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1.1.1. Background 
For many hydrological and weather forecasting applications, an important quantity is the 
amount of precipitation that falls on the Earth’s surface over a given time interval, i.e., the 
surface precipitation rate. However, no satellite instrument is unambiguously sensitive to the 
instantaneous precipitation rate at the Earth’s surface. A vertically profiling radar such as the 
Dual-Frequency Precipitation Radar (DPR) onboard the joint National Aeronautics and Space 
Administration (NASA) and Japanese Aerospace Exploration Agency (JAXA) Global 
Precipitation Measurement (GPM) mission satellite (Hou et al., 2014) is directly sensitive to rain 
in the near-surface layers of the atmosphere unaffected by surface ground clutter, but its 
measurements are affected by attenuation due to the condensed water in the higher layers of 
the cloud. Furthermore, the DPR instrument scan swath is typically too narrow (240 km) to 
provide substantial global coverage at sub-weekly scales. Passive microwave (MW) 
radiometers do have more substantial coverage owing to their wider swath (between 800 and 
2500 km). These measurements are less directly sensitive to surface rain, with more direct 
sensitivity to the condensed water in the cloud. The height of the “peak” sensitivity increases as 
the radiometer channel wavelength decreases, up to infrared (IR) radiometers, which are 
directly sensitive only to the condensed water at the very top of the cloud (Haddad et al., 2017). 
IR radiometers are now carried by all meteorological geostationary satellites, providing global 
coverage with very frequent temporal sampling (at least every 30 minutes or better).  

Therefore, the algorithms that generate today’s global satellite precipitation products attempt to 
capitalize on the different strengths of these three types of instrument (radar, passive MW 
radiometers and frequent-refresh IR radiometers). These algorithms rely upon the reasonable 
sensitivity of the microwave radiometers, sharpened by reference to the precipitation radars, 
and enlist the help of IR to interpolate the microwave estimates to the often-long intervals of 
time between consecutive passive MW observations. These “revisit gaps” can be 5 hours in the 
tropical latitudes (Kidd et al., 2018a). As a result, one expects three broad sources of 
uncertainty in the products: a detection-related uncertainty that results from the possible 
confusion in the interpretation of the passive MW or IR observations between surface rain and 
cloud-column condensation; an estimation uncertainty that results from the quantitative 
conversion of the passive MW or IR observations into surface-rain amounts; and an 
interpolation issue stemming from the ambiguous use of frequent-but-indirectly-sensitive IR 
information to fill the revisit gaps. 

To illustrate this general approach, Figure 1.1.1 depicts an idealized set of observations 
collected from four passive MW satellite overpasses over a given location during a 12-hour 
period. The data from each passive MW satellite measurement provide an estimate of the 
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surface precipitation (blue arrows). In this example, the satellites are equally spaced in their 
observing times, leaving 3-hour revisit gaps. By combining and merging these data with higher 
time resolution geostationary satellite data, the desired high spatial and temporal resolution 
precipitation products are produced (denoted by the red arrows). The errors resulting from the 
combination of all of the processing steps mentioned above are aggregated into the final high-
resolution products that are provided to data users. Most often, the error analysis is carried out 
on the products that are produced at the end of this process, which represents an accumulated 
error. The purpose of this section is to provide insight to product users on the nature of the 
error introduced by the various steps. The remainder of this section is devoted to the 
discussion of these error components in more detail. 

Figure 1.1.1.  Idealized depiction showing how intermittent passive MW satellite-based precipitation 
data (blue arrows) are generated from a limited set of satellite overpasses, and used to produce a high 

spatial and temporal resolution (red arrows) satellite precipitation product 

1.1.2. Satellite precipitation measurements 
For the past two decades, the centerpieces of satellite precipitation measurements from space 
are the GPM core spacecraft (2014–present) and its predecessor, the Tropical Rainfall 
Measuring Mission (TRMM) (1997–2014) (Kummerow et al., 2000). Only these two spacecraft 
have a scanning precipitation radar instrument. TRMM and GPM’s passive MW radiometers 
observe precipitation across scan swaths that are much wider (800 km) than the respective 
radar swath, and indeed the radar measurements are used as benchmarks, available over the 
common narrow swath, to guide the estimation of surface rain from the passive MW 
radiometers alone outside the common swath. Yet the swath of each passive MW radiometer is 
still not wide enough to allow global coverage on sub-daily time scales (i.e. revisit periods of 
less than 24 hours, let alone three or less as in the example of Figure 1.1.1). That is why the 
estimates at sub-daily scales require the aggregation of estimates from all available passive 
MW radiometers. Table 1 of Kidd et al. (2018a) lists the characteristics of the current GPM 
passive MW radiometers [GPM microwave imager (GMI), Special Sensor Microwave 
Imager/Sounder (SSMIS), Advanced Microwave Scanning Radiometer 2 (AMSR-2), Microwave 
Humidity Sounder (MHS) and Advanced Technology Microwave Sounder (ATMS)]. 
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Many of these passive MW radiometers are carried by operational weather satellites, which 
orbit in sun-synchronous patterns and produce observations near fixed local solar times (so 
their observations can be efficiently assimilated into numerical weather prediction systems). 
Others, like GPM, TRMM and the Megha-Tropiques (M-T) satellite built by the Indian Space 
Research Organization (ISRO) and the French Centre National d’Etudes Spatiales (CNES), 
orbit in non-sun-synchronous orbits whose local observing times change from day to day, in 
30–60-day cycles (depending upon latitude) (Roca et al., 2015; Negri et al., 2002). In contrast 
to the idealized depiction of Figure 1.1.1, Figure 1.1.2 shows a more realistic set of passive 
MW observations from the current (2020) GPM-era constellation, whose revisits, unlike Figure 
1.1.1, are not evenly spaced in time. Moreover, these consist of different types of radiometers 
with different channels, resolutions and sensitivities. Therefore, the detection and estimation 
errors shown in Figure 1.1.1 are different for each sensor. 
 

 

 
Figure 1.1.2. Depiction of the different passive MW satellites and their capabilities, 

observing times and revisit intervals during a typical 12-hour period, from the current 
(2020) GPM constellation era (contrast to idealized Figure 1.1.1) 

The sensitivity of the passive MW radiometers is different for different radiometers and for 
different cloud types. These radiometers measure the net upwelling radiation from the Earth’s 
surface through the atmosphere, in different frequency bands. The upwelling radiation comes 
primarily from the surface, and is modulated by the constituents of the atmosphere: the gases 
absorb (and therefore emit), and the hydrometeors (rain drops and the varieties of ice, snow, 
graupel, etc.) absorb/emit and also scatter the upwelling radiation, mostly out of the beam. This 
explains why the passive MW radiometers are not specifically sensitive to the precipitation in 
any single height layer of the cloud, let alone the surface layer. The radars, on the other hand, 
do not have this limitation, and do enable the estimation of vertical precipitation profiles. That is 
the justification for the multi-channel passive MW retrieval techniques which use a reference 
set of nearly-coincident nearly-simultaneous radar measurements (compiled offline, pairing 
passive MW measurements with the underlying precipitation rates as retrieved from the 
coincident simultaneous radar measurements), to produce instantaneous surface-rain 
estimates. These data can indeed be used to spread or “transfer” the DPR/Precipitation Radar 
(PR) radar structure information to each of the constellation radiometers (e.g., Turk et al., 2018; 
Kidd et al. 2018a; Petty and Li, 2013), so that each “Level-1” radiometer pixel can be assigned 
a “Level-2” estimate of the surface precipitation rate. The coincidence reference dataset can be 
used to retrieve any quantity that can be retrieved from the precipitation radar’s measurements, 
with varying amounts of uncertainty that can be quantified from the reference data themselves, 
if the reference data are sufficiently extensive to be representative of global precipitation. 
Fortunately, both GPM and TRMM have asynchronous orbits so that, throughout the course of 
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a year, they do provide a very large number of near-coincident observations with each of the 
constellation radiometer satellites.  
 
Lastly, the collection of Level-2 passive MW precipitation products is incorporated into global 
products covering a time interval, posted at a fixed grid resolution that can be near or finer than 
the scale of some of the Level-2 products that were used. These are termed “Level-3” products, 
which provide accumulated precipitation estimates at scales as fine as 30-minute refresh 
cycles, and 0.1° gridded resolution. For the remainder of this section, the focus is on the Level-
3 products that incorporate the Level-2 passive MW precipitation products and high-resolution, 
fast-refresh cycle geostationary-satellite infrared (IR) observations to cover what would 
otherwise be lengthy revisit gaps from the Level-2 passive MW precipitation alone.   
 
The next subsection attempts to quantify the order of magnitude of the uncertainties in the 
Level-3 products separately for each of the three sources of uncertainty. Examples of current 
widely-used global Level-3 precipitation products of this type include the Integrated Multi-
Satellite Retrievals for GPM (IMERG) (Huffman et al., 2018); the Global Satellite Mapping of 
Precipitation (GSMaP) (Ushio et al., 2009), the National Oceanic and Atmospheric 
Administration (NOAA) Climate Prediction Center Morphing Technique (CMORPH) (Joyce and 
Xie, 2011), the Precipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN) (Hsu et al., 1997), and the Self-Calibrating Multivariate 
Precipitation Retrieval (SCaMPR) (Kuligowski et al., 2013). A description and an 
intercomparison of many current global precipitation datasets from stations and satellites can 
be found in Sun et al. (2018). Because they are published at such relatively high spatial and 
temporal resolution, it is important to give an objective assessment of the uncertainty in these 
values at their reported resolution. 
 
1.1.3. Intrinsic uncertainty of the Level-3 merged products  
Early evaluation initiatives of a number of research Level-3 products were fostered by the 
International Precipitation Working Group (IPWG) (Ebert et al., 2007; Turk et al., 2008 and 
references within; see also 1.3 below). More recently in the post-GPM era, more detailed Level-
3 evaluation efforts have been reported. A detailed list of these evaluation efforts would be 
lengthy (and likely incomplete); for reference, we refer to several recently-published studies 
(Maranan et al., 2020; Le Coz et al., 2020; Chen et al., 2019; Tan et al., 2016; Maggioni et al., 
2014) and references within each of these. These studies generally proceed by comparing the 
values that are reported by a given product with other precipitation estimates. In contrast, in 
this subsection we review the uncertainties due to the sources of error in the successive steps 
in the estimation process. Indeed, the Level-3 uncertainty is the result of the accumulated 
uncertainty in the different steps of the estimation process, which for the purposes here are 
assumed to start with the Level-2 precipitation products themselves.   
 
There are three main sources of uncertainty: 1) the uncertainty introduced in the precipitation 
detection by the Level-2 passive MW algorithms (either by omission, if no precipitation is 
detected so that the retrieval algorithm is not run and the precipitation is assumed to be zero 
when in fact precipitation was present, or by processing the passive measurements through the 
retrieval process when in reality there was no rain at the surface); 2) for the detected pixels, the 
uncertainty introduced by the instantaneous retrieval algorithms; and 3) the uncertainty 
introduced by the revisit-gap mitigation, i.e. the propagation in time from one Level-2 passive 
MW precipitation estimate to the next (i.e. from the Level-2 passive MW precipitation at time-1, 
to the passive MW precipitation at time-2). 
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In the following subsections, the Level-3 propagation-based methods common to operationally-
produced precipitation products – IMERG, CMORPH, and GSMaP – are used as examples in 
the discussion of the third error component (use of IR data to fill passive MW revisit gaps). 
Products other than these three use different approaches to bring passive MW information to 
bear on IR data, including self-calibration (as in the case of SCaMPR) or artificial neural 
networks (as in the case of PERSIANN). The fundamental source of uncertainty in these mostly 
IR-based products is discussed in 1.1.3.5. 
 
1.1.3.1. Detection errors 

Establishing the minimum detectable precipitation rate for the Level-2 passive MW algorithms 
is not a straightforward proposition. The issue is illustrated in Figure 1.1.3, showing a typical 
pair of instantaneous retrievals, one made by the GMI radiometer algorithm (Goddard Profiling 
Algorithm, GPROF) (Kummerow et al., 2015) and one by the GPM combined sensor 
(DPR+GMI) radar radiometer algorithm (Combined Ku Radar-Radiometer Algorithm, CORRA) 
(Grecu et al., 2016). The substantial areas where the GMI algorithm detects surface 
precipitation > 0 mm/hr while the CORRA algorithm reports 0 mm/hr surface rain could indicate 
a greater (if indirect) sensitivity of GMI to lower precipitation rates than the radar, or they could 
be false alarms where passive MW retrievals were made over a precipitation-free column. In 
these discrepancies, the radiometer-retrieved rates are never greater than a few mm/hr, yet 
they do cover a significant area. The reverse can happen too (in the case illustrated, most 
notably in the area around 29N 96.5W), though this “failure to detect” by the instantaneous 
passive MW radiometer retrieval algorithms is less common. 
 
Using a research passive MW precipitation profiling method (emissivity principal components, 
EPC) (Turk et al., 2018) based on the microwave surface emissivity, Utsumi et al. (2020) 
showed that the probability of detection (POD) over ocean surfaces exceeded 0.7 and was 
fairly consistent across the five algorithms tested and the choice of precipitation threshold. Over 
land, POD can drop below 0.6 for vegetated surfaces or coasts (Turk et al., 2018). Similar POD 

 

 
Figure 1.1.3.  Side-by-side comparison of the precipitation estimate produced by the GPM combined 
DPR+GMI (CORRA) product (left panel), and the corresponding GMI-only (GPROF) estimate (right 

panel).  
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scores were noted across passive MW sensors (You et al., 2020). Chen et al. (2019) 
performed a similar experiment and concluded that the conically-scanning imagers generally 
outperformed the cross-track scanning sounders.  
 
1.1.3.2. Errors inherent to the instantaneous passive MW retrievals 
Compared to the Level-3 products, relatively few independent validation studies of Level-2 
passive MW constellation products have been done. A comparison of the areas with larger 
surface rain rates in Figure 1.1.3 illustrates the intrinsic uncertainty in the Level-2 instantaneous 
retrievals from passive MW measurements. Note how the substantial areas with rain rates 
higher than 30 mm/hr in the benchmark combined radar+radiometer retrievals are not matched 
by comparable estimates in the passive-MW-only retrievals. This subsection discusses these 
uncertainties and their order of magnitude. 
 
Early (SSMI era) passive MW precipitation approaches were based upon mostly statistical 
methods (Grody et al., 1991) that matched brightness temperature (TB) combinations to 
observed near-surface reference precipitation estimates made by rain gauges or by rain-
gauge-trained ground radars. As such, these methods were tuned to the characteristics of the 
limited-domain input radar data used. The spatial and temporal variability in the precipitation 
microphysics and the nature of the weather conditions and surface conditions were not 
accounted for. The retrievals also failed to provide any physical estimate of the error in the 
precipitation rate. More recent passive MW Level-2 precipitation data products are more 
physically-based and account for the error inherent to the passive MW precipitation scheme 
itself. These include, but are not limited to, GPROF (Kummerow et al., 2015), surface 
emissivity-based methods (Turk et al., 2018), PRPS (Kidd et al., 2018b), k-nearest neighbor 
(Takbiri et al., 2019), TB “pseudo channel” schemes (Petty and Li, 2013), MIRS (Boukabara et 
al., 2011), the JAXA GSMaP scheme (Aonashi et al., 2009) and 1DVAR snowfall (Meng et al., 
2017). Often, these methods apply data reduction to the input TB data to isolate the 
precipitation signal from the naturally-occurring variability in the input TB signal. Provided the 
collection of a-priori data used (in one way or another) is sufficiently representative of the 
conditions being sampled by the passive MW-based satellites, Bayesian-based methods 
provide a means to determine the error associated with the mean precipitation estimate. 
 
In the merging algorithms that incorporate the Level-2 passive MW precipitation products and 
high-resolution, fast-refresh cycle geostationary satellite-based infrared (IR) observations, 
currently only one of these passive MW algorithms is used. For example, the IMERG Level-3 
dataset relies upon passive MW precipitation produced by the GPROF algorithm (Kummerow 
et al., 2015), and the GSMaP product uses the JAXA passive MW algorithm (Aonashi et al., 
2009). Therefore, only the error associated with this single passive MW precipitation technique 
affects the downstream Level-3 processing.  
 
In reality, each of the passive MW precipitation methods makes different assumptions on many 
variable processes, such as the form of the particle size distribution, its spatial uniformity or 
inhomogeneity, etc. For GPM, the core satellite DPR-based precipitation algorithm has four 
main precipitation products, a DPR-only and a combined DPR+GMI algorithm (CORRA) (Grecu 
et al., 2016), each with a Normal Scan (NS, or Ku-band only) and a Matched Scan (MS, or 
Ku+Ka-band) variant, for a total of four reported instantaneous estimates. Each of these 
retrieval algorithms make various simplifying assumptions to invert the measured radar 
reflectivity profiles into hydrometeor precipitation profiles. For example, the drop size 
distribution models used in the DPR algorithms are largely based on measurements from the 
tropics (Seto et al., 2013), which may not be applicable across the variety of weather systems 
encountered in the GPM coverage area. The drop size distribution models are selected based 
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on predefined precipitation types that are imperfectly identified from features in the radar 
reflectivity profiles. Another source of variability arises from the assumptions used to handle the 
variable surface radar surface cross section and (for CORRA) the surface emissivity variability 
(Munchak et al., 2016; Munchak et al., 2020). The multiple sources of uncertainty carry over 
into the passive MW-only precipitation profile estimates from each constellation MW 
radiometer. 

 
 

Currently, there is no consistent way to account for the range of uncertainty introduced in these 
instantaneous estimates, as they are used to make the passive MW constellation estimates, 

 

 
Figure 1.1.4.  Comparison of five different instantaneous microwave retrievals versus the benchmark 

ground gauge-radar based Ground Validation Multi-Radar/Multi-Sensor estimates (horizontal axis;  
see section 1.2). From left, the EPC algorithm based on the GPM combined radar+radiometer  

algorithm (CORRA) Normal Scan (NS; Ku-band only) precipitation product, the EPC algorithm based 
on the GPM radar-only algorithm (DPR) Ku-band only precipitation product, the EPC algorithm based 
on the CORRA Matched Scan (MS; Ku+Ka-band) precipitation product, the EPC algorithm based on 
the GPM radar-only algorithm (DPR) Ku+Ka-band) precipitation product, and the Version 5 GPROF 

algorithm. The rows indicate data is from ocean, vegetated and coastal surface classes. Note the log-
log scaling of each panel. 

 

 
Figure 1.1.5. Maps showing the two locations of the case studies summarized in 1.1.3.2 and 1.1.3.3. 
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and ultimately the Level-3 products including IMERG, GSMaP, CMORPH and others. However, 
one can estimate the magnitude of this uncertainty by comparing instantaneous retrievals to a 
common reference. Figure 1.1.4 shows a comparison of five different instantaneous GMI 
microwave retrievals (5 columns) relative to pixel-matched precipitation products derived from 
the benchmark U.S. ground radar-gauge Ground Validation Multi-Radar/Multi-Sensor (GV-
MRMS) (Kirstetter et al., 2012, 2018b) products (horizontal axis; see Section 1.2), illustrating 
the uncertainty in any individual estimate to be above 100%. Since passive MW measurements 
are sensitive to the emission from the surface, the validation is separated by the underlying 
surface classification (ocean, vegetation, coastal), corresponding to each row. A common 
reference also makes it possible to diagnose and propagate the uncertainty to the Level-3 
products (see Figure 1.1.12). Kidd et al. (2018a) used multi-radar multi-sensor (MRMS) to 
validate the GPROF algorithm across sensors. 
 

 

While Figure 1.1.4 shows overall “bulk” comparisons of many individual per-pixel retrievals, the 
differences between each of the passive MW products at a specific pixel or “point” are more 
variable and can vary from location to location. To highlight an individual point location, Figure 
1.1.6 shows the range of the five passive MW precipitation products from Figure 1.1.4 for a 42-
hour period. The time series is from a specific 0.1-degree grid box point (the posted resolution 
of many Level-3 precipitation products) shown in Figure 1.1.5. In this example, the spread of 
the estimates is shown (up to 200% at times) as well as the discrepancy between the detection 
according to the satellite instrument and the lack of rain detected by the gauges at several 
times. 
 

 

 
Figure 1.1.6. Time series of the five instantaneous passive microwave retrievals in 
Figure 1.1.4 for a specific 0.1-degree resolution element near Lafayette, LA (see 

Figure 1.1.4) on the ground, for a 42-hour period (0 UTC on 6 December 2017 through 
18 UTC on December 7). The spread of the estimates is shown (up to 200% at times) 
as well as the discrepancy between the detection according to the satellite instrument 
and the lack of rain detected by the gauges at several times. This is most notable at 

20 and 22 UTC on the 6th, at 12 and 13 UTC on the 7th. 



 

  	
 

9 

1.1.3.3. Errors introduced by revisit-gap mitigation 
During the revisit gap between any two successive passive MW precipitation datasets, the 
precipitation is evolving. In Level-3 products such as CMORPH, GSMaP and IMERG, the 
precipitation evolution between successive passive MW precipitation datasets is accounted for 
by filtering/“morphing” methods. This process requires the use of ancillary data that is sampled 
frequently during the revisit gaps, to infer sufficient information to evolve the precipitation at one 
end of the temporal gap time-1 to the other time-2 (time-1 and time-2 being the observation 
times of the two passive MW satellites at the two ends of the revisit gap). This is done variously 
by tracking radiometrically cold IR cloud top patterns between successive 30-min imagery, or 
by tracking the motion of the precipitable water vapor patterns from global model reanalysis 
fields (Tan et al., 2019), or by tracking the motion of the IR-derived surface-precipitation fields, 
or using an empirically-derived filter based on these combined data. In effect, a several-degree 
box size is used to track the frequently-sampled data features from one time to the next, and to 
estimate the evolution of surface precipitation along these tracks. 

 

Figure 1.1.7 illustrates the result in the case of a mesoscale convective system that developed 
over West Africa early on the morning of 24 July 2014. The surface rain estimated by the finest-
resolution (30-min) IMERG product at 0130 Z is quite different from that at 0200 Z, in spite of 
the fact that the geostationary IR temperatures are quite similar at both times (lower panels).  
At 0130 UTC, the HQ precipitation source was from an MHS sounder. At 0200 UTC, the most-
recent passive MW source was from the SSMIS (left side of the orange line) but only to the left 
of the orange line, with no passive MW data available in this 30-minute time on the right side of 
the line (where the storm was located). The main difference in the precipitation estimates is the 
large amount of low precipitation rates that appear at 0200 all around the storm as it was 
delineated at 0130, almost entirely due to the fact that between 0130 to 0200 there was a 
passive MW observation, by MHS at 0150Z, but between 0200 and 0230 the only MW 
observation was by SSMIS and missed this storm entirely, so that the estimates at 0200 are 

 

 
Figure 1.1.7. The top row shows the IMERG estimates of surface rain on 24 July 2014 at 0130 Z and 
0200Z over a convective storm in West Africa, with marked differences between the rain fields at the 

two consecutive times despite the striking similarity of the geostationary IR observations at these times 
shown in the bottom row, along with the passive MW brightness temperatures measured by the MHS 

radiometer at 0150Z (Haddad et al., 2017). 
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strongly affected by revisit-gap mitigation. In this case, the precipitation at 0200 covers an area 
that is almost double that at 0130, the excess consisting entirely of rain rates below 2 mm/hr. 
 

A more systematic evaluation of the cumulative effect of the interpolation was performed using 
IMERG as the evaluation medium. To that end, the IMERG technique was adapted into a “test 
mode” (IMERG-T) (Utsumi et al., 2018), where instead of feeding the IMERG process with the 
passive MW precipitation data from the GPROF algorithm, it can be fed with other, different 
passive MW precipitation retrievals. Figure 1.1.8 shows the same case as Figure 1.1.6, but in 
this example the accumulated precipitation is shown. The accumulated precipitation from the 
Bay of Bengal area in Figure 1.1.5 is also shown, as a side comparison. IMERG-T was run 
separately for each of the four passive MW algorithms in Figure 1.1.4. This was done with (blue 
lines) and without (green lines) the calibration step that is used in IMERG to assure that the 
histograms of the GPROF-GMI passive MW precipitation match the histograms of each of the 
other constellation sensors. The “spread” amongst the ten products (four EPC and GPROF, 
each with a calibrated and uncalibrated version) is shown by the red vertical line “Retrievals”.  
Figure 1.1.8 shows the net effect at a “pointwise” scale, which is the scale at which many 
Level-3 product users actually use and interpret these data for their analyses. While it shows 
only two locations, it does highlight the expected variability at the 0.1-degree scale. Other 
Level-3 product users may spatially average these native 0.1-degree, 30-minute data further, 
for example, into common 1-degree daily grid boxes (discussed in section 2 below) or 5-day 
pentads. 
 

 

 
Figure 1.1.8.  Accumulated precipitation for the same morphed products shown in Figure 1.1.6, for the 

Lafayette location (left) and the Bay of Bengal location (right). The comparison shows the result of using 
different passive MW precipitation products in the generation of the Level-3 merged satellite product, 

showing spreads that can grow to a factor of three at the end of the 42-hour period. 
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In Figure 1.1.9, the official IMERG precipitation data valid at 0500 UTC on 6 December 2017 is 
shown in the upper right panel. This represents the average rain rate in the 30 minutes 
between 0430-0500 UTC. The collection of passive MW precipitation data products that feed 
into this IMERG estimate come from different satellite overpasses. Depending upon the orbit 
characteristics, some pixels in this area may have had a more recent “refresh” from a passive 
MW satellite than others. In this example, the passive MW precipitation products from the EPC 
products are based on the DPR+GMI combined Ku-band only product (Grecu et al., 2016). 
While the overall pattern of the precipitation is similar in the top two panels, there are small 
scale differences at the 0.1-degree level reported for the IMERG product. 
 
This same process was repeated with the other three radar algorithms, each of whose passive 
MW precipitation data products were fed into the IMERG processing. The resultant ensemble 
spread expresses the overall range of variability in the final products considering that all of 
these factors are processed though IMERG. The lower left panel shows the range (maximum 
minus minimum) of values produced by the members of this ensemble. 
 

 

 
Figure 1.1.9. (Top right) Final IMERG precipitation product for the 30-minute interval ending at 05 
UTC on 6 December 2017, showing an area in the Indian Ocean. (Top left) Corresponding image, 

except using the EPC CORRA-NS retrieval for each constellation radiometer (except MHS), to carry 
out the morphing procedure in IMERG-T. (Lower left) The ensemble spread (range of maximum-

minus-minimum, in mm hr-1) that results when each of the four EPC-based retrievals are fed through 
the IMERG-T morphing. (Bottom right) Final precipitation estimates along the cross-section line 

shown in the lower right panel for each of the four EPC-based retrievals. IMERG, which morphs using 
only GPROF precipitation, is shown in the black line. 
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To highlight the difference, the bottom right panel of Figure 1.1.9 shows the final precipitation 
estimates along the cross-section line shown in the lower right panel (IMERG, which morphs 
using only GPROF precipitation, is shown for comparison, in the black line), for each of the four 
EPC-based retrievals. The individual colors each represent the output when each of the four 
EPC-based estimates are used in the IMERG-T morphing procedure. Note the difference in 
some of the heaviest precipitation locations can be as much as 40% higher, but only slightly 
lower, than the IMERG product. This ensemble analysis expresses the range of precipitation, 
considering each of the DPR-based precipitation estimates processed through each 
constellation radiometer, and processed through IMERG. 
 

 

 
Figure 1.1.10.  Analysis of the 36-hour period from 0 UTC on 6 December 2017 to 12 UTC on 7 
December 2017, where the domain is a 5o x 5o box in the Bay of Bengal. (Left) Domain-average 
IMERG precipitation product at each 30-minute time step. (Right) Accumulated precipitation. The 

domain-integrated accumulation at the end of the 36-hour period varies between 160 and 188 mm, a 
span of about 16% of the ensemble mean. 

While Figure 1.1.9 highlights differences at the instantaneous (single overpass) scale, Figure 
1.1.10 illustrates the cumulative effect of these same ambiguities when averaged over a 5o x 5o 
domain and over the 36-hour duration of the storm. As expected, spatial and temporal 
averaging of the native fine-scale data reduces the instantaneous pointwise errors illustrated in 
Figure 1.1.9, but the uncertainty does not shrink to zero. Using a one-minute updating rain 
gauge network over Korea, Turk et al. (2009) examined the performance of the NRL-Blend 
fast-update precipitation product across telescoping space-time averaging scales. The space-
time root mean square (RMS) error, mean bias, and correlation matrices were computed using 
various time windows for the gauge averaging, centered about the satellite observation time 
(this is necessary since the satellite measurement responds to the precipitation before it has 
fallen to the ground, where the gauges measure). For ±10 minute rain gauge time windows 
(Figure 1.1.11), a correlation of 0.6 was achieved at 0.1-degree spatial scale by averaging over 
3 days; coarsening the spatial scale to 1.8 degrees produced the same correlation by 
averaging over one hour. Finer than approximately 24-hours and 1-degree time and space 
scales, respectively, a rapid decay of the error statistics was obtained by trading off either 
spatial or time resolution. 
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Figure 1.1.11.  Space-time contour plots of the correlation coefficient, root mean square error and mean 

bias for the rain gauge network time window average of ±10 minutes, centered about the time of the 
GMS satellite observation of Korea. The abscissa and ordinate of each contour plot denotes the spatial 
and temporal scales, respectively, used to average the rain gauge data and the NRL-blended satellite 

technique estimated rain (figure adapted from Turk et al., 2009). 

 
1.1.3.4. Sensitivity to IR observations: Uncertainty in quantitative estimation and 

in interpolation during revisit gaps  

Figure 1.1.12. Relative bias in percentage between the PERSIANN‐CCS precipitation estimates relative 
to the reference GV-MRMS as a function of the IR brightness temperature. This intrinsic bias results from 

the algorithm assumption that deeper clouds, represented by colder brightness temperatures, produce 
more surface rain.  The conditional bias is a decreasing function of the brightness temperature following 
the redistribution assigning higher precipitation rates to colder brightness temperatures. The −100% bias 

above 242 K relates to missed precipitation that also results from the assumption (adapted from 
Kirstetter et al., 2018a). 

Starting in the 1980s, when passive MW data was unavailable or scarce (routine SSMI data 
began in 1987), but geostationary IR measurements were routinely available hourly, the idea to 
use instantaneous IR radiances to estimate instantaneous surface rain was proposed and 
implemented. This was justified by the fact that, in convective storms, deeper clouds tend to 
produce more surface rain than shallower clouds (Arkin and Meissner, 1987; Huffman et al., 
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1997). However, a cold IR temperature indicates a high cloud, which is not the same as a deep 
cloud. Even statistically, TRMM has established that the deepest clouds are not the ones that 
produce the highest surface rain rates (Hamada and Takayabu, 2016). The ambiguities are 
even greater away from the tropics, where the rain amounts produced by storms do not have a 
monotonic relation with the height of the cloud. IR radiances provide indirect information on the 
occurrence and magnitude of precipitation at the surface. Depending on the cloud type and life 
cycle, a given IR brightness temperature can be associated with various rain rates, since not all 
clouds produce precipitation or produce it at the same rate. IMERG combines IR-based 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-
Cloud Classification System (PERSIANN-CCS: Hong et al., 2004) and retrievals from passive 
MW estimates. As discussed earlier for passive MW estimates, the uncertainty associated with 
each PERSIANN-CCS retrieval is critically lacking for optimally merging PERSIANN-CCS 
outputs with passive MW precipitation and quantifying the propagation of this uncertainty into 
the final IMERG estimates. Kirstetter et al. (2018b) investigate this question with GV-MRMS 
over the U.S. over two summers of 2014–2015. They estimate that the PERSIANN-CCS 
intrinsic uncertainty, arising from assuming that deeper clouds produce more surface rain, can 
be described as a conditional bias typically ranging from −100% to +600% with the observed 
brightness temperatures (Fig. 4 in Kirstetter et al., 2018a, reproduced here in Figure 1.1.12). 
The volume of precipitation that is missed or erroneously detected is substantial (more than 
50%), and the quantitative variability of correctly-detected precipitation is not well reproduced.  
 
That is why the idea of using the frequently-available IR measurements to make instantaneous 
estimates of the underlying surface rain evolved to give rise to the less problematic concept of 
using them to guide the revisit-gap evolution estimation instead (Joyce et al., 2004, and 
references within). In this IR-based filtering, the features that are tracked represent cloud top 
patterns (IR cloud temperatures), rather than the actual evolution in time of the near-surface 
precipitation itself. The actual precipitation may be evolving faster or slower in space and 
intensity, in ways that are not easily approximated by locally linear tracking. For example, the 
precipitation at the surface may be moving slower or faster than the motion inferred from the 
upper cloud regions, or in extreme cases (where upper/lower vertical shear exists), moving in a 
different direction. To mitigate, certain algorithms such as CMORPH locally adjust the morphing 
tracking speed, based on comparisons with precipitation tracked from ground radars (Joyce 
and Xie, 2011). These discrepancies are a source of uncertainty in the Level-3 precipitation 
processing. 
 
Using the IMERG-T analysis described above, Figure 1.1.13 illustrates the magnitude of the 
revisit-gap evolution speed uncertainty. The specific analysis quantifies the effect of artificially 
slowing down (or speeding up) the motion by 20, 30 or 50%. The difference in the final 
precipitation field is shown relative to the original precipitation. In this example, the largest 
differences are observed for the cases where the motion field was slowed down relative to what 
the IR-based tracking alone provides. 
 
The “spread” at a given point due to the propagation vector variability was already illustrated in 
Figure 1.1.8 (highlighted by the vertical red arrow labeled “Prop. vector”) for each of the two 
0.1-degree gridbox locations of Figure 1.1.5. In this example, the most noticeable effect occurs 
when the motion vectors were slowed down. 
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Figure 1.1.13. Left four panels: Net effect when the motion vector is slowed down by 20, 30 and 50% 
of its original value (upper left panel). Right four panels: Same, in the case when the motion vector is 

sped up by 20, 30 and 50% of its original value. 

1.1.4. Summary of the assessment of intrinsic uncertainty 
The Level-3 “sub-daily global merged satellite precipitation products” are typically reported on a 
fixed rectangular latitude-longitude grid at high spatial and temporal resolution (respectively 
0.1° and ~0.5 hour). This subsection specifically concerned the uncertainties in these products 
at their reported resolution. These include the satellite precipitation products listed in Table 
1.1.1, and are the building blocks for further coarser-resolution products included in later 
subsections.  
 
The discussion above summarized the uncertainties that are inherent in the retrieval and 
processing steps that are used to produce the Level-3 estimates. These include the detection 
error, the passive MW and IR estimation errors, and the error incurred when using frequent IR 
information to fill long revisit gaps between passive MW estimates. 
 
By themselves, passive MW observations alone are not capable of perfect detection. There is 
always an ambiguity between the passive MW TB and the particular atmospheric state that 
gives rise to these same TBs. For example, very light rainfall over ocean has a similar TB 
structure as a large amount of non-precipitating cloud water. For lack of a perfect benchmark 
reference, the exact sensitivity of a passive MW radiometer is challenging to determine. 
  
The uncertainties in the passive MW estimates (second error above) originate from the 
limited sensitivity of the set of radiometer channels to the desired near-surface precipitation. As 
the signal that is measured by a passive MW or IR observation originates predominantly from 
the tops of the clouds, none of the instantaneous-level observations produced from these same 
sensors are directly and unambiguously sensitive to the underlying near-surface precipitation. 
Establishment of an absolute error is challenging since a common reference dataset is not 
globally available. Ground radars are an appropriate source of independent validation, but only 
cover specific continental land areas–and carry uncertainties of their own.  
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The majority of passive MW precipitation data is tied to specific local observing times by virtue 
of the operational nature of the host satellite platform. Only the GPM (and M-T) satellites 
currently orbit in a non-sun-synchronous orbit pattern capable of sampling (within its latitude 
coverage). This leads to lengthy gaps in satellite revisit, which are filled in with precipitation 
estimates created from geostationary-based IR observations. Currently this process is done via 
weighting of a priori prescribed uncertainties from the individual passive MW observations, with 
no regard for error in the speed or direction of the motion vectors used to transport the 
precipitation structure from one time period to the next. Few studies have been done in this 
regard, which warrant further study. 
 
This section has quantified the order of magnitude of the uncertainty that has to be expected in 
today’s merged satellite precipitation products at their native relatively-high (spatial and 
temporal) resolution, and which therefore exists as the current mutual ambiguity to be expected 
between the different Level-3 products. The following sections will describe, in more detail, 
independent validation of the uncertainty attributed to several of the precipitation datasets 
identified in this section, which includes the use of gauges and ground radars as an 
independent source. 
 

Table 1.1.1. Global satellite precipitation products evaluated 

Product Resolutions Advantages Disadvantages  
(in addition to possible 
local bias) 

    
Level-3 MiRS When aggregated by 

user: no finer than 
single-instrument 
resolution (20–40 
km) 
When pre-
aggregated:  daily 

- Reasonably good 
sensitivity 

- Instantaneous estimate 
for every MW-
constellation obs 

- Same approach over 
land or water 

Snapshots every  
~ 80 minutes on average 

Revisit time could stretch 
to 3 hours 

Level-3 GPROF When aggregated by 
user: no finer than 
single-instrument 
resolution (20–40 
km) 
When pre-
aggregated: 
0.5°/hourly (“3G68” 
product) 

- Reasonably good 
sensitivity 

- Instantaneous estimate 
for every MW-
constellation obs 

- Estimates calibrated by 
the reference GPM 
radiometer 

Snapshots every  
~ 80 minutes on average 

Revisit time could stretch 
to 3 hours 

Level-3 GPM 
radar/combined 

When aggregated by 
user: 5 km 
When pre-
aggregated: 
0.25°/daily 

- High direct sensitivity to 
surface rain 

- High spatial resolution  
(~ 5 km) 

Revisit time calculated in 
days 
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HOAPS When aggregated by 
user: no finer than 
single-instrument 
resolution 
When pre-
aggregated: 0.5°/6-
hourly 

Conically-scanning MW 
radiometers only 

Ocean only 

    
CMORPH 8 km/30 minutes 

(and various other 
pre-aggregated 
versions) 

- Frequent temporal 
reporting (~ 30 mins) 

- Good spatial resolution 
(~ 25 km) 

- Uses MiRS for 
instantaneous MW 
estimates 

- Uses advection scheme 
from IR in between MW 
overpasses 

Persistence of any 
misdetection/amplification 
of estimation uncertainty 

GSMaP 0.1°/hourly 
(and various other 
pre-aggregated 
versions) 

- Frequent temporal 
reporting (~30 mins) 

- Good spatial resolution 
(0.1°) 

- Uses GSMaP_mwLUT 
for instantaneous MW 
estimates 

- Uses change in IR to 
adjust MW-estimated 
rain 

Persistence of any 
misdetection/amplification 
of estimation uncertainty 

IMERG rt 0.1°/half-hourly 
 

- Frequent temporal 
reporting (~ 30 mins) 

- Good spatial resolution  
- Uses GPROF for 

instantaneous MW 
estimates 

- Uses advection scheme 
from IR in between MW 
passes 

- Available within about 5 
hours of obs 

Persistence of any 
misdetection/amplification 
of estimation uncertainty 

IMERG late 0.1°/ half-hourly 
 

- Frequent temporal 
reporting (~ 30 mins) 

- Good spatial resolution  
- Uses GPROF for 

instantaneous MW 
estimates 

- Available within a few 
weeks of obs 

Persistence of any 
misdetection/amplification 
of estimation uncertainty 

IMERG science 0.1°/ half-hourly 
 

- Frequent temporal 
reporting (~ 30 mins) 

- Good spatial resolution  
- Uses GPROF for 

instantaneous MW 
estimates 

Persistence of any 
misdetection/amplification 
of estimation uncertainty 
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- Available 3 months 
after obs 

PERSIANN 0.04°/ half-hourly 
(PERSIANN-CCS) 

- Long record back to 
~ 1979 

- NN approach accounts 
for regional variability 

Mainly IR based – highly 
Indirect and non-
monotone sensitivity to 
surface rain 

 
Table 1.1.1. Listing of global satellite precipitation products with spatial resolution finer than 0.5 degrees 
and temporal resolution finer than 6-hourly, that have been evaluated by the IPWG validation subgroup 

 
1.1.5. Recommendations 
Recommendation 1.1.1: Encourage the a priori quantification of the uncertainty that should be 
expected in a given product, given the errors in the input and the uncertainties introduced by 
the product generation. 
 
In the absence of an undisputed reference truth, the physical validation of an estimation 
method is very useful in putting bounds on the uncertainty that can be expected, given the 
author’s knowledge of the simplifying assumptions that were made to produce the estimates. 
 
Recommendation 1.1.2: Encourage precipitation product providers to provide uncertainty 
estimates for each space/time scale of the final precipitation product. 
 
Current global fine-resolution (< 0.1° horizontal, < daily temporal) satellite precipitation products 
are not mere aggregates of instantaneous satellite estimates. They rely on complex detection, 
estimation and filtering steps to produce a regularly-gridded product whose individual estimates 
carry quite a bit of uncertainty. These uncertainties vary from product to product, and consist of 
a mixture of misdetections and estimation errors that are compounded by revisit-gap-filling 
procedures that introduce additional uncertainty. Nevertheless, if these uncertainties are 
considered by the user, the passive MW-based products carry far less uncertainty than those 
based on geostationary IR alone or on rain gauges. 
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