Invited paper submitted to IEEE
Transactions on Pattern Anmalysis
and Machine Intelligence,
October 1981,

Concept-based Clustering versus Numerical Taxonomy

Ryszard S. Michalskd
Robert E. Stepp

Department of Computer Science
University of Illinois at Urbana-Champaign

ABSTRACT

A "concept-based” method of clustering 1s described that, unlike the
conventional metheds, not only clusters objects, but also produces
descriptions of the obtained clusters. The descriptions are
conjunctive concepts constructed from relations on selected object
attributes. The presented methed and 18 numerical taxonomy methods
were all applied to two different clustering problems, one--a simple
made up problem, and the second--a complex practical problem taken
from the area of plant pathology (a reconstruction of selected plant
disease categories). In both experiments the majority of the
numerical taxonomy methods (14 out of 18) were not able to produce a
clustering matching a typical human solution, while the conjunctive
conceptual clustering method did produce such a solution and, in
addition, produced cluster descriptions closely related to human
descriptions.

I. Introduction

Clustering 1s usually viewed as a process of partitioning a collection of
objects {measurements, observations, etc.) into groups of similar objects,
according to some measure of sim}larity. Such an approach to clustering
raises two fundamental problems: “what should be the nature of the similarity
used to cluster objects?” and "should the similarity between objects be the
only prineiple for constructing clusters?” These questions are discussed in
this paper, and glven an answer that is substantially different from the one
glven by traditicnal techniques.

In the area of cluster analysis and the ‘osely related field of

numerical taxonomy, the similarity between objects is typlcally assumed to be



some proximity measure in a multi-dimensional space, spanned by a fixed set of
attributes characterizing the objects. The clusters are then defined as
collections of elements (points) of the space whose intra-cluster proximities
are high, and inter-cluster proximities are low. Research in cluster analysis
has been therefore, primarily concerned with devising various object proximity
measures and developing lefficient algorithms utilizing these mneasures.
Surveys of these measures can be found in Sokal and Sneath [16], Anderberg

[1], and Diday and Simeon [3].

Such an approach to clustering has several important limitatioms. First,
clusters determined as groups of objects that are “"close” in a fixed, a priori
assumed attribute space may lack any simple conceptual interpretation. One:
reason for this 1s that the similarity measures employed consider all
attributes with equal importance and make no distinction between truly
relevant attributes and those which may be less relevant. There is no
mechanism for selentin# and evaluating attributes in the process of generating
clusters. Neither is there any way to produce conceptual descriptions of the
clusters. Conventional clustering methods simply leave the problem of cluster
interpretation to the data analyst. This is an important limitation because
data analysts are typically interested not only in determining clusters but

also in formulating some meaningful (conceptual) descriptions of them.

Second, traditional techniques do not take into consideration methods
huﬁans employ 1im clustering objects. Observations of how people cluster
objects indicate that they tend to select one or a few relevant attributes
(out of potentially very many attributes), and cluster objects on the basis of

these selected attributes. Each cluster contains objects that are similar 1in

the sense that they score similarly for these “important” attributes.



Different clusters are expected to have different values of these attributes.
The description of such clusters can be formally expressed as logical
conjunctions of relations on these object attributes. In short, pecple tend
to cluster objects into categories characterized by nomintersecting

conjunctive concepts.

This brings us to the third limitation of traditicnal methods: they do
not take into consi&eratlon any concepts or ‘linguistic comstructs people use
in describing object collections. Such concepts may be, 8.8, a
characterization of a configuration of objects such as ring-shaped, U-shaped,
T-formation, ete., or a description of a cluster as a group of objeects that

are: "small and red, with either no spot or a blue spot.”

The idea of clustering objects into categories described by conjunctive

concepts (conjunctive coneptual clustering) and a me:hodoiugy for 1ts computer

implementation was introduced in Michalski [11] and described in greater

detail in Michalski and Stepp [13,14].

The purpose of this paper is Lo characterize and compare the conjunctive
conceptual clustering method with techniques of numerical taxonomy. The paper
describes briefly the program CLUSTER/PAF for conjunctive conceptual
clustering and presents results of applying CLUSTER/PAF and a numerical
taxonomy program NUMTAX (implementing 18 different techniques) to two

clustering problems.

I1. Specification of a élijl;rlng problem

Before clustering methods can be applied, a data analyst must sgénify

certain components of the clustering problem. These components are:



Typically, objects to be clustered come from an experimental study of
some phenomenon and are described by a specific set of attributes (variables).
The initial encoding of the attributes is dictated by the measurement devices
used, or by an established convention. The attributes may be measured on
different scales, such as nominal, ordinal, in:?rval, ratio, and absolute. In
a simple case, one only distinguishes qualitative attributes (the nominal
scale) from gquantitative attributes (the remaining scales). The initial
measurements are subject to problemdependent transformations, which may
reduce the precision of the quantitative attributes or replace subranges of
their values by qualitative properties (e.g., a numerical size may be replaced
by characterizations such as "small size,” "medium size,” or “large size").
The éttrihutes available are not always all relevant to the clustering
problem. In conventional approaches, the selection of relevant attributes 1is
treated as a separate preliminary step. In the conjunctive conceptual
clustering method the selection of attributes is performed simultaneocusly with
the formation of clusters. The method selects those attributes which, from
the viewpoint of certain criteria, allow it to “simply” characterize the

individual clusters.

# The principle for grouping objects into clusters

Objects are grouped together by a clustering method according to some
principle. The traditional principle for grouping objects into clusters
utilizes some measure of object similarity, usually a reciprocal of a distance
measure. In conceptual clustering [11], objects are assembled into clusters

that represent single concepts (lingulstic terms or simple loglcal functions



defined on such terms). In the specific method called conijunctive conceptual

clustering, described here, objects are grouped into clusters that are
characterized by logical products of relations on selected object attributes,
i.e., conjunctive concepts. These relatlons may also include disjunction of
properties, but only if the disjunction involves values of the same attribute

(the so-called internal disjunction [10]). Such conjunctive concepts seem to

reflect very well the typical human characterization of object classes. A
definition and an illustration of the above conjunctive concepts is given in

the next section.

e The type of cluster structure

In clustering, a given set E of objects is divided into subsets of
objects. Let Ey, Eg,+-+,Ex be subsets of E, each being one of k clusters and
let a4 denote a description of cluster Ey. In general, a description ay is
satisfied not only by all observed objects in Ej, but also by some unobserved
cbjects. Based on the relationships among the clusters or among the cluster
descriptions three different types of Iinter-cluster structures are commoﬁly
distinguished in the literature:

L] The partition structure: a set of clusters whose unfion is the set

E, and whose descriptions are all disjointl (this implies that the
clusters themselves are disjoint),

L] The overlapping structure: a set of clusters that includes at least
one  intersecting pair. When some descriptions intersect but
corresponding clusters do not (i.e., the intersection of the
descriptions contains only unobserved events), the structure is
called weakly overlapping, otherwise it 1is called strongly
overlapping.

lpescriptions are disjoint if there are no events (observed or unobserved)
that satisfy more than one description.



. The hierarchical structure: the first level clusters represent a
partition structure of the whole set E; clusters at a lower level
are elements of partition structures of the corresponding clusters
one level higher,

III. Cluster representation scheme

A cluster representation simply and generally characterizes objects in
each cluster. Conjunctive  conceptual clustering wuses two cluster
representation schemes: a single represcnéative object selected from a
cluster, called the seed of the cluster; and a conjunctive statement that
describes objects in the cluster. This conjunctive statement, called a
logical complex, 1s an expression 1in the variable valued logic system VL;

(Michalski [6,8]).

Suppose that xj, X, ..., X, are variables selected to represent objects.,
We will assume that each variable, %y, 1€ {1,2,...,n}, has an assigned
domain, D(xy), that specifies all possible values the variable ean take for
any object in the collection to be clustered. The number of such vélues is
given by dy. The domains are assumed to be finite, and represented generally

as D(xy) = {0,1,2,...,d4-1}. We distinguish between nominal, linear, and

structured variables, whose domains are unurderéd, linearly ordered, and
tree-ordered sets, respectively, _An example of a nominal variable is color or
blood type; examples of linear wvariables are rank, size, or quantity of
something; an example of a structured vari- o is shape, whos: values may be
triangle, rectangle, pentagon, ..., or polvzon, which reg;faenta 4 more
general concept (a parent node in the tree-structured domain). For

simplicity, we assume here that variables are either nominal or linear.



The description space spanned by varlables ¥1,Xg,-+-,%Xn 18 called the
event space. Each point (event) in this space is a vector of specific values
of variables Xj,Xp,+++,Xp. An event that is a description of some object In

the collection to be clustered is called an observed event, Other events are

called unobserved events.

A relational predicate (or selector) is defined as a form:

[xy # Ry]

where Ry (the reference) is a list of values from the domain of variable x4,
# (the relation) is a relational operator = (equal) or # (not equal).

A selector [xy = Ry] (or [xg # Rq]) is satisfied if the value of x; satisfies
relation = (#) with any (all) values in the set Ry. In the set theoretic
sense,

[x4 = Ry] is equivalent to "value of x4 € {Ry}" and

[x4 # Ry] is equivalent to "value of x4 ¢ (rRy}"
lFor example, the selector [length=small,medium] (value of length ¢
{small,medium}) 1s satisfied whenever length has the value small or medium.
The selector [lengthfmedium] is satisfied by any value of length except
medium. The notation of a selector may be simplified by using the "or”
operator for linking values of nominal variables on the 1list Ry, and using
operators < > £z and the range operator ".." in selectors with linear

variables, as illustrated by expression (1) below (the operator “or” denotes

internal disjunctiom).

A logical product of selectors Is called a logical complex (&-complex).

A set of objects that satisfy each selector Iin an f-complex is called an
Efcogglex-(ggt+complex]. Thus, an f-complex can be viewed as a description of

an s—complex. For example, the t-complex:

(1) [height=tall][color=blue or red] [length)2] [sizefmedium] [veight=2..5]



(the operation AND is implied by the concatenation of selectors) describes
those objects that are tall, blue or red, with length 2 2, not medium size,
and of weight 2 through 5. The set of all such objects constitutes the
corresponding s-complex. The distinction between #- and s- complexes is used
to permit the application of logical or set-theoretic operators, respectively,
whichever is more convenient. When this distinction is unimportant, the term

complex will be used (without a prefix).

Not every collection of objects constitutes an s-complex, l.e., not every
collection can be precisely described by an Z2-complex. It is, however, ,
possible to describe every collection of objects by an fA-complex, 4if the
i-complex is allowed to describe some additional objects (i.e., 1f it is‘
permitted to be a generalized description of the collection). For example,
events:

ey: (blue, large, round)
eg! (red, medium, round)

can be described by the complex:
[eolor=blue or red][sizgzmedium}[shape=round]
This complex also covers the events:

eg: (red, large, round)
g4t (blue, medium, round)

which are distinct from e] and ej. The number of such uncbserved events

contained in a complex is called the (absolute) sparseness of the complex.

IV. Conjunctive Conceptual Clustering

The general control structure of the conjunctive conceptual clustering
algorithm can be viewed formally as a speclal case of the dyna - clustering

method (Diday et al. [2-5]). That method is a class of clusteri techniques



which find clusters iteratively by alternately applylng a representation

function and an allocation function (both explained below) while an evaluation

criterion is monitored. The algorithm terminates when a specified number of
cycles (consisting of one application of each function) are performed without
ylelding an improvement of the evaluation ecriterien. The distinguishing
characteristic of conjunctive conceptual clustering is that the representation
and allocation functions take specific unconventional forms. The following
paragraphs present the conjunctive conceptual eclustering algorithm in more

detail.

The representation function: deriving descriptions from clusters

In the general formulation of dynamic clustering, the representation
function derives a representation from given clusters. In our algorithm, this

representation is a set of 2-complexes determined by a two step process:

1. @Given k clusters, k representative events (seeds) ey, e3,...,8 Aare
determined. on the first iteration the seeds are selected randomly
from the events to be clustered. On subsequent iterations, one seed
i{s selected from the events 1in each cluster according te certain
rules as described in section V.

2. Given seeds, a set of disjoint Z-complexes &1, @2,---:0k: is derived
such that
(1) complex a4y covers (contains) seed ey and poesibly other events,
but not other seeds,

(2) the union of complexes covers the set to be clustered E, and

(3) all k complexes considered as a group optimize the clustering
evaluation criterion (called LEF, as defined below).

The allocation function: deriving clusters from descriptions

The allecation function performs an inverse of the representation

function: given cluster descriptions, it determines events that satisfy easch
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description. Specifically, given k Zi-complexes a1, @3,+++,0, describing
clusters, it forms a clustering CK = {E;,E;,...,E, )} where the cluster E; is

the set of observed events satisfying ay, i=1,2,...,k.

The evaluation eritericn

The evaluation criterion specifies the desired properties of a clustering
(a collection of complexes representing individual clusters). The implemented
method permits the user to maximize simultaneously one or more measures

characterizing a clustering, such as:

L] the fit between the clustering and the data,
. the total inter-cluster differences, :
. the essential dimensionality (the number of attributes which singly

distinguish between all clusters),

] the simplicity of cluster descriptions.

The fit between a clustering and the data is computed as the negative of
the sum of sparsenesses of complexes defining individual clusters {i.e., the
negative of the total number of unobserved events contained in the complexeé).
As  the number of unobserved events 1in a complex decreases, the degree of
‘overgeneralization of the complex decreases, which means that the fit bhetween
the observed events and the cum?lex increases. Minimizing the sparseness is

equivalent to maximizing the negative of the sparseness.

Inter-cluster difference is measured by the sum of the degrees of

disjointness between every pair of complexes im the clustering. The degree of
disjointness of a pair of cowplexes 1s the number of selectors iIn both
complexes after removing pairs of selectors that involve the szme variable and

intersect. For example, the pair of complexes
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¢ [color=red] [size=small or medium] [shape=circle]

. [color=blue] [size=medium or large]

has the degree of disjointness 3, because 2 of the 5 selectors intersect
(intersecting selectors are underlined). Maximizing this criterion promotes
clusters whose descriptions involve long sequences of different attribute

values.

Essential (discriminative) dimensionality is defined as the number of

variables that singly discriminate between all the clusters, i.e., which have
different values in every cluster description (2-complex). Single relations °
involving such varlables are sufficient for distinguishing one cluster from

the other clusters.

Simplicity of cluster descriptions is defined as the reciprocal of

complexity, which is measured by counting the total number of selectors im all

descriptions.

The above elementary criteria can be combined together into one general

measure through the use of the Lexicographical Evaluation Functional with
tolerances (LEF) [11]. The LEF is defined by a sequence of “eriterion—
tolerance” pairs (e1,41), (c2,42), ++., where g4 is a criterion (as described
above) and Ay 1s a "tolerance threshold” (A e [0..100%]). 1In the first step,
all clusterings are evaluated on the first criterion, ¢, and those that score
best or within the range defined by the threshold 4; from the best are
retained. Next, the retained clusterings are evaluated on criterlion e; and
trimmed similarly as above using Ap. Thils process continues until efither the

gubset of retained clusterings is reduced to a singleton (the “best”

clustering), or the sequence of criterion-tolerance pairs is exhausted. In
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the latter case, the retained set contains clusterings that are considered to

be equivalent with respect to the assumed evaluation criterion.

V. The Algorithm PAF

This section will present briefly the actual clustering algorithm PAF
ilmplemented as the inner part of the conceptual clustering program CLUSTER/PAF
[13,14]. The outer program invokes the inper portion in a sequence of
iterative steps to determine the best number of clusters and then recursively
repeats the whole process to construct the next level of the cluster

hierarchy [14]. The algorithm proceeds as follows:

l. From the given collection of events E, k events (the initial seeds) are
selected. The seeds may be chosen randomly or according to some
criterion. (After this initial step, seeds are always selected according
to certain rules, see step 5).

2. For each seed, a bounded star G(e|F,m) is determined, where e is the
seed, F 1is the set of remalning seeds and m is an integer. Such a star
is defined as a set of not more than m maximally general f-complexes that
cover seed e and do not cover any events in F. Such complexes have
maximum sparseness among complexes satisfying the required conditiens.
When the the total number of such complexes exceeds m, the algorithm
selects the m best complexes as determined by the evaluation criterion
{LEF).

3. Each complex in every star is reduced (made maximally specific) by
removing from selector references all values without which the complex
still covers the same observed events.

4. From each reduced bounded star, one complex is selected such that the
obtained complexes 1in the resulting collection are mitually disjeint,
together cover all the data points, and optimize the given evaluation
criterion. The search strategy wused to find such a collection of
complexes is based on the A* search algorithm, developed in the field of
artificial intelligence (Nilsson [15]). The method searches through a
tree structure of various cholces of complexes by investigating at every
step the most promising combination of complexes obtained so far.
Details of this method are described in [13,15].
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5. A new seed is selected from each set of observed ewvents covered by one
complex in the collection and a new iteration of the algorithm begins
from step 2. Two seed selection techniques are used. Seeds may be
either central events, having the maximum number of properties in common
with other observed events in the complex, or they may be border events,
having the wminimum number of properties shared. Central events are
chosen as new seeds as long as the clusterings lmprove with each
{teration. When the improvement ceases, border events are selected.

6. The obtained clustering is evaluated using a LEF. The LEF is defined by
the user in terms of evalutation criteria selected from: fit, inter-
cluster differences, essential dimensionality, and simplicity. If this
is the first iteration, the clustering is stored, otherwise it is stored
only if it is better than the previously stored one. In this way the
stored clustering is always the best one among all solutions generated so
far. The algorithm terminates when a specified number of iterations does
not produce a better clustering.

Figure 1 shows the flow diagram summarizing these steps.

In the actual implementation, the program stores not only the best
(locally optimal) k-clustering, but also a user-specified number of
alternative k-clusterings closest to the best one, as defined by the LEF.
Along with the k-clusterings, the program provides f-complexes describing
i{ndividual clusters and their scores on the evaluation criteria in the LEF. A
detailed explanatinﬁ of the complete algorithm is given in Michalski and Stepp
[13,14]. A proof that every object collection can be partitioned inte an

arbitrary number of conjunctive concepts is in Michalski [11].

It should be noted that gifferent choices of the evaluation eriterion
(LEF) will wusually lead to different, alternative solutions to the problem.
An approach taken here is that the user 1s permitted to apply his own
judgement and knowledge of the problem in specifying the LEF and can arrive at
a particular choice by experimentation. 'In guch experiments, the user looks
for clusterings that, from the viewpolnt of a given prublem, form the most

meaningful or interesting subcategories of the events. The obtained

clusterings are judged on the basis of produced cluster descriptions. Because
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Given:
E - a set of data events
k = the desired number of clusters
A - the evaluation functional

I Choose k "seed” events from E

1.

Determine the reduced bounded star of
each seed against the other seeds,
Select from each star ore complex such
that the obtained collection, P, of k
complexes will be the “best” disjoint
cover of E.

Is the termination x\_feﬂ
ceriterion satisfied?f/

No

Yes Is this solution
better than the
previous solution?

No

Choose k central events as
one from each
set of observed events
covered by one complex.

new seeds,

new seeds,

Choose k border events asg

one from each

set of observed
_J covered by one complex.

events

Figure 1.

A flow dlagram of the inner layer of algorithm PAF,
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of the availability of these cluster descriptions, this method has a
substantial edge over the numerical taxonomy methods, where a user has no
means for comparing, at a conceptual level, clusterings obtained by applying

different similarity measures.

¥I. Example Problem I

The simple example problem described below 1s used to illustrate some of
the differences between conjunctive conceptual clustering and methods of

numerical taxonomy.

Figure 2. Microorganisms

The method-independent components of the problem (described in section II)

are:

1. The set of objects to be clustered: "microorganisms” shown in Figure 2.



I I e

2,3. The variables selected for describing microorganisms and their domains:

Body parts Texture

® ] part ® blank

® 7 parts ® striped

® many parts ® crosshatched
Body spots Tall type

® one spot ® none

® many spots ® gingle

® multiple

w

Figure 3 shows the descriptions of the microorganiéms in terms of these

variables.

4, The'principle for grouping objects into clusters:

For numerical taxonomy:

~ 18 different techniques are used, each being a combination made of
one of three different glmilarity measures {product-moment
correlation, simple matching coefficients, reciprocal Euclidean
distance), ome of three data transformations (none, normalizing
variables into unit intervals, standardization), and one of two
clustering schemes (average linkage, weighted average linkage).

For conjunctive conceptual clustering:
the technique described in section III.

5. The inter-class structure: the partition structure,

Two programs were applied to solve this problem:

1. NUMTAX, developed by "Professor Selander at the University of
I1linois, which 4implements the 18 techniques of numeriecal taxonomy
mentioned above (described in Sokal and Sneath [16]),

2.  CLUSTER/PAF, which implements conjunctive conceptual clustering.

Results from NUMTAX for problem I

The numerical taxonomy program NUMTAX organizes the events 1into a
hierarchy (a dendrogram) <7 eclusters reflecting the numerical distances

between consecutively larger :-lusters. The top level of the hierarchy
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Micro-= Body Body Tail
organism parts spots Texture type
a 1 one blank single
b 1 one blank none
c 1 many striped multiple
d 2 one blank multiple
e 2 many striped single
f many many striped none
E nany one blank multiple
h many many striped multiple
i many one blank none
i many many crosshatched multiple

Figure 3. Descriptions of microorganisms

represents the complete collection of events. The tips represent single

events.

DISTANCE

i

1.3 1.17 1.04 .91 .78 .65 .52 .39 .26 .13 .00
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( The dendrogram was cut as indicated above to form the
clusterings C” and C" for k=2 and k=3, respectively)

Figure 4. Dendrogram jroduced by NUMTAX for microorganisms using average
linkage and “uclidean distance on non-transformed data
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Because dendrograms are constructed bottom-up, the entire dendrogram must
always be generated. After this is done, the dendrogram may be cut apart at
some level to produce clusters. In our experiment, 18 dJdifferent dendrograms
were obtained, one from each technique applied. One typical dendrogram 1is
shown In Figure 4. Figure 5 shows two- and three-cluster solutions obtained

from this dendrogram.

The clusters obtalned from the dendrngraé are not accompanied by any
description. In order to determine descriptions of these clusters, they were
presented to an inductive learning program, AQll (Michalski and Larson [91),
which formulated discriminant descriptions of each cluster (l.e., optimized
descriptions sufficient to discriminate between the clusters) in the form of a
logical disjunction of VL) complexes. The descriptions shown in Figure 5 are

results from the AQll program.

Results from CLUSTERIPAF_EEE problem I

Program CLUSTER/PAF was run using the evaluation ecriterion: "maximize
the essential dimensionality, then maximize the simplicity of cluste}
representations” (both with zero tolerance). The eclusters and their
descriptions obtained by CLUSTER/PAF with k=2 are shown in Figure 6a, and with
k=3 in Figure 6b. The essential dimensionality and the complexity of each

clustering are specified by parameters ed and cX, respectively.

Discussion of results

An experiment with human subjects solving this problem indicated that
people catagorized objects using the objects” most noticeable properties.

Most frequently given two-cluster solutions were:



k=2 §

k=3 ¢

o -

a b i

[Texture=blank] [Tail type=none,single] or ETexture=striped][Tail type=none]

§ 2oL

[Tail type=multiple] ot ITexture-stqiped][Tail type=single or multiple]

(comparative PAF criterion scores: ed=0, cx=T7)
a.

)

[Body parts=1][Tail type=none or single]

a b

1

[Body parts>l][Tail type=none]

g 2.) & WK

[Tail type=multiple] or [Body parts>1l][Tall type=single or multiple]

(comparative PAF criterion scores: ed=0, cx=7)

Descriptions nf clusters were produced by Inductive program AQll. To
permit the comparison of the above descriptions to those obtained by
PAF, the PAF criterion scores are shown above. These scores are:
ed - the essential dimensionality (the number of variables with
different values in different clusters),
ex - the complexity (the total number of selectors).

Fipure 5. Clusters obtalned by NUMTAX using average linkage, Eucl dean
o distance and raw (ngn-transfurmeﬁi data? for k=2 and E=5




k=2 ¢

k=3 é

_20_

(o XN S S 2

[Texture=blank] [Body spots=one]

h j LT oo

|

[Texture#blank] [Body spots=many]

(optimality criterion scores: ed=2, cx=4)
-

i

[Tail type=none] [Texture=blank OR striped]

" e

[Tail type=single][Texture=blank or striped] [Body parts=1 or 2]

£ & R

[Tail type=multiple]

(optimality criterion scores: ed=1, cx=6)

{ed - essential dimensionality; ex - complexity)

Figure 6. Clusters and cluster descriptions obtained by PAF for k=2
and k=3, using as the optimality criterion: “maximize the
essentlal dimensionality, then minimize the complexity of
cluster representations”




- 21 -

(1) [Texture=blank] vs. [Texturefblank], and
(2) (Body spots=one] vs. [Body spots=many]

and the most frequently given three-cluster solution was:

(3) [Tail type=none] vs. [Tail typessingle] vs. [Tail typesﬁultiple]

When compared with the above solutions, the clusterings produced by NUMTAX
seem rather arbitrary: the descriptions of single clusters (determined by
program AQll) involve disjunction in several cases, and are relatively
complex. The descriptions produced by CLUSTER/PAF, however, correspond well
te human solutions. The program found that clusterings {1) and (2) are 1in
fact identical. These human descriptions can be obtained directly from the
descriptions generated by CLUSTER/PAF by removing from PAF descriptions the
conditions unnecessary for discriminating between the clusters. (In non-
trivial problems this reduction is performed by applying inductive program
AQll). For k=3, CLUSTER/PAF found, in addition to the solution shown in Figure
6b, the alternative solution:

(1) [Body parts=l1][Texture=blank or striped]

(2) [Body parts=2][Texture=blank or striped][Tail type=single or multiple]

(3) [Body parts=many][Tail type=none or multiple] :

Of the 18 dendrograms generated by NUMTAX, only 4 (those involving either
_uormalized or standardized data, Euclidean distance, and either average or
weighted average linkage) yielded a partitioning of data that matched the
human solution (and CLUSTER/PAF’s solution, Figure 6a). Thus, in our
experiments, numerical taxonomy methods produced clusters that in the majority
of  cases seemed to be rather inadequate from the wviewpoint of human
interpretation. This can be explained by noting that program NUMTAX 1s not
equipped with any knowledge of human conjunctive concepts (or any other
concepts) and therefore canmot knowingly produce clusters corresponding to

such concepts.
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VII. Example problem II

CLUSTER/PAF has been tried om several practical clustering problems. One
such problem was to cluster data describing 47 cases of soybean disease each

characterized by the 35 multi-valued variables shown in Figure 7.

* Time of occurrence (7) * Leaf mildew growth (2)
* Plant stand (3) * Condition of stem (3)
* Precipitation (2) * Presence of lodging (4)
* Temperature (4) * Stem cankers (3>
* Occurrence of hail (3) * Canker lesion color (3)
* Kumber of years crop repeated (2) * Fruiting bodies on stem (2)
* Damaged area (3) * External decay of stem (3)
* Severity (3) * Mycelium on stem (2)
* Seed treatment (2) * Internal discoloration of stem (3)
* Seed germination (2) * Selerotia internal or external (2)
* Plant height (4) * Condition of frult pods (4)
* Condition of leaves (2) * Fruit spots (3)
* Leaf spots {2) * Condition of seed (3)
* Leaf spots margin (2) * Seed mold growth (4)
* Leaf spot size (5) * Seed discoloration (2)
* Shotholing/shreading (2) » Seed size (2)
* Leaf malformation (2) * Seed shriveling (2)
* Condition of roots (3)

{the numbers in parenthesis indicate the sizes of variable domains)

Figure 7. Multi-valued variables used to describe cases of soybean disease

These 47 cases were drawn from 4 populations--each population representing one

soybean disease:
Dl - diaporthe stem canker
D2 - charcoal rot
D3 - rhizoectonia root rot
D4 - phytophthora rot

Therefore, ideally, a clustering method should partition these cases into four
groups corresponding to the actual diseases. To test for this, we have
applied CLUSTER/PAF and the above-mentioned 18 mumerical taxonomy techniques

to cluster these cases.
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Results from NUMTAX for example IT

Figure 8 shows a typical dendrogram produced by the program NUMTAX (18
such dendrograms were obtained, one from each technique). As we see, this
denrogram separates correctly cases of diseases D1 and D2, however cases of
diseases D3 and D4 are somewhat intermixed. For k=4 (Figure 8) the cluster
denoted D3 & D4 contains cases of both diseases D3 and Dé. 0of the 18
dendrograms obtained, only &4 (those involving standardized data, product-
moment correlation or simple matching scores, and average or welghted average
linkage) precisely reconstructed the correct classification of the cases. The

output from NUMTAX does not provide any description of the clusters formed.

Results from Conceptual Clustering for problem II

The program CLUSTER/PAF was applied to this problem with "maximizing the
§it" as the evaluation criterion (LEF). CLUSTER/PAF partitioned the disease
cases into four disease categories and described the clusters in terms of tﬁe
characteristics (symptoms) of each disease, expressed in the form of a
conjunctive statement. The produced disease categories corresponded exactly
to actual soybean diseases and the descriptions produced by CLUSTER/PAF agreed
well with the symptoms indicated by plant pathologists for these diseases (see

Figure 9).

Figure 9 presents the complete l-complex for one cluster (one disease
category). The middle column contains the values for the 25 variables
CLUSTER/PAF used to describe one cluster. The right-hand column of Figure 9
presents .values of variables used by an expert plant pathologist to describe

the same disease for diagnosis. The description of the disease determined by

CLUSTER/PAF contains all the symptoms of the disease specified by the plant



- DG

DISTANCE
1,1 1,02 ,93 .85 176 168 $39 g1 452 134 p25 {1? (98,00
Kk RRRRERRIRARRARRA KR DA% D] -]
k=4 e ****ii**t****i**i*i**i*** D1-10
Ak kkkdhkkkhk ik kR xrkk D] -2
* ddkk %
Kickdckx Rk kkkdkdkkkhkk kR hdkk D] -5
*RRERRRKIIAK KA IR A kAR RARARE D] =7
ki dk bk dkkk [)] =3
ki ek ok
¥ *kdkkkkkkkikkik ] -
e )
Rk k ki ik ik ik kkkkk ke )] —6
Ak ddkkkk k& kkkdkdkkdkik )] g
Tk RkRRRARE [F=]

hAAk
: :****i********* D3=s

(03) il ek ek ke ok ok ok
REE DT I T T SR S R D34
= Ehdkkddkkkkikhk [3=10)
:t*i*iii*t****ﬁ***it*** D3-7
Sk SRR A kAR D]
dkok ke RhEAKARRKRARAR DUj]
KhRAEAXXIAKIARRRARER Dlym] T
s RRERIK KRR KR AH IR IRIARE Dym§
RARE Rk Rkk ko kddkkk ok ko DY —8
FARR IR AR R RIS IIIXIKIER ] 2 F
sk THRARRARA SR SRR A AR Ak D=2
* * Rk ddk khkkdkk D4
*k Kok kokk kek e
3 FhAdkdRRAIRERAE Db—] 4
FRRARARIRKRRAARAAIIIIRIRIIANIR 1)
I T Y
Fdokkk ARIERKERIA A IAIIIKARE D] ()
- kA Aok kh kAR Rk Rk ikkhk DG ] §
% Rk kg T IERARRRRIAARRIAKAK DG~
i ] FRIRAARAIAR IR AXEAKR DL =] 6
# ARk etk ok ok ok kA A Dﬁ_llf
ekt Ak el e ek ek ek o s e o D4-13
P
FRkAkAd bk kdk ok kA% [)3-8
i*ﬁi***ii**t#*kﬁ *t****t*****#ﬁ***** D3=3
kAR R AIR XK KRR RIRIA AR IR 113 -6
Fekkddkokokdk Ak k ok dok ok dok koo ek Sk ke D3-9
EhkAxhkAIhk kA kAR 2]
FIARRRRIAKRE XA FIIRAAKKKR )-8
***i Rk ko kkohk kAo )23
FEE RRRRRRARRIAK Rk R A A KRRk D) ]
* % Fhbdhik ik kkkhkikkkikik DD
¥

k:

(D1)
sti*t***t****tt*t* ok ok kA

AR
¥
*
*
o2
*
*
*
p

L

&
xkk
*

20 20 00 0 0 2 0 2 0 0 0 D0 3 2 e 0 2 0

]
3
*
»

X
*
e

¥
*
3 2 2 e 20 2 e 2 e 2 O

*
*
*
x
3 e e 2

:
o

»1}t»#»*#i#&#11*m:**l*1%i*#w*1*##in!b&a*ﬁ*&&#*&t&»&&#*
L E B R

b
o

3 3 260 3 36 2 20 2 06 2
0 00 0 2 0 0 5 2

3 3 o 2 2 2 25 e 2

(D3 or D4)
e e e e ek e e

*,

H
ks

:i#**i“ﬂ‘#*’l!##

*

FkkAkkk ok
Rk RAhAdk AR Ahh kA K kkA%R D10

]
ek A Aok ek ko ok Ak ok ke

E 1**‘""#******************** s

*********= *********t********* Dz-ﬁ

KREA K KAk ok D2-5

ook ko dofedok e ok e e e Aok D2-9

-{D:—j denotes the jth'case of disease DI)

Figure 8. Dendrogram of cases of soybean diseases D1, D2, D3, D4 using
average linkage and Euclidean distance on nomtransformed data

Dl

D3 & D4’

D3

D2



Variable

Time of occurrence
Precipitation
Temperature

No. yrs. crop repeated
Stem cankers

Canker lesion color
Fruiting bodies
Condition of fruit pods
Plant stand

Damaged ares

Severity

Seed treatment

Plant height
Condition of leaves
Leaf spots
Shotholing/shreading
Leaf malformation
Leaf mildew growth
Condition of stem
Mycelium on stem
Condition of roots
External decay of stem
Sclerotia int. or ext.
Int. discolor. of stem
Condition of seed

- 25 -

Value determined by PAF

July to October
above normal
normal

several years
above second node
brown or n.d.
present

normal

normal

scattered areas or low areas
potentially severe or severs

none or funglcide
abnormal
abnormal
absent
absent
absent
absent
abnormal
absent
normal

firm and dry
absent

none

normal

Value determined by plant

pathologist

August to September
normal or above normal
pormal or above normal
several years
above second node
brown

present

normal

not present
in expert
descriptions

|
|

I
I
|
I
|
|

Figure-g. The description for one cluster (the disease diaporthe stem
canker) obtained by CLUSTER/PAF (variables having values in

the left column) and as described by a plant pathologist
(variables having values in the right column)

pathologist (the values of "Time of occurrence,"” "Precipitation,” and “Canker
lesion color™ determined by CLUSTER/PAF are supersets of the values mentioned
by the plant pathologist). The description produced by CLUSTER/PAF also

involves many variables which the plant pathologist did not mention.

The logical statements produced by CLUSTER/PAF can be quite complex and
for maximum comprehensibility, shorter cluster descriptions may be prefered.

One way to create shorter descriptions is to apply an inductive program (e.g.,

AQll as described by Michalski and Chilausky [12]) to the obtaimed clustering.
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Another way to handle this problem is to further analyze the output generated
by CLUSTER/PAF and ldentify various categories of variables. The variables
may be divided into those which take the same value for each cluster (common

characteristics) and those which take different wvalues for one or more

clusters (discriminant characteristics). The variables which are discriminant

characteristics can be further subdivided 1inte those which take differe;t
values in all clusters (complete discriminant characteristics) and those which
take different wvalues 1in some (2 to k-1) clusters (partial discriminant
characteristics). The complete discriminant characteristics (“key variables")
are those variables which by themselves uniquely identify all clusters. The
number of such key variables is the essential dimensionality of a clustering,
defined in section III. In some problems complete discriminant variables are
uot present. In those cases, logical conjunctions of partial discriminant

variables uniquely identify the clusters.

The clusters of soybean disease cases produced by CLUSTER/PAF do not haﬁe
any complete discriminant characteristics. Figure 10 shows the common
characteristics found by CLUSTER/PAF and a table of the values of the partial
discriminant characteristics for each cluster. This table was derived from

the descriptions produced by CLUSTER/PAF.

The measure of the total sparseness of the solution can be used as a
heuristic to judge the best number of clusters to form. Data from the
clustering of soybean disease cases for k=2 through k=6 are summarized in
Figure 11. As k 1increases, the sparseness always decreases because data
events ar; partitioned into smaller complexes which fit the data better. Oon

the other hand, increasing k is undesireable as it raises the complexity of

the clustering. A  measure that reflects this trade-off is
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5 = sparseness + (k-f), where B is a parameter which balances the influence of
k vs. the sparseness. The results shown in Figure 11 are for f=1. In our
experiment there was a strong correlation between the cpu time used and the
parameter 5. This fact may indicate that the algorithm operates moré
efficiently when the number of clusters formed agrees with some “natural”

organization of the data.

Number of Sparseness Parameter § Cpu time used
clusters (x 166) (fit vs. complexity) (on Cyber 175)
2 15.0 15.0 10 sec
3 0.5 1.0 23
4 0.03 0.09 21
5 0.10 0.4 44
6 0.02 0.1 40

Figure 11. A summary of evaluation criterion scores for
soybean disease clusterings for k=2 to 6
Another application of CLUSTER/PAF to a problem in the area of musicology

is described in [14].
VIII. Conclusion

A method of conceptual clustering was discussed that produces clusters
together with their descriptions in the form of conjunctive statements closely
“fitting” the clusters. The important difference between this method and
traditional clustering methods is that it does not use a similarity measure
(in the usual sense) for forming clusters. Clusters are slmply defined as
groups of objects whose descriptions are disjolnt logical products of
relations on object attributes, optimizing a predefined global criterion.
Experiments performed so far have shown that the method produces elusters that

tend to match well solutions most satisfactory for people. Similar



- 29 -

experiments with numerical taxonomy methods resulted 1in eclusters that were

less satisfactory in this repard.

From the viewpoint of traditional clustering methods  conceptual
clustering can be interpreted as an approach that also uses a measure of
object "similarity,” but of a quite differend kind. This mnew kind of
"similarity” takes into consideration not only the distance between objects
(as in conventional clustering methods), but also their relationship to other
objects and, most importantly, their relationship to some prédetermined

concepts (here, conjunctive concepts) .

ThE-price of using such a more complex similarity measure 1s the
significantly greater computational complexity of the method. For example,
each dendrogram produced by NUMTAX for example I required about 60
milliseconds of processor time on a CYBER 175, while clusterings produced by
CLUSTER/PAF for the same example required 1.5 to 4 seconds of processor time.
(The above comparison is not totally appropriate because NUMTAX produces omly
clusters, while CLUSTER/PAF produces both clusters and their deseriptions.)
The greater computational complexity 1is not necessarily a gignificant
disadvantage of the method. If the results are indeed useful and practical,
then the computational cost is of little relevance, especlally now when the
prices of computer technology are declining. Experience  shows that
researchers using presently available clustering techniques are most concerned

not with the amount of computational time expended but with the difficulty of

interpreting the results of the analysis.

Another important characteristic of the method (and a limitation or

advantage depending on the problem at hand) is that it is specifically
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oriented toward clustering problems using nominal or ordinal wariables. It
should be noted, however, that the method can also handle other types of

variables, if they are properly quantized.

Concluding, the presented method of conjunctive conceptual clustering
adds a new dimension to research in cluster analysis, and seems to have the

potential to bz a useful new tool for researchers analyzing data.
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