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Abstract

Research on multistrategy task-adaptive
learning aims at integrating all basic
inferential learning strategies—Ilearning by
deduction, induction and analogy. The
implementation of such a learning system
requires a knowledge representation that
facilitates performing a multitype inference in
a seamlessly integrated fashion. This paper
presents an approach to implementing such
multitype inference based on a novel
knowledge representation, called Dynamic
Interlaced Hierarchies (DIH). DIH integrates
1deas from our research on cognitive modeling
of human plausible reasoning, the Inferential
Theory of Learning, and knowledge
visualization. In DIH, knowledge is
partitioned into a "static" part that represents
relatively stable knowledge, and a "dynamic"
part that represents knowledge that changes
relatively frequently. The static part is
organized into type, part, or precedence
hierarchies, while the dynamic part consists of
traces that link nodes of different hierarchies.
By modifying traces in different ways, the
system can perform different knowledge
transmutations (patterns of inference), such as
generalization, abstraction, similization, and
their opposites, specialization, concretion and
dissimilization, respectively.

Key words: multstrategy learning,
inferential theory of learning, knowledge
transmutation, generalization, abstraction,
similization.

1. Introduction

The development of multistrategy learning
systems requires a powerful and easily
modifiable knowledge representation that
facilitates multitype inference. This is
particularly true in the case of multistrategy
task-adaptive learning (MTL) systems that
integrate a whole range of inferential strate-
gies, such as empirical induction, abduction,
deduction, plausible deduction, abstraction,
and analogy (Michalski, 1990, 1991; Tecuci
and Michalski, 1991; Tecuci, 1993). A MTL
system adapts a strategy or a combination of
strategies to the learning task, defined by the
available input knowledge, the learner’s
background knowledge and the learning goal.
A theoretical framework for the development
of MTL systems has been presented in
(Michalski, 1993).

This paper presents basic ideas underlying a
knowledge representation proposed for the
implementation of a MTL system and its use
for implementing multitype inference. This
representation, called Dynamic Interlaced
Hierarchies (DIH), integrates ideas from our
research on modeling human plausible
inference, the Inferential Theory of Learning
and the visuvalization of knowledge. DIH
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encompasses many different forms of
knowledge - facts, rules, dependencies, etc.,
and facilitates knowledge transmutations,
described in the Inferential Theory of
Learning (ITL) (Michalski, 1993). This paper
shows how DIH supports several basic
patterns of knowledge change (transmu-
tations), such as generalization, abstraction,
similization, and their opposites, special-
ization, concretion and dissimilization,
respectively. These operations are performed
on DIH traces, which correspond to well-
formed predicate logic expressions associated
with a degree of belief.

While our previous work has focused on the
visualization of attribute-based representations
for empirical induction (Wnek & Michalski,
1991), DIH allows the visualization of
structural (attributional and relational)
representations. The underlying assumption is
that the syntactic structure for representing
any knowledge should reflect as closely as
possible the semantic relationships among the
knowledge components, and facilitate knowl-
edge modifications that correspond to the most
frequently performed inferences. An early
implementation of this idea was in the
ADVISE system, which used three forms of
knowledge representation: relational tables,
networks and rules (Michalski et al., 1986).

The DIH approach assumes that a large part of
human conceptual knowledge is organized
into various hierarchies, primarily type, part
and precedence hierarchies (see Section 3 for
an explanation). Such hierarchies reflect
frequently occurring relationships among
knowledge components, and make it easy to
perform basic forms of inference.

The initial idea for DIH stems from the core
theory of human plausible reasoning (Collins
& Michalski, 1989; Boehm-Davis, Dontas &

Michalski, 1990). The theory presents a
formal representation of various plausible
inference patterns observed in human
reasoning,.

DIH is more fully described in (Hieb &
Michalski, 1993). |

2. Relevant Research

The core theory of Plausible Reasoning
presents a system that formalizes various
plausible inference patterns and “‘merit
parameters® that affect the certainty of these
inferences. This system combines structural
aspects of reasoning (determined by
knowledge structures) with parametric aspects
that represent quantitative belief and other
measures affecting the reasoning process.

Various components of the "Logic of Plausible
Reasoning” have been implemented in several
systems (Baker, Burstein & Collins, 1987;
Dontas & Zemakova, 1988; Kelly, 1988).
These implementations used various subsets
of the inferences (“statement transforms®)
described in the core theory to investigate the
parametric aspects of the theory. The imple-
mentations demonstrated how the core theory
of plausible reasoning can be applied to
various domains. DIH specifies a broader set
of knowledge transmutations in a general and
well-defined knowledge representation. These
transmutations are part of a framework for
both reasoning and learning.

The organization of concepts into various
hierarchies has been proposed as a plausible
structure for human semantic memory quite
early (Collins & Quillian, 1972). The
WordNet project at Princeton University,
directed by George Miller, concerns the
implementation of an electronic thesaurus
using such a memory structure (Beckwith et



al., 1991). WordNet is a very large lexical
database with approximately 50,000 different
word forms. WordNet divides the lexicon into
various categories including nouns, verbs, and
‘modifiers (adjectives and adverbs).
Significantly, the nouns are stored in topical
hierarchies (both type and part hierarchies),
lending support to the DIH representation.
However, while WordNet can be used as a
source of DIH hierarchies, it does not provide
any inferential facilities.

Other relevant research includes the
development of the Common Knowledge
Representation Language (CKRL), done as
part of an ESPRIT project (Morik, Causse &
Boswell, 1991). CKRL offers a language in
which knowledge can be exchanged between
machine learning tools and it uses the set of
most common representation structures and
operators. While CKRL’s representation for
multistrategy learning seeks to integrate the
various representations employed by several
different learning programs for commu-
nication of knowledge between the machine
learning tools, our aim is to develop a
representation that facilitates an integration of
learning and inference processes.

Semantic network knowledge representation
systems, such as the KL-ONE family
(Brachman et al., 1991), utilize a large net-
work of relationships between concepts,

intermixing different relationships. The

hierarchies they use are tangled, in which a
concept can have more than one parent. As a
consequence, implementing knowledge trans-
mutations, e.g., generalization, is not as easy
as in DIH. DIH facilitates such transmutations
because it uses only single-parent hierarchies,
representing a structuring of a set of entities
from a certain viewpoint. In DIH, a concept
can belong to different hierarchies, reflecting
the fact that a given concept (or object) can

usually be classified from several different
viewpoints.

The design of semantic networks is primarily
oriented toward facilitating deductive
inference, and 18 not usually concerned with
knowledge visualization. The design of DIH is
oriented toward facilitating multitype
inference and providing a basis for the visual
presentation of knowledge. DIH also utilizes a
hierarchy of merit parameters to represent
probabilistic factors associated with plausible
reasoning.

3. Basic Components of DIH

The theory of plausible reasoning postulates
that there are recurring patterns of human
plausible inference. To adequately represent
these patterns, one needs a proper knowledge
representation. The DIH approach partitions
knowledge into a "static” part and “dynamic”
part. The static part represents knowledge that
is relatively stable (such as established
hierarchies of concepts), and a "dynamic" part
that represents knowledge that changes
relatively frequently (such as statements
representing new observations or results of
reasoning). The static part is organized into
type hierarchies (TH), part hierarchies (PH)
and precedence hierarchies. Precedence
hierarchies include several subclasses, specif-
ically, measure hierarchies (MH), guantifi-
cation hierarchies (QH) and schema hierar-
chies (SH). The dynamic part consists of
traces that represent knowledge involving
concepts from different hierarchies. Each trace
links nodes of two or more hierarchies and is
assigned a degree of belief.

These hierarchies are composed of nodes
representing abstract or physical entities, and
links representing certain basic relationships
among the entities, such as “type-of’, “part-

of” or “precedes”. In the “pure” form, these



hierarchies are single parent, that is, no node
can have more than one parent. The root node
is assigned the name of the class of entities
that are organized into the hierarchy from a
given viewpoint.

A type (or generalization) hierarchy organizes
concepts in a given class according to the
“type-of”’ relation (also called a “general-
ization” or “kind-of” relation). For example,
different types of “animals” can be organized
into a “type” hierarchy.

A part hierarchy organizes entities according
to a “part-of” relationship. For example, the
world, viewed as a system of continents,
geographical regions, countries, etc., can be
organized into a part hierarchy. While proper-
ties of a parent node in the type hierarchy are
inherited by children nodes, this does not
necessarily hold for a part hierarchy. There are
several different part relationships, which
include part-component, part-member, part-
location and part-substance (Winston, Chaffin
and Herrmann, 1987). |

To represent relationships among elements of
ordered or partially ordered sets, a class of
precedence hierarchies is introduced. Hier-
archies in this class represent hierarchical
structures of concepts ordered according to
some precedence relation, such as “A precedes
B”, “A 1s greater than B”, “A has higher rank
than B”, etc.

There are several subclasses of precedence
hierarchies. One subclass is a measure

hierarchy, in which leafs stand for values of
some physical measurement, for example,
weight, length, width, etc., and the parent
nodes are symbolic labels characterizing
ranges of these values, such as “low”,
“medium”, “high”, etc. Figure 1 shows a
measure hierarchy of possible values of
people’s height. Dotted lines indicate a
continuity of values between nodes. Arrows
indicate the precedence order of the nodes.
Another subclass hierarchy is a belief
hierarchy, in which nodes represent degrees of
an agent’s beliefs in some knowledge
represented by a trace.

Other subclasses of precedence hierarchies
include a rank hierarchy and a quantification
hierarchy. A rank hierarchy consists of values
representing the “rank™ of an entity in some
structure, e.g., an administrative hierarchy or
military hierarchy. A quantification hierarchy
consists of nodes that represent different
quantifiers for a set (An example is shown in
Figure 2). A quantification hierarchy that is
frequently used in commonsense reasoning
includes such nodes as “one”, “some”
(corresponding to the existential quantifier),
“most”, and “all” (corresponding to the
universal quantifier).

Each herarchy has a heading that specifies its
kind (TH, PH, MH, QH or SH) and the
underlying concept {(or viewpoint) used for the
creation of the hierarchy. In addition, the type
and part hierarchies also have a fop node that
in the type hierarchies stands for the class of

MH - Person's Height

Figure 1. A measure hierarchy of values characterizing people's height.



all entities in the hierarchical structure, and in
the part hierarchies for the complete object.

Schema hierarchies {or schema) are structures
that indicate which hierarchies are connected
in order to express multi-argument concepts or
relationships. For example, the schema
hierarchy for the concept of “physical-object”
can be <shape, size>. This states that an
attribute “shape” applies to any object that is a
“physical-object” (a node in the “physical-
object” hierarchy), and produces a shape
value, which is a node in the “shape”
hierarchy. The schema hierarchy for the
concept of “giving” may be <giver, receiver,
object, time> that states that this concept
involves an agent that gives, an agent that
receives, an object that is being given, and the
time when the “giving” occurs. The agents,
object and time are elements of their
respective hierarchies.

DIH also makes a distinction between
structural and parametric knowledge. The
structural knowledge is represented by
hierarchies and traces that link nodes of
different hierarchies. Parametric knowledge
consists of numeric quantities characterizing
structural elements of knowledge. In DIH, this
knowledge is represented via precedence
hierarchies of merit parameters. The basic
merit parameter is a belief measure that
characterizes the “truth” relationship of a
given component of knowledge representation
(a trace), as estimated by the reasoning agent.
Other merit parameters include the forward
and backward strength of a dependency,
frequency, dominance, etc. (Collins and
Michalski, 1989; Michalski, 1993). In this
paper, we will consider only one merit
parameter, namely, the belief measure.

The theory of human plausible reasoning
(Collins and Michalski, 1989) postulates that

people rely primarily on the structural
knowledge, and resort to parametric
knowledge when the “structural” reasoning
does not produce a unique result. They resist
performing uncertain inferences based on only
parametric knowledge, and they are not good
at assigning a degree of certainty to a
statement based only on the combination of
the certainties of its constituents, without
taking into consideration the meaning of the
whole sentence. A reason for this may be that
there does not exist a normative model for
reasoning under uncertainty that is
independent of the structural aspects of
knowledge, i.e., its meaning. Plausible
reasoning about a problem or question
typically involves both structural and
parametric knowledge components.

Nodes of a hierarchy are elementary units of
the DIH representation. Each node represents
some real or abstract entity-—a concept, an
object, a process, etc. A given entity can be a
node in multiple hierarchies, where each
hierarchy structures a set of entities from a
different viewpoint. The relevant viewpoint is
determined by the context of the discourse.

As mentioned carlier, the basic structures in
the DIH representation are hierarchies, nodes,
traces and schema. Our research on DIH
demonstrates that these structures provide a
very natural environment for performing basic
types of inference on statements. The
subsequent sections show how these
inferences are performed using the DIH
representation,

4. DIH Traces

To describe the DIH knowledge
representation, let us start by representing the
following statement: "It is certain that some
power plants in New York have mechanical
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The trace representing the sentence consists of nodes linked by dotted lines. The arrows in the
trace indicate the argument (reference set) that is being described by the sentence. The
interpretation of the trace is given by schema hierarchy SH1 in Figure 3.

QH - Quantification

PH - Location

AN United States

Figure 2: A DIH trace representing the sentence “It is certain that some power plants in
New York have mechanical failures.”

failures.” Figure 2 presents this statement as a
trace connecting nodes of five hierarchies:
“Process plants” and "Failure", both type
hierarchies; “Quantification”, the guantifi-
cation hierarchy; “Location”, a part hierarchy;
and “Belief measure” a measure hierarchy.

The interpretation of the trace is done on the

basis of the schema hierarchy shown in Figure
3. The schema defines the universe of
sentences that can be generated using concepts
of these hierarchies, ordered according to the
schema.

The convention for the direction of arrows in a
trace is that they point from the nodes

FH - Precess Plants I

IQuantification Location I———blBeIief Measure I

Figure 3: Schema hierarchy SHI.



denoting descriptive concepts to the argument
node that stands for the set (or individual)
being described, called a reference set. In this
example, the set being described is “Power
plant” in the hierarchy of Process Plants, thus
the node representing it is the argument node.
Other nodes linked by the trace represent
descriptive concepts for the argument node.
The belief measure takes values from a belief
hierarchy, and refers to the entire trace rather
than a single node, which is indicated by the
schema.

Using the formalism of the annotated
predicate logic (Michalski, 1983), this trace
can be interpreted as: "(Some)x, [type(x) =
Power plant) & [location(x) = New York] &
[failure(x) = mechanical]: Belief = 1.0.” This
statement 1s a (uantified conjunction of
several elementary statements. An elementary
statement expresses one property of the
reference node (set), for example,
“Location(Power plant) = New York.”

In a formal expression of an elementary
statement, the reference set (“Power plant®) is
called an argument, the predicate (“Location™)
1s called a descriptor, and the value of the
descriptor (“New York™) is called the referent.
Thus, an elementary statement is formally
expressed in the form “descriptor(argument) =
referent”.

In Figure 2, the square boxes contain the
heading of the hierarchy. The concept
specified in the heading is the general
descriptor for the hierarchy. The nodes in the
hierarchy are possible values of this
descriptor.

The schema hierarchy, SH1, in Figure 3 is
used for the interpretation of the trace
represented in Figure 2. The heading indicates
the type of hierarchy (SH: Schema Hierarchy)

and the reference set of the trace. Since the
schema hierarchy is a precedence hierarchy, a
valid interpretation of the schema requires
each of the descriptors in order. Thus the first
element of the trace must be from the
quantification hierarchy, the second from the
failure hierarchy, the third from the location
hierarchy and the last from the hierarchy of
belief measures. This schema hierarchy is also
utilized for examples in Section 4.

Adding knowledge to the DIH representation
is done by creating hierarchies and specifying
traces that express statements involving nodes
of different hierarchies. To allow proper
interpretation of a trace, the schema is also
specified by indicating relevant descriptors
and their order.

DIH allows one to represent complex forms of
knowledge, involving different kinds of
quantifiers, multi-argument predicates,
different types of logical operations on them,
and to associate degrees of belief with
individual statements. A more complete
description of the DIH representation system
1s given in (Hieb & Michalski, 1993).

3. Multitype Inference in DIH

The core theory of plausible reasoning
introduced in (Collins & Michalski, 1989)
gives four knowledge transmutation operators
(also called transforms) — generalization,
specialization, similization and dissim-
ilization. The Inferential Theory of Learning
(Michalski, 1993) specifies several additional
operators, of which abstraction and concretion
are incorporated into DIH. (In (Collins and
Michalski, 1989), the abstraction and
concretion transmutations were called referent
generalization and referent specialization,
respectively.)
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Transmutation

Relevant Hierarchies

Inference Type

Argument (Generalization

Type, Part Deductive

Argument Specialization

Type, Part Inductive

Ouantification Generalization

Quantiﬁcation Inductive

(Juantification Specialization

Quantification Deductive

Abstraction

Type, Part, Precedence

Deductive

Concretion

Type, Part, Precedence

Inductive

Argument Similization

Type, Part Analogical

Arsument Dissimilization

Type, Part Analogical

Referent Similization

Type, Part, Precedence

Analogical

Referent Dissimilization

Type, Part, Precedence

Analogical

Table 1: Basic knowledge generation transmutations.

Generalization (specialization) transmutations
extend (contract) the reference set. They are
done either by argument generalization
(specialization) or by quantification
generalization (specialization). Argument
generalization is accomplished by moving
above the node representing the reference set
in a type hierarchy. Quantification gener-
alization is accomplished by moving up the
quantification hierarchy.

Abstraction (concretion) transmutations
decrease (increase) the amount of information
about the reference set. A way to accomplish
such a transmutation is by moving above the
node in the type or part hierarchy that
corresponds to a value of some descriptor in
the sentence represented by the trace.

Similization (dissimilization) transmutation is
done by replacing a node corresponding to the
reference set (argument) or a descriptor value
(referent) by a node at the same level of
hierarchy, which corresponds to a similar
(dissimilar) concept within the context of the
given hierarchy. In the case of dissimilization,
the resulting trace is linked with a negation
node, because the generated inference is a
negation of the original sentence (Michalski,

1993).

These transmutations can be given a simple
conceptual interpretation, if one assumes that
nodes at each level of hierarchy are ordered by
the relation of similarity, that is, nodes that
correspond to similar concepts (in the context
of the given hierarchy) are located near each
other, and nodes that correspond to dissimilar
concepts are placed far away from each other.
Such an arrangement is natural for precedence
hierarchies. In sum, similization and
dissimilization transmutations are performed
by sideways node movements, while
generalization (specialization) and abstraction
(concretion) are performed by upward
(downward) node movements.

Table 1 lists all the above knowledge
transmutations, specifying their abbreviated
name, the relevant hierarchies, and the
underlying inference type. The relevant
hierarchies are the kinds of hierarchies for
which the transmutations are valid. The
various kinds of part hierarchies are not
shown, but are distinguished in DIH.
Additional constraints are necessary in some
kinds of part hierarchies to maintain the
validity of the transmutation.

Figure 4 presents a schematic diagram
1llustrating how knowledge transmutations



modify a trace. A dotted line represents a link
in a trace. An arrow means that the trace is
moving to a new node in the indicated
direction by performing the indicated
transmutation. The quantification transmuta-
tions operate over the entire trace, rather than
on a single node, as do the transformations
involving the merit parameters.

One form of generalization transmutation
moves a node in the quantification hierarchy
upward, another form moves a node
(argument) in the type hierarchy upward. The
"+" indicates a strengthening of a merit
parameter, or the movement of the link to a
node that 1s "higher” in the particular merit
parameter measure hierarchy. The "-"
indicates a weakening of the merit parameter,
or the movement of the link down in the

hierarchy.

Moving a node in a trace in a manner that
corresponds to a deductive inference (Table 1)
produces a new trace (statement) with the

same truth status as the original trace. In the
case of node movement that corresponds to
inductive or analogical inference, the smaller
the node movement (“perturbation”), the more
plausible the resulting inference.

The Argument Generalization transmutation
represents a deductive inference. The
abstraction operation is also deductive. In
contrast, Argument Specialization, Quan-
tification generalization and Concretion are
inductive, because they produce traces
(statements) that logically entail the original
traces (statements).

The above transmutations can be usually done
in a number of different ways, by moving to
different alternative nodes. The plausibility of
the generated statements depends on
additional merit parameters, such as
dominance, typicality, multiplicity, similarity,
frequency, etc. (Collins and Michalski, 1989).
These 1ssues will be the subject of future
research.

AGen

A
4 A p ——
ASim ASim

|

ASpec

SRR s e R G SR B e

S i i

i

quantification
P  one or more of the merit parameters

a link in a trace

L}

A argument (the set being described; the reference set)

R referent (value of the descriptor characterizing the argument)
D descriptor (relationship characterizing the argument)
Q
M

moving a node in the direction of the arrow performs the indicated transmutation

R

Figure 4: Diagram of knowledge transmutations in DIH,
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6. Visualizing DIH-Based Inference

This section illustrates several basic
transmutations through a series of self-
explanatory examples. These examples
involve the same original statement, rep-
resented as a trace in Figure 2. Given the
original statement, these transmutations
generate new statements illustrated by DIH
traces in Figures 5 through 12.

Input to Transmutation
Qutput from Transmutation

Dirsction of Transmutation

The legend above is used for interpreting the
following figures. The input statement is the
same as that of Figure 2, without the belief
measure hierarchy. All of the examples are in-
terpreted according to the schema SH1 shown

in Figure 3.

There are two referents in the input statement.
The resulting statements (output) show the
results of the given transmutation assuming
that there are no merit parameters that assist in
the specialization or concretion and that the
similization operator finds a single “most
similar’ node using the descriptors given. The
Background Knowledge (BK) is the learner’s
prior knowledge that is relevant to the learning
process.

7. MTL-DIH System

The research on DIH aims at developing a
representation that will facilitate all basic
inferential strategies and knowledge
transmutations to be implemented in the

multistrategy task-adaptive learning system
(MTL-DIH).

TH = Process Plants

Process Plant

Oil power
plant.

Coal power
nlant

Nuclear / Hydro
ower plant ; power plant
; TH - Failure

/ N
¥ Malfunction )
/ A

(Mechanical ) (Eiectrical )

Input : Some power plants in New York have mechanical failures
BK: Indicated hierarchies
QOutput : All power plants in New York have mechanical failures

QH - Quantification

Figure 5: Inductive generalization based on quantification.



Input ; Some power plants in New York have mechanical failures

BK: | Indicated Hierarchies
Output : One power plant in New York has 3 mechanical failure
]
TH = Process Plants QH - Quanification

{ Process Plant |

TH - Failure

/ <
/ Malfunction

( Mechanical )

Electrical

Figure 6: Deductive specialization based on quantification.

Input : Some power plants in New York have mechanical failures
BK: Indicated Hierarchies
Output : Some process plants in New York have mechanical failures

TH = Pracess Plants

QH - Quantification

PH - Location

~ ‘AGGI'I A
. -~ United States

Qil power
nlant

nlant

Nuclear
power plant

/

Hydro
power plant

a
r
L
r
L]
F
r
x

/
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TH = Fallure

AGen ':‘;
F e
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Figure 7: Deductive generalization based on the argument.
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Input : Some power plants in New York have mechanical failures
BK: Indicated Hierarchieg
Output : Some Nuclear power plants in New York have mechanical failures
TH - Process Plants QH - Quaification
( Process Plant '

{ Chemical plant

Food plant

)

PH - Location

( bnited States ’

v TH - Failure
:' f lMaIfunctlon }

( Mecha;nlcal )

Etectrical

Figure 8: Inductive specialization based on the argument.

! Input : Some power plants in New York have mechanical failures
BK: Indicated Higrarchics
Output : Some power plants in New York have failures
TH - Process Plants QH - Quanificatinn

{ Process Plant |

( Chemicat plant )

Food plant

Power plant

PH - Location

e
United States

uclear '
ower plant }f ‘

Hydro

power plant

TH - Failure

Malfunction

( Mechanical )

Electrical

Figure 9. Abstraction transmutation.




Some power plants in New York have mechanical failures

Input ;
Bk Indicated Hicrarchies

Some power plants in New York have component defects
QH - Quantification

Output ;

TH - Process Flants

Process Plant

PH - Lacation

"t (United States )

Hydro

Nuclear
power plant

power plant

Buffalo

Electrical

(Computer ; (Controller ) (Lack of lubrication )

Component defect )

Figure 10: Concretion transmutation.

Input : Some power plants in New York have mechanical failures

BK: Ingdicated Hierarchies
Some chemical plants in New York have mechanical failures

Ouiput :
TH - Process Plants QH - Quantification

( Process Plant )

(Chemical plant ):‘

UL PH - Location
o
T , United States
Hydra

power plant

nlant
Nuciear
power plant
TH - Failure

ASim M
7 { Malfunction )

( Mechanical )

b emssmay

Electrical

Figure 11: Argument similization transmutation.
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Input :

Some power plants in New York have mechanical failures

BE.: Indicated Hierarchies
Outpat :

iTH - Process Plants

‘ Process Plant )

Coal powar

lant
Nuclear ‘
wer plant

/

TH = Failura

/ A
f Maifunction
f
( Mecham

Some power plants in California have mechanical failures

QH - Quantification

PH - Location

( United States }

L ]
e

(Califo rnia )

MNew York

Syracuse Ty

Figure 12: Referent similization transmutation.

Although issues related to the implementation
of an MTL system are beyond the scope of
this paper, we will briefly outline the basic
ideas. We have been pursuing two approaches,
MTL-JT, which builds a plausible justification
tree to "understand” a user's input (Tecuci,
1993), and a second one, MTL-DIH, based on
DIH.

In the MTL-DIH approach, a learning strategy
is determined by analyzing the learning task.
This analysis relates the input information to
the learner’s background knowledge and the
learning goal. The input information to the
system 1s assumed to be given in the form of
logic statements. It can be concept examples,
concept descriptions, rule examples, rules or a
combination of the above. The system re-
represents the input as a trace, or set of traces.
Background knowledge is the part of the

learner’s prior knowledge that is relevant o
the input and the learning goal.

The learning goal specifies criteria
characterizing knowledge to be learned. There
are different kinds of learning goals, such as to
predict new information, to explain the input,
to classify a fact or concept instance, to create
an abstract description from an operational
one or conversely, to create a problem solution
or a plan. It 1s assumed that the learning goal
1s determined by a teacher or by the control
module of the system.

The learning process involves determining the
type of relationship between the given input
and the background knowledge, and
performing a sequence of knowledge
transmutations, involving input and
background knowledge, to produce knowledge
satisfying the learning goal.



8. Summary and Future Research

The DIH knowledge representation presented
serves as the basis for implementing
multistrategy task-adaptive learning. It builds
upon ideas of the Inferential Theory of

Learning and the core theory of plausible
reasoning. Although it is closely related to the

semantic network representation, it represents
a significantly different approach, and
contains many new ideas that make it
particularly useful for representing multitype
mmference. These include the i1dea of dividing
the knowledge representation into a static part
and a dynamic part, the organization of
knowledge in which basic forms of inference
can be performed via simple trace
perturbations, and the introduction of variocus
precedence hierarchies, such as the schema
hierarchy, the measure hierarchy, and the
quantification hierarchy.

The primary purpose of this paper was (o
demonstrate how DIH supports several basic
knowledge generation transmutations, specifi-
cally, generalization, specialization, abstrac-
tion, concretion, similization and dissimiliza-
tion. The first version of DIH has been
implemented in Smalltalk, and used as a tool
for investigating the interactive display and
modification of traces in hierarchies. The
visual display of inference is particularly
useful in situations that involve ftraces
connecting only a few hierarchies (that is,
representing short sentences). To facilitate
knowledge visualization, the system has an
option to present traces with only a limited
number of neighboring nodes, rather then
connecting complete hierarchies.

In DIH, the more knowledge structures there
are in background knowledge, the easier it is
to assimilate new knowledge, or to plausibly

explain input statements, DIH is an efficient,
representation, because most knowledge
modifications consist of forming or changing
traces, without affecting the established
hierarchies.

Many issues remain to be addressed in future
research. Among these issues are the
representation of more complex forms of
knowledge—mutual implications, various

types of dependencies, temporal and spatial

knowledge, and the development of methods
for determining the affect of merit parameters
on the reasoning process.
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