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ABSTRACT 
 
The second most common cause of death in the world is cerebrovascular accident or stroke, 

and rehabilitation plays an important role to help the survivors of such accidents. 

Rehabilitation exercises are essential to speed up the process of recovery and regain 

independence, not only for post stroke cases but, also, for every patient who suffers of other 

neuromuscular diseases, such as spinal cord injuries or multiple sclerosis. The aging of the 

population, the increase of accident, and therefore, the increase of quality and quantity of 

rehabilitation needed, have led to the development of new techniques and assistance methods 

for recovery. Exoskeleton robotic devices have been developed to help the rehabilitation 

process, complementing the manual work of therapists. What is needed for an efficient and 

smooth implementation of this device is an advance interface between the wearable robot and 

the human. In this paper we have presented and analyzed two possible control input signals 

for exoskeletons, specifically electromyography (EMG) and electroencephalography (EEG). 

We’ve delved deeper into these two techniques, studying their advantages and disadvantages. 

Advantages are for example their inherent intuitiveness and effectiveness. On the other hand 

there is high inter-subject variability of the EMG, and the non-invasiveness and high 

temporal resolution but relatively poor spatial resolution of the EEG technique. The purpose 

of this review is to study and contrast the two main techniques when used as brain machine 

interface for the control of exoskeletons.  

 

 

 

 

 

 

 



 

 

 

 

INTRODUCTION 

 

Stroke is a major global health problem, it is the second leading cause of death and the third 

leading cause of death and disability combined in the world1,2. As a result of the population 

growth and the ageing of the populations, the absolute number of people who have a stroke 

every year, and live with the consequence of stroke or die from their stroke is increasing2,3. 

Stroke isn’t only the second leading cause of death, but it is also the fourth leading cause of 

lost DAILYs (disability-adjusted life-years) among all non-pediatric populations4. The most 

common and widely recognized impairment caused by stroke is motor impairment, which can 

refer to a loss or limitation of function in muscle control or movements or a limitation in 

mobility. This motor impairment, usually, affects the face, arm, and leg of one side of the 

body5. For achieving a better recovery in terms of body functions and activities in the first 

months after stroke, and to reduce disability and handicap during the years that follow, early 

stroke rehabilitation is fundamental6, and it is focused on the recovery of impaired movement 

and the associated function. Therefore, there is an ongoing need to advance the quality and 

increase the quantity of rehabilitation. Neuroplasticity is the basic mechanism underlying 

improvements in functional outcomes after stroke, indeed the recovery process relies on the 

ability of the brain to heal itself through neuroplasticity. Several studies, such as the one of 

Zeiler et al.7 have shown that, after ischemic stroke, there is a time-limited window of 

enhanced neuroplasticity8,9. Several studies have found that assistive exercise, high intensity, 

repetitive, task-specific, interactive and individualized training are the most promising way to 

treat post stroke patient10,11. These requirements make stroke rehabilitation a labor-intensive 

process. In this environment, new techniques and assistance methods for recovery emerged, 

such as robotic technology which are characterized by the ability to deliver high-dosage and 

high intensity training12. Reducing, in this way, the burden on therapists by substituting 

human intervention. Rehabilitation robots can be broadly divided between therapeutic robots 

and assistive robots, the purpose of the former is to train lost motor function, whereas the 

latter is mainly designed to compensate for lost skills13. There are two types of robotic 

therapeutic devices that are used for motor training: the end-effector-type (EE) devices and 

the exoskeleton-type (Exo) devices.  EE robots are connected to patients at one distal point, 



and their joints do not match with human joints, while Exo robot resemble human limbs as 

they are connected to patients at multiple points and their joint axes match with human joint 

axes14. The robotic device is combined with a brain-machine interface (BMI) that enables its 

control. Two of the most common BMI are encephalography (EEG) and electromyography 

(EMG). The former consists in the measurement of electrical activity in different parts of the 

brain, whereas the latter consist in the recording of the electrical activity of muscle tissue. In 

this review we are going to analyze these two BMI, studying their advantages and 

disadvantages. 

 

BCI  

Brain Computer Interfaces are a novel technology developed in the last two decades, that 

bridges the brain with external devices helping to restore useful function to people severely 

disabled by neuromuscular disorder. Specifically, BCI technologies bypass the body’s normal 

efferent pathways: the path through which the impulses from the central nervous system are 

conveyed to the peripheral nervous system and further to an effector, such as muscle. The 

BCI measures brain activity and translates the recorded brain activity into corresponding 

control signals that reflect the user’s intent.  

The first demonstrations of brain-computer interface technology occurred in the 1960s when 

Grey Walter used the scalp-recorded electroencephalogram to control a slide projector15. But, 

since then and into the early 1990s, there has been only a few BCI research studies. In the 

mid-1990s, the pace of BCI research began to increase rapidly, and this growth has continued 

into the present. Through these years, studies have led to the development of the BMI 

technologies and, in the last decades, thanks to advancements in actuation, energy storage, 

miniaturized sensing, automated pattern recognition, and embedded computational 

technology16, they have enabled individuals to control their own paralyzed body parts 

voluntarily, in combination with actuated exoskeleton. Two of the most utilized brain 

machine interfaces are EMG and EEG. 

 

EMG 

Surface electromyogram signals are measured from the skin, and they capture muscular 

activation originating from neural signals transmitted from the central nervous system. After 

stroke, usually, muscle activity is too weak to generate overt movements and, in addition, 

many stroke patient can suffer of spasticity, hypertonia, and abnormal flexor synergies.  



 

 

 

 

 

 

 

 

 

 

 

However, in exoskeleton powered by EMG signals, even though the human subject is unable 

to generate sufficient joint torque, their intention can still be detected from residual EMG 

activity17–20.  

Leveraging this quality of electromyography, many researchers tried to developed devices 

that enhances motor activity but not replace it. In the article of Lambelet et al.21, the 

researchers have used the sEMG method to detect the activity of the wrist extensors and 

they’ve implemented a controller that enhances the signals acquired so that sufficient force is 

generated to perform daily life actions. To detect the EMG signals they’ve used a 

commercially available myoelectric measurement device, the Myo armband22,23 and, to 

implement the subject intention, they designed a powered and wearable wrist exoskeleton.   

The same device to detect the EMG signals has been used in the article of Ren et al.24, but 

this time, the BMI controlled an exoskeleton which has the only purpose of training, 

replacing the motor activity of the dysfunctional limb. Specifically, in order to implement 

bilateral arm rehabilitation on an upper limb exoskeleton, two Myo armbands, one placed on 

the upper arm and the other set on the forearm, were used to get the human arm dynamics and 

the muscle activity. These signals were then used as input of deep learning model, the 

obtained prediction was used has the desired motion trajectory of the exoskeleton attached to 

the dysfunctional limb.  

The Myo armband from Thalmic Labs is characterized by 9-axis IMU (inertial measurement 

unit) sensor other than the 8 medical sEMG channels. Furthermore, it has a Bluetooth adapter 

for wireless communication (Figure 1). One of the main problems of the Myo armband is 

that, because it is a ring-shaped sensor, there will be a serious crosstalk problem on the 

obtained signals. Therefore, the original signal needs to be pre-processed to increase the 

Figure 1: Myo gesture control armband. https://developerblog.myo.com/  

 



signal-to-noise ratio, since the actual sEMG signal from the muscles is reduced24,25. However, 

there has been many studies who have used this device23,26–29, which stands out for the 

facility, convenience and low cost of signal acquiring, conditioning, preprocessing and 

transmission. 

The Delsys Tringo Wireless EMG system is another device used for acquiring non-invasively 

the EMG signals. We can find an example of its implementation in the article of Leserri et 

al.30 where the sensors were used to record the muscle activity of four muscle heads of the 

human upper arm, involved in the actuation of the lower arm. The aim was to investigate the 

signal features in terms of the accuracy of a feed-forward neural network (FFNN) model for 

predicting elbow-joint movements of the human arm, and therefore, control active body 

support systems. The article of Luzio et al.31 have used the Delsys Tringo EMG wirless 

system to record the sEMG signals from injured and healthy hand, in order to extract 

muscular synergies of each subject and evaluate patient rehabilitation outcome. The subjects 

went through a 5-week robot-aided therapy program with the Gloreha hand exoskeleton. 

 

EEG 

EMG is very effective at detecting the motor intention of the patient by analyzing the residual 

muscle activity. But, for more severely impaired patients, who aren’t able to produce some 

voluntary movement or high enough levels of muscle activity, the motor intent can be 

detected using noninvasive scalp electroencephalography. Generally, there are two ways to 

detect intention through EEG, μ-rhythms (8-12 Hz) or slow movement related cortical 

potentials (MRCP)32,33. The latter is a low-frequency negative shift in the EEG recording that 

takes place about 2 seconds prior to voluntary movement production34. MRCP comprised 

three events called readiness potential (RP), which reflects movement planning/preparation, 

motor potential (BP), which reflects movement execution, and movement-monitoring 

potential (MMP), which reflects control performance (Figure 2).  MRCP has been used by 

Bhagat et al.32 for intent detection, the researchers have used noninvasive EEG to developed 

an asynchronous BMI that can detect voluntary motor intent and command an upper-limb 

powered exoskeleton. The scalp EEG was recorded using 64-channel, active-electrode 

system35, and the signal was continuously analyzed so that the subjects were free to attempt 

the movement any time after the start signal. This is called asynchronous approach, and it 

differs from the synchronous BMI wherein the EEG signal is analyzed in predefined time 

intervals. To reduce the false positive rate, the researchers have incorporated in the system an 

EMG-gate, the BMI detected intention was compared with the EMG activity from biceps and  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

triceps of impaired limbs. If the EMG activity was detected within 1s following the BMI’s 

decision, the exoskeleton was activated. In the article of Tongda et al. MRCP has been 

combined with steady-state visual evoked potentials (SSVEP), where the researchers have 

developed an active and passive upper limb rehabilitation training system based on a hybrid 

brain-computer interface of SSVEP and MRCP. Several studies have underscored the 

potential utilities of MRCPs as neural control signals for the detection of movement         

intent 41–44, as MRCP features not only can be exploited for movement detection, but also for 

classification of movement related parameters like speed, force, or even different type of 

grasps40–42. 

Motor execution (ME) and motor imagery (MI) can change the neural activity in the primary 

sensorimotor areas, indeed, during actual, as well as mentally rehearsed, or imagined 

movements the contralateral sensorimotor cortex is characterized by decrease 

(desynchronization - ERD) or increase (synchronization - ERS) in power of the sensorimotor 

or μ-rhythms (8-12 Hz)32,43–45(Figure 3). Sensorimotor rhythms have been used by Nann et 

al.46 to developed a BMI interface for an assistive hand exoskeleton for finger paralysis after 

stroke. Several studies47–49 have proved that BCI control performance can deteriorate over 

time, since the voluntary control of sensorimotor-rhythms is cognitively demanding and, 

furthermore, decline in attention was shown to negatively affect cortical plasticity50. 

Figure 2: MRCPs of a healthy subject for real and imaginary right ankle dorsiflexion. Time 0 s is defined as the 
movement onset. BP1 is early BP, BP2 is late BP, MP is motor potential, and MMP is movement-monitoring potential.39 



Therefore, Nann et al. have studied heart rate variability as a biomarker to predict decline of 

SMR control.  

Another example where ERD/ERS has resulted useful for the control of an upper-limb 

exoskeleton, is the article of Tang et al.51 The researchers proposed a BMI based on event-

related desynchronization/synchronization and they investigate the classification performance  

 

 

 

 

 

 

 

 

 

 

 

 

 

of left versus right hand and left hand versus both feet by using motor execution or motor 

imagery. The results showed that the amplitudes of ERD/ERS for MI sessions were smaller 

than those for ME sessions, and they’ve stated that the reasons might be the absence of neural 

feedback in MI which may exhibit less activity and, that MI is not a natural behavior and 

those requires more effort than ME.  

 

EMG + EEG 

Both EMG and EEG have their own disadvantages that hinder further development. Several 

studies have tried to overcome their limitations by combining these two techniques52–55. In 

the article of Zhang et al.56 electrooculography (EOG), electroencephalography, and 

electromyogram has been combined to obtain a multimodal human-machine interface system 

(mHMI) that can provide a variety of control instructions necessary for multi-task real-time 

control of a soft robot. Their aim was to obtain a system that can increase the number of 

commands and enhance classification accuracy, reduce errors and, meanwhile, overcome the 

limitation of the single mode of BCI. The EEG was used to detect the intention of left- or 

right-hand movement. The EMG was used to identify hand gestures, which were obtained 

Figure 3: Upper limb (ArmeoSpring) at SMART Lab, UTP.1 Multi-joint exoskeleton for shoulder, elbow and wrist joints 
with seven degrees of freedom controlled through a BMI based on MI-ERD of sensorimotor oscillations in the β-band. 

 



from forearm muscle activities through the Myo Armband, to facilitate control of the robot. 

And EOG, was used, by double blinks, to select different actions within a selected category. 

The results of the study show that with the mHMI the subjects were able to perform a greater 

number of instruction than the ones achievable with the individual mode. Furthermore, the 

classification accuracy was enhanced.  

The parallel usage of EEG and EMG were, also, been explored in the article of Leeb et al.57, 

the control abilities of both modalities were fused enabling the subjects to achieve a good 

control of their hybrid BCI independently of their level of muscular fatigue. In the article of 

Chowdhury et al.58 EEG and EMG were combined using the spectral power correlation to 

create a hybrid BCI device for controlling a hand exoskeleton. They’ve proved that the 

hybrid BCI significantly improved the classification accuracy.  

 

 

DISCUSSION  

As it’s emerged from the previous paragraph, EMG and EEG are both very valid interfaces 

between the wearable robot and the human, indeed, they are the mainly used techniques for 

the control of exoskeletons or prosthetic devices in post stroke rehabilitation.  

EEG and sEMG are both non-invasive recording procedure and, therefore, they are safer and 

easy to apply. EEG is potentially applicable to almost all people including those seriously 

amputated and paralyzed and, EMG-based control interface are widely used because of its 

easy access and generation, and its direct correlation to the movement intention.  

However, EEG and EMG have their own disadvantages59,60. Electromyography requires 

significant signal processing due to its broad bandwidth and low amplitude61. Furthermore, 

some of the EMG limitations are caused by the complexity of the musculoskeletal system 

and, due to differences in body composition or electrode placement, sEMG signals vary 

strongly between subjects. Additionally, slightly different motion pattern might cause huge 

changes in the signals and, the muscle contractions can lead to measurement inaccuracies, as 

the electrodes shift on the skin during muscle movement. 

As for electroencephalography, its main drawbacks are the high trial-to-trial variability and 

poor signal-to-noise ratio, the long training period to learn to modulate specific brain 

potentials, the need to attach multiple electrodes on the scalp, the low information-

transmission rate due to the filtering properties of the skull, and high variability of the brain 

signals due to changes in background activity61,62. Furthermore, the brain activity of stroke 

patients is very different from that of a healthy intact brain, resulting in significantly different 



EEG features. In addition, EEG signals do not have sufficient spatial resolution to be used to 

control individual finger movement. 

There are several studies that have try to overcome these limitations by combining the two 

modalities. The results are promising, however, whether the single mode or the hybrid one, 

these interfaces still possess some shortcomings, such as the limited number of possible 

commands and poor real-time capability. 

 

CONCLUSION 

In this paper we have reviewed the EEG- and EMG-based control interface, which are the 

most commonly used BCI for the control of upper limb exoskeleton. In the last decades the 

development of these two modalities has allowed the human brain to directly communicate 

with the outside environment and, nowadays, they can play an important role in the post 

stroke rehabilitation process. Both EMG and EEG have their own advantages and limitations, 

some of the latter ones can be overcome by a hybrid BCI that combined the two technologies. 

The studies presented in this paper have shown the potentials of EEG and EMG, however, 

there are still a lot of drawbacks that hamper the everyday life implementation. 
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