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Metal flow analysis, a discipline in industrial ecology, describes the manner in 

which metals propagate throughout a coupled ecological and industrial system. The 

current models in industrial ecology are static representations that provide analysts with 

only a qualitative understanding of the dynamics at play. As such, many industry metrics 

are difficult to ascertain, such as recyclability and loss rates, future metal demand, and 

sustainability thresholds. The discipline can be expanded for its current state to a more 

quantitative framework where reliance on mathematical modeling is central. The intent of 

this thesis is to provide a fundamental framework for the mathematical modeling of metal 

flows.  

A seamless transition is made from the static models to mathematical 

representations by incorporating dependence (independent or random variables) to the 

existing models and studying the rate at which metal flows throughout a system. Due to 

the composition of the static metal flow models (disjoint domains and adherence to 



 

 

conservation of mass), compartmental modeling that has been used for over a century in 

epidemiology to study the spread of infectious diseases is utilized. Deterministic models 

consisting of ordinary differential equations are constructed and analyzed. Parameter 

optimization techniques using the Levenberg-Marquardt algorithm and numerical 

schemes for the acquisition of approximation solutions to the models are constructed and 

programmed in the Matlab language. In attempts to provide users with the ability to 

interface with the models—analyze and solve the models based on various parameters—

standalone graphical user interfaces written in Matlab are constructed. To provide insight 

into the modification and improvement of the models, economic principles are introduced 

into the ordinary differential equation models, a pricing independent variable is included 

into the models producing systems of reaction-diffusion equations, and economic 

fluctuations and volatility are modeled using stochastic differential equations.  
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Chapter 1: Introduction 

 

Material flow analysis (MFA) is defined as a systematic assessment of the flows and 

accumulation of materials throughout a defined system. MFA assesses the impact human 

activities, such as mining, processing, and producing goods, have on the natural 

environment and demonstrates when these activities are sustainable. The underlining 

principle of MFA is conservation of mass (mass balancing)—all inflows and outflows of 

material into and out of the system must be accounted—establishing the concept that no 

material can be created within the system’s domains.  MFA has been used over the past 

few decades as a decision-making tool in environmental, resource, and waste 

management.  

In industrial ecology, metal flow analysis, commonly referred to as “metal flows”, 

describes the flow of metals throughout an interconnected industrial and ecological 

system. The current metal flow models are static representations consisting of system 

descriptions coupled with empirical data (see Appendix A for a history and description of 

MFA and metal flows). Organizations that utilize these models may find it difficult to 

provide critical assessments of various metal metrics (such as recyclability rates, future 

metal demand, and sustainability threshold) through the use of the static models since the 

models do not provide the dynamics intrinsic to the system. Metal flow modeling can be 

improved from its current state as a qualitative tool for the analysis of metal flows, to a 
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more quantitative framework, where mathematical modeling is central. Analysis can be 

applied to the resulting mathematical models to obtain more accurate metal flow 

assessments and predictions. This thesis develops mathematical modeling techniques that 

can be applied to metal flows.  

Due to the nature of the current static metal flow models, which consist of disjoint 

homogenous domain with adherence to conservation of mass, compartmental modeling 

that has been used for a century in epidemiology to describe the spread of infectious 

diseases provides a valuable framework for dynamic metal flow modeling. As such, a 

description of the mathematical models in epidemiology is provided in Appendix B. 

Epidemic thresholds, which are assumed to be analogous to metal sustainability 

thresholds in metal flows, are also highlighted in that section. 

The development of dynamic metal flow models consisting of systems of ordinary 

differential equations (ODE), partial differential equations (PDE), and stochastic 

differential equations (SDE) will be the focus of Chapters 2 through 4. The modeling 

process will follow a sequential formulation: a metal flow system is defined; assumptions 

are made to describe the inflows and outflow of the system; differential equations are 

introduced to model the flows; and complexity is added to the metal flow system to 

generate subsequent models. The PDE and SDE models are built upon the ODE models 

by incorporating an independent variable for metal price (Chapter 3) or defining random 

variables (Chapter 4). Note that this thesis places an emphasis on the ODE models as 

opposed to the PDE or SDE counterparts. As such, research on the ODE models is 
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exhausted, whereas analysis and some applications for the PDE and SDE models are left 

as future work.  

Existence, uniqueness, and stability of solutions, sustainability thresholds, and 

parameter optimizations for the ODE models are presented in Chapter 2. Parameter 

optimization for the ODE models will follow a Levenberg-Marquardt (LM) scheme that 

incorporates finite difference methods into the algorithm. Source code for the 

implementation of LM is presented in Appendix C.  

The intent of Section 2.6 is to provide the reader with insight for the modification 

of the models based on various economic and mathematical interpretations. Since the 

inflow and outflow assumptions for the models are analogous to the transfer of an 

infectious disease within a population (perhaps a problematic approach for the analysis of 

economic systems), basic economic principles are incorporated into two of the models. 

Since scale analysis can play an important role in the simplification of mathematical 

equations, time-scale modifications to an ODE model is also presented in this section. 

Analytical solutions to the models are difficult to obtain; therefore, reliance on 

numerical approximations for the analytical solutions will be paramount. Chapter 5 

introduces three numerical schemes for the acquisition of numerical solutions to the 

models—the Euler, backward in time-central in space (BTCS), and Euler-Maruyama 

methods. Matlab scripts and functions are written to implement these methods (Appendix 

C). An overview of the standalone graphical user interfaces written in the Matlab 

language to provide users with interactive simulations are also presented in this chapter. 
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Chapter 2: Ordinary Differential Equation Models for Metal Flows 

 

The static metal flow models established in industrial ecology coupled with U.S. 

Geological Survey data on metals (Appendix A) provide pertinent information on the past 

dynamic of the metals industry. From this information, past and present recyclability 

rates, metal availability, and industry efficiencies—valuable metrics for the 

understanding and improvement of the industry—can be ascertained. Static models and 

past system data, however, cannot provide a deterministic or probabilistic representation 

of the industry since they do not establish the governing dynamics underpinning the 

system, although correlations and dependencies can be understood through the 

application of statistical methods. Thus, accurate industry predictions, such as future 

metal availability, consumption, and recyclability rate, cannot be acquired through the 

use of these tools. The construction of dynamical models that describes the governing 

dynamics of the metal flow system can bridge this gap. A mathematically well-posed 

dynamical model for metal flows can, in theory, provide highly accurate predictions for a 

multitude of future conditions, such as efficiencies, consumption, metal sustainability, 

recyclability rates, etc. Therefore, it is advantageous for the development of such models.    

 This argument is not to diminish the importance or usefulness of the information 

provided by the USGS or the established static models. First and foremost, any 

dynamical model of metal flows should be build upon and adhere to the established static 
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models. The static models provide guidelines on the flow structure, sources and types of 

materials in the system, and system interactions. USGS data will provide a means for the 

optimization (Section 2.9) and testing of the dynamical models. In other words, any 

dynamical model of metal flows must be compliant on the a posteriori knowledge 

established by the static models and metal flow data sets.   

 This thesis establishes 23 dynamical metal flow models, each having varying 

purposes and layers of complexity. Three types of models are established, referred to as 

the PUE Models, PUEP Models, and PUEP Models with Inflow Domains. The PUE 

Models describe a quantity of metal that travels throughout a closed metal flow system. 

These models are established to offer intuition on the dynamics at work—supply, 

demand, and pricing—and provide a foundation for more elaborate modeling. These 

models, however, are not created to make predictions for or explain the nature of a 

particular metal industry. The PUEP Models describe a metal flow system that is not 

closed—the inclusion of metal losses and ore consumption—and contains the recycling 

of metals. These models are a simplistic representation of a metal flow industry and can 

be used to model metal industries on a global scale or a domestic industry not influence 

by foreign trade. The PUEP Models with Inflow Domains are elaborate models that 

describe intricate metal industries. Trade, ore consumption and production, recyclate 

collection, and new scrap usage are incorporated into these models.   

 Due to the intrinsic nature of the metal flow system, compartmental modeling is 

utilized to develop the dynamical models. As seen in Figure A.2, metal quantities can be 

assigned to demarcated locations or domains, such as production manufacture, use, or 
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end-of-life. The data that is collected on the metal industry also establishes these 

distinctions. Conservation of mass is inherent to this framework: all metal must be 

accounted for throughout the life of that metal—metal cannot be created nor destroy 

within the system’s domains. The dynamic metal flow models will assume that metal 

must reside in a specified disjoint domain (compartment) and conservation of mass must 

be adhered to during the transfer of metal from one domain to another. Since 

epidemiology has utilized compartment modeling for over a century, the mathematical 

formulations of epidemical models may provide a useful guide.    

 

2.1 PUE Model 

 To start with simplified models of metal flows, we will study the dynamics of a 

system containing three homogeneous disjoint domains: Production, Use, and End-of-

Life. It is assumed that the domains illustrated in Figure A.2 will be confined to these 

three classes. Although this minimalistic level of abstraction will not provide for a good 

representation of real-world observations for the flow of metals, these models will 

provide basic insights, notions, and intuition for more refined models.  

 The Production domain contains metal used in the construction of products, such 

as metal from ores (virgin material) or recyclates (new and old scrap). In the minerals 

industry, a distinction can be made as to the location in which ores resides; that is, 

Resource, Reserve Base, Reserve, etc. Each designation will have a quantity of ore 

associated to it, be it demonstrated or inferred, and will vary based of the source of 

information. Solely for the sake simplicity at this stage, ore contained in the Production 
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domain will not adhere to specific resource or reserve definition, but will be viewed as a 

theoretical entity having a specific initial amount, referred to as the initial condition or 

initial density. In other words, the PUE Model will describe a closed system for the flow 

of metal, meaning it will demonstrate the dynamics of a certain amount of ore and 

recyclate throughout the useable lifetime of that metal. Reserve and recyclate distinctions 

will be incorporated at a later stage.    

 The Use domain contains metal residing in the consumer market, in the form of 

metal products. Consumer metal products, such as cars, building material, or electronics, 

will reside in the Use domain for a specific amount of time, dictated by the useable life 

cycle of the product or a consumer discard or replacement of the product. Once the metal 

is discarded or no longer in use, the metal will enter the End-of-Life domain. 

Conservation of mass is intrinsic to this formulation: metal cannot be created or 

destroyed in any domain and all metal must be accounted for throughout the life cycle. 

This system is illustrated in Figure 2.1. 

 

Production

P

End-of-Life

E

Use

U

 

Figure 2.1: The PUE System for Metal Flows 

 

Let each domain be dependent only on a temporal variable  , with    . The following 

assumptions are made: 



8 

 

i. The governing dynamics of metal flows is intrinsically linked to economic supply and 

demand. The density of the Production domain can provide a measure for supply and 

the density of the Use domain can be a measure of demand. The rate of change of the 

Production domain, that is the amount of ore and recyclates being consumed to 

produce products, is dictated by some function of supply and demand. Assume that 

this rate of change is proportional to the product of the supply and demand measures: 

that is, –     where the constant   will be referred to as the supply-demand 

coefficient. Likewise, the rate of change of the Use domain is equal to    . (This 

may appear to be a gross oversimplification of supply and demand for metal 

commodities. In fact, there are numerous determinants for supply and demand and 

each commodity possesses a different set of determinants that should be considered 

on an individual basis. Future refinement of this work should start with the 

enhancement of the supply-demand component).  

ii. All metal products have a finite life and will be discarded at some time  . Assume that 

the product lifetime is distributed exponentially; thus, the mean product lifetime is 

defined as ∫    (   )    
 

 
    , where     is the exponential function and 

constant    . This implies that the rate of removal of metal from   is proportional 

to the amount of metal in  ; that is     for constant    . Thus, the rate at which 

metal enters   from   equals   . The coefficient   represents the lifetime rate for 

metal products with the average product lifetime equaling    . In this context,   is 

referred to as the end-of-life rate. A particular metal is used in multiple products, such 
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as in automobiles, construction material, and electronics. As such, each product will 

have a different   assigned to it; likewise, each metal will have a different  . 

As an illustration of these assumptions, take the production, consumption, and 

end-of-life of a particular metal used in the car industry as a case study. As a car is no 

longer operable, the metal from that car leaves the Use domain and enters the End-of-Life 

domain. The consumer will replace the old car with a new one, transferring metal from 

the Production domain into the Use domain. Depending on economic conditions at some 

time  , the consumer may decide to purchase multiple/fewer replacement cars or a 

larger/smaller vehicle requiring more/less metal. The supply-demand coefficient   is used 

to capture that information. To mimic a real-world scenario,   should be a function of 

time or a random variable. For simplicity at this stage,   is assumed to be a constant and 

complexity is introduced at a later stage. 

Defining the differentiable functions  ( ),  ( ), and  ( ) with respect to 

time     to describe the amount of metal in each domain at time   and combining the 

assumptions, the following system of ordinary differential equations is obtained (ODE 

PUE Model): 

   ( )

  
     ( ) ( )  ( )    ,  ( )    

(2.1) 
   ( )

  
   ( ) ( )    ( )  ( )    ,  ( )    

   ( )

  
   ( )  ( )    ,  ( )    
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2.2 PUEP Model 

 The model discussed in the previous section described a closed metal flow system 

in which no metal was lost during production processes or new metal introduced in the 

form of virgin metal or recyclate. The model was beneficial in two ways: it explains the 

dynamics of a discrete quantity of metal in the commodity economy that was based solely 

on supply-demand and product lifetime rates; and it provided a foundation for more 

elaborate modeling. The intent of this section is to expound on the model by 

incorporating dynamics inherent to metal flows: metal recycling, metal loss, and ore 

production. The model developed will be referred to as the PUEP Model. 

 In each domain of metal flows, a certain amount of metal can be lost. In the 

production of metal products, metal is lost in the form of shavings, trimmings, or 

cuttings. Metal can be lost from the Use and End-of-Life domains if metal products 

residing in these domains are discarded in such a manner that future recycling of the 

products cannot take place, as by discarding into a landfill. In Figure A.2, this metal lost 

is classified as residues. As a refinement to the PUE Model, we can introduce a 

parameter that captures this information. Let    ( ),    ( ), and    ( ) be the quantity 

of metal lost at some time   from the Production, Use, and End-of-Life domains, 

respectively, where         ,         , and         . The fraction    will be referred 

to as the metal lost rates for domain D. These functions are analogous to death rates 

observed in epidemiological models. 

 An important consideration of metal flows is the recycling of metal. 

Theoretically, metal can be recycled infinitely many times, forming a cost effective and 
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reliable source of metal for the industry. As a metal product is discarded and enters the 

End-of-Life domain, it can reenter the Production domain if the metal is recycled. It 

follows that the rate of removal of metal from the End-of-Life domain is proportional to 

the amount of metal in that domain: i.e.    ( ), where   will be called the recyclability 

rate.  

With the metal loss and recyclability rates defined for the domains, the End-of-

Life domain takes on a different meaning from the one prescribed in the PUE Model. In 

the PUE Model, the End-of-Life domain is populated with all discarded metal. The End-

of-Life domain in the PUEP Model can be viewed as a sort of “metals repository”. The 

domain contains discarded metal that can, at a future time, reenter the system if recycled. 

This domain is analogous to the removal domain in the SIRS model, in which individuals 

are temporarily immune to the infectious disease. This domain definition is advantageous 

in the construction of efficiency criteria. In order for a metal flow system to better utilize 

recycled metal, the collection of discarded metal, indicated by the End-of-Life domain’s 

density, must be maximized. 

  A “birth rate” term should to be added to the Production compartment to mimic 

the entry of metal through the mining of ore. In endemic models, the birth rate is in terms 

of the total population of the system, defined as    (  )   (  )   (  ) at time   . In 

industrial ecology, the rate of entry of ore into the Production domain is governed by the 

available natural resources of the metal ore. At each time step, a certain fraction of the 

ore reserve can be economically extracted and will enter the Production domain. This 

availability can be modeled based on a coefficient, say  . Therefore we obtain the ore 
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rate term   ( ), where  ( ) is a function of time representing the amount of ore reserve 

and   will be referred to as the ore availability rate. Later, the assumption will be made 

that   is a separate domain defined as a function of independent variables. Figure 2.2 

illustrates the assumptions discussed. 

 

Production

P

Use

U

End-of-Life

E

Ore
Loss

Loss
Loss

Old Scrap 

(Recycled Metal)

 

Figure 2.2: The PUEP System for Metal Flows 

 

At this juncture, it is important to make a distinction between the two metal 

supplies present in the model: ore supply and refined metal supply. The ore supply is 

indicated by the function  , whereas the refined metal supply is indicated by the density 

of  . Since our model is governed by supply and demand, as in many economic systems, 

we must specify which supply is governing the system. For this work, the assumption is 

made that the refined metal supply drives the supply-demand dynamic, although the 

argument can be made to the contrary. A refinement of this thesis could consider 

reformulating the supply-demand dynamic based on ore supply. 
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 Let us assume that the metal flow domains are functions with respect to time   

 . Incorporating our metal loss, recyclability, and ore terms into the PUE Model (2.1), the 

ODE PUEP Model is obtained: 

   ( )

  
   ( )    ( ) ( )    ( )      ( )  ( )     

(2.2) 
   ( )

  
   ( ) ( )    ( )     ( )  ( )     

   ( )

  
   ( )    ( )     ( )  ( )     

 

2.3 PUEP Model with Inflow Domains 

 The PUEP Model introduced recycling, metal loss, and ore in order to establish a 

better representation for the flow of metal. A distinction can be made as to the type of 

recycled material entering the Production domain, which has major implications for the 

metal industry. The virgin metal entering the Production domain in the PUEP Models 

was described as a function of time, but in fact should be model as a separate domain 

since it changes with respect to time and pricing. It is also beneficial to model the inflow 

of virgin metal as a separate domain in attempts to construct sustainability thresholds. 

The purpose of this section is to incorporate Inflow Domains into the models to better 

represent metal flows. 

 The metal industry makes a distinction between the types of recycled metal. In 

this work, the two types of recycled material that will be explored are old scrap and new 

scrap. Old scrap is recycled metal that is obtained from discarded products. New scrap is 
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recycled material that is obtained from metal discarded during the manufacturing of 

products, in the form of trimmings, shavings, and cuttings. There is a major economic 

and industry difference between these two types of scrap. Old scrap is typically more 

energy, labor, and monetarily intensive to extract metal in comparison to new scrap. The 

extraction of metal from discarded products relies mainly on the products composition 

and recycling technologies. New scrap exists in a purer metal or alloy state and can be 

introduced back into the manufacture process more readily.  

To capture this metal distinction, an incorporation of the inflow domains—Old 

Scrap O and New Scrap N—into the model is made. Metal composing the Old Scrap 

domain comes from recycled metal that exits the End-of-Life domain. This metal can be 

viewed as the collected scrap for the purposes of recycling and is referred to in industrial 

ecology as the Scrap Supply Availability. With the Old Scrap domain defined in this 

manner, the End-of-Life domain takes on a new meaning. The End-of-Life domain 

contains metal from products that reached their useful lifetime and is available for 

recycling. In industrial ecology, this domain is sometimes referred to as the Recyclate 

Supply Availability. The New Scrap domain contains metal flowing out of the Production 

domain and flowing back into Production.   

The inflow of ore into the Production domain will be modeled using the Virgin 

Metal domain, which consists of metal ore used in the production of products. In this 

section, the Virgin Metal domain will consist of ore in metal reserves. However, a 

reformulation of this domain will be needed in order to mimic data sets provided by the 
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USGS, which is accomplished in Section 2.5.  Figure 2.3 illustrates the inclusion of these 

inflow domains. 
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Figure 2.3: The PUEP with Inflow Domains System for Metal Flows 

 

As seen in the previous model, the quantity of metal lost in a domain   can be 

model using a “death rate” term    ( ), where          . The metal loss in the Virgin 

Metal, Old Scrap, and New Scrap domains due to metal manufacturing or processing can 

be model using the loss rate terms     ( ),    ( ), and    ( ), respectively, where 

        ,         , and         . The fraction    will be referred to as the metal lost 

rates for domain  .  

The rate of metal removal from the Virgin Metal domain is dictated by the 

availability of ore (“Reserves”) that will feed the Production domain. Assuming that a 

certain fraction   of the Reserve is available to supply the Production domain, we can 

model the outflow of metal from the Virgin Metal domain into the Production domain by 

the term   ( ).  
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The inflow of metal into the Production domain entering from the New Scrap and 

Old Scrap domains can be model with the terms    ( ) and    ( ), respectively. The 

outflow of metal from the Production domain entering the New Scrap domain can be 

captured by the term    ( ). The fractions   ,   , and    are referred to as the 

recyclability rates of old scrap, new scrap, and production. In practice, the metal industry 

will observe         .  

 Assume that the amount of metal in each domain is described by differentiable 

functions with respect to the temporal variable    . Introducing the inflow domains 

into the ODE PUEP Model (2.2), the ODE PUEP Model with Inflow Domains is 

obtained: 

   ( )

  
    ( )      ( ) 

(2.3) 

   ( )

  
   ( )    ( ) ( )     ( )     ( )     ( )      ( ) 

   ( )

  
    ( )     ( )      ( ) 

   ( )

  
   ( ) ( )    ( )     ( ) 

   ( )

  
   ( )     ( )     ( ) 

   ( )

  
    ( )     ( )      ( ) 

   ( )    , 

 ( )    , 

 ( )    , 

 ( )    , 

 ( )     

 ( )     
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2.4 PUEP Model with Trade and Stock Considerations 

 When studying the dynamics of metal flows occurring inside the boundaries of a 

country, trade (imports and exports of metals) and stocks (government and industry metal 

stockpiles) provide a major source of inflow and outflow of metals. For example, the U.S. 

cesium market is 100% reliant on imports to feed domestic consumption, since no cesium 

ore is mined in the United States [3], which implies that a cesium compartmental model 

must have Imports, Old Scrap, and New Scrap as inflows into the Production domain. 

The purpose of this section is to establish a model with trade and stock considerations. 

The model produced can be used to study the flow of metals for a particular county. 

 Importation and stock releases can be seen as metal inflows into the metal flow 

system. Metal is imported in three forms: ore, metal products, and old scrap. Ore that is 

mined in another country can be imported for processing or refinement, entering the 

Production domain. Metal products that are imported, such as cars, electronics, or 

building material, will enter the Use domain. Recyclable material collected in another 

country can be imported, which enters the Old Scrap domain. The total amount of metal 

imported can be expressed by a function of time  ( ). Let         ,         , and 

         be the fractions of the total metal imported that enters the Production, Use, and 

Old Scrap domains, respectively, implying    ( )      ( )      ( )   ( ). The term    

is the import rate for domain  . Metal stocks referred to stockpile releases that enter the 

Production domain. The quantity of metal being released from stockpiles can be modeled 

with the function of time  ( ) (see Figure 2.4).  
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 Exports of metal can be viewed as a form of metal loss from the system. Similar 

to metal imports, metal exports are in the form of ore, finished and semi-manufactured 

metal products, and old scrap. Unlike the import terms used above, the export terms 

should be modeled based on the amount of metal residing in the domain in which the 

metal is being exported. The quantity of ore, metal products, and old scrap exports are 

limited by the amount of metal residing in the Virgin Metal, Production, Use, and End-

of-Life domains. For example, ore exports cannot exceed the amount of metal in the 

Virgin Metal domain. A certain fraction    of the Virgin Metal domain will be exported 

in the form of ore. The fraction    of semi-fabricated metal product will leave the 

Production domain. The Use domain will export          of its metal in the form of 

finished metal products. The Old Scrap domain will export          of its metal. The 

fraction    will be referred to as the export rate for the  -domain.  

 Letting the differentiable functions  ( ),  ( ),  ( ),  ( ),  ( ), and  ( ) with 

respect to time     describe the amount of metal in each domain and incorporating 

trade and stock terms into the ODE PUEP Model with Inflow Domains (2.3), the ODE 

PUEP Model with Inflow Domains and Stock and Trade Considerations is obtained: 

  ( )

  
    ( )      ( )     ( ) 

(2.4) 

  ( )

  
   ( )    ( ) ( )     ( )     ( )     ( )      ( )     ( )

    ( )   ( ) 

  ( )

  
    ( )     ( )      ( ) 
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  ( )

  
   ( ) ( )    ( )     ( )     ( )     ( ) 

  ( )

  
   ( )     ( )     ( ) 

  ( )

  
    ( )     ( )      ( )     ( )     ( ) 

  ( )    , 

 ( )    , 

 ( )    , 

 ( )    , 

 ( )     

 ( )     

 

2.5 PUEP Model with a Reformulation of the Virgin Metal Domain 

In the previous inflow domain model, the Virgin Metal domain was defined to 

include Reserves of metal ore. In order to have a representation similar to the USGS 

materials flow, a distinction should be made between Reserves and ore production (also 

referred to as “production of primary metal”). In the process, two different entities are 

obtained: a Virgin Metal domain and a Reserve function.  

In industrial ecology, a metal Reserve refers to the mineral resource that can be 

economically extracted at a given time  . Ore production refers to the extraction of 

minerals for the Reserve. The new Virgin Metal domain will consist of metals in ore 

production. Since the amount of metal residing in the Reserve domain changes with 

respect to time    , the Reserve domain is modeled as the continuous function  ( ). 

The Virgin Metal changes with respect to the availability of ore, which is a fraction   of 

the metal Reserve  ( ), establishing the Virgin Metal rate of change as   ( ) and the 
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removal rate of the Reserve as    ( ). The coefficient   will be referred to as the ore 

availability coefficient.  

The supply-demand dynamic instituted in the previous model remains the same, 

since we are assuming that refined metal supply drives the dynamic. The inflow of metal 

entering the Production domain from the Virgin Metal domain is proportional to the 

amount of metal in the Virgin Metal domain. This term is given by   ( ), where 

        will be referred to as the ore processing rate. Likewise, the rate at which metal 

leaving the Virgin Metal domain is equal to    ( ). Figure 2.4 represents the metal flow 

dynamic.  
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Figure 2.4: The PUEP System with Inflow Domains and Stock and Trade Considerations 

 

Assume that the differentiable functions  ( ),  ( ),  ( ),  ( ),  ( ), and  ( ) 

with respect to   describe the amount of metal in the metal flow domains. If we modify 
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system (2.4) to capture the reformulation of the Virgin Metal domain, the following 

system of ordinary differential equations will be obtained (Modified ODE PUEP Model 

with Inflow Domains and Stock and Trade Considerations): 

  ( )

  
   ( )    ( )      ( )    ( ) 

(2.5) 

  ( )

  
   ( )    ( ) ( )     ( )     ( )     ( )      ( )     ( )

    ( )   ( ) 

  ( )

  
    ( )     ( )      ( ) 

  ( )

  
   ( ) ( )    ( )     ( )     ( )     ( ) 

  ( )

  
   ( )     ( )     ( ) 

  ( )

  
    ( )     ( )      ( )     ( )     ( ) 

   ( )    , 

 ( )    , 

 ( )    , 

 ( )    , 

 ( )     

 ( )     

The metal flow models developed throughout this chapter were formulated in a 

systematic manner by specifying the metal flow domains and defining the system of 

ordinary differential equations that describe the flow of metals throughout the system, 

with complexity being added to the previous model. This formulation style lends well in 

the construction phase of mathematical modeling. Many of the models, however, can be 

generalized, meaning one model can produce other models through the manipulation of 

the coefficients.  
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 The ordinary differential equation models constructed in Sections 2.1 and 2.2 can 

be generalized by the ODE PUEP Model of Section 2.2. To obtain the ODE PUE Model, 

the coefficients  ,  ,   ,   , and    should be set to 0. Likewise, the models constructed in 

Section 2.3 through 2.5 can be obtained from the Modified ODE PUEP Model with 

Inflow Domains and Stock and Trade Considerations by setting relevant coefficient equal 

to 0. 

 

2.6 Model Modifications 

The metal flow models discussed throughout this chapter were constructed based 

on numerous assumptions, many of which were analogous to ideas appearing in 

population dynamics. An economist studying this work can make the argument that the 

logic behind these assumptions does not conform to realistic economic governance. 

Although this argument is legitimate, the major tenant of this thesis is not to develop 

standalone economic models for metal flows, but merely to provide a foundation for 

more sophisticated and elaborate modeling. In other words, the ideas and techniques 

discussed throughout can be used as tools by experts in industrial ecology for advanced, 

multifaceted models. As such, it will be the purpose of this section to demonstrate the 

manner in which modifications can be made to the metal flow models that would better 

adhere to economic principles. The first section will incorporate the principle of 

economic equilibrium into the ODE PUE Model. In the second section, Hicksian business 

cycle theory is incorporated into the ODE PUEP Model. Since the time scales associated 

with the Production domain is very small in comparison to the scales associated with the 
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Use domain, the third section will introduce simplifications to the ODE PUEP Model 

using time-scale analysis.   

 

2.6.1 Ordinary Differential Equation PUE Model with Economic Equilibrium  

 Recall that the ODE PUE and ODE PUEP Models describe the flow of metal for 

systems consisting of 3 disjoint, homogenous domains (see Figures 2.1 and 2.2). The 

assumption was made that the flow of metal from the Production domain into the Use 

domain at time   was proportional to the product of the density of the Production domain 

and the density of the Use domain for time  :   ( ) ( ). This assumption stemmed from 

the notion that supply (measured by the Production density) and demand (measured by 

the Use density) governed the transfer of metal. This argument, however, is analogous to 

the governing dynamic of the SIR model in epidemic compartmental modeling and might 

not provide a true economic representation. To alleviate this concern, economic 

principles can be incorporated into the system. In this section, we will assume that the 

transfer of metal from the Production domain into the Use domain is dictated by the 

demand of metal products by the consumer market. Thus, we will set out to find a 

demand function,  ( ), that will replace the supply/demand term   ( ) ( ).   

 The principle of economic equilibrium for supply and demand, as discussed in 

[17], will be used to determine the demand function. Let   represent the price of metal, 

 ( ) represents the demand for metal products at price  , and  ( ) represents the supply 

of metal products at price  . The following assumptions are established: 

 (  )    : Metal consumers will demand all available metal (  ) priced at      
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 (  )   : Metal consumers will not demand metal priced at       

 (  )   : Metal suppliers will not supply metal priced at       

 (  )    : Metal suppliers will supply all available metal (  ) priced at      

Note that      ,      ,     , and     . Assume that the economic system is 

governed by a linear system: 

  ( )  
   

     
  

    

     
    

 ( )  
  

     
  

    

     
 

(2.6) 

Figure 2.5 depicts the supply-demand curves for this economic system. 
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Figure 2.5: Economic Equilibrium for Linear Supply and Demand Curves 
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As in the ODE PUE Model of Section 2.1, the assumption is made that the 

Production domain comprises all metal that will be used in the construction of metal 

products, which consists of metal ore, recycled metal, and refined metal products. The 

assumption is made that the amount of refined metal products for time  , measured by 

  ( ) with        , represents the supply of the system that is at economic 

equilibrium—supply and demand are equal. Let   ( ) represent the equilibrium price at 

time  . From (2.6), we will obtain 

   ( )  
  

     
  ( )  

    

     
  

     ( )  
     

  
  ( )     (2.7) 

Therefore, demand at equilibrium is defined as 

 ( )  
   

     
(
     

  
  ( )    )  

    

     
    (2.8) 

Incorporating the demand function (2.8) into the ODE PUE Model (2.1), the ODE PUE 

Model with Economic Equilibrium is obtained: 

  ( )

  
  

  

     
(
     

  
  ( )    )  

    

     
    

  ( )

  
 

   

     
(
     

  
  ( )    )  

    

     
      ( ) 

  ( )

  
   ( ) 

(2.9) 

where      ,      ,            ,     ,  ( )    ,  ( )    ,  ( )  

  ,  ( )   ,  ( )   , and  ( )   . 
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 In order for the system to be well define, that is if the domains remain non-

negative for all time  , the following inequality must hold: 

   

     
(
     

  
  ( )    )  

    

     
     ( ) (2.10) 

 implying that the following condition must hold: 

(     ) ( 
     

  
 

      

  
)
  

  ( ) (2.11) 

 

2.6.2 Ordinary Differential Equation PUEP Model with Hicksian Business Cycles 

 The ODE PUEP Model of Section 2.2 contained three metal inflows that can be 

assumed to be governed by different types of demand: the inclusion of metal into the 

Production domain in the form of ore metal indicated by the term   ( ); the inclusion of 

metal into the Use domain from the Production domain dictated by   ( ) ( ); and the 

inclusion of metal into the Production domain from the End-of-Life domain indicated by 

  ( ). To illustrate the manner to which these terms can be modeled using economic 

principles, a Hicksian business cycle formulation, as discussed in [33], is developed for 

these terms, thus establishing a discrete-time system for the flow of metals. 

  It is assumed that the demand dynamics of the ODE PUEP Model can be 

measured by the consumption of metal. As in a Hicksian formulation, we will assume 

that metal consumption   at time   is proportional to income   at time    :         . 

Since we are dealing with three different economic markets (mineral commodity, 

consumer, and metal scrap markets), we must make a distinction between the types of 

consumptions and incomes. Consumption of ore metal by the Production domain (metal 
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product manufacturers) at time  , indicated by   
 , is assumed to be proportional to the 

income of the Production domain     
  at time    :   

        
 . Likewise, the 

consumption of metal products by the Use domain (consumer market)   
  will equal 

      
  and the consumption of scrap by the Production domain is defined as   

  

      
 . If we assume that the coefficients change over time, then we have consumption 

equations with non-constant coefficients:   
    

     
 ,   

    
     

 , and   
    

     
 . 

 If we incorporate the consumption equations into the ODE PUEP Model by 

establishing the rate of change of the domains as difference equations (since the 

consumptions are defined as discrete time maps), we will obtain the ODE PUEP Model 

with Hicksian Business Cycles:       

            (  
     

    
     

    
     

        )  

            (  
     

              ) (2.12) 

            (        
     

        )  

 

2.6.3 Time Scale Analysis for the ODE PUEP Model 

Scale analysis can be used to simplify equations where the temporal or spatial 

scales for various terms are different by orders of magnitude [8]. For a specific metal in 

metal flow analysis, the temporal scales between the Production and the Use domains can 

differ by orders of magnitude. For example, the lifetime rate of aluminum in 

infrastructure, which is given by 
 

 
 in the ODE PUEP Model, is of the order of 100 years, 

whereas the product manufacture time, given by 
 

 
, is of the order of weeks. A simplified 
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version of the ODE PUEP Model could involve eliminating the Production domain by 

including it into the Use domain. This section will present a time-scale modification for 

the ODE PUEP Model and discuss the benefits and limitations for this approach. 

In order to eliminate the product manufacture component of the ODE PUEP 

Model, the assumption will be made that the metal flow system consists of two discrete 

homogeneous domain—Use and End-of-Life—as depicted in Figure 2.6. The Use 

domain will consist of processed and refined ore, metal in the manufacturing of consumer 

products, and products in the consumer market. The Production domain that was 

constructed for the ODE PUEP Model will reside in the Use domain. As such, the 

transfer of metal between the Production and Use domains will be eliminated. The End-

of-Life domain consists of metal that has been discarded after it reaches its useable 

lifetime. Metal losses will be endured at the product manufacturing phase, given by 

  (  ( )), in the consumer market,    ( ), and in discarded products,    ( ). Ore 

material will enter the Use domain, given by the term   ( ). Old scrap will reenter the 

Use domain from the End-of-Life domain, which is captured by the term   ( ). 

Collecting these terms, the Two Domain ODE PUEP Model (2.13) will be obtained.   
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Figure 2.6: Two Domain PUEP System for Metal Flows 

 

 
  ( )

  
   ( )(    )    ( )     ( )    ( )  ( )     

(2.13) 

 
  ( )

  
   ( )    ( )     ( )  ( )     

 The Two Domain ODE PUEP Model (2.13) approximates the ODE PUEP Model 

rather closely for metals systems with small loss rates, small product manufacture rate, 

and long product lifetimes (see Figures 2.7 and 2.8). The simplified model, however, 

does not accurately approximate the ODE PUEP Model where loss rates are high or the 

product manufacture and product lifetime rates are similar (see Figure 2.9 and 2.10). 
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Figure 2.7: Model Comparison for Aluminum in Infrastructure: Two Domain ODE PUEP Model 

vs. the ODE PUEP Model. The following parameters were considered:  ( )     ( )  
   ( )      ( )                                           . The choice 

of parameters may describe aluminum metal used in infrastructure. 

 

 
 

Figure 2.8: Model Comparison for Aluminum in Automobiles: Two Domain ODE PUEP Model 

vs. the ODE PUEP Model. The following parameters were considered:  ( )     ( )  
   ( )      ( )                                           . The choice 

of parameters may describe aluminum metal used in automobiles. 
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Figure 2.9: Model Comparison for Aluminum in Packaging: Two Domain ODE PUEP Model vs. 

the ODE PUEP Model. The following parameters were considered:  ( )     ( )     ( )  
    ( )                                         . The choice of parameters 

may describe aluminum metal used in packaging. 

 

 
 

Figure 2.10: Model Comparison for Aluminum in Infrastructure, with high loss rates: Two 

Domain ODE PUEP Model vs. the ODE PUEP Model. The following parameters were 

considered:  ( )     ( )     ( )      ( )                               
                 . The choice of parameters may describe aluminum metal used in 

infrastructure, with large loss rates. 
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 The time scale simplification is beneficial when the entire dynamic of the metal 

flow system is required, as opposed to the dynamics of individual domains. The 

simplification is advantageous for analysis (it is easier to analyze a smaller system of 

equations) and in computation (solving smaller systems reduces computational costs).  

 The simplification may hinder a few elements inherent to the original models. 

First, the dynamics for particular domains will be hard to acquire since domains are 

contained in other domains. For example, the dynamics of the Production domain as 

defined in the ODE PUEP Model will be impossible to obtain using the Two Domain 

ODE PUEP Model since the interaction between the Production and Use domains was 

eliminated. Second, sustainability thresholds may be hard to obtain depending of the 

simplification. Take, for example, a simplification of the inflow domain models of 

Sections 2.3-2.5 by eliminating the Virgin Metal domain. Calculating sustainability by 

setting 
  ( )

  
   will be impossible. 

 

2.7 Well-Posedness for the Dynamic Metal Flow Models 

 Existence, uniqueness, and stability are fundamental elements in the theoretical 

study of differential equations [14] and are the properties required for a mathematical 

model of a physical phenomenon to be considered “well-posed” [19]. As such, the 

models developed in this chapter must demonstrate these properties in order for the 

models to be considered reliable mathematical representation of metal flows. In the first 

section, existence and uniqueness of a solution to the models is demonstrated through the 

use of an existence and uniqueness theorem discussed in [2] and proven in [11]. The 
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second section demonstrates the criteria required to guarantee stable solutions for the 

models.  

     

2.7.1 Existence and Uniqueness 

 There are several existence and uniqueness theorems for initial value problems 

which can be extended to systems of ordinary differential equations [14]. Theorem 2.1 

can be used to prove existence and uniqueness for the nonlinear metal flow models. 

  

Theorem 2.1   Existence and Uniqueness of a Solution for a System of Ordinary 

Differential Equations: Consider the following system of ordinary differential equations   

  ( )

  
  ( ( )) 

where 

 ( )  (

  ( )

  ( )
 

  ( )

) 

and  

 ( )  (

  (              )

  (              )
 

  (              )

) 

Assume that   and its first partial derivatives with respect to x are continuous on an open 

set  . Then for any real number    and real vector    there is an open interval 

containing   , on which there exists a solution satisfying the initial conditions  (  )  

  , and the solution is unique. 
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 In the development of the metal flow models in Section 2.1-2.5, the functions 

 ( ),  ( ),  ( ),  ( ),  ( ), and  ( ) were assumed to be differentiable function with 

respect to time   on the open set (   ), implying continuity. We must demonstrate that 

the first partial derivatives of   with respect to   (           )  are also continuous 

in (   ) in order to satisfy Theorem 2.1, thus proving existence and uniqueness of a 

solution for the models.  

Since system (2.1) can be obtained from system (2.2) by setting the coefficients  , 

 ,   ,   , and    equal to 0, only the partial derivatives of   with respect to   of system 

(2.2) are analyzed. Likewise, only the partial derivatives of (2.5) with respect to   are 

analyzed since systems (2.3) and (2.4) can be obtained from (2.5).    

For the ODE PUEP Model in Section 2.2,  ( )  (

              
          
         

) where 

 ,  ,  ,   ,   , and    are constants and  ,  ,  , and   are function with respect to time,  

implying that  

  ( )

  
 (

 
 
 
)  

  ( )

  
 (

       
  
 

)  

  ( )

  
 (

   
       

 
)  

  ( )

  
 (

 
 

     
) 

(2.14) 

Since   and   are continuous function and  ,  ,  ,  ,   ,   , and    are constants, then 
  ( )

  
 

is continuous on (   ) by (2.14), thus implying that there exists a unique solution for the 

three-domain ordinary differential equation models.  
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 For the Modified ODE PUEP Model with Inflow Domains and Stock and Trade 

Considerations,   is defined as  

 ( )  

(

 
 
 
 

              
                                 

            

                  
          

                    )

 
 
 
 

 (2.15) 

which follows that  
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(2.16) 

Since  ,  ,  ,  ,  , and   are defined as continuous function and  ,  ,  ,  ,   ,   ,   ,   , 

  ,   ,   ,   ,   ,   ,   ,   , and    are constants, then 
  ( )

  
 is continuous on (   ) by (2.16), 

thus implying the existence of a unique solution for the six-domain ordinary differential 

equation models.  
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Equations (2.14) and (2.16) demonstrates that in order for a unique solution to 

exist for the dynamic ordinary differential equation metal flow models, the functions 

representing the amount of metal in each metal domain must be continuous, with the 

system’s coefficients defined as constants (note, existence and uniqueness will still hold 

if the coefficients were defined as continuous functions). 

 

2.7.2 Stability 

The stability for a system of ordinary differential equations can be analyzed by 

observing the behavior when perturbing the fixed points (equilibria or steady states) of 

the system. The eigenvalues of the Jacobian of the system evaluated at the fixed points 

can demonstrate this behavior, thus establishing stability criteria for the model [2]. In 

other words, the stability of the systems can be analyzed by taking a local linear 

approximation in the neighborhood of an isolated fixed point. This procedure is referred 

as an eigenvalue stability method [28]. If the eigenvalues do not have real parts equal to 

0, then the fixed points are called hyperbolic and the eigenvalues will describe the 

stability of the system at the fixed point. If the real part of any of the eigenvalues is 0, 

then higher order terms must be taken to determine the stability. If the real part of each of 

the eigenvalues is strictly negative, then the system is asymptotically stable at the fixed 

point. If the real part of any of the eigenvalues is nonnegative, then the system is 

considered unstable at that particular fixed point.  

In this section, a stability criterion is determined for systems (2.2) through (2.5). 

For systems (2.2) to (2.3), the fixed points and Jacobians for systems are explicitly 
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determined and Matlab scripts are written to determine the eigenvalues of the Jacobian 

evaluated at the fixed points. Explicit forms of the fixed points for system (2.4) and (2.5) 

are difficult to obtain; therefore, Matlab programs were written to find the fixed points 

and describe the stability at those points.   

The fixed points for the ODE PUE Model (2.1) can be found by solving the 

following system of equations 

   ( ) ( )                 

(2.17)   ( ) ( )    ( )    

  ( )                              

Thus, the fixed points are (        )  (
 

 
    ) where    . Since we have the 

condition    , there are no fixed points in the defined domain.  

By setting 
  ( )

  
  , 

  ( )

  
  , and 

  ( )

  
  , the fixed points of the ODE PUEP 

Model are obtained: 

(        )  (
 

 
 

  
 

 (   
  
 

(    )) (     
  

    
)
  

 

 

    
(   

  
 

(    )) (     
  

    
)
  

) 

(2.18) 

Note that     ,     , and      since the system is only defined for positive metal 

quantities. The Jacobian for (2.2) evaluated at the fixed points is  
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) (2.19) 

The eigenvalues   for  (        ) can be found by solving  

   ( (        )    )    (2.20) 

Thus, the eigenvalues are the roots of  

(      )(          )(       )  (    )(   )(       )   

(  (   
  
 

(    )) (     
  

    
)
  

  ) (  )(     
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(    )) (     
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(    )) (     
  

    
)
  

) (     

  )    

(2.21) 

As discussed above, the real part of the eigenvalues will describe the stability of 

the system at the fixed point. In order to evaluate the stability of the fixed points for this 

system, a Matlab script was written that allows the user to input various system 

parameters and a description of the stability is provided for the fixed points (see 

Appendix C.1). For example, the fixed point (        )  (              ) with 

parameters (                  )  (                              ) is unstable since 

the eigenvalues are                 ,                 , and          , 

which have a positive real part.  
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The fixed points (                 ) for the ODE PUEP Model with Inflow 

Domains are given by 

        
    

 
    

  

 

    

     
  

(2.22)    ( 
    

 
( 

 
   )    

  

 

    

     
) (     

     

     
(     ))

  

  

   
  

 

     
( 

    
 

(     )    
  
 

    
     

)(     
     

     
(     ))

  

    

   
  

     

 

     
( 

    
 

(     )

   
  

 

    
     

)(     
     

     
(     ))

  

  

 

The Jacobian for the system is 

 (                 )
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(2.23) 

A Matlab function was written to allow a user to enter various parameters and obtain a 

description of the stability at the fixed point (see Appendix C.2). 

To describe the stability of (2.4) and (2.5), analysis can be performed on the fixed 

points of the system; however, the explicit form of the fixed points will be hard to obtain 

since the models are nonlinear. As such, a Matlab program was written to describe the 
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stability of fixed points, computed numerically, for user-defined parameters (see 

Appendix C.3 and C.4). 

 

2.8 Sustainability Thresholds 

A condition that is important for the study of metal flows is the condition under 

which sustainability will occur. Metal sustainability has various meanings and 

connotations dependent on the context, but for the purposes of this thesis, metal 

sustainability will be defined as the condition to which the use of virgin metal is 

eliminated from the system. Mathematically, this definition is straightforward to acquire: 

set the rate of change of the “ore” domain equal to 0. Throughout this work, this 

condition is defined as the “sustainability threshold”. More input is required to ascertain 

sustainability thresholds given by other definitions, such as the following: (1) a system 

that will not deplete the metal resource; or (2) using metals at a level that will preserve 

present and future metal needs. To an extent, these two thresholds are subjective—the 

amount of resources and present and future metal needs are not explicitly expressed in the 

model and will require the examiner’s judgment. Substituting “usage” for “need” in 

definition (2) can provide a method for the acquisition of the threshold: solving  ( )  

 ( ) where  ( ) represents current metal usage and  ( ) represents future metal usage. 

However, since the nonlinear metal flow models are difficult to solved analytically, this 

threshold will be difficult to compute, but could provide a valuable assessment.  

In this section, sustainability thresholds for the ODE PUE Model, ODE PUEP 

Model with Inflow Domains, and ODE PUEP Model with Inflow Domains and Stock and 
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Trade Considerations will be established. Other model’s thresholds can be acquired 

through the extension of these examples.    

To find the sustainability threshold for (2.1), the first equation needs to be 

reformulated to make the distinction between ore and recyclate metals. Note that the 

inflow models establish these domains explicitly; as a result, making the thresholds more 

readily accessible. As previously mentioned, the Production domain is comprised of ore 

and recyclate metal. Let         be the fraction of the Production domain that 

comprises ore, and then     the fraction of the Production domain that comes from 

recyclate material. Define the differentiable functions  ( )    ( ) and  ( )  

(   ) ( ), then 

 ( )     ( )  (   ) ( )   ( )   ( ) (2.24) 

Since  ( ) and  ( ) are differentiable, we have from the first equation of (2.1) 

  ( )

  
  

  ( )

  
 

  ( )

  
   ( ( )   ( )) ( )     ( ) ( )    ( ) ( )  

 
  ( )

  
    ( ) ( )    ( ) ( )  

  ( )

  
 

(2.25) 

Setting     , we will obtain 

  ( )

  
   ( ) ( )    ( ) ( )    (2.26) 

The solution to the differential equation is 

 ( )          ∫ ( )  ∫    ∫ ( )   ( ) ( )     (2.27) 

Notice that threshold (2.27) only has trivial solutions:  ( )      or  ( )  

 ( )   , which is consistent with this model. The ODE PUE Model describes how a 
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specified quantity of metal flows through a system. In order to obtain an equilibrium in 

which no virgin metal is consumed, the system must have no demand for it and recyclate 

metal is depleted, given by     and  ( )   , or virgin metal and recyclate must be 

depleted, given by  ( )    and  ( )   . To describe this dynamic qualitatively, 

sustainability (as define narrowly above) can only be achieved within this model under 

two circumstances: (i) metal is not available to be consumed or (ii) there is no demand for 

metal and recyclate metal is no longer available. This threshold analysis demonstrates 

that in a closed economic system which contains only a finite amount of metal with no 

continuous inflow of recycled metal to supply a demand, the depletion of metal resources 

is inevitable.   

With a Virgin Metal domain established in the ODE PUEP Model with Inflow 

Domains, a sustainability threshold is readily attained by setting the rate of change of the 

Virgin Metal equal to 0; thus, implying that no ore metal will be used to sustain the 

system. From the first 2 equations of (2.3), we will obtain  

  ( )

  
  

  ( )

  
   ( ) ( )     ( )     ( )     ( )     ( )     ( ) (2.28) 

Setting 
  ( )

  
  , we will obtain 

  ( )

  
  ( )(  ( )       )  (    ( )     ( )     ( ))    (2.29) 

with a solution 

 ( )       ∫(  ( )      )  ∫   ∫(  ( )      )  (   ( )     ( )     ( ))   (2.30) 

If (2.32) holds, then the sustainability threshold is met. 
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A sustainability threshold for (2.4) can be ascertained by setting the rate of change 

of the Virgin Metal domain equation to 0. In doing so, the conditions under which no 

metal ore will be needed to sustain the metal flow system will be established. From the 

first two equations of (2.4), we will obtain 

  ( )

  
  

  ( )

  
  ( )(   ( )           )

 (   ( )     ( )     ( )   ( )      ( )     ( )) 

(2.31) 

Setting 
  ( )

  
  , we will obtain 

  ( )

  
  ( )(  ( )           )

 (    ( )     ( )     ( )   ( )      ( )     ( ))

   

(2.32) 

with a solution 

 ( )       ∫(  ( )          )  ∫   ∫(  ( )          )  (   ( )     ( )

    ( )   ( )     ( )     ( ))   

(2.33) 

If (2.35) holds, then a sustainability threshold for the system is met. 

 

2.9 Parameter Optimization for the Dynamic Metal Flow Models 

 The models presented in this chapter created a mathematical framework for metal 

flows that were dependent on multiple parameters, such as supply and demand, end-of-

life, recyclability, and metal loss rates. These parameters are reliant on the type of metal 

industry under study, and should be constructed on a case-by-case basis. Given empirical 
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data on metal flows for a particular industry, the best parameters for a model that best 

represents the empirical data can be computed by using parameter optimization 

techniques. The assumption will be made that a particular metal flow model best 

represents the dynamics of an industry and data will be complied for the models’ 

domains. In order to obtain the optimal parameters   for the model, we need to find   

that minimizes a cost function  ( )  ‖ ( )    ‖, where    is the empirical data and 

 ( ) is the analytical solution of the model. For the ordinary differential equation 

models, the Levenberg-Marquardt algorithm (LM) is applied.  

LM is an iterative method that finds a local minimum of a non-linear, multivariate 

function and is used to solve least-squares problems. LM is a combination of the steepest 

decent and Gauss-Newton’s methods. LM uses a trust-region over the line search strategy 

of Gauss-Newton in order to solve problems with rank-deficient or nearly rank-deficient 

Jacobian [9]. 

The first two sections will establish the modifications needed to implement the 

LM algorithm for a system of ordinary differential equations where their analytical 

solutions are unknown. The proceeding sections will establish the Jacobians and error 

vectors need in the LM algorithm for the 5 ordinary differential equation metal flow 

models. Implementation of the parameter optimization method for the ODE PUE Model 

written in the Matlab language is provided in Appendix C.5.   

 

2.9.1 Parameter Optimization for an Initial Value Problem 

 Consider the following initial value problem: 
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  ( )

  
   (     ) 

 ( )                     
 (2.34) 

The best parameter   (          ) such that  (   ) that satisfies (2.34) is close to 

an empirical data set    is sought. In order to acquire  , LM is implemented and detailed 

in the following algorithm. 

  

Algorithm 2.1   Levenberg-Marquardt Method for an Initial Value Problem 

Step 1: Let    be an initial guess for the sought parameter. If the analytical solution 

 (    ) is “close” to the empirical data set   , that is if  

 (  )  (∑(  (    )    
 ) 

 

   

)

 
 

 ‖ (  )    ‖                (2.35) 

then    is assumed to be the optimal parameter.   is referred to as the cost function 

and ‖ ‖ is the   -norm.  

Step 2: If  (  )           , an adjustment to    is made. Let          be the new 

adjusted parameter. For a small ‖  ‖, a Taylor series expansion applied to the 

analytical solution  (       ) yields 

 (       )    (    )       (2.36) 

where   is the Jacobian matrix 
  (    )

   
. The cost function then becomes 

 (  )  ‖ (     )    ‖   ‖      (    )    ‖  ‖      ‖    (2.37) 
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Step 3: Find   that minimizes  (  ).    is thus the solution to the linear least squares 

problem: the minimum is obtained when        is orthogonal to the column space 

of  , which implies that   (      )   . The    that meets this criteria is therefore 

the solution to the normal equations 

           (2.38) 

Step 4: The LM algorithm solves a slight variation of (2.38)—the augmented normal 

equations 

         (2.39) 

where             (   ), with   referred to as the damping term. 

Step 5: If the updated    leads to a reduction in error  , then the update is accepted, the 

damping term   is reduced and proceed to Step 1. Otherwise, the damping term is 

increased and proceed to Step 4.  

 

In order to implement Algorithm 2.1, a finite difference approximation for the 

analytical solution to (2.34) is used:  

            (        )                                             

 
     

   
 

   

   
   

 

   
 (        )                                                

 

 
     

   
   

 

   
 (        )    

 

   
 (            )   

   
 

   
 (        )    ∑

 

   
 (        )

 

   

 

(2.40) 
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which is the recursive relationship 
     

   
   

 

   
 (        ) for        . The 

Jacobian is therefore     
  (      )

   
, with each row computed recursively.  

 

2.9.2 Parameter Optimization for a System of Differential Equations 

 Consider the following system of ordinary differential equations 

  

  
 

(

 
 
 

  ( )

  
  ( )

  
  ( )

  )

 
 
 

 (

 (         )

 (         )

 (         )
)            

 ( )    

 ( )    

 ( )    

  (2.41) 

We want to find the best parameter   (          ) such that  (   ) satisfying (2.41) 

is close to an empirical data set   . Algorithm 2.1 can be extended for system (2.41), 

which is detailed in the following algorithm.  

 

Algorithm 2.2   Levenberg-Marquardt Method for a System of Ordinary 

Differential Equations 

Step 1: Let    be an initial guess for the sought parameter. If the analytical solution 

 (    ) is “close” to the empirical data set   , that is if we have 

      (  )  (∑‖ (  )    ‖ 

 

   

)

 
 

            (2.42) 

then    is assumed to be the optimal parameter.   is referred to as the cost function 

and ‖ ‖ is the   -norm.  
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Step 2: If  (  )           , we will need to adjust   . Let          be the new 

adjusted parameter. For a small ‖  ‖, applying a Taylor series expansion to the 

analytical solution  (       ) yields 

 (       )    (    )       (2.43) 

where   is the Jacobian matrix 
  (    )

   
. The cost function then becomes 

 (  )  ‖ (     )    ‖   ‖      (    )    ‖  ‖      ‖    (2.44) 

Step 3: Find   that minimizes  (  ).    is thus the solution to the linear least squares 

problem: the minimum is obtained when        is orthogonal to the column space 

of  , which implies that   (      )   . The    that meets this criteria is therefore 

the solution to the normal equations 

           (2.45) 

A finite difference approximation for the analytical solution to (2.41) will be used:  

            (              )            

            (              )           

            (              )           

(2.46) 

It follows that  

  (

             
 

             
 

             
 

) (2.47) 

As illustrated in (2.40), the Jacobian evaluated for    is computed recursively by: 
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   (      )

   
  

   (      )

   
   

   (      )

   

  
   (      )

   
  

   (      )

   
   

   (      )
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 (2.48) 

Step 4: The LM algorithm solves the augmented normal equations 

         (2.49) 

where             (   ) with   referred to as the damping term. 

Step 5: If the updated    leads to a reduction in error  , then the update is accepted, the 

damping term   is reduced and proceed to Step 1. Otherwise, the damping term is 

increased and proceed to Step 4.  

 

2.9.3 Parameter Optimization for the ODE PUE Model 

The parameters for the ODE PUE Model (   ) can be optimized using Algorithm 

2.2. Recall that   is the supply/demand rate and   is the end-of-life rate for the model. 

The optimization problem becomes: find the optimal (   ) such that (     ) which 

satisfies the ODE PUE Model is close to the empirical data set (        ). 

In order to construct the Jacobian matrix and the epsilon vectors need in the LM 

algorithm, the analytical solution to the model will be approximated using a first order 

finite difference scheme:   
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           (     )                                                    

           (          )                

           (   )                                                       

(2.50) 

By (2.48), the Jacobian for the system evaluated for a defined (   ) is 
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 (2.51) 

By (2.47), the epsilon vector for the system is 

  (

      (     )      
 

      (          )      
 

      (   )      
 

) 
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 (2.52) 

Now that the Jacobian matrix and  -vector are constructed for the system, the LM 

Algorithm 2.2 can be implemented. See Appendix C.5 for the source code.  

 

2.9.4 Parameter Optimization for the ODE PUEP Model 

Recall the ODE PUEP Model discussed in Section 2.2. The 

parameters (                ) that produces an analytical solution that are close to an 

empirical data set (        ) are sought. Recall that the parameters are 

  —Ore availability rate 

  —Supply/demand rate 

  —Recyclability rate  

  —End-of-life rate  

        —Loss rate of the Production, Use, and End-of-Life domains 

The analytical solution (     ) for the ODE PUEP Model is approximated using the 

finite difference scheme: 

           (                   )                                            (2.53) 
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           (               )                               

           (            )                                                          

It follows by (2.48) that the Jacobian for the system evaluated for a particular parameter 

  (                ) is  

    

(

 
 
 
 

   ( )

  

   ( )

  

   ( )

  

   ( )

  

   ( )

   

   ( )

   

   ( )

   
   ( )

  

   ( )

  

   ( )

  

   ( )

  

   ( )

   

   ( )

   

   ( )

   
   ( )

  

   ( )

  

   ( )

  

   ( )

  

   ( )

   

   ( )

   

   ( )

   )

 
 
 
 

   

   (

               
              
            

)                  

 

     

(

 
 
 
 
 
 
 
 
 

               
               
       

                         
              
              
       
                      
            

            

       
                  )

 
 
 
 
 
 
 
 
 

 (2.54) 

By (2.47), the distance error is  

  (

      (                   )      
 

      (               )      
 

      (            )      
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 (2.55) 

Now that the Jacobian matrix and  -vector are constructed for the system, the LM 

Algorithm 2.2 can be implemented.  

 

2.9.5 Parameter Optimization for the ODE PUEP with Inflow Domains Model 

Recall the ODE PUEP Model with Inflow Domains discussed in Section 2.3. 

Given empirical data of a metal industry, the optimal parameters 

  (                                   )  such that the analytical solution 

( ( )  ( )  ( )  ( )  ( )  ( )) to the model is close to an empirical data set are 

sought. As in the previous sections, the analytical solution to the model will be 

approximated with a finite difference scheme, which will be used to construct the 

Jacobian matrix and distance error of the system. With the Jacobian matrix and error 

vector in hand, the LM algorithm is implemented to compute the optimal parameters 

based on the empirical data set. 

The finite difference scheme for           for the model is as follows: 

            (         ) (2.56) 
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The Jacobian matrix for the system evaluated for parameter 

  (                                   ) is 
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(2.57) 

By (2.47), the distance error is  

  

(
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      (                               )      
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      (               )      
 

      (              )      
 

     (               )      
 )

 
 
 
 

 (2.58) 

 

2.9.6 Parameter Optimization for the ODE PUEP Model with Inflow Domains and 

Stock and Trade Considerations 

Recall the ODE PUEP Model with Inflow Domains and Stock and Trade 

Considerations constructed in Section 2.4. The parameters that can be optimize are 

  (                                                        ). Depending of the 



55 

 

manner to which imports and exports are defined in the model, the import and export 

rates can be considered to be known information and eliminated from the optimization 

problem. At this point, we will assume that the import and export rates are unknown and 

need to be optimized. The Jacobian matrix and the distance error are computed by using 

the finite difference approximation for the analytical solution of the model. 

The finite difference scheme for           is given by 

          (              ) 

           (                                            ) 

          (               ) 

           (                         ) 

           (              ) 

          (                         ) 

(2.59) 

The Jacobian matrix for the system evaluated for parameter   is computed by: 
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(2.60) 
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The distance error is computed by:  
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 (2.61) 

With the Jacobian matrix and epsilon vector computed, the LM algorithm to obtain the 

optimal parameters can be applied. 

 

2.9.7 Parameter Optimization for the Modified ODE PUEP Model with Inflow 

Domains and Stock and Trade Considerations 

The Modified ODE PUEP Model with Inflow Domains and Stock and Trade 

Considerations, as discussed in Section 2.5, reformulated the Virgin Metal domain in 

order to make a distinction between Reserves and production of primary metal. In order 

to accomplish this, the dynamics of the Virgin Metal and Production domains changed 

slightly with respect to the ODE PUEP Model with Inflow Domains and Stock and Trade 

Considerations, with the other 4 domain remaining unchanged. The inclusion and 

reformulation of terms in the first 2 equation of the model will likewise change the 

Jacobian matrix and distance error. The parameters that need to optimized for this model 

are   (                                                          ). As stated in 
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Section 2.9.6, if the trade coefficients are assumed to be known, then they can be 

eliminated from the optimization problem. The finite difference scheme for this model 

will remain the same as in (2.59), with changes only to the first 2 equations: 

          (                   ) 

           (                                            ) 

(2.62) 

The Jacobian matrix for the system evaluated for parameter   is computed by: 

    (      )        
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, with         the same as in (2.60) 

(2.63) 

The distance error for this model will be the same as in (5.61), with changes only to the 

first two equations:  
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 (2.64) 

With the Jacobian matrix and error distance computed for this model, the LM algorithm 

can be implemented to find the optimal parameters that produce an analytical solution 

that is close to empirical data. 
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Chapter 3: Partial Differential Equation Models for Metal Flows 

 

The metal flow models constructed in Chapter 2 assumed that the metal domains changed 

only with respect to time. In any economic system, pricing plays a pivotal role in the 

overall dynamics and should be incorporated into the modeling of such systems. In this 

chapter, pricing will be considered to be a continuous independent variable, represented 

by  , and incorporated into the five models outlined in Chapter 2. Due to the assumptions 

made about the influence of pricing on the domains—pricing changes the domains in a 

diffusive manner—the models generated will consist of systems of reaction-diffusion 

equations, with and without cross-diffusion. The numerical schemes for the approximate 

solutions to the models will be presented in Chapter 5, with source code for the numerical 

schemes provided in Appendix C.  

Modification to the models generated in this chapter may incorporate other 

deformations of the domains based on price, such as the inclusion of volatility, shocks, or 

fluctuations. Note that this thesis treats the partial differential equation models as an 

extension to the primary work produced in Chapter 2. To this end, the analysis of the 

partial differential equation models is left as future work.  

 

3.1 PUE Models 
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 Let the three domains define in Section 2.1 be dependent variables with respect to 

time   and price  , for     and    . The assumption is made that the domains change 

with respect to price in a diffusive manner due to the nature of the mineral and metal 

industries. At a time step, the density of the Production domain for a particular metal is 

derived from certain minerals, which have associated pricings. At a future time step, 

these minerals are refined into multiple downstream chemicals or substances, with a 

particular price associated to each. For instance, strontium metal is derived mainly from 

the strontium mineral celestite [4]. Celestite is refined into a multitude for strontium 

products, each having a certain associated price. Thus, at a particular time the majority of 

metal residing in the Production domain has a narrow range of prices, but at a later time, 

the price range spreads. 

The same behavior is indicative to the Use and End-of-Life domains. A particular 

group of consumer products entering the Use domain will have a pricing structure. As 

time elapses, the products will develop varying prices due to their treatment. This 

dynamic, a mass spreading down the concentration gradient, can be modeled well with 

the linear diffusion operator    
  

   . Incorporating diffusion terms into system (2.1), the 

following system of reaction-diffusion equations (PDE PUE Model) is obtained: 

   (   )

  
     (   ) (   )     

   (   )

   
  (   )    

(3.1) 

   (   )

  
   (   ) (   )    (   )     

   (   )

   
  (   )    
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   (   )

  
   (   )     

   (   )

   
  (   )    

with boundary and initial conditions  

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

The boundary conditions need to be considered on an individual metal basis. The 

coefficients     are referred to as the price diffusivity coefficients. Since the Production 

domain consists of minerals being refined into metals diffusing the metal domains 

rapidly, the diffusion coefficient     will be relatively large. The Use and End-of-Life 

domains will not see such large quantity diffusion; therefore, the diffusion coefficients 

    and     will not be quite as large.  

 The argument can be made that the pricing of metal in a particular domain will 

affect the movement of metal in another. This effect is apparent in metal pricing 

determined by competitive commodity exchanges and influences the collection of 

recycled metal. As pricing of metal in the Production domain changes due to economic 

conditions (such as changes in mineral availability, transportation costs, demand, or 

commodity exchanges), the valuation of the metal in the Use and End-of-Life domains 

will change accordingly, changing the likelihood the metal will stay in those domain. For 

example, as the price of a precious metal increases or decreases due to an economic 

condition, the value of jewelry composed of the precious metal (in use or discarded) will 

likewise increase or decrease, changing the likelihood the jewelry will stay in use or stay 
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discarded. Also, the metal in the End-of-Life domain can be affected by the price of 

metal in the Use domain. This behavior can be model based on cross-diffusion in the 

direction of the affecting domain:     
  

   
, where domain j cross diffuses in the direction 

of domain i. If these cross-diffusion terms are incorporated into system (3.1), the PDE 

PUE Model with Price Cross-Diffusion is obtained: 

   (   )

  
     (   ) (   )     

   (   )

   
 

(3.2) 

   (   )

  
   (   ) (   )    (   )     

   (   )

   
 –    

   (   )

   
 

   (   )

  
   (   )     

   (   )

   
 –    

   (   )

   
 –    

   (   )

   
 

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

 

3.2 PUEP Models 

 Recall the ODE PUEP Model discussed in Section 2.2. If the assumption is made 

that the domains change with respect to price in a diffusive manner, linear diffusion 

operators    
  

    can be incorporated into the model. In doing so, the PDE PUEP Model 

will be obtained (the subscript notation for the partial derivative    
  (   )

  
 and     

   (   )

    will be used throughout the remainder of this work) 
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(3.3) 

                      

                     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

As in the PDE PUE Models, the boundary and initial condition needs to be considered on 

an individual metal basis, since each metal will have different conditions associated with 

it.  

The interplay of pricing between domains is a crucial consideration in the 

dynamics of mineral and metal economics. As in Section 3.1, the assumption will be 

made that the pricing scheme in the Production domain affects the rate of change in the 

Use and End-of-Life domains and the pricing in the Use domain affect End-of-Life rate 

of change. Since recycled material is entering the Production domain, the pricing of that 

material will play a role (perhaps only a small one) in the rate of change of metal in the 

Production domain. There exists a greater incentive to sell recyclate, meaning the metal 

will flow out of the End-of-Life domain into the Production domain at a faster rate, if the 

recyclate price is relatively high, affecting the Production domain’s rate of change.    

Introducing cross-diffusion terms into system (3.3) in order to capture this inter-

domain pricing dynamic, the PDE PUEP Model with Price Cross-Diffusion is obtained: 

                                  (3.4) 
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  (   )    ( ),  (   )    ( ),  (   )     
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  (   )    ( ),  (   )    ( ),  (   )     

 

3.3 PUEP Models with Inflow Domains 

 The price diffusion occurring in the Inflow Domains, in practice, should not be as 

prominent as in the Production, Use, and End-of-Life domains since Inflow Domain 

metal is consumed quicker and will not undergo the same transformations—processing 

into downstream products with various price ranges. Thus, the Inflow Domain’s price 

diffusivity coefficients          , and    , will approach  . Incorporating price diffusion 

into the ODE PUEP with Inflow Domains Model, the following system of reaction-

diffusion equations will be obtained (PDE PUEP Model with Inflow Domains): 

                         

(3.5) 

                                   

                        

                      

                      

                        

   (   )    ( ),  (   )    ( ),  (   )     
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   (   )    ( )  (   )    ( )  (   )     

   (   )    ( )  (   )    ( )  (   )     

Note that the Inflow domains are affected by the pricing of the other domains, but 

the Inflow domains’ pricing can also affect the rate of change of the other domains. The 

price of ore and metal used in manufacturing products, represented by the metal residing 

in the Virgin Metal and Production domains, are intrinsically linked. As the price of ore 

increases or decreases, that price structure is carried into the Production domain, the main 

consumer of ore. With a change in product pricing (pricing in the Production domain), 

the amount of metal leaving the Production domain will be according affected. Also, as 

the pricing of manufacturing metal changes due to the commodities market, for example, 

the valuation of the ore will also change accordingly, thus changing the likelihood that 

more or less ore will be consumed. This linkage of price can be modeled with the price 

cross-diffusion terms     
   (   )

    and      
   (   )

   .    

The pricing scheme of the Old Scrap is also intrinsically linked to the pricing in 

the Production domain. Since metal in the Old Scrap domain is consumed by the 

Production domain to produce products, the pricing of the scrap will influence the pricing 

of the metal products, which in turn will affect the rate at which metal enters and leaves 

the Production domain. For instance, metal producers will tend to buy more old scrap if 
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the associated costs decrease, which will transfer metal out of the Old Scrap and into the 

Production domain at a fast rate. The opposite situation also holds. Metal producers will 

be more reliant on virgin metal than old scrap if the pricing of old scrap increase, which 

will limit the rate at which metal is transferred out of the Old Scrap domain and into the 

Production domain. The cross-diffusion towards the Old Scrap domain by the Production 

domain can be modeled using the term     
   (   )

   
, and the cross-diffusion towards the 

Production pricing by the Old Scrap can be modeled with the term     
   (   )

   . 

The pricing influence between New Scrap and Production is limited, but should 

be considered. Since New Scrap is produced by the discarding of metal during the 

manufacturing of products, the pricing in the New Scrap domain is linked to the pricing 

in the Production domain. However, the metal in the New Scrap domain should be 

assumed to have a short lifetime since new scrap tends to reenter the Production domain 

rather quickly; therefore, the change in new scrap pricing cause by Production price 

changes should be minimal. The pricing scheme of the New Scrap domain creates limited 

influence on other domains, so cross-diffusion towards the New Scrap domain is not 

introduced into the rate of change of the other domains. The price cross-diffusion towards 

the pricing scheme of the Production domain by the New Scrap domain can be modeled 

using the term     
   (   )

   . 

The valuation of metal residing in the End-of-Life domain influences the pricing 

of metal in the Old Scrap domain. The reasoning behind this influence is similar to that of 

the Production-New Scrap interaction. Since metal entering the Old Scrap domain comes 
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from the End-of-Life domain, old scrap pricing is linked to the recyclate supply pricing. 

Since the pricing in the End-of-Life domain changes depending upon many factors, the 

old scrap pricing will correspondingly change. With a change in old scrap pricing, the 

rate at which old scrap is consumed by the Production domain will change; thus, the rate 

at which Old Scrap changes over time will depend on the pricing of End-of-Life metal. 

However, since the Old Scrap domain is considered to model recyclate supply 

availability, the time that metal resides in the Old Scrap domain is considered to be short, 

resulting in a small price cross-diffusion. The Old Scrap domain price cross-diffusion 

towards the End-of-Life domain can be modeled using the term     
   (   )

   . 

Assume that the pricing influences between the Production, Use, and End-of-Life 

domains are the same as described in system (3.5). Including the cross-diffusion terms 

into system (3.5), the PDE PUEP Model with Inflow Domains and Price Cross-Diffusion 

will be obtained: 

                           

(3.6) 

                                                 

                               

                             

                                    

                                      

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     
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3.4 PUEP Models with Inflow Domains and Stock and Trade Considerations 

 If stock and trade considerations are incorporated into system (3.5), the PDE 

PUEP Model with Inflow Domains and Stock and Trade Considerations will be obtained: 

                        

(3.7) 

                                             

                        

                              

                      

                                

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( )  (   )    ( )  (   )     

  (   )    ( )  (   )    ( )  (   )     

  (   )    ( )  (   )    ( )  (   )     



68 

 

 Price cross-diffusion terms could also be introduced in system (3.7), producing 

the following system of reaction-diffusion equations (PDE PUEP Model with Inflow 

Domains, Price Cross-Diffusion, and Stock and Trade Considerations) 

                              

(3.8) 

                                           

               

                              

                                    

                                   

                                             

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( ),  (   )    ( ),  (   )     

  (   )    ( )  (   )    ( )  (   )     

  (   )    ( )  (   )    ( )  (   )     

  (   )    ( )  (   )    ( )  (   )     

 

3.5 PUEP Model with a Reformulation of the Virgin Metal Domain 

 The Modified PDE PUEP Model with Inflow Domains and Stock and Trade 

Considerations will be obtained if price diffusion is introduced into system (2.5): 

                           (3.9) 
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Note that the only difference between systems (3.7) and (3.9) is in the first two equations.  

 As discussed in previous sections, pricing in a domain affects the dynamics of 

other domains. If we introduce cross-diffusion into system (3.9), the Modified PDE 

PUEP Model with Inflow Domains, Price Cross-Diffusion, and Stock and Trade 

Considerations will be obtained: 

                                 

(3.10) 
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Chapter 4: Stochastic Differential Equation Models for Metal Flows 

 

The deterministic models in the previous two chapter assumed that the domains were 

differentiable function with respect to time and price; however, the mineral and 

commodity markets do not behave in this manner. In fact, fluctuations and volatility are 

commonly associated with metal flows. In order to construct models reflective of this 

phenomenon, probabilistic models should be explored. In this chapter, the modeling 

method used to construct probabilistic models will be introduced, along with the 

stochastic differential equation models. The modeling method will follow the technique 

discussed in [1] and involves the following 3 steps:  

Step 1. Develop a discrete stochastic model that represents the system under study which  

 experiences random influences. This will allow us to determine the transition  

 probabilities for some small   .  

Step 2. The expectation vector and covariance matrix for the transition probabilities are  

 computed. 

Step 3. Develop stochastic differential equations using the expectation vector and  

 covariance matrix by inferring similarities in the discrete and continuous forward  

 Kolmogorov equations. 
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4.1 PUE Model 

  Recall the ODE PUE Model discussed in Section 2.1. Assume that the metal flow 

model experiences random influences and that  ( ),  ( ), and  ( ) are discrete random 

variables representing the amount of metal residing in each domain at some time  . 

Assume that  ( ) can change by -1 or 0 in some small   , which represents a metal unit, 

such as a metric ton or kilogram. This captures the notion of a closed system discussed in 

the deterministic PUE Models—the Production domain can either transfer metal into the 

Use domain or no metal transfer occurs. The Use domain can receive metal from the 

Production domain, lose metal to the End-of-Life domain, or not transfer any metal. 

Therefore,  ( ) can change by -1, 0, or 1. Likewise, the End-of-Life domain can change 

by 0 or 1.  

Assume that the Markov property holds—a future state is determined solely on 

the present state and irrespective of past states—and the same dynamics of the ODE PUE 

Model are adhered. Let  ( )     ( )    and  ( )    represent the amount of metal 

in each domain at time  . For the following state changes 

   [  ( )   ( )   ( )] 

where  

  ( )    (    )   ( )  (    )   ( )  (    )   ( )   

the transition probabilities detailed in Table 4.1 are obtained. 
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Change Transition Probability 

  ( )                      

  ( )                     

  ( )           
      ∑  

 

   

 

 

 

Table 4.1: The state changes and transition probabilities for the SDE PUE Model 

 

 

For example,    is the probability that   transfers 1 unit to   and    is the probability 

that   transfers 1 unit into  .  Notice that the probabilities are proportional to   ; thus,    

must be chosen small enough to allow for          for            . The expectation 

vector for this system is given by 

 (       )  
 

  
∑  

 

   

  ( )  (
    

      
   

) 

with the covariance matrix   

 (       )  
 

  
∑  

 

   

(  ( )(  ( ))
 
)  (

        
             

      
) 

 Let  (          ) be the probability that  ( )      ( )     and  ( )     at 

time  . This probability distribution solves the discrete Fokker-Planck equation 

(Kolmogorov forward equation) 

  (          )

  
  ∑

 

   

 

   

   (          ) (          )  

 
 

 
∑∑ ∑

  

      
[    (          )    (          ) (          )] 
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where    is the    -term of the expectation vector  , and      is the    -term of the square 

root of the covariance matrix. As discussed in [1], the probability distribution also solve 

the system of stochastic differential equations  

  ( )

  
  (          )   (          )

  

  
 

where  ( )    ( )  ( )  ( )  ,   √ (       ) and              
  are 

independent Weiner processes. For emphasis, we have the SDE PUE Model 

   ( )

  
     ( ) ( )     

   

  
    

   

  
    

   

  
 

(4.1) 

   ( )

  
   ( ) ( )    ( )     

   

  
    

   

  
    

   

  
 

   ( )

  
   ( )     

   

  
    

   

  
    

   

  
 

 where   √ (       )   and  

  
 (       )  (

        
             

      
) 

   are three independent Weiner processes. Note that   is not positive definite; therefore, 

a unique, real positive definite square root covariance matrix is not guaranteed. The 

model can be approximated by perturbing the diagonal slightly, creating a positive 

definite covariance matrix. 

 

4.2 PUEP Model 

In this section, we will apply the method discussed in Section 4.1 to develop a 

probabilistic PUEP Model analogous to the time dependent ODE PUEP Model. Assume 
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that the system experience random influences and  ( ),  ( ), and  ( ) are discrete 

random variables representing the amount of metal residing in each domain at time  . Let 

   be a change in the domains for a small   : that is    [  ( )   ( )   ( )], 

where   ( )    (    )   ( )  (    )   ( )  (    )   ( )  . For the 

following changes, we will have the corresponding transition probability   

 

Change Transition Probability 

  ( )                    

  ( )                      

  ( )                     

  ( )                      

  ( )                     

  ( )                      

  ( )                     

  ( )           
     ∑  

 

   

 

 

 

Table 4.2: State changes and transition probabilities for the SDE PUEP Model 

 

 

For example,    denotes the probability that 1 unit enters   from the ore reserve and    is 

the probability that 1 unit leave   and enters  . By computing the expectation vector and 

covariance matrix for the system as discussed in the previous section, the SDE PUEP 

Model will be obtained 

   ( )

  
   ( )    ( ) ( )    ( )      ( )  ∑   

   

  

 

   

 (4.2) 
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   ( )

  
   ( ) ( )    ( )     ( )  ∑   

   

  

 

   

 

   ( )

  
   ( )    ( )     ( )  ∑   

   

  

 

   

 

where    √    and  

  (

                     
                 
               

) 

Notice that the covariance matrix is positive definite. This implies that a unique real 

positive definite square root covariance matrix exists.  

 

4.3 PUEP Model with Inflow Domains 

 Assume that the domains in the PUEP Model of Section 2.3 experiences random 

influences and  ( ),  ( ),  ( ),  ( ),  ( ), and  ( ) are discrete random variables 

representing the amount of metal in the domains at time  . Assume the same dynamics 

are at play as in the ODE PUEP Model with Inflow Domains: inflows, outflows, loss 

rates, etc. As in Section 4.1, the transition probabilities for the discrete case are computed 

(Table 4.3), with the assumption that the Markov property holds, to arrive at a system of 

stochastic differential equations  
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Change Transition Probability 

  ( )                           

  ( )                           

  ( )                            

  ( )                            

  ( )                            

  ( )                            

  ( )                            

  ( )                            

  ( )                           

  (  )                             

  (  )                             

  (  )                            

  (  )                             

  (  )                 
       ∑  

  

   

 

 

 

Table 4.3: State changes and transition probabilities for the SDE PUEP Model with 

Inflow Domains 

 

 

Computing the expectation vector and covariance matrix for the probability distribution, 

the SDE PUEP Model with Inflow Domains is obtained: 

   ( )

  
    ( )      ( )  ∑   

   

  

 

   

    

(4.3) 
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   ( )    ( ) ( )     ( )     ( )     ( )      ( )
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The covariance matrix   is positive definite, therefore a unique real positive definite 

square root covariance matrix exists. 
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4.4 PUEP Model with Inflow Domains and Stock and Trade Considerations 

As in the previous stochastic models,  ( ),  ( ),  ( ),  ( ),  ( ), and  ( ) are 

assumed to be discrete random variables representing the amount of metal for time  . By 

computing the transition probabilities (Table 4.4) and computing the expectation vector 

and covariance matrix for the probability distribution, we will arrive at a system of 

stochastic differential equations. 

Change Transition Probability 

  ( )                          

  ( )                           

  ( )                           

  ( )                           

  ( )                           

  ( )                           

  ( )                           

  ( )                           

  ( )                           
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  (  )                            

  (  )                            
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      ∑  

  

   

 

 

 

Table 4.4: State changes and transition probabilities for the SDE PUEP Model with 

Inflow Domains and Stock and Trade Considerations 



80 

 

Thus, we will obtain the Time Dependent SDE PUEP Model with Inflow Domains and 

Stock and Trade Considerations 

  ( )

  
    ( )      ( )     ( )  ∑   

   

  

 

   

 

(4.4) 
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Note that the covariance matrix   is positive definite, which implies the existence of a 

unique real positive definite square root covariance matrix. 

 

4.5 PUEP Model with a Reformulation of the Virgin Metal Domain 

The Modified Time Dependent SDE PUEP Model with Inflow Domains and Stock 

and Trade Considerations will be the same as the un-modified version, with the inclusion 

of the ore inflow term (  ) and the ore processing term (  ). Thus, the transition 

probabilities, expectation vector, and covariance matrix will be similar to those in Section 

4.4. 
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Change Transition Probability 

  ( )                         
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Table 4.5: State changes and transition probabilities for the Modified SDE PUEP Model 

with Inflow Domains and Stock and Trade Considerations 

 

 

The Modified Time Dependent SDE PUEP Model with Inflow Domains and Stock and 

Trade Considerations is given by 

  ( )

  
   ( )    ( )      ( )     ( )  ∑   

   

  

 

   

 (4.5) 
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The covariance matrix   is positive definite, which implies that of a unique real positive 

definite square root covariance matrix exists. 
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Chapter 5: Numerical Analysis and Graphical User Interface 

 

The metal flow models developed throughout this thesis provided a mathematical 

representation for the flow of metal through a defined system. In order to fully 

understand and make predictions using these models, solutions to the models need to be 

established. Since the models consist of nonlinear systems of ordinary, partial, or 

stochastic differential, analytical solutions will be hard to acquire; therefore, reliance is 

placed on numerical methods for the computation of approximate solutions. Since 

scientific visualization plays an important role in understanding data and information, 

standalone graphic user interfaces (GUIs) in Matlab were constructed to simulate and 

visualize the approximate solutions. In Section 5.1, the numerical methods used to 

compute the solutions for the models are presented. Section 5.2 describes the GUI’s 

constructed to visualize the solutions.  

 

5.1 Numerical Methods 

 There are various methods to compute the numerical solutions to systems of 

ordinary, partial, and stochastic differential equations [18]. In this chapter, first order 

finite difference schemes will be used. In Section 5.1.1, the Euler method, an explicit 

finite difference scheme, will be used to solve the models consisting of ordinary 

differential equations. In Section 5.1.2, an implicit finite difference scheme, the backward 
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in time-central in space method (BTCS), will be constructed to solve the models 

consisting of partial differential equations. Section 5.1.3 uses the Euler-Maruyama 

method to compute the numerical solution to the models consisting of stochastic 

differential equations.    

 

5.1.1 Numerical Methods for the Ordinary Differential Equation Models 

 The ordinary differential equation models developed in Chapter 4 are initial value 

problems of the form 

  ( )

  
 

(

 
 
 
 

  ( )

  
  ( )

  
 

  ( )

  )

 
 
 
 

 (

  (           )

  (           )
 

  (           )

)  

with initial conditions   

(

 ( )    

 ( )    

 
 ( )    

) 

A first order finite difference scheme (Euler’s method) will be used to approximate the 

analytical solution for the models. The time domain       is partitioned as        for 

            where    
 

 
. Let     (  ). The first order difference approximation 

will be of the form 
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            (               ),      ( )     

            (               ),      ( )     

  

            (               ),      ( )     

(5.1) 

The stability of (5.1) is established by observing the behavior a small perturbation 

    added to (          ) will affect (5.1) over time [38]. In other words, if the finite 

difference scheme (5.1) is stable, then a small change in the initial condition will not 

change the solution greatly. Substituting (                      ) into (5.1), we 

will obtain 

                      (                           )      

                      (                           ) 

  

                      (                           ) 

(5.2) 

Apply Taylor series expansion to the    terms, we will obtain 
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(5.3) 
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Since (       ), (       ), …, and (       ) are linked by the Euler relationship (5.1), 

(5.3) will reduce to  
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(5.4) 
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Letting          ,          , and          , where    are called growth factor, 

we will obtain 
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For the scheme to be stable, the growth factors must be in       . Thus, we will obtain 

the following conditions to guarantee stability    

  

(
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|    
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   (           )

  
|    
    

 
    )

 
 

        

(5.6) 
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Conditions (5.6) illustrate that the numerical scheme (5.1) will be unstable if 

 ( )   
   (           )

  
|    
    

 
    

 
   (           )

  
|    
    

 
    

   
   (           )

  
|    
    

 
    

  is positive 

(note that (          ) are defined as positive since they describe positive amounts of 

metals). If  ( ) is negative, then    can be choose to stabilize the algorithm. Also note 

that the stability of the scheme is dependent on the size of  (
  

  

   
  

  
), (

  

  
   

  

  
), and 

(
  

  
   

  

  

), implying that the ratio of quantities of metal in each domain at each time step 

must be considered. 

In this section, a list of the first order finite difference approximations for the 

ordinary differential equation metal flow models is provided. In Appendix C, Matlab 
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scripts for these schemes are presented with solution outputs. Only two schemes are 

presented since the methods can be generalized. 

 

Finite Difference Method for the ODE PUE Model and the ODE PUEP Model 

The finite difference scheme for the ODE PUE Model can be obtained by setting 

the coefficients  ,  ,   ,   , and    of (5.7) equal to 0. The source code for the method 

and selected outputs are given in Appendix C.6. 

    ( )            (                   ) 

(5.7)     ( )            (              )  

    ( )            (            ) 

 

Finite Difference Method for the ODE PUEP Models with Inflow Domains 

The finite difference method for the inflow domain models can be obtained from 

(5.8) by setting relevant coefficients equal to 0. The source code and selected outputs are 

presented in Appendix C.7. 

    ( ) 

    ( ) 

    ( ) 

    ( ) 

    ( ) 

    ( ) 

(5.8) 
           (                  ) 

           (                                           ) 

           (                ) 
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           (                        )  

           (             ) 

           (                         )  

 

5.1.2 Numerical Methods for the Partial Differential Equation Models 

 The partial differential equation models developed in Chapter 3 are systems of 

reaction-diffusion equations with and without price cross-diffusion. The systems without 

cross-diffusion are of the form   

  ( )

  
 

(

 
 
 
 

  ( )

  
  ( )

  
 

  ( )

  )

 
 
 
 

 (

  (           )

  (           )
 

  (           )

)  

(

 
 
 
 

   

  ( )

  

   

  ( )

  
 

   

  ( )

  )

 
 
 
 

 

and the systems with cross-diffusion are of the form  

  ( )

  
 (

  (           )

  (           )
 

  (           )

)  

(

 
 
 
 

   

  ( )

  

   

  ( )

  
 

   

  ( )

  )

 
 
 
 

 

(

 
 
 
 

   

  ( )

  

   

  ( )

  
 

   

  ( )

  )

 
 
 
 

   

(

 
 
 
 

   

  ( )

  

   

  ( )

  
 

   

  ( )

  )

 
 
 
 

 

The numerical solutions to these models will be computed using the implicit finite 

difference scheme BTCS [12]. The time domain       will be partitioned as        for 

            where    
 

 
. The price domain       will be partitioned as        

for             where    
 

 
. The BTCS scheme approximates the partial 

derivates as follows:  
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 –   
 

  
 (5.9) 

and  

   

   
 

    
   

    
   

     
   

   
 (5.10) 

Applying (5.9), (5.10), and including Dirichlet boundary conditions to the partial 

differential equation models, the numerical solution   
 
 for each domain   will be 

obtained at each time step by solving the system of equations  

           

where 

     

(

 
 

  
   

  
   

 

    
   

)

 
 

   

(

 
 

     
     
     
     
     )

 
 

   

(

 
 

  
 

  
 

 

    
 

)

 
 

 

 In this section, the BTCS schemes will be presented for the partial differential 

equation models. A generalization for the three- and six-domain models is made. In 

Appendix C, Matlab scripts for these schemes are presented along with solution outputs. 

 

Three-Domain Models 

The four PDE PUE and PUEP Models of Sections 3.1 and 3.2 are generalized 

into one scheme. All four models will have the same matrix coefficients   and  , but will 

have various   
 
 and   

 
 terms.  At each time step, 3 systems need to be solved.  

 

System 1: The solution to system (5.11) is an approximate solution to  ( ) at time    . 
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(

 
 

  
 
  

 
   

 

  
 
  

 
   

 

 

    
 

    
 

     
 

)

 
 

 (5.11) 

Matrix coefficients for all models:  

  
   

(  ) 
    

 

  
 

     

(  ) 
 (5.12) 

PUE Model: 

  
 
  

 

  
    

 
   

 
   (5.13) 

PUE Model with Price Cross-Diffusion: 

  
 
  

 

  
    

 
   

 
   (5.14) 

PUEP Model: 

  
 
  

 

  
    

 
      

 
     

 
    

 
 (5.15) 

PUEP Model with Price Cross-Diffusion:  

  
 
  

 

  
    

 
      

 
 

   

(  ) (    
   

    
   

     
   

)     
 
    

 
   (5.16) 

 

System 2: The solution to system (5.17) is an approximate solution to  ( ) at time    . 

        

(

 
 

  
 
  

   
   

   

  
 
  

   
   

   

 

    
 

    
   

     
   

)

 
 

 (5.17) 

Matrix coefficients for all models:  
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(  ) 
    

 

  
 

     

(  ) 
 (5.18) 

PUE Model: 

  
 
  

 

  
    

 
     

 
   (5.19) 

PUE Model with Price Cross-Diffusion: 

  
 
  

 

  
    

 
     

 
 

   

(  ) (    
   

    
   

     
   

) (5.20) 

PUEP Model: 

  
 
  

 

  
    

 
        

 
     (5.21) 

PUEP Model with Price Cross-Diffusion:  

  
 
  

 

  
    

 
        

 
 

   

(  ) (    
   

     
   

     
   ) (5.22) 

 

System 3: The solution to system (5.23) is an approximate solution to  ( ) at time    . 

        

(

 
 

   
 
   

   

   
 
   

   

 

     
 

     
   

)

 
 

 (5.23) 

Matrix coefficients for all models:  

   
      

(  ) 
     

        

(  ) 
 (5.24) 

PUE Model: 

  
 
     

 
        

 
 (5.25) 

PUE Model with Price Cross-Diffusion: 
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(  ) (    
   

     
   

     
   

)

 
      

(  ) (    
   

     
   

     
   

) 

(5.26) 

PUEP Model: 

  
 
      (    )   

 
        

 
 (5.27) 

PUEP Model with Price Cross-Diffusion:  

  
 
      (    )    

  
 
    (    

 
 

    

(  ) (    
   

     
   

     
   )  

   

(  ) (    
   

     
   

     
   )) 

(5.28) 

 

Six-Domain Models 

The six PDE Inflow Domain Models of Sections 3.3 through 3.5 are generalized 

into one scheme. All six models will have the same matrix coefficients   and  , but will 

have various   
 
 and   

 
terms.  At each time step, 6 systems need to be solved.  

 

System 1: The solution to the system (5.29) is an approximate solution to  ( ) at time 

   . 

        

(

 
 

  
 
  

 
   

 

  
 
  

 
   

 

 

    
 

    
 

     
 

)

 
 

 (5.29) 

Matrix coefficients for all models:  
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(  ) 
    

 

  
 

     

(  ) 
 (5.30) 

PUEP Model with Inflow Domains: 

  
 
  

 

  
        

 
   (5.31) 

PUEP Model with Inflow Domains and Price Cross-Diffusion: 

  
 
  

 

  
        

 
 

   

(  ) (    
   

    
   

     
   

) (5.32) 

PUEP Model with Inflow Domains and Stock and Trade Considerations: 

  
 
  

 

  
        

 
   (5.33) 

 PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price Cross-

Diffusion: 

  
 
  

 

  
        

 
 

   

(  ) (    
   

    
   

     
   

) (5.34) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations: 

  
 
  

 

  
        

 
    

 
  (5.35) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price 

Cross-Diffusion: 

  
 
  

 

  
        

 
  

   

(  ) (    
 

    
 
     

 
)     

 
 (5.36) 

 

System 2: The solution to system (5.37) is an approximate solution to  ( ) at time    . 
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)

 
 

 (5.37) 

Matrix coefficients for all models:  

  
   

(  ) 
    

 

  
 

     

(  ) 
 (5.38) 

PUEP Model with Inflow Domains: 

  
 
  

 

  
    

 
         

 
      

 
     

 
    

 
 (5.39) 

PUEP Model with Inflow Domains and Price Cross-Diffusion: 

  
 
  

 

  
    

 
          

  
 
 

   

(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

)      
 

     
 
    

 
 

(5.40) 

PUEP Model with Inflow Domains and Stock and Trade Considerations: 

  
 
  

 

  
    

 
            

 
      

 
     

 
    

 
         (5.41) 

 PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price Cross-

Diffusion: 

  
 
  

 

  
    

 
             

  
 
 

   

(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

)      
 

     
 
    

 
         

(5.42) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations: 
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          (5.43) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price 

Cross-Diffusion: 

  
 
  

 

  
    

 
             

  
 
 

   

(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

)     
 
 

     
 
    

 
          

(5.44) 

 

System 3: The solution to system (5.45) is an approximate solution to  ( ) at time    . 

        

(

 
 

   
 
    

 

   
 
    

 

 

     
 

      
 

)

 
 

 (5.45) 

Matrix coefficients for all models:  

  
   

(  ) 
    

 

  
 

     

(  ) 
 (5.46) 

PUEP Model with Inflow Domains: 

   
 

  
         

 
      

 
 (5.47) 

PUEP Model with Inflow Domains and Price Cross-Diffusion: 

   
 

  
         

 
      

 
 

   

(  ) (    
   

    
   

     
   

) (5.48) 

PUEP Model with Inflow Domains and Stock and Trade Considerations: 

   
 

  
         

 
      

 
 (5.49) 
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 PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price Cross-

Diffusion: 

   
 

  
         

 
      

 
 

   

(  ) (    
   

    
   

     
   

)  (5.50) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations: 

   
 

  
         

 
      

 
  (5.51) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price 

Cross-Diffusion: 

   
 

  
         

 
      

 
 

   

(  ) (    
 

    
 
     

 
)  (5.52) 

 

System 4: The solution to system (5.53) is an approximate solution for  ( ) at time   

 . 

        

(

 
 

  
 
  

 
   

 

  
 
  

 
   

 

 

    
 

    
 

     
 

)

 
 

 (5.53) 

Matrix coefficients for all models:  

  
   

(  ) 
    

 

  
 

     

(  ) 
 (5.54) 

PUEP Model with Inflow Domains: 

  
 
  

 

  
    

 
        

 
   (5.55) 

PUEP Model with Inflow Domains and Price Cross-Diffusion: 
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(  ) (    
   

    
   

     
   

) (5.56) 

PUEP Model with Inflow Domains and Stock and Trade Considerations: 

  
 
  

 

  
    

 
                  (5.57) 

 PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price Cross-

Diffusion: 

  
 
  

 

  
    

 
            

  
 
 

   

(  ) (    
   

    
   

     
   

)        

(5.58) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations: 

  
 
  

 

  
    

 
                   (5.59) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price 

Cross-Diffusion: 

  
 
  

 

  
    

 
            

  
 
 

   

(  ) (    
   

    
   

     
   

)        

(5.60) 

 

System 5: The solution to system (5.61) is an approximate solution for  ( ) at time   

 . 

        

(

 
 

   
 
   

 

   
 
   

 

 

     
 

     
 

)

 
 

 (5.61) 
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Matrix coefficients for all models:  

  
   

(  ) 
    

 

  
 

    

(  ) 
 (5.62) 

PUEP Model with Inflow Domains: 

   
 

  
        

 
     

 
 (5.63) 

PUEP Model with Inflow Domains and Price Cross-Diffusion: 

   
 

  
         

  
 
     

 
 

   

(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

) 

(5.64) 

PUEP Model with Inflow Domains and Stock and Trade Considerations: 

   
 

  
        

 
     

 
 (5.65) 

 PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price Cross-

Diffusion: 

   
 

  
         

  
 
     

 
 

   

(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

)  

(5.66) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations: 

   
 

  
        

 
     

 
  (5.67) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price 

Cross-Diffusion: 

   
 

  
         (5.68) 
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(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

)   

 

System 6: The solution to system (5.69) is an approximate solution for  ( ) at time   

 . 

        

(

 
 

   
 
    

 

   
 
    

 

 

     
 

      
 

)

 
 

 (5.69) 

Matrix coefficients for all models:  

  
   

(  ) 
    

 

  
 

     

(  ) 
 (5.70) 

PUEP Model with Inflow Domains: 

   
 

  
         

 
      

 
 (5.71) 

PUEP Model with Inflow Domains and Price Cross-Diffusion: 

   
 

  
          

  
 
      

 
 

   

(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

) 

(5.72) 

PUEP Model with Inflow Domains and Stock and Trade Considerations: 

   
 

  
            

 
      

 
      (5.73) 

 PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price Cross-

Diffusion: 

   
 

  
             (5.74) 
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(  ) (    
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(  ) (    
   

    
   

     
   

)

       

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations: 

   
 

  
            

 
      

 
       (5.75) 

Modified PUEP Model with Inflow Domains and Stock, Trade Considerations, and Price 

Cross-Diffusion: 

   
 

  
             

  
 
      

 
 

   

(  ) (    
   

    
   

     
   

)  
   

(  ) (    
   

    
   

     
   

)

       

(5.76) 

 

5.1.3 Numerical Methods for the Stochastic Differential Equation Models 

 The analytical solutions to the stochastic differential equation models developed 

in Chapter 4 will be difficult to obtain; therefore, a numerical scheme, namely the Euler-

Maruyama method [1], will be used to approximate the analytical solutions to the models. 

Recall that the stochastic differential equation metal flow models were of the following 

form 

  ( )

  
  (    ( )   ( )     ( ))   (    ( )   ( )     ( ))

  

  
 

where  ( )     ( )   ( )     ( )  ,   √ (    ( )   ( )     ( )), 

 (    ( )   ( )     ( )) is the covariance matrix, and                  are 
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independent Weiner processes. The Euler-Maruyama scheme for the models will have the 

form 

  ( )   (   ) 

    ( )    ( )      (     ( ))   (     ( ))   ( ) 

for             with   ( )    (    )    
 

 
,       ,    ( )   (      )  

  (    )  (    ), and   represents a sample path. In this section, a list of the Euler-

Maruyama methods for the stochastic differential equation models is given. 

 

Euler-Maruyama Method for the SDE PUE Model 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

                 √   (   
( )

  
     

( )
  

     
( )

  
 ) 

           (         )  √   (   
( )

  
     

( )
  

     
( )

  
 )  

               √   (   
( )

  
     

( )
  

     
( )

  
 ) 

(5.77) 

where  ( )  (

   
( )    

( )    
( )

   
( )    

( )    
( )

   
( )    

( )    
( )

)  (
              
                     

         
)

 

 

, 

  
   (    ) for          , and    . The inclusion of   will make the square root of 

the covariance matrix positive definite, allowing for a unique square root covariance 

matrix.   

 

Euler-Maruyama Method for the SDE PUEP Model 
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  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

           (                   )

 √   (   
( )

  
     

( )
  

     
( )

  
 ) 

           (              )  √   (   
( )

  
     

( )
  

     
( )

  
 )  

           (            )  √   (   
( )

  
     

( )
  

     
( )

  
 ) 

(5.78) 

where  

 ( )  (

   
( )    

( )    
( )

   
( )

   
( )

   
( )

   
( )    

( )    
( )

)   

(

                             

                        

                    

)

 
 

 

and   
   (    ) for          . 

 

Euler-Maruyama Method for the SDE PUEP Model with Inflow Domains 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

(5.79)           (          )  √  ∑   

   

  

 

   

 

           (                              )

 √   ∑   
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           (                )  √  ∑   

   

  

 

   

 

           (              )  √   ∑   

   

  

 

   

  

           (             )  √   ∑   

   

  

 

   

 

           (               )  √   ∑   

   

  

 

   

  

where  ( )  √                              ,  
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and   
   (    ) for            . 
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Euler-Maruyama Method for the SDE PUEP Model with Inflow Domains and Stock and 

Trade Considerations 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

(5.80) 

          (               )  √  ∑   
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and   
   (    ) for            . 

 

Euler-Maruyama Method for the Modified SDE PUEP Model with Inflow Domains and 

Stock and Trade Considerations 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

  ( )   (   ) 

(5.81)            (                  )  √  ∑   
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           (                )  √  ∑   
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and   
   (    ) for            . 

 

5.2 Graphical User Interface for Metal Flow Simulations 

 In the previous section, numerical methods for the computation of approximate 

solutions to the metal flow models were presented. To automate the computation process 

and to give users the ability to run simulations interactively, graphical user interfaces 

(GUIs) written in Matlab code are constructed. In this section, an overview of the metal 

flow simulations is presented. 

 The layout for the simulations was developed using the Matlab graphical user 

interface development environment (GUIDE). GUIDE simplifies the construction of 

interfaces by providing a set of tools for the creation of GUIs. A GUI can be constructed 

by click and dragging GUI components to a layout view and these components can call 

Matlab functions or scripts that execute actions [26]. 

 The option screen (Figure 5.1) allows the user to choose a simulation for one of 

the models discussed in this thesis by clicking a push button. The simulations for the 

three-domain models are self contained: the user parameters and the output are contained 

on one screen (see Figure 5.2 and 5.4). The inflow domain models have a two-screen 

setup: the first screen contains the user parameters and the second screen contains the 

simulation (see Figure 5.3 and 5.5). 

 The simulations allow the user to define the model’s parameters over a specified 

time period. The “Compute” button calls a Matlab function that implements a numerical 

method, as discussed in Section 5.1, to solve the model with user-entered parameters. The 
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function will not be called if the time parameters are not specified. The entries in the 

“Time Period” panel are self-generating—entering any 2 entries will generate the third. 

For example, the “Number of Years” is calculated by entering the “Initial Year” and the 

“Final Year”.  

The simulations have 11 “Metal” push buttons that specifies the type of metal 

being studied. For the three-domain ODE Models, actual data for the given metal over the 

time period specified is taken from Excel spreadsheets and is displayed in plots under the 

simulations. As opposed to selecting actual data from Excel spreadsheets, a modification 

to the code can be added to obtain data from a database. Selecting a “Metal” button will 

also populate the parameters with pre-specified data. 

In order to solve the partial differential equation models, initial conditions and 

boundary conditions need to be specified. In the simulations, Dirichlet boundary 

conditions are implemented. The initial conditions are assumed to be normally 

distributed. The simulation can be altered to compute initial conditions based on other 

distributions or functions.  
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Figure 5.1: Model Selection Screen 

    

 
 

Figure 5.2: Simulation for the ODE PUE Model 
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(a) Parameter Screen 

 

 
 

(b) Output Screen 

 
Figure 5.3: Simulation for the Modified ODE PUEP Model with Inflow Domains and Stock and 

Trade Considerations 
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Figure 5.4: Simulation for the PDE PUEP Model 

   

 
 

(a) Parameter Screen 

 

 
 

(b) Output Screen 

 

Figure 5.5: Simulation for the SDE PUEP Model with Inflow Domains 
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Chapter 6: Conclusion and Future Work 

 

In this thesis, deterministic models for metal flows consisting of systems of 

ordinary differential equations were constructed using compartmental modeling and 

analysis was performed on the resulting models. Variations to the models which 

incorporated pricing structures and volatility by utilizing systems of partial and stochastic 

differential equations were also constructed. Sustainability thresholds, the conditions 

under which a metal flow system can be sustained, were established for the ordinary 

differential equation models. Parameter optimization schemes—methods for the 

acquisition of optimal coefficients that would replicate empirical data—were constructed 

for the ordinary differential equation models by implementing the Levenberg-Marquardt 

method. Since the models were built upon assumption taken from epidemiology, 

modifications using economic principles were introduced. Numerical schemes for the 

computation of approximate solutions were produced using Euler, BTCS, and Euler-

Maruyama methods. Stability criteria for the Euler schemes were established. Standalone 

GUIs programmed in Matlab to simulate the metal flow models were created. Matlab 

functions and scripts were also presented for stability analysis, parameter optimization, 

and the numerical solutions to the models.    

 As future work, analysis must be performed on the partial and stochastic 

differential equation models to establish well-posedness for the models. Since the partial 
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differential equation models consist of systems of reaction-diffusion equations, Turing 

instability analysis may be utilized to study the stability of the models. Since 

sustainability thresholds play an integral role in metal flow analysis, they must be 

established for the partial and stochastic differential equation models. Parameter 

optimization schemes should be constructed for the partial and stochastic differential 

equation models in order to verify the validity of the models with empirical data. A 

maximum likelihood estimation method can be developed as a parameter optimization 

scheme for the stochastic differential equation models. A vital component of 

mathematical modeling is to demonstrate the goodness of fit between the resulting 

models against empirical data. To this front, many case studies need to be performed for 

various metals over varying temporal and spatial intervals and compared to actual data.   
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Appendix A: Material Flow Analysis and Metal Flows in Industrial Ecology 

 

The main objective of this thesis is to provide a foundation for the mathematical 

modeling of metal flows, a discipline in industrial ecology that is concerned with 

analyzing the manner in which metal propagates though a defined system. In order to 

provide a working overview of metal flows for readers with various backgrounds in the 

subject, a short history of material flow analysis is presented in the first section and a 

listing of two organizations at are currently working in metal flows is provided in the 

second section of this appendix.    

 

A.1 Short History of Material Flow Analysis 

Material flow analysis (MFA) is a systematic assessment of the flows and stocks 

of material in a well-defined system. MFA is based on a system approach and 

conservation of mass and has similarities to life cycle assessment and input-output 

models. Although flow and input-output analysis had been used in engineering and 

economics throughout the 20
th

 century, flow analysis was only applied to environmental 

and resource management in the 1970s with the work on city metabolism and pollutant 

pathways. In 1965, Abel Wolman coined the phrase city metabolism to describe the 

inputs and outputs of products for a U.S. city [37]. Authors, such as Duvigneaud and 
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Denayeyer-De Smet [16] and Newcombe et al., subsequently provided case studies of 

city metabolism, demonstrating large resource depletions [30].  

By the late 1960s, material balancing was emerging in environmental research, 

beginning with a study on the accumulation of pollutants in specific regions. Huntzicker 

et al. studied lead pollution in the Los Angeles basin by using a mass-balancing approach 

and demonstrated the potential environmental impact [22]. 

In the early 1980s, Ayres et al. used the current MFA methodology to describe the 

sinks, sources, and pathways of pollutants in the Hudson-Raritan basin over a hundred 

year period [5]. Many region-specific papers followed, describing substance flow within 

waterways and throughout nations [24, 25, 31]. 

 The works by Baccini, Benner, and Bader created a systematic and 

comprehensive methodology for MFA, which coupled the flow of material with human-

driven systems [6, 7]. They coined the phrases “activity” and “metabolism of 

anthroposhere” to describe the role humans have on material flow systems. The main 

goals set by these works were to develop a methodology that could be used to analysis, 

evaluate, and optimize material flow and to improve resource management and reduce 

environmental degradation [13].  

 

A.2 Metal Flows and Metal Flow Models 

 The flow of metal in a human-driven system, which is commonly referred to as 

“metal flows” in the literature, is an application of MFA. Jelinski et al. defined industrial 

ecology as the study of the interconnection between an industrial system and the 
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surrounding environment that it influences [23]. Metal flows in this context analyzes the 

lifecycle of a metal, beginning with the production and consumption of metal ore (mining 

and processing metal-bearing minerals), the production of metal products, the use of the 

products in the consumer market, and the disposal and reentry back into the consumer 

market. The main tenant emerging from this course of study lies in establishing 

sustainability.  

 Currently, metal flow studies and data collections are conducted by the U.S. 

Geological Survey (USGS) and the United Nations (UN), to name a few. The National 

Mineral Information Center (NMIC) at the USGS collects, analysis, and disseminates 

information on mineral commodities, illustrating supply and demand for metals and 

minerals on national and global levels [32]. The Mineral Commodity Section in the 

NMIC collects and disseminates data on metals, consisting of consumption, production, 

trade, and reserves of minerals [35]. The Global Minerals Analysis Section in the NMIC 

produces comprehensive material flow studies on metals, such as aluminum and nickel 

[36].  Figure A.1 illustrates a metal flow model for aluminum in 2000 constructed by the 

NMIC. 
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Figure A.1: Aluminum Metal Flow Model in 2000 (Source Note: U.S. Geological Survey) 

 

The Global Metal Flows working group of the International Panel on Sustainable 

Resource Management, United Nations Environmental Programme, studies the role 

recyclable material plays in creating a sustainable system [34]. The six reports to be 

published attempt to provide a critical scientific assessment of metal flows at the national 

and international levels. Figure A.2 is an illustration constructed by the Global Metal 

Flows working group depicting the flow of a metal in a global context.    
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Figure A.2: Metal Flows System (Source Note: UNEP’s Global Metal Flows Working Group) 
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Appendix B: Mathematical Modeling in Epidemiology 

 

The spread of infectious disease has played a vital role in the history of civilizations. The 

fall of the Roman, Han, and Aztec empires have been directly or indirectly attributed to 

epidemics. The Black Plague (bubonic plague) that swept throughout Europe and Asia in 

the 14
th

 century, killing one-third of the European population between 1346 and 1350, 

created tremendous political and economic upheavals [27]. The rapid global population 

growth witnessed in the 18
th

 century can be explained by the suppression of epidemics 

through the improvement of medicine and the development of immunities.  

A comprehensive understanding of the dynamics underpinning these outbreaks 

have provided valuable insight for the mitigation or even the elimination of many 

outbreaks. The mechanisms of transmission have been well established for many diseases 

(viral, bacterial, or vector agents). Infection of a viral disease, such as influenza, measles, 

rubella, and chicken pox, can confer future immunity to that disease, whereas a bacterial 

disease will not. Vector agents, usually insects, will acquire the disease from an infected 

human and transmit it to a population. Examples of infectious diseases transmitted by 

vectors are malaria and lyme disease. The characteristics of the infected and susceptible 

populations have also been shown to play an important role in the spread of 

communicable disease, such as demographics, spatial and temporal variables (affecting 

contact rates and disease incubation times), and proximity to and density of vectors. By 
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articulating feasible mathematical models that simulate the governing dynamics of 

epidemics, ways to suppress the spread of infectious diseases have been established, such 

as the construction of threshold conditions for herd immunity and vector elimination.  

The underline assumption of this thesis is that the flow of metals studied in 

industrial ecology is analogous to the spread of infectious diseases within a population. 

The mathematical models and formations developed over the past century describing 

epidemics and endemics can provide a useful basis for the development of dynamical 

metal flow models. It is the intent of this appendix to describe the mathematical models 

in epidemiology that provide relevance to the study at hand. 

 

B.1 A Short History of Mathematical Modeling in Epidemiology 

The first purported mathematical model for an infectious disease was formulated 

by the mathematician Daniel Bernoulli in 1760, which studied the effect of smallpox 

inoculation within a population [10]. The central objective of Bernoulli’s probabilistic 

static model was to calculate the life expectancy of individuals immune to small pox at 

birth, having important ramification to actuarial work in time-dependent annuities of that 

period [15]. The solution to the system of differential equations predicted the probability 

of a newborn being infected at some age t.    

 Deterministic epidemical modeling did not take root until the 20
th

 century, with 

fast growth in the field observed after the middle of the century [21]. In 1906, William 

Hamer developed a discrete time model for the recurrence of measles epidemics, which 

may have been the first model to define the incidence (number of new infections per unit 
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time) as the product of the susceptible and infective densities. The British medical doctor, 

Ronald Ross, demonstrated that Anopheles mosquitoes can propagate malaria to humans, 

garnering him the 1902 Nobel Prize in Medicine [29]. In 1911, Ross constructed a 

differential equation model which studied malaria as a host-vector disease. Other 

deterministic models were developed by Ross, Hudson, Martini and Alfred J. Lotka. 

William O. Kermack and Anderson McKendrick demonstrated in 1926 that the spread of 

an infectious disease will not develop into an epidemic if the density of the susceptible 

population did not exceed a set value, known as the epidemic threshold. This result 

established mathematically the importance of vaccination and quarantine in the fight 

against epidemics [20].  

Between 1900 and 1935, the foundation for the compartmental approach to 

epidemiology modeling was established. The compartmental approach asserts that a 

population under study can be broken into disjoint homogeneous domains, dependent on 

characteristics relevant to the particular disease being studied, such as individuals 

susceptible, infected, or immune to a particular disease. A variety of models surfaced 

since the middle of the 20
th

 century, applied to a host of infectious diseases, such as 

measles, malaria, rabies, and HIV, containing a multitude of parameters, including spatial 

spread, incubation, and passive immunity.   

 

B.2 Selected Models 

 Numerous models were developed and analyzed over the past century describing 

the dynamics in epidemiology, each providing differing layers of complexity based on 
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the interactions and characteristics of the particular system under studied. This section 

will only provide an overview of the epidemical models and techniques that will be used 

to develop models for the flow of metals. For a comprehensive overview of the models of 

epidemiology, refer to [21].  

 

B.2.1 Standard SIR Models 

  The standard models of the spread of infectious diseases, commonly referred to 

as SIR models, computes the number of infected individuals over a time period by 

assuming that a population in which a disease will propagate can be compartmentalized. 

The standard SIR model of epidemics, designed by Kermack and McKendrick in 1927, 

has been applied to epidemics of measles, mumps, and rubella, where birth and death 

rates are assumed not to have a major influence on the dynamic of the disease. Endemic 

SIR models assume that disease incubation times are long; thus, birth and death rates are 

incorporated.  

The SIR models compartmentalize the population under study into three 

homogeneous disjoint domains, which are assumed to be functions of time  : susceptible 

S, infective I, and removal R. The susceptible domain consists of individuals that are not 

infected with the disease but can incur the disease at a later time. The infective domain 

consists of individuals that are infected with the disease and who can transmit it to the 

individuals in the susceptible domain. The removal domain consists of individuals who 

were removed from the susceptible-infective dynamic due to recovery, immunity, or 

death. Individuals from the susceptible domain that acquire infection will enter the 
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infective domain, and the individual that recovery, are immune or die after infection will 

transfer into the removal domain (see Figure B.1). Each domain will change with respect 

to time dependent on a contact rate (number of adequate contacts of a person per unit 

time) and infection period (the time required for a person to recover from the disease), 

each parameter being unique to the disease and the population.  

 

Susceptibles

S

Removal

R

Infectives

I

 

Figure B.1: Standard SIR Models for Epidemics 

 

The following assumptions are made in the construction of the Kermack-

McKendrick model for epidemics:  

i. The population is considered to be constant and latency is assumed negligible, 

meaning, birth and death rates are not considered.  

ii. A gain in the infective domain, referring to the transfer of individuals from the 

susceptible domain into the infective domain due to infection, is proportional to 

the product of the susceptible and infective densities:   ( ) ( )  where   is 

referred to as the contact rate. Likewise, the amount of individuals removed from 

the susceptible domain due to the acquisition of the disease is equal 

to    ( ) ( ).  
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iii. The rate of removal from the infective domain into the removal domain is 

proportional to the density of the infective domain:    ( )  where   is referred to 

as the infectious rate. Likewise, the rate of entry of infected individuals into the 

removal domain is equal to   ( ).  

Collecting these assumptions, the standard SIR epidemic model is obtained: 

  ( )

  
     ( ) ( )                    ( )   

  ( )

  
   ( ) ( )    ( )          ( )   

  ( )

  
   ( )                                ( )   

 (B.1) 

Note that  

  ( )

  
 

  ( )

  
 

  ( )

  
                                          

  ( )   ( )   ( )    where N is constant 

This implies that the population of the system remains constant, satisfying assumption (i). 

 Assumption (iii) has no epidemiological meaning, and needs further mathematical 

explanation. Let   ( ) represents the amount of individuals that are infected with a 

disease and   ( ) the amount of individuals that stay infected until some time  . Assume 

that a fraction   of  ( ) will recover from the disease over each time step. Thus, we will 

obtain the differential equation 

       

with the solution  

 ( )   ( )     
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This implies that the number of individuals that stays infected   time units after acquiring 

the disease is     . The infection period is exponentially distributed with 

mean ∫        
 

 
    , called the average infections period. Therefore, (iii) assumes 

that an individual will have an exponential wait time to recover from the disease.  

Through the use of this model, the conditions under which an epidemic will occur 

can be established, known as epidemic thresholds. An epidemic will take root in a 

population if the rate of infective individuals increases. Mathematically, this 

implies 
  ( )

  
  , or from (B.1)    ( ) ( )    ( )   . Thus, we will obtain the 

condition  

 ( )  
 

 
   (B.2) 

where    is called the infectious contact number. This mathematical construct provides a 

valuable theoretical tool to health organizations and policy makers attempting to the 

moderate epidemics. Qualitatively, in order to prevent an epidemic, the number of 

susceptible individuals must be less that  , which correlates to a decrease in the contact 

rate   (selective quarantine of the most susceptible to the disease or selective inoculation) 

or increase the recovery rate   (providing adequate medical care to the infected). In 

developing countries where monetary concerns can be paramount in decision making, a 

non-governmental organization with limited resources can attack epidemics through a 

calculated approach of contact rate decreases and recovery rate increases.   

 The basic reproductive number   —the average number of secondary infections 

produced when introducing single infected individual into the host population—is an 
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epidemic threshold for many epidemiological models. The basic reproductive number for 

the SIR model is given by  

     ( ) (B.3) 

If     , then an epidemic will occur. The disease will die out if     . 

An endemic is the spread of disease within a population that is maintained over 

generational periods of time without the need for external inputs. In modeling endemics, 

vital dynamics (births and deaths) of the population must be incorporated. As in the 

epidemic case, the assumption is made that the population is constant:  ( )   ( )  

 ( )     Let us also assume that a certain percentage   of the population will produce 

an offspring. Thus, the birth rate of the population is given by   . The offspring are 

assumed to be susceptible to the disease upon birth; thus, the inflow of newborns will 

enter the susceptible domain. In each of the domains, a certain percentage   of population 

will die; therefore, we will obtain the death rates –   ,    , and –   . To maintain a 

constant population by balancing the birth and deaths, assume that the birth and death 

coefficients ( ) are the same. Introducing these inflows and outflows into the epidemic 

model (B.1), the classic endemic model will be obtained 

  ( )

  
       ( ) ( )–   ( )                  ( )    

  ( )

  
   ( ) ( )    ( )    ( )               ( )    

  ( )

  
   ( )    ( )                                     ( )    

 (B.4) 

  

B.2.2 SIRS Models: Immunity Temporarily Conferred  
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If assuming that permanent immunity is not conferred to an individual previously 

infected with a disease, then the infective will reenter the susceptible domain after 

recovering from the infection. The literature refers to this model as an SIS model since 

the infective will reenter the susceptible domain after infection and will not reside in a 

state of recovery. Constructing a separate recovery domain will be a key component in 

the metal flow models, since the assumption will be made that a state of recovery will be 

needed to model the dynamics of discarded and recycled metal. Therefore, a modified 

SIS model will be presented here.    

 Let us assume that a certain percentage   of the recovered population will 

become re-infected after recovering from the disease. Then, the rate of removal from the 

recovered domain into the susceptible domain will be    ( ). Likewise, the rate of entry 

into the susceptible domain will be   ( ). If we apply this inflow and outflow into the 

epidemic system (B.1), the epidemic SIRS model is obtained: 

  ( )

  
     ( ) ( )    ( )                ( )    

  ( )

  
   ( ) ( )    ( )                       ( )   

  ( )

  
   ( )    ( )                             ( )   

 (B.5) 

Applying the inflow and outflow to the endemic model (B.4), the endemic SIRS model is 

obtained: 
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  ( )

  
       ( ) ( )    ( )–   ( )                  ( )    

  ( )

  
   ( ) ( )    ( )    ( )                                ( )    

  ( )

  
   ( )    ( )    ( )                                     ( )    

 (B.6) 

 

B.2.3 Spatial Diffusion of Infectious Disease  

 The epidemiological models previously discussed assumed that an infection 

spreads between individual solely through contact. Within an increasing globalize 

society, the spread of infectious disease takes on a spatial component, as seen with the 

1980s HIV and 2003 Severe Acute Respiratory Syndrome (SARS) pandemics. These two 

events demonstrated that over time, infectious disease can spread from geographic 

locations with high infected concentrations to areas of low concentrations. Epidemical 

models which incorporated a spatial consideration have relied on a reaction-diffusion 

system of equations to model the spreading of a disease.  

 Let the spread of disease be governed by time, as seen in the previous models, and 

by space. Thus, the population domains will become dependent variables with respect to 

temporal and spatial independent variables. If we assume that a disease residing in a 

population will spread spatially in a diffusive manner—that is, spreading down the 

concentration gradient as observe with heat diffusion—we can introduce a diffusivity 

operator 
  

   
 to the previous models.  

  If the individuals in a particular domain are thought to spreads throughout a 

geographic location in a diffusive manner, then we can model the rate of change of that 
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domain   with respect to space   by the term    
   (   )

   
, where      is called the spatial 

diffusivity for the domain  . If, on the other hand, the individuals in one domain   are 

thought to spread toward or away from individuals in another domain  , then this 

interaction can be modeled with the cross-diffusion terms     
   (   )

   . For example, a 

susceptible will move away from an infective in fear of contraction of the disease. (It is 

important to note that there might be no epidemiological meaning for individuals in one 

domain to diffuse in the direction of another, but this concept will have pertinent meaning 

in the metal flow models).  

 If the individuals in each domain are thought to positively diffuse throughout their 

respective domain and the susceptible and removal domains are thought to cross-diffuse 

away from the infective domain, then we will obtain the following endemic SIRS model   

  (   )

  
       (   ) (   )    (   )–   (   )    

   (   )

   
    

   (   )

   
  

  (   )

  
   (   ) (   )    (   )   (   )     

   (   )

   
 

  (   )

  
   (   )    (   )    (   )    

   (   )

   
    

   (   )

   
 

(B.7) 
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Appendix C: Source Codes and Selected Outputs 

 

 

C.1 Stability for the ODE PUEP Model  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: Stability_ODE_PUEP.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Computes the eigenvalues for the Jacobian evaluated at fixed pts 

%           to describe the stability of the system at the fixed point 

%Inputs: Model coefficients 

%Output: The stability at the fixed point 

%Date Created: 3 May 2011 

%Date Last Modified: 4 May 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function fun = Stability_ODE_PUEP(V,a,e,mu,r,l_P,l_U,l_E) 

%find fixed points of the system 

FP=[ e/mu+l_U/mu... 

    (a*V-l_P/mu*(e+l_U ))*(e+l_U-r*e/(r+l_E ))^(-1),... 

    e/(r+l_E )*(a*V-l_P/mu*(e+l_U ))*(e+l_U-r*e/(r+l_E))^(-1)]; 

 

%error message if fixed point is outside domain 

if (FP(1)<=0 || FP(2)<= 0 || FP(3)<0) 

    disp('Fixed point not defined in domain') 

    return; 

elseif (isnan(FP(1))==1 || isnan(FP(2))==1 || isnan(FP(3))==1) 

    disp('Fixed point not defined in domain') 

    return; 

elseif (isinf(FP(1))==1 || isinf(FP(2))==1 || isinf(FP(3))==1) 

    disp('Fixed point not defined in domain') 
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    return; 

end 

 

%jacobian for the system 

J = [-mu*FP(2), -mu*FP(1), -r;... 

    mu*FP(2), mu*FP(1)-e-l_U,0;... 

    0,e,-r-l_E]; 

 

str =fprintf('At fixed point (%4.2f,%4.2f,%4.2f)\n',FP(1), FP(2), FP(3)); 

 

lambda = eig(J);        %compute the eigenvalues 

num = size(lambda); 

 

test = 0;               %used to check if stability can be assessed 

for i=1:num 

    %check if real part is non-zero 

    if real(lambda(i)) == 0 

        test = test + 1; 

    end 

 

    %check stability 

    if real(lambda(i)) > 0 

        disp('The system is unstable since the eigenvalues are') 

        disp(lambda) 

        return; 

    end 

end 

 

if test == 0 

    disp('The system is stable since the eigenvalues are') 

    disp(lambda) 

else 

    disp('stability cannot be determined since the real part equals 0') 

end  



137 

 

C.2 Stability for the ODE PUEP Model with Inflow Domains  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: Stability_ODE_PUEP_Inflow.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Computes the eigenvalues for the Jacobian evaluated at fixed pts 

%           to describe the stability of the system at the fixed point 

%Inputs: Model coefficients 

%Output: The stability at the fixed point 

%Date Created: 4 May 2011 

%Date Last Modified: 5 May 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function fun = Stability_ODE_PUEP_Inflow(a,e,mu,l_V,l_P,l_N,l_U,l_E,... 

    l_O,r_N,r_P,r_O,r_E) 

 

%find fixed points of the system 

FP=[0,... 

    (e+l_U)/mu,... 

    (r_P)/mu*(e+l_U)/(r_N+l_N),... 

    (-(e+l_U)/mu*(r_P+l_P )+r_N*(r_P)/mu*(e+l_U)/(r_N+l_N))* ... 

    ((e+l_U-(r_O*r_E*e)/(r_E+l_E)*(r_O+l_O) ))^(-1),... 

    e/(r_E+l_E)*(-(e+l_U)/mu*(r_P+l_P )+r_N*(r_P)/mu*(e+l_U)/(r_N+l_N))*... 

    (e+l_U-(r_O*r_E*e)/(r_E+l_E)*(r_O+l_O) )^(-1),... 

    (r_E)/(r_O+l_O)*e/(r_E+l_E)*(-(e+l_U)/mu*(r_P+l_P )+r_N*(r_P)/mu*... 

    (e+l_U)/(r_N+l_N))*(e+l_U-(r_O*r_E*e)/(r_E+l_E)*(r_O+l_O) )^(-1) ]; 

 

%error message if fixed point is outside domain 

if (FP(1)<=0 || FP(2)<= 0 || FP(3)<0) 

    disp('Fixed point not defined in domain') 

    return; 

elseif (isnan(FP(1))==1 || isnan(FP(2))==1 || isnan(FP(3))==1) 

    disp('Fixed point not defined in domain') 
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    return; 

elseif (isinf(FP(1))==1 || isinf(FP(2))==1 || isinf(FP(3))==1) 

    disp('Fixed point not defined in domain') 

    return; 

end 

 

%jacobian for the system 

J = [-a-l_V,0,0,0,0,0;... 

    a,-mu*FP(4)-r_P-l_P,r_N,-mu*FP(2),0,r_O;... 

    0,r_P,-r_N-l_N,0,0,0;... 

    0,mu*FP(4),0,mu*FP(2)-e-l_U,0,0;... 

    0,0,0,e,-r_E-l_E,0;... 

    0,0,0,0,r_E,-r_O-l_O]; 

 

str =fprintf('At fixed point (%4.2f,%4.2f,%4.2f)\n',FP(1), FP(2), FP(3)); 

 

lambda = eig(J);        %compute the eigenvalues 

num = size(lambda); 

 

for i=1:num 

    %check if real part is non-zero 

    if real(lambda(i)) == 0 

        test1 = test1 + 1; 

    end 

 

    %check stability 

    if real(lambda(i)) > 0 

        disp('The system is unstable since the eigenvalues are') 

        disp(lambda) 

        return; 

    end 

end 

 

if test1 == 0 
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    disp('The system is stable since the eigenvalues are') 

    disp(lambda) 

else 

    disp('stability cannot be determined since the real part equals 0') 

end 
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C.3 Stability for the ODE PUEP Model with Inflow Domains and Stock and Trade 

Considerations 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: Stability_ODE_PUEP_Inflow_Trade.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Computes the fixed points and stability at these points for the 

%           ODE PUEP Model with Inflow Domains and Trade and Stock 

%           Considerations 

%Inputs: Model coefficients 

%Output: The fixed points and the stability at those fixed points 

%Date Created: 24 May 2011 

%Date Last Modified: 25 May 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function fun = Stability_ODE_PUEP_Inflow_Trade(I,S,l_V,l_P,l_N,l_U,l_E,... 

    l_O,r_O,r_N,r_P,r_E,a,mu,e,i_P,i_U,i_O,x_V,x_P,x_U,x_O) 

 

%defining symbolic metal domains 

syms V P N U E O; 

 

%define symbolic function X such that dX/dt = X 

E1 = -a*V-l_V*V-x_V*V; 

E2 = a*V-mu*P*U+r_O*O+r_N*N-r_P*P-l_P*P-x_P*P+i_P*I+S; 

E3 = r_P*P-r_N*N-l_N*N; 

E4 = mu*P*U-e*U-l_U*U-x_U*U+i_U*I; 

E5 = e*U-r_E*E-l_E*E; 

E6 = r_E*E-r_O*O-l_O*O-x_O*O+i_O*I; 

 

%find fixed points of the system 

[FP1,FP2,FP3,FP4,FP5,FP6]=solve(E1,E2,E3,E4,E5,E6,'V','P','N','U','E','O'); 

 

[row,col] = size(FP1); 
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for i = 1:row 

    FP(i,:)=[double(FP1(i)),double(FP2(i)),double(FP3(i)),... 

        double(FP4(i)),double(FP5(i)),double(FP6(i))]; 

end 

 

for i = 1:row 

    proceed = 1;     %variable used to check if fp is in domain and stable 

 

    %error message if fixed point is outside domain 

    if (FP(i,1)<=0 || FP(i,2)<= 0 || FP(i,3)<0 || FP(i,4)<0 ||... 

            FP(i,5)<0 || FP(6)<0 || ... 

            isnan(FP(i,1))==1 || isnan(FP(i,2))==1 || ... 

            isnan(FP(i,3))==1 || isnan(FP(i,4))==1 || ... 

            isnan(FP(i,5))==1 || isnan(FP(i,6))==1 || ... 

            isinf(FP(i,1))==1 || isinf(FP(i,2))==1 || ... 

            isinf(FP(i,3))==1 || isinf(FP(i,4))==1 ||... 

            isinf(FP(i,5))==1 || isinf(FP(i,6))==1) 

        disp('The fixed point (V,P,N,U,E,O)=') 

        str =fprintf('(%4.2f,%4.2f,%4.2f,%4.2f,%4.2f,%4.2f) ',... 

            FP(i,1), FP(i,2), FP(i,3), FP(i,4), FP(i,5), FP(i,6)); 

        disp('is not defined in domain.') 

        proceed = 0; 

    end 

 

    if proceed ~= 0 

 

        %Find the Jacobian for the system evaluated at the fixed points 

        %jacobian for the system 

        J=[diff(E1,V),diff(E1,P),diff(E1,N),... 

            diff(E1,U),diff(E1,E),diff(E1,O); 

            diff(E2,V),diff(E2,P),diff(E2,N),... 

            diff(E2,U),diff(E2,E),diff(E2,O); 

            diff(E3,V),diff(E3,P),diff(E3,N),... 

            diff(E3,U),diff(E3,E),diff(E3,O); 
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            diff(E4,V),diff(E4,P),diff(E4,N),... 

            diff(E4,U),diff(E4,E),diff(E4,O); 

            diff(E5,V),diff(E5,P),diff(E5,N),... 

            diff(E5,U),diff(E5,E),diff(E5,O); 

            diff(E6,V),diff(E6,P),diff(E6,N),... 

            diff(E6,U),diff(E6,E),diff(E6,O)]; 

 

        %evaluate J at the fixed point 

        J = subs(J,{V,P,N,U,E,O},{FP(i,1),FP(i,2),FP(i,3),FP(i,4),... 

            FP(i,5),FP(i,6)}); 

 

        %casting Jacobian from symbolic notations to double precision 

        for r = 1:6 

            for s = 1:6 

                J(r,s) = double(J(r,s)); 

            end 

        end 

 

        %display results 

        disp('At fixed point (V,P,N,U,E,O)=') 

        str =fprintf('(%4.2f,%4.2f,%4.2f,%4.2f,%4.2f,%4.2f) \n',... 

            FP(i,1), FP(i,2), FP(i,3), FP(i,4), FP(i,5), FP(i,6)); 

 

        lambda = eig(J);        %compute the eigenvalues 

        num = size(lambda); 

 

        for r=1:num 

            %check if real part is non-zero 

            if real(double(lambda(r))) == 0 

                proceed = -1; 

            %check if unstability 

            elseif real(double(lambda(r))) > 0 

                proceed = 0; 

            end 
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        end 

 

        if proceed == -1 

            disp('stability cannot be determined'); 

            disp('since the real part equals 0.'); 

        elseif proceed == 0 

            disp('The system is unstable.') 

        else 

            disp('the system is stable.') 

        end 

    end 

end 
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C.4 Stability for the Modified ODE PUEP Model with Inflow Domains and Stock 

and Trade Considerations 

 

 The Matlab function Stability_ODE_PUEP_Inflow_Trade_Modified.m, which 

was written to find the fixed points to the model and analyze the stability of the system at 

those points, is the same as the Stability_ODE_PUEP_Inflow_Trade.m function 

discussed in C.3, with modifications to lines 14-22, which is presented here. 

 
function fun = Stability_ODE_PUEP_Inflow_Trade_Modified(I,S,R,l_V,l_P,l_N,... 

    l_U,l_E,l_O,r_O,r_N,r_P,r_E,a,f,mu,e,i_P,i_U,i_O,x_V,x_P,x_U,x_O) 

 

%defining symbolic metal domains 

syms V P N U E O; 

 

%define symbolic function E such that dX/dt = E 

E1 = a*R-f*V-l_V*V-x_V*V; 

E2 = f*V-mu*P*U+r_O*O+r_N*N-r_P*P-l_P*P-x_P*P+i_P*I+S; 

 

  



145 

 

C.5 Parameter Optimization for the ODE PUE Model 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: LM_PUE_ODE.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Matlab script that computes the best (mu,e) for an empirical data 

%           for the ODE PUE Model using the Levenburg-Marquardt Algorithm 

%Output: The optimal parameters (mu,e) 

%Date Created: 15 March 2011 

%Date Last Modified: 16 March 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Generate empirical data 

%This section should be modified to allow the input of actual data 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

mu=.1;                                          %first parameter 

e=.2;                                           %second parameter 

t0=0;                                           %initial time 

tF=1;                                           %final time 

Num=10;                                         %number of steps 

 

P0=1; U0=1; E0=1;                               %initial conditions 

 

[P,U,E]=PUE_ODE(P0,U0,E0,mu,e,t0,tF,Num);       %calling PUE_ODE function 

 

P_emp = P +.01*rand(length(P),1);               %adding noise 

U_emp = U +.01*rand(length(U),1); 

E_emp = E +.01*rand(length(E),1); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%LM Algorithm 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

mu=.3; e=.3;            %initial parameter guess 

t0=0;                   %initial time 

tF=1;                   %final time 

Num=10;                 %number of steps 

del_t = (tF-t0)/Num;    %time step 

t=[t0:del_t:tF]';       %time domain 

P0=1; U0=1; E0=1;       %initial condition 

 

%solve for initial guess 

%PUE_ODE() is a function that solves the IVP using finite different 

[P_initial,U_initial,E_initial]=PUE_ODE(P0,U0,E0,mu,e,t0,tF,Num); 

 

J_Rows=3*(length(P_initial)-1); %number of rows for the Jacobian 

J_Cols=2;                   %number of parameters to be estimated 

num_iters=100;              %number of iterations of LM 

lambda=0.01;                %initial dampering term 

updateJ=1;                  %if evalJ==1 then Jacobian is evaluated for 

                            %current parameters; if evalJ==0 then dampering 

                            %factor lambda needs to be increased 

 

for iters=1:num_iters 

    if updateJ==1 

        %evaluate the Jacobian matrix at the current (mu,e) 

        J=zeros(J_Rows,J_Cols); 

        [P_est,U_est,E_est]=PUE_ODE(P0,U0,E0,mu,e,t0,tF,Num); 

 

        for i = 1:(J_Rows/3) 

            J(i,:)= del_t*[-P_est(i)*U_est(i),0]; 

            J(i+J_Rows/3,:)= del_t*[P_est(i)*U_est(i),-U_est(i)]; 

            J(i+2*J_Rows/3,:)= del_t*[0,U_est(i)]; 

        end 
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        %evaluate epsilon at the current parameters 

        epsilon = zeros(J_Rows,1); 

        for i =1:(J_Rows/3) 

            epsilon(i) = P_emp(i+1) - P_est(i+1); 

            epsilon(i+J_Rows/3) = U_emp(i+1) - U_est(i+1); 

            epsilon(i+2*J_Rows/3) = E_emp(i+1) - E_est(i+1); 

        end 

 

        %compute the Hessian matrix 

        Hess = J'*J; 

 

        %compute the error at the first iterate 

        if iters == 1 

            cost = norm(epsilon); 

        end 

    end 

 

    %apply the dampering term 

    N=Hess+(lambda*diag(diag(Hess))); 

 

    %compute the updated parameters 

    delta = N\(J'*epsilon); 

    mu_lm = mu+delta(1); 

    e_lm = e+delta(2); 

 

    %compute epsilon and cost function for the new parameters 

    [P_lm,U_lm,E_lm]=PUE_ODE(P0,U0,E0,mu_lm,e_lm,t0,tF,Num); 

 

    epsilon_update = zeros(J_Rows,1); 

    for i =1:(J_Rows/3) 

        epsilon_update(i) = P_emp(i+1) - P_lm(i+1); 

        epsilon_update(i+J_Rows/3) = U_emp(i+1) - U_lm(i+1); 

        epsilon_update(i+2*J_Rows/3) = E_emp(i+1) - E_lm(i+1); 

    end 
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    cost_update = norm(epsilon_update); 

 

    %adjusting the dampering term 

    if cost_update < cost 

        lambda = lambda/10; 

        mu = mu_lm; 

        e = e_lm; 

        cost = cost_update; 

        updateJ = 1; 

    else 

        updateJ = 0; 

        lambda=lambda*10; 

    end 

end 

 

disp([mu,e]) 
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C.6 Euler’s Method for the Modified ODE PUEP Model with Inflow Domains and 

Stock and Trade Considerations 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: PUEP_inflow_ODE_trade_reserves.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Matlab function that computes the finite difference method for 

%           the PUEP ODE model with inflow domains, trade, reserves 

%Date Created: 14 Jan 2011 

%Date Last Modified: 20 Jan 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%defining time domain and intervals 

t0 = 0; 

t1 = 1; 

n = 100; 

del_t = (t1-t0)/n; 

Time = 0:del_t:t1; 

 

%defining populations 

V = zeros(1,n+1); 

P = zeros(1,n+1); 

N = zeros(1,n+1); 

U = zeros(1,n+1); 

E = zeros(1,n+1); 

O = zeros(1,n+1); 

 

%initial conditions 

V(1,1)=2; 

P(1,1)=2; 

N(1,1)=2; 

U(1,1)=2; 

E(1,1)=1; 
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O(1,1)=2; 

 

%import and stock release functions 

I = zeros(1,n+1)+1; 

S = zeros(1,n+1)+.5; 

R = zeros(1,n+1)+100; 

 

%initializing constants 

%metal loss rates 

l_V = .2; 

l_P = .1; 

l_N = .3; 

l_U = .2; 

l_E = .2; 

l_O = .2; 

 

%metal recyclable rates 

r_O = .25; 

r_N = .25; 

r_P = .1; 

r_E = .2; 

 

%availability, supply/demand, end-of-life, fabrication, import, export 

a=.1; 

mu=.1; 

e=.1; 

f=.1; 

i_P=.2; 

i_U=.5; 

i_O=.3; 

x_P=.1; 

x_U=.1; 

x_O=.1; 
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%Calculating populations 

for i=1:n 

    V(1,i+1)=V(1,i)+del_t*(-l_V*V(1,i)+a*R(1,i)-f*V(1,i)); 

    P(1,i+1)=P(1,i)+del_t*(-l_P*P(1,i)-mu*P(1,i)*U(1,i)+r_O*O(1,i)... 

        +r_N*N(1,i)-r_P*P(1,i)+f*V(1,i)-x_P*P(1,i)+i_P*I(1,i)+S(i)); 

    N(1,i+1)=N(1,i)+del_t*(-l_N*N(1,i)+r_P*P(1,i)-r_N*N(1,i)); 

    U(1,i+1)=U(1,i)+del_t*(-l_U*U(1,i)+mu*P(1,i)*U(1,i)-e*U(1,i)... 

        -x_U*U(1,i)+i_U*I(1,i)); 

    E(1,i+1)=E(1,i)+del_t*(-l_E*E(1,i)+e*U(1,i)-r_E*E(1,i)); 

    O(1,i+1)=O(1,i)+del_t*(-l_O*O(1,i)+r_E*E(1,i)-r_O*O(1,i)-x_O*O(1,i)... 

        +i_O*I(1,i)); 

end 

 

%Plot populations 

scrsz = get(0,'ScreenSize'); 

figure('Position',[0 0 scrsz(3)/2 scrsz(3)/2]) 

 

%Plot V(t) 

subplot(3,2,1) 

plot(Time,V); 

title('Virgin Metal V(t)') 

xlabel('Time') 

ylabel('Amount') 

 

%Plot P(t) 

subplot(3,2,2) 

plot(Time,P); 

title('Production P(t)') 

xlabel('Time') 

ylabel('Amount') 

 

%Plot N(t) 

subplot(3,2,3) 

plot(Time,N); 
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title('New Scrap N(t)') 

xlabel('Time') 

ylabel('Amount') 

 

%Plot U(t) 

subplot(3,2,4) 

plot(Time,U); 

title('Use U(t)') 

xlabel('Time') 

ylabel('Amount') 

 

%Plot E(t) 

subplot(3,2,5) 

plot(Time,E); 

title('End of Life E(t)') 

xlabel('Time') 

ylabel('Amount') 

 

%Plot O(t) 

subplot(3,2,6) 

plot(Time,O); 

title('Old Scrap O(t)') 

xlabel('Time') 

ylabel('Amount') 
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(a)             (b)             

 

Figure C.1: Comparison of two solutions to the ODE PUE Model 

 

 

 

  
(a)                     

                    

(b)                     
                    

 

Figure C.2: Comparison of two solutions to the ODE PUEP Model 

 



154 

 

 

  
(a)                   (b)                   

 

Figure C.3: Comparison of two solutions to the ODE PUEP Model with Inflow Domains 

  

 

  
(a)                   (b)                   

 

Figure C.4: Comparison of two solutions to the ODE PUEP Model with Inflow Domains and 

Stock and Trade Considerations 
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(a)                   (b)                   

 

Figure C.5: Comparison of two solutions to the ODE PUEP Model with Inflow Domains and 

Stock and Trade Considerations 
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C.7 BTCS Method for the Modified PDE PUEP Model with Inflow Domains, Trade 

and Stock Considerations and Price Cross Diffusion 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: PUEP_inflow_PDE_crossdiffusion_trade_reserves.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Matlab function that computes the finite difference method for 

%        the PDE PUEP model with inflow domains, cross diffusion terms, 

%        trade, and reserves 

%Date Created: 14 Jan 2011 

%Date Last Modified: 20 Jan 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%defining time and price domains and intervals 

t0 = 0; 

t1 = 1; 

m = 100; 

del_t = (t1-t0)/m; 

Time = 0:del_t:t1; 

 

s0 = 0; 

s1 = 1; 

n = 100; 

del_s = (s1-s0)/n; 

Price = 0:del_s:s1; 

 

%defining populations 

V = zeros(n+1,m+1); 

P = zeros(n+1,m+1); 

N = zeros(n+1,m+1); 

U = zeros(n+1,m+1); 

E = zeros(n+1,m+1); 

O = zeros(n+1,m+1); 
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%import, stock release, and reserves functions 

I = zeros(n+1,1)+1; 

S = zeros(n+1,1)+.5; 

R = zeros(n+1,1)+100; 

 

%initial conditions 

V(:,1)=(Price-Price.^2); 

P(:,1)=2*(Price-Price.^2); 

N(:,1)=(1/8)*(Price-Price.^2); 

U(:,1)=(2/3)*(Price-Price.^2); 

E(:,1)=(1/3)*(Price-Price.^2); 

O(:,1)=(1/8)*(Price-Price.^2); 

 

%boundary values 

V(1,:)=0; 

P(1,:)=0; 

N(1,:)=0; 

U(1,:)=0; 

E(1,:)=0; 

O(1,:)=0; 

 

V(n+1,:)=0; 

P(n+1,:)=0; 

N(n+1,:)=0; 

U(n+1,:)=0; 

E(n+1,:)=0; 

O(n+1,:)=0; 

 

%availability, supply/demand, end-of-life, fabrication, import, export 

alpha=.01; 

mu=.2; 

e=.1; 

f=.9; 
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i_P=.2; 

i_U=.5; 

i_O=.3; 

x_P=.1; 

x_U=.1; 

x_O=.1; 

 

%recyclible rates 

r_O=.25; 

r_E=.25; 

r_N=.75; 

r_P=.05; 

 

%loss rates 

l_V=.4; 

l_P=.1; 

l_N=.1; 

l_U=0; 

l_E=.1; 

l_O=.1; 

 

%diffusion terms 

delta_VV=.2; 

delta_PP=.2; 

delta_NN=.2; 

delta_UU=.2; 

delta_EE=.2; 

delta_OO=.2; 

 

%cross diffusion terms 

delta_PV=.02; 

delta_VP=.02; 

delta_OP=.02; 

delta_PN=.02; 
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delta_PU=.02; 

delta_PE=.02; 

delta_UE=.02; 

delta_PO=.02; 

delta_EO=.02; 

 

%Matrix system terms for V 

aV = zeros(1,n-2)+delta_VV/(del_s^2); 

bV = zeros(1,m-1)-1/del_t-2*delta_VV/(del_s^2); 

A_V = (zeros(n-1,m-1)+diag(bV,0)+diag(aV,1)+diag(aV,-1))^(-1); 

 

%Matrix system terms for P 

aP = zeros(1,n-2)+delta_PP/(del_s^2); 

bP = zeros(1,m-1)-1/del_t-2*delta_PP/(del_s^2); 

A_P = (zeros(n-1,m-1)+diag(bP,0)+diag(aP,1)+diag(aP,-1))^(-1); 

 

%Matrix system terms for N 

aN = zeros(1,n-2)+delta_NN/(del_s^2); 

bN = zeros(1,m-1)-1/del_t-2*delta_NN/(del_s^2); 

A_N = (zeros(n-1,m-1)+diag(bN,0)+diag(aN,1)+diag(aN,-1))^(-1); 

 

%Matrix system terms for U 

aU = zeros(1,n-2)+delta_UU/(del_s^2); 

bU = zeros(1,m-1)-1/del_t-2*delta_UU/(del_s^2); 

A_U = (zeros(n-1,m-1)+diag(bU,0)+diag(aU,1)+diag(aU,-1))^(-1); 

 

%Matrix system terms for E 

aE = zeros(1,n-2)+delta_EE/(del_s^2); 

bE = zeros(1,m-1)-1/del_t-2*delta_EE/(del_s^2); 

A_E = (zeros(n-1,m-1)+diag(bE,0)+diag(aE,1)+diag(aE,-1))^(-1); 

 

%Matrix system terms for O 

aO = zeros(1,n-2)+delta_OO/(del_s^2); 

bO = zeros(1,m-1)-1/del_t-2*delta_OO/(del_s^2); 
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A_O = (zeros(n-1,m-1)+diag(bO,0)+diag(aO,1)+diag(aO,-1))^(-1); 

 

%Calculating populations 

for j=2:m+1 

    %calculating lambdas 

    lambda_V=-1/del_t+l_V+f; 

    lambda_P=-1/del_t+mu*U(2:n,j-1)+l_P+r_P+x_P; 

    lambda_N=-1/del_t+l_N+r_N; 

    lambda_U=-1/del_t-mu*P(2:n,j-1)+e+l_U+x_U; 

    lambda_E=-1/del_t+l_E+r_E; 

    lambda_O=-1/del_t+l_O+r_O+x_O; 

 

    %calculating gammas 

    gamma_V=delta_PV/(del_s^2)*(P(3:n+1,j-1)-2*P(2:n,j-1)+P(1:n-1,j-1))... 

        -alpha*R(2:n,1); 

    gamma_P=-r_O*O(2:n,j-1)-r_N*N(2:n,j-1)-f*V(2:n,j-1)+... 

        delta_VP/(del_s^2)*(V(3:n+1,j-1)-2*V(2:n,j-1)+V(1:n-1,j-1))+... 

        delta_OP/(del_s^2)*(O(3:n+1,j-1)-2*O(2:n,j-1)+O(1:n-1,j-1))... 

        -i_P*I(2:n,1)-S(2:n,1); 

    gamma_N=-r_P*P(2:n,j-1)+... 

        delta_PN/(del_s^2)*(P(3:n+1,j-1)-2*P(2:n,j-1)+P(1:n-1,j-1)); 

    gamma_U=delta_PU/(del_s^2)*(P(3:n+1,j-1)-2*P(2:n,j-1)+P(1:n-1,j-1))... 

        -i_U*I(2:n,1); 

    gamma_E=-e*U(2:n,j-1)+... 

        delta_PE/(del_s^2)*(P(3:n+1,j-1)-2*P(2:n,j-1)+P(1:n-1,j-1))+... 

        delta_UE/(del_s^2)*(U(3:n+1,j-1)-2*U(2:n,j-1)+U(1:n-1,j-1)); 

    gamma_O=-r_E*E(2:n,j-1)+... 

        delta_PO/(del_s^2)*(P(3:n+1,j-1)-2*P(2:n,j-1)+P(1:n-1,j-1))+... 

        delta_EO/(del_s^2)*(E(3:n+1,j-1)-2*E(2:n,j-1)+E(1:n-1,j-1))... 

        -i_O*I(2:n,1); 

 

    %declaring b vectors 

    b_V = lambda_V.*V(2:n,j-1)+gamma_V; 

    b_P = lambda_P.*P(2:n,j-1)+gamma_P; 
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    b_N = lambda_N.*N(2:n,j-1)+gamma_N; 

    b_U = lambda_U.*U(2:n,j-1)+gamma_U; 

    b_E = lambda_E.*E(2:n,j-1)+gamma_E; 

    b_O = lambda_O.*O(2:n,j-1)+gamma_O; 

 

    %adding boundary values 

    b_V(1,1)=b_V(1,1)-aV(1,1)*V(1,j); 

    b_V(n-1,1)=b_V(n-1,1)-aV(1,1)*V(n+1,j); 

 

    b_P(1,1)=b_P(1,1)-aP(1,1)*P(1,j); 

    b_P(n-1,1)=b_P(n-1,1)-aP(1,1)*P(n+1,j); 

 

    b_N(1,1)=b_N(1,1)-aN(1,1)*N(1,j); 

    b_N(n-1,1)=b_N(n-1,1)-aN(1,1)*N(n+1,j); 

 

    b_U(1,1)=b_U(1,1)-aU(1,1)*U(1,j); 

    b_U(n-1,1)=b_U(n-1,1)-aU(1,1)*U(n+1,j); 

 

    b_E(1,1)=b_E(1,1)-aE(1,1)*E(1,j); 

    b_E(n-1,1)=b_E(n-1,1)-aE(1,1)*E(n+1,j); 

 

    b_O(1,1)=b_O(1,1)-aO(1,1)*O(1,j); 

    b_O(n-1,1)=b_O(n-1,1)-aO(1,1)*O(n+1,j); 

 

    %calculate V,P,N,U,E,O 

    V(2:n,j)=A_V*b_V; 

    P(2:n,j)=A_P*b_P; 

    N(2:n,j)=A_N*b_N; 

    U(2:n,j)=A_U*b_U; 

    E(2:n,j)=A_E*b_E; 

    O(2:n,j)=A_O*b_O; 

end 

 

%Plot populations 
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scrsz = get(0,'ScreenSize'); 

figure('Position',[0 0 scrsz(3) scrsz(3)/2]) 

 

%Plot V(t) 

subplot(3,2,1) 

mesh(Price,Time,V') 

title('Virgin Metal V(s,t)') 

xlabel('Price') 

ylabel('Time') 

zlabel('Amount') 

 

%Plot P(s,t) 

subplot(3,2,2) 

mesh(Price,Time,P') 

title('Production P(s,t)') 

xlabel('Price') 

ylabel('Time') 

zlabel('Amount') 

 

%Plot N(s,t) 

subplot(3,2,3) 

mesh(Price,Time,N') 

title('New Scrap N(s,t)') 

xlabel('Price') 

ylabel('Time') 

zlabel('Amount') 

 

%Plot U(s,t) 

subplot(3,2,4) 

mesh(Price,Time,U') 

title('Use U(s,t)') 

xlabel('Price') 

ylabel('Time') 

zlabel('Amount') 
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%Plot O(s,t) 

subplot(3,2,5) 

mesh(Price,Time,O') 

title('Old Scrap O(s,t)') 

xlabel('Price') 

ylabel('Time') 

zlabel('Amount') 

 

%Plot E(s,t) 

subplot(3,2,6) 

mesh(Price,Time,E') 

title('End of Life E(s,t)') 

xlabel('Price') 

ylabel('Time') 

zlabel('Amount') 
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(a)                       

                

(b)                       
                

Figure C.6: Comparison of two solutions to the PDE PUE Model 

 

  
(a)                         

                         
             

(b)                         
                         

             

Figure C.7: Comparison of two solutions to the PDE PUE Model with Price Cross Diffusion 
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(a)                         

            

(b)                         
            

Figure C.8: Comparison of two solutions to the PDE PUEP Model 

 

  
(a)                         

                        
                      

(b)                         
                         

                      

Figure C.9: Comparison of two solutions to the PDE PUEP Model with Price Cross Diffusion 
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(a)                          

                         
             

(b)                          
                        

             

Figure C.10: Comparison of two solutions to the PDE PUEP Model with Inflow Domains 

 

  
(a)                          

                         
                             
                         

        
 

(b)                          
                        

                             
                         

        

Figure C.11: Comparison of two solutions to the PDE PUEP Model with Inflow Domains and 

Price Cross Diffusion 
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(a)                          

                         
             

 

(b)                          
                        

             

Figure C.12: Comparison of two solutions to the PDE PUEP Model with Inflow Domains and 

Trade and Stock Considerations 

 

  
(a)                          

                         
                             
                         

        
 

(b)                          
                        

                             
                         

        

Figure C.13: Comparison of two solutions to the PDE PUEP Model with Inflow Domains, Trade 

and Stock Considerations and Price Cross Diffusion 
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(a)                          

                         
             

 

(b)                          
                        

             

Figure C.14: Comparison of two solutions to the Modified PDE PUEP Model with Inflow 

Domains and Trade and Stock Considerations 

 

  
(a)                          

                         
                             
                        

        
 

(b)                          
                        

                             
                        

        

Figure C.15: Comparison of two solutions to the Modified PDE PUEP Model with Inflow 

Domains, Trade and Stock Considerations and Price Cross Diffusion 
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C.8 Euler-Maruyama Method for the SDE PUE Model 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: PUE_SDE.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Matlab function that computes the Euler's Method for 

%           the SDE PUE model 

%Date Created: 8 April 2011 

%Date Last Modified: 8 April 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear; 

 

%defining time domain and intervals 

t0 = 2000; 

t1 = 2007; 

n = 100; 

del_t = (t1-t0)/n; 

Time = t0:del_t:t1; 

orderT=0.000000001;     %used to create a positive definite covariance matrix 

 

%defining populations 

P = zeros(n+1,1); 

U = zeros(n+1,1); 

E = zeros(n+1,1); 

 

%initial conditions 

P(1)=2; 

U(1)=2; 

E(1)=1; 

 

%initializing constants 

mu=0.1; 

e=0.1; 
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%3 individual plots 

scrsz = get(0,'ScreenSize'); 

figure('Position',[0 0 scrsz(3)/2 scrsz(3)/2]) 

 

for j = 1:3 

%Calculating populations 

    for i=1:n 

        dW1=.25*randn; 

        dW2=.25*randn; 

        dW3=.25*randn; 

 

        C=[mu*P(i)*U(i)+orderT, -mu*P(i)*U(i), 0;... 

            -mu*P(i)*U(i), mu*P(i)*U(i)+e*U(i)+orderT,-e*U(i);... 

            0, -e*U(i), e*U(i)+orderT]; 

        B=sqrtm(C); 

 

        P(i+1)=P(i)-del_t*mu*P(i)*U(i)+... 

            sqrt(del_t)*B(1,1)*dW1+... 

            sqrt(del_t)*B(1,2)*dW2+... 

            sqrt(del_t)*B(1,3)*dW3; 

        U(i+1)=U(i)+del_t*(mu*P(i)*U(i)-e*U(i))+... 

            sqrt(del_t)*B(2,1)*dW1+... 

            sqrt(del_t)*B(2,2)*dW2+... 

            sqrt(del_t)*B(2,3)*dW3; 

        E(i+1)=E(i)+del_t*e*U(i)+... 

            sqrt(del_t)*B(3,1)*dW1+... 

            sqrt(del_t)*B(3,2)*dW2+... 

            sqrt(del_t)*B(3,3)*dW3; 

 

        %eliminate negative amounts 

        if P(i+1)<=0 

            P(i+1)=0; 

        end 
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        if U(i+1)<=0 

            U(i+1)=0; 

        end 

 

        if E(i+1)<=0 

            E(i)=0; 

        end 

    end 

 

    %Plot P(t) 

    hold on; 

    subplot(3,1,1) 

    if j == 1 

        plot(Time,P,'b'); 

    elseif j == 2 

        plot(Time,P,'r'); 

    elseif j ==3 

       plot(Time,P,'g'); 

    end 

    title('Production P(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot U(t) 

    hold on; 

    subplot(3,1,2) 

    if j == 1 

        plot(Time,U,'b'); 

    elseif j == 2 

        plot(Time,U,'r'); 

    elseif j ==3 

       plot(Time,U,'g'); 

    end 
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    title('Use U(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot E(t) 

    hold on; 

    subplot(3,1,3) 

    if j == 1 

        plot(Time,E,'b'); 

    elseif j == 2 

        plot(Time,E,'r'); 

    elseif j ==3 

       plot(Time,E,'g'); 

    end 

    title('End of Life E(t)') 

    xlabel('Time') 

    ylabel('Amount') 

end 

 

 

 
 

Figure C.16: Comparison of three trajectories for the SDE PUE Model 
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C.9 Euler-Maruyama Method for the SDE PUEP Model 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: PUEP_SDE.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Matlab function that computes the Euler's method for 

%           the PUEP SDE model with metal losses 

%Date Created: 8 April 2011 

%Date Last Modified: 8 April 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear; 

 

%defining time domain and intervals 

t0 = 1997; 

t1 = 2007; 

n = 100; 

del_t = (t1-t0)/n; 

Time = t0:del_t:t1; 

 

%defining populations 

P = zeros(1,n+1);       %production 

U = zeros(1,n+1);       %use 

E = zeros(1,n+1);       %end-of-life 

 

%initial conditions 

P(1,1)=2; 

U(1,1)=2; 

E(1,1)=1; 

v = 10;                  %ore reserve constant 

 

%initializing constants 

l_P = .01;  %production lose rate 

l_U = .02;  %use lose rate 
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l_E = .03;  %end-of-life lose rate 

 

a=.02;      %ore availibility 

mu=.2;      %supply/demand coefficient 

r=.25;      %recyclible rate 

e=.2;       %end-of-life coefficient 

 

for j = 1:3 

    %Calculating populations 

    for i=1:n 

        dW1=.25*randn; 

        dW2=.25*randn; 

        dW3=.25*randn; 

 

        C=[a*v+mu*P(i)*U(i)+r*E(i)+l_P*P(i), -mu*P(i)*U(i), -r*E(i);... 

            -mu*P(i)*U(i), mu*P(i)*U(i)+e*U(i)+l_U*U(i),-e*U(i);... 

            -r*E(i), -e*U(i), r*E(i)+e*U(i)+l_E*E(i)]; 

        B=sqrtm(C); 

 

        P(i+1)=P(i)+del_t*(a*v-mu*P(i)*U(i)+r*E(i)-l_P*P(i))+... 

            sqrt(del_t)*B(1,1)*dW1+... 

            sqrt(del_t)*B(1,2)*dW2+... 

            sqrt(del_t)*B(1,3)*dW3; 

        U(i+1)=U(i)+del_t*(mu*P(i)*U(i)-e*U(i)-l_U*U(i))+... 

            sqrt(del_t)*B(2,1)*dW1+... 

            sqrt(del_t)*B(2,2)*dW2+... 

            sqrt(del_t)*B(2,3)*dW3; 

        E(i+1)=E(i)+del_t*(e*U(i)-l_E*E(i)-r*E(i))+... 

            sqrt(del_t)*B(3,1)*dW1+... 

            sqrt(del_t)*B(3,2)*dW2+... 

            sqrt(del_t)*B(3,3)*dW3; 

        v = v-a*v; 

 

        %eliminate negative amounts 
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        if P(i+1)<=0 

            P(i+1)=0; 

        end 

 

        if U(i+1)<=0 

            U(i+1)=0; 

        end 

 

        if E(i+1)<=0 

            E(i)=0; 

        end 

 

        if v<=0 

            v=0; 

        end 

 

    end 

 

    %Plot P(t) 

    hold on; 

    subplot(3,1,1) 

    if j == 1 

        plot(Time,P,'b'); 

    elseif j == 2 

        plot(Time,P,'r'); 

    elseif j ==3 

       plot(Time,P,'g'); 

    end 

    title('Production P(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot U(t) 

    hold on; 
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    subplot(3,1,2) 

    if j == 1 

        plot(Time,U,'b'); 

    elseif j == 2 

        plot(Time,U,'r'); 

    elseif j ==3 

       plot(Time,U,'g'); 

    end 

    title('Use U(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot E(t) 

    hold on; 

    subplot(3,1,3) 

    if j == 1 

        plot(Time,E,'b'); 

    elseif j == 2 

        plot(Time,E,'r'); 

    elseif j ==3 

       plot(Time,E,'g'); 

    end 

    title('End of Life E(t)') 

    xlabel('Time') 

    ylabel('Amount') 

end 
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Figure C.17: Comparison of three trajectories for the SDE PUEP Model 
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C.10 Euler-Maruyama Method for the SDE PUEP Model with Inflow Domains 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%File Name: PUEP_inflow_SDE.m 

%Author: Marc A Angulo 

%Course: Thesis 

%Purpose: Matlab function that computes the Euler's method for 

%           the PUEP SDE model with inflow domains 

%Date Created: 8 April 2011 

%Date Last Modified: 8 April 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%defining time domain and intervals 

t0 = 0; 

t1 = 1; 

n = 100; 

del_t = (t1-t0)/n; 

Time = 0:del_t:t1; 

 

%defining populations 

V = zeros(n+1,1); 

P = zeros(n+1,1); 

N = zeros(n+1,1); 

U = zeros(n+1,1); 

E = zeros(n+1,1); 

O = zeros(n+1,1); 

 

%initial conditions 

V(1)=2; 

P(1)=2; 

N(1)=2; 

U(1)=2; 

E(1)=1; 

O(1)=2; 
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%initializing constants 

%metal loss rates 

l_V = .1; 

l_P = .1; 

l_N = .1; 

l_U = .1; 

l_E = .1; 

l_O = .1; 

 

%metal recyclable rates 

r_O = .5; 

r_N = .5; 

r_P = .5; 

r_E = .5; 

 

a=.1; 

mu=.1; 

e=.1; 

 

%Plot populations 

scrsz = get(0,'ScreenSize'); 

figure('Position',[0 0 scrsz(3)/2 scrsz(3)/2]) 

 

for j = 1:3 

    %Calculating populations 

    for i=1:n 

        dW1=.5*randn; 

        dW2=.5*randn; 

        dW3=.5*randn; 

        dW4=.5*randn; 

        dW5=.5*randn; 

        dW6=.5*randn; 
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        C=[a*V(i)+l_V*V(i),-a*V(i),0,0,0,0;... 

            -a*V(i),a*V(i)+mu*P(i)*U(i)+r_O*O(i)+r_N*N(i)+r_P*P(i)+l_P*P(i),... 

            -r_N*N(i)-r_P*P(i),-mu*P(i)*U(i),0,-r_O*O(i);... 

            0,-r_N*N(i)-r_P*P(i),r_N*N(i)+r_P*P(i)+l_N*N(i),0,0,0;... 

            0,-mu*P(i)*U(i),0,mu*P(i)*U(i)+e*U(i)+l_U*U(i),-e*U(i),0;... 

            0,0,0,-e*U(i),e*U(i)+r_E*E(i)+l_E*E(i),-r_E*E(i);... 

            0,-r_O*O(i),0,0,-r_E*E(i),r_O*O(i)+r_E*E(i)+l_O*O(i)]; 

        B=sqrtm(C); 

 

        A=sqrt(del_t)*... 

            [dW1*B(:,1) dW2*B(:,2) dW3*B(:,3) dW4*B(:,4) dW5*B(:,5) dW6*B(:,6)]; 

 

        V(i+1)=V(i)+del_t*(-l_V*V(i)-a*V(i))+sum(A(1,:)); 

        P(i+1)=P(i)+del_t*(-l_P*P(i)-mu*P(i)*U(i)+r_O*O(i)... 

            +r_N*N(i)-r_P*P(i)+a*V(i))+sum(A(2,:)); 

        N(i+1)=N(i)+del_t*(-l_N*N(i)+r_P*P(i)-r_N*N(i))+sum(A(3,:)); 

        U(i+1)=U(i)+del_t*(-l_U*U(i)+mu*P(i)*U(i)-e*U(i))+sum(A(4,:)); 

        E(i+1)=E(i)+del_t*(-l_E*E(i)+e*U(i)-r_E*E(i))++sum(A(5,:)); 

        O(i+1)=O(i)+del_t*(-l_O*O(i)+r_E*E(i)-r_O*O(i))++sum(A(6,:)); 

    end 

 

    %Plot V(t) 

    hold on; 

    subplot(3,2,1) 

    if j == 1 

        plot(Time,V,'b'); 

    elseif j == 2 

        plot(Time,V,'r'); 

    elseif j ==3 

       plot(Time,V,'g'); 

    end 

    title('Virgin Metal V(t)') 

    xlabel('Time') 

    ylabel('Amount') 
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    %Plot P(t) 

    hold on; 

    subplot(3,2,2) 

    if j == 1 

        plot(Time,P,'b'); 

    elseif j == 2 

        plot(Time,P,'r'); 

    elseif j ==3 

        plot(Time,P,'g'); 

    end 

    title('Production P(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot N(t) 

    hold on; 

    subplot(3,2,3) 

    if j == 1 

        plot(Time,N,'b'); 

    elseif j == 2 

        plot(Time,N,'r'); 

    elseif j ==3 

        plot(Time,N,'g'); 

    end 

    title('New Scrap N(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot U(t) 

    hold on; 

    subplot(3,2,4) 

    if j == 1 

        plot(Time,U,'b'); 
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    elseif j == 2 

        plot(Time,U,'r'); 

    elseif j ==3 

        plot(Time,U,'g'); 

    end 

    title('Use U(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot E(t) 

    hold on; 

    subplot(3,2,5) 

    if j == 1 

        plot(Time,E,'b'); 

    elseif j == 2 

        plot(Time,E,'r'); 

    elseif j ==3 

        plot(Time,E,'g'); 

    end 

    title('End of Life E(t)') 

    xlabel('Time') 

    ylabel('Amount') 

 

    %Plot O(t) 

    hold on; 

    subplot(3,2,6) 

    if j == 1 

        plot(Time,O,'b'); 

    elseif j == 2 

        plot(Time,O,'r'); 

    elseif j ==3 

        plot(Time,O,'g'); 

    end 

    title('Old Scrap O(t)') 



183 

 

    xlabel('Time') 

    ylabel('Amount') 

end 

 

 

 
 

Figure C.18: Comparison of three trajectories for the SDE PUEP Model with Inflow Domains 
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