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Abstract

IMPLEMENTATION, BENCHMARKING, AND PROTECTION OF LIGHTWEIGHT
CRYPTOGRAPHY CANDIDATES

Richard Haeussler

George Mason University, 2021

Thesis Director: Dr. Kris Gaj

In August 2019, the US National Institute of Standards and Technology (NIST) an-

nounced 32 candidates for Round 2 of their Lightweight Cryptography (LWC) standard-

ization process. NIST needed to understand how each of the candidates performed in

software and hardware before making their finalist selections. George Mason University’s

Cryptographic Engineering Research Group (CERG) assisted NIST by organizing the Field-

Programmable Gate Array (FPGA) benchmarking of the Round 2 candidates. CERG de-

veloped LWC Hardware API compliant implementations for 14 of the Round 2 candidates.

This work contains a detailed breakdown of the unprotected hardware implementations of

Elephant and Xoodyak, along with figures and tables to illustrate the design choices that

were made. It also highlights several new features that CERG added to the LWC Hardware

API development package to assist in the FPGA benchmarking. An overview of CERG’s

benchmarking efforts, along with the results for Elephant and Xoodyak, are contained. From

the results, analysis was conducted to determine possible design improvements. On March

29, 2021, NIST announced both Elephant and Xoodyak as LWC finalists. Before NIST

announced finalists, Domain Oriented Masking was used to develop side-channel resistant

implementations of both Elephant and Xoodyak. The efforts from this work certainly



provide NIST with valuable information for their LWC standardization process.



Chapter 1: Introduction

Every day there are increasingly more and more miniature devices communicating with

one another in areas such as healthcare, automotive systems, and the Internet of Things

(IoT). Sensitive information transmitted by these devices requires the use of authenticated

encryption. Authenticated encryption provides a communication channel with message

integrity, confidentiality, and authenticity of the sender. Small devices operate in resource-

constrained environments requiring them to be as efficient as possible. The National Insti-

tute of Standards and Technology’s (NIST) Report on Lightweight Cryptography (LWC)

[1] states that most modern cryptographic algorithms were developed for use on desktops

and servers. Existing cryptographic standards did not account for the considerations and

limitations of running on resource-constrained devices. Therefore, NIST set out to establish

new lightweight cryptographic algorithms with the LWC call in 2017.

NIST’s LWC call aims to augment the current Authenticated Encryption with Associ-

ated Data (AEAD) standard, AES-GCM, with a lightweight algorithm. AEAD algorithms

take in a key, nonce (NPUB), associated data (AD), and plaintext (PT). With these inputs,

the AEAD produces the ciphertext (CT) and tag as outputs. The key is a shared secret

between the sender and receiver. A nonce is a random number that should only be used

once. Reuse of the same nonce value reduces the security provided by the algorithm. AD

is sent in the clear and verified unmodified because of its contribution to the tag. The

tag is used as a message authentication code to prove message integrity and the sender’s

authenticity. On the other hand, authentic decryption takes in the key, nonce, associated

data, ciphertext, and the expected tag. If the calculated tag equals the input tag, then the

message has successfully been decrypted, and the contents of the message are unmodified.

1



1.1 Motivation

Cryptographic standardization is a lengthy process. Typically the standardization is per-

formed as a contest involving multiple algorithms, also known as candidates. These candi-

date algorithms must prove their security and provide a reference software implementation.

From the algorithms and the reference software implementation, hardware designs are de-

veloped. Candidates are then be compared against one another to determine the trade-offs

that each candidate provides. For example, one candidate may process data faster but

requires more energy or is possibly less secure. The resource-constrained environment in

which the LWC candidates will operate makes the decision between trade-offs even more

critical.

Developing cryptographic candidates versus implementing them in hardware requires a

completely different skill set. Since many design teams are small, they do not include mem-

bers with hardware experience. These teams rely on the cryptographic community to create

the hardware designs to allow for comparison. George Mason University’s (GMU) Cryp-

tographic Engineering Research Group (CERG) supports the cryptographic community by

focusing on our area of expertise, hardware implementations. CERG has a long history

of supporting the cryptographic standardization process from NIST’s hashing competition

SHA-3 [2], to the Competition for Authenticated Encryption: Security, Applicability, and

Robustness (CAESAR) [3, 4] and now LWC [5, 6]. The need for lightweight cryptography

continues to grow, and the effects from this thesis have certainly aided NIST in its selection

process.

2



Chapter 2: Previous Work

2.1 CAESAR

Before NIST’s LWC call in 2012, the cryptographic community established the Competition

for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR). CAE-

SAR focused on developing cryptographic algorithms to be used in resource-constrained

environments. The CAESAR competition consisted of three rounds. As the rounds pro-

gressed, the selection committee advanced the best candidates and eliminated inferior can-

didates. Due to the reduction in the number of candidates and the later rounds being

longer, it was feasible to compare hardware implementation designs. CERG contributed

to the CAESAR competition by implementing multiple designs and establishing CAESAR

Hardware API [7]. In total, 28 of the 29 Round 2 candidates received full or partial submis-

sions. The CAESAR Committee made the hardware implementations obligatory for round

3, and as a result, 27 designs were received for the 15 Round 3 candidates [6]. The CAESAR

competition ended in 2019 with Ascon declared the winner for the use case of lightweight

applications [8].

2.2 Hardware Application Programming Interface (API)

Hardware implementations must adhere to the same API, ensuring the same set of features

to allow for comparison. CERG developed the CAESAR Hardware API [7], which was

approved by the CAESAR selection committee. To go along with the API, CERG created

the Implementer’s Guide to Hardware Implementations Compliant with CAESAR Hardware

API [9] and a VHDL-based development package for the CAESAR Hardware API [10] to aid

developers in making compliant designs. The development package provides VHDL code

for a generic PreProcessor, PostProcessor, and Header FIFO to assist implementors. The

3



development package also includes a universal testbench that can ensure that designs are

compliant and functional. Test vectors used by the testbench are generated by compiling

the reference C implementations and using a Python3 script to generate test vectors.

2.3 NIST LWC

NIST’s LWC competition began in 2017 to supplement the current encryption standard, Ad-

vanced Encryption Standard (AES), with an alternative that performs better in a resource-

constrained environment. Some of the high-level requirements NIST placed on these al-

gorithms include that all AEAD must use a key at least 128-bits in length. Additionally,

both hash and AEAD algorithms must have computational complexity of at least 2112 when

attacked by classical computers [11]. NIST also desires that algorithms be designed with

side-channel resistance in mind [11].

In April 2019, NIST selected 56 of the 57 candidate submissions for Round 1 of the stan-

dardization process [12]. Round 1 submissions included the algorithm specification along

with a C software reference implementation of the candidate. During the first round, the

cryptographic community investigated algorithms for security concerns, and the software

reference implementations were benchmarked [13]. By the start of Round 2, in August 2019,

NIST reduced the number of candidates to 32. In this round, candidates continued to be

investigated for security concerns, and reference implementations were updated as required.

In keeping with the previous competition, CERG began implementing and preparing to

benchmark the candidates in Round 2. Chapter 3 focuses on the two Round 2 submissions

developed as part of this thesis: Elephant and Xoodyak, [14, 15]. Chapter 4 highlights

contributions made to the CERG team’s efforts to benchmark Round 2 submissions. Ad-

ditionally, Chapter 4 includes an analysis of how the developed designs performed in both

the FPGA and application-specific integrated circuit (ASIC) benchmarking that occurred

during Round 2.
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2.4 Side Channel Protection

Side-channel analysis (SCA) poses a severe threat to the security of cryptographic algo-

rithms. LWC applications will be typically deployed in locations that provide little to no

physical protection to prevent attackers from accessing the device. Physical access allows

attackers to collect information about how the cryptosystem is operating via side channels.

Simple Power Analysis (SPA) and Differential Power Analysis (DPA) are two examples

of side-channel techniques that attackers use to gather information about the secret key. An

attacker performing SPA measures the power being consumed to reveal information about

what is occurring within the circuit. One limitation of the SPA attack is that it requires

a high signal-to-noise ratio to be effective. When performing a DPA attack, the goal is to

determine a small subset of the key. The attacker analyzes the device’s power consumption

and predicts possible values of the key. If the attacker incorrectly guesses the key’s value,

then when the power traces are differentially compared, the signals will mostly cancel out,

and the only thing left is the noise of the signal. However, if the attacker correctly guesses

that part of the key, a spike will occur when the signals are differentially compared.

One way to protect against SCA is using masking techniques. Masking techniques

produce side-channel leakage that is statically independent of the data being processed [16].

A basic example of masking is shown by the following equation: xm = x⊕m0⊕m1. In this

equation, the mask values m0, and m1 are used to modify the original value of x to obtain

xm. By doing this, even if the attacker were to obtain two of the three values of xm, m0,

and m1 the attacker still would not know the original value of x. In essence, the attacker

must know all of the mask shares to be able to determine the data being processed. Two

of the most commonly implemented variants of these masking techniques are Threshold

Implementations (TI) [17], and Domain-oriented Masking (DOM) [18,19].

The protected designs covered in this thesis use DOM for protection. DOM requires

d + 1 shares to achieve dth order of protection. dth order of protections implies that the

attacker can place up to d probes to gather information. Protection of linear functions

is trivial for all masking techniques because the result is independent of the other shares.

5



Non-linear functions require information from domains to cross to perform the calculation.

DOM designs protect domain crossing by adding a new random share and using registers to

prevent propagating glitches. Glitches occur in Complementary Metal Oxide Semiconductor

(CMOS) when the output signal transitions based on one part of the input signal arriving

before the other. Using a flip-flop (FF) ensures the signal is steady before propagating

further in the circuit.

Gross in [16] uses the example of a simple multiplier shown in Figure 2.1 to show how

DOM works. This example shows the two inputs x and y have both been split into random

and independent shares of each other. The multiplication produces inner-domains product

terms (x0y0, x1y1) and cross-domain terms (x0y1, x1y0). Notice in Figure 2.1 that cross-

domain terms receive extra randomness and that the output is stored in a FF to prevent

the glitches.

Figure 2.1: First-order DOM GF(2n) Multiplier

6



A verification method is required to ensure that protection requirements are achieved.

One such approach is Test Vector Leakage Assessment (TVLA) [20,21] using Welch’s t-test.

The goal behind the t-test is to determine if the data sampled from the same population is

distinguishable. If the attacker cannot determine the difference between the sets of data,

then the attacker cannot determine if the guess was correct when performing their DPA

attacks.

Equation 2.1 shows how the results of the t-test are computed. In this equation, the µ

stands for the sample mean, s for the sample variance, and n the number of samples in each

set. In [21] the author goes through the mathematical justification to state that |t| > 4.5

fails the t-test because the samples are distinguishable with confidence of 99.999%.

t =
µ0 − µ1√
s02

n0
+ s12

n1

(2.1)

7



Chapter 3: Implementations of LWC Candidates

When comparing hardware designs, it is not easy to achieve a one-to-one comparison. For

instance, one design team might report their ASICs results and while another team reports

FPGA results. There is no direct comparison between kilo-gate equivalent (kGE) and

lookup tables (LUTs), so comparing the results is challenging. Another variability that may

exist between designs is the supported features. In Why Does Hardware API Matter [22]

one example of feature mismatch given is that key scheduling and padding are performed

external to the circuit in one design and internally in another. A design that pads and

schedules the key is likely larger, slower, and uses more energy.

Even if all designers create designs for FPGAs, comparing results may still be difficult

based on the chips targeted and the resources used. One implementation may use Digital

Signal Processing (DSP) units and Block RAMs (BRAMs), while another uses only LUTs.

To allow for comparison, CERG provided FPGA design goals in [23]. Each design presented

in this work achieved the highly recommend goals of:

1. 2000 or less LUTs

2. 4000 or less FFs

3. No BRAMs or DSP units

To support comparison between designs and CERG’s FPGA benchmarking effort, all the

designs covered in this thesis are using the LWC Hardware API[24]. Figure 3.1 provides a

high-level view of the interface that the development package offers developers. Developers

implement the features of their cipher in the CryptoCore block. The CryptoCore contains

all required operations for an algorithm to perform encryption and decryption. Using the

LWC development package allows developers to leverage PreProcessor and PostProcessor

to achieve message header processing transparently.

8



Figure 3.1: Top-Level Block Diagram of LWC Core

The two LWC candidates targeted for implementation as part of this thesis were Ele-

phant and Xoodyak. Multiple variants of each algorithm were developed for both candi-

dates. Each algorithm has one variant that is a basic-iterative architecture design. Xoodyak

has an additional folded version attempting to reduce area. No unrolled variants of Xoodyak

were implemented as part of this work, but only slight modification would be required to

support it. The Elephant basic-iterative design contains several variants that change the

unrolling factor of the permutation. A more complex pipelined implementation of Elephant

was also created that processes the message and tag in parallel. This pipelined implemen-

tation has several unrolled versions of the permutation as well. The following are common

features to all of the designs presented in this paper:

1. Support authenticated encryption/decryption

2. Two-Pass FIFO is not required

3. LWC IO width is 32-bits

9



4. Messages sizes up to 250 − 1 are supported

3.1 Implementation of Xoodyak

Xoodyak only has one variant submitted to NIST’s LWC that supports both AEAD and

Hashing. Xoodyak uses the Xoodoo permutation, which is inspired by the Keccak permu-

tation. Xoodyak has a sponge construction that performs its Cyclist operations. Keyak’s

Motorist mode inspires the Cyclist operations. For full details of Xoodyak, see the specifi-

cation [15].

At a high level, Xoodyak has a 384-bit state that consists of 3 128-bit planes. The

Xoodoo permutation consists of the following 5 steps: θ mixing planes, ρwest shift planes, ι

adding round constants, χ non-linear layer and ρeast shift planes. Cyclist uses the Xoodoo

permutations in a sponge construction to absorb and squeeze the data. By specification,

Cyclist has the following operations Absorb, Encrypt, Decrypt, Squeeze, SqueezeKey, and

Ratchet. Based on the source code submitted for Xoodyak, the SqueezeKey and Ratchet op-

erations are not required to match the reference source code implementation for AEAD and

hashing functionality. Figure 3.2 contains a detailed breakdown of the different constants

required to be added in the various Cyclist operations.

Figure 3.2: Xoodyak Flow for AEAD Encryption

Xoodyak was one of the first designs that both the CERG team and myself attempted to

implement as part of our work with LWC Round 2. At first, we attempted to fold designs as

10



much as possible to reduce the circuit area. As a result, the first attempt at implementing

Xoodyak was a 32-bit datapath that took over 300 cycles to complete a single round of the

Xoodoo permutation. Due to this design’s inefficiency, it is not covered in this work, and

CERG learned that most of the LWC candidates should not be folded. As time progressed,

we began increasing the width of the datapath. This work contains two Xoodyak designs, a

384-bit basic iterative architecture, and a folded 128-bit datapath. Even though the folded

design was developed first, the basic iterative design is easier to understand and, therefore,

discussed first.

The three-plane design of the Xoodoo permutation can be seen in Figure 3.3. The theta

portion of the permutation starts with the different planes being XORed together. The

result is shifted and then XORed back into each of the planes. ρwest operates on the second

and third planes only, shifting the bits within those planes. ι adds the round constant to

the first plane. The round constant is obtained from a lookup table based on the current

round. χ adds the non-linear AND gate operations to the permutation. For each of the

rows, the other respective rows are combined through an AND gate then XORed with the

current row. ρeast is the final operation of the permutation which, similarly to ρwest, only

operates on the second and third planes, shifting the bits within these planes.

To complete the basic-iterative design of Xoodyak requires the implementation of the

Cyclist features. Cyclist controls how specific constants shown in Figure 3.2 are added to

the current state of Xoodyak after each block of data is processed. Figure 3.4 contains

the full 384-bit datapath of Xoodyak. Muxes choose between the different planes, and

then additional muxes are used to determine the correct 32-bit portion of those planes to

update. Those 32-bit chunks are then XORed with the input BDI and fed back into the

state through a stream of muxes to ensure the correct location is updated. The notation of

0384 is indicating 384-bits that are all zero.

11
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Although the 128-bit design is less efficient, the folded design provides some interesting

discussion points. Folding Xoodyak requires parts of the Xoodoo permutation to be per-

formed serially using an arithmetic log unit (ALU). Figure 3.5 shows the construction of

the full datapath of this design. A 16 x 128 STATE RAM stores the state and intermediate

values of the Xoodoo permutation. Without key reuse, the STATE RAM reduces to 8 x

128. Storage locations within the STATE RAM are controlled by a 32x12 instruction ROM.

These instructions have the following format: bits 0-3 and 4-7 select the STATE RAM’s

current operation addresses. The highest 4 bits, 8-11, control the action performed by the

128-bit Xoodoo ALU. Much of the right-hand portion of the 128-bit Xoodyak design in Fig-

ure 3.5 is similar to the 384-bit version. The 128-bit version does not require the additional

muxes to select between the different planes because all operations occur on a per plane

basis out of the state RAM.

The construction of the 128-bit Xoodoo permutation, shown in Figure 3.6, is much

simpler to look at than its 384-bit counterpart. Each phase of the permutation is split

into possible instructions stored in the instruction ROM. The instruction ROM selects the

correct operation of the ALU. Each operation is performed on one plane at a time, which

means that to perform both the θ and χ functions, each plane’s original values must be

saved off before being updated.

3.2 Implementation of Elephant

Elephant is a lightweight permutation-based authenticated encryption scheme that contains

three variants.

1. Dumbo: Elephant-Spongent-π[160] 112-bit security

2. Jumbo: Elephant-Spongent-π[176] 127-bit security

3. Delirium: Elephant-Keccak-f [200] 127-bit security

Dumbo is the primary variant of the submission package, making it the logical choice

for hardware implementation. For full specification of the algorithm, see [14]. Dumbo’s
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permutation consists of 80 rounds of the Spongent lightweight hash function. Each round

of Spongent consists of 3 layers.

1. Xor with the ICounter

2. S-box Layer

3. pLayer
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Figure 3.7: Round of Spongent Permutation

Initialization of the permutation sets a 7-bit Linear Feedback Shift Register (LFSR) to

1111010. Figure 3.7 shows the implementation of the Spongent permutation. The right-

hand portion of this figure shows how the LFSR is updated each round. The ICounter

layer takes the LFSR’s output and xors it with the lowest 7-bits of the input. Additionally,
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Table 3.1: S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

the LFSR’s output bits are reversed and then XORed with the highest 7-bits of the input.

The output of the ICounter layer proceeds into the S-box layer, which consists of 40 4-bit

S-boxes. Table 3.1 gives the construction of the S-boxes. The S-boxes are implemented as

lookup tables in all of the Elephant designs submitted with this work. The permutation’s

final layer is the pLayer, which shifts bits locations based on the following equation.

P160(x) =

{
40 · x mod 159 if x ε{0, ..., 158}
159, if x = 159

(3.1)

At first glance, Elephant acts similarly to other candidates but has the additional feature

of being parallelizable, allowing Elephant to process inputs of AD and PT/CT simultane-

ously. Figure 3.8 taken from the specification [14] shows how blocks can be processed at the

same time. Unfortunately, the LWC Hardware API does not support processing multiple

input types simultaneously, artificially limiting the Elephant algorithm.

In Figure 3.8 the top blocks are processing the message, and the output is CM . CM

is then the input into the lower blocks, which contribute to the tag. In the basic iterative

design, these blocks must be sequentially computed, requiring that the bottom block follow

the top block. In the pipelined implementation, these blocks are processed in parallel,

allowing the top block to process M + 1 while the lower block is computing the tag for M .

Although this does not take full advantage of processing AD and PT/CT simultaneously,

it improves throughput.

The mask values in Figure 3.8 come from an LFSR that is initialized with the output

of the P (K||0n−k), where n is the number of bits in the state (160), and k is the number of

18



Figure 3.8: Elephant Encryption
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bits in the key (128). Once initialized, the following equation updates the LFSR:

(x0, ..., x19)→ (x1, ..., x19, x0 ≪ 3⊕ x3 � 7⊕ x13 � 7) (3.2)

The maskk values in Figure 3.8 are written such that mask0k is the previous mask, mask1k is

the current mask, and mask2k is the next mask. Instead of storing these masks in multiple

registers, these masks are saved by extending the size of the LFSR. The LFSR is updated

after each block of data is processed. Figure 3.9 contains the LFSR implementation used

to update the mask. The previous mask is stored in bits 0-159, the current mask in 8-167

and the next mask in 16-175.
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LFSR 23..22
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LFSR 40 LFSR 19..16

||

LFSR 127

LFSR 21

||
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24
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8

176
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176
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Figure 3.9: Mask LFSR

The basic iterative design of Elephant is shown in Figure 3.10. Inputs come into the

circuit through the muxes located in the upper left-hand portion of the diagram. This
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data is stored in the load data resister until it is ready for processing. Storing data in

the load date register is required because when encrypting the PT, the CT is produced,

which must be stored because of its contribution to the tag. Since Npub is required for the

processing of each message block, it is stored in a register. Once a full block is received, or

the end of a data type is reached, data is loaded into the main state register (MS) via the

output of the lfsr mux. The other possible outputs of the lfsr mux are the different mask

values previous, current, and next. BDO output selects the value stored in the tag register

or BDI XORed with the appropriate MS register location that produces the CT or PT.

Unrolling the Spongent permutation is accomplished by feeding the output of the per-

mutation into the next round. Figure 3.11 contains a diagram of the Spongent permutation

unrolled 4 times. A critical difference between the basic iterative permutation and the

unrolled permutation is that the permutation LFSR is implemented as a lookup table. Un-

rolled variants of the Spongent permutation completed include 2x, 4x, 5x, 8x, and 16x times

unrolled. Larger unrolled versions would undoubtedly exceed the 2000 LUT limit and likely

have a reduced throughput due to a longer critical path.

The pipelined design shown in Figure 3.12 is significantly different than the original

version. There is a serial-in-parallel-out (SIPO) register receiving inputs and a parallel-

in-serial-out (PISO) register on the output in this design. These registers allow data to

be obtained and released while the circuit is processing its current block. Additionally,

having these registers ensures that other parts of the LWC development package are not

contributing to the circuit’s critical path. To support pipelined processing of PT/CT blocks

requires duplication of the Spongent permutation block and state register. The PT/CT data

released from the circuit is processed on the left-hand side of the figure. Once this data

is processed, it is stored in the PISO and released. This same data goes through another

padding circuit before going to the right-hand side, where the tag is calculated.

21



load_data

TAG

key

MS

Spongent

0
^1

5
9

||1

0
^4

7
||1

||bd
i 7

..0

0
^3

1
||1

||b
d

i 15
..0

0
^1

5
||1

||b
d

i 23
..0

npub

||

0^64

BDO

LFSR_DATAP
Key

LFSR

0
^64

BDO
BDI

KEY

BDI

Load Data

lfsr_mux

Input

Output

160

160 160

160

160..32

160

MS

159..64

160

160

176

160

160

Load Data

(167
..8

)

(175
..16

)

(159
..0

)

MS160

160

(1
5

9
..128

)

(127
..96

)

(95
..64

)

(63
..32

)

(31
..0

)

32

32

32

32

64

160
lfsr_mux63

..0

64

63
..32

3
1

..0

32

32

32

32

32

32 32

32

lfsr_load

perm_cnt

1

5

96

||

32
32

32

0^32

32

Figure 3.10: Elephant Datapath

22



LFSR_ROM4

21 x 32

perm_cnt output

||

rn
d

_in
p

u
t 

159
..1

5
3

rn
d

_inpu
t 

1
5

2
..7

rnd
_inpu

t
 6

..0

LFSR (0..6) LFSR (6..0)

40 x SBOX

P layer

rnd_out_0

7

7 146 7

160

7 7

160

160

7

Inp
ut

rnd
_inpu

t

rnd
_o

u
t_0

rnd
_ou

t_1

rn
d

_o
u

t_2

rn
d

_ou
t_3

Output

32

LFSR
8

8

8

8

Figure 3.11: Spongent Unrolled 4 Times

23



SIPO

PADD

B
D
I

K
EY

3
2

32

PSIO TAG

key

LFSR_DATAP
Key

LFSR

160

160

C
U
R
R
E
N
T

N
EX
T

>> 32>> 32

AD

MS

CU
R
R
EN

T

P
R
EV

N
EX
T

Spongent

1

5 Output

lfsr_load

perm_cnt

Input

NPUB

Spongent

1

5

Output

lfsr_load

perm_cnt

Input

sipo_valid_bytes

sipo_pad_loc

input

output

4

4

PADD

sipo_cnt

sipo_valid_bytes

sipo_pad_loc

input

3

4

4

output

32 32

32

64

64

6464

64

64

||

96

32

32

176

160

160

160

BDO

160

160 160 160

160

160

160

1
7

6..1
6

1
6

8..8

1
7

6..1
6

1
6

8..8

1
6

0..0

Figure 3.12: Elephant Datapath Parallel Processing

24



Chapter 4: FPGA Benchmarking of LWC Candidates

CERG has put an extensive amount of effort into supporting the benchmarking of lightweight

cryptographic algorithms. In 2019, CERG proposed a framework to benchmarking hard-

ware implementations of LWC [5], which assumed using the LWC Hardware API [24], and

the corresponding LWC Development Package. The adoption of this framework required

a significant revision of the CAESAR Development Package [25, 26]. In 2020, additional

improvements were made to support:

1. Different synthesis tools

2. Improved functional verification

3. Execution timing measurements

The LWC Hardware API development package is maintained on GitHub [27]. Release

v1.1.0 of the development package is the first release to contain the features listed. The

Implementer’s Guide [28] has been used to document these additional features.

Starting in the fall of 2020, as the end of LWC Round 2 approached, CERG began

benchmarking candidates submitted by the LWC community. In total, CERG benchmarked

40 different submission packages. These 40 submissions covered 27 out of the total 32 Round

2 candidates. CERG contributed 14 designs covering the following candidates: ACE, Ascon,

Elephant, GIFT-COFB, Gimli, mixFeed, PHOTON-Beetle, Pyjamask, Saturnin, SKINNY-

AEAD, SPIX, Subterranean 2.0, TinyJAMBU, and Xoodyak.

CERG selected one FPGA family from the following three vendors: Xilinx, Intel, and

Lattice Semiconductor. CERG used the following criteria to select the FPGA family: [6]

must be widely used, low-cost, and low-power, capable of holding SCA-protected designs,
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and supported by free versions of state-of-the-art industry tools. The following families and

specific devices were selected:

1. Xilinx: Artix-7 xc7a12tcsg325-3

2. Intel: Cyclone 10 LP 10CL016-YF484C6

3. Lattice Semiconductor: ECP5 LFE5U-25F-6BG381C

4.1 Support for Different Synthesis Tools

Each synthesis tool has different support levels for language features and varies in enforcing

restrictions on intermixing values with different data types (strong typing). Some examples

are that only some VHDL-2008 features are supported, or assignment between objects of

different sizes is not allowed. When testing which tools CERG would use for benchmarking,

several of the LWC development package files needed minor code cleanup to eliminate

warnings and errors. This code cleanup is why almost every file in the LWC Hardware API

development package experienced some change in the latest release.

4.2 Improved Functional Verification

Extensive testing is required to ensure that designs are fully functional. In particular, the

following cases need testing because they are some of the most difficult to implement.

1. Empty AD or empty PT/CT or both

2. Incomplete blocks

3. Support for key reuse

4. Crossing block boundaries

5. Hashing (if supported)

CERG automated the generation of test vectors by adding gen test routine to cryptotv-

gen. Test vector generation requires several design parameters to be known, such as key
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size, Npub size, and hash size. The api.h file, in the designs software reference implemen-

tation, contains many of these required parameters. This file is parsed when running the

gen test routine function reducing the number of required input parameters. CERG did

not provide this parsing to all the different cryptotvgen functions but may in the future.

The gen test routine option produces several sets of test vectors. One of these sets

is used to determine the number of cycles per block. The number of cycles per block is

calculated by taking the differences in cycles between messages that are four and five times

the block size. Block sizes of the cipher are not contained in the api.h and therefore require

the user to provide it as an argument to gen test rountine. Ideally, block sizes would be

reported as constants in api.h to improve automation.

Another added feature to support functional verification was the ability to control the

LWC TB’s behavior when a set of test vectors fails. Initially, the testbench would halt

whenever there was unexpected output. Immediately halting is convenient when developing,

but not when providing feedback to developers about possible issues. It is critical to report

as many of the potential problems at one time to the developer as possible. To support

this G MAX FAILURES was added to the testbench, which controls the number of failures

allowed before the testbench halts. Besides allowing the simulation to continue, failed test

vectors are logged to the file specified by G FNAME FAILED TVS. These features aid in

providing feedback to developers about possible bugs in their implementations.

4.3 Timing Measurements

When comparing designs, one of the more interesting metrics to analyze is maximum

throughput. To determine maximum throughput requires knowledge of the maximum clock

frequency, the number of clock cycles to complete the message, and the message’s size.

CERG used the automation tools ATHENA[29], Minerva[30], and Xeda[31] to determine

the maximum frequency for the different FPGA families. CERG added Measurement Mode

to LWC TB.vhd to provide metrics about the number of cycles required for different mes-

sages.
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Measurement Mode adds a counter that tracks how long a given test vector takes to

travel from the Pre-Processor input to the output of the Post-Processor. One of the more

difficult parts of implementing this feature was preventing the testbench from moving on

to the next test vector before completing the first. To accomplish this, once a given test

vector is read, the testbench blocks new input data until the PostProcessor sets the do last

flag. The number of cycles required for a message is calculated by taking the counter’s

value when do last is set and subtracting the value present at the beginning of the message.

Measurement Mode logs the following information into both a text file and CSV file:

• Total size of the different data types

• Total number of complete blocks of each data type

• Indication of the presence of an incomplete block

• Size of the incomplete block

• Execution time in cycles

4.4 Troubleshooting Designs

The most time-consuming part of benchmarking the Round 2 candidates is the effort put

into troubleshooting designs that experienced issues. CERG spent many hours looking at

designs attempting to determine why each was failing. If the problem could be determined,

CERG provided authors with a detailed response about how to fix the issue. Otherwise,

CERG provided the authors with the failing test vectors. Although these troubleshooting

efforts did not result in contributions to this thesis, they are still worth noting.

4.5 FPGA Benchmarking Results

CERG’s work on FPGA benchmarking Round 2 candidates resulted in the following publi-

cations [32] [33]. In these publications, candidates are compared against one another in the

following categories: throughput, area, energy, and power. Each candidate is ranked first
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to last for throughput of the following types of message AD, PT, AD + PT, and Hashing.

CERG calculated each candidates’ throughput for each message type for each of the follow-

ing input sizes: 16 bytes, 64 bytes, 1536 bytes, and long message. The following formula

calculates throughput for long message:
bits
block

×Frequency cycles
sec

cycles
block

. CERG reported these results

for each of the FPGA families.

For power and energy estimation, CERG used Xilinx’s Vivado v2020.1 power analysis

feature to run vector-based estimations for an Artix-7 xc7a12tcsg325-3 at a target frequency

of 75 MHz [32]. CERG reported that nearly all candidates had the same static power of

60mW and focused their analysis on the candidates’ dynamic power. CERG accounted for

the variance in dynamic power by measuring multiple messages. CERG used 20 messages of

16 bytes when measuring short messages and five messages of 1536 bytes for long messages.

The reported dynamic power is the average of these runs for each message size.

Due to the effort required to benchmark, design variants developed by this thesis were

limited to the following designs:

• Elephant-v1 Basic iterative architecture 1x unrolled

• Elephant-v2 Basic iterative architecture 5x unrolled

• Elephant-v3 Basic iterative architecture slight improvements 4x unrolled

• Elephant-v4 Pipelined 2x unrolled

• Elephant-v5 Pipelined 4x unrolled

• Xoodyak GMU-v1 Basic iterative architecture 1x unrolled

• Xoodyak GMU-v2 Folded 128-bit datapath

Besides the Xoodyak designs created as part of this thesis, the Xoodyak Team submitted

additional variants labeled Xoodayk XT and another submission from GMU by Kamyar

Mohajerani labeled Xoodyak GMU2. The following designs of Xoodyak are interesting for

comparison because they are all basic iterative architectures that are unrolled only one time.

No other submission attempted to fold Xoodyak.
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• Xoodyak GMU-v1

• Xoodyak XT-v1

• Xoodyak XT-v7

• Xoodyak GMU2-v1

CERG’s FPGA benchmarking effort produced a substantial amount of data for the com-

parison of candidates. The block sizes and cycles per block for each Elephant and Xoodyak

variant benchmarked are contained in Table 4.1. Elephant-v4 and Elephant-v5 provided

slight improvement when processing AD compared to the non-pipelined implementation.

The slight improvement was due to the FIFO on the input. The benefit of pipelining Ele-

phant was evident when processing PT-CT because it reduces the number of cycles required

to process a block by one-half.

Xoodyak GMU-v1, Xoodyak XT-v1, and Xoodyak XT-v7 all require the same number

of cycles to process a block of AD, PT-CT, and hash. Xoodyak GMU2-v1 uses a FIFO on

the input to reduce the number of cycles by almost one-half. The FIFO on the input allows

the Xoodyak GMU2 designs to process a block in 1 + 12
unrolling factor cycles while the other

basic iterative designs use 1 + block size bits
32 + 12

unrolling factor cyles. The number of cycles per

block for Xoodyak GMU-v2 is not on the same order of magnitude as the other designs

because it is folded.

Table 4.1: Basic Properties of Elephant and Xoodyak Variants

Variant Name A
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Elephant-v1 160 88 160 171
Elephant-v2 160 24 160 43
Elephant-v3 160 28 160 51
Elephant-v4 160 43 160 42
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Table 4.1: Continued From Previous Page

Variant Name A
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Elephant-v5 160 23 160 22

Xoodyak GMU-v1 352 24 192 19 128 17
Xoodyak GMU-v2 352 266 192 261 128 259

Xoodyak XT-v1 352 24 192 19
Xoodyak XT-v2 352 18 192 13
Xoodyak XT-v3 352 16 192 11
Xoodyak XT-v4 352 15 192 10
Xoodyak XT-v5 352 14 192 9
Xoodyak XT-v6 352 13 192 8
Xoodyak XT-v7 352 24 192 19 128 17
Xoodyak XT-v8 352 18 192 13 128 11
Xoodyak XT-v9 352 16 192 11 128 9
Xoodyak XT-v10 352 15 192 10 128 8
Xoodyak XT-v11 352 14 192 9 128 7
Xoodyak XT-v12 352 13 192 8 128 6

Xoodyak GMU2-v1 352 13 192 13 128 13
Xoodyak GMU2-v2 352 12 192 7 128 7

A condensed version of CERG’s results for resource usage and maximum frequency are

reported in Table 4.2 [32]. The Elephant results show that each layer of the Spongent permu-

tation used approximately 170 LUTs for Artix-7. Results for Elephant-v2 and Elephant-v5,

which are both 4x unrolled, show that pipelining in Elephant-v5 led to an increase of ap-

proximately 4x× 170 LUTs. Elephant-v5’s second permutation block accounts for most of

this increase in size. The effects of the FIFO and PISO in the pipelined versions appear

in two locations in these results. First, the number of FFs, and second, the maximum

frequency achieved. The FIFO and PISO each add 160 more FFs. An additional 160 FFs

come from the second state register in the pipelined version. Adding the FIFO and PISO

ensures the critical path is either within the CryptoCore or external to the CryptoCore

and not a combination of the two parts. Since Elephant-v3 and Elephant-v5 are both four
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times unrolled, one would expect that the critical path would be within the permutation.

However, since Elephant-v5 has a higher maximum frequency, it shows that input or output

adds to the critical path of Elephant-v3.

When comparing the Xoodyak variants, Xoodyak GMU-v1 did not perform as well as

the other similar designs. One notable difference is the number of FFs used in Xoodyak GMU-

v1 is significantly more than the similar Xoodyak XT design due to storing the key for key

reuse. Xoodyak GMU-v1 and Xoodyak GMU-v2 are the only Xoodyak designs that sup-

ported key reuse. The increase in LUTs or LEs and the decrease in maximum frequency

for Xoodyak GMU-v1 compared to the other designs is due to an inefficient implementa-

tion of the Cyclist portion of Xoodyak. A detailed discussion of different Xoodyak designs

is contained in section 4.7. Xoodyak GMU-v2 is unique compared to the other Xoodyak

designs because of its use of a RAM. Using a RAM led to a significant reduction in FFs

and slices present in the circuit for both the Artix-7 and ECP5 results. Unfortunately, the

RAM significantly increased resources for Cyclone 10 LP.

Table 4.2: Resource Usage and Maximum Frequency All Platforms

Variant LUTs\LEs FFs Slices
Frequency

MHz

Xilinx Artix-7

Elephant-v1 1,291 910 379 229
Elephant-v2 1,884 900 541 181
Elephant-v3 1,717 982 501 200
Elephant-v4 1,901 1,501 567 263
Elephant-v5 2,645 1,502 759 217
Xoodyak GMU-v1 1,808 851 495 170
Xoodyak GMU-v2 1,234 98 323 168
Xoodyak GMU2-v1 1,608 1,249 513 314
Xoodyak GMU2-v2 2,322 1,228 692 199
Xoodyak XT-v1 1,355 555 407 234
Xoodyak XT-v2 2,025 557 579 188
Xoodyak XT-v7 1,392 559 402 226
Xoodyak XT-v8 2,143 559 618 181

Lattice ECP5

Elephant-v1 2,368 923 1,464 97.5
Elephant-v2 3,073 916 1,823 85.5

32



Table 4.2: Continued From Previous Page

Variant LUTs\LEs FFs Slices
Frequency

MHz

Elephant-v3 2,901 915 1,874 88.3
Elephant-v4 3,157 1,421 1,855 97.6
Elephant-v5 4,145 1,422 2,389 90.1
Xoodyak GMU-v1 3,172 878 1,990 74.0
Xoodyak GMU-v2 2,316 114 1,286 74.8
Xoodyak GMU2-v1 3,248 1,261 1,834 150.5
Xoodyak GMU2-v2 4,058 1,233 2,351 69.7
Xoodyak XT-v1 2,402 489 1,521 95.7
Xoodyak XT-v2 4,077 489 2,095 70.3
Xoodyak XT-v7 2,489 499 1,536 88.4
Xoodyak XT-v8 4,121 499 2,125 71.3

Intel Cyclone 10 LP

Elephant-v1 2,056 1,005 163.1
Elephant-v2 2,729 998 113.2
Elephant-v3 2,504 996 123.2
Elephant-v4 3,050 1,485 157.6
Elephant-v5 3,926 1,507 126.9
Xoodyak GMU-v1 3,135 947 106.8
Xoodyak GMU-v2 5,871 2,237 77.0
Xoodyak GMU2-v1 2,575 1,256 170.3
Xoodyak GMU2-v2 5,058 1,237 97.2
Xoodyak XT-v1 2,231 573 136.3
Xoodyak XT-v2 3,541 573 88.8
Xoodyak XT-v7 2,272 583 128.5
Xoodyak XT-v8 3,630 583 90.0

CERG’s report [32] ranks candidates against each other for different message sizes across

the different message types. Figures 4.1, 4.2 and 4.3 show the throughput of long AD +

PT messages compared to the area for the top variants of each algorithm on the Artix-

7, ECP5, and Cyclone 10 LP platforms respectively. Either Elephant-v4 or Elephant-v5

appears in these graphs depending on the size limitations applied to each FPGA family.

Elephant placed in or around the top 10 in terms of throughput for all message types across

all platforms. These figures only contain the best variant of a candidate; therefore, none of

the Xoodyak designs produced by this work are contained within these graphs.
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Figure 4.1: Artix-7 Encryption AD+PT Throughput for Long Messages vs LUTs
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Figure 4.2: ECP5 Encryption AD+PT Throughput for Long Messages vs LUTs
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Figure 4.3: Cyclone 10 LP Encryption AD+PT Throughput for Long Messages vs LEs
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Figure 4.4: Artix-7 Elephant Variants Throughput AD vs LUTs

35



To understand the trade-offs that each variant provides, they need to be viewed in

the same figure. Besides all of the designs of Elephant or Xoodyak, the following figures

also contain the smallest candidate TinyJAMBU the fastest Subterranean, and the largest

SCHWAEMM for comparison. All versions of Elephant processing AD are contained in

Figure 4.4 and processing PT only in Figure 4.5. One conclusion that can be made by

looking at these figures is that there is only a slight improvement in throughput when going

from a factor of four times unrolled to five. Going beyond five times unrolled increases the

critical path of the circuit, which decreases the maximum frequency to the point that the

maximum throughput decreases. Additionally, pipelining benefits are evident in Figure 4.5

because Elephant-v4 and Elephant-v5 are significantly faster.
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Figure 4.5: Artix-7 Elephant Variants Throughput PT vs LUTs

Figures 4.7, 4.6 and 4.8 provide a similar comparison of the Xoodyak variants for AD, PT

and hashing. The results of Xoodyak GMU-v2 show if a reduction in area is desired, there

will be a significant reduction in throughput. These figures also point out that Xoodyak is

very competitive when it comes to being one of the fastest candidates. One final observation

is that little additional area is required to support hashing.
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Figure 4.6: Artix-7 Xoodyak Variants Throughput PT vs LUTs
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Figure 4.7: Artix-7 Xoodyak Variants Throughput AD vs LUTs

37



1000 1500 2000 2500 3000 3500 4000

7
8
9

100

2

3

4

5

6

7
8
9

1000

2

3

4

5

Gimli_GMU-v4
Xoodyak_GMU2-v2
Xoodyak_GMU2-v1
Xoodyak_XT-v8
Xoodyak_XT-v7
Xoodyak_GMU-v1
Subterranean_ST-v2
SCHWAEMM-v2
Xoodyak_GMU-v2

Area [LUTs]

H
M

 T
hr

ou
gh

pu
t 

[M
bi

t/
s]

Figure 4.8: Artix-7 Xoodyak Variants Throughput Hash vs LUTs

The final topic of analysis that CERG reports in their FPGA results [32] is power and

energy. Table 4.3 contains the power results for the benchmarked Elephant and Xoodyak

variants. Each column’s header includes a value or values to indicate the size and type of

the message. For example, Enc 1536,0 represents encryption with 1536 bytes of PT and zero

bytes of AD. CERG’s analysis of these results points out that as the designs’ unrolling factor

increases, there is a superlinear increase in power. The results for Elephant are a prime

example of this superlinear increase in power. Glitches in the circuit significantly increase

power consumption when unrolling from a factor of four to five, causing a nearly two-fold

power increase between Elephant-v3 and Elephant-v2. These results also show that adding

the second permutation block doubles power consumption as expected. Elephant-v1 was

one of the best candidates for power consumption at approximately 75mW. For comparison,

the lowest power candidate was TinyJAMBU TJT-v1 at 64mW.

The most surprising result from the data in Table 4.3 is the ten fold increase from

Xoodyak GMU2-v1 to Xoodyak GMU2-v2 while only going from an unrolling factor of one

to two. Interestingly, in the Xoodyak XT designs for the same unrolling factor, power only
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increased by a factor of less than five. Xoodyak GMU-v2 is the best performer in terms of

power but not by a significant factor. The b asic iterative design of Xoodyak GMU-v1 fell

in between the other two basic iterative versions because it does not have the power usage

from the additional FFs that the SIPO and PISO add to Xoodyak GMU2-v1.

Table 4.3: Estimated Total Power (mW) at 75MHz for Encryption, Decryption, and Hashing
on Xilinx Artix-7

Submission
Enc

1536,0
Enc

0,1536
Dec

1536,0
Enc
16,0

Enc
0,16

Dec
16,0

Hash
1536

Hash
16

Elephant-v1 76 75 76 76 75 76
Elephant-v2 461 421 461 427 423 416
Elephant-v3 257 236 257 242 237 237
Elephant-v4 118 113 117 112 112 108
Elephant-v5 392 379 388 349 352 302
Xoodyak GMU-v1 169 148 168 170 168 165 169 162
Xoodyak GMU-v2 117 115 117 116 116 116 115 114
Xoodyak GMU2-v1 172 164 172 160 158 152 158 160
Xoodyak GMU2-v2 1,011 669 1,001 795 792 722 990 919
Xoodyak XT-v1 130 115 131 127 126 123
Xoodyak XT-v2 572 455 569 615 625 580
Xoodyak XT-v7 130 116 128 128 127 124 127 124
Xoodyak XT-v8 583 464 584 625 635 592 641 549
Xoodyak XT-v9 4,784 3,732 4,797 5,341 5,468 4,966 5,534 4,463

Figure 4.9 contains a comparison between power verses throughput for messages of size

1536 bytes. Elephant-v1 performs very competitively against the other designs for these

metrics. As stated earlier, it has one of the lowest power values and provides one of the

largest throughputs compared to designs on the same order of magnitude of power.

All Elephant variants are shown in Figure 4.10 where power usage to throughput are

compared. Using the results from this figure indicates that the Elephant-v4 variant would

compare favorably to the other designs shown in Figure 4.9 as well. For less than a three

fold increase in power, Elephant-v4 would provide five times the throughput for processing

PT-CT data. Although not benchmarked, a basic iterative version of Elephant with an

unrolling factor of two would also be very competitive.
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Figure 4.9: Average Power vs Average Throughput for AEAD of 1536-Byte at 75MHz
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Figure 4.10: Elephant Variants Average Power vs Throughput of 1536 Bytes
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CERG’s energy results are given in Table 4.4 for the Elephant and Xoodyak variants.

Reported results are in pico-joules per bit, for message sizes of 16 bytes and 1536 bytes, for

the different message types. Elephant-v1 and Elephant-v3, which are one and four times

unrolled respectively, reported nearly identical energy consumption per bit. Elephant-v2,

on the other hand, had a large increase in energy consumption per bit due to glitches.

Elephant versions v1-v3 required half the energy to process AD compared to PT-CT for

long messages since pipelining provides no benefits. Interestingly when processing the short

AD messages, more energy is required. This result is expected because when processing

AD, the block processing is performed by the following equation A1...AlA
n←− Npub||AD||1.

The addition of Npub causes this small message size to produce two AD blocks. Since the

processing of PT or CT also requires two times through the permutation, the power levels

are relatively similar. This same feature was present in the Elephant-v4 and Elephant-v5

variants as well. As expected, the pipelined variants used the same amount of energy to

process both the AD and PT-CT blocks for large message sizes.

Analyzing the energy results for the Xoodyak variants brings out a strong use cause

for Xoodyak GMU-v1. During the power tests, a new key is sent with every message.

Therefore, designs are penalized for storing the key. If the test vectors used in the analysis

allowed key reuse, Xoodyak GMU-v1 could leverage the fact that the key was stored and

not perform an additional permutation. Therefore, Xoodyak GMU-v1 would likely be more

efficient at processing short messages compared to the other Xoodyak candidates.

Table 4.4: Estimated Energy-per-bit (pJ/bit) at 75MHz for Encryption, Decryption, and
Hashing on Xilinx Artix-7

Variant Enc
1536,0

Enc
0,1536

Dec
1536,0

Enc
16,0

Enc
0,16

Dec
16,0

Hash
1536

Hash
16

Elephant-v1 1,101 580 1,101 2,758 3,409 2,781
Elephant-v2 1,682 887 1,683 4,110 5,129 4,127
Elephant-v3 1,111 580 1,112 2,733 3,367 2,746
Elephant-v4 432 428 434 2,093 2,595 1,702
Elephant-v5 754 770 775 3,614 4,488 2,871
Xoodyak GMU-v1 233 144 232 1,247 1,232 3,840 304 664
Xoodyak GMU-v2 2,221 1,260 2,221 12,656 12,656 12,691 3,137 6,357
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Table 4.4: Continued From Previous Page

Variant Enc
1536,0

Enc
0,1536

Dec
1536,0

Enc
16,0

Enc
0,16

Dec
16,0

Hash
1536

Hash
16

Xoodyak GMU2-v1 165 91 166 1,092 1,079 1,113 219 658
Xoodyak GMU2-v2 534 330 534 3,689 3,675 3,708 740 2,154
Xoodyak XT-v1 179 111 181 930 910 938
Xoodyak XT-v2 539 328 538 2,966 2,949 2,972
Xoodyak XT-v7 179 112 177 937 917 946 228 507
Xoodyak XT-v8 549 334 552 3,014 2,996 3,034 746 1,558
Xoodyak XT-v9 3,813 2,384 3,837 21,364 21,302 21,364 5,281 10,855

Figure 4.11 shows the average energy per bit for the different candidates. Elephant-v4

falls in the middle of the pack for processing long messages, but moves towards the bottom

for smaller messages due to processing two blocks. Xoodyak GMU2-v1 is the variant present

in this figure and is one of the most energy-efficient candidates for processing long messages.

When it comes to processing short messages, it is slightly less efficient compared to its peers.

Again, I wonder what the effects of key reuse would have on these results.
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Figure 4.11: Energy-per-bit of AEAD of Long and Short Messages at 75 MHz
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4.6 ASIC Benchmarking Results

Nanyang Technological University published the first ASIC benchmarking results of Round

2 Candidates [34], and a second report was published by the University of Waterloo [35].

The Nanyang report had fewer candidates and variants than the Waterloo report due to

when it was published. At the time of the publishing of the Nanyang report, CERG had

benchmarked few candidates as well. The Nanyang team received the following candidates

for benchmarking from this work: Xoodyak GMU-v1, Xoodyak GMU-v2, Elephant-v1, and

Elephant-v2. Each candidate was synthesized for a target throughput of 3 Mbps to accom-

modate typical Bluetooth data rates using the TSMC 65nm library.

Unfortunately, both of the Xoodyak GMU submissions were not included in the report.

The author’s reason for not including these results was because Xoodyak GMU-v2 was

too large and slow, and Xoodyak GMU-v1 results were too similar to the designs from

the Xoodyak teams submission. The RAMs used in the Xoodyak GMU-v2 design did not

translate well into ASIC designs in a similar fashion to the results from Cyclone 10 LP. This

report highlights Xoodyak’s poor performance with short messages. One way to improve

Xoodyak’s performance with short messages is to save off and reuse the key as done in

Xoodyak GMU-v1.

The Elephant variants did not perform well compared to the other benchmarked candi-

dates. Its poor performance was mainly due to competing against some of the best Round 2

candidates. Unfortunately, it is difficult to determine whether Elephant-v1 or Elephant-v2

was used in the results, and therefore it is hard to draw comparisons of how the new variants

of Elephant might perform. This report focused primarily on processing PT data and, as

already pointed out, Elephant-v4 and Elephant-v5 with the pipeline are more efficient at

processing PT.

The University of Waterloo’s results [35] built upon the work of the CERG team and

contained a larger number of candidates and variants than the Nanyang report. Submissions

were benchmarked with the following ASIC cell libraries:

• CORE65LPLVT
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• tpfn65gpgv2od3 200 and tcbn65gplus 200a

• CORE90GPLVT and CORX90GPLVT

• tcbn90ghp210a

• CMRF8SF LPVT

The authors claim that they benchmarked designs at 5 MHz, 20 MHz, 50 MHz, and 100

MHz, but appear to have only reported results for 50 MHz. The authors provide graphs

for each library comparing area vs. throughput and energy vs. throughput. It seems from

their report that most of the designs performed similarly across the different cell libraries.

Figure 4.12: ASIC Results of Average Scaled Area vs Throughput

Figures 4.12 and 4.13 originally come from Waterloo report [35] and have been modified

to highlight the candidates that were developed as part of this work. Elephant variants are

represented by a diamond shape and Xoodyak designs by two small connected squares. A
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unique color is used to represent each variant of a candidate. The following list contains

the corresponding color for each of the variants completed in this work:

• Elephant-v1 dark blue

• Elephant-v2 light blue

• Elephant-v3 pink

• Elephant-v4 olive

• Elephant-v5 green

• Xoodyak GMU-v1 dark blue

• Xoodyak GMU-v2 light blue.

Figure 4.13: ASIC Results of Average Scaled Energy vs Throughput
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When focusing on area versus throughput in Figure 4.12, the folded design of Xoodyak GMU-

v2 performs even less desirable in the ASIC benchmarking than it did in FPGA benchmark-

ing. It was much larger and slower than the unrolled 1x variants of Xoodyak. Xoodyak GMU-

v1 was larger than the Xoodyak Team’s unrolled variant but smaller than the Xoodyak GMU2-

v1 design. The reason for this placement is Xoodyak GMU2-v1 has significantly more FFs

in its design. Xoodyak GMU-v1 was larger than the Xoodyak Team’s design because of the

additional FFs to store the key and the poor implementation of Cyclist. The ASIC results

bring to light all the extra FFs used in the Elephant-v4 and Elephant-v5 designs which

are not highlighted in the FPGA results. If the unrolling factor dominated the results, one

would expect Elephant-v2, which is unrolled 5 times, to be larger than Elephant-v4, which

has 2 Spongent permutation blocks each unrolled 2 times, but this is not the case.

In the energy results from Figure 4.13 Xoodyak GMU-v2 again performs the worst of all

of the Xoodyak variants. Xoodyak GMU-v1 appears to have been left of this graph entirely

or scores the same as the Xoodyak teams variants. Xoodyak GMU-v1 should have the same

throughput as the lowest energy Xoodyak Team’s design, but would have a slightly larger

average scaled energy value. The Elephant results show there might be some room left for

improvement of the Elephant design in terms of throughput and scaled energy. Currently,

the line between Elephant-v4 and Elephant-v5 is still decreasing. It is possible that in the

ASIC results, a larger unrolling factor is acceptable before the effects of the glitches become

too detrimental.

In Appendix-D of the University of Waterloo’s report [35], each of the variants submitted

is ranked based on area, energy, and area x energy and then ranked. The area rank order

is determined by taking the candidates’ throughput and dividing it by the area. The same

goes for energy and area x energy. Each candidate’s rank in all three of these categories is

averaged to give a final score. In my opinion, it seems that more weight should be placed on

the energy parameter than the area parameter. The cost of the area is paid for once, when

the ASIC is created, while the cost of energy required is continuous. Xoodyak GMU-v1

was the lowest ranked of the basic-iterative 1x unrolled Xoodyak variants even though it

used identical energy as some of the other variants. As stated several times, storing the key
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reduces the energy required if the key is reused. The Elephant designs did not appear to

do that well due to the large number of Xoodyak submissions that pushed other candidates

down the ranking.

4.7 Comparison of Basic Iterative Xoodyak Versions

One of the best ways to improve as an engineer is to review how others solved similar

problems to see what can be learned from their approach. In this case, the additional

Xoodyak designs provide the opportunity to improve. One of the most significant differences

between the designs is that the Xoodyak GMU2 is written in Bluespec SystemVerilog and

uses Bluespec LWC instead of the topical VHDL LWC provided by CERG. Bluespec LWC is

fully compliant with the LWC API, and therefore, it is fair to compare to the other designs

[36].

All three basic iterative designs of Xoodyak (Xoodyak GMU-v1, Xoodyak GMU2-v1,

Xoodyak XT-v1) all perform the Xoodoo permutation in a similar manner which should

lead to almost identical hardware. The Xoodyak GMU2-v1 and Xoodyak XT-v1 designs

use for-loops to write their code, so it is more compact. One notable difference between the

designs is that Xoodyak GMU-v1 and Xoodyak GMU2-v1 implemented the Round Con-

stant with a look-up table while Xoodyak XT-v1 version calculated the Round Constant,

likely increasing the size of the design. The Xoodyak XT code is available on GitHub [37].

As already stated, Xoodyak GMU-v1 and Xoodyak GMU-v2 both have an inefficient

implementation of the Xoodyak Cyclist operations. The Xoodyak GMU-v1’s Cyclist imple-

mentation is shown in Figure 3.4. A basic version of Xoodyak XT and Xoodyak GMU2-v2

are shown in figures 4.15 and 4.14 respectively. One quick improvement that can be made

to Xoodyak GMU-v1 is to control the enables of the FFs to determine which portion of the

state is updated instead of the muxes currently used. Another improvement would be to

remove the muxes selecting a 32-bit chunk of the state. Instead, the XORs used could be

duplicated for each section of the state register.

Both of the Xoodyak GMU implementations could be improved based on techniques
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used in the other designs. The Xoodyak GMU designs should follow the methods used in

the Xoodyak XT designs. Neither of the implementations is using a SIPO, and PISO like

the Xoodyak GMU2 design is. One improvement over the Xoodyak XT implementation

that could be added is the finer gain control of the different FFs that the Xoodyak GMU2

design uses. In the Xoodyak XT implementation, padding logic required for decryption is

added to state registers that should not need it.
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Chapter 5: Protection of Designs

As NIST moves into the final round of the LWC standardization, the cryptographic com-

munity will begin focusing on the finalists’ protected implementations. All of the protected

implementations in this work use DOM to achieve first-order protection and are based on

the unprotected designs covered in Chapter 3. An overview of DOM protection is covered

in Chapter 2. Since the unprotected designs are compliant with the LWC Hardware API,

using the extension proposed in [38] and shown in Figure 5.1 facilitated rapid development

of these protected designs.

Figure 5.1: Extension Development Packet for Hardware API

To provide first-order protection with DOM only requires two shares of information

to create two different domains, Domain0 and Domain1. The creation of the two shares
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requires all linear operations from the original design to be duplicated such that each domain

has the operation. Operations performed with constants must only occur in one of the

domains to ensure correct results when the shares are recombined. Nonlinear operations

within the circuit are the most complicated parts of the design to protect. The protection of

each candidates’ nonlinear operations is covered in the appropriate corresponding sections.

One common nonlinear function between the designs is the two-input AND gate. Since

protected designs split data across two domains, the calculation of the AND gate is as

follows:

= x · y

= (x0 + x1)(y0 + y1)

= (x0y0 + x0y1 + x1y0 + x1y1)

During these calculations, at no point in time are all shares of the same data combined. For

instance, if x0x1 were combined, it would leak the current value of x. Figure 5.2 contains the

DOM protection for the two-input AND gate. x0y0 and x1y1 do not require the XOR with

the random data and have an optional register since there is no cross-domain contribution.

The two gates that share information across domains must add the random data and store

the data in a register to prevent leakages from occurring due to glitches.

In Figure 5.2, r0 represents a random bit of data. Trivium [39] Pseudo-Random Number

Generators (PRNG) are used to generate the random bits. Multiple Trivium instances are

required for each design to obtain the number of random bits required for each clock cycle.

5.1 Xoodyak DOM Protection

Both of the Xoodyak designs discussed in Chapter 3 have been modified and protected.

The only part of Xoodyak that requires DOM protection is the χ operation. In the χ

operation, the AND gates are nonlinear and are protected using the two-input AND gate

previously discussed. Constant additions, such as the Round Constant and Cyclist UP
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Figure 5.2: DOM Protected Two Input AND Gate

DOWN operations, occur in domain0.

B0 ← A1 ·A2

B1 ← A2 ·A0

B2 ← A0 ·A1

Ay ← Ay +By for y ∈ {0, 1, 2}

The folded version of Xoodyak uses an ALU to perform the χ operation. Figure 5.3

contains the internals of the ALU for the protected implementation. The red block labeled

χ contains the 128-bit two-input DOM protected AND gates. The AND gates require 1-bit

of random data per gate, and therefore, two instances of Trivium are needed to generate the

necessary 128-bits of random data. The input registers to the χ block prevent unintended

inputs to the AND gates during other ALU operations.

The full-width protected datapath of the Xoodoo permutation is shown in Figure 5.4.
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Figure 5.3: Xoodoo 128-bit Protected
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Figure 5.4: Xoodoo 384-bit Protected

This version creates 384 DOM-protected AND gates requiring 384 bits of randomness per

clock cycle. Six instances of Trivium are instantiated to achieve the required number of

random bits. The addition of the mux at the top of the circuit allows for a pipelined

construction of the permutation. This design allows the permutation to be performed with

only one more additional clock cycle than before.

5.2 Elephant DOM Protection

Only the basic iterative architecture of Elephant-v1 is protected as part of this thesis. The

S-box operations within the Spongent permutation are nonlinear. Protecting the S-box

using DOM requires that the S-box be reduced to its algebraic normal form (ANF). The

ANF of the Elephant S-box was obtained using software developed for decomposition of
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S-boxes [40,41]. The S-box’s ANF is as follows:

F [x,w, v, u] = [EDB0214F7A859C36]

F [0] = 0 + u+ v + w · v + x

F [1] = 1 + u+ w · v + x · u+ x · v + x · w + x · w · v

F [2] = 1 + v + w + x · u+ x · w · v

F [3] = 1 + v · u+ w + x+ x · u+ x · v + x · v · u+ x · w · u

DOM protection of a three-input AND gate is required to implement this ANF. Figure 5.5

contains the protected implementation of the three-input AND gate, which was derived as

follows:

= x · y · z

= (x0 + x1)(y0 + y1)(z0 + z1)

= (x0y0 + x0y1 + x1y0 + x1y1)(z0 + z1)

= x0y0z0 + x0y1z0 + x1y0z0 + x1y1z0 + x0y0z1 + x0y1z1 + x1y0z1 + x1y1z1

x1 y0 z0 x1 y1 z0 x0 y0 z1 x0 y1 z1 x1 y0 z1

q0

x0 y0 z0

q1

x1 y1 z1x0 y1 z0

r2 r2 r1 r0r1r0

Figure 5.5: DOM Protected Three Input AND Gate
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The S-box’s ANF requires five instances of two-input AND gates and three cases of

three-input AND gates. With these gates, 14-bits of randomness are needed per S-box.

The Spongent permutation requires 40 S-boxes and therefore 560-bits of random data per

cycle. To determine the most efficient way to express the same logic, a Satisfiability Modulo

Theories (SMT) solver was used to minimize the number of AND gates. The resulting

expression is more complex but more efficient using only three two-input AND gates and

two three-input AND gates. Due to the expression’s complexity, bold text is added after

each instance of an AND gate. The first number in the text represents the number of

input bits to the AND gate, and the second number identifies the gate’s uniqueness. This

expression reduces the number of bits required per S-box to nine and a total of bits to

360-bits per cycle for the Spongent permutation.
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F [s3, s2, s1, s0] =[EDB0214F7A859C36]

F [0] =s0 + s3+

((s1 + s2) · s1)(2,1)

F [1] =not(s0 + s1+

((s1 + s2) · s1)(2,1)+

(s3 · (s0 + s1) · (s0 + s2))(3,1)+

((s1 + s2) · (s0 + s3) · s3)(3,2))

F [2] =not(s1 + s2+

((s1 + s2) · (s1 + s3))(2,2)+

((s1 + s2) · s1)(2,1)+

(s3 · (s0 + s1) · (s0 + s2))(3,1)+

((s1 + s2) · (s0 + s3) · s3)(3,2))

F [3] =not(s0 + s2 + s3+

((s1 + s2) · (s1 + s3))(2,2)+

((s0 + s3) · (s0 + s1))(2,3)+

((s1 + s2) · s1)(2,1)+

((s1 + s2) · (s0 + s3) · s3)(3,2));

5.3 Verification and Results

To ensure the designs are not leaking, they had to pass TVLA verification. For more in-

formation about TVLA refer back to Section 2.4. TVLA results were obtained using the

Flexible Opensource workBench fOr Side-channel analysis(FOBOS) platform [42]. Cryp-

totvgen was used to generate test vectors, which were then converted into shares using the
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LWC Hardware API extension conversion script. The device under test (DUT) was loaded

on a NewAE CW305 SCA board that uses an Artix-7 (xc7a100tftg256-3) FPGA. Power was

measured across the boards Low-Noise Amplifier (LNA) that amplifies the voltage drop of

the 0.1Ω shunt resistor. The DUT was run at 1.25 MHz to prevent the signal distortion

observed at high frequencies. Traces were collected using a Picoscope 5000 that obtains

8-bit samples at a sampling rate of 125 MS/s. With this sample rate, 100 samples were

collected during the one-clock cycle of the DUT.

TVLA results comparing the unprotected and protected designs of Xoodyak are con-

tained in the following figures: Figure 5.6 for Xoodyak GMU-v2 and Figure 5.7 for

Xoodyak GMU-v1. Both of the unprotected designs exceed the 4.5 threshold with only

2,000 traces. On the other hand, the protected designs do not exceed the threshold even

with 100,000 traces. These results confirm that the protected implementations improved

the resistance to SCA.

(a) Unprotected 2,000 Traces (b) Protected 100,000 Traces

Figure 5.6: Xoodyak 128 TVLA Traces

Similar TVLA results for Elephant versions are shown in Figure 5.8. The unprotected

Elephant-v1 did not pass the TVLA leakage test by exceeding 4.5 when there were 10,000

traces. The protected implementation certainly improves SCA resistance because even with

1,000,000 traces, it is not approaching the 4.5 threshold.
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(a) Unprotected 2,000 Traces (b) Protected 100,000 Traces

Figure 5.7: Xoodyak 384 TVLA Traces

(a) Unprotected 10,000 Traces (b) Protected 1,000,000 Traces

Figure 5.8: Elephant TVLA Traces
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Benchmarking results for area and throughput of the protected designs are contained

in Table 5.1, and the results for average power are contained in Table 5.2. The protected

Xoodyak implementations do not contain the area that the PRNGs adds to the circuit.

This follows the same approach that the authors of [38] performed, resulting in a closer

comparison. Unfortunately, the Elephant implementation is not written with this same

comparison method in mind. Instead, the results for Elephant contain 6 Trivium PRNGs

and, therefore, look much larger compared to the Xoodyak designs. Each instance of the

Trivium PRNG takes approximately 440 LUTs and 475 FFs. Six instances of Trivium would

therefore take around 2640 LUTs and 2850 FFs. Thus, the approximate size of Elephant

without the PRNGs is 5451 LUTs and 2970 FFs, however, these results should be confirmed.

Table 5.1: Benchmarking Results on Xilinx Artix-7

Implementation Area Freq. TP Area ratio TP ratio
LUTs FFs MHz Mbps

Unprotected

Elephant-v1 1291 910 229 214.3 1.00 1.00
Xoodyak-384 1808 851 170 1717.9 1.00 1.00
Xoodyak-128 1234 98 168 118.0 1.00 1.00

Protected

Elephant-v1 8091 5550 200 93.5 6.21 0.43
Xoodyak-384 6431 4210 158 891.39 4.02 0.42
Xoodyak-128 3627 1753 140 81.78 2.49 0.71

The throughput of protected Elephant-v1 and Xoodyak-384 both decrease by a factor

of over 1/2. Elephant reduction by this factor is because the permutation requires twice as

many clock cycles to complete. Xoodyak-384’s reduction is because it operates at a lower

max frequency and requires an additional clock cycle to complete the permutation. The

Xoodyak-128 throughput decreases by a smaller factor because the ratio of clock cycles

added to the permutation compared to the original number of clock cycles to perform the

permutation is smaller.

The estimated energy-per-bit of both the protected and unprotected implementations
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Table 5.2: Estimated Average Power on Xilinx Artix-7 (at 75 MHz)

Implementation
Static
Power
(mW)

Dynamic
Power
(mW)

Dynamic
Power
Ratio

Total
Power
(mW)

Total
Power
Ratio

Unprotected

Elephant-v1 91 76 1.00 167 1.00
Xoodyak-384 91 88 1.00 179 1.00
Xoodyak-128 91 34 1.00 125 1.00

Protected

Elephant-v1 91 114 1.5 205 1.22
Xoodyak-384 92 217 2.46 309 1.73
Xoodyak-128 91 65 1.91 156 1.24

is reported in 5.3. The 128-bit Xoodyak implementation notices the least change in energy

per bit of the protected implementations due to having the fewest components used for

protection. The 384-bit implementation of Xoodyak is still efficient, requiring only 0.7nJ

per bit. Due to the complexity of the Elephant protection, it is not surprising that this

design requires a significant amount more energy-per-bit.

Table 5.3: Estimated Energy-per-bit on Xilinx Artix-7 (at 75 MHz)

Implementation
Throughput

(Mbps)
Energy-per-bit

(nj/bit)
Energy-per-bit

Ratio

Unprotected

Elephant-v1 70.2 2.3 1.00
Xoodyak-384 757.9 0.4 1.00
Xoodyak-128 55.2 2.8 1.00

Protected

Elephant-v1 35.1 5.8 2.52
Xoodyak-384 423.2 0.7 1.75
Xoodyak-128 43.8 3.6 1.28

Based on the results, it appears that DOM protection method appears well suited for

the Xoodyak permutation. Looking at Elephant results, it appears that this algorithm
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should also be protected using TI to determine if that protection method is better suited.

For more discussion on this topic see Chapter 7.
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Chapter 6: Conclusions

Indeed, the benchmarking efforts of CERG helped NIST with their selections of LWC final-

ists, which were announced on March 29, 2021, to include: ASCON, Elephant, GIFT-COFB,

Grain128-AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, and Xoodyak. Of

note, both of the candidates focused on in this thesis advanced to the final round. The

Elephant variants from this work were the only known implementations of Elephant at

the time of NIST’s selection. In my opinion, the addition of the pipelined implementation

significantly helped Elephant be a viable finalist candidate by substantially improving the

throughput.

Now that the candidate pool is reduced, Elephant and Xoodyak will likely receive greater

attention within the cryptographic community leading to new or improved designs. Chapter

7 contains some possible improvements that could be made to the current designs. No

hardware submissions of Grain128-AEAD were benchmarked; therefore, it would also be

interesting to see how it compares against the other candidates.

In the final round, having protected implementations of the candidates will be desirable

by NIST. Having verified the protected implementation of these two candidates is another

great success of this thesis. Improvements to these protected candidates and designs of the

other candidates certainly should be attempted in the final round. CERG will undoubtedly

want to perform even more intensive benchmarking of both the unprotected and protected

implementations before the completion of the final round to assist NIST.
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Chapter 7: Future Work

Since both Elephant and Xoodyak are finalists in NIST’s LWC process, new or improved

implementations of these candidates are desirable. Based on the number of full datapath

submissions of Xoodyak for Round 2 benchmarking, it is unlikely that significant improve-

ments can be made to the full datapath designs. One additional analysis feature that would

be interesting to investigate in the final round is how key reuse affects the power and energy

results. Currently, designs that support key reuse have a larger size and require more energy

without the benefits of key reuse being measured.

Even though the 128-bit design of Xoodyak is inefficient compared to the full datapath

version of Xoodyak, it may be worth revisiting. As stated in section 4.7, the Cyclist portion

in the designs developed from this work are inefficient and could be improved. Additionally,

the STATE RAM was not portable to ASICs. A new implementation could use FFs for

the state storage to reduce the design’s size. Using FFs also allows the designer to be

more flexible with the number of storage elements available, allowing for a smaller or faster

design.

Since Elephant advanced to Round 3, there may be interest in seeing the Delirium

variant of Elephant because it uses Keccak for the permutations. Another appealing modi-

fication would be to see how efficient Elephant can be if allowed to process AD and PT/CT

simultaneously. Even though this would be a deviation from the LWC Hardware API, it

would highlight a useful feature not available in other designs. Another slight modification

that may make the existing Elephant designs more competitive would be to add a PISO to

the original basic iterative architecture.

Although this work contains protected implementations of Xoodyak already, protection

of the other Xoodyak designs submitted for Round 2 benchmarking would be attractive.

Since there were no significant differences in the permutation between designs, the same
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protected permutation could be used. DOM protection of Elephant resulted in a larger

implementation than desired. In my opinion, another version of Elephant should also be

protected using TI to see if this protection method provides more favorable results. Ac-

cording to the S-box’s classification from [41], it should be able to be protected using only

three shares and no additional clock cycles.
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