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ABSTRACT 

PREDICTION OF INDIVIDUAL VARIATION OF SECOND-PARTY PUNISHMENT 
FROM RESTING-STATE FUNCTIONAL CONNECTIVITY 

Fengying Ding, M.S. 

George Mason University, 2019 

Thesis Director: Dr. Frank Krueger 

 

Social norms and associated altruistic behaviors are significant for human society. Humans 

are willing to punish the violators of social norms at their personal costs (i.e., costly second-

party punishment, SPP), which can be measured with socio-economic exchange games. 

From the view of psychology, SPP is driven by blame, integrating the harm of victim and 

intent of offender. From the perspective of neural network, SPP behavior is associated with 

salience network, default-mode network and central-executive network (CEN). Although 

SPP is associated with large-scale brain networks regulating social-cognitive processes 

measured with task-based functional magnetic resonance imaging (fMRI), the prediction 

of individual variation of SPP behavior based on resting-state functional connectivity 

(RSFC) measured with task-free fMRI has not yet been established. The aim of this master 

thesis was to predict individual differences in SPP—measured via a two-person economic 

exchange game— based on RSFC combining task-free fMRI with a multivariate prediction 

analysis (MVPA). First, we showed on the behavioral level that SPP increased with the 
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degree of unfair offers in the SPP game. Second, we demonstrated on the neural level, that 

variation in average SPP behavior was predicted through RSFC within the central-

executive network confirming that CEN is the driving network for the determination of 

SPP behavior. In conclusion, our study provides a comprehensive picture regarding SPP 

behavior for maintaining human social norms. 
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1. THERERICAL BACKGROUND 

1.1 Second-Party Punishment as a Form of Costly Punishment 

Human society is unique for the compliance of social norms and the associated altruistic 

behavior (Baumgartner, Götte, Gügler, & Fehr, 2012; Buckholtz & Marois, 2012). To 

maintain a stable human society, humans are willing to punish the violators of social norms 

at their personal costs (i.e., costly punishment) (Henrich et al., 2006; Rockenbach & 

Milinski, 2006). Costly punishment is costly to the punisher, but it is more costly to the 

punished  (Hauert, Traulsen, Brandt, Nowak, & Sigmund, 2007; Kuwabara & Yu, 2017). 

It is this kind of punishment that discourage cheaters, therefore, enforcing cooperation 

among people in human society (Rockenbach & Milinski, 2006). 

Two types of costly punishment exist: second-party punishment (SPP) and third-

party punishment (TPP). Not only victims (i.e., SPP) but also the witnesses who are not 

affected by the violation (i.e., TPP) are willing to punish the violators (i.e., offenders) 

(Bendor & Swistak, 2001; Sober, Wilson, & Wilson, 1999). Unfair treatment and negative 

emotions (such as aversion and anger) lead to SPP (Pillutla & Murnighan, 1996). Although 

third parties are not affected psychologically by the unfair treatment to second parties, they 

are willing to punish the violators when they witness the norm violation (Fehr & 

Fischbacher, 2004b; Henrich, 2006).  
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1.2 Economic Games as Instruments to Measure Second-Party Punishment 

Economic exchange games can be used to measure costly punishment behavior, revealing 

the essential role of SPP in the compliance of social norms (Henrich et al., 2006; Leibbrandt 

& López-Pérez, 2012). The SPP game is extension of the ultimatum game (UG) 

(McAuliffe, 2017; Strobel et al., 2011). In the UG, proposers send an offer (i.e., a split of 

an endowment of money) to receivers who can either accept or decline the offer (Gospic 

et al., 2011). In the SPP game, both proposers and responders are endowed with a certain 

amount of money (Henrich et al., 2006; Leibbrandt & López-Pérez, 2012). Then, proposers 

are given extra money to share with receivers. An offer of 30% of the given MUs is 

considered as fair (Fehr & Fischbacher, 2003; Wallace, Cesarini, Lichtenstein, & 

Johannesson, 2007). If proposers share an unfair amount of money with responders, they 

can use their money to punish the proposers (Figure 1) (Henrich et al., 2006; Leibbrandt 

& López-Pérez, 2012). The amount of punishment depends on the fairness of the offer (i.e., 

fair vs. unfair outcome) to the receivers and the intention of the proposers behind the offer 

(i.e., good or bad intention) (Krueger & Hoffman, 2016).  

 
 
 

 

Figure 1. Second-Party Punishment Game.  
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Proposer and responders interact in the second-party punishment game by using an endowment of money. Proposer make 

an offer on how to split the money and depending on the fairness of the offer responders can punish the proposer using 

their money. 

 
 
 
1.3 Neuropsychological Framework of Second-Party Punishment 

Punishment is determined by the blame that is based on intention (i.e., good vs. bad) of the 

proposer and the severity of harm (i.e., fair vs. unfair outcome) inflicted on the responder 

(Figure 2A) (Krueger & Hoffman, 2016) (Figure 2B).  

 
 
 

 
Figure 2. Neuropsychological Framework of Second-Party Punishment.  

(A) Psychological Framework. Second-party punishment is driven by blame, which is determined based on the intent 

behind the social norm violation (i.e., proposer’s good or bad the offer) and the harm (i.e., fair vs. unfair offer) inflicted 

on the receiver. (B) Large-Scale Networks. Three large-scale brain networks —salience network (red), default mode 

net-work (blue), and central executive network (green) — are involved in SPP (Figure taken from Krueger & Hoffman, 

2016).  
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SPP behavior is associated with the interaction of three large-scale brain networks (Krueger 

& Hoffman, 2016): salience network (SAN), default-mode network (DMN) and central-

executive network (CEN) (Figure 2B) (Bressler & Menon, 2010; Buckholtz & Marois, 

2012; Krueger & Hoffman, 2016).  

The SAN— associated with aversive self-related emotional experiences that guide 

behavior— includes the dorsal anterior cingulate cortex (dACC) (detection of social norm 

violation), the anterior insula (AI) (generation of an aversive experience), and the amygdala  

(Amyg) (provides an emotional signal coding for the severity of harm, i.e., unfairness of 

the offer) (Bressler & Menon, 2010; Krueger & Hoffman, 2016).  

The DMN —associated with social cognition, mentalizing, and theory of mind— 

is anchored in medial prefrontal cortex (mPFC) (Premack & Woodruff, 1978). This 

network integrated harm [via the ventromedial prefrontal cortex (vmPFC) connected to 

SAN] and the intent of the proposer [via the dorsomedial prefrontal cortex (dmPFC), 

including posterior cingulate cortex (PCC) for self-referential and temporo-parietal 

junction (TPJ) for intentions, beliefs or desires in others] into assessment of blame through 

the medial prefrontal cortex (mPFC).  

The CEN —associated with higher-order cognition and decision making— 

converts the blame signal from the DMN into an actual decision, posterior parietal cortex 

(PPC)  constructing a scale of punishment for dorsolateral prefrontal cortex (dlPFC) to 

select punishment that fits the norm violation  (Bellucci et al., 2017; Bressler & Menon, 
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2010; Buckholtz et al., 2008, 2015; Krueger & Hoffman, 2016; Krueger, Hoffman, Walter, 

& Grafman, 2014).  

 

1.4 Resting-State Functional Magnetic Resonance Imaging  

Functional magnetic resonance imaging (fMRI) is a technique widely used to study brain 

functions (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Voos & Pelphrey, 

2013). Neural activity can be reflected by the oxygen in the blood. Thus, localizing changes 

in brain blood flow and blood oxygenation, the blood-oxygen-level-dependent (BOLD) 

signal reflects changes in deoxyhemoglobin (Arthurs & Boniface, 2002; Hillman, 2014; 

Keller et al., 2013). Contrary to oxygenated hemoglobin, deoxygenated hemoglobin is 

paramagnetic and has the ability to distort surrounding magnetic field (Pauling & Coryell, 

1936). Due to the difference of magnetic susceptibility between oxygenated hemoglobin 

and deoxygenated hemoglobin, the BOLD signal changes relying on the hemodynamic 

response in a brain region.    

 Brain functions can be quantified via task-based fMRI studies that uses relative 

changes from baseline in BOLD signal during a task to infer the activation of certain 

areas(Lee, Smyser, & Shimony, 2013). Task-based fMRI was used to study costly 

punishment (SPP and TPP): to reveal the neural underpinnings regarding third-party 

decision-making related to criminal responsibility and punishment (Buckholtz et al., 2008); 

to study the social norm enforcement by unaffected third parties (Zhong, Chark, Hsu, & 

Chew, 2016); to investigate the neural signatures regarding the modulations of 

responsibility on altruistic punishment (C. Feng et al., 2016); to study self-related and 
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fairness-related neural mechanism by UG (Corradi-Dell’Acqua, Civai, Rumiati, & Fink, 

2013); to investigate the neural basics of economic decision-making on UG (Sanfey, 

Rilling, Aronson, Nystrom, & Cohen, 2003), to reveal the abnormal brain responses to 

social fairness in depression by fMRI study in UG (Gradin et al., 2015). 

Resting-state functional magnetic resonance imaging  (RS-fMRI) is a powerful tool 

to examine task-independent brain activity, making an assessment for brain regions which 

may not be involved in the task (Khadka et al., 2013; Oathes, Patenaude, Schatzberg, & 

Etkin, 2015). This method allows intrinsic functional activity and connectivity of brain 

circuits— consistently, and reliably, yielding large sample sizes and good compliance in 

adolescents, enabling developmental studies using a single imaging dataset— to be 

examined across various brain networks and regions (Oathes et al., 2015). RS-fMRI can 

be acquired quickly (5-10 mins). During RS-fMRI experiment, individuals lie in the 

scanner, close their eyes, thinking nothing without falling asleep (M. P. van den Heuvel & 

Hulshoff Pol, 2010).  

Coherent low-frequency (0.01-0.1 Hz) BOLD fluctuations in distant grey matter 

regions represent RS-fMRI, integrating the brain function (Biswal, Zerrin Yetkin, 

Haughton, & Hyde, 1995; Finn et al., 2015). Using different subjects, different methods, 

and different MR acquisition techniques (such as vendor, field strengths) and different 

analysis techniques (such as seed methods, independent component analysis, clustering), 

researches get consistently results for functional related RS brain networks (Beckmann, 

DeLuca, Devlin, & Smith, 2005; Biswal, Yetkin, Haughton, & Hyde, 1995; Damoiseaux 
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et al., 2006; De Luca, Beckmann, De Stefano, Matthews, & Smith, 2006; M. van den 

Heuvel, Mandl, & Pol, 2008; Salvador et al., 2005). 

RS-fMRI can be measure by different methods: model-dependent methods (i.e., 

seed method) and model-free methods (e.g., independent component analysis; ICA) (D. 

Cordes et al., 2000; Fransson, 2005; (Beckmann, DeLuca, Devlin, & Smith, 2005; 

Calhoun, Adali, Pearlson, & Pekar, 2001).  Through those methods, several functionally 

linked sub-networks have been identified (Beckmann, DeLuca, Devlin, & Smith, 2005; 

Damoiseaux et al., 2006), including SAN, DMN, and CEN (Figure 3). They are also stable 

and consistent networks activated by a broad spectrum of task-based studies (Kelly, 

Biswal, Craddock, Castellanos, & Milham, 2012). Recent research has indicated that RSFC 

reflects an individual’s neural fingerprint regarding personality traits, social preferences, 

and prosocial behaviors (Bellucci, Hahn, Deshpande, & Krueger, 2019; Nash, Gianotti, & 

Knoch, 2015; Nash et al., 2015); However, RSFC has not been applied for identifying core 

networks of costly punishment.  

  
 
 



8 
 

 

Figure 3. Resting-State Brain Networks. 

Several resting-state brain networks have been identified—central-executive network (blue), salience network (yellow). 

and default- mode network (red), which are stable across time and strikingly like the networks activated by a broad 

spectrum of task-based neuroimaging studies (Figure taken form Menon, 2011). 

 
 
 
1.5 Machine Learning and Prediction-Analytics Framework 

Machine learning by multivariate prediction analysis (MVPA) (i.e., prediction-analytics 

framework) is used to train training set to build a model regarding costly punishment 

measured by RSFC (Craddock, Holtzheimer, Hu, & Mayberg, 2009; Gordon, Devaney, 

Bean, & Vaidya, 2015; Kelly et al., 2012). The predictive model is implemented in a 
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separated testing set to predict costly punishment. Model is estimated through comparing 

the result of predictions to true costly punishment. This model is able to use feature 

selection to extract useful information and reduce the input variables to the most relevant 

variables. MVPA has been used to fMRI and RSFC data (Wang, Han, He, Liu, & Bi, 2012; 

Wu, Li, Yuan, & Tian, 2016). The significance of an entire RSFC pattern can be evaluated 

by MVPA (Parisi et al., 2014; Richiardi, Achard, Bunke, & Ville, 2013).  

Previous studies have shown that MVPA has been used to make predictions 

(D’Amico et al., 1995; de Blacam et al., 2012; Demers et al., 1992). It can identify RSFC 

neuromarkers for disorders such as Alzheimer's disease in non-demented at risk patients 

(Teipel et al., 2007), schizophrenia (Radua et al., 2010; H. Shen, Wang, Liu, & Hu, 2010), 

and autism (Anderson et al., 2011) but also for age (Dosenbach et al., 2010), personality 

traits (Hahn, Buttaccio, Hahn, & Lee, 2015), and prosocial behavior (trust). However, it 

has not been used to predict individual variation in SPP behavior. 

 

1.6 Study Aims and Hypotheses 

Although RSFC is an appealing substitute for the task-based fMRI approach to characterize 

neurodiversity (Bellucci, Hahn, Deshpande, & Krueger, 2018; DE Gabrieli, Ghosh, & 

Whitfield-Gabrieli, 2015), no study so far has used RSFC to predict individual variations 

in SPP behavior. The goal of this study was to combine a SPP game with RS-fMRI and a 

prediction framework using MVPA to investigate whether individual differences in SPP 

can be predicted based on RSFC. First, we hypothesized SPP behavior increases with more 

unfair offers and second parties punish more than third parties, because punisment is driven 
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by blame, integrating harm of second parties and intent of third parties. Second parties 

foucus more on harm while third parties focus more on intent. Further, we hypothesized 

that individual variations in average SPP behavior can be predicted by RSFC in CEN, 

because it is the key network in determining the punishment decision (Bellucci et al., 2017; 

Bressler & Menon, 2010; Buckholtz et al., 2008, 2015; Krueger & Hoffman, 2016; 

Krueger, Hoffman, Walter, & Grafman, 2014).   
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2. MATERIAL AND METHODS 

2.1 Participants 

In this study, 52 healthy participants (28 females, 24 males, age in years: Mean = 23.52, 

Standard Deviation = 3.17) recruited from the University of Mannheim or the University 

of Heidelberg in Germany took part in this study. The study followed the ethical guidelines 

and principles of the Declaration of Helsinki; it was approved by the local ethics 

committee. All participants gained 35€ for their participation and were informed that the 

earned monetary units (MUs) during the economic exchange game will be converted into 

real money (maximum of 10€) and paid on top at the end of the experiment.  

 

2.2 Experimental Game Paradigms 

Participants played three different one-shot exchange games: dictator game (DG), SPP 

game, and TPP game (Strobel et al., 2011).  In the DG (i.e., control game), participants 

played the role of proposers (i.e., dictators) who were given 12 MU to share with receivers 

who had to accept this offer. Next, participants played either the SPP game and TPP game 

in a counter balanced manner.  

In the SPP game, both proposers and receivers were endowed with 6 MUs and 

proposers were given extra 12 MUs to share with receivers (Figure 4). Participants played 

as responders and were asked to decide whether to punish the proposers based on seven 

randomly received offers ranging from fair to unfair (6:6; 7:5; 8:4; 9:3; 10:2; 11:1; 12:0). 

For a fair offer, when proposers give 6 MUs to receivers, they will usually not be punished 
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by receivers. However, for an unfair offer, for example, when proposers keep all the money 

(i.e., unfair offer: 12:0), receivers can use their 6 MUs to punish proposers. Each MU spent 

for punishment reduces the total amount of proposers by a factor of 3 MUs (Baumgartner 

et al., 2012). If receivers, for example, use their 6 MUs to punish, proposers’ total amount 

of 18 MUs (6 MUs initial endowment plus 12 MUs kept) will be reduced by 18 MUs (3 x 

6 MUs), which leaves both proposers and receivers with 0 MUs and the end of the 

economic exchange (Strobel et al., 2011). 

 
 
 

 

Figure 4. Description of Second-Party Punishment Game. 

In the second-party punishment game, proposers and responders were endowed with 6 monetary units (MUs, black color) 

and proposers was given extra 12 MUs to share with responders (unfair offer, red; fair offer green), and responders had 

the chance to punish proposers; each MU spent for punishment reduces the total amount of proposers by a factor of 3 

MUs.  

 
 
 



13 
 

The TPP game served as another control game: an observer (third-party) was added 

in comparison to the SPP game. In this game, proposers and observers (i.e., third-parties) 

were endowed with 6 MUs (Figure 5). Participants played as third parties and were asked 

to decide whether to punish the proposers based on seven randomly received offers ranging 

from fair to unfair (6:6; 7:5; 8:4; 9:3; 10:2; 11:1; 12:0). Proposers were asked to share their 

extra given 12 MUs to share with receivers. In this context, receivers have to accept the 

offers but the unaffected third-parties had the opportunity to punish the proposer at their 

own expenses. For a fair offer, when proposers give 6 MUs to receivers, third parties will 

usually not punish proposers. However, for an unfair offer, for example, when proposers 

keep all the money (i.e., unfair offer: 12:0), third parties can use their 6 MUs to punish 

proposers. Each MU spent for punishment reduces the total amount of proposers by a factor 

of 3 MUs (Baumgartner et al., 2012). If third parties, for example, use their 6 MUs to 

punish, proposers’ total amount of 18 MUs (6 MUs initial endowment plus 12 MUs kept) 

will be reduced by 18 MUs (3 x 6 MUs), which leaves all of them (proposers, receivers 

and third parties) with 0 MUs and the end of the economic exchange (Strobel et al., 2011). 
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Figure 5. Description of Third-Party Punishment Game. 

In the third-party punishment game, proposers and responders were endowed with 6 monetary units (MUs, black color). 

Proposers was given extra 12 Mus to share with receivers who can only accept the offer (unfair offer, red; fair offer, 

green). Third-party witnessed the offer and had the chance to punish proposers; each MU spent for punishment reduces 

the total amount of proposers by a factor of 3 MUs. 

 
 
 
2.3 Procedure 

The study consisted of two parts: first, participants were asked to complete the economic 

games and a demographic survey using the Qualtrics online platform 

(https://www.qualtrics.com) and second, participants completed a structural MRI and a 

RS-fMRI scan, each lasting about 10 minutes. 
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2.4 Analysis of Behavioral Data  

The software package SPSS 24.0 (IBM Corp, 2016) was used to analyze the behavioral 

data. Alpha was set to p <0.05 (two tailed) for all statistical analysis. First, the means and 

standard errors of mean were calculated for the average punishment and across all levels 

of offers (6:6, 7:5, 8:4, 9:3, 10:2, 11:1, 12:0). Second, a repeated measures 7 Offer (6:6, 

7:5, 8:4, 9:3, 10:2, 11:1, 12:0) x 2 Type (SPP vs. TPP) analysis of variance (ANOVAS) on 

costly punishment behaviors was calculated with Offer and Type as within-subjects factors. 

Third, a one-way ANOVA on SPP behavior with Offer (6:6, 7:5, 8:4, 9:3, 10:2, 11:1, 12:0) 

as a within-subjects factor was performed to determine the slope of punishment from the 

most fair offer (i.e., 6:6) to the most unfair offer (i.e., 12:0). Finally, a paired-samples t test 

was computed to compare the average punishment behaviors between SPP and TPP. 

 

2.5 Acquisition of MRI Data 

A Siemens TRIO-3T MRI scanner (Siemens Medical Systems, Erlangen, Germany) with 

a 32-channel head coil were used to collect the neuroimaging data. First, to collect a high 

resolution anatomical scan of the entire brain for each participant, a T1-weighted 3D 

magnetization prepared rapid acquisition was utilized with gradient echo (MP-RAGE) 

sequence: time of repetition (TR), 2300 ms; TE, 3.03 ms; flip angle, 9°; number of slices, 

192; field of view (FOV), 256 mm; matrix size, 256 x 256; voxel size, 1 x 1 x 1 mm was 

utilized. Second, to measure the BOLD signal for functional images a T2-weighted 

gradient EPI was measured with the following parameters: TR, 2000 ms; TE, 30ms; flip 

angle, 80°; thickness, 3mm; number of slices, 36; FOV, 192 mm; matrix size, 64 x 64 mm; 
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voxel size, 3 x 3 x 3 mm. The first five scans of the EPI were discarded to minimize T1 

effects. 

 

2.6 Analysis of Neuroimaging Data 

MRI Data Preprocessing. The Statistical Parametric Mapping toolbox (SPM 12, 

Wellcome Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/ 

spm/software/spm12/) running on Matlab R2018a (Mathworks Inc., Natick, MA, USA) 

was used to preprocess the MRI data. The following preprocessing steps for the EPI time 

series were applied: For signal improvement, the first ten volumes of functional images 

were initially discarded, and the functional images were bias-corrected for field 

inhomogeneity. Spatial realignment was used to correct for head movement and slice time 

correction for acquisition delay. Participants’ individual functional images were co-

registered to their anatomical images and both anatomical images and functional images 

were spatially normalized to the MNI template (resample voxel size: 2 × 2 × 2 mm3). 

Finally, an isotropic Gaussian filter of 4 x 4 x 4 mm3 with a full-width at half of maximum 

(FWHM) were used to smooth normalized images.  

The ART toolbox (ART, https://www.nitrc. org/projects/artifact_detect/) was used 

to detect and reject artifacts in the time series of functional images based on the those 

criteria: (1) head displacement in x, y, or z-direction greater than 2 mm from the previous 

frames; (2) rotational displacement greater than 0.02 radians from the previous frame, and 

(3) global mean intensity in the functional images greater than 3 standard deviations 

compared with mean image intensity during the entire resting-state scanning. Finally, high-
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frequency noise and linear drift artifacts were removed using the band-pass filter (0.01-0.1 

Hz) (Bellucci et al., 2017). 

 

Resting-State Functional Connectivity. The computation of RSFC was based on 142 

regions of interest (ROIs; nodes) taken from the Dosenbach’s atlas (Dosenbach et al., 2010) 

(Figure 6). Those ROIs (each 10-mm sphere) can be divided into five pre-defined RSFC 

networks (cingulo-opercular network (CON, also known as SAN), sensorimotor network 

(SMN), default-mode network (DMN), frontoparietal network (FPN, also known as CEN) 

and occipital network (OccN).  

 
 
 

 

 

Figure 6. Resting-state Functional Connectivity Networks based on Dosenbach's Atlas.  

Dosenbach’s Atlas consisting of five resting-state functional connectivity networks shown in different colors: 

sensorimotor network (yellow), and occipital network (purple), cingulo-opercular network (red), default 

mode network (green), frontoparietal network (blue) (Adjusted from Bellucci et al., 2017).  
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The RSFC was based on a bivariate Pearson’s correlation between the average 

BOLD signals of each ROI using the Functional Connectivity toolbox (CONN)  

(https://www. nitrc.org/projects/conn). Regressors of no interest were added in the first- 

level general linear model, including six head motion parameters (three translations and 

three rotations along x, y, and z- axes), outliers derived from the ART toolbox, white matter 

and cerebrospinal fluid signal, to remove potential sources of confounds. The Pearson’s 

correlation co-efficient obtained for each ROI-to-ROI connection (edge) were converted 

to Fisher’s z values to indicate the degree of ROI-to-ROI connectivity. As a result, an 

correlation matrix of 10,082 connections for each participant was created and used in the 

subsequent multivariate regression analyses. 

 

Prediction-Analytics Framework. A support vector machine algorithm (SVM), using the 

sci-kit-learn toolbox (https://scikit-learn.org/stable/) in Python (https://www.python.org/), 

was employed to predict individual variations in SPP behavior based on RSFC. A total of 

15 prediction models were employed: five intra-network specific models (CON-CON, 

SMN-SMN, FPN-FPN, DMN-DMN, OccN-OccN) and ten inter-network models (DMN-

FPN, CON-FPN, OccN-SMN, DMN-OccN, CON-OccN, CON-DMN, FPN-OccN, FPN-

SMN, DMN-SMN, CON-SMN).  

A leave-one-subject-out cross-validation (LOSOCV) approach was applied for 

each prediction model. For each iteration, a training set was trained by the SVM algorithm 

—except one of the participants (testing set) was left out and was not trained by the 
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algorithm. A feature selection approach was applied for the training set due to the high-

dimensionality of the features (ROI-to-ROI FCs coefficients, n=10,082), where only 5% 

of the strongest correlations between the features and the targets (i.e., SPP behavior) were 

kept as the most relevant features. Those features were trained by the algorithm and the 

features from the left-out subject was used to test the model performance. Iteration was 

repeated 52 times (i.e., number of participants). Hence, 52 models were generated, yielding 

each time a behavioral prediction for each participant. 

To assess performance of a model’s prediction, the standardized mean squared error 

(SMSE. i.e., the error of the algorithm’s performance divided by the targets’ variance) was 

computed. To assess the significance of the prediction, a permutation test of 1,000 

permutations was utilized. In every permutation, each cross-validated model was run with 

randomly permuted targets, and the number of permutations with better performance (i.e., 

lower SMSE) than the one with the true targets was calculated (i.e., nperm). The p-value was 

computed by dividing this number by the total number of permutations, i.e., p = (1 + 

nperm)/(1 + 1,000) (Bellucci et al., 2018). 

 

Network Ranking Procedure. After applying paired-samples t tests (i.e., comparing the 

distributions between the original and permutation-based prediction errors for each of the 

networks), a 15*15 p-value matrix was generated to compare the regression model 

performance between the 15 networks (i.e., five intra-networks and ten inter-between 

networks). A significant p-value indicated whether the prediction error for one network is 

significantly greater than that for another one. This p values indicates how significantly 
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one network predicts costly punishment behavior (i.e., target variable) compared to other 

networks. Hence, all p-values can be used to rank networks and the highest-ranking 

network is the best network to predict SPP behavior.  
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3. RESULTS 

3.1 Behavioral Results for Second-Party Punishment Behavior 

For each punishment type (TPP, SPP), the means and standard errors of mean for the 

average punishments across offers as well as for each offer are displayed in Figure 7. The 

ANOVA revealed significant main factor effects for Offer (F(6,306)=4.71, p<0.035) and 

Type (F(1,51)=30.44, p<0.001), but no significant Offer x Type interaction effect 

(F(6,306)=0.65, p=0.648). Punishment behavior increased linearly from the most fair offer 

(i.e., 6:6) to the most unfair offer (i.e., 12:0) (F(1,51)=26.24, p<0.001) and average SPP 

behavior was greater compared to TPP behavior (t(51)=2.17, p<0.035). 

 
 
 

 

Figure 7. Behavioral Results for Costly Punishment Behavior. 

Costly punishment behavior (mean ± standard error of mean) increased linearly from 6:6 (fair) over 7:5, 8:4, 9:3 10:2, 

11:1 to 12:0 (most unfair) offer. The average of second-party punishment was higher than the average of third-party 

punishment (*p<0.05). 
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3.2 Neuroimaging Results for Second-Party Punishment Behavior 

Multivariate Prediction Analyses. A SVM machine learning algorithm was implemented 

to predict participants’ SPP behavior based on RSFC of 15 networks (i.e., five inter-

networks and ten inter-networks) (Dosenbach et al., 2010). The performances of the 10 

cross-validated network models were significantly better than chance for predicting the 

average SPP behavior: DMN-FPN (SMSE=0.87, p<0.001), FPN-FPN (SMSE=0.87, 

p<0.001), CON-DMN (SMSE=0.94, p<0.001), FPN-OccN (SMSE=0.94, p<0.002), FPN-

SMN (SMSE=0.95, p<0.01), OccN-OccN (SMSE=0.97, p<0.05), DMN-DMN 

(SMSE=0.92, p<0.05), DMN-SMN (SMSE=0.95, p<0.001), SMN-SMN (SMSE=0.91, 

p<0.001), CON-SMN (SMSE=0.92, p<0.001) (Figure 8). 
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Figure 8. Results of Permutation Test for Second-Party Punishment Behavior.  

The significance of performance (i.e., standard mean square error, SMSE, red dot line) are shown for the 15 cross-

validated prediction models (five intra-networks and ten inter-networks) based on the permutation approach.  
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Ranking Network Procedure. After comparing the regression model performances, the 

15*15 p-value matrix (i.e., distributions between the original and permutation-based 

prediction errors for each network) between the 15 networks (i.e., five intra-networks and 

ten inter-between networks) was computed (Table 1). 

 
 
 
Table 1. P-Value Matrix for Ranking Performance of Models. 
Numbers in this table are the p-value of the network pairs. The lower the p-value is, the better the network pair is. 

  
CON, cingulo-opercular network; SMN, sensorimotor network; DMN, default mode network; FPN, frontoparietal 

network; OccN, occipital network. 

 
 
 
The FPN-FPN network rank the highest in network ranking procedure, indicating that 

FPN (overlapping with CEN) predicted the average SPP behavior better than the other 

network pairs (Figure 9). 
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Figure 9. Resting -State Functional Connectivity Predicting Second-Party Punishment. 

Resting-state functional connectivities (edges) between regions of interests (ROIs, nodes, shown in orange) of the 

frontoparietal network shown in sagittal view (A), axial view (B), and coronal view (C) predicted best the average second-

party punishment behavior. The labels for ROIs (displayed as numbers) are given in Table S1 in Appendix. 
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4. DISCUSSION 

Costly punishment, which means humans have the tendency to punish the violators of 

social norms at their own costs, plays a significant role in human life (Baumgartner, Götte, 

Gügler, & Fehr, 2012). In this study, we combined a SPP game with RS-fMRI and a 

prediction-analytics framework using MVPA to investigate whether individual differences 

in SPP can be predicted based on RSFC. At the behavioral level, the results showed that 

SPP increase with the degree of unfairness. SPP is higher than TPP. At the neuroimaging 

level, the findings demonstrated that individual variation of SPP behavior was predicted 

by RSFC in CEN (also known as FPN). 

Our behavioral hypothesis was confirmed, showing that the more unfair the offer 

was, the higher was the SPP behavior. Previous research has shown that SPP is influenced 

by both intentions (of proposer) and outcome (for responder) (Gummerum & Chu, 2014; 

Krueger & Hoffman, 2016). SPP behavior was higher than for TPP behavior, because 

punishment is driven by blame, integrating intention of proposer and harm of receiver (F. 

X. Shen, Hoffman, Jones, & Greene, 2011). Second-parties blame more because they were 

more affected by the unfair offers; however, third-parties blame less since they were partial 

observer and not personally affected by those offers. Therefore, they rely their punishment 

decisions more on the intention of the proposer (Gummerum & Chu, 2014; Krueger & 

Hoffman, 2016). 

Our neuroimaging hypothesis —the CEN is the most important network for 

predicting SPP behavior— was confirmed. SPP behavior engages three interacting large-
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scale networks. The SAN— associated with aversive self-related emotional experiences 

that guide behavior— includes the dorsal anterior cingulate cortex (dACC) (detection of 

social norm violation), the anterior insula (AI) (generation of an aversive experience), and 

the amygdala  (Amyg) (provides an emotional signal coding for the severity of harm, i.e., 

unfairness of the offer) (Bressler & Menon, 2010; Krueger & Hoffman, 2016).  

The DMN —associated with social cognition, mentalizing, and theory of mind— 

is anchored in medial prefrontal cortex (mPFC) (Premack & Woodruff, 1978). This 

network integrated harm [via the ventromedial prefrontal cortex (vmPFC) connected to 

SAN] and the intent of the proposer [via the dorsomedial prefrontal cortex (dmPFC), 

including posterior cingulate cortex (PCC) for self-referential and temporo-parietal 

junction (TPJ) for intentions, beliefs or desires in others] into assessment of blame through 

the medial prefrontal cortex (mPFC) (P. Feng, Zheng, & Feng, 2016; Krueger & Hoffman, 

2016).  

The CEN —associated with higher-order cognition and decision making— 

converts the blame signal from the DMN into an actual decision, posterior parietal cortex 

(PPC)  constructing a scale of punishment for dorsolateral prefrontal cortex (dlPFC) to 

select punishment that fits the norm violation  (Bellucci et al., 2017; Bressler & Menon, 

2010; Buckholtz et al., 2008, 2015; Krueger & Hoffman, 2016; Krueger, Hoffman, Walter, 

& Grafman, 2014).  

Our findings confirm previous evidence that CEN —well understood in context-

dependent assessments needed for higher-order cognition and decision making— plays a 

significant role in determining SPP behavior. In particular, when CEN converts the blame 
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signal into an actual punishment decision, it constructs a scale of punishment (PPC) and 

then selects a specific punishment within that scale (dlPFC) (Krueger & Hoffman, 2016). 

The results of this study confirm a key role of PPC and dlPFC in SPP behavior. On 

the one hand, the PCC as part of the parietal cortex plays a key role in various cognitive 

functions, including attention, response selection, and quantitative numerical comparisons 

which may hint at a role for this area in constructing a punishment scale (Buckholtz et al., 

2008). On the other hand, the dlPFC as part of the frontal cortex is involved in executive 

functions, i.e., an umbrella term for the management of cognitive processes such as 

working memory, cognitive flexibility, and planning). Hence, a key role of this region is 

to decide whether to punish or not based on an assessment of blame based on harm and 

intent. Previous research has shown that  parietal and prefrontal activity is modulated by a 

punishment-related decision process, and especially activity in right dlPFC is higher when 

people decided to punish compared when not to punish (Buckholtz et al., 2008).  

Although the novelty of our findings, several limitations exist in this study that need 

to be acknowledged. First, larger study samples are necessary for future studies to 

investigate SPP behavior based on RSFC, increasing the accuracy and lowering the error 

and variance of prediction. Additionally, costly punishment was measured in a single time 

point. Future studies should investigate SPP behavior in different time points to get a 

consistent result. Despite these limitations, this study extends the current knowledge about 

the underlying pinning of SPP behavior. 

 In summary, the study showed higher SPP behavior with increasing unfairness of 

offers. Further, the study indicated that average SPP behavior can be predicted through FC 
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among regions within CEN, the key network in determining the appropriate punishment 

behavior. The task-free fMRI approach in combination with a prediction-analytics 

framework confirms previous task-based fMRI findings— providing a comprehensive 

picture regarding SPP behavior.  

In conclusion, this study helps to expand the knowledge about the underlying neural 

signatures of SPP behavior human to maintain the social norms and know the reason why 

humans are willing to punish the violators of social norms at their personal costs. 

Additionally, this study also provides a method to investigate people with brain disorder 

since it does not require objectives to understand the instruction.  
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APPENDIX 

Table S1. Region of Interests Defined by Dosenbach’s Atlas. 
Characteristics (i.e., coordinates, hemisphere, label, and network) for each region of interest (ROI) of the Dosenbach’ 
Atlas are shown.  

  Coordinates         

Label x y z Hemisphere  Abbreviation Region of Interest Network 

1 6 64 3 right VMPFC ventromedial prefrontal cortex default mode netwotk 

2 29 57 18 right aPFC anterior prefrontal cortex fronto-parietal network 

3 -29 57 10 left aPFC anterior prefrontal cortex fronto-parietal network 

4 0 51 32 - mPFC medial prefrontal cortex default mode netwotk 

5 -25 51 27 left aPFC anterior prefrontal cortex default mode netwotk 

6 9 51 16 right VMPFC ventromedial prefrontal cortex default mode netwotk 

7 -6 50 -1 left VMPFC ventromedial prefrontal cortex default mode netwotk 

8 27 49 26 right aPFC anterior prefrontal cortex cingulo-opercular network 

9 42 48 -3 right vent-aPFC 
ventral anterior prefrontal 

cortex fronto-parietal network 

10 -43 47 2 left vent-PFC ventral prefrontal cortex fronto-parietal network 

11 -11 45 17 left VMPFC ventromedial prefrontal cortex default mode netwotk 

12 39 42 16 right VLPFC 
ventral lateral prefrontal 

cortex fronto-parietal network 

13 8 42 -5 right VMPFC ventromedial prefrontal cortex default mode netwotk 

14 9 39 20 right ACC anterior cingulate cortex default mode netwotk 

15 46 39 -15 right VLPFC 
ventral lateral prefrontal 

cortex default mode netwotk 

16 40 36 29 right DLPFC dorsolateral prefrontal cortex fronto-parietal network 

17 23 33 47 right sup-front superior frontal gyrus default mode netwotk 

18 34 32 7 right VPFC ventral prefrontal cortex cingulo-opercular network 

19 -2 30 27 left ACC anterior cingulate cortex cingulo-opercular network 

20 -16 29 54 left sup-front superior frontal gyrus default mode netwotk 

21 -1 28 40 left ACC anterior cingulate cortex fronto-parietal network 

22 46 28 31 right DLPFC dorsolateral prefrontal cortex fronto-parietal network 

23 -52 28 17 left VPFC ventral prefrontal cortex fronto-parietal network 

24 -44 27 33 left DLPFC dorsolateral prefrontal cortex fronto-parietal network 

25 51 23 8 right vFC ventral frontal cortex cingulo-opercular network 
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26 38 21 -1 right AI anterior insula cingulo-opercular network 

27 9 20 34 right dACC dorsal anterior cingulate cortex cingulo-opercular network 

28 -36 18 2 left AI anterior insula cingulo-opercular network 

29 40 17 40 right dFC dorsal prefrontal cortex fronto-parietal network 

30 -6 17 34 left basal-ganglia basal ganglia cingulo-opercular network 

31 0 15 45 - mPFC medial prefrontal cortex cingulo-opercular network 

32 58 11 14 right frontal frontal lobe sensorimotor network 

33 -46 10 14 left vFC ventral frontal cortex cingulo-opercular network 

34 44 8 34 right dFC dorsal prefrontal cortex fronto-parietal network 

35 60 8 34 right dFC dorsal prefrontal cortex sensorimotor network 

36 -42 7 36 left dFC dorsal prefrontal cortex fronto-parietal network 

37 -55 7 23 left vFC ventral frontal cortex sensorimotor network 

38 -20 6 7 left basal-ganglia basal ganglia cingulo-opercular network 

39 14 6 7 right basal-ganglia basal ganglia cingulo-opercular network 

40 -48 6 1 left vFC ventral frontal cortex cingulo-opercular network 

41 10 5 51 right pre-SMA pre-supplementary motor area sensorimotor network 

42 43 1 12 right vFC ventral frontal cortex sensorimotor network 

43 0 -1 52 - SMA supplementary motor area sensorimotor network 

44 37 -2 -3 right mid-insula middle insula cingulo-opercular network 

45 53 -3 32 right frontal frontal lobe sensorimotor network 

46 58 -3 17 right PreCG precentral gyrus sensorimotor network 

47 -12 -3 13 left thalamus thalamus cingulo-opercular network 

48 -42 -3 11 left mid-insula middle insula sensorimotor network 

49 -44 -6 49 left PreCG precentral gyrus sensorimotor network 

50 -26 -8 54 left parietal parietal lobe sensorimotor network 

51 46 -8 24 right PreCG precentral gyrus sensorimotor network 

52 -54 -9 23 left PreCG precentral gyrus sensorimotor network 

53 44 -11 38 right PreCG precentral gyrus sensorimotor network 

54 -47 -12 36 left parietal parietal lobe sensorimotor network 

55 33 -12 16 right mid-insula middle insula sensorimotor network 

56 -36 -12 15 left mid-insula middle insula sensorimotor network 

57 -12 -12 6 left thalamus thalamus cingulo-opercular network 

58 11 -12 6 right thalamus thalamus cingulo-opercular network 

59 32 -12 2 right mid-insula middle insula cingulo-opercular network 

60 59 -13 8 right temporal temporal lobe sensorimotor network 



32 
 

61 -30 -14 1 left mid-insula middle insula cingulo-opercular network 

62 -38 -15 59 left parietal parietal lobe sensorimotor network 

63 52 -15 -13 right IT inferior temporal gyrus default mode netwotk 

64 -47 -18 50 left parietal parietal lobe sensorimotor network 

65 46 -20 45 right parietal parietal lobe sensorimotor network 

66 -55 -22 38 left parietal parietal lobe sensorimotor network 

67 -54 -22 22 left PreCG precentral gyrus sensorimotor network 

68 -54 -22 9 left temporal temporal lobe sensorimotor network 

69 41 -23 55 right parietal parietal lobe sensorimotor network 

70 42 -24 17 right post-insula posterior insula sensorimotor network 

71 11 -24 2 right basal-ganglia basal ganglia cingulo-opercular network 

72 -59 -25 -15 left IT inferior temporal gyrus default mode netwotk 

73 1 -26 31 right PC precuneus default mode netwotk 

74 18 -27 62 right parietal parietal lobe sensorimotor network 

75 -38 -27 60 left parietal parietal lobe sensorimotor network 

76 -30 -28 9 left post-insula posterior insula cingulo-opercular network 

77 -24 -30 64 left parietal parietal lobe sensorimotor network 

78 51 -30 5 right temporal temporal lobe cingulo-opercular network 

79 -41 -31 48 left post-parietal posterior parietal cortex sensorimotor network 

80 -4 -31 -4 left PC precuneus cingulo-opercular network 

81 54 -31 -18 right fusiform fusiform gyrus cingulo-opercular network 

82 -41 -37 16 left temporal temporal lobe sensorimotor network 

83 -53 -37 13 left temporal temporal lobe sensorimotor network 

84 28 -37 -15 right fusiform fusiform gyrus default mode netwotk 

85 -3 -38 45 left PreC  precuneus cortex default mode netwotk 

86 34 -39 65 right SPL superior parietal lobule sensorimotor network 

87 8 -40 50 right PreC  precuneus cortex cingulo-opercular network 

88 -41 -40 42 left IPL inferior parietal lobe fronto-parietal network 

89 58 -41 20 right parietal parietal lobe cingulo-opercular network 

90 -8 -41 3 left PC precuneus default mode netwotk 

91 -61 -41 -2 left IT inferior temporal gyrus default mode netwotk 

92 -28 -42 -11 left Occ occipital lobe default mode netwotk 

93 -5 -43 25 left PC precuneus default mode netwotk 

94 9 -43 25 right PreC  precuneus cortex default mode netwotk 

95 43 -43 8 right temporal temporal lobe cingulo-opercular network 
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96 54 -44 43 right IPL inferior parietal lobe fronto-parietal network 

97 -55 -44 30 left parietal parietal lobe cingulo-opercular network 

98 -35 -46 48 left post-parietal posterior parietal cortex fronto-parietal network 

99 42 -46 21 right ST superior temporal gyrus cingulo-opercular network 

100 -48 -47 49 left IPL inferior parietal lobe fronto-parietal network 

101 -41 -47 29 left AG angular gyrus cingulo-opercular network 

102 -59 -47 11 left temporal temporal lobe cingulo-opercular network 

103 -53 -50 39 left IPL inferior parietal lobe fronto-parietal network 

104 5 -50 33 right PreC  precuneus cortex default mode netwotk 

105 -18 -50 1 left Occ occipital lobe occipital network 

106 44 -52 47 right IPL inferior parietal lobe fronto-parietal network 

107 -5 -52 17 left PC precuneus default mode netwotk 

108 10 -55 17 right PC precuneus default mode netwotk 

109 -6 -56 29 left PreC  precuneus cortex default mode netwotk 

110 -32 -58 46 left IPS intra−parietal sulcus fronto-parietal network 

111 -11 -58 17 left PC precuneus default mode netwotk 

112 32 -59 41 right IPS intra−parietal sulcus fronto-parietal network 

113 51 -59 34 right AG angular gyrus default mode netwotk 

114 -34 -60 -5 left Occ occipital lobe occipital network 

115 36 -60 -8 right Occ occipital lobe occipital network 

116 46 -62 5 right temporal temporal lobe occipital network 

117 -48 -63 35 left AG angular gyrus default mode netwotk 

118 -52 -63 15 left TPJ temporoparietal junction cingulo-opercular network 

119 -44 -63 -7 left Occ occipital lobe occipital network 

120 19 -66 -1 right Occ occipital lobe occipital network 

121 11 -68 42 right PreC  precuneus cortex default mode netwotk 

122 17 -68 20 right Occ occipital lobe occipital network 

123 -36 -69 40 left IPS intra−parietal sulcus default mode netwotk 

124 39 -71 13 right Occ occipital lobe occipital network 

125 -9 -72 41 left Occ occipital lobe default mode netwotk 

126 45 -72 29 right Occ occipital lobe default mode netwotk 

127 29 -73 29 right Occ occipital lobe occipital network 

128 -2 -75 32 left Occ occipital lobe default mode netwotk 

129 -29 -75 28 left Occ occipital lobe occipital network 

130 -16 -76 33 left Occ occipital lobe occipital network 
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131 -42 -76 26 left Occ occipital lobe default mode netwotk 

132 9 -76 14 right Occ occipital lobe occipital network 

133 15 -77 32 right Occ occipital lobe occipital network 

134 20 -78 -2 right Occ occipital lobe occipital network 

135 -5 -80 9 left postOcc posterior occipital lobe occipital network 

136 29 -81 14 right postOcc posterior occipital lobe occipital network 

137 33 -81 -2 right postOcc posterior occipital lobe occipital network 

138 -37 -83 -2 left postOcc posterior occipital lobe occipital network 

139 -29 -88 8 left postOcc posterior occipital lobe occipital network 

140 13 -91 2 right postOcc posterior occipital lobe occipital network 

141 27 -91 2 right postOcc posterior occipital lobe occipital network 

142 -4 -94 12 left postOcc posterior occipital lobe occipital network 
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