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Abstract

LOCAL MINIMA HOPPING ALONG THE PROTEIN ENERGY SURFACE

Brian Olson, M.S.

George Mason University, 2011

Thesis Director: Dr. Amarda Shehu

Modeling of protein molecules in silico for the purpose of elucidating the three-dimensional

structure where the protein is biologically active employs the knowledge that the protein

conformational space has an underlying funnel-like energy surface. The biologically-active

structure, also referred to as the native structure, resides at the basin or global minimum

of the energy surface. A common approach among computational methods that seek the

protein native structure is to search for local minima in the energy surface, with the hope

that one of the local minima corresponds to the global minimum. Typical stochastic search

methods, however, fail to explicitly sample local minima. This thesis proposes a novel al-

gorithm to directly sample local minima at a coarse-grained level of detail. The Protein

Local Optima Walk (PLOW) algorithm combines a memetic approach from evolutionary

computation with cutting-edge structure prediction protocols in computational biophysics.

PLOW explores the space of local minima by explicitly projecting each move at the global

level to a nearby local minimum. This allows PLOW to jump over local energy barriers and

more effectively sample near-native conformations. An additional contribution of this thesis

is that the memetic approach in PLOW is applied to FeLTr, a tree-based search framework

which ensures geometric diversity of computed conformations through projections of the

conformational space. Analysis across a broad range of proteins shows that PLOW and



memetic FeLTr outperform the original FeLTr framework and compare favorably against

state-of-the-art ab-initio structure prediction algorithms.



Chapter 1: Introduction

The problem of determining a protein’s three-dimensional structure from amino acid se-

quence alone remains a central challenge in computational structural biology [3]. Proteins

play a critical role in countless cellular processes, and their biological functions are largely

determined by the three-dimensional structure they adopt under physiologic conditions.

The Anfinsen experiments showed that this “native” structure is encoded in the amino-acid

sequence [4], and that elucidating a protein’s biological function from its amino acids is

theoretically possible.

Modern sequencing techniques have led to an exponential growth in the number of

known protein sequences, but experimental structure determination methods such as X-ray

crystallography and Nuclear Magnetic Resonance (NMR) are time-consuming, expensive,

and struggle to keep pace with the incoming data [5]. Development of a computational

approach to complement wet-lab efforts will not only be important for elucidating the func-

tion of existing proteins, but will also advance the development of synthetically engineered

proteins, improve our models of protein ligand docking for drug development, and assist in

the prediction of protein-protein interactions in supramolecular assemblies [6–8].

A protein’s conformation is the arrangement of its amino acids in space. A chain of amino

acids is connected by many molecular bonds, both within and between each amino acid, and

it is rotations of these bonds around their axes that give rise to a particular conformation.

The amino acids bond end to end to form a common backbone chain, with each amino acid

contributing a variable-length side chain that projects from the backbone (see Figure 1.1). A

protein’s conformation can be represented as a sequence of dihedral bond angles, with each

amino acid contributing three backbone dihedral angles and one or more side chain angles.

A forward kinematics calculation can recreate the three-dimensional structure represented

by a particular conformation from these bond angles. Since even “small” proteins may
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contain over 100 amino acids, this representation results in a conformational search space

that is both vast and high-dimensional.

Statistical mechanics suggests that the protein conformational space may be represented

by a funnel-like energy surface with the native structure at the low-energy basin [9]. The

potential energy associated with a conformation is governed by the biophysics of its inter-

atomic interactions; conformations with a lower potential energy are thus more likely to form

in native conditions. Extensive research has gone into developing physically realistic energy

functions to evaluate protein conformations [10]. However, because the computational cost

of an energy function is quadratic with respect to the number of atoms, calculating potential

energy at the all-atom level of detail is usually prohibitively computationally expensive.

A coarse-grained model of protein conformations is typically employed to reduce the

complexity of the search space and lower computational costs. These coarse-grained models

employ only two degrees of freedom per amino acid to represent the backbone chain, and

typically model the side chains as a static sphere at the center of mass. The energy functions

available at the coarse-grained level of detail are significantly less expensive; but the result

is that they are semi-empirical, and inaccuracies result in a rugged energy surface. Together

the vast size of the conformational search space and the ruggedness of the energy surface

make ab inito protein native structure prediction a very difficult problem [11–14].

In order to tackle this vast and rugged energy surface, researchers have adopted a two-

stage process [1, 2, 6, 15–17]. Stage one is a coarse-grained search for a diverse set of local

minima. Stage two is the refinement of local minima at the all-atom level of detail. If a few

local minima in the vicinity of the native structure are discovered in stage one, the native

structure is more likely to be recovered in stage two [6].

However, the algorithms typically employed in stage one do not explicitly sample lo-

cal minima. The common approach is to launch many Metropolis Monte Carlo (MMC) or

Molecular Dynamics (MD) trajectories to obtain a large number of low-energy decoy confor-

mations. Further analysis of these decoy conformations groups them by geometric similarity

in an attempt to reveal explored local minima. A new search framework introduced by our
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lab, FeLTr, incorporates this geometric analysis into the stage one search process, but still

fails to explicitly model local minima [18, 19]. This thesis addresses this shortcoming by

implementing a new coarse-grained conformational search algorithm.

This thesis introduces a novel memetic algorithm, Protein Local Optima Walk (PLOW),

that explicitly populates local minima in the coarse-grained energy surface. PLOW, like

the Iterated Local Search (ILS) framework, combines a global search with an exploitative

local search [20, 21]. The global search allows the algorithm to explore the breadth of

the energy surface, biasing sampling towards lower-energy regions, while the local search

optimizes each exploration at the global level to the closest low-energy local minimum.

PLOW essentially projects the protein conformational space onto a space containing only

local minima. The global search is then able to more effectively sample a wide range of

near-native conformations from this projected space.

The FeLTr framework combines multiple MMC trajectories into a single efficient tree-

based search. This thesis combines multiple PLOW trajectories into a memetic version

of FeLTr. In memetic FeLTr each MMC trajectory is replaced by the perturbation and

local search functions employed by PLOW. This approach significantly improves the ability

of FeLTr to sample near-native conformations. The use of local search to discover local

minima provides a straightforward way to incorporate multiple fragment lengths into the

FeLTr framework, further improving its sampling ability.

The rest of this chapter provides background on the protein structure prediction prob-

lem and covers recent advances in structure prediction protocols. Section 1.3 explains the

essential contribution of this work. Chapter 2 describes the PLOW algorithm and the en-

hanced memetic version of FeLTr. Chapter 3 benchmarks PLOW and memetic FeLTr on

12 diverse proteins, comparing them both to the original FeLTr framework as well as to

published results from two other research groups [1, 2].
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1.1 Background

1.1.1 Representation of Protein Chains

Proteins are chains of amino acids that vary in length from ten or fewer amino acids in short

polypeptides to hundreds of amino acids in complex protein molecules. The arrangement

of amino acids in space determines the three-dimensional conformation of a protein. Each

amino acid has a backbone, which connect end-to-end to form the protein chain, and a side

chain, which projects from the backbone (see Figure 1.1). A protein chain is held together

by the molecular bonds between the atoms of each amino acid. Each amino acid’s backbone

has three backbone dihedral bond angles, φ, ψ, and ω, and one or more side chain angles.

A protein conformation is then represented by a vector of these bond angles.

The space of possible conformations for a given protein consists of all possible permu-

tations of the vector of dihedral bonds. Since even small proteins can contain hundreds of

amino acids, the conformational search space is both vast and high dimensional. In prac-

tice, however, a protein’s backbone chain may be accurately represented by only the φ and

ψ angles. This coarse-grained representation significantly contracts the search space and

reduces the number of atoms which must be evaluated to calculate the potential energy of

a conformation. This thesis models a protein backbone with the N, Cα, C and O atoms,

whose positions can be determined from the φ and ψ angles through forward kinemat-

ics. Side chains are estimated using a single static Cβ atom, however, once the backbone

of a protein has been discovered, existing all-atom refinement techniques can be used to

accurately recreate the side chains [22,23].

1.1.2 Evaluation of Potential Energy

Protein conformations are evaluated by functions that measure the degree of potential

energy present. A particular energy function thus defines the energy surface for the con-

formational search space, with the native structure residing at the low-energy basin. At

the coarse-grained level of detail, available energy functions provide only a rough estimate
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Figure 1.1: A coarse-grained representation of a three amino acid long chain is shown. The
side chain for each amino acid is represented as a single “R” group. The φ and ψ dihedral
torsion angles represent the only degrees of freedom in this model.

of the true potential energy. However, modern coarse-grained energy functions serve as

effective objective functions for a stochastic search of the conformational space.

The algorithms presented in this thesis employ a modified version of the Associative

Memory Hamiltonian with Water (AMW) energy function [48]. The value of AMW is the

sum of the six terms given : EnergyAMW = ELennard−Jones+EH−Bond +Econtact +Eburial +

Ewater + ERg.

ELennard−Jones is implemented as the 12-6 Lennard-Jones potential in AMBER9 [49],

modified to allow a soft penetration of van der Waals spheres. The EH−Bond term accounts

for local and non-local hydrogen bond formation. The terms Econtact, Eburial, and Ewater

allow for non-local contacts, a hydrophobic core, and water-mediated interactions, respec-

tively. The ERg term measures the difference between the radius of gyration (Rg) of a
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conformation and the Rg value predicted for its sequence, given its length [50]. The ERg

term rewards conformations which are more compact, since native-like conformations tend

to be compact with a dense and hydrophobic core.

1.1.3 Distance between two Protein Conformations

The ability to compare two different conformations of the same protein sequence is im-

portant for measuring the results of a structure prediction algorithm, and many methods

have been developed for this purpose [13, 24–26]. This section briefly describes two of the

most popular methods: least Root Mean Square Deviation (lRMSD) and Global Distance

Test (GDT). Chapter 3 employs both lRMSD and GDT to compare decoy conformations

generated during a search to the native structure downloaded from the Protein Data Bank

(PDB) [27].

least Root Mean Square Deviation (lRMSD)

The lRMSD between two conformations measures the mean distance in Å between the atoms

of the two aligned structures. The two conformations are aligned by center of mass, and a

rotation matrix is applied to minimize the Euclidian distance between corresponding atoms

in each conformation. The lRMSD is then the RMS distance between corresponding atoms

of the aligned structures. The lRMSD can be calculated using every atom or a subset of the

backbone atoms. Since the algorithms presented in this thesis model the protein backbone,

the backbone atoms N, Cα, C, and O are used to calculate lRMSD.

A protein in native biological conditions is not a static structure, but will fluctuate

between an ensemble of native conformations [28, 29]. Therefore, when measuring lRMSD

from the native structure, a small level of error is allowed. The level of error is different

for each protein. A value of 2Å provides a conservative estimate applicable to the proteins

modeled in this thesis.
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Global Distance Test (GDT)

The accuracy of lRMSD diminishes as the difference between two conformations increases.

A recently proposed method for comparing conformations, GDT, overcomes this limita-

tion [25]. To perform a GDT, two conformations are aligned as in lRMSD. However, rather

than calculating the total RMS distance, the GDT measures the number of Cα atoms which

are within a threshold distance of each other. Typically the GDT is computed for several

threshold values and the average result from each threshold is reported as a percentage of

Cα atoms under the threshold. This thesis uses the most common set of thresholds, which

is known as GDT TS: 1Å, 2Å, 4Å, and 8Å. Calculating the optimal alignment for GDT is

a much more computationally difficult problem than lRMSD [30]. This thesis employs an

approximation of the true optimal alignment as described in [25].

1.2 Related Work

1.2.1 Trajectory-based Exploration

Molecular Dynamics (MD)

MD approaches attempt to simulate the atomic forces at work within a protein molecule by

applying the principles of Newtonian physics [31]. An MD simulation calculates the forces

exerted by each atom in a protein on every other atom. An MD trajectory simulates a

specific period of time, calculating the interatomic forces at each time step and updating

the position and momentum of each atom accordingly. MD has the advantage of modeling

the actual folding pathway of a protein. However, as the number of amino acids in the

target protein grows, the number of atomic interactions which must be computed at each

time step increases quadratically. Early milestones in protein structure prediction were

achieved using MD approaches [32]. However, given the computational complexity, MD

is typically only applied to very small proteins or to carry out fine-grained refinements of

existing conformations.
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Monte Carlo (MC)

Monte Carlo (MC) based methods sample the conformational space by making a series of

modifications or moves to a conformation. Each resulting conformation is evaluated with a

potential energy function, and a determination is made as to whether or not to accept or

reject the move based on this function. The goal is to drive an MC trajectory towards lower

energy conformations which are, in theory, closer to the native structure. The decision of

whether or not to accept a move is typically done using the Metropolis criterion [33]; MC

methods using the Metropolis criterion are referred to as MMC.

1.2.2 Enhanced Sampling Strategies

Modern structure prediction strategies enhance the sampling ability of trajectory-based ex-

ploration methods with parallel execution, varying temperature, and exchanging the seed

conformation from which new trajectories are launched. Some of the recent approaches

which have been successful are importance sampling, simulated annealing, umbrella sam-

pling, genetic algorithms, replica exchange (also known as parallel tempering), local eleva-

tion, activation relaxation, local energy flattening, jump walking, multicanonical ensemble,

conformational flooding, Markov state models, discrete time-step MD, and Fragment-based

Assembly (FA) [34]. This section outlines several recent approaches which are employed to

benchmark the results described in chapter 3.

Fragment-based Assembly (FA)

A modification or move to a protein conformation is the rotation of the backbone around

one or more of the dihedral bonds. Extensive research has shown that the use of bond angles

found in nature significantly improves sampling of near-native conformations over simply

rotating angles uniformly at random [35]. FA replaces the dihedral bond angles with values

found in the PDB [27]. For each amino acid in the protein, a library of fragments is defined

at the beginning of a search. When a position i in the conformation is to be modified, a

corresponding fragment is selected at random from the library. The dihedral angles from

8



Fragment-Based Assembly

Select position Select new fragment Replace fragment

Cx Cx+1Fragment Library

Figure 1.2: A library of fragments taken from the PDB is defined at the beginning of
a search. When a position i (shown in red) in the conformation is to be modified, a
corresponding fragment is selected at random from the library. The dihedral angles from
the conformation are then replaced with those from the fragment, beginning at position i
(shown in green).

the conformation are then replaced with those from the fragment, beginning at position i

(see Figure 1.2). The use of a subset of dihedral angles greatly contracts the search space

and directs sampling towards local structural motifs which have been previously observed

in nature. While the goal of a fragment library is to bias search towards structures seen in

the PDB, a sufficiently diverse fragment library will also allow for the generation of novel

structures. The fragment library used in this thesis is outlined in Chapter 2. The use of FA

as the move set in MMC has been shown to greatly improve its sampling ability, so MMC

and FA form the basis of most modern protein structure prediction protocols.

MMC-based approaches

Successes in protein structure prediction have given rise to a common template among

structure prediction algorithms [1,2,6,15–17]. Many MMC trajectories are run at a coarse-

grained level of detail to generate a large sample of low-energy decoy conformations. These

decoy conformations are clustered by geometrical similarity in order to highlight centroids

that represent a broad range of low-energy local minima [19,36]. These centroids are then
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refined at the all-atom level of detail. If the first stage finds enough near-native coarse-

grained conformations, the second stage all-atom refinement will, in theory, be able to

recover the native structure.

Running many independent MMC trajectories has the advantage of being highly par-

allelizable, however, there is no guarantee that the independent trajectories will not all

converge to the same region of the search space. In order for the all-atom refinement to be

successful, the coarse-grained search must sample a broad enough range of local minima that

the native structure may be reached from one of them. Brunette and Brock proposed an

iterative approach that uses the results of the all-atom refinement as input to a new coarse-

grained search [2]. The idea is to use periodic short all-atom refinements to help guide the

search at the the coarse-grained level. This method allows the algorithm to dynamically

re-apportion computational resources to more promising areas of the energy surface.

The Sosnick group also employs an iterative approach that focuses resources based on an

increasingly refined picture of the search space [1]. Their algorithm, as in FA, employs a bi-

ased move set of dihedral bond angles consisting of a probability distribution corresponding

to frequency in the PDB. The algorithm performs an iterative set of coarse-grained MMC

trajectories using these biased move sets. After each iteration, the probabilities for each

move set are updated based on their appearance in the search. In practice, this approach

allows the algorithm to accurately predict the local secondary structural motifs of the target

protein, and thus re-apportion computational resources to the regions of the conformational

search space that correspond to the predicted secondary structure.

Both of these approaches use an iterative approach to more efficiently direct independent

MMC trajectories. However, neither method directly address the issue of geometric diversity

in the results of the coarse-grained search. Furthermore, neither approach explicitly samples

local minima in the energy surface; both rely on a post-processing clustering analysis to

approximate local minima.
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1.2.3 Projection-guided Tree-based Exploration

Our previously published FeLTr framework attempts to ensure a geometrically-diverse

conformational sampling at the coarse-grained level by employing a geometric projection

layer [18, 19]. The algorithm grows a search tree in the conformational space by expand-

ing selected conformations with short MMC trajectories, and maintains a representative

ensemble of previously visited conformations in memory. Selection from this ensemble is

biased towards low-energy conformations and regions in under-explored areas of the confor-

mational space. FeLTr is thus able to dynamically redirect computational resources at the

global level to ensure a degree of geometric diversity in its conformational sampling. This

section briefly describes the key components of FeLTr. A detailed description is provided

in recent publications [18,19].

FeLTr explores the protein conformational space with a tree-based search shown in

Figure 1.3. Algo. 1 provides pseudo-code for the framework. FeLTr executes on a target

protein sequence α and produces an output ensemble Ωα of low-energy decoy conformations.

The search tree is initialized with the extended conformation at the root (Algo. 1, lines 1-

2). Each iteration of the search selects a vertex from the tree for expansion via a short

MMC trajectory. The result of this MMC trajectory is then added to the search tree as

a new vertex. FeLTr employs a two-level selection process to bias selection towards both

low-energy and geometrically diverse conformations. This allows FeLTr to combine multiple

MMC trajectories into a single search, which is a more effective allocation of computational

resources.

Selection of a vertex for expansion is a two step process, starting with selection of

an energy level ℓ (Algo. 1, line 4). Each decoy conformation C is projected onto a one-

dimensional grid of energy levels with increments of 2 kcal/mol. Energy levels are given

a weight w(ℓ) = Eavg(ℓ) · Eavg(ℓ). A level ℓ is then selected at random with probability

w(ℓ)/
∑

ℓ′∈Layer
E

(ℓ′).
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Figure 1.3: The FeLTr search tree is initialized with the extended conformation at the
root. Each iteration of the search selects a vertex from the tree for expansion via a short
MMC trajectory. The result of this MMC trajectory is then added to the search tree as
a new vertex. FeLTr employs a two-level selection process to bias selection towards both
low-energy and geometrically diverse conformations. In this example, first the energy level
highlighted in green is selected. Then one of the three vertices within that energy level is
selected for expansion based on the geometric projection layer.

The second step chooses a geometric cell within the selected ℓ (Algo. 1, line 5). Con-

formations are projected onto grid cells based on geometric shape using three selected

coordinates from the Ultrafast Shape Recognition (USR) method [37,38]. A second weight-

ing function ranks each cell according to the formula w(cell) = 1.0/[(1.0 + nsel) · nconfs].

The variable nsel represents the number of times a cell has been previously selected, and

nconfs represents the number of conformations discovered which project into that cell. Fi-

nally, a C is selected uniformly at random from the set of conformations which lie in both ℓ

and the selected geometric grid cell (Algo. 1, line 6). This selection process allows FeLTr to
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bias sampling of the conformational space towards low-energy conformations in unexplored

regions of the conformational space.

The selected conformation C is expanded via a short MMC trajectory, resulting in a

new conformation Cnew (Algo. 1, line 7). The trajectory length is n− 2 moves, where n is

the number of amino acids in the target protein. Each MMC move consists of a random

trimer fragment replacement using the fragment library described in section 2.3. The energy

function used to evaluate each move is a modified version of the AMW function described in

section 1.1.2. The resulting Cnew is then added as a new vertex in the search tree (Algo. 1,

line 8) and to the output ensemble Ωα (Algo. 1, line 9).

Algo. 1 A high-level description of the FeLTr framework is given as pseudo code.

Input: α, amino-acid sequence
Output: ensemble Ωα of conformations

1: Cinit ← extended coarse-grained conf from α
2: AddConf(Cinit,LayerE ,LayerProj)

3: while Time AND |Ωα| do not exceed limits do
4: ℓ← SelectEnergyLevel(LayerE)
5: cell← SelectGeomCell(ℓ.LayerProj.cells)

6: C ← SelectConf(cell.confs)
7: Cnew ← ExpandConf(C)
8: AddConf(Cnew,LayerE ,LayerProj)

9: Ωα ← Ωα ∪ {Cnew}

Recent work shows that the FeLTr framework samples near-native conformations more

effectively than MMC-based methods [18, 19, 39, 40]. Like other coarse-grained sampling

methods, FeLTr does not explicitly sample local minima, but rather relies on clustering

analysis to filter its results down to a subset of conformations which will hopefully corre-

spond to local minima. Cluster centroids, however, are only approximations of true local

minima, and analysis shows that promising conformations are frequently discarded during

clustering.

13



1.2.4 Evolutionary Approaches for Exploration

Protein structure prediction has been shown to be NP-hard [41], making metaheuristic and

evolutionary computation approaches attractive. Many studies have favorably described the

use of evolutionary frameworks for navigating the highly rugged energy surface presented

by the conformational search space [42–45]. Techniques adopted from the evolutionary

computation community, however, have failed to compete with MMC-based approaches, as

they often rely on simplistic representations and energy functions and fail to use widely

accepted techniques such as FA.

Work in [46] evaluates the use of a canonical evolutionary framework using realistic

physics-based energy functions. This work shows that an ab initio evolutionary algorithm

can effectively recreate the native structure for a single short protein. The protein mod-

eled, however, is only 5 amino acids in length and thus does not represent a significant

computational challenge.

Memetic algorithms combine a global search technique with short local optimizations.

This approach allows an algorithm to explicitly probe local minima in a rugged energy

surface by projecting each move at the global level to a nearby local minimum. Two studies

using lattice models were able to successfully recreate the native structure using a memetic

Genetic Algorithm (GA) where the offspring from crossover are refined with either gradient

descent or MMC [43, 44]. Lattice models, however, oversimplify protein structure, making

them unsuitable for real-world applications.

A subsequent study employs a memetic GA with the physically realistic CHARMM [47]

energy function [45]. The authors show that the memetic GA consistently finds conforma-

tions of lower energy than either a standard GA or MMC search. However, simply finding

the single lowest energy conformation is rarely sufficient to discover the true native struc-

ture. Indeed, the memetic GA search often found a lower energy than the native structure

taken from the PDB.

Memetic algorithms are especially useful for highly constrained spaces like the protein
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energy surface. The protein conformational space contains many regions that are energeti-

cally infeasible, and many conformations allowed by a dihedral bond representation result

in steric clashes and are thus physically unrealistic. Even a small change to a low-energy

conformation can easily result in an infeasible structure with a very high energy. A memetic

approach deals with these infeasible regions by efficiently moving a conformation in a con-

strained region to a nearby unconstrained region of the search space.

Research from the evolutionary computation community suggests that memetic ap-

proaches to the protein structure prediction problem hold promise. However, further work

is needed to apply these initial studies to real world structure prediction problems. This

thesis combines cutting edge stochastic optimization strategies from the evolutionary com-

putation community with established procedures for assembly of coarse-grained structures

and analysis of results.

1.3 Contribution of this Work

This thesis explores explicit sampling of local minima along the coarse-grained energy sur-

face. The essential idea is to effectively project the conformational search space onto the

sub-space containing only local minima. This dramatically reduces the size of the search

space, and analysis shows that restricting the search space in this way does not exclude

near-native conformations (section 3.3). This goal is achieved through a memetic approach

borrowed from evolutionary computation. The idea is to conduct a two-level search, comb-

ing a global search method at the outer level and a local search method at the inner level.

Each move made at the global level is projected onto a nearby local minimum by a short

local refinement.

The effectiveness of this memetic approach is shown by applying it to MMC. The PLOW

algorithm uses an ILS framework to adapt MMC to move over the space containing only

local minima. The principles employed in PLOW are then applied to the FeLTr framework

to build a powerful memetic algorithm that samples a diverse set of local minima.

This thesis begins to bridge the gap between the advanced optimization and search
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algorithms developed by the evolutionary community and state-of-the-art domain-specific

solutions developed by the protein structure prediction community. Recent advances in

the structure prediction community focus on improving the move sets and energy eval-

uation functions available for traditional MMC explorations. Evolutionary computation

and metaheuristics, on the other hand, offer many rigorously tested approaches to tack-

ling high-dimensional search problems with rugged objective functions. Attempts to ap-

ply frameworks like GA to protein structure prediction typically fall short because proven

domain specific protocols are not incorporated. Our research objective is to draw from

advances in both fields to develop novel approaches that advance our understanding of the

protein structure prediction problem as well as generalized optimization problems.

16



Chapter 2: Methods

This chapter describes the algorithms developed to explicitly sample local minima in the

protein energy surface. Section 2.1 describes the new PLOW algorithm presented by this

thesis. Section 2.2 describes a hybrid algorithm which combines the original FeLTr frame-

work with the local search aspects of PLOW. Section 2.3 briefly describes an enhanced

fragment library which is employed as the move set for both FeLTr and PLOW.

2.1 Protein Local Optima Walk (PLOW)

PLOW employs a two layer search process to explore the space of local minima. The outer

layer (shown in Algorithm 2) simulates a MMC search at the global level, while the inner

layer performs a local hill-climbing search to project each point found in the outer layer

onto a nearby local minimum.

PLOW employs a Perturbation function to easily overcome local energy barriers by

jumping out of its current local minimum, H, to a nearby region of space, Hnew (Algo. 2,

line 5). Hnew is then projected onto a nearby local minimum by the LocalSearch function

(Algo. 2, line 6). The AcceptanceCriterion function decides whether to keep the home

base at H or move it to Hnew (Algo. 2, line 7). A PLOW search trajectory is illustrated in

Figure 2.1.

The initial location of the search is determined by the InitialSelection function

(Algo. 2, line 3). Jumping from one local minimum to the next proceeds until a specified

number of energy function evaluations have occurred (Algo. 2, line 1). Because each call

to LocalSearch performs a variable number of evaluations, the Evalcount variable is

incremented within the LocalSearch function (Algo. 2, line 6).
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Figure 2.1: PLOW explores the space of local minima in the protein energy surface. The
Perturbation function can easily overcome local energy barriers by jumping out of the
current local minimum to a nearby point in the space. This point is then projected onto a
nearby local minimum by the LocalSearch function.

PLOW adapts this general framework into an algorithm suitable for navigating the

complex protein energy surface. Sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4 define the new

domain-specific implementations of InitialSelection, LocalSearch, Perturbation,

and AcceptanceCriterion, respectively, employed in PLOW.

2.1.1 Initial Selection

The InitialSelection function initializes H as a fully extended conformation with a

very high energy value. H is then projected onto its nearest local minimum using the

LocalSearch function, as described in section 2.1.2. While an ILS is typically initialized to

a random state, the extended conformation has specific desirable properties and is commonly
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Algo. 2 The canonical Iterated Local Search (ILS) framework is shown. This work defines
domain-specific implementations of InitialSelection, LocalSearch, Perturbation,
and AcceptanceCriterion in sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4 respectively.

Input: Maximum number of energy function evaluations
1: Evalmax ← (UserDefined)
2: Evalcount ← 0
3: H ← InitialSelection()
4: while Evalcount < Evalmax do
5: Hnew ← Perturbation(H)
6: Hnew, Evalcount←LocalSearch(Hnew, Evalcount)
7: H ← AcceptanceCriterion(H,Hnew)

used as a starting point by the structure prediction community.

2.1.2 Local Search

The LocalSearch function in Algorithm 2 projects a conformation onto a nearby local

minimum using a local search incorporating the fragment library and the coarse-grained

energy function outlined in sections 2.3 and 1.1.2, respectively. At each iteration, the local

search generates a child conformation by performing a single fragment replacement. If the

energy of the child conformation is lower than that of its parent, the child conformation

replaces its parent; otherwise the child is discarded. This local search process is repeated

until k children in a row have been discarded, ostensibly indicating the presence of a local

minimum. When this occurs, LocalSearch stops and returns the current conformation.

The value of k is set to the length of the target protein. LocalSearch thus encapsulates

the precise definition of a local minimum.

PLOW provides a straightforward mechanism for incorporating multiple-length frag-

ments into the search. When fragments of both length 9 and length 3 are employed in the

search, the LocalSearch function is repeated in serial for each fragment length. First

LocalSearch is run using 9-mers until a local minimum is reached. Then LocalSearch

is repeated starting at the local minimum using trimers until a second local minimum is

reached.
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2.1.3 Perturbation

Perturbation modifies a conformation just enough to jump out of its current local min-

imum, such that the LocalSearch function is unlikely to return it to the same local

minimum. However, if Perturbation makes too drastic a change, then the search is

unable to benefit from knowledge of the previous local minimum.

Low-energy conformations tend to be compact and leave little room for movement in

their backbone chain without raising their energy. Therefore, even a single random fragment

replacement to a structure that is already at a local minimum may disrupt a conformation

enough to greatly increase its energy score. Such a perturbed conformation will share nearly

all of its local structural features with its parent, but the new conformation will have a much

higher energy and a significantly altered overall global structure.

Given a high energy score, the LocalSearch function will be able to easily optimize the

perturbed conformation to one of many distinct local minima, leaving little chance that it

will return to its previous local minimum. Because most of the local structural features are

maintained in the perturbed conformation, LocalSearch will still benefit from previous

knowledge of these local structures. For this reason we found that a single trimer fragment

replacement serves as an effective Perturbation function.

2.1.4 Acceptance Criterion

After each Hnew has been projected onto a local minimum by the LocalSearch function,

AcceptanceCriterion uses the Metropolis Criterion to decide if the algorithm will move

its home base to Hnew or remain at the current value of H [33]. The algorithm will always

move to Hnew if it is of lower energy than H. If Hnew has a higher energy than H, then the

algorithm will still move to Hnew with a small probability – 10 kcal/mol jumps in energy

occur with a 0.1 probability [19].
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2.2 Memetic FeLTr

Memetic FeLTr draws on the strengths of both FeLTr and PLOW. FeLTr provides an ef-

ficient implementation of many MMC trajectories with a bias towards geometric diversity

and PLOW provides a method for directly sampling a diverse set of local minima. Memetic

FeLTr employs the same selection process described in section 1.2.3, projecting sampled

conformations with a two-level projection layer employing both potential energy and geo-

metric diversity. In the expansion step, the short MMC trajectory is replaced by a call to

Pertubation followed by a call to LocalSearch on the selected C to produce a Cnew.

Pertubation and LocalSearch are implemented as described in sections 2.1.3 and 2.1.2,

respectively.

The result is a tree-based search over the sub-space of local minima with a sampling

bias towards unexplored regions of the conformational space. Besides merely sampling

local minima, memetic FeLTr gains two advantages with the use of perturbation and local

search. Pertubation makes it easy for FeLTr to escape its current local minimum, while

still retaining local structural features. The LocalSearch function runs for a dynamic

number of iterations based on the complexity of the target protein and the depth of the

current local minimum, allowing FeLTr to fully explore each local minimum during a tree

expansion.

2.3 Fragment Library

The fragment library for a protein sequence α is generated by matching short amino acid

sequences of length k from α to corresponding sequences in proteins with known structure.

This thesis employs an enhanced fragment library which additionally includes fragments

which match based on local structural similarity. A Multiple Sequence Alignment (MSA)

finds other known proteins which have sequences similar to α. The PSI-BLAST [51] program

analyzes the results of the MSA to produce an alternate sequence of amino acids which can

replace α at a given position i. The result is a position-specific profile of α which contains
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not only the actual sequence at each position i to i+ k, but also the set of alternate amino

acid k-mers for that position. These alternate sequences are then used to build a list of

fragments for the position i in α. Finally, a filtering step is performed to improve the

quality of the resulting fragment configurations. PSI-PRED [52] is employed to predict the

secondary structure for α. Only fragments which correspond to the predicted secondary

structure are included in the final fragment library.

Structure prediction protocols use fragments varying anywhere from 3 to 19 amino acids

in length. It is generally accepted that a fragment length of 3 is necessary to make fine

adjustments in order to reach a protein’s native structure. However, longer fragment lengths

allow an algorithm to benefit from larger repeating motifs which are common in the PDB. A

common approach uses longer fragment lengths in an initial phase to quickly narrow in on

a native-like conformation, followed by one or more phases which employ shorter fragment

lengths for more detailed refinement.

This thesis compares each approach using only fragments of length three as a base-

line (see Table 3.3). However, the addition of fragments of length 9 has been shown to

significantly improve conformational sampling [53]. Therefore, fragments of both length 9

and length 3 are employed in PLOW and memetic FeLTr when comparing them to results

published by other research groups (see Table 3.4).
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Chapter 3: Results

This chapter presents the results of running experiments on the PLOW and FeLTr algo-

rithms described in Chapter 2. Section 3.1 lists the proteins targeted in this study and

section 3.2 describes the experimental procedure employed. Section 3.3 analyzes the cor-

respondence between the native structure and coarse-grained local minima. Section 3.4

then compares the PLOW algorithm to the previous implementation of FeLTr. Sections 3.5

and 3.6 show how FeLTr is improved by incorporating the memetic approach in PLOW. Sec-

tion 3.7 compares results obtained by PLOW and memetic FeLTr using multiple fragment

lengths to two other state-of-the-art structure prediction algorithms. Section 3.8 analyzes

the effectiveness of the perturbation function employed by memetic FeLTr. Finally, sec-

tion 3.9 showcases the result of an all-atom refinement on the best structures discovered by

PLOW.

3.1 Protein Systems of Study

Table 3.1 lists the 12 protein systems investigated in this thesis. These proteins range in

length from 61 to 123 amino acids and cover a range of α and β fold topologies. These

proteins were selected from studies performed by other research groups so that results

could be compared not only to previous work, but also to other state-of-the-art structure

prediction protocols.
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Table 3.1: Protein systems targeted in this study are listed. Length, fold topology, and the
percentage of amino acids which form α helices and β sheets are given.

PDB ID length fold % α % β

1 1ail 70 α 84 0

2 1aoy 78 α/β 42 14

3 1cc5 83 α 37 0

4 1csp 67 β 0 28

5 1dtdB 61 α/β 10 44

6 1fwp 69 α/β 17 23

7 1hhp 99 β 0 49

8 1sap 66 α/β 21 32

9 1wapA 68 β 0 63

10 2ezk 93 α 70 0

11 2h5nD 123 α/β 74 5

12 2hg6 106 α/β 25 19

3.2 Experiments and Measurements

All experiments are run for 10,000,000 coarse-grained energy function evaluations. Over

90% of the CPU time consumed by all of the algorithms described is spent calculating

potential energy. Furthermore, the computational cost of an energy function is directly

related to the length of the protein. Therefore, setting the number of calls to the energy

function constant ensures a fair comparison across all algorithms and on a variety of protein

lengths. Since all algorithms use the same energy function, this also masks any differences

in implementation efficiency between each algorithm. In practice, each experiment takes

about two to four days of CPU user time on a 2.66 GHz Opteron processor, depending on

the length of the target protein.

The lRMSD and GDT TS results reported are calculated by comparing the native struc-

ture to each conformation in the output ensemble Ωα. For all variants of FeLTr, Ωα consists

of the conformations added to the search tree. For PLOW, Ωα consists of every local minima
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discovered during the search.

3.3 Analysis of Local Minima

If an ideal energy function were available to score each conformation, the native structure

would lie at the global energy minimum. However, it is known that coarse-grained energy

functions, like the one used in this study, contain significant inaccuracies at lower-energy

levels. Nonetheless, it is expected that the native structure will lie near some local minimum

in the energy surface, if not the global minimum. This assumption is particularly important

in this study, as we restrict the search space to only local minima. Therefore, if this

assumption does not hold, then it will be impossible for PLOW or memetic FeLTr to reach

the native structure.

To test this assumption, repeated hill-climbing searches are run starting from the native

structure downloaded from the PDB. Column 5 of Table 3.2 shows the distance between

the native structure and the nearest local minimum discovered by the hill-climber. For

11 out of the 12 proteins investigated in this study, this distance is less than 3Å lRMSD

and a distance of 3Å lRMSD can typically be overcome by an all-atom refinement in a

later stage [54]. This validates the assumption that a search method can achieve near-

native conformations while only considering the subset of conformations which reside at

local minima. Of note is the fact that the single case where a local minimum is not found

within 3Å of the native structure is also the only case in which the previous implementation

of FeLTr outperforms either PLOW or memetic FeLTr. This suggests that it is flaws in the

chosen energy function that cause the new memetic algorithm to fail in the case of 1aoy.

3.4 Analysis of PLOW

Table 3.3 compares the results from PLOW to the previous implementation of the FeLTr

framework. PLOW is able to find a structure more than 0.5Å lRMSD closer to the native

structure than FeLTr for 9 out of the 12 target proteins. In the cases of 1aoy, 1csp, and
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Table 3.2: The lRMSD between the native structure and the closest local minimum found
when performing multiple greedy local searches starting from the native structure is given.

lRMSD of nearest local

PDB ID Length Fold minimum to native (Å)

1 1ail 70 α 2.5

2 1aoy 78 α/β 3.9

3 1cc5 83 α 1.5

4 1csp 67 β 1.8

5 1dtdB 61 α/β 1.3

6 1fwp 69 α/β 0.4

7 1hhp 99 β 2.2

8 1sap 66 α/β 2.9

9 1wapA 68 β 1.5

10 2ezk 93 α 2.9

11 2h5nD 123 α/β 1.7

12 2hg6 106 α/β 2.5

1fwp both algorithms, on average, find equivalent structures. In the case of 1ail, PLOW

actually finds a structure below 3Å lRMSD, which is close enough to the native structure

that the difference can be overcome in an all-atom refinement [54]. For 2ezk and 2h5nD,

which represent two of the longer proteins, PLOW is not only able to find the lowest average

lRMSD, but also a minimum value of 4.2Å and 6.1Å , respectively. These results suggest

that the explicit sampling of local minima in PLOW is able to significantly improve sampling

of near-native conformations.

3.5 Analysis of Memetic FeLTr

Similar to PLOW, the memetic version of FeLTr (Mem-FeLTr) outperforms the original

implementation of FeLTr by more than 0.5Å on all but four proteins (see Table 3.3). FeLTr

only outperforms Mem-FeLTr in the single case of 1aoy and both algorithms find equivalent
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structures, on average, in the cases of 1wapA, 1fwp, and 1csp. These results indicate that

addition of perturbation and local search significantly improve memetic FeLTr’s ability

to sample near-native conformations. Furthermore, memetic FeLTr produces an output

ensemble Ωα several times smaller than that of FeLTr for the same number of energy function

evaluations, significantly reducing the number of conformations which must be refined at

all-atom detail. Table 3.3 shows that the more simplistic approach taken by PLOW is

able, on average, to sample conformations closer to the native structure than the memetic

version of FeLTr. However, in specific cases (1hhp, 1wapA), the best structure discovered

by Mem-FeLTr across multiple runs is significantly closer to the native structure than the

best structure discovered by PLOW. This suggests that further analysis is needed to best

combine the strengths of both approaches.

3.6 Analysis of Extended FeLTr

The length of local search trajectories employed by both PLOW and memetic FeLTr are

determined dynamically and tend to be several times longer, on average, than the fixed

length MMC trajectories employed in the original implementation of FeLTr. In order to

rule out the possibility that PLOW and memetic FeLTr are merely benefiting from longer

local searches, an additional experiment is conducted to compare FeLTr and memetic FeLTr

more directly. Ext-FeLTr uses the FeLTr algorithm described in section 1.2.3 with the length

of each MMC search trajectory extended to the average PLOW search length given in

Table 3.3, column 5. Table 3.3 shows that Ext-FeLTr performs slightly better, on average,

than the original FeLTr algorithm, however PLOW and memetic FeLTr still outperform

Ext-FeLTr for 9 out of 12 target proteins.

3.7 Comparison to Other State-Of-The-Art Methods

Here the results obtained by PLOW and memetic FeLTr are compared to those obtained by

the Sosnick and Brock research groups [1,2]. For these experiments, fragments both length
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Table 3.3: The lowest lRMSD from the native structure achieved is shown for both PLOW
and FeLTr. The lRMSDs given are the average of three runs, with the minimum of the three
runs shown in parentheses. Results for FeLTr are given for the previous implementation
(FeLTr) as well as for memetic FeLTr (Mem-FeLTr) and Extended FeLTr (Ext-FeLTr).
Column 5 shows the average number of iterations of each PLOW LocalSearch function.
Ext-FeLTr represents the FeLTr framework using the value from column 5 as its MMC
search length.

avg local avg (min) lowest lRMSD to native in Å

PDBID len fold search len PLOW Ext-FeLTr FeLTr Mem-FeLTr

1 1ail 70 α 237 2.7(2.3) 4.0(3.4) 4.7(4.5) 3.5(3.3)

2 1aoy 78 α/β 258 5.4(5.2) 5.9(5.2) 5.1(4.6) 5.8(5.2)

3 1cc5 83 α 274 5.5(5.1) 6.0(4.9) 6.4(6.2) 5.5(5.4)

4 1csp 67 β 193 6.4(6.3) 7.2(6.6) 6.4(6.0) 6.7(5.9)

5 1dtdB 61 α/β 160 7.1(6.9) 7.5(7.0) 7.7(7.6) 7.1(6.9)

6 1fwp 69 α/β 210 6.5(6.3) 7.2(6.8) 6.8(6.4) 6.5(6.2)

7 1hhp 99 β 306 10.4(10.1) 11.0(9.7) 11.1(10.0) 9.9(9.3)

8 1sap 66 α/β 211 6.5(6.0) 7.2(6.8) 7.1(6.5) 6.5(5.9)

9 1wapA 68 β 199 7.2(6.7) 7.4(6.5) 7.8(7.3) 7.5(5.9)

10 2ezk 93 α 293 4.6(4.2) 5.9(4.7) 6.4(6.0) 5.0(4.4)

11 2h5nD 123 α/β 482 7.0(6.1) 8.8(8.3) 9.0(8.5) 8.3(7.8)

12 2hg6 106 α/β 376 8.9(8.1) 9.8(9.0) 10.1(9.6) 9.2(8.7)

9 and 3 are employed during the local search as described in section 2.1.2. Previous work

shows that using fragments of length 9 followed by length 3 is able to significantly improve

the results of FeLTr. However, in the previous implementation of FeLTr, there is no clear

way to switch fragment lengths [53]. Table 3.4 shows that PLOW and memetic FeLTr are

able to find significantly lower lRMSDs than [1] for 6 out of 8 target proteins. In the case

of [2], PLOW and memetic FeLTr are able to find a higher GDT TS score for two out the

four proteins. For 2h5nD, which is the longest of the target proteins, PLOW’s best value of

55% GDT TS represents a significant improvement over the method used in [2], suggesting

that the local-search based approach does provide a significant advantage in some cases.

For 1csp and 1hhp the Rosetta-based approach employed in [2] was able to find structures
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with significantly higher GDT TS scores. This suggests that the use of all-atom detail may

have a significant impact, especially on β sheet proteins.

Table 3.4: The best GDT TS and lRMSD from the native structure achieved is shown
for Mem-FeLTr and PLOW using fragments of both length 9 and length 3. Results from
PLOW and Mem-FeLTr are compared to published results from the Sosnick [1] and Brock [2]
research groups.

PLOW Mem-FeLTr Sosnick Brock

PDBID len fold lRMSD GDT TS lRMSD GDT TS lRMSD GDT TS

1 1ail 70 α 1.8(1.4) 82(88) 2.3(1.6) 77(81) 5.4 NA

2 1aoy 78 α/β 4.9(4.2) 62(65) 5.3(5.1) 62(63) 5.7 NA

3 1cc5 83 α 5.7(5.3) 46(49) 5.5(5.4) 46(50) 6.5 NA

4 1csp 67 β 5.9(5.7) 44(47) 6.1(5.5) 46(49) NA 91

5 1dtdB 61 α/β 6.9(6.7) 40(41) 6.8(6.7) 43(47) 6.5 NA

6 1fwp 69 α/β 5.9(5.7) 49(52) 6.2(6.0) 46(49) 8.1 NA

7 1hhp 99 β 9.7(8.7) 29(30) 9.7(9.5) 27(28) NA 84

8 1sap 66 α/β 6.4(5.6) 46(47) 5.8(5.1) 47(49) 4.6 NA

9 1wapA 68 β 7.2(7.0) 38(39) 7.2(7.2) 41(41) 8.0 NA

10 2ezk 93 α 4.0(3.9) 63(65) 4.0(3.3) 66(66) 5.5 NA

11 2h5nD 123 α/β 6.4(6.3) 48(55) 8.0(7.7) 41(47) NA 33

12 2hg6 106 α/β 8.5(7.8) 29(30) 8.4(8.4) 30(30) NA 22

3.8 Perturbation Analysis

The perturbation function described in section 2.1.3 modifies a conformation C (which

is already at a local minimum) to Cperturb such that the local search (see section 2.1.2) is

unlikely to return Cperturb to the same local minimum as C. Table 3.5 analyzes the difference

between a consecutive C and Cnew created by the perturbation function followed by a local

search for memetic FeLTr using fragment lengths of three. If the difference between C and

Cnew is less than 2Å lRMSD, then it can be assumed that Cnew returned to the same local

minimum as C. For all of the target proteins, the percentage of cases where consecutive
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Table 3.5: The median distance between consecutive local minima C and Cnew is given in

column 6. Column 5 represents the percent of Cnew’s which are within 2Å lRMSD of C and
thus deemed to have returned to the same local minima as C.

lRMSD between C and Cnew

PDB ID Length Fold % < 2Å median (in Å)

1 1ail 70 α 26 5.9

2 1aoy 78 α/β 20 7.3

3 1cc5 83 α 21 7.4

4 1csp 67 β 7 8.3

5 1dtdB 61 α/β 7 8.2

6 1fwp 69 α/β 12 8.1

7 1hhp 99 β 5 10.6

8 1sap 66 α/β 17 7.5

9 1wapA 68 β 7 8.6

10 2ezk 93 α 18 6.3

11 2h5nD 123 α/β 14 10.9

12 2hg6 106 α/β 15 9.9

C and Cnew’s are within 2Å lRMSD of each other is less than 27%, with most cases under

20%. This suggests that the perturbation function is effective at jumping the search out of

the current local minimum.

In addition to escaping the current local minimum, an effective perturbation function

should move to a nearby region of the conformational space. If the move is too large, then

the perturbation function simply devolves into random restart. Figure 3.1 illustrates the

correlation between the lowest lRMSD from native achieved in Table 3.3 column 9 and the

median distance between consecutive local minima C and Cnew in Table 3.5, column 6. The

correlation in Figure 3.1 is near linear, with a larger lRMSD from native corresponding to

a larger median local minima distance. This suggests that the proteins where PLOW and

Mem-FeLTr were able to find low lRMSD from native conformations were cases in which

the perturbation function not only was able to jump out of the current local minimum, but

also did not move the search too far away in finding the next local minimum.

30



Figure 3.2 illustrates the distribution of lRMSDs between consecutive C and Cnew’s

for two of the target proteins. The area of the curve shaded in red represents the portion

for which Cnew is within 2Å of C and thus deemed to have returned to its previous local

minimum. In Figure 3.2a, 2EZK is an example of target where memetic FeLTr was effective

at finding near-native conformations. In this case the distribution contains a large area of

short to medium distance moves from 2 to 8Å lRMSD. In contrast, Figure 3.2b, 1HHP, is an

example of a target where memetic FeLTr was not able to find any conformations near the

native structure. Correspondingly, the distribution of consecutive local minima distances

contains much higher distances, with most of the area under the curve above 8Å lRMSD.

This suggests that in the case of 1HHP, the perturbation function is approaching random

restart.

3.9 All-Atom Refinement

PLOW and FeLTr are designed as the first, coarse-grained, stage in a multi-stage refinement

process. The computational resources required to complete a full stage-two all-atom refine-

ment are prohibitive for this thesis. Therefore, an all-atom refinement is performed using

the Rosetta Relax program on the best structure generated by PLOW from the results in

Table 3.4 [55]. The result of each all-atom refinement is shown in Figures 3.3 and 3.4. The

predicted structure is given in red and superimposed over the native structure downloaded

from the PDB [27]. Visual inspection indicates that PLOW accurately predicts the native

structure for 1ail and approaches the native structure for the other targets with a significant

percentage of α helices. In most cases, however, PLOW struggles to accurately predict the

formation of β sheets.
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Figure 3.1: The correlation between the lowest lRMSD from the native structure discovered
and the median lRMSD between two local minima conformations, C and Cnew is shown. The
strong linear correlation suggests that the efficacy of the perturbation function is directly
related to the efficacy of the search.
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Figure 3.2: The distribution of lRMSDs between two consecutive local minima conforma-
tions, C and Cnew, generated by performing a perturbation followed by a local search on C
to achieve Cnew. The area shaded in red represents the cases where the distance between

C and Cnew is less than 2Å lRMSD and thus it is deemed that the local search returned
Cnew to the same local minima as C.
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(a) 1ail 1.3Å (1.4 Å) (b) 1aoy 4.0Å (4.2 Å)

(c) 1cc5 5.4Å (5.3 Å) (d) 1csp 5.2Å (5.7 Å)

(e) 1dtdB 6.7Å (6.7 Å) (f) 1fwp 5.6Å (5.7 Å)

Figure 3.3: The best structure produced by PLOW after an all-atom refinement (red) is
super-imposed over the native structure downloaded form the PDB (transparent blue). The
refined lRMSD from the native structure is given, with the unrefined lRMSD in parentheses.
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(a) 1hhp 8.3Å (8.7 Å) (b) 1sap 5.5Å (5.6 Å)

(c) 1wapA 6.3Å (7.0 Å) (d) 2ezk 3.8Å (3.9 Å)

(e) 2h5nD 5.7Å (6.3 Å) (f) 2hg6 8.0Å (7.8 Å)

Figure 3.4: The best structure produced by PLOW after an all-atom refinement (red) is
super-imposed over the native structure downloaded form the PDB (transparent blue). The
refined lRMSD from the native structure is given, with the unrefined lRMSD in parentheses.
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Chapter 4: Conclusions

This thesis proposes two novel algorithms for effectively sampling near-native local minima

from a coarse-grained energy surface. PLOW combines the Iterated Local Search (ILS)

approach employed by the evolutionary community with a state-of-the-art energy function

and fragment library developed by the structure prediction community. The perturbation

and local search approach in PLOW is applied to the FeLTr framework to sample a diverse

set of low-energy conformations. PLOW and memetic FeLTr work by effectively projecting

the search space onto the sub-space of local energy minima. By traversing only these local

minima, PLOW and memetic FeLTr more effectively sample conformations near a protein’s

native structure. Both PLOW and memetic FeLTr outperform earlier work on a diverse

set of target proteins [18]. When adapted to use multiple fragment lengths, PLOW and

memetic FeLTr are able to accurately recreate medium length α helical proteins, and both

perform favorably when compared to published results from other research groups [1, 2].

The efficacy of PLOW and memetic FeLTr is highly correlated to the ability of the

perturbation function to make medium-distance jumps in the conformational space. In

cases where the algorithms performed poorly, it was found that the perturbation function

was more likely to make large moves and thus approach a random restart. Future efforts will

focus on adaptive perturbation functions that are able to dynamically adjust perturbation

distance to maintain an optimal local minima distance.

In general, memetic FeLTr performs similarly to PLOW. However, in a few select cases

the simpler approach taken in PLOW is able to reach local minima with significantly lower

lRMSDs from the native structure. This suggests that the existing FeLTr framework needs

to be further adapted to take better advantage of the new memetic approach. Selection

based on the energy projection layer will be evaluated to accommodate the presence of only

local minima in the search tree.
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The success of memetic methods illustrates the benefit of examining established methods

from other fields that also deal with complex high-dimensional search spaces. The protein

conformational space presents unique challenges that go beyond a standard stochastic op-

timization problem. Combining the theoretical findings from the evolutionary computation

community with domain-specific protein structure knowledge can result in new approaches

that blend the specialties of both sets of experts. Our research will continue to draw from

both fields to develop novel approaches which advance our understanding of both the protein

structure prediction problem as well as generalized optimization problems.
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