. 

2009 Record Corn Numbers -- Record Production: 13.1 billion bushels (332.2 

http://www.circleofblue.org/waternews/2012/world/infographic-u-s-drought-impacts-2012-corn-crops/
http://www.circleofblue.org/waternews/2012/world/infographic-u-s-drought-impacts-2012-corn-crops/
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million metric tons); Record yield per area planted: 164.7 bushels per acre 

(10.33 metric tons per ha). 

2012 25.8% of corn planted was Monsanto's genetically modified insect-

resistant or herbicide-tolerant corn. 

2012 Record planting since 1937 -- Expected record yield per acre, before the 

drought. 

2012 Most Expansive Drought since 1956 -- Record corn price: $8.16 per bushel 

($321.50 per metric ton). 

 

Subsection 2.3.3 Major methods of drought monitoring over large areas 

Traditionally weather station data (e.g. precipitation, temperature) and climate-

based indices (e.g. PDSI) are used for drought monitoring. However, this approach has a 

limited spatial precision at which drought patterns can be mapped since the 

meteorological measurements are collected in points. Also, weather stations are scarce in 

remote areas and not distributed in a uniform manner. Thus, the traditional approach can 

only provide broad-scale point-based data using statistical spatial interpolation 

techniques, and the spatial detail in those patterns is highly dependent on the density and 

distribution of weather stations. Remotely sensed data can be used to monitor drought 

over large areas with relatively higher spatial resolution than the weather station data. 

The satellite observations can provide timely, spatially continuous information for 

monitoring drought (and specifically vegetation dynamics and conditions) over large 

geographical area (Tadesse et al., 2008).  

Scientists tend to monitor drought using the changes in the conditions of 

vegetation dynamics, LST and soil moisture. And there are plenty of satellite products 

providing the information. For instance, MODIS products provide gridded data of surface 

reflectance, LST, thermal anomalies, and land cover type, leaf area index (LAI), Fraction 
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of Photosynthetically Active Radiation (fPAR) and others at different temporal and 

spatial scales. Alternative to MODIS, AVHRR, Système Pour l’Observation de la Terre – 

Vegetation (SPOT-Vegetation), Landsat Thematic Mapper (TM), and Landsat Enhanced 

Thematic Mapper Plus (ETM+) can also provide data for calculation of vegetation 

indices (e.g. NDVI, VCI, NDWI, TCI and EVI). As to calculate soil moisture, daily 

gridded AMSR-E Level 3 soil moisture data provided by the National Snow and Ice Data 

Center (NSIDC) and, Daily gridded Level 2 Tropical Rainfall Measuring Mission 

(TRMM) Microwave Imager (TMI) soil moisture data from Princeton’s Land Surface 

Hydrology Research Group made from using vegetation indices (e.g. NDVI) or 

temperature (e.g. TCI) can be applied.  

The obtained datasets can either be directly used for visualization or analysis, or 

be used for an estimate model of another information (e.g. vegetation water content can 

be estimated using NDVI or NDWI), or be integrated with the meteorological data to 

achieve better accuracy. Inside Box 1 is a sample procedure of how to achieve a drought 

condition estimate from Vegetation indices.  

 

Box 1. 
Step 1 -- Retrieving or/and calculating Vegetation Index (e.g. VCI being calculated from 

NDVI, TCI being calculated from LST, and VHI calculated from VCI and TCI) derived from 

MODIS. 

Step 2 -- Merge the resulting tiled images of step 1 into a continental or global picture 

Step 3 -- Analyze the relationship between the VI values and the drought severities, and 

set up threshold values for each drought class 

            Step 4 -- Visualize the global or continental map with the new color scheme for each 

drought class, and mark the areas impact by drought. 
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Using Remote Sensing techniques for large-area drought monitoring is 

advantageous at its large, uniformly distributed, and temporally continuous coverage. The 

traditional way of using in-situ observations for drought monitoring is not realistic to be 

extended to a global scale, since the spatial and temporal observations at weather stations 

have proven to be sparse and not uniformly distributed. However, using Remote Sensing 

data has its disadvantages: (1) The drought information obtained from merely remote 

sensing data or indices can sometimes be erroneous due to noise effects or other factors 

(e.g. for NDVI, the asymptotic or saturated signals over high biomass conditions, and its 

sensibility to canopy brightness, according to Emutrain Website), requiring validation 

from weather data. (2) The VI or soil moisture index can cause inherent linearity since 

they are often ratio based indices. (3) It is not considering the structural properties of land 

surface features.  

Subsection 2.3.4 Key research issues in agricultural drought monitoring for the 

global communities 

In the realm of monitoring global agricultural drought, there are three most heated 

topics. First, some scientists have focused onto obtaining a most appropriate drought 

indicator (and providing proof for the new indicator being better correlated with drought 

conditions than the currently used ones). This new drought indicator is sometimes a 

combination of two or more existing (hydrological or meteorological or agricultural or 

socio-economical) indices. For example, Kogan (1995, 1996) managed to combine VCI 

and TCI, and created a new index – VHI, which is a better drought indicator than merely 

using the VCI because VHI represents both thermal stress and moisture stress. Another 

way to create better drought indicators is to revise the existing one by changing the 
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composite wavelength. For instance, Gao (1996) introduced NDWI for depicting the 

vegetation soil moisture conditions using two NIR bands, while Jackson et al. (2004) 

used one NIR and one SWIR bands for the same concept, and proved that the new NDWI 

is superior to the old one. The advantages of adopting a good drought indicator are (1) to 

detect and monitor drought conditions efficiently, (2) to determine the starting/ending 

time, duration and level of drought severities or impact, (3) to characterize a single 

drought event, and compare multiple droughts either at the same time or at the same 

location, and (4) to tie together levels of drought severity with drought responses thereby 

forming an operationally workable drought management plan (Nagarajan, 2009).  

 The second trend is to analyze the relationship (i.e. whether there is a significant 

correlation) between the estimated drought variables (e.g. hydrology, crop yield, or 

vegetation conditions) created from remote sensing indices and meteorological 

parameters, and the statistical ground truth. Once the correlation is established, scientists 

integrate the indices or parameters into some empirical models such as regression 

functions, and use the model for a broad region. The Vegetation Drought Response Index 

(VegDRI) is a good example, in which the 1-km NDVI images providing detailed spatial 

patterns of vegetation conditions are analyzed in combination with dryness information 

represented in the climate-based drought index data to identify and characterize the 

intensity and spatial extent of drought conditions.  Biophysical parameters such as the 

land cover type, soil available water holding capacity, irrigation status, and ecological 

setting of an area are also taken into consideration because these environmental 

characteristics can influence specific climate-vegetation interactions (Wardlow et al., 
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2008). Hence in order to discover the relationship between each factor, and decide the 

influential weights this factor exerts upon drought, scientists are encouraged to integrate 

satellite-based observations (e.g. NDVI), climate-based drought index data (e.g. 

precipitation), and several biophysical characteristics of the environment (e.g. crop 

phenology) to produce an indicator that serves as a sensitive expression for the level of 

drought stress affecting vegetation. 

Third, the interoperability issue is also of great concern. The global drought 

research community calls for the development of a drought observatory or monitoring 

system, which provides consistent and timely information of drought conditions and 

patterns at various scales – from local, regional to continental scales – and a detailed risk 

assessment mechanism that is capable of information collecting/archiving/publishing, and 

also analysis/learning/forecasting. The first half of the mechanism requires the following 

components to be continuously monitored over long time periods: soil moisture, stream 

flow, lake and reservoir levels, groundwater, and direct impact on vegetation cover, since 

drought is a slowly developing phenomenon affecting the entire water cycle. And the 

second half requires the system to perform analysis for drought hazards (i.e. the 

likelihood of the occurrence of a drought of a certain extent, severity and duration) and 

the societal vulnerability to drought. The Open Geospatial Consortium (OGC) 

standardized Web Map Service (WMS), Web Coverage Service (WCS), and Catalogue 

Service with Web (CSW) are most widely used among agencies/organizations supporting 

drought data, information, and knowledge, yet the collaboration between providers has 

been limited, and sharing and reusing of data, processes, methods and results are still 
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insufficient. There is still a long way to go in extending the interoperability with national 

and regional drought information systems, and testing medium-range probabilistic 

drought forecasting products. 

Moreover, for each new drought indicator being created, each new relation 

between drought and indices/parameters/ground measurements to be found, and each new 

method or system to be established, the validation process is always the key.  

In future such a system will be built to provide a wide range of data, information, 

knowledge, and decision-making capability that the public and decision makers in policy 

and water resource management as well as for the research community can find useful. 

Furthermore, the short to medium term forecasting of the occurrence and likely evolution 

of droughts, as well as the prediction and analysis of likely impact of climate change on 

drought hazard in different regions, are important to support the development of efficient 

drought management plans, and should be developed as an extension to the drought 

monitoring (JRC Website, 2013; Peng, 2013).  
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CHAPTER 3 DETERMINATION OF VEGETATION PHENOLOGICAL 

PHASES FROM GROWING DEGREE DAYS (GDD) 

A "crop growing season" is the period during a year when seasonal weather is 

favorable for crop growth. The "growing season" of the Corn Belt is often defined as the 

freeze-free period beginning with the last freezing temperature (in spring) and ending 

with the first freezing temperature (in the autumn). This definition is based on the fact 

that water (in soil or plant) as the most important factor to living plants is highly 

dependent on temperature. In this sense, the "growing season" is determined by 

temperature. The crop season for each crop type is different. For corn, its growing cycle 

consists of vegetative, reproductive, and maturation phases, and these phases can be 

further classified into more detailed stages of development (Figure 16). For example, 

corn will germinate and grow slowly at about 50°F (10°C), and poor germination will 

result from below-normal temperatures (when corn is planted in early spring). The most 

commonly seen stress imposed at the beginning of the crop season is that of cold soil 

temperatures. High temperature stress is detrimental to yield during the stages of ear 

formation, reproduction, and grainfill. Specifically during tasseling, silking and grainfill 

(TSG), corn under rain-fed conditions begins to suffer heat stress when air temperature 

exceeds 90°F (32°C). A study performed upon Nebraska has showed that the yield of 

dry-land corn may be reduced by 1.5 bushel/acre for each day when the temperature 

reaches 95°F (35°C) or higher, during the TSG period. 
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Figure 16 The vegetative, reproductive, and mature stages of corn can be divided into 11 sub-phases. 

 

Multiple ways exist for decision makers to determine the integration period for 

agricultural areas, including (1) to find out the planting and harvesting dates for crops at 

each state every year by the National Agricultural Statistics Service (NASS) handbook 

published by United States Department of Agriculture (USDA) which is written based on 

historic crop calendar, (2) to determine the SOS (start of season) and EOS (end of season) 

by the NDVI time series, and (3) to calculate the accumulated GDD values for the area, 

and map to the corresponding growing stage of the specified crop. Detailed approaches 

are discussed in sections 3.1 and 3.2. 

Section 3.1 Determination of SOS and EOS by crop calendar 
The agricultural handbook published by NASS provides state-level usual planting 

and harvesting dates for major field crops, and has been used as reference of crop 
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calendar for the broad range of public users including scientists and farmers. The SOS 

and EOS in this section are determined by crop calendar written in this handbook. 

The planting and harvesting dates for each crop differ. For example in Table 5, for 

the state of Iowa in 1996, corn planting dates range from April 22nd to June 3rd while corn 

harvesting started from September 17th and ended on November 17th. Yet for soybeans, 

the planting did not start until May 4th, and the last date for harvesting was October 27th 

which together represents a much shorter growing period for soybeans. The growing 

period of soybeans is more or less 1 month shorter than that of corn. 

Also, the planting and harvesting dates for the same type of crop and the same 

state can be different across years. Table 6 shows that corn planting of 2009 began from 

April 19th and ended on May 26th, representing a later and shorter planting period 

compared to year 1996.  

The differences in planting and harvesting dates of the same type of crop in each 

state can be seen in Table 7. For instance, corn in the state of Arizona was planted since 

March 15th, and was harvested until December 1st in year 1996. Compared to corn 

growing in Iowa, the growing period of the former was much longer. 
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Table 5 The usual planting and harvesting dates by crop in the state of Iowa based on observations of year 1996 

(Source: http://www.nass.usda.gov/Publications/Usual_Planting_and_Harvesting_Dates/uph97.pdf). 

 
 

Table 6 The usual planting and harvesting dates by crop in the state of Iowa based on observations of year 2009 

(Source: http://usda01.library.cornell.edu/usda/current/planting/planting-10-29-2010.pdf). 

 
 

Table 7 The usual planting and harvesting dates of corn (for grain) by state based on observations of year 1996 

(Source: http://www.nass.usda.gov/Publications/Usual_Planting_and_Harvesting_Dates/uph97.pdf). 
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The year-by-year planting and harvesting dates for a single state do not change 

much – there is only one week’s time lag between that of 1996 and of 2009 (Tables 5 & 

6). However, in order to achieve monitoring and assessment at finer spatial and temporal 

scales, it is critical to align the VI or drought information organized in calendar dates to 

be comparable by crop growing stages. The information provided by the agricultural 

handbook on SOS and EOS is not sufficient to form a complete crop growing calendar 

for the alignment. A better approach to create such a crop growing calendar is to use 

growing degree days (GDD), which is introduced in section 3.2.  

Section 3.2 Identification of crop phenologic stage with GDD 

Subsection 3.2.1 Calculation of GDD 

Crops have different water demands along their growth stages. Crop water stress 

directly reflects agricultural drought intensity and affects crop growth, development, and 

yield, and ultimately, farmers' profits. Studies have shown that crop water stress can 

either hasten or delay crop development, depending on the crop phenologic stage at the 

time of water stress. Also, the time and duration of stress are critical to ultimate yield 

(e.g., if a period of water stress occurs during heading or during the grain-filling period, 

the reduction of the grain yield is much greater than if this same stress condition occurs at 

some other time).  Take field corn for example (as shown in Figure 21), the three growing 

stages when it is most sensitive to water deficits are tasseling, pollination, and yield 

formation, in which under watering by 10% might cause a 20-25% reduction in yield 

(Hane et al., 1984). For these reasons, knowledge of phenologic stage relative to planting 
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date could provide important information on crop water stress and agricultural drought 

conditions. 

 

 
Figure 17 Daily water use by corn as influenced by stage of development. Irrigation scheduling decisions should 

be adjusted to reflect changes in water consumption by the crop during the growing season (Image Source: 

http://www.bae.ncsu.edu/programs/extension/evans/ag452-4.html). 

 

Since the growth rates of many biological organisms are controlled primarily by 

temperature, the accumulated Growing Degree Days (AGDD), sum of daily GDD values 

from beginning of the growing period till the studied day, are useful in tracking the 

development of several important crops and insect pests. Each corn hybrid has a certain 

requirement for the AGDD value to reach maturity. For instance, for those grown in the 

central Corn Belt, the AGDD required is anywhere from 2100°F to 3200°F depending on 

the hybrid (Gibson, 2003), which is equivalent to the AGDD(°C) required from 1149 to 

1760°C if using Celsius instead of Fahrenheit. The equations used to calculate daily GDD 

and accumulated GDD are shown in Equations 4 and 4b. 

 

Equation 4 Growing Degree Days (GDD) 

𝐺𝐷𝐷 =  (𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2 −  𝑇𝑏𝑎𝑠𝑒 

http://www.bae.ncsu.edu/programs/extension/evans/ag452-4.html
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Here, Tmax is maximum daily temperature and is set equal to 86°F (or 30°C) when 

temperatures exceed 86°F, Tmin is the minimum daily temperature and is set equal to 50°F 

(or 10°C) when temperatures fall below 50°F, Tbase is the base temperature for the crop. 

Only temperatures within a specific range can sustain growth rate, and temperatures 

falling out of 50~86°F (10~30°C) are always set to boundary values.  

The GDD concept is under the assumption that: First, there is a value or base 

temperature below which plants do not grow or grow very slowly; Second, the rate of 

growth increases as temperature increases above a base temperature; Third, plant growth 

and development are more closely related to daily temperature mean accumulations 

above a base value in the absence of other limiting conditions (NCH, 2014). 

 

Equation 4b Accumulated Growing Degree Days (AGDD) 

𝐴𝐺𝐷𝐷(𝐷𝑂𝑌) =  ∑ GDD(DOY)

𝐷𝑂𝑌

𝑑𝑎𝑦=𝑆𝑂𝑆

 

 

In Equation 5, the accumulated GDD value of any DOY that is within the 

growing period is computed by summing up the GDD values of each day from the start of 

season to the current day DOY. Depending on the units of temperature, AGDD can be in 

Celsius or Fahrenheit. Figure 18 shows the GDD accumulation slopes for years 2005 to 

2011 for an observation station (SCAN site #2031). In year 2007, the GDD accumulates 
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fastest than other years, which means crops reach maturity stage ahead of those in other 

years; while in year 2009, the GDD accumulation slope is flatter than other years, so the 

crops in 2009 would have a longer growing cycle. Also, the growing seasons of years 

2005, 2009 and 2011 started earlier than those of other years, and the crop growing cycle 

of years 2005, 2007,  2010 ended sooner than other years. 

 

 
Figure 18 GDD time-series made with the temperature data collected from SCAN site #2031. 

 

Subsection 3.2.2 Mapping GDD to corn phenologic stages 

Crops have different water demands along their growth stages, with AGDD 

serving as an indicator for phenologic stages, water demands can be seen as a variable 

depending on the change of AGDD. Existing studies have utilized AGDD to indicate 

phenologic stages of crops. Take healthy maize shoot as an example, as shown in Figure 

19, germination starts when AGDD is zero, then as AGDD increases to 120~180, 

tiler/shoot appears, and when AGDD reaches 780~810, kernel development starts. Unlike 
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healthy maize, corn shoots suffering from drought stress do not have the same amount of 

AGDD at each growing stage. Also in Figure 19, the AGDD value at the stage of VT/R1 

(tasseling/silking) is 885 for healthy maize shoots and 860 for those impacted by drought, 

while the AGDD at maturity is 1635 for healthy ones and 1510 for drought impacted 

ones. Thus, given day of year, we can accumulate GDD values from SOS to the specific 

DOY, and use the mapping relationship between AGDD and growing stages to decide 

which growing stage it is for current DOY. The resulting mapping relationship between 

DOY and growing stages for every year is illustrated in Figure 20. 

 

 
Figure 19 Generic maize growth stages for (1) those with no stresses and (2) those grown on dryland. As shown 

in the specific case of generic maize, the AGDD at maturity is 1510 for the dryland, and 1635 when there is no 

drought and other stresses (source: http://www.cropscience.org.au/icsc2004/poster/2/8/607_mcmaster.htm). 

 

http://www.cropscience.org.au/icsc2004/poster/2/8/607_mcmaster.htm
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Figure 20 This bar chart is mapping DOY to corn growing stages of SCAN site #2031 in years 2006, 2008, 2009 

and 2011. 

 

Section 3.3 The relationship between crop phenologic stages and crop yields 
One may conclude from Figures 19 and 20 that drought causes crop yield losses 

when the crop growing cycle starts late but ends early. However, this point of view that 

early planting dates are likely to provide more yields than the later dates, does not always 

quadrates with the facts. For instance, corn yield of Iowa in year 2008 is rated the third 

best in the state’s history – 172 bushels per acre, but the corn progress in field for year 

2008 started out late. Usually the recommended date to plan corn in Iowa is by May 10th. 

However, in year 2008, due to rain and cold weather, only half of the acres were planted 

in the western third of the state by then. It took until May 15th for the rest of the state to 

reach 50% planted. Iowa’s corn was not completely planted until the end of June 2008 

(Figure 21).  
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Figure 21 Iowa corn planting progress (source: 

http://www.extension.iastate.edu/CropNews/2008/1208elmoreabendroth.htm) 

 

Also, the common belief that a late silking date correlates to lower yields cannot 

be accepted as the rule-of-thumb. Silking dates in 2008 are clearly lagging behind those 

of last few years. 50% of corn silking occurred 15 days later in 2008 than in 2007 and 

2006. In fact, 2008 was the slowest year on record. Silking is the most critical growth 

stage for corn with late silking dates typically causing greater yield reductions. However, 

because the crop yield is dependent on weather conditions after silking, if the weather 

conditions are extremely suitable for crop growing after silking, the crop yield can still be 

satisfying despite of delayed silking. Note that corn in 2004 was also behind in silking yet 

resulted in the highest Iowa corn yields ever (Figure 22).  

 

http://www.extension.iastate.edu/CropNews/2008/1208elmoreabendroth.htm
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Figure 22 Iowa corn silking dates (source: 

http://www.extension.iastate.edu/CropNews/2008/1208elmoreabendroth.htm) 

 

A delayed harvest is an obvious outcome of delayed planting and silking, and 

2008 is much slower than an average year and is two weeks behind 2007. Average corn 

yield in Iowa continues to increase 2.25 bushels per acre per year. The 2008 yield, 172 

bushels, is four bushels above the trend line. Though the state of Iowa as a whole is 

reported to have surprisingly high corn yields, various cropping districts within the state 

behaved differently -- the northwest cropping district posted exceptional yields for year 

2008 due to normal heat unit accumulation, ordinary planting dates and less saturated 

soils in the spring, while the yields in southwest cropping district were reduced from 

drought and storm damage.  

Scientists are curious about the reasons for lagging crop progress in Iowa to result 

in an exceptionally high crop yields in 2008, and research has shown that weather 

conditions of 2008 provided an excellent opportunity to maximize corn yield. Sunlight 

http://www.extension.iastate.edu/CropNews/2008/1208elmoreabendroth.htm
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and rainfall after silking, 32572 Langley of solar radiation and 8.1 inches of rain, were 

similar to those of the best year (34344 Langley, and 9.7 inches). The maximum 

temperature after silking, 75.9°F, was close to that of median year (75°F), while the 

minimum temperature, 55°F, was close to that of best year (54°F). This, coupled with 

slow heat unit accumulation, resulted in slow crop development and subsequently longer 

grain-fill period. Moreover, a late frost also added to the advantages. Thus, it is the late-

season weather that contributed to the high corn yields in 2008. 

From the analysis above, the weather conditions after silking are determining 

factors to crop yields. Less-than-satisfying weather conditions including abnormally high 

temperatures, or low precipitation before silking dates do not exert as much influence to 

the crop yields. Thus when deciding if an area has been exposed to agricultural drought, 

it is more reasonable to consider its vegetation conditions after silking, since an 

agricultural drought is defined as a drought event related to crop/pasture yield losses.  

Section 3.4 Summary 
Crops have distinguishing requirements for water and thermal conditions at each 

growing stage. In order to decide whether (1) the meteorological parameters are over, 

within, or under the required conditions, (2) the vegetation conditions are better than, 

similar to, or worse than the “normal” crop progress, (3) the crop growing period is 

longer, equal to, or shorter than an ordinary growing cycle, researchers who are cross-

comparing the vegetation conditions of two different years also need crop calendar to 

decide the starting and ending DOYs of every growing stage for these years. 
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CHAPTER 4 APPLICATION OF SATELLITE-BASED VEGETATION VIGOR 

NDVI, a good indicator of various vegetation biophysical parameters, such as 

biomass, green leaf area index, percent green cover, and net primary production, as well 

as fraction of absorbed photosynthetically active radiation, has been widely used in 

applications related to vegetation vigor. NDVI also demonstrates strong linear 

relationships with environmental variables, such as temperature and precipitation, under 

various environmental circumstances. Study of the temporal response and spatial pattern 

of vegetation to climate fluctuations can be conducted using NDVI data. Moreover, the 

NDVI data have been used to explore trends of vegetation under climatic variation. In 

addition, previous studies showed that NDVI could be quantified to measure the 

deviation of vegetation condition from the normal conditions. In summary, NDVI can be 

used to study vegetation response to climatic variation at a range of time and spatial 

scales. 

Section 4.1 Variation of vegetation vigor for the entire globe 
Many studies already investigated the impact of climate change and climate 

variability on vegetation at global and continental scale. In this section, we will explore 

the usage of MODIS-based NDVI as an indicator for vegetation greenness under various 

climatic conditions worldwide.  
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Subsection 4.1.1 Data and Methods 

As shown in Figure 23, the MODIS sinusoidal grids are made up of 36 by 18 tiles, 

each with a resolution of approximately 10° by 10°. However, due to the distortion of 

projection system, 177 out of 648 tiles do not exist. For the rest of tiles that do exist, 

about 290 tiles are classified as “land” or “land & water”, and the other 290 or so tiles are 

considered “water”. In Figure 23, dark blue squares represent the “water” tiles and light 

blue squares represent the “water & land” tiles, while the green squares are representing 

“land” tiles. The MOD13 algorithm does not produce products over oceans and deep 

inland water, and thus only around 290 tiles should be fed into this global calculation.  

 

 
Figure 23 Circled strips are from V6 to V11, each compositing 36 MODIS tiles from H00 to H35 (source: 

http://nsidc.org/data/modis/data_summaries/landgrid.html). 

 

 Also, due to weather conditions, limitations of sensors, and other reasons that may 

cause errors for measurements, some of the collected surface reflectance data are 

http://nsidc.org/data/modis/data_summaries/landgrid.html
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considered unreliable, and they should be excluded from consideration as well. In fact, 

among the 12 Science Data Sets (SDSs) provided in the MOD13Q1.005 products, there 

are two SDSs carrying quality assurance information – namely “250m 16 days VI Quality 

detailed QA”, and “250m 16 days pixel reliability summary QA”, and these two bands 

can be combined to make a pixel quality mask in which 1 represents good quality and 0 

represents bad quality. Three steps need to be done in order to generate quality mask for 

each pixel. First, the QA summary layer shall be checked. This layer provides five rank 

keys to describe the quality level of each pixel: -1 meaning Fill/No data, 0 meaning Good 

Data, 1 meaning Marginal data, 2 meaning Snow/Ice, and 3 meaning cloudy. When the 

pixel value in the QA summary layer is 0, the according pixel of the desired quality mask 

should be 1 and the according pixel of the reflectance band can be used with confidence. 

When the pixel value in QA summary is 1, the second step shall be taken, in which the 

pixel value in the same row and column within the detailed QA dataset is used. Each 

pixel of this layer is stored in a 16-bit unsigned integer, and these 16 bits are grouped into 

9 fields – “MODLAND_QA”, “VI usefulness”, “Aerosol quantity”, “Adjacent Cloud 

detected”, “Atmosphere BRDF correction performed”, “Mixed Clouds”, “Land/water 

flag”, “Possible snow/ice”, and “Possible Shadow”. The “MODLAND_QA” field is 

made up of the last two bits of each 16-bit pixel value. When it reads “00” from right to 

left, the according pixel in the resulting quality mask shall be 1. When it reads “01”, the 

third step shall be taken, which is to look at the “VI usefulness” field (the 2nd to 5th bit 

reading right to left). The VI quality is acceptable when this field reads “0000”, “0001”, 

“0010”, “0100”, “1000”, “1001”,”1010”, or “1100”. The quality mask will be set to 0 
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when this field reads in “1101”, “1110” or “1111”. The C code used to implement steps 

one to three can be found in Box 2. With these three steps, the VI quality mask is now 

complete. 

 

Box 2. 
for(int i = 0; i < PixelNum; i++){ 

 /* 

 Layer "250m 16 days pixel reliability summary QA" 

 

 Rank Key  Summary QA Description 

 -1  Fill/No Data  Not Processed 

 0  Good Data  Use with confidence 

 1  Marginal data  Useful, but look at other QA information 

 2  Snow/Ice  Target covered with snow/ice 

 3  Cloudy  Target not visible, covered with cloud 

 */ 

 

 if (QA_summary[i] == 0) QA_mask[i] = 1; 

 else if(QA_summary[i] == 1) { 

  /* 

  MODLAND_QA  read from right to left (bits 0 - 1) 

  00  VI produced, good quality 

  01  VI produced, but check other QA 

  10  Pixel produced, but most probably cloudy 

  11  Pixel not produced due to other reasons than clouds 

  */ 

  if (QA_detailed[i]%4 == 0) QA_mask[i] = 1; 

  else if(QA_detailed[i]%4 == 2) { 

   /* 

   bits 2–5  VI usefulness   

   (0)0000  Highest quality 

   (8)0001  Lower quality 

   (4)0010  Decreasing quality 

   (2)0100  Decreasing quality 

   (1)1000  Decreasing quality 

   (9)1001  Decreasing quality 

   (5)1010  Decreasing quality 
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   (3)1100  Lowest quality 

   (11)1101 Quality so low that it is not useful 

   (7)1110  L1B data faulty 

   (15)1111  Not useful for any other reason/not processed  

   

   */ 

   int tmp = ( QA_detailed[i] - QA_detailed[i]%4)%16; 

  

 if((tmp==0)||(tmp==8)||(tmp==4)||(tmp==2)||(tmp==1)||(tmp==9)||(tmp==5)|| (tmp==3)) 

QA_mask[i] = 1; 

   else ((tmp==11)|| (tmp==7)||(tmp==15)) QA_mask[i]=0; 

  }else QA_mask[i]=1; 

  //end of MODLAND_QA 

 }else QA_mask = 0; 

} 

 

 Downloading tiles and creating VI quality mask are just part of the workflow. A 

complete list of necessary procedures to calculate 16-day average NDVI time-series for 

the globe is shown in Box 3. 

 

Box 3. 
Step 1 – Download all “land” tiles of MOD13Q1.005 for any Year from 2000 to 2011, 

any DOY from 001 to 321. 

Step 2 – Derive from each tile three subdatasets “250m 16 days NDVI”, “250m 16 days 

VI Quality summary QA”, and “250m 16 days VI Quality detailed QA”, create quality mask and 

perform quality masking upon the NDVI dataset. 

Step 3 – Merge the resulting good-quality tiled images of step 2 into a global image, and 

assign the other areas which are not covered by tiles Fill Values.  

Step 4 – Traverse each pixel of the global image, get the sum and count of all valid 

pixels, and calculate the average (average = sum/count). Convert the 16-bit scaled NDVI 

average value to within its original range [-0.2, 1]. 

Step 5 – Repeat steps 1 through 4 for all available days during 2000-2011. 
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Subsection 4.1.2 Results 

The global vegetation cover changed with an undulating trend from 2000 to 2011 

(shown in Figure 24). Wave crests of the average yearly NDVI values occurred in 2000, 

2006 and 2009, while troughs are found in 2003 and 2007. In 2003, the annual average 

NDVI dropped to 0.495, while the average NDVI in 2009 reached 0.505 – the highest 

value from yearly average since 2001. The global NDVI average calculated every 16 

days throughout the years explains why year 2003 is of the lowest yearly average and 

year 2009 is of the highest from how the seasonal NDVI changes (in Figure 25). During 

the entire growing period, the NDVI curve of 2009 resides above the 11-year average 

except the time period from DOY 145 to 160, and that of 2003 resides beneath the 11-

year average except the same period. 

 

 
Figure 24 The yearly average NDVI for the entire globe from 2001 to 2011. 
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Figure 25 The inter-annual change of global NDVI average of years 2003, 2009 and the 11 year average from 

2001 to 2011. 

 

Section 4.2 Variation of vegetation vigor in latitudes 
In this section, tiles of the same vertical order (e.g. V06) are grouped together into 

a horizontal belt. Because all the pixels located within oceans, rivers, and other water 

bodies are marked with Fill Values in MODIS datasets, the research only concerns about 

the land pixels. As a result, only the NDVI values of reliable land pixels are fed into the 

computation process for area average, and here average NDVI of the same belt are listed 

for V06 to V11. As mentioned before, theoretically speaking, NDVI takes values 

between -1 and 1, with values larger than 0.1 indicating vegetation, values larger than 0 

and less than 0.1 indicating bare soils or cloud (that cloud is always very close to 0, e.g. 

0.002), and values less than 0 indicating water, snow and ice. Thus, the NDVI average 

obtained here shall be positive, and larger than 0.1. 
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We can see from Figure 26 that the yearly NDVI average values for each belt are 

confined into specific ranges – for V08, V09 and V10, 0.55 to 0.61, for V07 and V11, 

0.45 to 0.55, and 0.40 to 0.45 for V06. The differences between belts are more significant 

than the yearly differences of any single belt, which indicates that latitude has larger 

influence upon vegetation vigor than climate change and other temporally evolving 

factors. Since V08 and V09 are two closest belts to the equator, their yearly average 

NDVI values are the highest among all six belts. The maximum and minimum values for 

V08 from 2000 to 2011 are 0.602 and 0.584, and those for V09 are 0.592 and 0.577. As 

the most distant belt from the equator, V06 has the lowest NDVI values – the yearly 

NDVI average for V06 ranges from 0.418 to 0.435. Generally speaking, vegetation vigor 

increases as the study area gets closer to the equator.  

 

 
Figure 26 The yearly average NDVI value for parallel belts from V06 to V11. 
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Latitude and other geo-spatial characteristics define the basis of vegetation 

performances, and these properties are temporally stable. In order to tell whether the 

study area is suffering from drought or other vegetation stresses, one has to look at the 

temporal changes of its vegetation vigor. As shown in Figure 27, the belt-wise NDVI 

average curves of V06 in 2004 and 2007 lie beneath the 12-year average during the 

typical growing period (from DOY 97 to 257), thus belt V06 as an entity experienced 

vegetation suppression (compared to other years from 2000 to 2011) during both years. 

On the other hand, belt V07 encountered vegetation stresses in 2000 as shown in Figure 

28. Although the belt-wise NDVI average of V07 is higher than its 12-year average 

during DOY 177 to 192, for most of its growing season, the NDVI values are below 

average. 

 

 
Figure 27 The seasonal NDVI curves of belt V06 for years 2004, 2007 and the 12-year average NDVI. 
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Figure 28 The seasonal NDVI curves of belt V07 for years 2004, 2007 and the 12-year average NDVI. 
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The agriculture in Great Lakes states or provinces has been diverse and 

productive; nearly 25% of total Canadian and 7% of U. S. production come from this 

area. With plenty of precipitation and snow/ice, the area’s agriculture is not as dependent 

on moisture levels as semi-arid regions. Opposite to Great Lakes, other three regions 

constantly suffer from agricultural drought, and are highly dependent on precipitation for 

crop growth. Vegetation Indices, such as NDVI, reflect vegetation responses to climatic 

and weather conditions. Studying the multi-year inter-annual NDVI performances of each 

region helps us understand the relationship between precipitation, temperature, drought 

and vegetation responses. NDVI performances vary by location, and the influences of 

precipitation and temperature upon NDVI are especially significant in semi-arid regions 

such as Nile Delta, and some climate divisions of Texas. 

Subsection 4.3.1 Case study of Nile Delta 

Figure 29 displays how the NDVI 16-day-average changes throughout each year, 

starting from the first 16-day-period DOY 001 to 015, and ending at the last period of 

DOY 321 to 336. Years 2002 and 2005 stand out from other years for presenting 

abnormally high and low values than average, especially before DOY 177. The NDVI 

curves of each year drop sharply from DOY 177 (end of June) to 193(mid-July), 

indicating a sudden depression to vegetation vigor of the area, caused by its unique 

climate pattern. The monthly average rainfall of Nile Delta drops to 0 mm for June, and 

stays 0 till the end of September, while its monthly average temperature climbs above 

90°F in June and keeps heating up until the end of August. Low precipitation and high 

temperature are two major causes for such vegetation suppression.  
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Figure 29 The inter-annual NDVI average for Nile Delta from years 2001 to 2011. 
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of 2008 submerged to a locally minimum value, and also comparatively lower than that 

of all other years.  

 

 
Figure 30 inter-annual NDVI average for the Great Lakes from years 2001 to 2011. 
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Figure 31 The inter-annual NDVI average for Texas from years 2001 to 2011. 
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as our study areas here because they are 1) both vulnerable to drought and extreme water 

deficiency, 2) having clear sky for the majority of the days in growing season, and 3) 

having obvious wetter and drying months each year. The green area in Figure 32 

represents CD#1 while the brown area signifies CD#5. Compared to CD#1 which is 
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mostly continental steppe or semi-arid savanna, most areas of CD#5 are subtropical arid 

desert has higher temperature and lower precipitation all year long.  

 

 
Figure 32 Climate divisions (CD) inside the state of Texas 

(http://www.nass.usda.gov/Statistics_by_State/Texas/Charts_&_Maps/cwmap.htm). 

 

http://www.nass.usda.gov/Statistics_by_State/Texas/Charts_&_Maps/cwmap.htm
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Figure 33 Monthly Temperature (upper panel) and Precipitation (bottom panel) for CD1, CD5 and Texas from 

2000 to 2011 (source: NOAA NCDC). 
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Lack of precipitation and excess of temperature are two most significant causes of 

drought, and we can roughly pick out drought years based on the precipitation and 

temperature reports of the area. For example, during the year 2011, precipitation of the 

Texas state ranked #1 lowest among 13 years (2000-2012), while its temperature ranked 

#12 and second highest within years. Thus, the difference of the two rankings would be -

11, lowest among all ranking differences, which indicates Texas is highly likely to be 

suffering from drought during year 2011. 

 

Table 8 Yearly Precipitation and Temperature for Texas (source: NOAA NCDC). 

Texas Precipitation Temperature Precip - 

Temp 

YearMonth-

YearMonth 

Value Rank Anomaly Value Rank Anomaly Rank 

Difference 

200001 - 200012 28.28" 7 0.36" 66.4°F 0 1.4°F -3 

200101 - 200112 29.56" 10 1.64" 65.7°F 8 0.7°F 2 

200201 - 200212 31.36" 11 3.44" 65.1°F 3 0.1°F 8 

200301 - 200312 24.35" 3 -3.57" 65.5°F 6 0.5°F -3 

200401 - 200412 39.90" 13 11.98" 65.2°F 4 0.2°F 9 

200501 - 200512 22.16" 2 -5.76" 65.8°F 9 0.8°F -7 

200601 - 200612 25.59" 6 -2.33" 67.0°F 1 2.0°F -5 

200701 - 200712 37.23" 12 9.31" 64.8°F 1 -0.2°F 11 

200801 - 200812 24.80" 5 -3.12" 65.4°F 5 0.4°F 0 

200901 - 200912 29.19" 9 1.27" 65.6°F 7 0.6°F 2 

201001 - 201012 28.76" 8 0.84" 64.8°F 1 -0.2°F 7 

201101 - 201112 15.18" 1 -12.74" 67.2°F 12 2.2°F -11 

201201 - 201212 24.56" 4 -3.36" 67.5°F 13 2.5°F -9 

 

Table 9 Yearly Precipitation and Temperature for CD#1 (source: NOAA NCDC). 

CD#1 Precipitation Temperature Precip - 

Temp 

YearMonth - Value Rank Anomaly Value Rank Anomaly Rank 
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YearMonth Difference 

200001 - 200012 18.66" 8 -0.18" 59.7°F 9 1.4°F -1 

200101 - 200112 16.48" 4 -2.36" 59.8°F 10 1.5°F -6 

200201 - 200212 18.37" 7 -0.47" 58.7°F 3 0.4°F 4 

200301 - 200312 12.77" 2 -6.07" 59.6°F 8 1.3°F -6 

200401 - 200412 31.87" 13 13.03" 58.6°F 2 0.3°F 11 

200501 - 200512 17.62" 6 -1.22" 59.0°F 7 0.7°F -1 

200601 - 200612 19.57" 10 0.73" 60.2°F 11 1.9°F -1 

200701 - 200712 22.40" 11 3.56" 58.0°F 1 -0.3°F 10 

200801 - 200812 19.50" 9 0.66" 58.8°F 4 0.5°F 5 

200901 - 200912 16.94" 5 -1.90" 58.9°F 6 0.6°F -1 

201001 - 201012 22.78" 12 3.94" 58.8°F 4 0.5°F 8 

201101 - 201112 8.14" 1 -10.70" 60.5°F 12 2.2°F -11 

201201 - 201212 13.65" 3 -5.19" 61.3°F 13 3.0°F -10 

 

Table 10 Yearly Precipitation and Temperature for CD#5 (source: NOAA NCDC). 

CD#5 Precipitation Temperature Precip - 

Temp 

YearMonth - 

YearMonth 

Value Rank Anomaly Value Rank Anomaly Rank 

Difference 

200001 - 200012 9.78" 3 -2.61" 65.9°F 10 2.2°F -7 

200101 - 200112 7.31" 2 -5.08" 65.8°F 9 2.1°F -7 

200201 - 200212 11.10" 4 -1.29" 65.1°F 7 1.4°F -3 

200301 - 200312 11.32" 5 -1.07" 65.6°F 8 1.9°F -3 

200401 - 200412 22.46" 13 10.07" 64.1°F 1 0.4°F 12 

200501 - 200512 14.26" 11 1.87" 64.9°F 5 1.2°F 6 

200601 - 200612 11.58" 7 -0.81" 66.1°F 11 2.4°F -4 

200701 - 200712 16.98" 12 4.59" 64.3°F 2 0.6°F 10 

200801 - 200812 12.63" 9 0.24" 64.4°F 3 0.7°F 6 

200901 - 200912 12.11" 8 -0.28" 65.0°F 6 1.3°F 2 

201001 - 201012 13.96" 10 1.57" 64.4°F 3 0.7°F 7 

201101 - 201112 3.94" 1 -8.45" 66.7°F 13 3.0°F -12 

201201 - 201212 11.58" 6 -0.81" 66.6°F 12 2.9°F -6 

 

Vegetation Condition Index (VCI) developed by Kogan (1995) is used in the 

following analysis as to reflect the extreme changes of the climate, and to roughly 
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eliminate the spatial diversification of NDVI, and hence make the vegetation conditions 

between different regions comparable. Its definition is as below, 

 

Equation 5 Vegetation Condition Index (VCI) 

𝑉𝐶𝐼 = 𝑆𝐶𝐴𝐿𝐸 ∗  
𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 

 

And here, in order to obtain VCI of a specific pixel for any year YYYY, and any 

day DOY, the parameters required for computation include NDVI (NDVI value of the 

same day YYYY/DOY), NDVImax (the maximum of all NDVI values in day DOY through 

all years), and NDVImin (the minimum of all NDVI values in day DOY through years) of 

the pixel. VCI is an indicator of “relative greenness”, a percentage value that expresses 

how green each pixel is in relation to the average greenness over the historical record for 

a pixel location at a given time (Peters & Walter-Shea, 2002). 

The VCI time-series displayed in Figure 34 match accordingly the previous 

diagnoses from the ranking difference between precipitation and temperature. The VCI 

curve of Texas goes below 0.2 since 2011/113 and stay below for a long period of time 

(until 2011/321), indicating the vegetation vigor of such period is suppressed likely to be 

caused by drought.  

The vegetation performance for CD#1, CD#5, together with the entire state of 

Texas will be studied in this section, and the results will be verified using Palmer 

Drought Severity Index (PDSI), as shown in Figure 35. For instance, for CD#1, VCI 

stays above 0.6 for a long period of time (from 2004/177 to 2005/273, i.e., June 25th, 
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2004 to September 29th, 2005), while its PDSI values are higher than 2.5 from August, 

2004 to August, 2005. As for CD #5, VCI values are higher than 0.6 from 2004/225 to 

2005/177 (i.e. August 12th, 2004 to June 25th, 2005) and the PDSI stays above 2.5 from 

August, 2004 to October, 2005. The drought patterns are detected in both VCI and PDSI 

curves, yet their duration does not match exactly. 
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Figure 34 The VCI time-series for CD#1 (A), CD#5(B) and the state of Texas(C). 
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Figure 35 PDSI time-series of CD#1(A), CD#5(B), and the entire state of Texas(C). 

 

Figure 36(A) displays the correlation between yearly VCI average and the 12-

month PDSI for CD#1 from year 2000 to 2011. The PDSI values of year 2006 and 2011 

are lower than -2, signaling moderate droughts or more severe. The VCI values of year 

2000 and 2011 are lower than 0.32, which based on fixed threshold classification, 
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indicates moderate drought or more severe for years 2000 and 2011. Using a linear 

regression model, the coefficient of correlation between PDSI and VCI for CD#1 is 

0.839.  

The correlation relationship, between yearly VCI average and the 12-month PDSI 

for CD#5 from year 2000 to 2011, is very obvious from Figure 36(B). The PDSI values 

are lower than -2 in years 2000 to 2003 and 2011, while the VCI values are lower than 

0.32 in the exact same years. It is not surprising to find that the correlation coefficient for 

CD#5 is 0.978, indicating a very high positive correlation. 

For the entire state of Texas, PDSI values are below -2 in years 2000, 2006, 2009 

and 2011 while the VCI curve is lower than 0.32 only in year 2011, and the correlation 

coefficient for the area is 0.849. Thus, the correlation coefficients between VCI and PDSI 

are 0.978 (CD#5), 0.849 (TX), and 0.839 (CD#1). One of the reasons for CD#5 to have 

such a high correlation is its relatively vegetation composition – according to CropScape, 

there are 20 major crop types in CD#5, and shrubland is the most important of them all 

taking up 87% of all vegetated lands. 
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Figure 36 The yearly VCI and PDSI values for CD#1(A), CD#5(B) and Texas(C). 

 

-3

-1

1

3

5

7

0

0.2

0.4

0.6

0.8

1

200020012002200320042005200620072008200920102011

A. Yearly VCI and PDSI of CD#1

CD#1_VCI CD#1_PDSI

-4

-2

0

2

4

6

0

0.2

0.4

0.6

0.8

1

200020012002200320042005200620072008200920102011

B. Yearly VCI and PDSI of CD#5

CD#5_VCI CD#5_PDSI

-4

-2

0

2

4

0

0.2

0.4

0.6

0.8

1

200020012002200320042005200620072008200920102011

C. Yearly VCI and PDSI of Texas

TX_VCI TX_PDSI



95 

 

Because VCI of year YYYY is in fact a relative measure of NDVI of year YYYY 

compared to the maximum and minimum NDVIs of a valid range of time, if the NDVI 

datasets consist of only a small number of years, then the resulting VCI can be biased. If 

the maximum and minimum NDVI values of the area within the short list of years reside 

solely on part of the real historic NDVI range, then the VCI calculated using the former 

can be of no meaning in indicating drought or non-drought. Since the NDVI calculated 

from MODIS datasets can only be traced back to year 2000, with such a short list of years 

the VCI values tend to be biased. For instance, row (1) of Figure 37 represents a non-

biased VCI calculated with minimum and maximum NDVI values of 30 years of historic 

data, and rows (2) and (3) represent biased VCI calculated from a short list of NDVI data. 

When the NDVI values of the studied years are higher than the 30-year average (as 

shown in row 2), a low VCI value being calculated does not necessarily mean vegetation 

depression. Vice versa, when the maximum NDVI is lower than 30-year maximum, a 

high VCI value calculated this way may not indicate high vegetation vigor in real 

applications. 

 

NDVImin NDVImax

NDVImin NDVImax

droughtNon-drought

NDVImin NDVImax

(1)

(2)

(3)

 
Figure 37 Non-biased VCI (row 1) and the biased VCI (rows 2 &3). 
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VCI performance has a high correlation to the crop yield – usually high VCI 

values for the year indicate promising crop yield. From Figure 36(C), we can find the 

year with the highest yearly average – 2007, within the 2001 to 2010 time periods, which 

is also the year with the highest cotton yield from both harvested and planted areas as 

shown in Figure 38. 

 

 
Figure 38 Yearly cotton yields for the state of Texas from 2000 to 2011. 

 

Subsection 4.3.4 Case study of SW China 

The severe drought of 2010 for southwestern China affected more than 600 

million people and ruined billions of dollars worth of crops. Due to crop failure on 3.1 

million hectares of arable land, 9 million people face a grain and water shortage. 

Centering on southeastern Yunnan, this drought affected 125 of 129 counties of the 

province. For some regions, it is the worst drought in a century. The loss from 

agricultural production cost 20 billion RMB, and rice price increased from $0.225/lb to 

$0.375/lb. From September 2009, the drought had made its debut in some areas of 
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Yunnan, Guizhou, and Guangxi provinces. Since Oct. 2009, large areas of the south west 

provinces – Yunnan, Sichuan, Guizhou and Guangxi had been experiencing droughts of 

levels D2 to D4 for almost 6 months. During this period, the number of days Yunnan 

endured droughts of levels of D3 to D4 is at an average of 84 days, and that of Guizhou is 

at an average of 50 days – both are at the record high of history (BBC News, 2010).  

The 2010 drought is different from other droughts not only in the long duration of 

its developing and ending, but also in its widespread range of affected areas, huge impact 

to people’s life and agricultural yields and other socio-economic factors. In Jan. 2010, up 

to 85% of all the counties in Yunnan Province had been experiencing droughts of levels 

D3 to D4. Until Mar. 2010, 81% of counties in Guizhou were under D3-D4 leveled 

drought. There was a great lack of drinkable water for citizens, and water to feed stock 

animals or irrigate crops. The yields from agricultural products (e.g. sugar cane) had 

decreased sharply. Also this spring drought had a lasting effect to cause the winter wheat 

to drop its production.  

The Lancang River in China flows southward to become the Mekong River in the 

downstream countries – Thailand, Vietnam, Myanmar, Laos and Cambodia. During the 

same period when southwestern China was suffering from severe drought, farmers and 

fishermen in the downstream countries were battling with water to keep their crops and 

fisheries alive. Half of the 76 provinces in Thailand faced severe drought, especially the 

north and northeast partitions. Over 4 million people were affected by the drought and 

nearly 20 thousand hectares of lands were due to reduce production. Rice produced from 

the Mekong River basin had taken up nearly 40% of the total market share in the world. 
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The 2010 drought had a severe impact on the growth of rice in these regions, and the rice 

production dropped sharply which in turn resulted in a great economic loss for these 

countries. 

There has been scientific evidence that low rainfall was responsible for the 

plunging levels of the river and hence the devastating agricultural drought in the 

southwest China. Developing countries, with agriculture being their backbone properties, 

are very much dependent on the seasonal rainfall and climatic conditions and hence more 

vulnerable to droughts. According to the statistics provided by USDA, up to year 2004, 

more than 500 million people live in the drought-prone areas of the world and 30% of the 

continental surfaces are affected by droughts or desertification processes (Murthy & 

Sasha, 2008). The substantial reduction of forest cover in many areas might be another 

reason of this drought. Other likely causes to drought include El Nino effect, intensive 

water consumption by industry and household usage, pollution and waste in natural lakes 

and reservoirs, and energy production from coal, etc. (Asian Sustainability Ratings, 2010) 

An agricultural drought can be caused by a meteorological drought event. A 

meteorological drought can develop quickly and end abruptly since after all it is a due to 

the absence or reduction of precipitation – a result of atmospheric conditions which could 

literally change overnight. In an agricultural drought, the surface layers (or the root zone) 

are suffering from short-term dryness (i.e. for a few weeks) during the growing season, 

even though the deeper soil levels may be saturated. Thus, the onset of an agricultural 

drought may lag that of a meteorological drought, depending on the prior moisture status 

of the surface soil layers (Heim, 2002). The immediate impact of drought is on crop area, 
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crop production, and farm employment. Speculation of poor farm harvest drives food 

prices upwards. Shortage of drinking water and starvation of food are later to emerge. 

4.3.4.1Study area 

Three adjacent provinces Yunnan, Guizhou, and Sichuan and the city of 

Chongqin have been selected to form the study area (shown in Figure 39). These areas 

had experienced devastating drought situations in year 2010, and this study demonstrates 

how vegetation indices can be used to reflect drought severities and evolutions in the 

area. 

 

 
Figure 39 The study area compositing of Yunnan, Guizhou, Sichuan, and the city of Chongqin. 

 

Yunnan

Sichuan

Guizhou

Chongqing
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4.3.4.2 Analysis of 2010 SW China Drought 

The left and right plots of Figure 40 show the severity degrees of agricultural 

drought affecting China, on 04/17/2010 and 05/12/2010, respectively. The red areas are 

those suffering from severe drought, orange areas are suffering from medium-leveled 

drought, yellow areas are prone to light droughts, and green areas are without any 

drought conditions. We can see that the northeast of Yunnan and adjacent areas located in 

Sichuan and Guizhou were suffering from severe drought during April 17, 2010 to May 

12, 2010, and the impact area had been shrinking during this time period. (CRAN, 2010) 

 

 
Figure 40 The Severity Degrees of Agricultural Drought for China, 04/17/2010 (left) and 05/12/2010 (right) 

(Source: CMA). 
 

The left and right plots of Figure 41 display the NDVI layer on top of the satellite 

basemap in Google Earth, of two 8-day periods 05/01/2009 – 05/08/2009, and 

05/01/2010 – 05/08/2010, respectively, while plots in Figure 41 are VCI layers for the 

same 8-day periods. Comparing the VCI maps for the same period during May, 2009 and 

2010, we can see for most part of the Yunnan-Guizhou-Sichuan area, the VCI values are 
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higher in the former, indicating a less idealistic picture for the vegetation growth in 2010 

– since the color of blue represents a fairly well or normal vegetation growth condition, 

while red means that the vegetation in the area are suffering from the stress of wilting. On 

the right of Figure 42, vegetation growth in most part of Yunnan and Sichuan provinces 

is worse than previous year, and as shown the situation is especially not optimistic for the 

bordering areas between Yunnan and Sichuan, and between Yunnan and Guizhou. 

 

 
Figure 41 NDVI maps of the three provinces (Yunnan, Guizhou, and Sichuan) for the eight days periods (left) 

05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010. 

 

 
Figure 42 VCI maps of the three provinces (Yunnan, Guizhou, and Sichuan) for the eight days period (left) (left) 

05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010. 
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As shown in Figures 43 and 44, the day- and night-time TCI maps of the area 

have shown the majority of the eastside are under thermal stress for May 2009, and only 

a small strip of the area is influenced by high temperature. This is irreconcilable to the 

ground truth, possibly due to the fact that the NDVI and VCI represent the accumulating 

drought impact upon vegetation while the TCI is solely a modest display of current 

temperature. Though the Yunnan-Guizhou-Sichuan area was suffering from severe 

drought in May 2010, with temperature dropping back to normal, the drought impact to 

the area would not be found in TCI maps. Also, even though the soil moisture level for 

the region was much lower than historic average, an immediate rainfall to the drought 

prone area will move the TCI value back to the normal level overnight, and thus TCI 

alone cannot serve as a drought indicator. 

 

 
Figure 43 Day-time TCI maps of the three provinces (Yunnan, Guizhou, and Sichuan) for the eight days period 

05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010. 
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Figure 44 Night-time TCI maps of the three provinces (Yunnan, Guizhou, and Sichuan) for the eight days 

period 05/01/2009 – 05/08/2009, and (right) 05/01/2010 – 05/08/2010. 

 

In summary, the NDVI and VCI are direct indicators of vegetation conditions, 

displaying the accumulating influences of climates upon vegetations. In the case of SW 

China drought, the correlations between NDVI, VCI and agricultural drought, 

respectively, are significant. However, TCI is less relevant to drought, since TCI can be 

greatly changed within one day due to some extreme weathers while drought is more 

about accumulating effects. 

Section 4.4 Summary 
 This chapter aims to prove that the temporal response and spatial pattern of 

vegetation to climate fluctuations can be reflected in NDVI/VCI changes. For the entire 

globe, comparisons of yearly NDVI average values tell us in which year the global 

vegetation as a whole is under stress and thus crop/pasture yields decrease and food price 

increases. For different latitudes, the “normal” NDVI value differs; as latitude decreases 

(approaching the equator), the year-long NDVI average increases, which is to say, 

vegetation greenness increases from high latitudes to low latitudes. Also, the inter-annual 

change of NDVI/VCI is a reflection of the climate pattern of an area. The VI time-series 
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of a climate zone is correlated to the precipitation and temperature parameters. The 

anomalies from “normal” VI time-series can possibly be due to a drought or flood event. 

However, it is often difficult to deduct what is the main cause for the VI anomalies. 

Chapter 6 provides a better interpretation to the outliners.  
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CHAPTER 5 RELATIONSHIP BETWEEN REMOTE SENSING BASED 

AGRICULTURAL DROUGHT INDICATORS AND ROOT ZONE SOIL 

MOISTURE 

Section 5.1 Introduction 
For more than 30 years, VI derived from RS-based measurements has been 

widely applied to monitor land surface vegetation, and indirectly infer root zone soil 

moisture and agricultural drought conditions. Compared with meteorological or 

hydrological measurements collected from scattered observation stations, these RS-based 

VIs provide spatially and temporally continuous monitoring to vegetation greenness, soil 

moisture levels and the occurrence/severities of drought for the entire globe. For 

example, NDVI, VCI and VHI are often used for these purposes. 

Despite the popularity of using NDVI in monitoring global vegetation phenology, 

primary productivity, and drought condition, NDVI has many limitations. For instance, it 

is insufficient to characterize vegetation and drought conditions due to an apparent time 

lag between precipitation and NDVI responses, effects from the soil background, 

atmospheric attenuation, and asymptotic saturation over areas with moderate-to-high 

density of vegetation (Di et al., 1994; Huete et al., 1985; Kaufman & Tanré, 1992; 

Gitelson, 2004). Thus a number of new indices have also been developed for monitoring 

vegetation condition and/or drought. For example, NDWI (Gao, 1996) is calculated as the 

differences between the NIR and SWIR reflectance. The SWIR reflectance shows 

changes in both the vegetation water content and the spongy mesophyll structure in 
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vegetation canopies, while the NIR reflectance is affected by leaf internal structure and 

leaf dry matter content but not by water content. The combination of the NIR with the 

SWIR removes variations induced by leaf internal structure and leaf dry matter content, 

improving the accuracy in retrieving the vegetation water content. NDWI is thus a good 

indicator for vegetation liquid water. Moreover, it is less sensitive to atmospheric 

scattering effects than NDVI. Comparing NDWI of the current state with that of previous 

reference year, or plotting the time series of NDWI through the years, is able to show the 

evidence of water availability, water stress, or drought condition. Another example, 

Enhanced Vegetation Index (EVI) (Huete at al., 2002) makes use of measurements in the 

blue, red and NIR bands -- EVI is a more sensitive indicator to vegetation responses since 

the visible blue band is also included to allow for an extra correction of aerosol 

scattering. Besides, EVI does not saturate as easily as NDVI, and thus performs better 

over high biomass areas. NDDI, as a result of division between the difference of NDVI 

and NDWI and the sum of them, can be used to describe drought intensity of an area (Gu 

et al., 2007). NDDI is believed to have a stronger response to drought situations than VCI 

(which is based on NDVI only) or NDWI used alone. Whether or not the NDDI has a 

stronger response to root zone soil moisture at depths under various canopies will be 

discussed in this chapter as well. However, NDWI, EVI and NDDI have their limitations.  

Though bearing less sensitivity to atmospheric effects than NDVI, these indices cannot 

remove completely the background soil reflectance effects. The RS-based VIs may raise 

false alarms to agricultural drought due to the limitations and problems associated with 

them, e.g., a reducing NDVI value can also be due to flood, bad weather, fire, pesticides, 
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and/or other factors in addition to drought. Thus, investigations about how those RS-

based indicators work under different conditions (e.g., weather, biophysical environments 

and land-cover types) and validation of the RS-based agricultural drought indicators with 

ground-station observations are very important. However, so far no (or little) such study 

has been performed.          

This chapter aims to fill some gaps of the current researches by studying the 

relationships between those RS-based agricultural drought indicators (including NDVI, 

NDWI, EVI and NDDI) and root zone soil moistures at different cropland layers. As a 

key factor that influences the interactions among soil, vegetation, and atmosphere, soil 

moisture plays an important role in surface energy balances, vegetation productivity, and 

the occurrences/severities of drought/flooding (Shukla & Mintz, 1982; Goward et al., 

2002). Soil moisture, particularly at the root zone, can substantially influence vegetation 

health and surface energy balance through the process of transpiration. Soil moisture 

measurements are conventionally collected from in situ sensors at discreet stations, and 

the results do not account for local scale variation in soil properties, terrain, and 

vegetation cover. In order to characterize the spatial heterogeneity of soil moisture over 

extended geographic areas, spatial extrapolation of these isolated measurements is 

performed, and usually causes large uncertainties. Constructing a dense network of 

observation points is overly expensive, and thus will not be a good solution. Remote-

sensing techniques have successfully supplemented data from ground-based sensors to 

retrieve spatially integrated information on soil moisture over large area with varying soil 

and land-cover conditions. The research hypotheses to be tested in this chapter include, 
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(1) Null hypothesis: The trends in time-series of soil moisture and in that of vegetation 

greenness do not relate to each other; (2) Null hypothesis: There is no significant 

correlation between VIs and soil moisture; (3) Null hypothesis: There is no significant 

correlation between VIs and soil moisture with lag periods; (4) Null hypothesis: 

Correlation between VIs and soil moisture is not influenced by cover type and soil texture 

across an area. 

In addition, there is an increasing demand on managing and mitigating the 

drought condition of different crop species with a persistent and timely monitoring 

method for every major crop grown on various regions throughout the crop’s growing 

cycle. This work will provide an experimental study on the effect of drought on crop 

fields in the U. S. Corn Belt. Remotely sensed data of vegetation dynamics and soil 

moisture content, in particular NDVI, NDWI, EVI, and NDDI time series from 2005 to 

2011, derived from MODIS datasets are used for the study. The potential of proximally 

sensed VIs simulated to the band passes of contemporary space-borne sensors (e.g. 

MODIS) in characterizing soil moisture at variable depths within the root zones of corn 

and soybean will be evaluated. This work will help to answer many concerned questions, 

such as, which VI can serve as a better agricultural drought indicator for a specific 

cropland type under specified environmental conditions, what the confidence level is to 

use an agricultural drought indicator in a local area or globally, and how to reduce the 

uncertainties and improve the reliability in drought monitoring, analysis and prediction.  
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Section 5.2 Methodology 
Agricultural drought is described as reduced root-zone soil moisture and crop 

yields (Gu et al., 2007). The proposed approach here is to find out the optimized drought 

indicator among NDVI, NDWI, EVI and NDDI which best correlates with soil moisture 

observations consists of four major steps of work: (a) use GDD to determine crop 

growing stage, (b) calculate agricultural drought indicators, align them neatly along the 

GDD axis, and scale them separately based on maximum and minimum values, (c) adopt 

a bivariate regression model upon time-series VI and the station-based soil moisture data 

at various depths, and (d) obtain the correlation coefficient of VIs versus the time lagged 

soil moisture data at various depths. Some details of these procedures will be given in the 

following.  

Subsection 5.2.1 Bivariate Linear Regression Model for Evaluation 

Agricultural drought indicators should reflect the reduced level of root-zone soil 

moisture. It is straightforward to assess the performance of RS-based drought indices (by 

drought impact category) with observed soil moisture levels, particularly at the root-zone. 

Experiments done so far indicate that all VIs exhibited a linear monotonic association 

with soil moisture observations. In this chapter, the evaluation of Vegetation Indices 

(VIs) as agricultural drought indicators uses bivariate least square regression model 

through Equation 6. 

 

Equation 6 The bivariate least square regression model used to simulate soil moisture using VI. 

𝑌 = 𝑋 𝛽 +  𝜀 
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, where Y is an N by 1 vector of observed soil moisture from a particular soil 

depth, X is an N by 2 matrix composed of 1 and VI, β is a regression function vector 

calculated from X and Y, and ε is the random error component. The correlation 

coefficient R2 is used to validate the model – a large R2 can guarantee a better 

performance of estimation. 

Relationships between root zone soil moisture at five depths and corn/soybean 

VIs are evaluated using the correlation coefficient. VI observations are correlated with 

the concurrent soil moisture values. In order to evaluate the effect of antecedent soil 

moisture on the canopy reflectance signals, soil moistures lags up to 64 days are also 

correlated with VIs. 

Subsection 5.2.2 Remotely Sensed Drought Indices 

In addition to NDVI, NDWI, and NDDI which have been mentioned in previous 

sections, another RS-based indicator, EVI is also used in this study. Believed to be a 

better indicator for vegetation conditions than NDVI, EVI is calculated as 

 

Equation 7 Calculation of EVI (Huete et al., 2002) 

𝐸𝑉𝐼 =  𝑆𝐶𝐴𝐿𝐸 ∗ 
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑅𝐸𝐷 − 𝐶2 ∗ 𝑅𝐵𝐿𝑈𝐸 +  𝐿 
 

 

In the equation, 𝑅𝑁𝐼𝑅, 𝑅𝑅𝐸𝐷, and 𝑅𝐵𝐿𝑈𝐸,  are atmospherically-corrected (partially 

or fully) surface reflectance, and 𝐶1, 𝐶2, and 𝐿 are coefficients to correct for atmospheric 
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condition (i.e., aerosol resistance). For the standard EVI data derived from MODIS 

product, SCALE=2.5, L=1, C1=6, and C2=7.5. 

Section 5.3 Study Area and Data 
Iowa has been selected as the study area since its yearly productions in corn and 

soybeans top other states (contributing 18% of corn productions for the U. S.). Almost all 

corn fields in Iowa are rain-fed rather than irrigated (Duvick & Cassman, 1999). The 

study site is located at 42.1°N, 93.85°W, approximately 16 miles northwest of Ames, 

Iowa, with a typical crop-rotation pattern of corn and soybean alternatively. 

Different crops have different growing patterns even they are planted in the same 

soil and climate system. In order to investigate how crops respond to agricultural drought 

stress, a crop mask needs to be applied first to the selected study data and separate the 

images into several crop layers (depending on how many crops the research is 

concerned). The CropScape CDL is hosting the cultivated crop mask data at a 30m or 

51m spatial resolution with the coverage over the continental United States. Applying the 

crop mask generated from the CDL downloads, the crop type for the site varies by each 

year. This study is undertaken using data acquired during 2006, 2008, 2009, and 2011 

growing seasons when the field was under corn cover, and during 2005, 2007 and 2010 

growing seasons when the field was planted with soybeans (Table 11). 

 

Table 11 The crop rotation patterns for the study site (SCAN site #2031) from year 2005 to year 2011. 

Year 2005 2006 2007 2008 2009 2010 2011 
Crop  Soybeans Corn Soybeans Corn Corn Soybeans Corn 
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This area experiences a humid continental climate (Dfa), with warm to hot 

summers, and cold to severely cold winters. The soil type varies significantly even for a 

small area surrounding the observation station (Table 12, Figure 45). The observation 

station is located in the center of the Figure 45, classified as soil type 507 (Canisteo Silty 

Clay Loam (with 0 to 2% slope)). Only a few meters away from the station, soil types of 

138B and 55 are spotted as well, namely, Clarion and Nicollet Loam respectively. 

 

Table 12 Top three soil types for the neighborhood of the study site. 

Map Unit Symbol Map Unit Name Percentage 

507 Canisteo Silty Clay (0~2% slope) 34.6 

138B Clarion Loam, 2~5% slope 24.0 

55 Nicollet Loam, 1~3% slope 19.8 
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Figure 45 Soil Type Classification map for the neighborhood near SCAN site #2031, in which soil types 507, 

138B and 55 are shown in contours. (Source: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx ) 

 

The soil moisture (a.k.a. volumetric water content) levels were measured hourly at 

five depths (2, 4, 8, 20 and 40 inches, i.e. 5, 10, 20, 50, and 100cm), and averaged to 

generate daily values for each of the depths. The soil moisture and precipitation data were 

collected by the Soil Climate Analysis Network (SCAN) supported by National Water 

and Climate Center (NWCC). The temperature parameters collected by SCAN are used 

to calculate the GDD for the crops growing at the fields. The soil moisture parameters 

recorded are used for validation and analysis of correlations with vegetation indices. 

Parameters collected by SCAN that are used in this study are shown in Table 13, and Box 

4 describes the essential information of SCAN site #2031 located within Ames, IA. 

 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
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Table 13 Soil moisture and temperature parameters collected by SCAN (source: SCAN Website). 

 
 

Box 4. 
SCAN Site: Ames  

State: Iowa  

Site Number: 2031  

Latitude: 42 deg; 1 min N  

Longitude: 93 deg; 44 min W  

Elevation: 1073 feet  

Reporting since: 2001-09-19 

 

Two types of MODIS products, MOD13Q1 and MOD09A1, are used to study the 

agricultural drought occurred in the selected study area during the growing period each 

year. The MOD13Q1 is a level-3 product. Among 11 scientific datasets (SDS) of this 

product, 16-day composite NDVI, EVI, VI quality assurance bit fields, and view zenith 

angle bands are utilized for the study. The NDVI or EVI is encoded in 16-bit signed 
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integer, ranging from -2000 to 10000. As a result, these NDVI and EVI values stored in 

the MOD13Q1 products should be divided by 10000 to obtain its original range from -0.2 

to 1. Different from NDVI or EVI, NDWI is not a standard MODIS product, and cannot 

be simply derived from existing HDF datasets. Instead, the NDWI is calculated using the 

reflectance data (bands 2, and 6) from MOD09A1, which is an 8-day gridded level-3 

product estimating surface spectral reflectance at a 500-m resolution in the sinusoidal 

projection (as shown in Equation 3). 

The data used are within the growing periods of 2005 to 2011 as to provide 

uniform temporal resolution. Reflectance data is rescaled to the 16-day temporal 

resolution and to a 500-m spatial resolution. Atmospheric correction, cloud removal, and 

bi-directional reflectance distribution function (BDRF) correction have been applied to 

MOD13Q1 and MOD09A1 products before the release of the products, and thus no more 

correction needs to be taken for the experiments to be conducted. The NDDI can be then 

calculated with values of NDVI and NDWI in Equation 9. 

The reasons for using 16-day MODIS products rather than other products with 

different temporal resolutions have been explained in details in subsection 1.6.1. In 

simple language, it is because 16-day MODIS datasets are closest one can get in MODIS 

series that is with less cloud and error. The sole purpose being to discover the relationship 

between MODIS VIs and ground-based soil moisture data, and decide root zone soil 

moisture at which depth is best suited for validation with MODIS VIs, the experiments 

conducted here are based on 16-day temporal resolution for both VIs and soil moisture 

data (satellite- or ground-based).  
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Section 5.4 Results and discussions 

Subsection 5.4.1 Temperature and Precipitation 

The averaged daily precipitations and temperatures for the SCAN site 2031 for 

years 2011, 2010, 2007 and 2006 are illustrated in Table 14. It is easy to see from the 

figure that the precipitation of the observed area increased from March to early 

September, and dropped sharply in mid-September. During the periods of 2007/113-

2007/128 (as in the format of YEAR/DOY) and 2010/049-2010/064, the precipitation 

levels are 5-10 inches lower than multi-year average, which could cause drought in the 

crop fields. From October to next spring, the precipitation climbed up slowly, and the 

temperature of the area ranged from lower than -10°C in January to more than 25°C in 

July. 

 

Table 14 Averaged daily precipitation and temperature for the SCAN site 2031 for years 2011, 2010, 2007 and 

2006. 

Year Precipitation (inches) Temperature (°C) 

2011 
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2010 

  

2007 

  

2006 

  

 

Subsection 5.4.2 Growing Season Time-series Soil Moisture and VI Profiles 

Time-series soil moisture profiles at five depths for the year 2011 are presented in 

Figures 46, 47, 48 and 49 to illustrate the temporal trends of soil moisture at the study site 

#2031. Soil moisture of -2, -4 and -8 inches exhibited high frequency variations 

compared to those at -20 and -40 inches. In the beginning of the growing season (approx. 

from day 65 to 129), soil moisture content at the shallower depths show variations 
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because of snowmelt and other hydrologic activities. Since day 161, the soil moisture 

content progressively declined because the vegetation roots started to suck water from 

shallower depths. 

 

 
Figure 46 Corn field’s soil moisture content at 5 depths (2, 4 and 8 inches (upper panel), 20 and 40 inches 

(bottom panel)) from SCAN (year 2011, site #2031). 
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Figure 47 Soybeans field’s soil moisture content at 5 depths (2, 4 and 8 inches (upper panel), 20 and 40 inches 

(bottom panel)) from SCAN (year 2010, site #2031). 
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Figure 48 Soybeans field’s soil moisture content at 5 depths (2, 4 and 8 inches (upper panel), 20 and 40 inches 

(bottom panel)) from SCAN (year 2007, site #2031). 
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Figure 49 Corn field’s soil moisture content at 5 depths (left: 2, 4 and 8 inches, right: 20 and 40 inches) from 

SCAN (year 2006, site #2031). 
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visually compare the changes in the VIs across the growing season, and to contrast its 

inter-seasonal differences, the index values need to be scaled between 0 and 1 according 

to Equation 8.  

 

Equation 8 VI being rescaled to the range of 0~1. 

𝑅𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑉𝐼 =  (𝑉𝐼 –  𝑉𝐼𝑚𝑖𝑛) / (𝑉𝐼𝑚𝑎𝑥 –  𝑉𝐼𝑚𝑖𝑛) 

 

Here, VImin and VImax are the minimum and maximum VI values throughout the 

observed period. The reason for new VIs after normalization being named ‘rescaled VIs’ 

instead of ‘normalized VIs’ is that the latter has been already used to define the VI ratio 

between maximum and minimum VI values for the same DOY across all the years. 

During corn’s vegetative stage, the rescaled NDVI has showed increasing trends and 

reached maximal values on DOY 209. The rate of increase in rescaled NDVI is maximal 

compared to the rate of increase of other VIs, between DOYs 145 and 161. In the 

reproductive and senescence stages of corn, NDWI has showed sharper decline than 

NDVI or EVI (between DOYs 257 and 273).  
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Figure 50 Temporal variations of rescaled VIs for corn during the growing season of 2011 (left) and 2006 (right). 
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Figure 51 Temporal variations of rescaled VIs for soybean during the growing season of 2010 (left) and 2007 

(right). 
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Soil moisture, as a determining factor for whether an agricultural drought is 

taking place, is not always positively correlated with vegetation conditions. Excessive 

soil moisture levels can also harm vegetation performance. For regions or vegetation 

types that are not water-limited (e.g. high latitudes), soil moisture levels can be 

negatively correlated to vegetation greenness, indicating that the abnormally high water 

supplies from the soil has limited vegetation growing conditions in the area. For example, 

in (a1) of Table 15, the correlation coefficients between SM at shallower depths (2, 4, and 

8 inches) and NDVI appear to be negative. 

 

Table 15 Correlation Coefficient (r) between soil moisture (SM) at 2, 4, 8, 20 and 40 inches depths and corn VIs 

with time lags up to 64 days during the growing season of 2006 and 2007. For each row, (a1, a2): NDVI vs. SM, 

(b1, b2): NDWI vs. SM, (c1, c2): EVI vs. SM, and (d1, d2): NDDI vs. SM. 
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(b1) Corn NDWI 2006 (b2) Soybean NDWI 2007 

  

(c1) Corn EVI 2006 (c2) Soybean EVI 2007 

  

(d1) Corn NDDI 2006 (d2) Soybean NDDI 2007 
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The hypothesis is that relationships between VIs and soil moisture would be 

stronger if any inherent time delays (lag periods) that plants need to respond to soil 

moisture changes were considered. We tested the hypothesis by correlating the VIs with 

the averaged soil moisture using lag periods up to 64 days. On average, the correlation of 

corn VIs peaked at the lag period from 32 to 48 days for the 4 to 8 inches depth. On the 

other hand, the correlation of soybean VIs peaked at the lag period from 0 to 16 days for 

the 2 to 4 inches depth, and then followed a decreasing trend with increasing time lags. 

These results have shown soybean VIs respond to changes in the soil moisture more 

rapidly and maintain a fairly short soil moisture memory compared to corn.  

Results have shown that the water extraction patterns of corn and soybean plants 

within the root zone areas are distinct. Corn VIs exhibit strong relationships with soil 

moisture at deeper depths, while the soybean VIs are highly sensitive to changes in soil 

moisture at much shallower depths.  The difference between corn and soybeans is a 

reflection of their different rooting depths and structures. In the U.S. Corn Belt area, the 

roots of corn can extend to 42~46 inches or more (Weaver, 1926), while soybean is a 

comparatively shallower rooted plant. Depth and distribution of roots are also determined 

by climate, soil properties, and management practices such as irrigation and tillage 

treatments. For instance, when grown in clayey-textured soil with no-till system, the root 

length density of soybeans can be twice higher than that of corn in the shallower depths 

(Filho et al., 2004). Also, Tufekcioglu (1999) pointed out that, the density of corn roots is 

higher in 20 ~ 40 inches depth in the soil profile at a riparian buffer site in central Iowa, 

compared to that of corn grown in other areas. What we have found in this research, e.g., 
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the corn VIs respond to soil moisture in deeper depths while the soybean canopy VIs 

respond to the soil moisture in the 4 ~ 10 inches depth, is consistent with such evidence. 

In summary, the relationships between four RS-based agricultural drought 

indicators (NDVI, NDWI, EVI and NDDI) and the root zone soil moisture under corn 

and soybean canopies collected in the Corn Belt area have been uncovered through this 

experimental study. Time-series VI data for six growing seasons are correlated with 

concurrent as well as antecedent soil moisture (up to 64 days) at five different depths (2, 

4, 8, 20 and 40 inches) in the soil profile. The indicators applied to Corn have been found 

significantly related to soil moisture lagging 32 days at the 20 inches depth. Among the 

four indicators analyzed, NDDI has showed the strongest correlation at this depth but 

with soil moisture lagging 48 days. Correlations of corn VIs with soil moisture improve 

when the time required by the plant to respond to the changes in the soil moisture are 

taken into consideration. Correlations of soybean VIs with soil moisture show that NDVI, 

NDWI, and EVI are significantly related to concurrent soil moisture at the 4, and 8 

inches. Correlations of soybean NDVI, NDWI, and EVI are highest with 16 day lagged 

soil moisture at 4 and 8 inches depths, and the NDDI shows the strongest correlation 

when there is a 32 days of lagging period. These findings suggest that, unlike corn, RS-

based indicators for soybean are highly sensitive to soil moisture at shallow depths with 

short lagging periods. Thus, the potential and limitation of using NDVI, NDWI, EVI and 

NDDI for characterizing root zone soil moisture and identifying agricultural drought 

severities under corn and soybean canopies have been tested and clarified. 
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Section 5.5 Summary 
This work has accurately characterized the detailed relationships between 

different RS-based agricultural drought indicators and root zone soil moisture at various 

depths, by way of (1) applying crop mask to filter out irrelevant crop type, (2) calculating 

GDD to determine growing stages of crops, and hence lining up the datasets of the same 

growing phase every year onto the same comparison platform, (3) deriving the 

correlation coefficients between concurrent VIs and soil moisture at various depths, and 

(4) analyzing the relationships between time-lagged VIs and soil moisture observed at 

various depths . The method integrates VIS, NIR and SWIR bands from remotely sensed 

MODIS data, and also considers weather and environmental factors including 

precipitation, temperature, and soil moisture. The relationships between soil moisture and 

the VIs found in this study will form the basis of modeling simulation for root zone soil 

moisture estimation and largely improve the accuracy of agricultural drought monitoring 

and analysis in corn and soybean croplands in the Corn Belt area of the United States. 

The major contribution of this work is to have discovered the relationships between per-

16-day MODIS-based crop specific VIs and the SCAN root zone soil moisture data under 

different canopies, and to indicate the root zone soil moisture at which depth is good for 

validation specifically for different crop types. This finding is to be utilized in Chapters 6 

and 7 in order to facilitate the optimized source for validation. 

Section 5.6 Future Work 
One of the limitations of this study is that the regression models used have not 

considered the situation when root zone soil moisture at various depths with different lag 

periods all contribute to the current vegetation greenness, because of the “memory” 
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properties of soil. That is to say, RZSM (64 days’ lag), RZSM (48 days’ lag), RZSM (32 

days’ lag), RZSM (16 days’ lag), and RZSM (current) can all become a variable in the 

regression model for VI, such as, VI (current) = function (RZSM (64 days’ lag), RZSM 

(48 days’ lag), RZSM (32 days’ lag), RZSM (16 days’ lag), RZSM (current)). More 

efforts need to be taken in order to find out the relationship between these variables.  

In the future, the following work will also be conducted to improve the accuracy 

of agricultural drought monitoring: First, soil mask shall be applied to the satellite 

images, since the soil type (loam, clay, and sand) largely affects how much water can be 

stored for a specific area. Secondly, the correlation analysis will be based on the VI time 

series not only from the recent decade, but also reaching backwards to the latest 30 years 

as provided by the AVHRR data. Thirdly, since NDVI, NDWI and combined NDVI and 

NDWI curves have different performances throughout crop growing season for dry years 

and wet years, the rules of how these indices reflects whether each crop is undergoing 

drought or non-drought situations for each county, the per crop, per location, per growing 

stage analysis of whether or not the crop is suffering from agricultural drought will be 

studied. Establishing a library containing the performance curves for all these VIs 

throughout the years can serve as a footing stone for better understanding the impact of 

agricultural drought upon crop performances. 
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CHAPTER 6 ASSESSING IMPACT OF AGRICULTURAL DROUGHT ON THE 

VARIATION OF VEGETATION VIGOR 

Section 6.1 Introduction 
As stated in 2.1.2.2, the correlation relationship between NDVI and LST is 

negative for regions where crop growth are limited by water (e.g. semi-arid areas) and is 

positive for where crops growth are energy-limited (e.g. in high latitudes). Because the 

LST/NDVI relationship is not simply linear, in order to accurately interpret the 

LST/NDVI space, some scientists suggested the triangle method (Price, 1990; Carlson et 

al., 1994; Gillies & Carlson, 1995; Gillies et al., 1997), which uses the calculation of a 

point falling into the triangle between the slope of the LST and the NDVI, while some 

others developed the Vegetation Index Temperature Trapezoid (VITT) (Moran et al., 

1994) that is based on a trapezoid model. The Vegetation Temperature Condition Index 

(VTCI) developed by Wang et al. (2001), and the Vegetation Water Temperature Index 

(VWTI) by Katou and Yamaguchi (2005) both fall into the second category. With the 

purpose of integrating vegetation conditions and thermal properties to monitor drought, 

the VTCI is defined as the ratio of the LST differences among pixels with a specific 

NDVI value in a sufficiently large study area (Wang et al. 2001). Considering that 

vegetation conditions and thermal stresses are sufficient for drought detection and water 

stresses serve as direct indicators for agricultural drought, Katou and Yamaguchi (2005) 

used NDWI, NDVI and LST for the calculation of VWTI1 and VWTI2, which are 
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measurements of the strength of stress and the influence of stress upon vegetation, 

respectively. 

Whether an area is experiencing thermal or moisture stresses can be answered by 

the trapezoid interpretation of LST/NDVI space. However, since NDVI fails to represent 

the vegetation moisture levels through the years, esp. after the vegetation has reached the 

saturation point, using NDVI for detection of moisture levels will not be appropriate by 

then. In fact, the NDVI and NDWI curves tend to have similar trends until the saturation 

point when NDWI still climbs up and NDVI stays constant ever since. Thus, NDWI can 

better depict water levels within vegetation throughout the growing cycle, including the 

period when NDVI has been saturated.  

The LST/NDVI/NDWI approach, on the other hand, is not entirely efficient 

because the process to extract the warm and cold edges for NDVI-NDWI, and LST-

NDVI spaces respectively, and nest the former into the latter is time-consuming and 

CPU-exhausting. Using the NDDI or RNDDI to depict the relationship between NDWI 

and NDVI not only saves time in calculation, but also makes the difference between these 

two indices more contrasting. In brief, the proposed approach aims to construct an 

LST/RNDDI space, and extract the patterns of temperature and wetness performances 

into a single Index, called the Combined Condition Index (CCI). The definition and usage 

of RNDDI can be seen in section 6.2.1, and later in section 6.2.2, CCI is introduced and 

discussed in details. 
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Section 6.2 Methodology 

Subsection 6.2.1 Reversed Normalized Difference Drought Index (RNDDI) 

As the ratio between the difference and sum of NDVI and NDWI, NDDI 

combines both vegetation and water conditions, and thus serve as an appropriate indicator 

for dryness of a particular area. Also derived from the radiances of VIS, NIR, and SWIR 

data, NDDI has a stronger response to summer drought situations than a simple 

difference between NDVI and NDWI, or NDVI/NDWI being used alone. Experiments by 

Liu and Wu (2008) have showed that the goal of drought monitoring could be reached 

with satisfied accuracy and quickness. The definition for NDDI is shown in Equation 9. 

 

Equation 9 Normalized Drought Difference Index (NDDI). 

𝑁𝐷𝐷𝐼 = 𝑆𝐶𝐴𝐿𝐸 ∗ 
𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 +  𝑁𝐷𝑊𝐼
 

 

NDDI values are strongly correlated with the dryness of an area. As the NDDI 

increases, the drought intensities of an area climb high. Liu and Wu (2008) applied the 

NDDI method to Jiangsu province in China, and validated the results of NDWI and 

NDDI with the 10cm soil moisture data. Judging from the correlation coefficients, where 

R2 is 0.0714 for that between NDWI and soil moisture, and is 0.2783 between NDDI and 

soil moisture, NDDI is more sensitive to the changes in 10cm soil moisture than NDWI. 

In most situations, for any vegetated pixel, the NDVI curve is above the NDWI curve, 

and when the gap between two curves grows thick, the NDDI value becomes larger 

which indicates higher drought intensity. Before rescaling, the NDDI ranges from -1 to 1; 



134 

 

as NDDI approaches 1, the drought severity of the area gets upgraded, which is opposite 

to how NDVI, NDWI and other vegetation indices relate to drought severities, since 

higher VI values always represent lesser drought severities. One way to reverse the 

correlation direction between NDDI and drought severities is simply to subtract NDDI 

from 1, divide the difference by 2, and obtain the reverse NDDI (RNDDI) value ranging 

from 0 to 1 (as shown in Equation 10). For example, if the NDDI of an area is 0.95, its 

drought situation would be extremely severe, and accordingly the RNDDI value is 0.05 

signaling its wetness level being rather low. Negatively correlated to drought intensities, 

RNDDI along with LST are used in subsection 6.2.2 for calculation of CCI. 

 

Equation 10 Reversed Normalized Drought Difference Index (RNDDI). 

𝑅𝑁𝐷𝐷𝐼 = (1 −  
𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 +  𝑁𝐷𝑊𝐼
 ) /2 =  

𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 +  𝑁𝐷𝑊𝐼
 

 

In real life implementation, RNDDI is often scaled to 0~255 to save storing space 

and computation efforts, since an 8-bit integer is easier to store, manipulate and display 

than a 32-bit float. The rescaling equation is shown in Equation 11. Opposite to NDDI, 

which is positively correlated to drought severity, the RNDDI is correlated to drought 

severity degrees in a negative way. As the RNDDI increases (up to 1.0), the NDDI 

decreases accordingly (down to -1.0), and thus representing the dryness severity of the 

area is reducing. 
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Equation 11 Scaled RNDDI. 

𝑅𝑁𝐷𝐷𝐼′ = 𝑆𝐶𝐴𝐿𝐸′ ∗  
𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 +  𝑁𝐷𝑊𝐼
 

 

Subsection 6.2.2 Combined Condition Index (CCI) 

A trapezoid shape can be identified in the pixel distribution of an area, of which 

these requirements are met: (1) there are a large number of valid pixels, (2) a wide range 

of soil wetness, and (3) a broad range of fractional vegetation cover. The base of the 

trapezoid shape (i.e. edge BD) and the upper slope of the trapezoid (i.e. edge AC) 

represent the wettest and the driest condition of respectively (Figure 52). The way to 

construct the RNDDI-LST space for an area of N pixels is to draw a point with RNDDI 

value as x-coordinate, and LST value as y-coordinate to represent each of these N pixels. 

Here, the LST is in Kelvin, while the RNDDI is a ratio. The location of a pixel in this 

RNDDI-LST space is influenced by many factors, one of which is evapotranspiration 

(ET). ET can largely control the surface temperature through the energy balance 

occurring at the surface. The more the ET, the more intensive heat removal from the 

surfaces and thus bring the surface temperature down. More specifically, the process of 

water vapor being released from the plant stomata, namely transpiration, is partially 

controlled by soil moisture availability; when the soil moisture is in deficiency, the 

transpiration process is slowed down, or even shut down. The relationship between 

evaporation and LST, and that between transpiration and LST are shown in Figure 52 as 

well.  
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Points A and B represent dry bare soils (low RNDDI and high LST) and moist 

bare soils (low RNDDI and low LST) respectively. As the fractional vegetation increases, 

surface temperature drops for vegetated land. Points C and D both represent continuous 

vegetation canopies, among which C (with high RNDDI and high LST) corresponds to 

those with a high resistance to evapotranspiration probably resulting from a low water 

availability, while D (with high RNDDI and low LST) corresponds to those with low 

resistance to evapotranspiration probably occurring on well-watered surfaces (Liang, 

2005). Within the trapezoid space, for vegetated pixels, LST value decreases as the 

RNDDI value increases; this is especially significant on the dry edge. However, there can 

be no significant variability of LST along the wet edge. Densely vegetated pixels are 

located where the dry and wet edges start to merge, and a slight LST variation is 

exhibited compared to other pixels.  
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Figure 52 The schematic plot of land surface temperature and RNDDI space, and the conceptual relationships 

with evaporation, transpiration, and fractional vegetation cover (RNDDI, units: 1; LST, units: Kelvin). 

 

To determine dry and wet edges is critical to understanding the distribution of 

vegetation wetness across the area and hence obtaining the CCI results. These two edges 

can be found in the scatter plot for a large area of pixels, where the RNDDI and LST 

values for each pixel serve as x and y co-ordinates. Here, the RNDDI values are 

computed with NDVI, MIR, and NIR bands from the 16-day MOD13Q1 product. Also, 

two temporally adjacent 8-day MOD11A1 products will be set for input, so the two 

brightness temperature datasets can be merged into a 16-day LST layer. With the RNDDI 

and LST values of each pixel ready, a scatter plot for the pixel distribution of the study 

area can be drawn, and the dry edge is higher than all valid pixels, which means the LST 
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value of any point residing on the edge is the maximum among all points sharing the 

same RNDDI value. Likewise, the wet edge is lower than all valid pixels, that the LST 

value of any point residing on it is the minimum among all points sharing the same 

RNDDI value. A polynomial curve fitting needs to be run against the maximum and 

minimum LST values, respectively, to find the wet and dry edges represented in 

polynomial functions (Equation 12 Warm and Cold Edges of RNDDI/LST space 

(polynomial fit) below). Detailed steps in calculating the coefficients of dry and wet 

edges, namely p0, p1, …, pn, and q0, q1, …, qn, are shown in Box 5. 

 

Equation 12 Warm and Cold Edges of RNDDI/LST space (polynomial fit) 

maxRNDDIiLST . = 𝑝0 ∗ iRNDDI
n

+ 𝑝1 ∗ iRNDDI
n−1

+  … +  𝑝𝑛 

minRNDDIiLST . = 𝑞0 ∗ iRNDDI
n

+ 𝑞1 ∗ iRNDDI
n−1

+ … +  𝑞𝑛 

 

Box 5. 

Step 1: Download MOD13Q1 dataset for the desired date and location, derive NDVI, MIR, and 
NIR bands from the former, calculate NDWI from the last two bands, and compute RNDDI 
using NDVI and NDWI. 
 
Step 2: Download MOD11A1 dataset for the desired date and location, derive BT band, merge 
two adjacent 8-day LST into a single 16-day LST product. 
 
Step 3: Draw scatter plots with the RNDDI-LST values, obtain the maximum LST array, and 
minimum LST array corresponding to each RNDDI entry, and simulate these RNDDI-max LST, 
and RNDDI-min LST data into polynomial fit (called f1, and f2). 
 
Step 4: Get the maximum absolute value of the difference between real max LST (called 
Error1) and simulated max LST, and also that between real min LST and simulated min LST 
(called Error2). 
 
Step 5: Draw the two edges on the scatter plot – one is f1+Error1, and the other f2-Error2. 
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Considering any point plot in the RNDDI-LST space, the closer it is to the dry 

edge, the more likely it is enduring water stress; Vice versa, the closer a point approaches 

the wet edge, the less likely it is suffering from water stress. Computed as a ratio of 

temperature differences among pixels with the same RNDDI, CCI combines vegetation 

water stress and thermal stress into a single index. The following equation (Equation 13) 

to calculate CCI measures the data position within the trapezoid (as shown in Figure 52), 

and determines its proximity to dry edge. 

 

Equation 13 Combined Condition Index (CCI). 

𝐶𝐶𝐼 = 𝑆𝐶𝐴𝐿𝐸 ∗ ( 
maxRNDDIiLST . −  RNDDIiLST

maxRNDDIiLST . −  minRNDDIiLST .

 ) 

 

Here, RNDDIiLST , is the LST value of any specified pixel. maxRNDDIiLST .  , and 

minRNDDIiLST .  are two points residing on the dry and wet edges representing the maximum 

and minimum LST values of any specified iRNDDI  value. The two edges are decided 

previously (in Equation 12), that are in fact two polynomial functions of iRNDDI . As an 

indicator for the point’s proximity to the dry edge, the CCI range from 0 to 1 before 

scaling, and the lower the value of CCI, the higher the degree of drought happens to the 

point. 
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Subsection 6.2.3 Correlation and Regression Analysis 

In order to assess CCI’s performance as an indicator for vegetation drought stress, 

the root-zone soil moisture (RZSM) data will be used to compare against the CCI 

calculated. If a pixel is having low RZSM and CCI value at the same time, which 

signifies high drought severities, the CCI performance is considered as “hit”. On the 

other hand, if low CCI values happen along with high RZSM, then the CCI performance 

for the specified pixel is considered as “miss”.  Correlation and least square regression 

analysis will be used to assess the strength of association between RZSM and CCI. 

Because the soil moisture available for vegetation is largely influenced by the depth of 

rooting systems, RZSM used for validation needs to be picked according to crop type. 

Then, the statistical relationships between RZSM anomalies, time lag periods of RZSM 

and CCI are investigated using Pearson correlation analysis for selected SCAN sites. 

Five models have been tested in search of the fittest match for the regression 

model between CCI and soil moisture, and they are namely, linear, quadratic, and cubic 

regression, and logarithmetic, and power equations. Table 16 lists these regression 

models used to create trend lines in the scatter plot of CCI vs. Soil Moisture. 

 

Table 16 Regression models used to create trend lines for CCI vs. Soil Moisture. 

CCI vs. soil moisture Equation 

Linear regression model 𝑦 = 𝑎+ 𝑏𝑥  

Quadratic regression model 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

Cubic regression model 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 

Logarithmetic function 𝑦 = 𝑎+ 𝑏 ∗ ln (𝑥)  

Power function 𝑦 = 𝑎 ∗ 𝑏x or   ln (𝑦) = ln (𝑎)+ 𝑥 ∗ ln (𝑏)  
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Section 6.3 Study area and data 

Subsection 6.3.1 Study area 

 For validation purposes, the meteorological data for seven observation stations 

were collected by the Soil Climate Analysis Network (SCAN), and each station was 

picked from a different state. The parameters, including site number, location, and 

elevation, for these seven stations are listed in Table 17. 

 

Table 17 Parameters for the seven SCAN sites chosen for the study. 

SCAN 

SITE 

Site No. State County Longitude Latitude Elevation 

(FT) 

Sidney 2120 Montana Richland 104 deg; 15 

min W 

47 deg; 46 

min N 

2274 

Eros Data 

Center 

2072 S. Dakota Minnehaha 96 deg; 37 

min W 

43 deg; 44 

min N 

1602 

Mandan #1 2020 N. Dakota Morton 100 deg; 55 

min W 

46 deg; 46 

min N 

1930 

Ames 2031 Iowa Boone 93 deg; 44 

min W 

42 deg; 1 

min N 

1073 

Crescent 

Lake #1 

2002 Minnesota Sherburne 93 deg; 57 

min W 

45 deg; 25 

min N 

980 

Mason #1 2004 Illinois Mason 89 deg; 54 

min W 

40 deg; 19 

min N 

570 

UW 

Platteville 

2196 Wisconsin Lafayette 90 deg; 23 

min W 

42 deg; 42 

min N 

1075 

 

 Crop rotation is a practice of growing a series of dissimilar types of crops (usually 

alternating between deep-rooted and shallow-rooted plants) in the same area in sequential 

growing seasons, aiming to give various benefits to the soil, and also mitigate the build-

up of pathogens and pests. Based on the crop classification data derived from NASS CDL 

datasets, the crop types grown on some of these SCAN sites have displayed a crop 

rotation pattern (as shown in Table 18 the crop types for each site during years 2009 and 
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2010). The crop types rotated for three SCAN sites from 2009 to 2010 while for the rest 

of observation stations, the crop type remained the same. Table 19 lists the crop maps 

surrounding the observation sites. The SCAN site #2072 (inside South Dakota) and site 

#2031 (inside Iowa) are shown to be growing corn in 2009 and then soybeans in 2010. 

The similar situations happen to #2196 as well, grass growing in 2009 and corn in 2010. 

Because different crops behave separately to drought stress, the experiment though based 

on the same geo-location along the timeline, needs to be conducted separately according 

to crop types. For instance, for site #2031, the crop rotation pattern from 2005 to 2011 is, 

S\C\S\C\C\S\C, where S means soybeans and C means corn, then the time-series of 

experiment dataset needs to be separated into 2 groups: {2005, 2007, 2010}, and {2006, 

2008, 2009, 2011}.  

 

Table 18 The Crop type distribution for these seven SCAN sites. 

SCAN SITE 

No. 

XY Location (meters) Crop Type 2009 Crop Type 2010 

2120 -7791586.34, 5311454.05 Spring Wheat Spring Wheat 

2072 -7767800.05, 4862893.21 Corn Soybeans 

2020 -7686335.66, 5200259.00 Woody Wetlands Woody Wetlands 

2031 -7743465.7, 4672082.5 Corn Soybeans 

2002 -7333027.72, 5050145.68 Deciduous Forest Deciduous Forest 

2004 -7622045.8, 4483050.91 Open Water Open Water 

2196 -7385996.32, 4748028.72 Grass Corn 
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Table 19 Crop Mask surrounding study sites in year 2010. 

  
#2120 (MT) #2072 (SD) 

  
#2020 (ND) #2031 (IA) 

  
#2002 (MN) #2004 (IL) 

 

 

#2196 (WI)  
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Subsection 6.3.2 Remotely Sensed Indices as input 

With MIR and NIR bands derived from MOD13Q1 products, the NDWI can be 

calculated as NDWI = (NIR-MIR) / (NIR+MIR), and would range from -1 to 1. For 

easier display, these NDWI values can be scaled into Scaled NDWI as SNDWI = 

125*(NDWI+1), ranging from 0 to 250. Then these values can be stored as 8-bit integers, 

and mapped to wetness legend, which is using black/red/orange/yellow/white color 

scheme to represent the values of Scaled RNDDI from 0 to 250. Here, 0 means very dry, 

and 250 means very wet. The NDWI maps drawn for four 16-day periods (a) 2009/193 – 

2009/208, (b) 2010/193 – 2010/208, (c) 2011/193 – 2011/208, and (d) 2012/193 – 

2012/208, using such an approach are displayed in Figure 53. 

 

 
Figure 53 The NDWI images of Ames, Story on (a) 2009/193, (b) 2010/193, (c) 2011/193, and (d) 2012/193. 
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 Directly derived from NDVI dataset in MOD13Q1 products, the NDVI data needs 

to undo the scaling, from a range of -3000, 10000, to its original range of -0.3, 1. The 

negative NDVI values are then abandoned since valid vegetated pixels are always with an 

NDVI value larger than zero. For display purposes, NDVI can be rescaled into Rescaled 

NDWI, which equals 250*NDVI, ranging from 0 to 250. The NDVI data obtained for 

four 16-day periods (a) 2009/193 – 2009/208, (b) 2010/193 – 2010/208, (c) 2011/193 – 

2011/208, and (d) 2012/193 – 2012/208 are displayed in Figure 54. 

 

 
Figure 54 The NDVI images of Ames, Story on (a) 2009/193, (b) 2010/193, (c) 2011/193, and (d) 2012/193. 

 

Subsection 6.3.3 Crop Mask Data 

 The crop mask data downloaded from NASS CropScape portal is projected to 

world sinusoidal coordinate system, and clipped to the same areal extent of tile h11v04 

(shown in Figure 55). The pixel value ranging from 1 to 255 indicates different types of 
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canopies (vegetation, urban, etc.), and value of 0 indicates no data. Extracting the pixels 

with desired vegetation type from the composite image, assigning them to be of value 1, 

and assigning the rest to be of value 0, we can derive crop mask for each specific crop 

type. The four major crop types of this area are deciduous forest, grass, corn, and 

soybeans, and the crop mask for each of these crop types are displayed in four subplots of 

Figure 56. These crop masks will be applied in the process of generating crop-specific 

CCI and other VIs. 

 

 
Figure 55 Crop Mask of tile h11v04 for year 2009. 
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(a) (b)  

(c) (d)  
Figure 56 Crop Mask for tile h11v04 of various crop types in 2009: (a) Deciduous forest, (b) Grass, (c) Corn, and 

(d) Soybeans. 

 

Section 6.4 Results and discussion 

Subsection 6.4.1 Intermediate and Final Products 

With the maximum and minimum LST values of each RNDDI value, polynomial 

fit regression model can be used upon these RNDDI-LST sets respectively, to find the 

dry and wet edges for the study area. Detailed steps are shown in Box 5. For three 

different 16-day periods, namely, 2009/193-2009/208, 2010/193-2010/208, and 

2011/193-2011/208, and the same area (tile h11v04), the warm and cold edges derived 

are shown in Figure 57. Though the polynomial fit regression model allows the degree of 

polynomial equation to be any positive integer N, the regression equations obtained from 

these experiments turned out to be in quadratic or linear form (shown in Table 20), either 
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y=a0*x2 + a1*x + a2 or y = b0*x + b1. The slope of dry edge, which is always negative, 

indicates the LSTRNDDImax decreases as RNDDI increases for each incremental step. The 

positive slope of wet edge indicates the LSTRNDDImin increases as RNDDI increases.  

 

(a)  

(b)  
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(c)  

(d)  

(e)  

Figure 57 Scatter plot of pixels with the maximum, and minimum LST values, and the warm and cold edges 

derived via polynomial fit for the RNDDI/LST space of tile h11v04 for (a) 2009/193 – 2009/208, (b) 2010/193 – 

2010/208, (c) 2011/193 – 2011/208, (d) 2012/193 – 2012/208, and (e) 2013/193 – 2013/208. 
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Table 20 Regression Equations for dry and wet edges. 

DOY Year Dry Edge 

193 2009 LSTRNDDIi,max = -0.0008* RNDDIi 2+0.563*RNDDIi+190.6055 

2010 LSTRNDDIi,max = -0.0007* RNDDIi 2+0.5169*RNDDIi+188.8826 

2011 LSTRNDDIi,max = -0.0001* RNDDIi 2+0.0916*RNDDIi+282.0772 

2012 LSTRNDDIi,max = -0.001* RNDDIi 2+0.7465*RNDDIi+141.5928 

2013 LSTRNDDIi,max = -0.0006* RNDDIi 2+0.4346*RNDDIi+205.1171 

DOY Year Wet Edge 

193 2009 LSTRNDDIi,min =0.0001* RNDDIi 2+0.0719*RNDDIi+305.8931 

2010 LSTRNDDIi,min =0.0005* RNDDIi 2-3.78*RNDDIi+382.1718 

2011 LSTRNDDIi,min =-0.0065*RNDDIi+291.1853 

2012 LSTRNDDIi,min =-0.0001* RNDDIi 2+0.0607*RNDDIi+307.7737 

2013 LSTRNDDIi,min =-0.0001* RNDDIi 2-0.1006*RNDDIi+309.3591 

 

With the polynomial curves representing warm and cold edges found, the CCI can 

now be computed with the RNDDI and LST value sets for each pixel (Equation 9). CCI 

is a ratio signifying the pixel’s proximity to dry edge, ranging from 0 to 1. For display 

purposes, CCI is multiplied by 250, to yield an 8-bit integer ranging from 0 to 250 (with 

253~255 as Fill Values). The Scaled CCI maps for five 16-day periods, namely, 

2009/193-2009/208, 2010/193-2010/208, and 2011/193-2011/208, and the same area (tile 

h11v04), are put as Figure 58. The symbology used for the raster images generated here 

is “Unique Values” instead of “Stretched”, since each of the pixel value is already a ratio. 

Each value from 0 to 250 is assigned a color continuously from red to green. Red color 
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represents a low CCI value, meaning this pixel is experiencing drought; while the color 

shifts from reddish to greenish, the drought situation is mitigated; green color represents a 

high CCI value, meaning the pixel is of healthy vegetation. Cloud-polluted, or 

water/snow/ice covered pixels are here colored in white. 

 

 
Figure 58 The CCI maps of tile h11v04 for 2009/193, 2010/193, 2011/193, 2012/193 and 2013/193. 
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Subsection 6.4.2 Temporal Pattern of CCI 

 CCI, as a measure to assess whether an area is suffering from vegetation drought 

stress, can be used to observe the temporal patterns of the areal vegetation growth 

conditions through crop growing seasons. In Figure 59, the CCI maps for the growing 

season of year 2009 are shown in a series. Comparing the vegetation growth conditions 

before and after 2009/193 (YEAR/DOY), the former is more likely to be experiencing 

drought stress. The CCI map of 2009/193, displaying large areas of green pixels, appears 

to be the healthiest during the period, or the peak of growing conditions. Because CCI is 

considering the dry/wet conditions of an area from a regional perspective (i.e. the wet and 

dry edges are drawn according to the minimum and maximum LST values of the region), 

compared to VCI which is calculated on a pixel basis, difference between CCI values of 

two neighboring pixels is not as large as that of VCI pixels. Unlike VCI maps on which 

pixel values change abruptly between neighbors (as in Figure 60), CCI maps by nature 

display smoothing patterns and thus resembles a real-life situation. For two adjacent 

fields, it is hardly possible for one to be suffering from severe drought while the other to 

be entirely stress-free. 
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Figure 59 The CCI maps of tile h11v04 for the growing season of 2009 (which is from DOY 113 to 257). 
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Figure 60 The CCI maps (left) VS. VCI maps (right) of tile h11v04 for the first half growing season of 2009 

(which is from DOY 113 to 193). 

 

Subsection 6.4.3 Spatial Pattern of CCI 

Areas with accumulated low CCI values are those drought-affected areas most 

vulnerable to drought stresses. Shown in Figure 61 is the accumulated CCI for the area 

during the peak growing seasons through years 2009-2012. Reddish pixels represent 

areas most frequently suffering from drought stress during growing seasons, while 

greenish pixels are those areas least likely to be experiencing vegetation drought stress. 

At least three patterns can be observed from Figure 61: (1) green areas with high CCI 

values on the northeast, (2) red areas with low CCI values on the northwest, and (3) 
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yellow areas with mid CCI values for the rest of the area. This spatial distribution of high 

to low CCI values through multiple years correspond to the crop distribution patterns for 

the area: (1) deciduous forest at the northeast, (2) grass at the northwest, and (3) corn or 

soybeans for rest of the area. The fact that CCI shares a similar distribution pattern with 

crop types has led us to two conclusions: First, vegetation dryness/wetness represented by 

CCI is relative to crop type, for instance, the CCI value of deciduous forest is often 

higher than that of grass. Second, in order to illustrate a site or an area is wetter or dryer 

than previous year, it is crucial to make sure the comparison is established on the same 

site or area that is of the same vegetation type; or else, the comparison is meaningless. 

 

 
Figure 61 Areas with accumulated CCI values during peak growing seasons through multiple years, and seven 

points representing SCAN sites from multiple states. 
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Subsection 6.4.4 CCI and Root-zone soil moisture Observations 

In order to validate CCI as an effective measure to monitor drought stresses, root-

zone soil moisture observations under different canopies at various depths are chosen, 

since soil moisture is a direct indicator for drought or non-drought. Daily observations at 

each of the SCAN sites (starting from spring of 2000) were composited into 16-day 

precipitation or soil moisture data, masked with a dominant crop type, and input as 

dependent variables for regression models established with CCI or VCI.  

Tables 21 and 22 display the Pearson Correlation Coefficient between CCI/VCI 

and precipitation/soil moisture at various depths with lag periods of 0, 16, 32 and 48 

days. Because crop growing conditions are influenced by soil moisture at various depths 

with different lag periods, depending on crop type and geo-location, using soil moisture 

as a validation source for CCI needs to be performed with the correct depth and lag 

period. Take site #2031 as an example, the best correlation result for linear regression 

between CCI and root zone soil moisture takes place at depth of 4 inches and when lag 

period is 32 days (r = -0.901), and the best result for that between VCI and root zone soil 

moisture (r=0.456) happens at the same depth (-4 inches) and lag period (32 days). Site 

#2031 is planted with corn during the selected years, and from conclusions of Chapter 5, 

corn-specific VIs have higher correlation to root zone soil moisture levels at deeper earth 

(>=4 inches) and with longer lag period (>=32 days), which corresponds to the result as 

shown in Tables 21 and 22. As a result of the comparison, CCI is correlated to RZSM at 

higher degrees than VCI is for site #2031. 

Site #2020, planted with soybeans, is another example. The best correlation result 

for linear regression between CCI and root zone soil moisture takes place at depth of 2 
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inches and when lag period is 16 days (r = -0.644), and the best result for that between 

VCI and root zone soil moisture (r=0.609) happens at the same depth (-2 inches) and lag 

period (16 days). Site #2020 is planted with soybeans during the selected years, and from 

Chapter 5, soybeans-specific VIs have higher correlation to root zone soil moisture levels 

at shallower earth (<=2 inches) and with shorter lag period (<=16 days), which 

corresponds to the result as shown in Tables 21 and 22. As a result of the comparison, 

CCI is correlated to RZSM at higher degrees than VCI is for site #2020 as well. 

 

Table 21 Pearson Correlation Coefficient between CCI and precipitation or soil moisture at various depths. 

SCAN Site Lag Period Precip SM-2 SM-4 SM-8 SM-20 SM-40 

#2020 

(ND) 

Concurrent 0.426 -0.224 -0.204 -0.292 -0.359 -0.297 

16days -0.131 -0.644 -0.604 -0.595 -0.343 -0.406 

32days 0.416 -0.424 -0.189 -0.242 -0.222 -0.386 

48days 0.235 -0.369 0.303 -0.262 -0.276 -0.438 

#2120 

(MT) 

Concurrent 0.179 0.360 0.376 -0.339 -0.153 -0.147 

16days 0.330 -0.538 -0.568 -0.636 0.356 0.595 

32days -0.746 -0.714 -0.720 -0.153 0.438 -0.222 

48days 0.724 -0.086 0.025 0.013 0.274 -0.111 

#2072 

(SD) 

Concurrent -0.703 0.366 0.010 -0.079 NaN 0.447 

16days 0.094 0.386 0.232 -0.300 NaN 0.737 

32days 0.185 0.371 0.179 -0.197 NaN 0.219 

48days 0.156 0.026 -0.120 0.174 NaN 0.710 

#2031  

(IA) 

Concurrent -0.552 -0.662 0.513 0.323 -0.450 -0.535 

16days 0.095 -0.492 -0.480 -0.741 -0.468 -0.530 

32days -0.744 -0.389 -0.901 -0.807 -0.352 -0.488 

48days 0.096 0.249 -0.236 -0.346 0.457 -0.175 

#2002 

(MN) 

Concurrent -0.182 -0.236 0.092 -0.020 0.419 0.692 

16days 0.170 0.139 0.093 0.164 0.185 0.060 

32days 0.371 -0.235 0.256 0.063 0.296 0.581 

48days 0.088 0.789 0.989 0.776 0.888 -0.697 
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Table 22 Pearson Correlation Coefficient between VCI and precipitation or soil moisture at various depths. 

SCAN Site Lag Period Precip SM-2 SM-4 SM-8 SM-20 SM-40 

#2020 

(ND) 

Concurrent -0.452 -0.557 -0.555 -0.498 -0.482 -0.428 

16days -0.031 -0.609 -0.602 -0.550 -0.544 -0.502 

32days 0.236 -0.537 -0.586 -0.554 -0.529 -0.483 

48days 0.548 -0.498 -0.072 -0.262 -0.166 0.093 

#2120 

(MT) 

Concurrent -0.245 -0.127 -0.086 -0.306 -0.120 -0.396 

16days 0.439 -0.369 -0.374 -0.671 0.014 0.158 

32days -0.387 -0.665 -0.680 -0.602 0.283 -0.280 

48days 0.428 -0.721 -0.650 -0.446 0.502 0.278 

#2072 

(SD) 

Concurrent 0.164 0.590 0.606 0.135 NaN 0.173 

16days 0.284 0.304 0.167 0.104 NaN 0.511 

32days 0.463 0.056 -0.285 -0.103 NaN 0.170 

48days 0.045 -0.671 -0.783 -0.612 NaN -0.080 

#2031 

 (IA) 

Concurrent -0.182 -0.236 0.092 -0.020 0.419 0.692 

16days 0.170 0.139 0.093 0.164 0.185 0.060 

32days 0.371 -0.235 0.456 0.063 0.296 0.381 

48days 0.088 0.189 0.189 0.176 0.188 -0.197 

#2002 

(MN) 

Concurrent -0.032 0.066 0.480 0.465 0.716 0.852 

16days 0.867 0.620 0.780 0.624 0.609 0.467 

32days 0.353 -0.925 -0.696 -0.833 -0.647 -0.426 

48days -0.905 0.132 -0.368 0.154 -0.845 -0.268 

 

 The “residuals versus fitted” plots for both sites are shown in Figures 62, and 63 

respectively. The y-axis of Figure 62 is displaying the RZSM values observed at sites 

#2031 (at the depth of 4 inches, and with a lag period of 32 days) and that of Figure 63 is 

showing the RZSM values collected at #2020 (at the depth of 2 inches, and with a lag 

period of 16 days). Fitted values, drawn as x-axis on both figures, are the differences 

between observed and estimated RZSM levels at the sites. The estimated RZSM is either 

derived from the linear regression model using CCI as an independent variable as in Y = 

a*CCI + b (e.g. the first plot in Figure 62), or from that using VCI as an independent 
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variable as in Y’ = a’*VCI + b’ (e.g. the second plot in Figure 62). The residuals bounce 

randomly around the 0 line, suggesting that the assumption that the relationship between 

vegetation index and root zone soil moisture is linear is reasonable. 
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Figure 62 The residuals vs fits plots for site #2031; estimated RZSM is displayed on the x-axis, while the residual 

of subtracting estimated from observed RZSM is shown on y-axis. (Top) Estimation of RZSM is made with 

linear regression model of CCI; (Bottom) Estimation of RZSM is made with linear regression model of VCI. 
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Figure 63 The residuals vs fits plots for site #2020; estimated RZSM is displayed on the x-axis, while the residual 

of subtracting estimated from observed RZSM is shown on y-axis. (Top) Estimation of RZSM is made with 

linear regression model of CCI; (Bottom) Estimation of RZSM is made with linear regression model of VCI. 

 

 Other regression models have been applied onto RZSM vs. CCI and RZSM vs. 

VCI as well. For instance, cubic regression models have yielded good correlation results 

as well. For corn-vegetated site (#2031), the best correlation result for cubic regression 

between CCI and root zone soil moisture takes place at depth of 4 inches and when lag 

period is 32 days (r = 0.912), and the best result for that between VCI and root zone soil 
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results shown above, CCI has higher correlation to RZSM than VCI for soybeans fields 

under the assumption that cubic regression model is valid for RZSM and VI as in RZSM 

= a*VI3 + b*VI2 + c*VI + d. 

Section 6.5 Results and Conclusions 
Results of the experiments have shown that, fitting CCI or VCI as independent 

variable, and RZSM as dependent variable into a linear or cubic regression model, 

correlation coefficient between CCI and RZSM is higher than that between VCI and 

RZSM. Soil moisture observations at various depths and with different lag periods have 

been investigated in this experiment and results indicate that for corn field of #2031, 

RZSM at depth of 4 inches and 32 days lagging behind is more sensitive than others as an 

indicator for drought or non-drought, while for soybeans field of #2020, RZSM at depth 

of 2 inches and 16 days of lag period performs better as in indicating drought or non 

drought for vegetation. 

CCI, as a drought indicator, will provide a new foundation of physics based 

indices for monitoring vegetation health, moisture and thermal conditions from space. 

Combining information from multiple channels makes CCI response to vegetation 

drought conditions in opposite directions and therefore, a promising indicator for 

vegetation drought monitoring. Its highest overall performance and discrimination power 

compared to other vegetation indices (either single VI, or indices that have not considered 

moisture, thermal and vegetation health all at a time) demonstrated its ability for active 

drought detection. This index can be applied to the next generation of satellite 

instruments to extract information about vegetation drought condition. 
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Section 6.6 Future Directions 
Though CCI has been shown to be an exact indicator for vegetation drought 

condition, it is limited in these aspects: (i) it ignores the errors in NDWI and NDVI 

values when being collected from different soil wetness conditions; (ii) experiments have 

been performed under the assumption that users have a clear idea of which RZSM source 

should be used for regression models, and this knowledge is hard to obtain in the sense 

that users may need to study root depth, water intake habit, and growing patterns of each 

crop; (iii) the research has focused onto corn and soybeans fields within the Corn Belt 

area; more studies need to be done for multiple crop types over various climate regions in 

order to achieve a general knowledge of whether CCI can be applied as a global drought 

indicator. 

 Recommendations for future research fall into three categories, namely: (i) 

develop a general CCI approach that would consider group behaviors of crops having the 

similar rooting depths; (ii) extensive applications of CCI for drought monitoring and 

vegetation drought stress detecting for various crop types across the globe; (iii) apply 

different regression models to make sure if there will be any other fitting models between 

VI and RZSM, e.g. Taylor series approximation, and Natural Spline Smoothing; (iv) 

improvements of drought information web service; and (v) development of an operational 

system for global drought monitoring. 
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CHAPTER 7 AGRICULTURAL DROUGHT INFORMATION WEB SERVICES 

Section 7.1 Background  
The unprecedented data-collecting capability of earth observing satellites has 

brought considerable challenges to geospatial research and applications, one of which is 

the difficulties in deriving high-level information and knowledge from the massive 

amount of data in an effective and timely manner. This is an era of data richness and 

analysis poverty, and thus the world is calling for semi- or fully-automated geospatial 

knowledge discovery and dissemination to take care of geospatial data and applications. 

Service-Oriented Architecture (SOA) has shown prospects for providing valuable 

geospatial data and processing functions for worldwide open use. With SOA, previously 

used software applications and supporting infrastructure are re-organized into an inter-

connected set of services, and each of these services are accessible through standard 

interfaces and messaging protocols (Papazoglo, 2003). In real practices, the Web Services 

technologies have been explored by multiple agencies or organizations, such as the 

Global Earth Observation System of Systems (GEOSS) (GEOSS, 2012) and the U. S. 

NASA GES-DISC (Goddard Earth Sciences Data and Information Services Center) 

Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) (Berrick et al., 

2009).  

Web Service technologies, aiming to implement SOA, allow such an 

infrastructure to be set up for collaborative sharing of distributed resources as geospatial 
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data, processing modules, and process models. A Web Service is designed to support 

interoperable machine-to-machine interaction over a network, via a standard interface 

that enables the interoperation between various software systems or web portals, so a set 

of Web Services developed by various organizations can be connected and applied in a 

chain to fulfill users' requests (Booth et al., 2004; Yue). Open Geospatial Consortium 

(OGC) standard-compliant services, including Web Feature Service (WFS), Web Map 

Service, Web Coverage Service (WCS), Catalogue Services for the Web (CSW) and Web 

Processing Services (WPS), are the most notable services being interoperable in 

publishing, discovery, chaining, and execution through the Web (Vretanos, 2010; de la 

Beaujardière, 2006; Baumann, 2010; Bröring et al., 2012; Nebert et al., 2007; Schut, 

2007). 

However, in order to support problem-solving and scientific discovery in the 

geospatial Cyberinfrastructure, development of high-level intelligent services (acting as 

middleware) and domain-specific services is in urgent need. The heavy analysis and 

synthesis demands of such services have been challenging to researchers (Hey & 

Trefethen, 2005; Brodaric et al., 2009). As addressed by Di (2004), the upcoming task is 

to extend capabilities on dynamically and collaboratively developing interoperable, Web-

executable geospatial service modules and models, which can be applied online to any 

part of the peta-byte archives to obtain customized information products rather than only 

raw data. 
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Section 7.2 Web Services for Aggregational Agricultural Drought 
Information 

Subsection 7.2.1 Introduction 
This section explores the advantages of providing on-demand web-based 

agricultural drought analysis on top of an existing platform that is ready for data 

downloading and visualization. With the widespread adoption of GIS technologies and 

the availability of continuous or fine-scale meteorological and hydrological information 

in recent years, drought information can be collected and processed as a continuous geo-

referenced data set with as fine a spatial resolution as observing technologies allow. The 

information can be aggregated to appropriate physical and jurisdictional domains as the 

user group desires. On a statewide basis, standard aggregational units should include 

counties as well as river drainages relevant to surface water storage.  In addition, the geo-

referenced information should be available for individual planners and users for user-

specific extraction and aggregation.  

Russell Ackoff (1989) pointed out that the human perception and recognition 

process includes four steps – data, information, knowledge and wisdom. In this sense the 

process for researchers to understand agricultural drought can also be divided into four 

phases: (1) access/download remotely sensed images or meteorological ground 

measurements from various data providers, (2) process and calculate the agricultural 

drought indicators representing several perspectives: vegetation conditions, crop 

phenology, soil moisture levels, climate types, etc., (3) integrate major indicators 

according to user-customized analysis model to generate drought severity maps for the 

chosen area and create drought reports based on statistical results, and (4) form an 
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applied knowledge of the geospatial patterns and temporal frequencies of agricultural 

drought, and what are the environmental factors that exert the most important influences 

to drought severities of an area. In this article, the transition from data to information and 

knowledge is accomplished using web-based GIS services. 

In addition to (i) aggregation of vegetation indices (VI) based on different spatial 

units, (ii) classification of aggregated VI into according drought severity groups, (iii) 

providing percentage analysis of each drought severity group, and (iv) generating time-

series VI and drought severity information for selected area, the Web Services covered in 

this article also take care of presentation of (a) attribute information, and (b) display 

information (Nagarajan, 2009).  

In this chapter, the transition from data to information and knowledge is 

accomplished by automated delivery of agricultural drought information and knowledge 

using web-based GIS services (Bonham-Carter, 1994; Huang et al., 2001; Satti & Jacobs 

2004). In specifics, four Web services will be presented in details for illustration 

purposes: GetROI to visualize the drought patterns of a selected area and time, 

GetVCIStats to capture the mean VCI value for the chosen region of interest, 

GetDroughtPercentageByStates to depict the distribution of various drought severity 

groups for multiple chosen states, and GetDroughtTimeSeries to describe the time-series 

drought information of the county, Agricultural Sciences Division (ASD) or state 

specified in a request.  

This research work aims to fill a major gap of existing studies in sharing and 

disseminating agricultural drought information. With the availability of continuous and 
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finer-scale remote sensing data (Kumar & Panu, 1997; McKee et al., 1993; Shiau & 

Shen, 2001; Steinemann et al., 2005; Peng et al., 2012; Yagci et al., 2013) in recent years, 

drought information have been collected and processed as a continuous geo-referenced 

data set with finer spatial resolution. The information can be and should be aggregated 

into as appropriate physical or jurisdictional domains as a user group desires (Issaks & 

Srivastava, 1990; Raper, 2000; Tucker & Sellers, 1986). For example, standard 

aggregation units on a statewide basis should include counties as well as river drainages 

relevant to surface water storage.  In addition, the geo-referenced information should be 

online available for individual users to extract and aggregate user-specific knowledge. 

USDM labels droughts by intensity, with D1 being the least intense and D4 being the 

most intense (and D0 is either drying out, or recovering from drought). Besides the 

weekly maps displaying broad-scale drought conditions, USDM also supports a tabular 

data archive that shows percent area in the array of drought categories for each state, 

region (High Plains, Midwest, Northeast, South, Southeast, and West), Contiguous U. S., 

or the entire U. S. (USDM Website, 2014). However, users will find this information 

insufficient and hard to manipulate. First, a randomly selected area cannot be used as the 

geospatial unit for drought analysis. Second, historic drought information (esp. through 

years) will be hard to gather since USDM returns weekly result per single request. Last, 

comparison across different areas and visualization to facilitate comparing are difficult 

using USDM because users may need to collect values for different areas into 

spreadsheet, and create bar charts or other illustrative graphs using software (e. g. Excel). 

Due to the fact that existing research cannot fully explore the potentials of Web Service 
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technologies or realize the desired capabilities by users, there is an urgent need to extend 

the capabilities of drought portals in an online and on-demand manner, namely, providing 

Web Services which can efficiently support the agricultural drought management and 

decision-making. 

Subsection 7.2.2 Presentation of Agricultural Drought Information 
There are two major parts in presenting agricultural drought information – 

attribute and display information. Attribute information used to characterize a drought 

event includes where (location and spatial extent of drought), when (start time and 

duration of drought), and how (severity or intensity of drought, and the distribution of 

drought severity groups). On the other hand, display information shall contain how the 

information is to be shown – either by scatter plots, bar charts, pie charts, lines or by 

maps – and the thresholds and color representation of each drought group if shown in 

maps. Without dual consideration into presenting attribute and display information 

simultaneously, the delivery of drought data, information, and knowledge will not 

succeed.  

7.2.2.1 Choose the optimized thresholds to classify drought severities 
 In purpose to map the value of VI to a drought severity ranking, and hence give 

users a straight view of the spatial distribution patterns of various degrees of agricultural 

drought, the classification scheme need to be selected with care. 

USDM has become one of the most respected tools for characterizing drought in 

the United States. One of the keys to its success is the establishment of drought intensity 

scale, which is likened to the Enhanced Fujita scale for tornadoes and Saffir-Simpson 
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scale for hurricanes. USDM uses a percentile ranking approach allowing authors to 

compare different parameters which have different units and lengths of record regardless 

of location. The USDM approach also adds duration and both regional and seasonal 

influences into consideration, as well as whether a given location is improving or 

worsening in terms of drought conditions. 

 

Table 23 Drought Intensity Scale used by USDM (source: 

http://www.drought.gov/drought/content/understanding-drought-printable-version#p2_4) 

Drought Level and description 

D0: At this level, an area experiences short-term dryness that is typical with onset of 

drought. This kind of dryness can slow crop growth and elevate fire risk to above average. Also, 

this level can refer to an area coming out of drought, with lingering water deficits and pastures or 

crops not fully recovered. Drought level 0 is noted when a convergence of indicators fall into the 

30th percentile, which is to say, roughly a 1-in-3-year dryness. 

D1: "Moderate Drought”, the first drought class and falls into the 20th percentile, or a 1-

in-5-year type event. 

D2: "Severe Drought", within the 10th percentile, which roughly equates to a 1-in-10-

year drought. 

D3: "Extreme Drought" that falls into the 5th percentile, or a 1-in-20-year type of 

drought. 

D4: "Exceptional Drought". Worst on the scale, D4 can be loosely defined as a "once-in-

a-generation" type of drought noted by the 2nd percentile, or a 1-in-50-year drought. 

 

http://www.drought.gov/drought/content/understanding-drought-printable-version#p2_4
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As shown in Tables 23 and 24, D0 conditions have a 21-30% chance of occurring 

in any given year at a given location, while D1 events occur 11-20% of the time. A D2 

drought would be expected 6-10% of the time, and the chances of D3 or D4 droughts 

happening are at 3-5% and 2% or less, respectively. Kogan (1995) has linked the value of 

Vegetation Health Index (VHI) to these five categories of drought severities, with a VHI 

ranging from 0 to 1, a VHI value equal to or lower than 0.05 represents a D4 drought, 

while that equal to or larger than 0.45 means the area is not suffering from drought at all. 

 

Table 24 Alternate representation of the Drought severity classification used by USDM. 

Category Description Drought Indicator (Percentiles) Satellite Vegetation 

D0 Abnormally dry 21-30 0.36-0.45 

D1 Moderate drought 11-20 0.26-0.35 

D2 Severe drought 6-10 0.16-0.25 

D3 Extreme drought 3-5 0.06-0.15 

D4 Exceptional drought 0-2 0.01-0.05 

 

7.2.2.2 Choose the optimized spatial unit for drought assessment 
In order to effectively determine the spatial areal extent of drought impact area, 

the first thing is to decide at which spatial level the drought assessment takes place.  

Aside from the pixel-by-pixel drought assessment provided by current coarse or 

fine resolution drought monitoring information systems, it is also important to consider 

the drought situations from the point of view of potential or likely users of the drought 

information, in the sense that users might have a preference towards a certain level of 

administrative units, or hydrant basin, etc. Many applications use the county as a logical 
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unit for drought assessment. The size of counties is more or less similar to each other, 

compared to that of states, and the county is a standard unit of local government, of 

which most disaster declarations are made on the basis. Meteorological information is 

generally available on a county scale, but no smaller, except for radar-estimated 

precipitation. The county is probably the most appropriate scale on which to make 

subjective assessments of drought severity. 

However, there are other jurisdictional units for which moisture and drought 

information would be critical.  For example, all individual water suppliers require 

information over the geographical area for which they supply water, to understand past, 

current, and future water demand.  In addition, for surface water supplies and aquifer 

recharge, the water suppliers require information over the drainage that supplies their 

reservoir or the recharge area for their aquifer, to understand past, current, and future 

water supply. Finally, if other water suppliers make use of the same water supply and 

possess priority of water rights, the water supplier will require information about drought 

conditions in all other locations for which water from their source is used.  For such users 

of drought information, any single geographical unit for drought information reporting 

will provide suboptimal or possibly useless information. 

Calculation of drought indices from raw data and aggregation of pixel-level 

information to county-level or higher levels will require considerable care with the 

geospatial units. First, raw data or drought indices are not always based on the same 

spatial unit – for example some are designed for climate divisions while others made for 

counties – and adjustment (or say, re-sampling) is required before being applied to a finer 
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scale. Second, a few common drought indices assess drought severity using historical 

records as reference, and challenge is raised when the drought indices are to be computed 

at a finer scale – there can be no historical record existing at such fine resolution. Third, 

aggregated information cannot be used for further aggregation, and drought indices must 

be recomputed separately for each aggregation level. For instance, if there are two 

counties of a studied area– one is characterized as a D1 drought (i.e. 11-20% of chances 

for drought to happen in 100 years) and the other as a D3 drought (i.e. 3-5% of chances 

for drought to happen in 100 years) – simply adding these two ranks together and making 

the conclusion that the studied area is experiencing a D2 drought (i.e. 6-10% of chances 

for drought to happen in 100 years) is not reasonable. Instead, the preferred approach is 

to compute the vegetation index for the area and map the value to a corresponding 

drought severity level whenever to up- or down- scale the aggregational unit.  

7.2.2.3 Quantify the confidence of agricultural drought 
Data quality issue is very important to the information coming out of aggregation 

of spatial units. With the pixel-level drought information being aggregated into county-, 

ASD-, state-, or even country-level, the data quality of this piece of drought information 

becomes a big concern. 

The measures proposed to quantify drought are the percentage of different levels 

of drought severities, the median of drought severities within the area, and the degree of 

uncertainty of agricultural drought. 

For example, if for a county, the percentage of pixels residing on six drought 

severity levels is distributed as: D4 (0.112916), D3 (0.021477), D2 (0.027017), D1 
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(0.762346), D0 (0.042318) and No-Drought (0.033926). Since the majority of pixels are 

ranked as D1, and for all the pixels, median of their drought severities reside on D1, the 

entire county can be categorized as D1. 

To describe the effect of transition range, or say, to describe how uncertain 

drought characterization is, the dissertation proposes another measure called vagueness 

(defined in Equation 14). This measure takes values in the unit interval [0, 1], with values 

close to 1 showing high uncertainties, and values close to 0 showing low uncertainties. 

Hence in this example, vagueness of the county residing in D1 is 1 – 0.762346 = 

0.237654. 

 

Equation 14 Drought Vagueness of any area residing in drought severity of median. 

𝐷𝑉 = 1 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑚𝑒𝑑𝑖𝑎𝑛) 
 

Here, median is the drought severity ranking which has the highest percentage 

among D4, D3, D2, D1, D0 and non-drought. In the example mentioned above, the 

median value will be 1, and DV represents the percentage of pixels within the selected 

area that are not residing on drought severity of median, and thus is a reflection of how 

uncertain the statement (of the area is experiencing degree median drought) is compared 

to the real situations. 

Subsection 7.2.3 The foundations of Web Service 
Web Services are defined as self-contained and self-describing application 

components communicating on the Web using open protocols; they can be discovered 
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using UDDI (short for “Universal Description, Discovery and Integration”), usable by 

other applications, and based on HTTP and XML (W3Schools Website). Web services 

have been around since 2000, and they were originally developed by IBM, Microsoft, 

Ariba, and many others, and then submitted to the World Wide Web Consortium (W3C) 

(IBM Website).   

In order to make services discoverable over the web, an XML document which 

specifies the location of the service and the operations (or methods) the service exposes is 

necessary, and it is called Web Services Description Language (WSDL). Speaking of 

where to search for and publish a WSDL file, UDDI comes into the picture. A UDDI is a 

directory service where businesses can register and search for Web services. This 

platform-independent framework is in charge of describing services, discovering 

businesses, and integrating business services over the Internet (W3Schools Website). 

The Service-oriented architecture (SOA) is where everything happens. It provides 

the core mechanism for publishing, finding, and binding Web services with three key 

elements: Web service provider, Web service directory, and Web service client (service 

requester). For example, the service provider firstly publishes a WSDL to the UDDI 

(which is a web service directory). Then the Web service requestor discovers services 

that are published in the UDDI, and uses the WSDL to generate a Web service client. The 

latter can interact in an interoperable way by sending and receiving XML-based Simple 

Object Access Protocol (SOAP) messages, which is a protocol based on XML for 

accessing web services. Hence the communication between service provider and service 
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requestor has been established (Figure 64). The Web Services mentioned in the research 

have been developed in such a manner. 

 

 
Figure 64 An SOA model (source: IBM website)  

 

Subsection 7.2.4 Implementation of Drought Information Web Service 
The Web Services developed for drought analysis and information management 

have four major characteristics (1) Service Oriented Architecture (SOA) and AJAX 

enabled web applications, (2) interoperable and ready to be incorporated into other web 

processing workflows, (3) providing powerful time series drought data analysis, and (4) 

compliant to Open Geospatial Consortium (OGC) standard-compliant services, including 

Web Feature Service (WFS), Web Map Service, Web Coverage Service (WCS), 

Catalogue Services for the Web (CSW) and Web Processing Services (WPS), and the 

functionalities to be implemented via these services include (i) aggregation of vegetation 

indices (VI) based on different spatial units, (ii) classification of aggregated VI into 

according drought severity groups, (iii) providing percentage analysis of each drought 
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severity group, (iv) generating time-series VI and drought severity information for 

selected area, and (v) presentation of attribute information and display information. 

The developed Web services are integrated in the Global Agricultural Drought 

Monitoring and Forecasting System (GADMFS) (Deng et al., 2012, 2013), which 

provides access, downloading, and visualization of daily, weekly, and per-16-day 

Normalized Difference Vegetation Index (NDVI) and Vegetation Condition Index (VCI) 

at global scales. With the deployment, the information output from the agricultural 

drought information system is in an organized manner to yield useful knowledge, often as 

maps and images, but also as statistical graphics, tables, and in-browser responses in 

various forms to interactive requests. Figure 65 depicts the required input to invoke 

drought analysis including data of remotely sensed and meteorological sources, vector 

data of administrative units, and socio-economic reports, and the expected output of 

drought analysis Web Services, such as drought maps, and drought statistics reports. A 

detailed picture of the transition steps from data to information can be seen in Figure 66. 

The functional capabilities for data capture, input, manipulation, transformation, 

visualization, combination, analysis, query, and output are all considered as 

manipulative/analytic operations. 
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Figure 65 Schematic diagram showing generalized input and output of an agricultural drought information 

system. 
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Figure 66 Functional modules of agricultural drought information system. 
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 The business objects are modeled using XML schema and the client side will talk 

to the server side over Web Service using AXIS2. Also, the business logic of drought 

analysis has been packaged and deployed with AXIS2. Figure 67 shows the data 

exchange path between the business logic, AXIS2 server, AXIS2 Client, and the client 

side. The data exchanged between the client and server side will be drought analysis 

request containing location, and time, and function name, and the drought analysis 

response pointing to the URL address where users can view or download their requested 

resources/answers. 

 

AXIS2 
Client

AXIS2 
Server Drought Analysis 

Service
Client consuming 
Drought Service

SOAP/HTTP

 
Figure 67 The data exchanged between the client requesting drought information and server side that is 

performing drought analysis. 

 

Syntactical interoperability of Web services is archived mainly using two 

common standards: Web Services Description Language (WSDL) (Christensen et al., 

2001) and Simple Object Access Protocol (SOAP) (W3C, 2007). The WSDL snippet as 

shown in Figure 68 lists the required key-value pairs needed to trigger the drawROI 

service. A valid HTTP request for this Web Service will need to include all required key-
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value pairs, including in_year, in_day, and four parameters of the bounding box (as 

shown in Box 6). WSDL not only describes the HTTP GET/POST bindings, but also the 

SOAP binding. Sample SOAP request and response can be found in Figures 69 and 70 

respectively. 

 

Box 6. 
http://gis.csiss.gmu.edu:8080/axis2/services/DroughtPercentBBoxWorkflow/drawROI?in_year=2

003&in_day=129&left=-95.7766&top=43.4373&right=-94.7566&bottom=42.4293 

 

 
Figure 68 Sample WSDL snippet describing drawROI request. 
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Figure 69 Sample SOAP message requesting drawROI service. 

 

 
Figure 70 Sample SOAP response returned by drawROI request. 

 

After the drawROI request is sent in HTTP or SOAP messages, server recognizes 

and handles the request in the following sequence: (1) receives the selected polygon, 

determines whether it is a valid polygon within the contiguous United States, and cut the 

shapefile of the U. S. into the selected shape; (2) receives the selected duration, and picks 

the available dates in the archive, and writes these dates into the execution sequence; (3) 

clip the Vegetation Index (VI) dataset with the new shapefile, and obtains the new VI 

dataset of the selected area; (4) generate drought mapfiles for datasets created in step 3; 
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(5) open access of the new dataset and mapfiles, so users can query drought maps using 

OGC WMS requests; (6) apply Cairo APIs to put map elements (e.g. title, legend) 

together with the map image, and concatenate maps of different dates to output. Figure 71 

shows processes to handle drawROI request at the server side. 
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Figure 71 How server handles drawROI request at the back end. 
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Subsection 7.2.5 A case study of the U. S. Corn Belt 
Droughts are often more costly than other types of natural disasters, and no region 

in North America is immune to periodic drought. According to the National Oceanic and 

Atmospheric Administration (NOAA), the year of 2012 is the hottest year ever recorded 

in the United States since 1895, and this year’s drought had affected 87% of the land 

dedicated to growing corn, 85% of land for soybeans, 63% of land for hay and 72% of 

land used for cattle (statistics by Drought Monitor). The agricultural drought maps of the 

U. S. Corn Belt can be drawn via DrawROI Web Service, and the returned images are 

displayed in Figure 72. 

 

 
Figure 72 Drought maps returned from DrawROI Web Service (requested area: the U. S. Corn Belt, and 

requested day: 20XX/193). 

 

 In year 2012, almost 30% of the Corn Belt area was suffering from exceptional 

drought (D4), and less than 47% of the area was not prone to drought, compared to year 
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2011 when less than 7% of the area was in D4, and more than 80% was not in drought. 

From Figure 73, the mean VCI value of year 2011 is 159 while that of year 2012 is 91, 

which also indicates that latter is experiencing drought of a higher intensity. 

 

Box 7. 
http://gis.csiss.gmu.edu:8080/axis2/services/DroughtPercentBBoxWorkflow/getVCIstats?ROI=/t

mp/subset_20130618155303_333558473.tif 

 

Another Web Service GetDroughtPercentageByStates returns a set of bar charts 

displaying the drought percentage distribution of selected states, helping users to 

understand on a specific day which of the drought severity groups for each state is taking 

the major role. For instance, in Figure 74, the majority of Illinois is of D0, while for 

Idaho, both the D0 and D4 severity groups are of high percentage (respectively 28%, and 

37%). 

 

 
Figure 73 (Left) Percentage of crop area suffering from different degrees of drought (D4 to D0) in the period of 

2001 to 2012. (Right) The mean VCI of the Corn Belt area from 2001 to 2012 
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Figure 74 Response per GetDroughtPercentageByStates request – bar charts of distribution of drought severity 

groups per state for Idaho, Illinois, Indiana, Iowa and Kansas for the day of 2012/05/08. 

 

 In order to view the time-series performance of the vegetation index, users need to 

send a GetDroughtTimeSeries request and will receive in the response (Figure 75) the 

percentage of various drought groups throughout the year. Looking at the yearly time-

series of VCI for the state of Iowa, the percentage of D4 pixels is lower than 20% from 

June to October in 2011, starts to climb up since October 2011, and climbs down from 

January 2012. The percentage of D4 drops under 10% in April 2012 and remains low till 

July, and from August 2012, D4 percentage mounts above 70% and stays high until 

November. These indicate a high possibility of agricultural drought in Iowa from October 

2011 to March 2012, and from July to November 2012.  
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Figure 75 (Top Left) Percentage of crop area suffering from different degrees of drought (D4 to D0) in the 

period of 2011 and 2012 of day 129 in time series returned by GetDroughtTimeSeries request. 

 

Subsection 7.2.6 Summary 
A drought data and information system serving only raw data or drought indices 

can provide researchers or experts with the data needed for creation of drought maps and 

reporting of drought events, yet the general public may find themselves lack of 

experiences and guidance to complete the drought analysis process. With the on-demand 

geospatial Web Services in a system to provide dynamic drought analysis, the drought 

monitoring, forecasting and related applications are much more facilitated and the general 

public does not have to worry about lack of resources or capabilities.  
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The Web Services introduced in this article and deployed in GADMFS provide 

online and on-demand drought analysis and information management, which largely 

facilitate agricultural drought monitoring, forecasting and decision-making.  The Web 

Service drawROI is meant for visualizing the drought patterns of a selected area and 

time. Other services, GetVCIStats is to capture the mean VCI value for the chosen region 

of interest, and GetDroughtPercentageByStates is used to depict the distribution of 

various drought severity groups for multiple chosen states, while GetDroughtTimeSeries 

is designed to describe the time-series drought information of the county, ASD or state 

specified in a request. With these Web Services, users can not only access and manipulate 

drought data, but they can also obtain an improved understanding of drought information, 

and hence form their drought knowledge base. 

Subsection 7.2.7 Future Work 
Although the Web Services in this paper facilitates users to better understand the 

characteristics of drought, the information returned is insufficient for timely decision-

making or quick disaster response. There is an increasing demand to establish an 

Agricultural Drought Knowledge Base (ADKB) that stores the knowledge and expertise 

required for decision-making, including a number of facts and rules for different 

objectives (e.g. the ones for drought severity of D4 to happen), and their corresponding 

actions for different combinations of each objective’s attributes. The ADKB can be 

divided into two systems -- the Rule Based System (RBS) and the Expert System (ES). 

The RBS is a computerized system that uses knowledge about some domain to arrive at a 

solution to a problem from that domain. The various stages of development are: (a) 
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problem definition and expert selection, (b) knowledge engineering (climatological, 

hydrologic, and hydrogeologic attributes, agricultural attributes, and socio-economic 

attributes), (c) inference engine, and (d) verification and validation. Some researchers 

have used fuzzy rule-based modeling to assess and predict regional droughts by applying 

two forcing inputs, El Nino/South Oscillation (ENSO) and large scale atmospheric 

circulation patterns (CPs) in a typical Great Plains state, Nebraska (Pongracz et al., 1999; 

Pesti et al., 2010). 

On the other hand, an ES reproduces the performance of one or more human 

experts, most commonly in a specific problem domain, and is a traditional application 

and/or subfield of artificial intelligence. The most common form of an ES is a computer 

program that analyzes information with a set of rules about a specific class of problems, 

and recommends one or more courses of user actions. The ES may also provide 

mathematical analysis of the problems, and utilizes what appears t be reasoning 

capabilities to reach conclusions (Nagarajan, 2009). The ES proposed by Palmer & 

Holmes (1988) incorporates operator experience and intuition using a rule base 

developed through interviews with management personnel from the Seattle Water 

Department, and also integrates the other programming techniques in a single system, 

thus being a great aid in drought decisions.  

In the future research, our goal will be to establish such an ADKB, which is a 

rule-based expert system that helps users to detect, analyze, and handle agricultural 

drought events, monitor and predict agricultural impact (delay in sowing, sown area, crop 
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vigor, change in cropping pattern, supply and demand of agriculture input), and react to 

the disaster. 

 

Section 7.3 Agricultural Drought Information Cluster 
Agricultural droughts, usually due to abnormally high temperature, low 

precipitation, and insufficient soil moisture, can cause devastating impact to a region’s 

agriculture. Lack of proper drought warning and assessment systems may lead to 

enormous decrease in crop production and also in the amount of poultry and livestock, 

and thus endangering food security and economics. Thus an increasing number of 

scientists and researchers have their attention focused onto the causes and outcomes of 

agricultural drought, and are yearning for a clustering tool that would enable easy data 

accessing/downloading, calculation, analysis, visualization and decision-making, not just 

for experts with deep domain knowledge of drought and agriculture, but also for the 

general public who needs step-by-step guidance through the entire working process. 

The DIKW (data, information, knowledge, and wisdom) processes (Ackoff, 1989) 

being interpreted in the sense of understanding agricultural drought can be as follows: (1) 

access/download remotely sensed images or meteorological ground measurements from 

various data providers, (2) process and calculate the agricultural drought indicators 

representing several perspectives: vegetation conditions, crop phenology, soil moisture 

levels, climate types, etc., (3) integrate major indicators according to user-customized 

analysis model to generate drought severity maps for the chosen area and create drought 

reports based on statistical results, and (4) form an applied knowledge of the geospatial 

patterns and temporal frequencies of agricultural drought, and what are the environmental 
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factors that exert the most important influences to drought severities of an area. But 

several problems still exist in efficiently accessing, analyzing, visualizing, interpreting 

and understanding the agricultural drought information. The most critical of them all is 

the difficulty in sharing the raw data (collected), agricultural drought indicators 

(calculated), drought information (assembled) and drought theory (abstracted).  

The reusability of data and technologies is the most difficult part of this challenge. 

First, huge amount of satellite data, station-based observations, and drought related 

statistical information are stored separately in different servers (ftp, http or others) by the 

data providing agencies or groups. Two researchers performing analysis on the same 

drought prone area are making duplicated efforts in downloading and storing data which 

are often isolated from each other, and not always reusable (usually being abandoned 

after being used for indicator calculation). Besides the big data challenge brought to 

drought researchers, the second challenge is the reusability of technologies or methods. 

Algorithms or methods that each individual or organization used for calculating drought 

indices and analyzing drought are unique in some parts and similar in others, and most of 

these have not been made completely understandable by the general public. There are 

hundreds of drought indicators in the field, yet not a platform exists for users to view how 

each of the existing indicators is being formed and should be used – a non-expert user has 

to look into publications or user manuals for the detailed information of the data source, 

processing methods, calculation formula, reliability and other meta-data. Such a platform 

that displays how each index is being made at each processing stage (from data collection 
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to result analysis) needs to be urgently sought (Deng et al., 2012, 2013; Peng et al., 

2012). 

Subsection 7.3.1 Background 
Not a single definition of drought can be used under all circumstances (Whilhite, 

2000; Svoboda, 2002), and experts/users in various domains (e.g. hydrology, or 

agriculture) might adopt completely different sets of indicators to measure drought 

conditions. Take the short-term drought indicator as an example, the percentiles of the 

five input indicators are 35% of Palmer Z-index, 25% of 3-month precipitation, 20% of 

1-month precipitation, 13% of CPC Soil Moisture Model, and 7% of Palmer Drought 

Index. On the other hand, six indicators are needed to blend into a long-term drought 

indicator, and the composition of each indicator is different from that of the short-term 

drought indicator. For the western states, the percentiles are 30% (PHDI), 30% (60-

month Average Z-index), 10% (60-month precipitation), 10% (24-month precipitation), 

10% (12-month precipitation) and 10% (CPC Soil Moisture Model). Yet for the rest of 

the states, the input indicators and percentiles are Palmer Hydrologic Index (25%), 12-

month precipitation (20%), 24-month precipitation (20%), 6-month precipitation (15%), 

60-month precipitation (10%), and CPC Soil Moisture Model (10%) (USDM Predictions 

Webpage, 2014). 

Subsection 7.3.2 Methodology 
The two regression models provided by Agricultural Drought Information Cluster 

are Least Squares and Multi-Variate Linear Regression models. 

7.3.2.1 Multivariate Linear Regression Model 
The multivariate linear regression model has the form 
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Equation 15 multivariate linear regression model for simulation. 

𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ +  𝛽𝑟𝑋𝑟 +  ԑ, 

 

where ԑ is a random error, and the 𝛽𝑖, 𝑖 = 0, 1,  …, 𝑟 are unknown and fixed regression 

coefficients, and 𝛽0 is the intercept under the assumption that 𝑋𝑖, 𝑖 = 0, 1,  …, 𝑟 are a set 

of independent variables believed to be related to the response variable 𝑌. 

The following preconditions must be met for a linear regression model to be put 

in use. (a) For each value of the independent variable, the distribution of the dependent 

variable must be normal. (b) The variance of the distribution of the dependent variable 

should be constant for all values of the independent variable. (c) The relationship 

between the dependent variable and the independent variables should be linear, and all 

observations should be independent. To summarize these preconditions in simple words: 

independence; linearity; normality; homoscedasticity. In other words the residuals of a 

good model should be normally and randomly distributed, which is to say, the unknown 

does not depend on X ("homoscedasticity"). In order to check model assumptions, 

residual analysis can be applied. There are several kinds of residuals, most commonly 

used of which are the standardized residuals (ZRESID) and the studentized residuals 

(SRESID) (SPSS, 2010). If the model is correct, the residuals should have a normal 

distribution with mean zero and constant standard deviation. Here, we can plot residuals 

against X. If the variation alters with increasing X, then there is violation of 

homoscedasticity (Alexopoulos, 2010). 
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7.3.2.2 Least Squares Model (Polynomial Fit) 
This model has its form as in Equation 16: 

 

Equation 16 The least squares model (polynomial fit) for simulation. 

𝑌 =  𝛼0 +  𝛼1𝑋 +  𝛼2𝑋2 + ⋯ +  𝛼𝛾𝑋𝛾,  

 

and in order to estimate the vector 𝛼 = {𝛼0, 𝛼1, 𝛼2, … , 𝛼𝛾}, we need to choose the value 

of 𝛼 that minimizes the sum of squared residuals (𝑌 − 𝑋𝛼)′(𝑌 − 𝑋𝛼). Here, the 𝛼𝑖, 𝑖 = 0, 

1,  …, 𝛾 are unknown coefficients, and 𝛼0 is the intercept under the assumption that 

𝑋𝑖, 𝑖 = 0, 1,  …, 𝛾 are a set of independent variables believed to be related to the response 

variable 𝑌. When 𝛾 = 1, Equation 16 represents a straight line; when 𝛾 = 2, it becomes a 

quadratic equation and produces a parabola; when 𝛾 = 3, it is a cubic equation and 

produces an s-shaped curve. 

Subsection 7.3.3 Implementation 
The goal of this study is to provide a platform that can walk the general public 

from farmers to decision makers step-by-step through the process of collecting data, 

generating drought indices, analyzing time-series behaviors, compositing user-desired 

agricultural drought indicator, and creating easy-to-understand drought maps and reports.  

A one-stop self-service drought information cluster will serve as the solution, which 

allows users to view common templates used by agencies, and simulate selected remotely 

sensed indices to the in-situ data, and proceed to build up their own drought indicator by 

adjusting the weighting factors of each principal component. With its capability of 
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sharing data, algorithms, and results, such a cluster will become an excellent model that 

carries out partnership and interoperability.  
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Figure 76 Scheme of the Agricultural Drought Information Cluster. 

 

Such a system is to facilitate users to build up their own drought indicators in five 

steps (Figure 76):  

(1) Choose dimension and indicators. Users get to choose one or more dimensions 

from Vegetation and Soil Moisture Conditions, Surface Temperature, and Crop 

Phenology, etc. If users would like to upload any data not present in the catalog, they can 

choose to import their own dimension. Also, users can decide the relationships of each 

dimension – e.g. D1+D2+D3+ … + Dn, or, (D1+D2) / (D3+ … + Dn). Next, choose 

indicators. Users need to specify one or more indicators for each selected dimension. For 

example, you can choose VCI and VHI for the first dimension. The user interface for step 

1 is shown in Figure 77.  
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(2) Choose source of validation and regression model. There are four study sites 

(e.g. Ames station at Iowa) with their in-situ observing data such as soil moisture and 

precipitation to be validated against the remotely sensed indicators. Users need to choose 

one study site and a corresponding meteorological dataset.  Also, it is user’s right to 

choose one of the models – Least Squares and Multi-Variate Linear Regression for the 

validation, to which the time-series data for the set of independent variables and the 

unique dependent variable are fed.  

(3) Obtain the simulation result and the correlation coefficient. As shown in the 

left of Figure 78, the example simulation web service returns Y= -0.0918706 + 

0.760957*NDVI - 1.00754*NDWI + 1.02582*EVI in the case.  

(4) Adjust the weighting factors. Now user is prompted to adjust the percentage 

(or, weight) of the indicator. For the sake of simplicity, user can make minor adjustments 

to the weighting factors of the independent variables. In this case, Y’= -0.1 + 0.76*NDVI 

– NDWI + EVI (shown in Figure 79). 

(5) Generate the new drought map for the selected area, and compare the new 

map for the customized drought indicator against drought maps from official source (e.g. 

USDM). If the two are displaying similar drought/non-drought patterns, then the new 

customized indicator is considered to be an efficient agricultural drought index. With 

different validation source, the combination of drought indicators varies, and hence the 

simulated drought maps display different drought patterns, as shown in Figure 80. 
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Figure 77 Dimensions to be considered include Vegetation Conditions, Soil Moisture, Combined Drought 

Indicators, Crop Phenology, and Meteorology. For each dimension, user can choose none to all indicators for 

analysis. 

 

 
Figure 78 Select from multi-variate linear regression model, or least squares model to fit the chosen independent 

variables (indicators) to the verification source (e.g. soil moisture observations). A web service is to be invoked to 

calculate the correlation coefficient. 

 

 
Figure 79 the slider bar to adjust the weights of each variable to be used to define the new drought indicator. 

User can look at the automatically generated CC to find the most appropriate weights for each variable. 
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Figure 80 (Left) The global drought map based on the new combined drought indicator #1 which simulates the 

AMSR-E Vegetation Water Content. (Right) combined drought indicator #2 simulating the ECV Soil Moisture. 

 

With such an agricultural drought information cluster, users define their own 

drought indicator which tailors their own needs targeted for various applications, and to 

enable data, technology, and drought information to be shared among different groups. 

Subsection 7.3.4 Discussion & Summary 
How to enable discovery across federated systems from multiple domains has 

become a heated topic these days. Yet technologies to share data traceability, reliability 

and extensibility are still limited. Further efforts need to be taken for users to understand 

how each organization makes their drought indicators and maps, and whether their results 

are trustworthy and compatible for extending research and applications. 

Such an Agricultural Drought Information Cluster is to provide a comprehensive 

monitoring and forecasting system that incorporates all principal components necessary 

for the analysis of agricultural drought step-by-step from data, information, and 

knowledge to wisdom. Through the process, users can understand the behaviors of each 

indicator, what influences drought and proceed to create their own drought indicators. 
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CHAPTER 8 CONCLUSIONS AND DISCUSSION 

Within this dissertation, the use of remote sensing technologies towards the 

monitoring of vegetation stresses, soil moisture, and agricultural drought has been 

explored. The study investigates the ability to estimate the spatial and temporal 

distribution of agricultural drought by utilizing remotely sensed and ground-based data 

for vegetation conditions and soil moisture assessment. Here, the root-zone soil moisture 

observations have been combined with remotely sensed VIs for evaluation of agricultural 

drought to achieve higher accuracy and spatial resolution. Remote sensing measurements 

from VIS, NIR, MIR, and TIR channels are used to monitor vegetation stresses and 

agricultural drought based on the spectral reflectance change responding to vegetation 

and climatic variations. The trapezoid model is the base for Combined condition Index 

(CCI), as it interprets the LST-NDVI-NDWI space efficiently and accurately by taking 

into account the distribution and temporal variation of crop conditions from three 

perspectives (water, vegetation growth, and thermal) which gained by MODIS 

reflectance measurements. Having these means integrated, information and knowledge of 

agricultural drought at high resolution can be gained.  

Section 8.1 Conclusions 
There are six categories for the main achievements of this dissertation, and they 

are namely: (i) estimation of vegetation drought stress by combining the strengths of 
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multi-sensor and ground measurements to achieve higher accuracy and spatial resolution; 

(ii) investigation for the potentials of using a combination of multiple VIS-NIR-SWIR-

TIR spectral signatures to estimate vegetation moisture, thermal, and health conditions 

from space and to find the algorithm that would differentiate vegetated pixels with or 

without drought stress; (iii) usage of root-zone soil moisture data for validation of the 

drought indicators being correlated to actual conditions of agricultural drought; (iv) 

investigation of the relationship between soil moisture and vegetation greenness, 

particularly when there is drought, thus ruling out the false VI signals when VI is low but 

soil moisture level is high; (v) development of an integrated drought condition index and 

a flexible drought severity classification standard as to form an accurate and 

comprehensive view for agricultural drought monitoring at the national or even global 

scale; (vi) development of Web Services to facilitate the community with not only 

drought data, but also drought information and knowledge. In the following sections, the 

applications of the research presented in this thesis and their impact on further studies are 

summarized. 

Subsection 8.1.1 Vegetation Stresses Evaluation 

Vegetation stresses can come from various sources, namely flood, extreme 

weather, lack of fertilizers, excessive use of fertilizers, pesticides, human/animal damage, 

etc., and drought is not the only reason. It is subjective to attribute the depression of 

vegetation conditions to drought, which is to say, the low VI value does not necessarily 

point to any drought occurrences. The study has summarized water, thermal, and crop 

growing conditions to be the three most important factors resulting into an agricultural 
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drought, and NDWI, LST, and NDVI are the RS-based indicators for each condition. The 

trapezoid model is used here to interpret the 3D space composed of NDWI/LST/NDVI 

values of all vegetated pixels within a selected area. In implementing of the model, 

RNDDI is used to carry the information of NDWI and NDVI, and then combined with 

LST to form a 2D space. With the wet and dry edges drawn, the CCI value for each pixel 

is calculated, and later the CCI maps for the area shall be created. The validation process 

with meteorological data (e.g. PDSI, soil moisture, and precipitation) has proven that CCI 

is an efficient drought indicator at high accuracy.  

Subsection 8.1.2 Root-zone soil moisture for validation 

Soil moisture deficiency is a direct reflection of drought. Soil moisture at the root 

zone is of higher correlation to drought than that at the surface, because the latter is 

always fluctuating by weather changes in a short time. However, root-zone soil moisture 

refers to a depth of soil information, from 0 to 100 cm beneath the ground. Investigating 

the relationship between VIs and soil moisture at different depths is crucial, since soil 

moisture observations as a source for validation (i.e. the speaker for drought conditions) 

need to be accurate at the first place, or else linking VI performance to drought conditions 

can totally be of no foundation. The study has found that Corn VIs exhibit strong 

relationships with soil moisture at deeper depths (with longer lagging period), while the 

soybean VIs are highly sensitive to changes in soil moisture at much shallower depths 

(with shorter lagging time).  Depending on the crop type, different soil moisture data 

shall be used as validation source. This finding will help correlation study related to soil 

moisture achieve higher accuracy.  
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Subsection 8.1.3 Web Services for Agricultural Drought Information 

Although raw data or drought indices may suit the needs of researchers or experts 

who can download these data onto their desktop and perform analysis on their own, the 

general public may find themselves lack of experiences and guidance to complete the 

process to extract information or knowledge out of purely raw data. The on-demand 

geospatial Web Services introduced here can provide dynamic drought analysis, 

monitoring, and forecasting to online users, and can equip general user groups with 

sufficient domain knowledge such as spatial and temporal patterns of drought. For 

example, the Web Service drawROI is meant for visualizing the drought patterns of a 

selected area and time. Other services, GetVCIStats is to capture the mean VCI value for 

the chosen region of interest, and GetDroughtPercentageByStates is used to depict the 

distribution of various drought severity groups for multiple chosen states, while 

GetDroughtTimeSeries is designed to describe the time-series drought information of the 

county, ASD or state specified in a request. With these Web Services, users can not only 

access and manipulate drought data, but they can also obtain an improved understanding 

of drought information, and hence form their drought knowledge base. 

Section 8.2 Applications of this research 
The research conducted in this dissertation is expected to be useful for monitoring 

agricultural drought using maps, statistic reports, and Web Services.  

The trapezoid model proposed here can provide decision makers detailed 

information on spatial distribution and temporal variation of vegetation conditions, which 

are valuable for many applications, such as drought or flood monitoring. Although the 

study was conducted in the U. S. Corn Belt, the trapezoid model of LST and RNDDI is 
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expected to apply to other areas whose crop growth is mostly determined by thermal and 

water conditions. The CCI derived from this model serves as a better indicator for 

drought. Combining information from multiple channels makes CCI response to 

vegetation drought conditions in opposite directions and therefore, a promising indicator 

for agricultural drought monitoring. This index can be applied to larger areas (such as 

continents) to extract information of vegetation drought conditions. 

The relationship found between VIs and soil moisture at various depths will 

provide a new foundation of correlation studies for choosing the optimized drought 

indicator. In order to achieve higher accuracy and efficiency in simulating drought 

conditions using RS-based indicators, using the appropriate soil moisture data (with 

correct depth and lagging period) for validation is the key. Researchers are now warned 

to select the soil moisture data based on depths of the rooting system, and the crop 

growing patterns. 

Web Services (WS) developed in the study have enabled general users to access, 

analyze, extract and visualize drought information online, instead of the traditional 

expert-only desktop-based approach. These WS return to end-users the characteristics of 

droughts from spatial and temporal extent to severities and impact. Being standardized, 

interoperable, and concatenation-convenient, these services can be integrated with more 

functionality, either on the same server or across domains, to constitute an information 

cluster on which every GIS tool can be found and used for drought analysis.  

The research presented in this thesis explores a new direction in the use of remote 

sensing science and technologies towards vegetation stresses and agricultural drought 
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estimation. Not only will it provide a solid foundation for remote sensing-based 

approaches for assess and monitor vegetation conditions and drought at a finer spatial and 

temporal resolution, but it will also extend the web-based capabilities of accessing, 

analyzing, and visualizing agricultural drought on-demand. 

Section 8.3 Limitations of this work 
Due to data availability in time and space, the experiments conducted in this 

research are subject to some limitations. For example, the croplands are considered as 

non-irrigated and non-fertilized at the first place. Also, the self-examined laboratory in-

field data collection is absent for the study site. Hence, some results are mainly based on 

model simulation and certain preconditions, and cannot represent the complex nature of 

agricultural drought. 

The proposed new index, CCI, is currently experimentally used for croplands 

within Corn Belt which are covered with dense vegetation. More research needs to be 

done for areas with moderate or scarce vegetation coverage, which are common 

conditions found in reality. With fewer pixels carry valid values for thermal, moisture 

and vegetation conditions, the construction of a trapezoid can be difficult. Testing CCI on 

sparsely-vegetated lands is likely to yield inaccurate results. 

Currently the validation functionality provided with Web Services only enables 

users to choose the regression model from multi-variate linear regression and the least 

squares model (polynomial fit), and has hence left some blank for other simulation 

patterns. In the future, logistic regression and genetic programming shall be added for 

studying the relationship (correlation or not) between VIs and ground measurements. 
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Section 8.4 Future works 
Future research will fall into three categories, namely: (i) develop a general CCI 

approach that would consider group behaviors of crops having the similar rooting depths; 

(ii) extensive applications of CCI for drought monitoring and vegetation drought stress 

detecting for various crop types across the globe (on densely, moderately, and sparsely 

vegetated areas); (iii) apply different regression models to make sure if there will be any 

other fitting models between VI and RZSM, e.g. Taylor series approximation, and 

Natural Spline Smoothing; (iv) further development of standardized, interoperable, and 

concatenation-convenient Web Services to deliver agricultural drought information; and 

(v) development of agricultural drought knowledge base which clusters all the data, 

methods and services required for drought access, analysis, understanding, visualization 

and extraction into information and knowledge.   
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