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ABSTRACT 

GEOSPATIAL AND REMOTE SENSING-BASED INDICATORS OF SETTLEMENT 

TYPE – DIFFERENTIATING INFORMAL AND FORMAL SETTLEMENTS IN 

GUATEMALA CITY 

Karen K. Owen, Ph.D. 

George Mason University, 2012 

Dissertation Director: Dr. David Wong 

 

This research addresses the need for reliable, repeatable, quantitative measures to 

differentiate informal (slum) from formal (planned) settlements using commercial very 

high resolution imagery and elevation data.  Measuring the physical, spatial and spectral 

qualities of informal settlements is an important precursor for evaluating success toward 

improving the lives of 100 million slum dwellers worldwide, as pledged by the United 

Nations Millennium Development Goal Target 7D.   

A variety of measures were tested based on surface material spectral properties, 

texture, built-up structure, road network accessibility, and geomorphology from twelve 

communities in Guatemala City to reveal statistically significant differences between 

informal and formal settlements that could be applied to other parts of the world without 

the need for costly or dangerous field surveys. 
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When information from satellite imagery is constrained to roads and residential 

boundaries, a more precise understanding of human habitation is produced.  A 

classification and regression tree (CART) approach and linear discriminant function 

analysis enabled a variable dimensionality reduction from the original 23 to 6 variables 

that are sufficient to differentiate a settlement as informal or formal.  

The results demonstrate that the entropy texture of roads, the degree of asphalt 

road surface, the vegetation patch compactness and patch size, the percent of bare soil 

land cover, the geomorphic profile convexity of the terrain, and the road density 

distinguish informal from formal settlements with 87-92% accuracy when results are 

cross-validated.    

The variables with highest contribution to model outcome that are common to 

both approaches are entropy texture of roads, vegetation patch size, and vegetation 

compactness suggesting that road surfaces and vegetation provide the necessary 

characteristics to distinguish the level of informality of a settlement. The results will 

assist urban planners and settlement analysts who must process vast amounts of imagery 

worldwide, enabling them to report annually on slum conditions. An added benefit is the 

ability to use the measures in data-poor regions of the world without field surveys. 
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INTRODUCTION 

The intent of the United Nations Millennium Development Goal 7, Target 7D is 

“to have achieved a significant improvement in the lives of at least 100 million slum 

dwellers” by 2020 (UN-HABITAT, 2003).  In 2001, 924 million people, or 31.6% of the 

world's urban population, lived in slums and accounted for 43% of the urban population 

in developing countries (UN-HABITAT, 2001).  In 2007, the number of slum dwellers 

worldwide crossed the one billion mark, with 1 of every 3 city-dwellers worldwide 

lacking basic services such as clean drinking water or adequate living space (UN-

HABITAT, 2006; Martínez et al., 2008).  In Guatemala, where this research is focused, 

61.8% of the urban population was estimated to reside in slums (UN-HABITAT, 2001).  

In 2010 the UN HABITAT reported significant progress toward meeting this goal, 

illustrated in Figure 1, but acknowledged it is insufficient to counter the continued growth 

of informal settlements in the developing world (UN-HABITAT, 2010).  The number of 

slum dwellers in absolute terms is still expected to grow to 889 million by 2020, and the 

MDG target 7D is likely to be revised to address percent improvement rather than 

absolute numbers of inhabitants (United Nations, 2010, p. 64).  The explosive growth of 

these populations has created living conditions that contribute to poor health, high 

mortality, excessive crime and economic degradation with inadequate response 
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mechanisms during times of natural disaster (National Research Council, 2007b; Owen, 

Obregón, & Jacobsen, 2010). 

 

 

Figure 1 Change in Urban Slum Population as Percent of urban population (United 

Nations, 2010) 

 

Using GDP per capita, Rice (2008) evaluated the under-five mortality rates of the 

15 best-performing and 15 worst-performing developing countries.  Rice was able to 

demonstrate a positive correlation between the worst-performing countries‟ urban slum 

population and child mortality (28.4 percent vs. 5.9 percent in the best-performing 

countries), and a negative correlation with socio-economic level (Rice, 2008).  Martínez 

et al. (2008) revealed a positive correlation between child mortality and poor 



3 

 

environmental conditions such as overcrowding, a lack of safe water and inadequate 

sanitation.  A strong positive relationship therefore exists between under-five mortality 

and the proportion of a city‟s population living in slums.  

Slums,  known as „informal settlements‟, must be characterized in order to assess 

their vulnerability to natural and man-made hazards, adequacy of urban infrastructure, 

estimate traditionally marginalized populations, and inform sustainable development in 

an era of increasingly limited natural resources.  

The demographic shift revealing that more of the world‟s population lives in 

urban instead of rural areas occurred in late 2007 (UN-HABITAT, 2008). As migration 

trends continue from rural areas to cities, urban planners must accurately monitor a large 

number of urban areas to determine where conditions are worsening or improving.  

Reliable spatial indicators of informal settlements are needed to focus international aid 

and to help design improved infrastructure and community services. The UN-HABITAT 

is the only organization that monitors Millennium Development Goal performance 

worldwide, using methodology “structured on collaborative data collection between 

national, local and metropolitan governments in each country” and it has become an 

enormous undertaking (Hoornweg et al., 2007; European Commission JRC, Int‟l Centre 

for Remote Sensing of Environment, & ISPRS, 2009). These urban monitoring projects 

have also relied heavily on expensive field-based surveys that are difficult to undertake 

because of the need for direct observation often in dangerous areas (Galeon, 2008; Rice, 

2008; Yeh & Li, 2001; UN-HABITAT, 2010).    
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Efforts to quantify characteristics of slums or informal communities in 

comparison to their formal counterparts are continuing. In addition to each country‟s 

national datasets that are collected without common standards, the following statistical 

sources are currently used for measuring slums: the UN‟s World Urbanization Prospects; 

WHO/UNICEF Joint Monitoring Programme on Water Supply and Sanitation (JMP); 

demographic and health surveys (DHS); Multiple Indicator Cluster Survey (MICS); the 

UN-HABITAT‟s Urban Inequities Surveys (UIS) and census data when available 

(Sliuzas, Mboup, & de Sherbinin, 2008).   

Research Objectives 
 

The three main objectives of this research are: 

1. To test the hypothesis that foundational measures derived from roads, 

vegetation, soil, image texture, and geomorphology evaluated with 

multivariate methods can distinguish settlement structure of residential areas. 

 

2. To determine if imagery and elevation data alone are sufficient to distinguish 

informal from formal settlements. 

 

3. To develop a small set of statistically significant indicators that distinguish 

settlement type to be used by organizations such as the UN HABITAT and 

urban planners without the need for field work or surveys. 

 

The UN-HABITAT urban slum indicators are aggregated to the national and 

continental level, and methods unfortunately vary by each country‟s own national data-

gathering strategy.  This research advances the ability to distinguish informal (slum) from 

formal areas by analyzing shape (form), texture, road networks and built-up areas using 

geographic information systems (GIS) and remote sensing image analysis. 
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In 2008, the combination of semi-automated information extraction from very 

high resolution (VHR) satellite imagery, expert knowledge applied to GIS analysis, and 

fusion of sensor and ancillary data were recommended as the most effective approaches 

for modeling and measuring informal settlements (Sliuzas et al., 2008).  Myint et al. 

(2006) mention the limitations of traditional spectral approaches that only identify 

homogeneous features without concern for shape, asserting that “textural and spatial 

algorithms [should] measure both the variance within and the geometric configuration of 

whole urban objects, respectively”.  This dissertation research treats the residential area 

and its component roads and intervening spaces as major contextual pieces of the 

physical urban neighborhood.  It is accomplished without using ancillary information 

(e.g. spatial data infrastructure in the form of urban planning data and regional GIS 

databases), which is often not available in developing countries.   

To lay out the basis for this research the problem will first be described in detail, 

followed by a definition of informal settlements and a characterization of the settlement 

process and pattern in Latin America.  Then the methods of informal settlement modeling 

in the scientific literature will be critiqued and a connection will be made to other 

informal settlement measures previously proposed, as well as to sprawl measures. The 

most relevant measures found in the literature will be described, followed by an 

evaluation of methodological shortcomings. Next is a description of the datasets used, 

research methods applied, and an overview of the proposed indicators. A results section 

reveals indicator performance between settlement types and by sampling methods, then 
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conclusions are summarized, followed by limitations of this research, and 

recommendations for future research.  

Informal Settlements Defined 
 

The study of informal settlements, also known as slums, squatter settlements, 

congested communities, shanty towns, self-help housing (Ward & Peters, 2007) and 

spontaneous settlements (Rapoport, 1988) requires a formal definition followed by a 

discussion of the process of their formation and pattern.  The conventional definition 

approved by the United Nations defines a slum household as: 

“…a group of individuals living under the same roof lacking one or more of the  

following conditions: 

 Access to improved water: This indicator concerns the access to sufficient 

water for family use, at an affordable price, available to household 

members without being subject to extreme effort. 

 Access to improved sanitation: This indicator concerns access to an 

excreta disposal system, either in the form of a private toilet or a public 

toilet shared with a reasonable number of people.  

 Sufficient living space: A dwelling unit is considered to provide a 

sufficient living area for the household members if there are fewer than 

three people per habitable room. 

 Durability of housing: This indicator shows the percentage of households 

living in a housing unit considered as „durable‟, i.e. those houses built on a 

non-hazardous location and with a permanent structure that is adequate to 

protect its inhabitants from the extremes of local climatic conditions such 

as rain, heat, cold, humidity.  

 Security of tenure: Evidence of documentation to prove secure tenure 

status or de facto or perceived protection from evictions.”  

      (Martínez et al., 2008) 

 

In Brazil, where much research on informal settlement process and pattern has 

been conducted on favelas (the Brazilian name for slums), such settlements are defined as 
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“areas of unorganized expansion… where no urban design can be observed” (Junior & 

Filho, 2005).    

Terms used to define informal settlements in Guatemala where this research is 

focused include: barrio marginal (marginal neighborhood), palomar (tenement), toma 

(land grab), invasores (invasion of lands with or without tacit permission), and champa  

(precarious housing, self-built with waste material) (Valladares Cerezo, 2003; UN-

HABITAT, 2003).  The primary reasons for slum formation in Guatemala are listed in 

Table 1. 

 

Table 1  Slum Formation in Guatemala 

Historical Reasons for Slum Formation in Guatemala 

Settlement on private lands not authorized by the municipality because of 

contamination or hazardous location 

Invasions of state or private lands 

Low cost government housing designated for the poor where green space is 

occupied by invasores (invaders) 

Rural villages absorbed by city growth, but lacking city infrastructure services 

Dwelling units leased from private owners but frequently lacking services 

(water, sanitation, electricity) 

Permitted occupation of state-owned land 

(UN-HABITAT, 2003) 

History of Informal Settlement Process and Pattern in Latin America 
 

The formation and expansion of informal settlements in urban areas generally 

follow a predictable sequence where the defined process of expansion creates a 

predictable pattern or structure (Bhatta, Saraswati, & Yopadhayay, 2010).  Slums are 

initiated when population growth exceeds available shelter and land, and newer migrants 
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settle peripherally (Ooi & Phua, 2007). In Latin America, squatter settlements usually 

start through illegal subdivision of land which is marketed to the urban poor and then  

subdivided into plots for which legal title is ultimately not provided while zoning laws 

are ignored and public infrastructure services remain undeveloped (Dickenson, 1996).  

Such settlements are first created on the periphery of the city where unclaimed land may 

still be available, often in undesirable locations near natural or other hazards.   

The classic pedagogical model of the Latin American city (Griffin & Ford, 1980)  

is depicted in Figure 2 and directly addresses the integration of process with pattern.  The 

Griffin and Ford model is comprised of a central business district (CBD), a dominant  

                                                                           “elite” residential sector built around a 

commercial spine.  The elite residential 

sector consisted of those residents who were 

socially worthy indicating that social and 

economic status decreased with distance 

from the CBD (Griffin & Ford, 1980). A 

series of concentric zones with residential 

quality proportional to city center proximity 

then radiate outward from the urban core 

(Griffin & Ford, 1980). In this model, the 

spine and elite residential sector, termed the 

spine/sector, “constitutes a morphological 

response to the limited ability to extend Figure 2  Model of Latin American City 

Structure (Griffin and Ford, 1980) 
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urban services” and “to the inability of Latin American cities to accommodate massive 

growth” (Griffin & Ford, 1980) .  The spine of the model contains the elite housing sector 

supported by modern infrastructure services. In Latin American cities the three residential 

zones or rings are 1) a zone of maturity, 2) a zone of accretion, and 3) a zone of informal 

or squatter settlements. The size of the zones is a function of the in-migration rate 

(primarily rural to urban) and the residents‟ ability to improve the quality of their 

dwellings, combined with the city‟s ability to expand urban infrastructure and services to 

support them. The zone of maturity is fully served by infrastructure services and contains 

improved and upgraded housing generally constructed of large, solid, concrete or brick 

houses (Griffin & Ford, 1980). The next zone of „in situ accretion‟ is in some process of 

maturing while in a constant state of upgrade and construction, with main streets 

normally paved but side streets unpaved. Development in the in-situ accretion zone 

appears chaotic due to the variation in the degree of improvement and the beginnings of 

public infrastructure construction.  

In The Mega-City in Latin America, Gilbert acknowledges this in-situ 

improvement, stating that “what begins as a shanty soon becomes a consolidated house” 

(Gilbert, 1996).  In the Griffin and Ford model, the peripheral squatter settlements exist 

outside the zone of accretion, unlike the Anglo-American concept of the “suburbs” with 

manicured lawns, parks, paved streets and public services. Griffin & Ford (1980) 

describe these squatter areas as devoid of vegetation, packed with small houses, unpaved 

streets, non-existent public infrastructure services, and located far from job sites at urban 
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centers. Field visits to Guatemala City by the author of this research confirm this model is 

still relevant today. 

 Government-constructed low-income settlements built specifically to house the 

poor either during massive relocation efforts or in response to natural disasters such as 

Hurricane Mitch in 1998 or the Guatemalan earthquake of 1976 are unique situations of 

forced relocation. In those situations, the building materials and dwelling footprint are 

initially homogenous, with varying levels of disrepair as time passes or when government 

investment subsequently ceases. 

Spanish Colonial Influence on Guatemalan City Structure 
 

Spanish Colonial-influenced Guatemalan cities follow the traditional vernacular 

architecture of the regular grid pattern with a cathedral, government buildings and the 

town square in the center of the town with more affluent residences in close proximity. 

Instead of suffering urban decay the city center in Latin American cities is often a 

desirable location for the wealthy to reside. Traditionally, the poor settled on the 

periphery in agricultural areas providing needed labor. This historical configuration can 

be seen in declassified 1941 images of Guatemala City where mansions were located in 

the city center near the Presidential Palace, Cathedral and Spanish Colonial Military 

fortress while much smaller dwellings are embedded in the surrounding agricultural 

landscape (Declassified NIMA imagery of British Honduras and Guatemala, 1941) In 

contrast to this model, urban blight and deterioration in the US and Europe forced the 

housing elite to create settlements on the outskirts of the city center, creating sprawl 

communities, though specific targeted cases of urban renewal are the exception.  In post-
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modern times, affluent areas in Latin American cities are still found in the central 

business district as the prior models describe.  

These differences are in stark contrast to the North American or First World 

phenomenon of suburban sprawl
1
. Suburban sprawl is a condition of developed countries 

heavily reliant on automobile transportation and a mature interstate highway system. As 

Barros states, “while the problem of urban growth in Europe and North America has been 

formulated in terms of sprawl, in the Third World and more specifically in Latin 

America, the main focus has been the rapidity of growth of cities as well as the social 

inequalities in urban space produced by this process” (J. Barros, 2004).  The lack of a 

sophisticated transportation infrastructure and the cost of vehicle transportation prevents 

the vast majority of the working poor from living very far from the city center, and the 

sprawl concepts of leapfrog development and highway strip development along secondary 

highways are rarely applicable (Hasse, 2002). Heuristic processes that contribute to the 

evolution of informal settlements will be described next. 

Heuristics of Growth 
 

Informal settlement growth has been documented by numerous researchers and a 

variety of heuristics have been used to describe it.  Clustering, densification and 

peripherisation are examples of such descriptors. Clustering is the initial formation of 

self-built dwellings near one-another, densification is in-fill or in-situ expansion or 

accretion. Peripherisation is a particular type of growth often found in Latin American 

cities (Barros, 2004).  In peripherisation, settlements (usually low-income) form on the 

                                                 
1
 First World refers to developed countries as opposed to Third World, developing countries. 



12 

 

periphery of the city, are then incorporated into the city through longer term expansion of 

city boundaries, eventually a few of these settlements become 'recontextualized' within 

the urban fabric and may be occupied by groups with higher economic status, so that 

newer low-income settlements continue to appear on the periphery (Barros & Sobreira, 

2008). These processes explain why informal settlement enclaves are sometimes found in 

the same general vicinity as higher-rent areas which have grown around them. 

There is a need for improved understanding of the process, and a need to analyze 

space-filling and growth patterns over time.  Barros and Sobreira (2008) contend that 

spontaneous settlements "can be classified according to locational and morphological 

characteristics in 'inner city' and 'peripheral settlements'".  But they also acknowledge 

there is no generally accepted theory of spontaneous settlement location. Factors 

influencing migration into these settlements are availability of land, proximity to high-

density mixed land use and proximity to job opportunities. A survey conducted of 

informal settlements in the Ivory Coast concluded that incoming residents are attracted by 

(1) the availability of land (31%), (2) proximity to employment (22%) and (3) strong 

social ties (20%) (UN High Commission on Refugees, 1996).  Similar results were 

reported for the informal settlements on the urban fringe of Tehran, where respondents 

indicated the greatest reason for relocating to slums was either access to affordable 

housing (in Saleh Abad) or proximity to place of work (in Khatoon Abad)  (Zebardast, 

2006).  Eventually the peripheral areas that first became settled are then consumed by 

urban expansion, remaining as pockets of poverty that continue to pack more densely 

(Sietchiping, 2000) .  
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The gradual creation of informal settlements is also described as accretion (J. Barros, 

2004). Figure 3, derived from (Sliuzas, 2008), notionally depicts this process of informal 

settlement formation over time, capturing the concepts of in-situ accretion and haphazard 

densification. 

 

 
Figure 3 Notional process of Informal Settlement Formation (Sliuzas, 2008) 

 

Informal settlement growth or process can be decomposed into four phases in 

mostly sequential fashion: 

1. Land Invasion 

2. Social Formation 

3. Physical Consolidation 

4. Urban Maturity 

(Alsayyad, 1993) 

 

As an example, land invasion in Cobán in north-central Guatemala by invasores has 

occurred gradually on the outskirts of town adjacent to the garbage dump on municipal 

land where the local government has chosen not to intervene (Cable, 2009).  Social 
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formation occurs when family groups move together and relatives or friends from the 

same original location follow.  Physical consolidation occurs when external pressures or 

topographic constraints such as rivers or super highways prevent settlement expansion, 

causing continued infill.  Urban maturity is the final phase often characterized by extreme 

lack of housing durability when the settlement infrastructure is not upgraded.   

The response of the state to the development of squatter communities can take a 

variety of forms. The state may ignore, demolish, relocate, legalize or upgrade informal 

settlements (Alsayyad, 1993). Infill can be an organized invasion or gradual. Alsayyad 

(1993) concludes that “In Latin America, the most effective approach for squatters is to 

connect with the political system either through the official or oppositional parties and 

use electoral competitions to advance their interests”.  Success in obtaining state-

sponsored assistance is predicated on increases in scale of participation of the residents in 

the political process. The more involved they are, the more likely they will gain 

recognition (Alsayyad, 1993; Guisti de Pérez & Pérez, 2008).   

The morphology of informal settlements is a result of clearly-defined processes 

common to Latin American cities that were initially constructed by Spaniards under the 

“Laws of the Indies”.  The affluent areas are still found near the city center and the 

impoverished areas exist on the periphery and are gradually being consumed by urban 

growth and densification. This process is quite different than many developed cities 

where affluent communities are found on the outskirts of town (Thomas, Tannier, & 

Frankhauser, 2008; Pumain & Tannier, 2005; Thomas, Frankhauser, & Biernacki, 2008; 

De Keersmaecker, Frankhauser, & Thomas, 2003). The ability to distinguish formal from 
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informal settlements in the same region provides the ability to measure quantitatively 

how the urban form has changed over time, and whether in fact such models as Griffin & 

Ford (1980) and Barros & Sobreira (2008) are applicable in the 21
st
 century. 

The Need for Quantitative Spatial Measures of Informal Settlements 
 

There is no doubt that slum areas are expanding in major urban centers of 

developing countries worldwide, but significant challenges remain in evaluating them 

and measuring expansion of built-up areas with scientific methods. Although shape-based 

measures (fractal dimension, lacunarity, mathematical morphology) and texture measures 

(landscape fragmentation analysis, grey-level co-occurrence measures) have been used to 

identify individual slum communities in the past two decades, minimal progress has been 

made on development of geospatial measures that can distinguish differences between 

informal and planned settlements using readily-available very high resolution (VHR) 

multispectral imagery.  There is also little use of topographic-related measures to explore 

differences within settlements.  Development of methods that fully exploit image 

processing and require minimal field work can be more efficient due to the extensive 

geographic coverage of VHR satellite imagery and can preserve the safety of researchers 

whose visits to these often dangerous areas can be minimized.   

It should be acknowledged that some amount of field-based cultural and spatial 

observation is still required. In fact, this research was enriched by a number of field visits 

to Guatemala by the author (Jacobsen, Nelson, & Owen, 2011). However, physical entry 

into some settled regions can still be dangerous, and remote evaluation is often necessary.  

While the body of literature contributing to the measurement of formal settlements 
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manifested as suburban sprawl continues to grow (see subsequent section „Relationship 

to Sprawl Research‟), conspicuously absent are summarized quantitative  measures that 

may be applied to informal settlements.  

The study areas in this research have been selected from urban sites in Guatemala, 

a Latin American country whose slum population is projected to increase by nearly 20 

million in the years from 2010 to 2020 (UN Habitat, 2009).  Despite its middle ranking in 

per capita GDP among poor countries defined by the United Nations, the proportion of 

slums in Guatemala is severely elevated, where 62 percent of urban dwellers were living 

in slums in a nation that also suffers from a high GINI inequality coefficient of 0.60 (UN 

Habitat, 2003)
2
.  The slums of Guatemala City suffer an under-5 mortality rate of 56% 

and an acute respiratory infection rate of 20.2% in children under 5 (Martínez et al., 

2008). 

Limited access to GIS software and training (Bishop et al., 2002; Baltsavias & 

Mason, 1997) and a lack of spatial data (Busgeeth, Brits, & Whisken, 2008; Mason, 

Baltsavias, & Bishop, 1997; Hasan, 2006; Barros Filho & Sobreira, 2007) in developing 

countries creates challenges for planners and decision-makers. These groups must 

measure settlement growth, patterns and intensity as a foundational step toward 

improving these areas and the lives of their inhabitants using less labor-intensive and less 

costly means.  Methods and indicators to characterize this type of urban growth could be 

used by planners in disaster management, slum monitoring and human-environment 

                                                 
2
 The GINI coefficient of 0 indicates perfect income equality among a population, whereas 1 indicates 

perfect inequality. 
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interactions as a way to monitor impacts on nearby natural resources (Owen, 2012).  The 

United Nations Global Urban Observatory project has acknowledged there is a lack of 

data and an immaturity of applicable methodology to measure durability of housing 

because settlement variables are not examined collectively (Sliuzas et al., 2008). Serving 

as a peer review of the UN-HABITAT methodology on slum estimation, a Global Urban 

Observatory report also emphasized the need to “be able to identify and define slums 

spatially in a consistent manner to be able to use geographical targeting for slum 

intervention programmes” (Sliuzas et al., 2008). A comprehensive World Bank report 

summarizing the status of urban indicators worldwide also emphasized that new 

indicators must be “measurable and replicable, easily quantifiable, and systematically 

observable” and should “begin incorporating GIS techniques in future data collection to 

permit a better understanding of geographical changes over time” (Hoornweg et al., 2007, 

p. 13).  Besussi et al. (2010) assert that “improvements in the resolution of satellite 

images have not been matched by commensurate improvement in the detail of 

socioeconomic data on urban distributions”. This makes our understanding of the built 

form disjoint from the ability to measure details of intra-urban socioeconomic conditions 

(Besussi, Chin, Batty, & Longley, 2010). 

 Human settlements are comprised of three fundamental physical elements clearly 

visible in remote sensing imagery: buildings, roads and open spaces (Pesaresi & Ehrlich, 

2009). This observation, and the need to exploit physical context, structure and spectral 

information together lead to the main hypothesis of this research, summarized here: 
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Indeed, other research has also emphasized the need to evaluate structure and 

spectral information in tandem (Jin & Davis, 2005).  Inhabitants‟ poverty level - a proxy 

for many other variables related to wellbeing - could later be derived from distinctions 

between settlement types, and conditional measurement scales could be developed for 

specific regions or urban areas.  Proving the hypothesis of this research will create robust 

indicators to differentiate among settlement types without the reliance on expensive or 

dangerous field work that is difficult to undertake.  This is confirmed in prior research 

where slum-dwellers are hesitant to provide a response to field-based surveys for “fear 

that anything they say might be used against them” (Galeon, 2008).  A final complication 

is that a larger than normal sample size in informal settlements has been needed to justify 

statistical significance of survey results (National Research Council, 2007a). This 

“oversampling imperative” also underscores the need for alternative methodologies. 

Empirical measures of a settlement’s physical structure 

can positively distinguish urban neighborhoods as formal 

or informal. 
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LITERATURE REVIEW  

This literature review section is divided into two focus areas:  (1) informal settlement 

literature review, and (2) formal settlement literature review exemplified by suburban 

sprawl.  The main objectives of the literature review are to determine whether prior 

research revealed geospatial and remote-sensing based indicators that could be used to 

discriminate settlement type (informal or formal) in the same image scene without the 

need for extensive field work or ancillary datasets. This section will review the locations 

of prior GIS and remote-sensing based informal settlement research and group those 

efforts by their approach. The relationship to prior measures of suburban sprawl will also 

be explored, followed by a summary of the limitations of their applicability to the current 

research problem. A listing of prior indicators that may be relevant is provided followed 

by suggestions for new indicators. 

GIS became popular in the 1990‟s and was soon integrated with remote sensing 

for research into mapping and modeling informal settlements (Yaakup & Healey, RG, 

1994; Bharathi & Lakshmi, 2005; Hasan, 2006; Vicente, Villarin, Galgana, Guzman, & 

de Mesa, 2006; Martínez et al., 2008; Dare & Fraser, 2001).  Research was applied to 

problems of estimating the size of the settlement (geographic extent in the landscape), 

estimating the need for government services, estimating population through dwelling 

feature extraction supplemented by survey data, and included modeling to predict growth 
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and understand the process of infill.  The majority of this research requires prior ancillary 

GIS datasets, administrative boundaries, and field surveys.  Despite the fact that many 

settlements can be detected through visual imagery interpretation, the human eye cannot 

quantitatively measure informal settlement properties.  No prior research effort has 

performed settlement typology discrimination using geospatial metrics to differentiate 

formal and informal areas in the same region as a basis to model and estimate the 

intensity of slums.  This research fills that gap.  

Location of Prior Informal Settlement Modeling Efforts 
 

Informal settlement modeling and analysis with GIS is largely focused on 

developing countries where slums are prevalent, with much research focused in Brazil. 

Table 2 summarizes the locations of these studies. 

 

Table 2  Location of GIS-based Informal Settlement Studies 
Country City Author & Year 

Tunisia Metropolitan Area Tunis Weber and Pouissant, 2003 

China Pearl River Delta Yeh and Li, 2001 

Thailand Bangkok Thomson and Hardin, 2000 

Malaysia  Yaakup and Healey, 1994 

Philippines Manila Vicente et al., 2001; Galeon, 2008 

Pakistan Karachi Hasan, 2006 

Morocco Marrakech Baudot, 1993 

South Africa Cape Town Baltsavias and Mason, 1997; Li et 

al., 2005; Hofmann, 2001 

Kenya Voi Hurskainen and Pellikka, 2004 

 Nairobi Pesaresi and Ehrlich, 2009 

Ghana Accra Stow et al., 2007 

Tanzania Dar es Salam Mayunga, Coleman, & Zhang, 

2007; Augustijn-Beckers, Flacke, 

& Retsios, 2011 

Sudan Northern Darfur Stasolla and Gamba, 2008; Sulik & 

Edwards, 2010 

Argentina Rosario Martínez, 2009; Martínez, 2004; 

Hall et al., 2001 
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Brazil Mato Grosso Zeilhofer  and Topanetti, 2008 

Rio de Janeiro Junior and Filho, 2005; Hofmann 

et al., 2008 

Recife Filho and Sobreira, 2008 

Belo Horizonte Kux and Araújo, 2008 

Greece  Ioannidis et al., 2009 

Turkey Istanbul Dubovyk et al., 2011 

India Bengal Bhatta et al., 2010 

Delhi Niebergall et al., 2007 

México Tijuana Monkkonen, 2008 

Morelia City López et al., 2001 

 

No studies have incorporated VHR satellite imagery into informal settlement 

modeling in Central American except for México (Monkkonen, 2008; López, Bocco, 

Mendoza, & Duhau, 2001), which is still considered North America.  Figure 4 depicts the 

locations of remote sensing analysis of slum areas in Latin America identified with green 

boxes.    

 

Figure 4 Locations of GIS-based Informal Settlement Research - Latin America 
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In Monkkonen (2008) the feasibility of using Google Earth imagery as a tool to confirm 

the spatial extent and boundary delineation of informal settlements was explored. At the 

time of publication in 2008, he determined that Google Earth imagery as a tool was not 

yet sufficiently mature for reliable boundary delineation due to the absence of image date 

information and the fact that Google did not yet publish details on imagery sources.  

López et al. (2001) focused on measuring the relationship between growth of urban land 

cover and growth of population reported in the Méxican census.  These studies were 

limited to evaluating the shape of built-up areas using land use/ land cover classification 

without examining individual neighborhood components or structural interrelationships 

of their component parts, revealing the absence of remote sensing-based informal 

settlement analysis in Central America. 

 

Informal Settlement Literature Review 
 

Earlier research in informal settlement modeling focused on boundary delineation and 

land use/land cover classification and was limited by the spectral and spatial 

characteristics of older satellite sensors at the expense of structural characterization. As 

sensor spatial resolution has increased, research methods have naturally improved.  In 

general, methods used in the literature for spatial modeling of informal settlements are 

grouped as follows: 
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Table 3 Informal Settlement Modeling Methods 

Grouping Methods Used 

Direct Mapping and 

Demographic  

Studies 

 Cadastral Micro-scale maps 

 Cartographic Products 

 Field Surveys 

Dynamic Growth Models  Cellular Automata 

 Complexity Models 

 Predictive and Temporal Models 

 Logistic Regression 

Multi-scale Approaches   Fractal Analysis 

 Lacunarity 

Object-based Image Analysis 

and Building  Feature 

Classification 

 Digital surface models, building heights, 

settlement structure height (LIDAR and 

RADAR-based) 

 Dwelling object-based approaches 

 Spectral properties of roofs to extract 

dwellings 

Image Texture and 

Mathematical Morphology 

Measures 

 Grey-level co-occurrence measures 

 Impervious Surface detection 

 Mathematical Morphology of objects 

Socioeconomic Measures 

and Landscape Analysis 
 Entropy 

 Patch Dynamics 

 

This section explores these literature groupings, pointing out their contributions 

and limitations. 

Direct Informal Settlement Mapping and Demographic Studies 
 

GIS is described as a necessary tool for slum upgrading (Vicente et al., 2006; 

Hall, Malcolm, & Piwowar, 2001; Melesse, 2005; Lemma, Sliuzas, & Kuffer, 2006) and 

has been used to support cadastral efforts and to measure areal extent of homogeneous 

slum neighborhoods (Barry & Rüther, 2001).  Many studies aimed at mapping the slum 

areas delineate a rectangular boundary in imagery and simply measure change over time. 

Some of these studies predict where growth might occur while others attempt to gain an 

understanding of a slum area by cadastral mapping and then measuring the lack of 
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services through field surveys, which can be costly and labor intensive.  A related branch 

of research also focuses on urban vulnerability and environmental degradation in slum 

areas (Pauchard, Aguayo, Peña, & Urrutia, 2006; Zeilhofer & Topanotti, 2008) caused by 

earthquakes, air pollution, and the [lack of] elimination of solid waste (Parker, 1995). The 

delineation of property boundaries and the accurate mapping of informal settlements are 

relevant to land tenure studies and the creation of city maps (Hasan, 2006).  Martínez, et 

al. (2008) developed indicators requiring the additional step of analyzing demographic 

and health surveys of living conditions.  The goal of some research that focused on 

counting dwellings was part of local planning efforts to estimate population, as in Galeon 

(2008) where random household sampling was conducted for the creation of an accurate 

basemap, and Qadeer (2000) whose focus was the evaluation of population density in 

developing countries to evaluate the phenomenon of a „ruralopolis‟.  There are many 

examples of advanced techniques to estimate population in informal settlements using 

GIS and remote sensing, but the need for field surveys, land records, or census data to 

supplement the analysis can be costly, may require local government permission, and 

may need compliance to strict institutional review board rules when humans are subjects 

of research. 

 

Dynamic Growth Models 
 

Cellular automata have also been used to model growth trajectories of informal 

settlement areas in an attempt to understand the dynamics of change and visualize future 

urban forms. Cellular automata and complexity modeling support "the idea of a structure 
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emerging from a bottom-up process where local actions and interactions produce the 

global pattern” (UN High Commission on Refugees, 1996).  A cellular automata 

approach was tested by several authors to model growth of informal settlements 

(Sietchiping, 2000; Sietchiping, 2004; Barros, 2004).    

Agent-based models have also been used to simulate the dynamical process of 

infill and extension based on settlers‟ preference to limit distance to roads or footpaths, or 

maximize distance to flood zones and regions subject to inundation (Augustijn-Beckers, 

Flacke, & Retsios, 2011).  Expansion is most evident in the early stages of settlement 

formation, while infill occurs as time progresses, though both processes are at play over 

the temporal dimension of many years (Augustijn-Beckers et al., 2011).  Other 

simulations use agent-based models to predict how the land cover changes as slums 

proliferate in a city (Diuana et al., 2006; Mayunga, 2007).  Although dynamic models are 

useful to simulate process and for predictive purposes, their contribution differs from the 

present research which addresses the need to first measure and quantify the physical 

elements before the change process can be modeled. 

Sensors such as SPOT 4 & 5 multispectral and Landsat Thematic Mapper have 

frequently been used to evaluate land cover change (area and shape) at the city level but 

cannot be used discriminate dwelling structures due to their spatial resolution (10, 20 and 

28.4m, respectively).  Land cover change and city-level expansion in the informal areas 

of the Tunis metropolitan area were measured in one study, but with moderate resolution 

data, they were unable to evaluate the internal structure of these settlements (Weber & 
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Puissant, 2003).  The authors generalized that informal settlement patterns can be 

recognized by the following: 

 

 Lack of obvious planned structure 

 Lack of vegetation in housing areas 

 High building density 

 

 

They tested a dynamic model that spatially weighted the interaction between man-

made and natural growth potential by land cover class (high-density built-up, low-density 

built-up, spontaneous vegetation / forested, salt lagoon, and wetlands).  The interaction 

potential between two time periods was based strictly on land cover class, with the 

ultimate goal of predicting where growth would occur in the succeeding ten years 

following their analysis. They applied a form of discriminant analysis and created binary 

images of “built-up” and “not built-up” to compute change, as depicted in Figure 5. 
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Figure 5  Informal Settlement Modeling Methods (Weber & Puissant, 2003) 

 

Characteristics of residential areas were limited to high density and low density without 

evaluating roads, greenspace or relevant anthropogenic features.  The authors‟ use of 

principal components as variables to create land cover classes served as synthetic and 

indirect indicators for measuring these foundational parts of settlements. 
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The impact of slum upgrading plans on the lives of slum-dwellers was also 

evaluated (Martínez, Boerboom, & Sliuzas, 2007). The Martínez et al. (2007) work 

expanded the use of modeling tools to predict the impact of slum improvements in 

sanitation but they did not integrate GIS or imagery in their work.   More recently, 

researchers built a logistic regression model to predict future locations of informal 

settlements in Istanbul, Turkey, aided in part by the inclusion of detailed urban planning, 

census, and demographic data for the study area, which is not readily available in many 

developing countries (Dubovyk, Sliuzas, & Flacke, 2011).  Exploring growth patterns 

and urban extent are valuable in monitoring change, but the intrinsic value of first 

knowing what structural characteristics to measure must be foundational to such efforts. 

Multiscale Approaches 
 

Several approaches have attempted to estimate the appropriate spatial scale to model 

informal settlements, with the view that techniques appropriate at multiple scales could 

be more effective and more broadly applied.  Table 4 lists the spatial scales that are 

recommended based on the target of analysis and suggested spatial resolution.  

 

Table 4 Recommended Spatial Scale based on target of analysis (Stein, 2008) 
Target of Analysis Spatial Scale Pixel Spatial Resolution 

City 1:15,000 2.4 – 5.8m Imagery 

Ward 1:10,000 2.5 – 5.8m Imagery 

Enumeration Area (Census,Survey Unit) 1:5,000 2.4 – 4m Imagery 

Slum Neighborhood 1:2,000  2.5m Imagery 

Individual Household 1:500 Survey Instrument 
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The spatial scales recommended for neighborhood characterization push the limits of 

readily available commercial remote sensing products.  Based in part on Table 4, the 

scales of analysis useful to model characteristics of informal settlements are regional, 

neighborhood, feature object, and individual household.  Regional scale studies focus on 

boundary delineation and growth, depicting settlements within the context of an urban 

area, city or ward.  In the literature, land use and land cover segmentation was normally 

performed at a regional scale.  Neighborhood scale analysis focused on identifying 

housing clusters. Here it is important to note that housing clusters are embedded within 

roads and natural land qualities such as slope or convexity, embedded vegetation, soil and 

building materials. Neighborhood scale is appropriate for vulnerability analysis and 

understanding dynamics of neighborhoods.  Feature Object scale refers to the study of 

individual dwellings, instead of clusters of dwellings, in relation to each other and to their 

surroundings.  Individual household scale is needed to evaluate the United Nations slum 

characteristics of security of tenure, access to sanitation, and access to clean water by 

tying a household and their actions to a place. Sample surveys of households and 

cadastral mapping through more intense field work are needed at this scale (Lemma et al., 

2006). This dissertation research is conducted at the neighborhood scale. 

Fractal Dimension of Settlement Structure. 
 

Evaluating the fractal dimension of settlement areas, both formal and informal is 

considered a scale-invariant technique (Thomas, Frankhauser, et al., 2008; Tannier & 

Pumain, 2005; Cooper, 2005).  In one study, the fractal dimension of built up areas at 
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varying scales showed a decrease in value as the grid size, or unit of analysis, increased, 

and the authors concluded the interpretive value of fractal dimension was retained at all 

grid sizes (Wallace, Morris, & Howarth, 2004). Fractal analysis generally applies fractal 

theory at the regional scale, but has not been used in the published literature to test 

differences in settlement structure between formal and informal. Tannier & Pumain 

(2005) state “the main advantage of fractal geometry is to provide a model of reference 

which seems more adapted than Euclidean geometry to the description of spatial forms 

created by societies: features of heterogeneity, self-similarity and hierarchy are included 

from the very beginning in fractal structures”.   

In both Tannier and Pumain (2005) and Thomas et al. (2008), fractal analysis of 

settlement structure was computed after the morphological transformation of dilation was 

performed on the image, which does not preserve the initial shape of the built-up areas, 

but did allow the authors to measure scale variations using the ratio of fractality of the 

settlement‟s edge to its built-up surface.  The D
Surf-dil0

 represented undilated fractal 

dimension of the built-up surface areas of a settlement. It was found that values of D
Surf-

dil0
 close to 2.0 represented homogeneity while D

Surf-dil0
 close to 1.0 corresponded to 

accentuated street/ribbon village patterns (more dendritic in nature) (Thomas, 

Frankhauser, et al., 2008).  These authors focused on edge patterns of settlements and on 

comparing urbanization in the central parts of settlements with their peri-urban 

counterparts on the urban fringe. The authors used ancillary socio-economic information 

to include land rent and median income.  High rent and high income were proxies for 
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higher socio-economic status in census units called communes in Belgium. However, 

their analysis was applied to a first world country and was not tested in developing cities.  

One additional fractal-related study of urban morphology found higher fractal 

dimension of the urban surface near the city center, suggesting that the city center is more 

“homogeneous and densely built” (De Keersmaecker, Frankhauser, & Thomas, 2003). A 

measure of diversity proposed that “housing in the periphery is not planned and its 

structure is spatially more heterogeneous” with lower fractality (De Keersmaecker et al., 

2003).  Their work was also applied to a first world country where the pattern in the city 

center resulted from a greater degree of urban planning and regularized spatial 

arrangement, and could therefore be described as more homogeneous. It is interesting to 

note that in Brussels, higher rents are associated with peri-urban areas (De Keersmaecker 

et al., 2003). This is the reverse of the Latin American city model mentioned previously.  

Fractal analysis of urban areas has thus been applied at the city level and found to be 

higher in urban first world regions, but there is no mention of its use in developing cities.  

Another scale-related measure found in the literature is lacunarity. Where fractal 

shapes are a measure of self-similarity at all scales, lacunarity is expected to change by 

scale, and is roughly described as a measure of image „gappiness‟. Lacunarity has been 

applied specifically to model the pattern of informal settlements. 

Lacunarity of Settlement Structure. 
 

 Lacunarity, represented as Λ, is derived by comparing built-up areas of different 

types of settlements.  Simply stated, lacunarity measures gaps that vary by scale, and is a 

measure of translational or rotational invariance or heterogeneity in an image. Lacunarity 
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supplements fractal dimension to characterize settlement patterns and has been used in 

the literature to evaluate informal settlement housing, to compare  neighborhood racial 

segregation, and to determine whether it can help improve classification accuracy (Filho 

& Sobreira, 2005; Filho & Sobreira, 2007; Filho & Sobreira, 2008; Junior & Filho, 2005; 

Wu & Sui, 2001; Myint et al., 2006).  After converting an image to binary (black and 

white) so that built-up areas or housing become foreground pixels (white), lacunarity is 

used to identify the degree of heterogeneity or homogeneity found in an image (Owen, 

2011). Additionally, lacunarity has been applied to grayscale images. This requires 

greater computing power but may not necessarily provide better results. In a general 

sense, lacunarity represents the variation in foreground pixel density over various box 

sizes moving over the image window (Karperien, 2007).  

The most-studied lacunarity algorithms include the Gliding Box algorithm and the 

Differential Box-Counting (DBC) algorithm.  Originally, the gliding box algorithm was 

recommended over the box-counting method in areas with limited data samples when 

evaluating geochemical data as multifractals (Cheng, 1999).  In contrast, the DBC 

algorithm was found to correctly classify 90% of image sub-scenes in the region of 

Recife, Brazil as informal settlements, versus only 80% correctly identified using the 

Gliding Box algorithm (Filho & Sobreira, 2008). These image sub-scenes are rectangular 

in shape, and do not follow the natural irregular contours of settlement boundaries.  In 

other work, an “inhabitability index” of settlements in Brazil was developed that 

concluded the DBC algorithm applied to binarized Quickbird images derived from 

greyscale was best able to discriminate texture in urban areas of differing inhabitability 
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conditions (Filho & Sobreira, 2007).  In that case, slum areas exhibited lower lacunarity 

values resulting from stated “lower permeability” and lower separation of structures, or 

less “gappiness”.  The authors assigned an inhabitability index based on socioeconomic 

values of a census region‟s central pixel, aggregated to the geographic coordinates of its 

regional capital, and then developed a kriged surface. This artificially assumed that 

economic status as a measure of inhabitability can be derived from census data that have 

been aggregated to a reporting point. It also assumed that inhabitability is inversely 

proportional (to a scaling factor) to distance from the central pixel, but that inhabitability 

is also related by proximity to a nearby capital‟s mean socioeconomic level.  Small 

samples were then selected randomly and assigned high or low inhabitability based on 

the kriged values they overlaid. The samples were histogram-equalized and converted to 

binary. The authors did not classify the built and non-built environments, which could 

potentially have an impact on ability to delineate urban features. Although this novel 

method is interesting in its use of lacunarity to evaluate urban texture, the kriged 

inhabitability index may not serve as a true proxy for socio-economic status (SES) 

because it is unclear whether SES is related spatially to the centroid of the census unit. 

Lacunarity has also been shown to vary by scale and by settlement type using 

extracted building shapes in rectangular-shaped image subsets (Junior & Filho, 1997).  

Higher lacunarity values were reported in the more regularized settlements found in the 

city center and not the squatter/informal settlements (Junior & Filho, 1997).  Myint et al. 

(2006) reported a different result, finding higher spatial heterogeneity, as expected in 
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informal communities, resulted in higher lacunarity values.  The conflicting results found 

in the informal settlement lacunarity literature underscore the need for further study. 

Object-based Image Analysis and Building Feature Classification 
 

The study of the urban form, or urban morphology theory, developed historically 

using the lower spatial resolution imagery of Landsat TM (30m) and SPOT-HRV (20m) 

sensors during a period when pixel-based analysis was the focus and multiple small 

informal dwelling structures fit into a single pixel. Imagery available from these sensors 

contributed to the study of built-up areas or urban agglomerations and their growth 

(Aplin, 2003; Wilson, Hurd, Civco, Prisloe, & Arnold, 2003; Hofmann, 2001) and were 

measured as clusters of development (Weber & Puissant, 2003) and not as individual 

feature objects.  The pixel-based approach for the study of informal settlement built-up 

areas has now given way to the object-based approach (Hurskainen, 2004).  The 

availability of very high resolution (VHR) satellite imagery such as DigitalGlobe 

Quickbird (0.6m panchromatic), GeoEye-1 (0.4m panchromatic), and IKONOS (4m) has 

enabled greater focus on object-based image analysis, or OBIA (Hay & Castilla, 2006; 

Blaschke & Lang, 2006) that identifies discrete features such as buildings, roads (Lopez-

Ornclas & Flouzat, 2008) and vehicles at sub-meter spatial scales (Marangoz, Oruc, & 

Buyuksalih, 2004).  The ability to extract objects and measure their relationships can 

offer valuable information for the integrated study of informal settlements, but limitations 

mainly deal with excessive clutter and heterogeneity of such settlements, as illustrated in 

Figure 6. 
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Figure 6 Informal Settlement Clutter, La Limonada slum, Guatemala City (Evertsz, 2009) 
 

Buildings are the minimum mapping unit of an informal settlement, and their 

extraction has been modeled through energy functions called „snakes‟ (Rüther, Martine, 

& Mtalo, 2002; H.-Y. Li, Wang, & Ding, 2006; Mayunga, Coleman, & Zhang, 2010) or 

shadows (Baltsavias & Mason, 1997) and with digital surface models in the 

determination of building heights to estimate and characterize slum populations (Galeon, 

2008; Qadeer, 2000).  A foundational work by Baltsavias and Mason (1997) spurred 

research on informal settlement measurement and modeling by using aerial half-meter 

film-based photographs of informal settlements in South Africa that were georectified by 

their roof corner geometries (Baltsavias & Mason, 1997). The authors used cues in object 

space (elevation contours and shadows) to extract the outlines of informal settlement 

shacks and then hypothesized their height. The authors‟ list of common properties of 
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informal settlement dwellings in Cape Town, South Africa included the following: 

 

 Single storied structures with primarily flat roofs (very 

few hip roofs) 

 Simple geometries (85% of dwellings were 4-sided and 

only 15% 6-sided or more) 

 Roof corner geometries deviating from orthogonality by 

30° or more 

 Small size (approximately 4 x 4m) with smaller-sized 

outhouses 

 High diversity and texture of construction materials 

(e.g. plastic, iron sheeting, timber) with variable 

textures and colors for individual dwellings and for the 

settlement area in general 

 High building density with only 2-3m separation  

 General lack of vegetation 

(Baltsavias & Mason, 1997) 

 

To date, no work has attempted to quantify the effectiveness of these or similar 

attributes collectively in a manner that correctly identifies settlement type.  The authors‟ 

stated goal was to map the settlement areas and assess the utility of a particular film-

based camera product for photogrammetric mapping of the informal dwellings within a 

neighborhood.  This effort was one of the few early ones applying remote sensing to the 

study of informal settlements using aerial photography – considered a very costly means 

of measuring the settlements compared to satellite-derived products (see also: Holz & 

Huff, 1973).  Interestingly, Hofmann compared the performance of IKONOS and 

Quickbird to evaluate differences between the informal settlement areas and the rest of an 

image scene in Cape Town, South Africa (Hofmann, 2001).  His study is one of the 

earliest object-based image analyses of informal settlements. The data were further 

analyzed by Hofmann et al. (2008) using newly-available object-based measures 
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(Hofmann, Strobl, Blaschke, & Kux, 2008). Table 5 summarizes object characteristics of 

the Quickbird data that were segmented with image feature extraction software. 

 

Table 5  Object Measures for Informal Areas vs. Whole-scene (Hofmann et al., 2008) 

Mean Metric Type Informal Settlement Value Whole Scene Value 

Object Size 15m
2
 25m

2
 

Length (m) 6.47 7.73 

Width (m) 3.78 4.61 

Border Length 21.56 25.57 

Asymmetry 0.56 0.55 

Mean NIR 506.99 553.94 

StDev Red Band 67.46 51.7 

 

From a purely object-based approach, the informal settlement dwelling objects were 

smaller in all dimensions. The mean near infra-red (NIR), a good indicator of vegetation, 

was lower in the informal areas, and the standard deviation of the red band was also 30% 

higher in the informal parts of the scene compared to the whole scene.  If reliable 

techniques of building footprint extraction (e.g., polygon boundaries) existed at the time, 

the characteristics in Table 5 could have been enhanced with more precise measures of 

edges, house orientation to road segment, and heights of dwelling structures that would 

likely vary considerably between informal and formal areas. Nevertheless, a major 

limitation in Hofmann is the authors used fuzzy logic to negate „informal‟ in order to 

classify „formal‟ (Hofmann et al., 2008). This approach did not compare pre-defined 

informal and formal settlement areas within the same image scene, and was therefore not 

suitable for the purposes of settlement differentiation. Like all other research reviewed 

here, they also measured rectangular settlement areas and did not follow the contours of 
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actual residential settlement boundaries that may have produced different results. 

 A snake contour on smoothed (filtered) Quickbird imagery was used to extract 

building outlines in informal settlements in Tanzania (Mayunga et al., 2007). The semi-

automated approach was focused on comparison of building extraction models using an 

energy minimization function to estimate outlines for each building whose approximate 

centroid was manually seeded before the algorithm was run. The authors demonstrated a 

32% improvement over time spent performing manual building digitization and still 

about 15% of buildings extracted from aerial orthoimagery of the study area could not be 

extracted from Quickbird imagery.  Most building extraction research is only successful 

in very small image sub-scenes with homogeneous characteristics, or requires pre-

seeding where an operator selects the estimated centroid of a building, followed by a 

region-growing technique that detects the outer edges. The Mayunga (2007) study 

extracted only 78 buildings.  Most informal settlements contain hundreds or thousands of 

dwellings and a great deal of clutter and continuous rooflines where multiple discarded 

materials comprise a single roof. Such image characteristics tend to confuse automated 

feature extraction tools and classifiers. 

In a subsequent study the prior energy function was modified to use a radial 

casting algorithm to define building edges in informal settlements of Tanzania, but each 

individual building still required manual seeding of its approximate centroid, and the 

authors acknowledge that research is still needed to clearly delineate building corners 

(Mayunga et al., 2010). The major drawbacks to the building extraction approach: 
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1) complex post-processing required to split improperly-merged buildings 

into the appropriate separate structures 

2) smoothing of pixilated shapes after the extraction process to produce the 

expected orthogonal or semi-orthogonal corners, and  

3) inability to determine correct exterior wall locations beneath continuous 

rooflines  

4) locally over-trained classifiers not appropriate for other images 

 

The majority of prior research regarding dwelling extraction has been applied in small 

areas of 100-200m
2
 and not entire residential areas, making this method less useful for 

complex urban environments of diverse settlement typologies. 

Informal settlements have also been classified according to the spectral properties 

of roofs, including plastic sheeting and reinforced concrete in Dehradun, India (Jain, 

2007) and zinc metal sheeting in Bangkok (Thomson & Hardin, 2000).  The studies 

identifying roofing materials common to informal housing did not also compare roofing 

materials common to formal housing, and could therefore not be used to distinguish two 

settlement types at opposite ends of the scale. A further complication is that roofing 

materials are part of the vernacular architecture of a neighborhood or city and vary 

regionally depending upon the self-help materials available during home construction 

(Kellett & Napier, 1995).  This was evident in a 1991 field survey of informal settlements 

in Guatemala that reported wall materials varied by age of settlement. In the first year of 

settlement, perishable waste materials and plastic predominate, while wood, bark and 

corrugated iron occur most often in years 1 through 10 of inhabitance (Valladares Cerezo, 

2003). In the Guatemala informal settlement region surveyed by Valladares Cerezo 

(2003), concrete block, brick and adobe is found most often in settlements greater than 

ten years old. Corrugated metal was found in 86% of homes, with the remaining roofs 
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comprised of waste materials, clay tiles or concrete in the oldest homes.  Building 

construction and roof materials are a key component in understanding informal 

settlements from an imagery standpoint, but their analysis may require accurate building 

footprint extraction as a precursor.  A separate method that has been used to improve the 

extraction of discrete objects such as dwellings is mathematical morphology. 

Mathematical Morphology and Image Texture Operators 
 

Mathematical morphology and image texture operators are two methods that 

transform the original image. Mathematical morphology is applied to improve extraction 

of image elements, while measuring texture evaluates the change in spectral intensity of 

regions within the scene. These methods use either a kernel or matrix that moves through 

the image - a structuring element for mathematical morphology, and a moving window 

for co-occurrence texture operators. The field of mathematical morphology is well-

summarized by Sulik and Edwards (2010): 

“Morphological operators are based on set theory and are similar to smoothing 

filters. However, unlike […] filters that act on spectral properties, morphological 

filters modify the spatial properties of foreground pixels (set A) relative to 

background pixels (set B). Morphological transformations are applied through a 

structural element that dictates the connectivity (topology) of pixel groups from 

set A that are allowed to pass through the filter. The connectivity within these 

structural elements defines what information is retained from the original image” 

(Sulik & Edwards, 2010, p. 2527) 
 

Mathematical morphology pre-processes the image to create a new binary image from the 

original. It has been used to improve object segmentation (Liu, Wang, & Luan, 2007;  

Pesaresi & Ehrlich, 2009; Jin & Davis, 2005), and has also been applied specifically to 

informal settlements (Sulik & Edwards, 2010; J. Li, Li, Chapman, & Rüther, 2005; 
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Lefèvre, Weber, & Sheeren, 2007). Morphological properties of settlements that have 

been studied include area, perimeter and compactness. Research into the use of 

morphological operators to examine or extract structural relations using some 

combination of adjacency, containment, distance, or direction has also been attempted by 

(Z. Li, Yan, Ai, & Chen, 2004; Pesaresi & Ehrlich, 2009; Jin & Davis, 2005; Lefèvre, 

Weber, & Sheeren, 2007;  Pesaresi & Benediktsson, 2001; Klaric, Matt, Scott, Grant, 

Shyu, Chi-Ren, & Davis, Curt, 2005).  Morphological operators of opening, closing, 

dilation and erosion are applied to binary images using a structuring element to improve 

extraction of features.   

One effort utilized an iterative histogram clustering to identify a cluster‟s mode, 

selecting the highest local maxima compared to neighboring values, then proceeding to 

the next cluster until all pixels in a greyscale image were assigned to a specific cluster, 

creating a binary image (Lefèvre, Weber, & Sheeren, 2007). Sets of binary images were 

thus produced for further filtering, but heterogeneous roofs (prevalent in informal 

settlements) complicated the clustering mechanism. Subsequently, the opening 

morphological operator was applied using a variable size and shape structuring element 

to remove possible non-building objects, followed by the building extraction process on 

the binary images. Their work was performed on regular-sized and shaped buildings from 

Strassbourg, France and not an informal settlement. The authors acknowledged that 

buildings located close together may have confused the clustering step by creating 

improper aggregation into a single building object. Morphological operators have been 

used to perform image segmentation to classify and then extract housing (Lopez-Ornclas 
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& Flouzat, 2008). Hofmann et al. (2008) performed an iterative rule-based semi-

automated image segmentation and classification of housing objects and confirmed that 

the need for expertise in remote sensing, image analysis, and image processing make the 

object extraction process a non-trivial affair (Hofmann et al., 2008).  Mathematical 

morphology does not consider the heterogeneity that exists by feature class, such as 

housing, roads, and soil, or the inter-class variation.  The role of mathematical 

morphology is limited to improving the segmentation of image structural components, 

and is commonly applied to a single feature class, such as housing. 

A related thrust of the literature focuses on variation of local texture in slum 

areas, with image texture defined as repetition of image elements (usually spectral 

intensity) in a local spatial domain. Texture analysis has been performed using grey level 

co-occurrence matrices (GLCM) to determine if texture variation helps identify informal 

settlement regions in an image scene (Haralick, Shanmugam, & Dinstein, 1973; Stasolla, 

Mattia & Gamba, Paolo, 2007; Pesaresi & Benediktsson, 2001).  Stasolla et al. (2007) 

reported preliminary results that the GLCM homogeneity texture measure of SPOT 

imagery in an arid environment in Sudan is effective for the purpose of extracting built-

up areas considered to be informal or slum (Stasolla, Mattia & Gamba, Paolo, 2007). 

Figure 7 displays the two settlements, showing the predominance of soil and the relative 

lack of vegetation, but also a clear difference in structural pattern between the two insets. 
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Figure 7  Informal settlements and refugee camps using GLCM texture measure (Stasolla & 

Gamba, 2007). 

 

 

The authors found the GLCM texture metrics performed better in the formal area 

than the informal, but problems resulted in distinguishing between housing and 

rocks/shrubs using the SPOT-5 dataset where the pixel size was too large to extract 

individual dwellings. The value of the Stasolla & Gamba (2007) research is that it 

underscores the need for very high spatial resolution imagery, and demonstrates the 

usefulness of the GLCM texture measures for informal settlement analysis. It also shows 

semi-automated and knowledge-based approaches are needed to better accommodate the 

great variety of informal settlement typologies, from those in arid desert-like 
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environments such as Sudan where their research was conducted, to more complex highly 

urbanized areas such as in Rio de Janeiro, Brazil, or Guatemala City. Despite the fact that 

the Stasolla & Gamba (2007) research was mainly focused on extracting informal areas 

by exploiting differences in GLCM homogeneity texture, the work was one of the few 

that acknowledged the need to evaluate differences in settlement patterns between 

regularized, gridded settlements, and more informal random settlements. Their research 

in an arid environment also confirmed that soil and vegetation were important to the 

classification.   

The primary intent in Stasolla and Gamba (2008) was to apply indices of spatial 

autocorrelation (Morans Ii, Getis-Ord Gi, and Geary's ci) as an approach to classifying 

built up areas of formal and informal settlements using radar data. The authors compared 

a formal settlement (Pavia in Northern Italy) to a starkly different informal settlement 

area (Al Fashir, Northern Darfur, Sudan) on another continent using fine beam single 

polarization 6.25m RADARSAT and ALOS PALSAR radar images respectively. The 

Sudan site contained refugee camps and rocky areas on the outskirts of the city which 

produced signatures that yielded confusing results and made the settlements hard to 

detect. RADAR images rely on the scattering properties of varying object heights for 

detection, but due to the low spatial resolution, this imagery type was not useful to 

distinguish individual dwellings, only built-up areas. The authors again tested the GLCM 

homogeneity texture operator which did not satisfactorily identify built up areas from the 

radar data (Stasolla & Gamba, 2008).  
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It is clear from more recent research using higher resolution imagery that 

structure, soil, and vegetation, in addition to housing are foundational to the measurement 

of informal settlements. 

 
Socioeconomic Measures and Landscape Analysis 
 

In one study a complex processing framework was developed to extract informal 

settlement areas from Delhi, India using Quickbird VHR imagery with the objective of 

rating the quality of population density indicators in order to estimate water consumption 

and waste water disposal needs (Niebergall, Loew, & Mauser, 2007).  The house mean 

size (area) and the degree of imperviousness were used to feed into a decision 

framework. To accurately measure these indicators, intense field research was conducted 

to sample and identify housing and settlement types, water-related structures and distinct 

features in situ that could be identified in the Quickbird scenes. Family size and water 

consumption survey responses were gathered as well. The authors sought to integrate 

objects from the segmentation into a GIS to evaluate vulnerability of informal settlements 

within mega cities, and to determine if their methods could derive socio-economic 

indicator values indirectly via image analysis.  The authors' test sites were selected for 

their high socio-economic gradient - settlement structures from upper and middle class 

residential areas were adjacent to informal settlements.   

Quickbird imagery was pan-sharpened followed by semi-automated supervised 

classification of residential structures (imperviousness), roads (soil), vegetation (using the 

Normalized Difference Vegetation Index, or NDVI), and shadows. The authors found 
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that texture was an essential parameter in the detection of informal settlements, and that 

classification at varying scales enabled them to extract small features such as houses and 

larger features such as streets. Using some amount of trial and error they determined the 

appropriate classification level for each feature, calibrated the rule set on the training site, 

and integrated the survey results with the imagery analysis to estimate urban vulnerability 

to unmet water resource needs. 

This research is significant because it sought to determine if socio-economic 

indicators can be measured from imagery. Household and door-to-door questionnaires 

increased the time and effort to identify living quarters of vulnerable populations. The use 

of measures such as house size in m
2
, imperviousness, and NDVI underscores the 

importance of these remote sensing indicators to measuring informal settlements.  

However, the research did not identify specific differences between settlement types, 

despite their juxtaposition in the same image scene. 

The potential for informal settlements to degrade the surrounding environment 

was investigated using variables quantified through prior research on secondary data, 

field work, air photo interpretation and GIS techniques (Zeilhofer & Topanotti, 2008). 

The use of detailed municipal planning data enabled the development of very specific 

indicators. Indicators related to slum housing included distance to street, amount of 

greenspace or public squares, and sidewalks. This work is useful if extremely detailed 

urban planning datasets are available, but also emphasized the importance of measuring 

green space in relation to street networks and housing topologies (Zeilhofer & Topanotti, 

2008). 
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Slum areas, as well as formal settlements have been modeled using algorithms 

developed for landscape analysis and borrowed from the study of patch dynamics: area, 

density, form, edge, core area, proximity, subdivision and diversity (Lang, Walz, Klug, 

Blaschke, & Syrbe, 2009; Sudhira, Ramachandra, & Jagadish, 2004; Yeh & Li, 2001).   

Entropy of housing patches was studied with entropy given as Hn =  −Pi loge(Pi) where; 

Pi is the proportion of the variable in the ith zone and n is the total number of zones (Yeh 

& Li, 2001).  The result ranges from 0 to log(n) where a compact distribution of patches 

is represented by values closer to 0.  Entropy, patchiness, and density/growth of built-up 

areas were measured in other research (Sudhira et al., 2004). Although Sudhira et al. 

(2004) applied previously developed metrics for landscape analysis to characterize the 

sprawl growth in Mangalore, India, they did not focus specifically on informally-settled 

or slum areas.  

In their research, similar buildings were segmented, classified and clumped into a 

homogenous landscape patch. Then patch types were classified using maximum-

likelihood metric into the five classes of built-up, vegetation, water, agricultural land and 

open land.  A measure they called „patchiness‟ clumped all housing together into an 

aggregated patch and then compared patches to each other (Sudhira et al., 2004).  The 

major limitation in the Sudhira et al. (2004) study was the lack of evaluating the 

relationship between the housing classes and the remaining classes that would have 

provided the needed context to the interrelationships between urban feature areas. Other 

research has emphasized multivariate methods that include vegetation patches, 
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anthropogenic features, roads, and water bodies provide useful predictive power and 

contribute to model strength (Owen, 2009). 

Table 6 summarizes all of the indicators available in the literature that are useful 

for informal settlement modeling, numbered for reference, including the originating 

author or study. The first 6 indicator classes shaded in gray are directly relevant to the 

current research. Indicator classes 7-14 require extraction of accurate building outlines, or 

ancillary data on locations of natural and man-made hazards or locations of social 

services (hospitals, schools, government services, markets), and will not be used for this 

dissertation due to the limitations previously listed: 1) complex post-processing required 

to split improperly-merged buildings, 2) smoothing of pixilated shapes needed after 

extraction, and 3) inability to determine correct exterior wall locations beneath 

continuous rooflines. 

 

Table 6 Summary of Indicators Used in Literature to Evaluate Informal Settlements 

# 
Indicator Description – Expected Informal 

Values 

Author/Study 

1 

Lacunarity of 

Housing 

Structures 

Heterogeneity or „gappiness‟ of empty 

spaces (lacunae) between built-up 

structures; degree of rotational or 

translational invariance. 

Junior & Filho 2005; Weber & 

Puissant 2003; Filho & Sobreira 

2005; Filho & Sobreira 2008; 

Owen, 2011 

2 

Vegetation Lack of vegetation per measured 

housing area. In Guisti de Perez et al. 

(2008), squatter settlements typically 

have 5-10% public spaces whereas 

planned settlements have 30%.  

Weber & Puissant 2003; Guisti de 

Perez & Perez 2008; Niebergall 

2007; Baltsavias & Mason, 1997; 

Griffin & Ford, 1980; Owen, 2011 

3 

Road Segment 

Type and 

Materials 

Elongation of roads, more regular road 

segments (although Hofmann, Strobl 

et al. (2008) do not define meaning of 

„regular‟).  

Hofmann et al., 2008; Kux & 

Araújo 2008; Sliuzas et al., 2008; 

Strobl et al., 2008 

4 

Road 

Accessibility 

Measures 

Road width too narrow for vehicular 

traffic in informal areas.  

Erickson & Lloyd-Jones, 1997; 

UN Habitat Expert Working Group 

on Slums – Breakout Group A – 

Spatial Criteria and Indicators.  
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5 
Slope of Terrain Settlements built on gullies & ravines, 

unstable soils. 

Valladares Cerezo, 2003; 

6 

Texture Measures 

(Entropy, 

Homogeneity) 

Entropy - where dwelling areas 

merged into agglomerated housing 

patches. 

Yeh & Li, 2001; Stasolla & Gamba, 

2007 

7 

Proximity to 

hazards 

Hazards include floodzones, 

hydrologic setbacks, 

landslide/earthquake, garbage-

mountains, high industrial pollution, 

proximity to airports, energy 

transmission lines, major 

transportation corridors; areas 

susceptible to debris flows, rock and 

block falls, mass movements  

Guisti de Perez & Perez 2008; 

Sliuzas et al., 2008; Duvadi, et al., 

ACRS 2002; Dubovyk et al., 2011 

8 

Consistency of 

housing 

orientation 

Borrowing from computer vision, the 

angles and lengths of line segments 

characterize informal settlements  

UN Habitat Expert Working Group 

on Slums, Breakout Group A – 

Spatial Criteria and Indicators; 

Cheriyadat, Vatsavi & Bright, 2010.  

9 

Proximity to City 

Center and 

Services 

Network analysis of distance to city 

services, market area or city center – 

derived from research on access to 

healthcare. Requires prior point 

locations of schools, community 

centers, health facilities, market areas. 

UN Habitat Expert Working Group 

on Slums, Breakout Group A – 

Spatial Criteria and Indicators; 

Griffin & Ford, 1980; Owen et al., 

2010 

10 

Dwelling Size Mean, R
2
 of extracted dwelling sizes; 

dwellings between 16m
2
 and 40m

2
 

classified as slum (15m
2
 mean 

building size in slums of Cape Town) 

 

Junior &  Filho 2005; Ioannidis et 

al 2009; Martínez et al., 2008; 

Kemper & Pesaresi, 2008a; 

Baltsavias & Mason, 1997; Griffin 

and Ford, 1980; Hofmann et al., 

2008 

11 

Dwelling Shape Height of dwellings measured by 

image shadows, or radar/LIDAR; 

simplicity of shape (4-sidedness). 

Baltsavias and Mason, 1997; 

Hofmann et al., 2008; 

12 

Dwelling 

consistency of 

orientation; 

Dwelling road  

setback 

Precarious house placement. UN Habitat Expert Working Group 

on Slums, Breakout Group A – 

Spatial Criteria & Indicators; 

Zeilhofer and Topanotti 2008 

13 

Building Density 

– Dwelling  

separation 

Dwelling features extracted as 

polygons –nearest neighbor distance 

using centroid of dwelling polygons. 

Weber & Puissant, 2003; Baltsavias 

and Mason, 1997 

14 

Roofing Materials Spectral properties of informal roofing 

materials, roof texture has more 

heterogeneity.  

Weber a&Puissant, 2003; Thomson, 

2000; Hofmann ,2008; Baltsavias & 

Mason, 1997 

 

Relationship to Formal Settlement Research 
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To understand how metrics previously developed for formal communities 

embodied by suburban sprawl might inform this research, an evaluation of related 

literature was conducted. Extensive research has been directed at characterizing sprawl as 

an undesirable settlement type in formal settlements of developed countries (Sutton, 

2003; Ewing, Pendall, & Chen, 2002; Hasse, 2002; Transportation Research Board, 

National Research Council, 1998; Ewing, Schmid, Killingsworth, Zlot, & Raudenbush, 

2008; Glaeser & Kahn, 2003), and much work has been applied to the development of 

techniques to map and measure sprawl aided by GIS (Hasse, 2002; Hasse & Kornbluh, 

2004; Forsyth, Schmitz, Oakes, Zimmerman, & Koepp, 2006; Galster et al., 2001; 

Wilson et al., 2003; Epstein, Payne, & Kramer, 2002; Ewing et al., 2002; Fang, Liu, 

Hong, & Qing, 2007; Zeng, Sui, & Li, 2005).  Quantitative indicators of sprawl in formal 

settlements have already been developed from remote sensing datasets. Similar to 

informal settlements, sprawl is also undesirable and negatively impacts residents‟ 

wellbeing.   

A major premise of this dissertation research is that indicators for informal 

settlements can be adapted from sprawl metrics. Some results will differ between 

informal and formal (sprawl) settlements due to the variation of structural compactness in 

informal settlements and dispersion in formal settlements.  At the end of this section, the 

settlement measures found in the formal settlement literature as they relate to sprawl are 

summarized and metrics for informal settlements are recommended.     

Formal Settlement Literature Review 
 

The landscape of sprawl has four main characteristics (Ewing et al., 2002): 
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 Population is widely dispersed in low-density 

development 

 Housing areas are rigidly separated from shops and work 

facilities or locations 

 The road network is characterized by poor accessibility 

and expansive block sizes 

 There exists a lack of defined and thriving activity centers 

 

The result of these conditions is a lack of efficient transportation, lack of variety 

in housing options, and difficulty in walking from housing areas to activity centers. In 

effect, sprawl causes isolation and inefficient use of transportation and housing space. It 

is argued here that informal housing causes the same isolation and lack of access. But 

with informal housing the reasons are instead due to absence of land tenure, absence of 

housing durability, insufficient living area and lack of sanitation and clean water.  Similar 

to much research on informal settlements, measuring sprawl requires the evaluation of 

built structures, roads and land use / land cover that are best extracted using remote 

sensing combined with GIS techniques (Weng, 2002; Hasse & Lathrop, 2003; Wilson et 

al., 2003; Epstein et al., 2002).  Five major contributions to the development of standard 

measures of sprawl aided by GIS and remote sensing are described next (Hasse, 2002; 

Hasse & Lathrop, 2003; Forsyth et al., 2006; Ewing et al., 2002; Fang et al., 2007; 

Wilson et al., 2003).  

Hasse (2002) developed specific spatial metrics of sprawl in the US state of New 

Jersey.  Of the thirteen measures developed, five could be applied or adapted to informal 

settlement morphology to assess growth, pattern and severity. The urban density index 

measures the space between houses. Contrasting to sprawl, the space should be extremely 

small in slum areas. The community node inaccessibility index measures mean distance of 
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housing communities to schools, health care, post offices and supermarkets. In the 

context of slum areas, this index could be adapted to instead measure the shortest path 

that also accounts for road surface (paved, unpaved and trails) to medical facilities, 

markets, and schools, or the city-center as a surrogate.  The loss of important land 

resources indicator used to measure loss of agricultural, forested, or sensitive habitat 

areas can be adapted to measure proximity to environmental hazards, creating greater risk 

for the population. This indicator can be combined with one that measures encroachment 

on sensitive open space to reveal how much vegetation cover has been lost to informal 

housing. Per-unit impervious surface is another indicator that can be adapted by 

measuring ratio of paved to unpaved roads and the ratio of housing to roads, and assumes 

limited road accessibility per unit of housing.  The per-unit impervious surface indicator 

can be adapted to measure other road characteristics such as width, efficiency, relative 

asymmetry, etc.  The Hasse (2002) indicators could thus provide a good start for 

measuring informal settlements, but would require extraction of discrete house outlines 

and prior knowledge of spatial location of city centers, schools, and health facilities. A 

focus on measuring impervious or built-up features, roads, and the areas in-between 

would therefore be more appropriate for the current research. 

Forsyth et al. (2006) sought to develop measures of sprawl for the purpose of 

assessing how the built environment affects health. Forsyth‟s research is applicable 

because of the development of indicators that measure walking accessibility using the 

number of 4-way intersections and the number of access points. Walking is critical in 

slum areas due to severely reduced automobile ownership. In the Forsyth study, four-way 
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intersections were measured as a representation of a gridded street pattern, and it was 

hypothesized that accessibility improves as node valence increases.  Node valence is the 

sum of the number of road segments converging to create a node. In other words, a 1-

valent intersection is a dead-end or cul-de-sac, also known as a dangle in the literature 

(Cao, Song, Wang, & Wang, 2010; Tresidder, 2005).  Access points are points of 

intersection between paved (non-highway) roads and housing site boundaries. The 

number of access points measures the amount of connectedness of an area to its 

surroundings. Although adapting such measures to informal settlements is possible, the 

formal planning process in developed countries that prevents housing along major 

highways may be non-existent in many third world or developing countries, forcing a 

qualitative, site-specific identification of access points.  

The Ewing (2002) measures of sprawl benefited from a rich source of statistical 

data available in the United States from the Census Bureau and other sources. Ewing did 

not rely on remote sensing per se, but did focus on the level of isolation resulting from 

sprawl. In effect, this isolation of the residential areas from important community nodes 

could be modeled a number of ways in informal areas. The value of the Ewing (2002) 

research is in the formal definition of sprawl supported by empirical research. Three of 

Ewing‟s four definitions of sprawl are applicable to informal settlements: 

 

 

1) Housing areas rigidly separated from shops and 

work facilities or locations, 

2) Road network with poor accessibility (informal 

areas have unpaved dirt roads that become 
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impassible during certain times of year, are limited 

in length compared to number of structures 

supported, often have inadequate width to allow 

automobile passage), and 

3) Lack of defined and thriving activity centers co-

located with housing areas (isolation from 

infrastructure services, parkland, and recreation). 

 

Fang et al. (2007) developed geospatial measures of sprawl in rapidly-growing 

Beijing, considered to be transitioning from a third world to a first world city (Fang et al., 

2007). The authors developed an integrated urban sprawl index using several GIS-based 

data sources. Specifically, the authors sought to examine three major areas: 

1) fragmentation and irregularity of landscape 

(discontinuous development) 

2) low efficiency of development 

3) negative effects on agriculture, environment, and 

urban living.   

 

We would expect to find fragmentation and irregularity of informal settlements in 

slums, low access to infrastructure (as a measure of settlement efficiency), and negative 

effects on surrounding environment caused by high housing density and lack of proper 

infrastructure that creates a lower quality of urban life. Their measures were grouped by 

Spatial Configuration, Growth Efficiency, and External Impacts as portrayed in Figure 8 

(Fang et al., 2007). 
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Figure 8 Sprawl Measures (Fang et al., 2007) 

 

The spatial configuration indices of Area, Shape, and Discontinuous 

Development, the Growth Efficiency index of Horizontal Density
3
 and the External 

Impacts index of Open Space Impact could be adapted for the assessment of informal 

settlements. The remaining indices would be extremely difficult to measure given the 

lack of ancillary urban planning data and the sparse availability of pre-populated GIS 

datasets in many developing countries.  The Open Space Impact index could be measured 

as a ratio of housing to NDVI, similar to the Haase (2002) indicators that measure 

encroachment onto sensitive open space. We expect to find the open space encroached 

upon by informal settlements to instead represent the less-desirable and more hazardous 

areas. In this way, the external impacts are such that the effects of environmental hazards 

are magnified when adjacent to dense human settlements. 

Wilson et al. (2003) developed an urban growth model to quantify the manner in 

which urban sprawl expands. The authors identified three categories of urban growth: 

                                                 
3
 The Fang et al. (2007) index of vertical density could only be measured with adequate planning data and 

either LIDAR or other datasets able to measure building heights and knowledge of residential vs. 

commercial areas. 
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infill, expansion, and outlying. Outlying urban growth was further divided into isolated, 

linear branch, and clustered branch to study the shape and direction of growth in a part 

of Connecticut.  Again borrowing from landscape patch dynamics and adapting a forest 

fragmentation model originally developed by Riitters et al. (2000), Wilson et al.(2003) 

developed a roving window model to analyze each Landsat pixel according to its 

neighboring pixels and its surrounding landscape that improved upon previous per-pixel 

change classification methods by incorporating a framework of neighborhood pattern 

(Riitters at al., 2000).  The authors used coarse but widely available Landsat data with 

30m pixel size, and acknowledged that “varying the window size influences the scale and 

type of spatial patterns that are subsequently detected and classified” (Wilson et al., 2003, 

p. 280). 

The classification of growth patterns is still an extremely useful means of 

examining the process by which slum areas fill over time. According to Wilson, image 

segmentation and object-based classification can result in under-classification of isolated 

growth areas (Wilson et al., 2003). They also cautioned that extensive filtering or other 

methods that decrease heterogeneity of the urban areas may result in over-classification 

of linear branch and under-classification of the clustered-branch class because interior-to-

patch change pixels necessary for class clustering may be under-represented.  To apply 

these methods to informal settlements, one would first locate outlying areas containing 

new land invasions, and then measure infill to understand how the settlement, once 

established, grows organically.  
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 By relying on multi-temporal datasets, Wilson‟s methodology is useful to 

evaluate the settlement process together with pattern, but the use of moderate resolution 

imagery (Landsat) obscures smaller patches and road features, and is therefore 

insufficient.    

Remote sensing methods have also been used to inform quality of life (Owen, 

2011). Table 7 lists related remote-sensing based indicators summarized by the Cowen & 

Jensen indicators (2001), with a column added to suggest adaptation for informal 

settlement modeling: 

 

Table 7 Jensen & Cowen Quality of Life Indicators with Informal Settlement Modeling 

Quality of Life Indicator Measurement Can be Used for Informal 

Settlements? 

Building size m
2
 Yes – need building object shape 

Lot Size acres or hectares Would require cadastral data. 

Presence of Swimming Pool m
2
 Depends on climate.  

Vacant lots per city block Integer Would measure vacant buildings; 

vacant lots rare in informal 

settlements 

Frontage m
2
 Would require cadastral data 

House distance to street Linear distance Yes – need building object shape 

Building density Nearest Neighbor Distance Yes – need building object shape 

Presence of Driveway % of all dwellings Would require cadastral data 

Presence of Garage % of all dwellings Would require cadastral data 

# Autos visible per house Ratio Would require excluding street-

based vehicular traffic.  

Unpaved Roads % of all roads Yes – spectral differences in road 

surface materials needed 

Road Width Mean width per segment using 

station points 

Yes – need road classified as object 

Vegetation health NDVI or Vegetation Ratio Index Yes 

Proximity to manufacturing 

and retail activity 

Linear distance Yes, Industrial facility proximity, 

requires feature point data 
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A close relationship exists between quality of life indicators and possible indicators of 

informal settlements.  Table 8 summarizes the indicators and their literature source, and 

suggests adaptations for distinguishing informal from formal settlement types. 

 

Table 8 Summary of Sprawl Indicators adaptable to Informal Settlement Measurement 
Sprawl Indicator How to Measure in Informal Settlements Source 

(a) Urban Density Index 

(b) Horizontal Density 

Distance between houses (nearest neighbor distance 

between houses on same street must be adapted to 

nearest neighbor for slum areas where house 

placement is irregular and not necessarily anchored 

to street frontage) 

Hasse (2002); 

Feng et al., (2007) 

(c) Community Node 

Inaccessibility  

(d) Rigid separation 

between housing and shops 

Distance to community centers (schools, health, 

shopping, market, etc.). Distance using 

transportation network expected to be greater in 

informal settlements. 

Hasse (2002);  

Ewing (2002) 

(e)Loss of Important Land 

resources 

(f)Encroachment on 

sensitive open space  

(g) Open Space Impact 

 

Loss of green space, vegetation indices would be 

low in Informal compared to formal; are measured 

as percent vegetation per settlement. 

Hasse (2002);  

Feng et al., (2007) 

(h)Per-Unit Impervious 

Surface (IS) (includes 

houses & driveways) 

Informal settlements expected to have low per-

dwelling impervious surface, formal would have 

higher per-dwelling impervious surface. Since 

informal settlements rarely have driveways, per-

unit-IS should be adapted to measure 

[roads:housing]  IS. If  roads are all paved, this 

value should be high. If not, this value will be low. 

Calculate impervious surfaces from self-help 

roofing materials. 

 

Hasse (2002) 

(i) number of 4-way 

Intersections 

(j) number of of Access 

Points 

(k) Road Network 

Accessibility 

Node valence + road distance to market centers 

from each household; 

Adapt for impassibility during rainy seasons, 

calculate NSDI (normalized soil difference index) 

and compare to Impervious surface – if soil high 

then roads unpaved – method may not work in arid, 

compacted environments where roads ALL 

unpaved. 

Forsyth et al., (2006) 

Ewing (2002) 

(l)Area 

(m)Shape 

(n)Discontinuous 

development 

Measure size (extent), shape of open spaces, and 

irregularity / heterogeneity of house placement. 

Feng et al., (2007) 

(o)Infill Temporal measure: shows how open space fills 

with housing. A locally random pattern or greater 

Wilson et al., (2003) 
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heterogeneity is expected to describe pattern of 

informal settlement space-filling. 

(p)Expansion Temporal measure: measure expansion of 

settlement or community outer boundary using rate 

over time, and ratio of perimeter to area. 

Wilson et al., (2003) 

(q)Outlying Temporal measure: morphology & directionality of 

areas in the urban fringe. 

Wilson et al., (2003) 

 

Summary of Limitations from Literature Review 
 

Recall the objectives of this dissertation research were to determine which 

foundational measures derived from roads, vegetation, soil, image texture and 

geomorphology can explain settlement structure of residential areas to determine which 

ones are informal and which ones are formal. The need for ancillary datasets limits this 

measurement in data-poor or developing regions worldwide, so the goal was to determine 

what indicators are statistically significant without requiring field survey instruments. 

 Given these objectives, the related limitations of prior research are:   

1) Household surveys are costly, not practical, and the data 

are not readily available or replicable in informal 

settlements of the developing world. 

2) Research has not focused on the differences in settlement 

structure – informal vs. formal/planned, but instead has 

focused on characteristics of slums in isolation. 

3) Most research ignores useful foundational settlement 

characteristics, such as the transportation network, the 

open spaces between dwellings, and features such as soil 

and vegetation, failing to evaluate them collectively. 

4) No applicable remote sensing-based research on informal 

settlements in Central America has been conducted 

 

The reliance on household surveys greatly increases cost and in many cases, risk, 

for those performing the surveys.  In Martínez (2009) GIS was used to analyze intra-

urban inequalities in slum areas of Argentina, but was supplemented with detailed field 
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surveys (Martínez, 2009). Although the research helped quantify the inequalities and 

analyzed sentiment, it is another example of the cost of administering survey instruments 

to inform the GIS analysis, and highlights the increased labor needed to operationalize 

research variables at the household scale. 

Only two remote sensing and GIS studies could be found that compared 

performance of models in informal vs. formal areas in the same study area (Filho & 

Sobreira, 2008; Filho & Sobreira, 2007). However, they were focused on scale-based 

characteristics only. A third effort required household survey data and it did not develop 

indicator variables (Niebergall et al., 2007).  The remaining relevant literature is devoted 

to measuring the characteristics of slums in isolation and does not provide useful 

information on settlement differences. 

Another limitation of past research is that housing is often consolidated into a 

single class, or at best, into high, medium and low density.  By merging all housing 

together into a class without understanding the shape of built-up areas, their relationship 

with vegetation and the interconnected network of roads ignores the interrelationships of 

basic settlement primitives as potentially powerful discriminators.  Instead, informal 

settlements should be viewed collectively in context with their built-up areas, roads, soils, 

vegetation, and topography from which spectral and spatial properties can be derived.  

Prior research also ignored the irregularity of settlement boundaries. The irregular shape 

of residential settlements provides a focused and more nuanced understanding of 

inhabitants in terms of residential accessibility, open space, and feature compactness.  
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Finally, there is also a lack of remote sensing and GIS-based understanding of 

informal settlements in Central America.  By adding Guatemala City to the current body 

of literature, the results could be applied and tested elsewhere in Latin America.  Such 

comparisons may help understand how indicators could vary by terrain, building 

materials, culture, suitability of building plots, and human-environment interactions. 
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RESEARCH METHODS 

Research methods for this study were devised to answer the research objective of 

developing indicators from VHR satellite imagery that differentiate informal from formal 

communities without the need for survey or census data. A multi-stage approach was 

performed to accomplish this objective.  Sampling units were first comprised of the entire 

settlement, defined a-priori as informal (slum) or formal (planned). Second, random sub-

sampling was conducted.  Indicator categories were developed from an exhaustive 

literature evaluation of informal settlement measurement as well as from sprawl 

indicators.  

This section begins with a description and history of the study area, followed by a 

review of the datasets used, and the settlement area delineation methods.  Following that 

is a detailed discussion of the sampling design, indicator categories, and modeling 

methods.   

 

Description and History of the study area 
 

The study area was chosen due to the high percentage of urban slums in 

Guatemala and also due to the availability of high resolution imagery over this specific 

footprint that contained several formal and informal, slum areas.  Neither SPOT nor 

IKONOS imagery was available in this specific area, so Quickbird imagery was chosen.  
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Figure 9 shows the outline of Guatemala‟s international borders and the placement of the 

capital in the southern part of the country.   

 

 

 

 

Figure 10 displays the departamentos, or first level administrative boundaries of 

Guatemala in relation to the image scene, which is positioned in Zona 11 located in the 

western part of the capital departamento of Guatemala, in green.  

 

 

Figure 9 Guatemala City, adapted from Wikipedia. 
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Figure 10  Guatemalan Departamentos with Quickbird image Scene (Owen, K.) 
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Settlement morphology must be understood not only by shape but also by 

historical context.  Guatemala City was originally settled in accordance with the Law of 

the Indies by the Spaniards in 1776 after the old capital in Antigua was partially  

 

 

 

 

destroyed by the Santa Martha earthquakes. According to the law, the city was laid out in 

a gridiron pattern similar to what is shown in Figure 11 with a central square and three 

smaller squares (Valladares Cerezo, 2003).   The Mudejar-influenced houses were 

characterized by a wide doorway with vestibule, a central open patio surrounded by a 

veranda leading to the bedrooms, and a kitchen located at the end of the house. The 

Figure 11 Example of Gridiron City Pattern 
(http://www.library.cornell.edu/Reps/DOCS/schermer.htm) 
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Mayan Indians, whose culture and heritage differed from the Spaniards, traditionally 

lived in villages of small huts in the surrounding countryside.  In 1917 another 

earthquake destroyed the city, temporarily restricting development, but its basic gridiron 

pattern remained. In 1954, President Arbenz was overthrown, ending a period of agrarian 

reform, also known as “Decree 900” that had been favorable to peasants (Gleijeses, 

1992). A sharp increase in rural to urban migration resulted. The loss of opportunity for 

small agricultural landholders caused the city to double its population in 14 years 

(Valladares Cerezo, 2003). Some migrants converted vacant land to informal settlements, 

while others began to occupy large homes vacated by the wealthy, turning them into 

tenements (palomares) and adding improvised enlargements with an entire family often 

living in a single room.  

Four factors contributed to the creation of the largest city in the Central American 

isthmus with the largest slum population: (1) a subsequent 1976 earthquake; (2) social 

upheaval caused by a twenty year civil war; (3) government plans gone awry to relocate 

slum dwellers; and (4)  invasion by „squatters‟ onto steep slopes of gullies and ravines. 

This large slum population and current conformance to Griffin & Ford‟s (Griffin & Ford, 

1980) Latin American City Model with wealthy elite neighborhoods located nearest the 

city center make Guatemala City an ideal test case for the proposed research objectives. 
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Description of Imagery Data Used 
 

Quickbird 
 

The author was provided a series of panchromatic and multispectral Quickbird 

image scenes (Digital Globe, 2009) through the US Geospatial Intelligence Foundation.  

The scenes cover settlement areas in Guatemala City (46km
2
) defined a-priori with the 

help of a remote sensing analyst who resided there, and augmented by discussions with a 

non-government volunteer organization (NGO) employee who had traveled through the 

region for several years.   The area was selected because of the known existence of 

established slums and more formal communities in the same vicinity, and the selected 

area was the only urban region in Guatemala where the Quickbird VHR imagery was 

captured from multiple years, providing future opportunities for temporal analysis.  Table 

9 lists the sensor features during data acquisition for the entire selected area in Guatemala 

City.  

 

Table 9 Quickbird Image Characteristics 

Urban 

Area 
Area 

Acquisition 

Date & 

Overpass 

Time 

Center Lat/ 

Long 

Avg 

off-

nadir 

Angle 

Total 

Max 

off- 

Nadir 

Angle 

Avg. 

Target 

Azimuth 

 Min 

Sun 

Elev 

Day of 

Year=n, 

solar 

hour 

angle 

Guate-

mala 

City 

46 

km
2
 

03/23/09  

T16:53:00 

-90.591° W 

14.607° N 
12 11.9 104 67.13 82 
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The scene from 23 March 2009 at 16:53 Zulu (11:53AM local time) was selected when 

cloud cover and shadows were minimized during the time of capture. Small areas of sun 

glint (white circles in Figure 12) can be found in a few spots in the scene, but were 

sufficiently limited in scope to not materially alter the results of the classification and 

image processing, so no attempt was made to correct them.  The average off-nadir angle 

was 12% which minimized shadow effects and shape distortion. 

 

Figure 12 Sun Glint Areas Circled in white, Peronia2 Settlement 
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Orthorectification and Elevation Data 
 

Using the commercial ENVI software (ENVI, 2009) multi-spectral images were 

pan-sharpened using their corresponding 0.6m spatial resolution panchromatic band using 

the rational polynomial coefficients (RPC‟s) delivered with the image product.  The 

image was orthorectified from an ASTER digital elevation model (DEM) in GeoTIFF 

format with 30m spatial resolution using a GEOID offset of 2.54m calculated from 

coordinates of a verified central pixel in Guatemala City. The DEM was referenced to 

WGS84 ellipsoid and delivered in 1° tiles, identified as GTM_N14W91 for Guatemala 

City
4
.  Vertical accuracy of the ASTER DEM is reported as 19.1m with 95% confidence.  

The QA file in Figure 13 displays the histogram of the number of scene-based DEMS 

used to compute the final pixel elevation value for all pixels in the 1° tile that includes the 

Guatemala City scene.  

 

                                                 
4
 The ASTER GDEM was contributed by METI and NASA to the Global Earth Observation System of Systems 

(GEOSS) and is available at no charge to users via electronic download from the Earth Remote Sensing Data Analysis 

Center (ERSDAC) of Japan and NASA‟s Land Processes Distributed Active Archive Center (LP DAAC at 

http://gdex.cr.usgs.gov/gdex/). 
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Figure 13 QA Aster Histogram  
 

No other publicly available 30m DEM data were available, and the Shuttle Radar 

Topography Mission (SRTM) DEM at 90m grid spacing was too coarse. The area of the 

smallest settlement, at 0.05km
2
, would have been represented by only 9 SRTM pixels, so 

the decision was made to use the ASTER DEM, despite its reduced vertical accuracy, and 

because only 4 of the measured indicators relied upon elevation (degree slope, slope on 

roads, plan convexity and profile convexity). 

   Orthophotos from 2006 (0.5-meter) of the focus region in Guatemala City were 

provided through an informal GIS and cartographic training exchange with Mercy Corps 

Guatemala during the summer of 2009.  This imagery was used to visually confirm and 

validate road surfaces, built-up areas, and vegetation in the Quickbird scene. 
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Settlement Delineation Methods. 
 

Six formal and six informal settlement 

areas were identified in Guatemala 

City through field work during April 

21
st
-30

th
, 2010 in consultation with 

professionals from the Guatemalan 

Instituto Geográfico Nacional.  These 

settlement areas were defined and 

verified by driving through many of 

the locations, or viewing from a 

distance, in order to   

conduct an initial assessment of 

differences in indicator results at the 

settlement level. Indicators that 

showed promise in discriminating 

between settlement types could then be evaluated using a random sub-sampling design.   

The terms „informal‟ and „formal‟ were qualitatively determined. „Informal‟ 

refers to poor, unplanned neighborhoods of low economic value with little, if any, zoning 

enforcement for dwellings. By contrast, „formal‟ areas exhibited characteristics of higher 

economic value with more expensive building materials, adequate parking facilities, 

safety features such as guard shacks, and better road quality. Settlement names were 

Figure 14 Image of Ciudad Satélite, garbage 

dump in foreground 
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determined from maps depicting official lotificación neighborhood names, also known as 

„subdivisions‟ in North American cadastral and zoning classification systems.  

During ground verification, the entrances to half of the formal communities were 

guarded by security guards with automatic weapons who barred our access.  This was not 

unexpected as gated communities often employ armed security in many urban parts of 

Guatemala.   The driver refused to enter three of the informal communities by car 

(Peronia1, Peronia2, and Ciudad Satélite) for safety reasons, and because it was felt that 

narcotics traffickers controlled some of those areas (See Figure 14 of Ciudad Satélite).   

Photos of those settlements were taken from a distance, and their neighborhood 

boundaries were estimated through a combination of Google Earth visual interpretation 

aided by 0.5m orthoimage comparison and discussions with local experts.  

Neighborhoods were limited to residential areas and purposefully excluded surrounding 

greenspace, industrial or warehouse complexes, and major highways.   This research 

differs from related efforts because it focuses on dwelling-areas to gain deeper 

understanding of the characteristics where residents choose to locate their homes.  

Therefore, irregular shaped polygons were drawn around settlements according to the 

following qualitative guidelines aptly acknowledging Weeks et al. (2007) contention that 

“Slum neighborhoods are defined largely by their physical and infrastructural 

environment, rather than by the demographic characteristics of residents”: 

 Exclude larger buildings adjacent to major roads – 

many are commercial areas, not dwellings 

 Exclude surrounding highways – generally not 

considered part of the neighborhood 

 Exclude wooded or vegetated areas adjacent to or 

just outside the boundaries of residential areas  
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Despite knowledge that external features influence small populations, this effort aims to 

evaluate differences inside dwelling area boundaries, which requires an important but 

somewhat tedious masking step for each measured settlement.  Figure 15 displays the 12 

settlements, six informal and six formal.  Figure 15 is the main study area discussed in 

subsequent sections.  

 

Figure 15 Settlements delineated in Quickbird imagery 

 

Table 10 lists the settlement subset names by settlement type (formal or informal), the 

area, number of pan-sharpened 0.6m pixels, and perimeter. 
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Table 10 Settlement Names and Characteristics 

Settlement Name Formal / Informal Area (km
2
) Total Pixels Perimeter (m) 

Mirador2 Formal 0.18 501724 1841 

GTowns2 Formal 0.09 258689 1235 

GTowns3 Formal 0.09 245976 1248 

Balcones Formal 0.51 1411246 3865 

Pinares Formal 1.08 5656576 6468 

Terrazas Formal 0.31 877677 2488 

Peronia1 Informal 0.43 1189581 3267 

Berlin Informal 0.09 275525 1510 

LoDeCoy Informal 0.05 144067 1165 

Peronia2 Informal 0.26 717203 3417 

Joya Informal 0.61 1720115 6007 

Satelite Informal 0.41 1153932 5071 

 

Masking Methods 
 

Masking plays a key role in this research where values outside of a polygon boundary 

are removed from the computation of a metric. It is similar to the „clipping‟ function in a 

GIS, whereby feature values are only preserved when they fall inside a designated 

polygon boundary.  The masking transformation is accomplished in image analysis by 

applying a polygon boundary to an image in which all values inside the polygon result in 

preserving the image pixel values, and all values outside the polygon are assigned a non-

value NaN (Not a Number).  Masking becomes especially important when statistics are 

needed inside a settled area.  Numerous other measures related to settlements and their 

inhabitants, including segregation measures, acknowledge the importance of using 

neighborhood boundaries (Wong, 2008). In the case of some image processing software, 
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masking or clipping will apply either a zero-value (0) to all outside pixels or in the case 

of ArcGIS, a highly negative number, −9999.  If a statistical computation for an image 

subset includes a large region of 0‟s or a large region of −9999‟s, errors will occur. The 

following example from the panchromatic image illustrates why correct masking matters.  

Lo de Coy is a small informal lotificación (subdivision) in the north-western edge of the 

original image scene, and shown in Figure 16.   Masking is accomplished using the 

process also described in the figure.  

 

 

Figure 16  Masking Procedure for Image Analysis (source: Owen, K.) 

 

In Figure 16 the distribution of pixel intensity from the panchromatic orthorectified 

image subset has a small peak at values of approximately 20-30 roughly corresponding to 
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the highway pavement in the northwestern part of the unmasked image on the left of the 

figure. This peak does not occur in the masked image on the right. The unmasked image 

also has a lower mean panchromatic intensity value, demonstrating that masking plays an 

important role in improving the accuracy of the measures by providing more specificity 

of results. 

Sampling Design 
 

In order to evaluate statistical significance, a breakdown of the six informal and 

six formal settlements into smaller, randomly selected sampling units was needed.  A grid 

size was selected so that a sufficient number of sample grid cells intersect each settlement 

once the stratified random sampling is performed.  This requires calculating the needed 

sample size.  The sample size assumes a 5-6% margin of error is acceptable.  Despite the 

fact that varying degrees of formality and informality exist in any settlement, for 

purposes of this analysis a two-category scale (Informal / Formal) was adopted for binary 

classification of categorical data.  It was assumed that 3 standard deviations (+/−) from 

the mean would capture 98% of all possible values in the samples when estimating the 

necessary sample size. Sample size was computed from Cochran‟s Sample Size formula 

for categorical data (Bartlett, II, Kotrlik, & Higgins, 2001).  Without knowing the 

variance in advance, it is estimated from:   
 

 
 .   Given: 

 

n  = 2 (number of categories: Informal or Formal) 

σ  = 6 (3 to each side of the mean), so  

   = (0.333)
2 

= 0.111 = estimated variance 

t  = 1.96 for the selected α of 0.025 in each tail of the distribution 
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So the minimum required sample size was calculated as: 

 

 

    
      

       
            

            (Bartlett, II et al., 2001).  

 

 

Where            and d, the 

acceptable margin of error is 5%.   

If the margin of error is increased 

to 6%, a sample size of 118 is 

acceptable. Therefore, 170.5 > 

sample_size > 118 is sufficient to 

accept a margin of error between 5 

to 6%.  A 150m
2
 sample grid 

contains 22,500 m of area and 

62,500 0.6m pixels. A 150m
2
 grid pattern overlaid upon the study area yields 1,677 

samples, including many that do not intersect the delineated settlements of interest, as 

shown in Figure 17.  This grid size is necessary to ensure sufficient inclusion of the 

ASTER 30m pixels and the road network indicators.  Each grid cell then becomes a 

sampling unit with up to 62,500 pixels at a 0.6m spatial resolution. However, samples 

Figure 17  150m2 grid overlaying the entire 

study boundary 
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must also intersect the settlement. The 

rectangular matrix of grids was sub-

sampled to only include samples 

intersecting the settlement boundaries, 

yielding 316 samples, shown in red 

(Figure 18).  Grid cells intersecting a 

given settlement were then assigned the 

same „settle_id‟ value for that 

settlement. In order to support random 

sampling with the sufficient number of 

samples required for robust statistical 

analysis, 50% of samples were 

selected randomly from each settlement (by settle_id) using the “sampling by subset” 

method from Hawth‟s Tools which produced 161 samples, yielding a sample size 

sufficient to explain results with  < 6% margin of error (Beyer, 2004; Bartlett, II et al., 

2001).  A further reduction of sample grid cells was required to ensure adequate 

intersection area with the settlement.  To explain this, a zoomed-in view of several 

selected grids overlaid on the image scene shows image and road features. In the example 

in Figure 19, the grids are labeled “Yes” if they were randomly selected and “No” if they 

were not.   

 

 

Figure 18 Sample cells intersecting settlement 

boundaries 
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Some “Yes” samples that were selected contain sizable area outside the settlement 

boundary.  If sample grids with < 25% intersection with a settlement are eliminated, the 

sample size is reduced to 127.  Based on Cochran‟s formula discussed previously, the 

acceptance of a 5% margin of error requires a sample size of 170.5, while a 6% margin of 

error requires a sample size of 118.  Therefore, the sample size of 127 is sufficient for 

two evaluation classes (informal / formal) with < 6% margin of error.  

Figure 19  Sample Grids Randomly selected = “Yes” 
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Figure 20 displays the final cells selected as samples highlighted in blue. Using 

this strategy, each settlement has at least 2 samples. Of all 127 samples used in this sub- 

 

 

 

 

sampling method, the mean sample grid cell overlap with the actual settlement was 73%.  

Only 9 sample grids had < 30% overlap but > 25% overlap. To summarize, proportional 

stratified random sampling was performed using 50% of grid cells randomly selected 

from each settlement to achieve a sample size large enough to test statistical significance 

Figure 20 Sample Grids with > 25% Coverage Intersecting Settlement Boundaries 
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of the model (Beyer, 2004).  Of the 50% selected, only grid cells with at least 25% 

overlapping coverage of the settlement boundary were included in the sample.  

In the early stages of this research, a number of indicators based on the shape  

and size of individual building footprints in the settlement were considered.  These 

indicators included area in m
2
, roof corner angles, house distance to road, nearest 

neighbor distance using house centroid, among others found in Table 6.  Theoretically, 

reliable techniques to extract such building footprints from large areas and multiple 

neighborhood morphologies are possible. However, initial efforts of semi-automated  

 

 

extraction of dwellings produced unsatisfactory results.  Buildings were incorrectly 

merged which inflated their sizes, and building edges became pixilated so that additional 

smoothing would have artificially altered their original shape. Figure 21 is an example of 

building extraction results from the Quickbird data using commercial image processing 

Figure 21 Building Feature Extraction Performance 
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software.  Diverse construction materials, numerous rooftop objects, continuous 

rooflines, and building separation less than the minimum mapping unit of 2.4m in the 

Quickbird multispectral image rendered the building footprint extraction for the entire 

study area unworkable. The decision was therefore made to focus on measures of image 

spectra, roads, texture, scale, and topography, which do not require extraction of building 

footprints. 

Roads were digitized in a semi-automated fashion because automated approaches 

did not perform well, creating incorrect vertices and discontinuities where road surfaces 

were spectrally mixed and roads were occluded by building and vegetation shadows.  

Topologic correctness was enforced at intersection vertices in order to compute some of 

the road network accessibility measures. The resulting road vector files were also visually 

compared to 0.5m orthoimagery for accuracy.   

 

Settlement Indicator Categories 
 

These indicators were developed using a knowledge-based approach that merges 

prior research on sprawl (see Table 8 Summary of Sprawl Indicators adaptable to 

Informal Settlement Measurement) with research on informal settlements (see Table 6 

Summary of Indicators Used in Literature to Evaluate Informal Settlements ). This 

approach takes full advantage of the integration of remote sensing and GIS techniques.  A 

total of 23 indicators grouped into 5 categories were measured and tested (Table 11).  

These categories were developed according to the following principles: 
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1. Spectral information from imagery is especially useful in understanding 

and classifying surface materials that represent patterns of human 

habitation. These include vegetation, roads, and built-up areas. 

 

2. Roads are a direct representation of the movement of people across a 

landscape, and their composition, shape, and topology helps understand 

residents‟ interaction with their environment. 

 

3. The built-up areas comprised of man-made structures can yield important 

patterns related to scale and dimensionality that could expose differences in 

underlying socioeconomic status of residents. 

 

4. Texture of the high resolution panchromatic band in an image provides an 

enhanced view of intensity variation and arrangement that may be used to 

evaluate the continuous patterns of human settlement. 

 

5. Underlying geomorphology is generally a fixed aspect of the landscape, 

and the topography upon which structures are built impacts living 

conditions as they relate to weather, climate, and natural or man-made 

hazards and is an indicator of the economic value of the land. 

 

The following table summarizes the categories derived from the above principles, 

and provides a description of the individual indicators under each category type. 

 

Table 11  Settlement Type Discriminator Categories 

Category Type Description 

MEASURES DERIVED FROM 

SPECTRAL ANALYSIS 

 Vegetation percent 

 Mean vegetation patch size 

 Mean Vegetation patch Compactness Ratio 

 Soil percent 

 Soil on Roads 

 Asphalt on Roads 

ROAD MEASURES 

 Connected node ratio 

 Mean Node Valence 

 Percent 4-Way Intersections 

 Dangle ratio 

 Road density per area 

 Unpaved-to-paved road ratio 

TEXTURE MEASURES 
 GLCM Mean  

 GLCM Correlation 

 Entropy 
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 Contrast on Roads 

 Entropy on Roads 

SCALE-RELATED MEASURES 
 Lacunarity of Pseudo Built-up areas 

 Fractal dimension of Pseudo Built-up areas 

TOPOGRAPHIC MEASURES 

 Mean degree slope 

 Slope of roads 

 Plan Convexity 

 Profile Convexity 

 

Some indicators overlap categories. For example, degree-slope is considered a 

topographic measure, but slope on roads relates to both topography and roads.  Entropy is 

a texture measure, but is calculated both as scene entropy and entropy of road surfaces.  

As discussed in the sampling design section, the measures originally created for the entire 

settlement boundary had to be clipped to support sub-sampling according the following 

methods listed in Table 12. 

 

Table 12 Sample Cell Clipping Methods by Indicator Type 

Indicator 

Category 

Indicator 

Name 

Measurement 

Unit 

Clipping Method 

Measures 

Derived from 

Spectral 

Analysis 

Vegetation 

percent 
Percent area 

Clip vegetation ROI to grid. Percent of 

vegetated pixels.  Raster-derived.  

Mean Vegetation 

Patch Size 
m

2
 

Use patch size of all patches that intersect 

grid. Do not clip patches. 

Vegetation patch 

Compactness ratio 
Ratio 

Use Compactness ratio of all patches that 

intersect grid. Do not clip patches. 

Soil percent Percent area 
Clip soil ROI to grid, then recompute total 

percent of soil pixels. (Not vectorized).  

Asphalt road 

content 
Percent 

Proportion of asphalt pixels intersecting the 

road pixels, clipped to grid. 

Dirt road content Percent 
Proportion of soil pixels intersecting the road 

pixels and clipped to grid 

 

 

Road 

Measures 

 

 

Connected Node 

Ratio 
Ratio 

Ratio of all connected nodes to unconnected 

nodes intersecting the sample grid cell. 

Mean Node 

Valence 
Mean 

Mean of number of roads meeting at an 

intersection that intersect the sample grid 

cell. 
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Road 

Measures 

Ratio of 4-way 

intersections 
Ratio 

Ratio of 4-way to all intersections that 

intersect the sample grid cell. 

Dangle Ratio Ratio 
Ratio of dangle nodes to all nodes  that 

intersect the sample grid cell. 

Road Density per 

area 
Ratio, length:area 

Clip and re-node the road network to each 

sample grid cell, recompute length, sum 

length of all road segments clipped to grid, 

calculate ratio of length to area of sample 

grid. 

Unpaved-to-paved  

road ratio 
Ratio 

Ratio of dirt roads to asphalt roads – ratio per 

sample grid cell based on dirt and asphalt 

pixels intersecting the roads pixels. 

Texture 

Measures 

Contrast Mean, unitless 

Compute GLCM Contrast for entire image 

(avoid edge effects). Mask contrast pixels 

intersecting the sample grid cell, calculate 

mean. 

Entropy 

Mean, Unitless, 

always positive 

and < 3 

Compute Entropy for entire image (avoid 

edge effects). Mask entropy pixels 

intersecting the grid cell, calculate mean 

Contrast on Roads Mean, Unitless 
Mean of GLCM Contrast pixels intersecting 

roads pixels clipped to the sample grid cell. 

Entropy on Roads 

Mean, Unitless, 

always positive 

and < 3 

Mean of Entropy pixels intersecting roads 

pixels clipped to the sample grid cell. 

Scale-Related 

Measures 

Fractal Dimension  

Fractal(D) is 

-lim[logNε/logε] 

 

Clip binary image to sample grid cell, then 

compute Fractal (D) and Lacunarity(Λ) for 

box size 25, 50 and 75, then evaluate. A box 

with <45% foreground pixels is excluded 

from the calculation. 

Lacunarity 
Lacunarity is  

Λε = (σ/μ)
2
 

(same as for Fractal D) 

Topographic 

Measures 

Degree Slope Degrees (0 – 90) 

First compute Degree slope from ASTER 

masked to original image boundary (avoid 

edge effects).  Select Degree Slope pixels 

intersecting sample grid cell. 

Slope on Roads Degrees (0 – 90) 

First compute Degree slope from ASTER 

masked to original image boundary (avoid 

edge effects).  Select Degree Slope pixels 

intersecting roads in sample grid cell. 

Plan Convexity 

Unitless (+ if 

convex, - if 

concave) 

First compute Plan Convexity from ASTER 

masked to original image boundary. 

Calculate mean of pixels that intersect 

sample grid. 

Profile Convexity 

Unitless (+ if 

convex, - if 

concave) 

First compute Plan Convexity from ASTER 

masked to original image boundary. 

Calculate mean of pixels that intersect 

sample grid. 
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Settlement Indicator Expected Values and Measurement Methods. 

In this section, the indicators for each category are described by indicator name, expected 

informal settlement value as compared to formal, and methods or formulas for 

computation.  Each table is followed by a narrative summary of methods for each 

indicator.  

Measures Derived from Spectral Analysis 
 

 

 
Table 13  Measures Derived from Spectral Analysis – expected Informal Values and 

Methods 

Indicator 

Name 

Expected 

Informal  

Values 

Methods and Tools 

MEASURES DERIVED FROM SPECTRAL ANALYSIS 

Vegetation 

Percent 

Expect 5-

10% 

vegetation, 

less than 

formal 

Normalized Difference Vegetation Index (NDVI) 

computed from Red (0.63 – 0.69μm) and NIR (0.76 – 0.9 

μm) bands in Quickbird 
         

         
 

 Used a threshold of 0.06.   −1 ≥ NDVI ≤ 1 

Mean 

Vegetation 

Patch Size 

Smaller than 

formal 

Vectorization of NDVI result, with ( < 10m holes filled) to 

reduce pixilation 

Vegetation 

Patch 

Compactness 

Ratio 

More 

compact than 

formal 
     

  

  
 

where Ai = Area of Patch, Bi = Area of Circle with same 

circumference as patch. (compactness = 

4π(area/perimeter
2
) 

Soil Percent Higher soil 

than formal 

ENVI Spectral Angle Mapper classifies soil areas from 

training (reference) polygons of known soil areas. (Kruse 

et al., 1993; Puetz & Olsen, 2006)  

α =        
     

         
  



87 

 

Where t is the test spectrum and r is the reference 

spectrum. The 

smaller the α in 

radians, the higher 

the similarity 

between the test and 

reference spectra. 

Max angle of 0.07 

rad was used. 

Asphalt Road 

Content 

Less asphalt 

on roads than 

formal 

Rasterize 1m buffered road layer, measure intersection 

with SAM-classified asphalt layer for entire scene. The 1m 

buffer ensures sufficient road material from the centerline 

is captured in the measure. 

Dirt Road 

Content 

Greater dirt 

roads than 

formal 

Rasterize 1m buffered road layer, measure intersection 

with SAM - classified soil layer for entire scene. The 1m 

buffer ensures sufficient road material from the centerline 

is captured in the measure. 

 

 

Spectral analysis provides the ability to classify surface materials of roads and of 

the spaces in-between buildings which are comprised of mostly soil (dirt) or vegetation. It 

was hypothesized that road surfaces would consist of more dirt or soil in the informal 

areas due to limited infrastructure development.  In many parts of the world, living 

conditions with extreme poverty create overcrowded, narrow roads that are difficult to 

navigate, and would therefore be difficult to pave, especially when dwelling setbacks are 

non-existent or not enforced. Two methods were used for surface material detection. 

Vegetation was detected using the reliable NDVI vegetation index from the red (0.630 – 

0.690 µm) and near infra-red (NIR) (0.760 – 0.900 µm) bands.  Dark object subtraction 

was applied (ENVI, 2009). This is an image enhancement technique that searches each 
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band for the darkest pixel value. Assuming that dark objects reflect no light, the darkest 

pixel value (> 0) must result from atmospheric scattering. The scattering is removed by 

subtracting this value from every pixel in the band. This simple technique is effectively 

used for haze correction in multispectral images (Kruse et al., 1993; Exelis, 2009).  The 

entire image scene was classified once in ENVI™, using a threshold value of 0.06 which 

appeared to correctly delineate most vegetated areas and resulted in acceptable accuracy.  

After classification, the raster .tif was polygonized. A selected informal (Peronia2) and 

formal (Balcones) vegetation classification result are displayed to provide a visual 

understanding of vegetation polygon differences between formal and informal 

settlements as measured for shape-based vegetation metrics.  
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Vegetation percent was calculated from the proportion of vegetation-classified 

pixels to non-vegetated pixels.  Vegetation patches were converted to polygons based on 

the algorithm resident in the ENVI software.   The patch size was then calculated as an 

area measure in ArcGIS (ESRI, 2009). Figure 22 and Figure 23 graphically depict the 

difference in appearance of vegetation from two settlements, one informal and one 

formal. 

Figure 22 Formal Settlement vegetation example 

Figure 23  Informal Settlement vegetation example 
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In shape analysis, the compactness ratio of a feature is simply the square root of 

the area of polygon divided by the area of circle with circumference equal to perimeter of 

the polygon (O‟Sullivan & Unwin, 2003a, p. 178; Cockings, Fisher, & Longford, 1997). 

The following equation was used to calculate circularity:   

     
  

  
 

where Ai = Area of Patchi, and Bi = Area of circle with same circumference as Patchi. 

Figure 24 is a depiction of compactness ratio, also known as circularity ratio.   

 

In the informal communities, vegetation patches were expected to be more compact, 

assumed to be unkempt and not used as elongated border-like ornamental plantings such 

as may be more prevalent in a planned community. 

The Spectral Angle Mapper (SAM) method was used to classify soil in the entire 

image and then evaluate the percent soil composition for each masked polygon using 

ENVI (Exelis, 2009; Kruse et al., 1993). As implemented in ENVI, SAM is a type of 

Figure 24 Visual Example of Compactness Ratio of Polygons 
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spectral classification that uses an n-dimensional angle to match pixels to reference 

spectra from known soil areas. The SAM algorithm determines the spectral similarity 

between two spectra by calculating the angle between the spectra and treating them as 

vectors in a space with dimensionality equal to the number of bands (Kruse et al. 1993).  

More soil than vegetation was expected, due to less orderly movement of people and 

vehicles, lack of landscaping (greenery), and expected greater presence of dirt roads.  

Dirt/soil pixels were transferred to intersecting roads to determine the percent road 

coverage with dirt/soil.  The hypothesis was that infrastructure development in the 

informal areas was low, and that more dirt roads would be present.  The SAM method 

was used to classify asphalt in the entire image scene. Then, asphalt pixels were 

transferred to intersecting roads pixels to determine the percent road coverage with 

asphalt in the same manner as soil. 

Roads Measures 
 

Table 14 Roads Measures - Expected Informal Values and Methods 

Indicator 

Name 

Expected 

Informal 

Values 

Methods and Tools 

Road Measures 

Connected 

Node Ratio 

Lower than 

formal 

[intersections / (intersections – dangles)]  (Song & Knapp, 

2004); (Dill, 2004) 

Intersections defined as ≥ 3 connected nodes. 

Mean Node 

Valence 

Lower than 

formal 

Node valence = # of intersecting roads. This measures the # 

of joining nodes at each intersection in the sample. 

Percent 4-

way 

Intersections 

Lower than 

formal 

Ratio of 4-way intersections to all intersections of ≥ 1 node 

(Zhang & Kukadia, 2005). 

Dangle 

Ratio 

Higher than 

formal 

Of all nodes, % dangles (dead ends) within sample (Yi, 

2008). 
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Road 

Density per 

Unit Area 

Higher than 

formal 

Expected positive correlation with dwelling size and density 

– expect dwellings more densely packed.  However, we use 

sample land area instead of dwelling counts (Dill, 2004; Lee 

& Ahn, 2003) 

Asphalt 

Road 

Content 

Lower than 

formal 

Transfer SAM-classified asphalt pixels to road pixels. For 

asphalt, max spectral angle of 0.06 radians was used. 

Polyline roads buffered to 1m from centerline and rasterized. 

Intersection of SAM-classified result with 1m buffered roads 

using ArcGIS “Extract By Mask” and 0.6m pixel size. Raster 

attribute table for roads gives count of each surface type. 

Dirt Road 

Content 

Higher than 

formal 

Transfer SAM-classified soil pixels to road pixels.  For 

soil/dirt, the max spectral angle of  0.07 radians was used. 

Same methods as Asphalt Road Content. 

Unpaved: 

Paved Road 

Ratio 

Higher than 

formal 

Expected a higher ratio of Unpaved-to-paved roads in the 

informal settlements. Uses a pixel × pixel transfer function 

between 1m road buffer (2m total width upon centerline) and 

surface feature image classification. Where no roads were 

present, missing values were excluded from the comparison. 

 

 

All types of roads visible within each settlement boundary were digitized at a 

1:6,000 spatial scale from the pan-sharpened orthorectified Quickbird imagery using 

ArcGIS (ESRI, 2009). For network analysis including node valence, connected node 

ratio, and dangle ratio, the intersecting nodes were calculated, and adjusted to remove 

false dangles where the settlement boundary bisected a road that actually continued on to 

a larger road network.  If the bisected road was a dirt road, it was considered a dangle - 

such roads did not generally extend into the road network for an adjacent settlement; if 

the bisecting node intersected any other surface, it was removed from the dangle list for 

that settlement.  Further descriptions of each road measure follow. 

Connected node ratio (CNR) is defined by the number of street intersections 

divided by the number of (intersections + dangles) (Tresidder, 2005). Values are 
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expressed as 0.2 ≤ CNR ≤ 1. Values closer to 1 indicate higher connectivity, fewer cul-

de-sacs or dead ends.  A lower connected node ratio was expected in the informal 

settlements.  Mean Node Valence is a measure of the number of nodes connected to the 

given node. A 4-way intersection has a valence of 4.  Here, the node valence is computed 

as the total nodes/total intersections per settlement expressed as a mean node valence per 

settlement.  Percent 4-Way Intersections represents the percent of intersections that are 4-

way as a ratio of all intersections.  In this study area there was only one 5-way 

intersection in the settlement of Piñares. Informal settlements were expected to have less 

4-way intersections than formal, planned communities. 

The dangle ratio is the ratio of dangle nodes (dead end streets or cul-de-sacs) to 

all nodes (Yi, 2008). Settlements with less connectivity will have more dead ends.  The 

expectation was the informal settlements would have a higher dangle ratio as an indicator 

of less connectivity. 

Asphalt road content represents the percent of road surface covered by asphalt. 

Surface asphalt was classified using SAM. The result was threshholded and saved as a 

binary image classified as (asphalt / no asphalt). The result was transferred to the 

intersecting road image using Python code that called the ArcGIS Geoprocessor, a raster 

attribute table was created, and then queried to count asphalt/non-asphalt pixels (1, 0).  

More asphalt was expected for the formal settlements. 

Dirt road content represents the percentage of road surface covered by dirt or soil. 

The same methods used to classify asphalt road content were used to measure dirt road 
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content.  Road surface was expected to be comprised of more dirt vs. asphalt in the 

informal areas. 

A high road density can indicate higher building density, greater transportation 

infrastructure density, or higher connectivity. This measure cannot be used to quantify 

connectivity without also measuring connected node ratio or node valence. The linear 

length of each road segment within the sample was summed and divided by the area of 

the sample.  High road density per area was expected in the informal settlements simply 

due to the higher building density. 

This research hypothesized that informal settlements would have a higher dirt-to-

asphalt road surface ratio based on expected lower infrastructure spending by 

government, and reduced centrality to the city center. There are many other road surface 

types in Guatemala, but dirt and asphalt were easiest to distinguish using the reference 

orthoimage, and were sufficient to measure the hypotheses based upon the underlying 

settlement type.   

Texture Measures 
 

Table 15 Texture Measures – Expected Values and Methods 

Indicator 

Name 

Expected 

Informal 

Values 

Methods and Tools 

TEXTURE MEASURES 

GLCM 

Contrast 

Higher than 

formal 

Gray-Level Co-occurrence matrix (Haralick et al., 1973); 

(Shamir, Wolkow, & Goldberg, 2009) is:           

                                     
                                            

where i,j of the co-occurence matrix Md is the number of 

occurrences of gray levels i and j such that the distance 
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between them is d pixels. 

High contrast is a large difference in intensity of neighboring 

pixels (or high local variation) and greater expected variety 

of surface materials, shapes, and sizes. 
                                               

                                  
                                                         

     

   

     

       

When i and j are equal, the cell is on the diagonal and 

(i−j)=0. These values represent pixels entirely similar to 

their neighbor, so they are given a weight of 0. If i and j 

differ by 1, there is a small similarity, and the weight is 1. If i 

and j differ by 2, contrast is increasing and the weight is 4. 

The weights continue to increase exponentially as (i−j) 

increases. (ref:  

http://mipav.cit.nih.gov/documentation/HTML%20Algorithms/FiltersSpatialHaralickTextur

e.html) 
Entropy Higher than 

formal 

Entropy quantitatively measures randomness of the gray-

level distribution. Defined as:  

     

   

     

           

Pij is a probability measure, where 0≤ Pij ≥ 1  so ln(Pij) will always 

be 0 or negative, so we take the –ln to give us positive number 

 Smaller values of Pij mean appearance of a given pixel 

combination is less common 

 The smaller the value of Pij, the larger the absolute value 

of ln(Pij) 

 Max entropy occurs when derivative of (p* ln(p)) with 

respect to p equals 0.   P = 1/e gives maximum entropy 

value, which is P=1/2.718  = 0.378 see: 
http://mipav.cit.nih.gov/documentation/HTML%20Algorithms/FiltersSpatialHar

alickTexture.html); (Sudhira et al., 2004) 

GLCM 

Correlation 

Lower than 

formal 

GLCM Correlation measures the linear dependence of grey 

levels on neighboring pixels. GLCM Correlation is 

independent of the other texture measures. 

GLCM Correlation is calculated from the mean and variance 

of neighboring pixel pairs 

     

   

     
 
 
 
             

    
     

  
 
 
 
 

 

http://mipav.cit.nih.gov/documentation/HTML%20Algorithms/FiltersSpatialHaralickTexture.html
http://mipav.cit.nih.gov/documentation/HTML%20Algorithms/FiltersSpatialHaralickTexture.html
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When Pij=0 the result is 0, which is evidence of complete 

image uniformity. 

GLCM 

Contrast on 

Roads 

Higher than 

formal 

Same formula as scene contrast as implemented in ENVI 

(2008) software (Haralick et al., 1973). 

Entropy on 

Roads 

Higher than 

formal 

Same formula as scene entropy as implemented in ENVI 

(2008) software (Haralick et al., 1973) 

 

  

Image texture measures the variation in image tone (brightness values) in a 

variable-sized, contiguous matrix of pixels in the image, and identifies repeating patterns 

of local variation in intensity. It is convenient to measure texture properties using the 

grayscale 0.6m (panchromatic) band (vs. the 2.4m multispectral bands) from the 

Quickbird data due to the smaller pixel size. Shades of gray in values from 0-255 are 

represented in the 8-bit grayscale image. Much research has been conducted on the 

statistical properties of texture to extract and classify image regions.  Research is lacking 

that compares how the texture measures vary by image object or feature type (e.g., 

roads), since texture is generally computed on a rectangular matrix and not clipped to a 

feature boundary.   

The grey-level co-occurrence matrix (GLCM) is computed as a first step in the 

texture measures. The GLCM is a two-dimensional array, P, in which both rows and 

columns represent the set of all possible brightness values. It is defined by specifying a 

displacement vector d=(dx,dy) and counting pairs of pixels separated by d having specific 

gray levels i and j such that 
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              (Haralick et al., 1973), (Clausi & Jernigan, 1998)    

 

In this research, the displacement vector (1x, 1y) of 45° was used allowing a 3x3 

matrix to systematically shift over the image to calculate the central pixel value.  nij is the 

number of occurrences of pixel values (i,j) at distance d in the image, and the matrix Pd 

has dimension n × n where n is 256 for the panchromatic band. The normalized co-

occurrence matrix is: 

 

 

(Puetz & Olsen, 2006). 

 

This normalizes the co-occurrence values so they lie between 0 and 1 as joint 

probabilities.  Once the GLCM is computed, the rest of the texture measures can be 

created. 

The measure of contrast was chosen because it characterizes local variation. 

Contrast is expected to be high in the informal areas due to inconsistency of building 

materials, smaller structures, and general haphazardness of features. Correlation was also 

chosen to determine the linear dependence of grey levels on neighboring pixels.  

The Entropy value from the GLCM is a measure of information content resulting 

from the randomness of brightness values. High entropy means there are no preferred 

gray level value pairs in the distance vector d. Informal settlements were expected to 




i j

jiP

jiP
jiN

],[

],[
],[



98 

 

have high entropy values relative to their planned and more affluent counterparts. This is 

anticipated from results found in prior research (Yeh & Li, 2001). The texture measures 

were calculated using the following steps: 

 Select only the PAN band (0.6m, grayscale) 

 Compute Entropy using 3x3 matrix and 64 bit quantization 

(≥ 5x5 matrix contains less discriminatory power) 

 Load Vector of settlement and create .evf (ENVI vector 

format file) 

 Create image subset using this vector resulting in 

rectangular matrix of values 

 Create mask from non-rectangular settlement boundary 

 Apply mask to ensure pixels outside boundary contain 

NaN‟s and are excluded from computations 

 Compute first or second order texture measure excluding 

outside pixels 

 

A novel approach of limiting the contrast and entropy calculations to the buffered 

road surface was applied.  The roads raster was created from the original polyline feature 

layer that was buffered 1m in both directions from the centerline. It was determined that 

2m in each direction from the centerline incorrectly included building edges of more 

narrow streets, and there was no additional discriminatory power in the results between 

informal and formal settlement types by extending the buffer to 2m. 

The GLCM contrast measure was calculated for the entire image the same way as 

Entropy, then clipped to the settlement boundary. In this way, edge effects were 

minimized. Contrast was expected to be higher in the informal settlements.  The same 

settlement contrast result was masked by the road vector to produce the Contrast on 

Roads measure. Similar to the expected high GLCM Contrast for informal settlements, 
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Contrast on Roads was expected to be higher on the informal than the formal roads, due 

to the accumulation of varied surface materials and debris found upon the road surface. 

Correlation was calculated for the entire image, and assumed to be lower in the 

informal areas than the formal areas.  Entropy on Roads was calculated from the 

settlement entropy then masked and evaluated the same as Contrast on Roads. Entropy on 

informal roads was expected to be higher than formal roads. 

Scale-related measures 
 

Table 16 Scale-related measures - expected values and methods 

Indicator 

Name 

Expected 

Informal 

Values 

Methods and Tools 

Scale-Related Measures 

Lacunarity Higher than 

formal 

Create binary image of only pseudo built-up areas.  Image-

J calculates lacunarity of images.  Expected higher 

lacunarity for informal settlements reported in prior 

literature. (Filhos and 

Sobreira, 2007).  

       
 

 
 

 

 

Which represents the mean coefficient of variation (CV) in 

foreground pixels/box over all grid locations using the 

sliding box algorithm for a given box size (Karperien, 

2007) 

 

Fractal 

Dimension 

Higher than 

formal 

Expect higher Dβ for more compact areas and lower Dβ for 

more dendritic elongated shapes.  Use Image-J with 

FracLac Plugin. 

              
    

       
  

Where D(b) is the negative limit of the ratio of the log of 

the number of boxes at a certain scale (box size/image size) 

over the log of that scale (Karperien, 2007). 
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Lacunarity is a measure of “gappiness” or translational or rotational invariance in 

an image scene, while Fractal D is a measure of complexity showing how the pseudo-

builtup areas fill the space at a given scale (for example, 200). Overall mean Fractal D 

was expected to be higher for informal settlements – an indication of higher complexity 

(Cooper, 2005).  Similar results were anticipated in this research, that lacunarity values 

would be higher in the informal settlements than formal settlements.  This was important 

to test since other research showed a different result of lower fractal values in informal 

heterogeneous settlements on city peripheries (De Keersmaecker et al., 2003).  

Lacunarity or Fractal Dimension are not intuitive to measure with respect to settlement 

shape, so further detail regarding methods and algorithms are included here. 

 

Lacunarity of built-up areas 
 

Lacunarity of built-up areas was performed with ImageJ, an image analysis 

software package written in Java, and developed at the National Institutes of Health 

(Image J, 2010).  The lacunarity plug-in, FracLac (Karperien, 2007), was used to 

calculate lacunarity of both binary and grayscale images and was tested a variety of box 

sizes to determine if one or the other performed better at discriminating settlement type.  

In order to simulate the built-up nature of settlements as represented by non-vegetated 

structure, the inverse of NDVI classified areas was used, so that non-vegetated areas 

became foreground pixels for the sliding box algorithm. This method is reasonable given 

the extreme urban nature of the communities used for this study in Guatemala City.   The 

pseudo built-up classification yielded an overall accuracy of 97% which was verified 
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from visual interpretation of random samples from each settlement area using half-meter 

orthoimagery.  NDVI values follow:  (−1) ≤ NDVI ≥ (+1).  The range of −1 to 0.09 was 

used to represent the non-vegetated (built-up) areas, while any value > 0.09 was 

considered vegetation based on a visual comparison with the image scene. This was 

reasonable due to the fact that the delineated urban scenes, in terms of human habitation, 

consisted of two main classes: built-up or vegetated land.  Figure 26 GTowns2 settlement 

with masked NDVI result is a floating point NDVI image from the formal Granai 

Townson 2 settlement, abbreviated as “GTowns2”. 
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After applying a threshold to select values > 0.09, the resulting binary 

(vegetated=0, built-up=1) classification result is shown as a tagged interchange file 

format (TIFF) in Figure 25 with all foreground pixels displayed in white, while 

Figure 26 GTowns2 settlement with masked NDVI result 

Figure 25 GTowns2 pseudo Built-up Binary image 
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vegetation is black. The threshold value was determined from visual qualitative 

comparison with the reference orthoimage. 

To calculate lacunarity, assume r = box size and S = box mass (# foreground 

pixels). A frequency distribution of box masses n(S,r) is then converted to a  probability 

distribution Q(S,r) by dividing each frequency value by the total number of gliding boxes 

of a given size N(r).  Then calculate: Z(1) = ∑ S Q(S,r) and  Z(2) = ∑ S
2 

Q(S,r). 

Lacunarity, Λ(r), is then expressed as:   

 

Λ(r ) = Z(2) / [Z(1)]
2
    (Filho & Sobreira, 2007). 

 

In the case of FracLac, for each r, we calculate (Λ(r) = (σ/μ)
2
) representing 

the average coefficient of variation in foreground pixels/box over all grid locations 

(Karperien, 2007). The box size or scale is represented as  
 

          
 .  The sliding box 

method averages out the results over the entire scanned image, producing a single value 

for Λ(r). It is also important to note the final Λ(r ) value is transformed such that the 

result is expressed as Λ(r )+1 to avoid undefined results in a completely homogenous 

image
5
. 

 

                                                 
5
 The reason the scaled value for lacunarity is Fλ=1+(σ⁄μ)2=1+λ is that when the slope of the ln-ln plot of the regression 

line for each ε grid size (scale) and the foreground pixel count is calculated, an "undefined" value could result for a 

completely homogeneous image. This means pixels per box would not vary, so that the standard deviation σ, for a box 

count at some ε will be 0. This means that λ = (σ⁄μ)2 = 0, and ln of λ and therefore the slope of the ln-ln regression line 

for λ and ε would be undefined. The transformation is λ+1, so that a completely homogeneous image has a slope of 0, 

corresponding intuitively to the idea of no rotational or translational invariance and no gaps. 

file:///C:/Users/Karen/Downloads/Firefox/FLH/FLHelp/lactutorial.htm%23lambda
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Fractal dimension of built-up areas 
 

ImageJ was also used to calculate fractal dimension, using the formula:  

DB =  −lim[logNε/logε]  

which is the negative limit of the ratio of the log of the number of boxes at a certain scale 

(e.g., box size / image size) over the log of that scale (Karperien, 2007). This also 

represents the slope of the regression line for the log-log plot of scale (box size / image 

size) and foreground pixel count. 

The sub-sampled cells from the pseudo built-up image were converted to binary  

using an image threshold of 0.09.  Figure 27 depicts the difference between a sampled  

 

 
Figure 27 Gliding box lacunarity intersecting 100% or 38% with sample grid 
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cell with 100% area intersection within the Peronia2 informal settlement boundary, while 

the sample cell to its right only covers 38% of the settlement boundary – an artifact of 

random sampling. 

 Fractal dimension was calculated on each binary sample over all grid sizes. Due 

to the smaller size of each sample compared to the initial testing of the entire settlement 

as a sampling unit, smaller box sizes were needed.  For the settlement as a sampling unit, 

the statistically significant difference in lacunarity and fractal dimension occurred at a 

box size of 200. However, results could not be computed on box sizes of ≥ 100 for the 

150m
2
 sub-samples as there was not enough foreground texture included in the 

calculation, especially considering some sample grid cells only intersected 25% of the 

settlement.  Therefore, smaller box sizes of 25, 50, and 75 were computed for the sliding 

box lacunarity on all sub-sampled cells. The following side-by-side images in Figure 28 

depict the sliding box lacunarity grid overlay at box sizes of 25, 50, and 75 for a sub-

sample in the formal settlement of Balcones, showing how background NaN areas in the 

box size of 25 and 50 are not included if the foreground-to-background pixel ratio is less 

than 0.45. 
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Figure 28 Sliding Box Lacunarity - differences in box sizes (25, 50, 75) 

 

Topographic Measures 
 

Table 17 Topographic Measures – expected values and methods 

 

Indicator 

Name 

Expected 

Informal 

Value 

Methods and Tools 

Topographic Measures 

Slope on 

Roads (μ 

deg°) 

Higher than 

formal 

Rasterize road vector polyline to 0.6m of centerline, 

intersect with resampled ASTER DEM (30m) elevation 

data from which degree slope was calculated with a 3x3 

kernel (ENVI, 2009). Compute μ of all degree-slope pixels 

intersecting raster road pixels where slope is 100*tan(θ).  

Mean 

Slope 

Higher than 

formal 
Degree Slope expressed as arctan (elevation/distance). 

Derived from ASTER 30m elevation data. 

Plan 

Convexity 

Smaller (less 

negative) 

value than 

formal 

Plan Convexity measures variability in horizontal contour, 

or, the rate of change of aspect. It is a 2
nd

 derivative 

geomorphology measure of surface roughness. Closest to 0 

on steep slopes, with extreme negative values in 

floodplains. If informal areas located on floodplains, this 

measure will have extreme negative values. 
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(Evans & Cox, 1999:17)   

(Ioannilli and Parmegiani, 

2008)  

Plan convexity affects the depth of hydrologic flow, 

impacting the area drained based on the slope position in 

the terrain surface. (also see: JP Wood‟s Thesis at: 

http://www.soi.city.ac.uk/~jwo/phd/04param.php) 

 

Profile 

Convexity 

Smaller (less 

negative) 

value 

Profile Convexity measures rate of change in a vertical 

downslope direction. It is a 2
nd

 derivative geomorphology 

measure of surface roughness, and affects acceleration of 

surface flow (Evans and Cox, 1999:16). Closest to 0 on 

steep slopes, with extreme negative values in floodplains. 

If informal areas located on floodplains, this measure will 

have extreme negative values. See diagram under Plan 

Convexity, above.  

 

 

Topography and geomorphology play a large role in deciding where to build a 

home, and is often correlated with living costs related to rent or property values. 

Notwithstanding the unusual case of high-value properties located on steep cliffs 

overhanging scenic views, many areas in less developed countries with steep terrain pose 

http://www.soi.city.ac.uk/~jwo/phd/04param.php
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a landslide risk and are rejected by only the most desperate of home builders. This 

presumption underlies the hypotheses related to topography in this study. The assumption 

is that steep slopes in mountainous Guatemala are difficult to build upon, are not well-

served by suitable buttressing or paved infrastructure, and therefore are selected by 

economically disadvantaged residents who require less-expensive land for their homes, 

similar to the hazardous slopes upon which slums (favelas) in Rio de Janeiro are built 

(Vieira & Fernandes, 2004).   

The second topographic hypothesis is that the degree of surface curvature, also 

described as roughness, would characterize extremes of economic well-being of 

residents, such that more extreme rough or curved surfaces in either the vertical (profile 

convexity), or the horizontal (plan convexity) direction would also be found in more 

informal, unplanned neighborhoods. Plan curvature, including convexity and concavity in 

Figure 30 or profile curvature in Figure 29 create either a divergence or convergence of  
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flow (Depraetere & Riazanoff, 2004), which can cause either a deceleration (convexity) 

or acceleration (concavity) of runoff in extreme precipitation events (Depraetere & 

Riazanoff, 2004).   Increased surface roughness can be more difficult to build dwellings 

upon and also impacts friction or resistance to hydrologic flow, which impacts soil 

saturation.  Use of plan and profile measures could also help predict where lava flows and 

extreme rain events causing landslides and erosion could impact population living near or 

amidst those hazards. Despite the ambiguity in the interpretation of what plan and profile 

convexity measures reveal about their underlying settlements given the many other 

variables that impact slope stability (Vieira & Fernandes, 2004), the simplicity of testing 

this topographic feature allowed it to be incorporated into the current research.  Therefore 

Figure 30 Plan Convexity, Concavity (horizontal direction) (Owen, W. 2011) 

Figure 29 Profile Convexity, Concavity (vertical direction) (Owen, W. 2011) 
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plan and profile convexity were pursued as additional topographic measures to determine 

if their values differed significantly between settlement types.   

For the topographic measures, a 3x3 kernel (window size) was used, and 

computed from the topographic modeling tools in ENVI™ against the ASTER DEM for 

the scene. The result was masked to each settlement boundary.  As background, elevation 

is a 0 order differential, while slope is a 1
st
 order differential, and plan and profile 

convexity are 2
nd

 order differential surface geomorphology measures. In areas susceptible 

to flooding from rivers or shallow land forms that attract low-income dwellers, one might 

expect plan convexity to be highly negative.  One might also expect highly negative 

profile convexity to represent concave surfaces where water flow during rainfall pools 

and accelerates in the downslope direction, and also where roughness of surface in aspect 

make building conditions less favorable.  The following diagrams show side-by-side the 

original ASTER DEM, Degree Slope, and Profile Convexity. Clearly visible are the 

hydrologic features from the elevation data that propagate through the other topographic 

images. 
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Figure 31  ASTER-derived Topographic and Geomorphology Measures 

 

To illustrate the degree slope variability, a transect for two settlements in the 

direction of the major axis of the settlement minimum bounding rectangle for two 

settlements, GTowns2 (formal), and Peronia2 (informal) was created. A transect distance 

of 750m was chosen because it was of sufficient length to cover the smallest of the two 

settlements‟ bounding rectangle major axis.  Figure 31 shows the reduced degree slope 

variability in the formal settlement GTowns2 compared to Figure 33 for the informal 

settlement Peronia2. 
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Figure 32  Example of Degree Slope spatial profile in formal settlement 

 

 

 

The slope varies from nearly 0 degrees to only 16 degrees in the formal 

settlement, and from 2 to approximately 35 degrees in the informal settlement.  The mean 

degree slope calculation was intended to capture this type of variability. 

Slope on Roads underlying the road vectors was computed from the mean of 

slope pixel values in degrees.  The hypothesis was that the roads would exhibit greater 

slope in the informal areas, intuitively due to less planning and resources invested in the 

process of leveling a road surface for paving. Greater accuracy in this metric could have 

resulted if LIDAR data was available with better resolution than 30m, instead of relying 

upon the ASTER DEM product. 

Figure 33  Example of Degree Slope spatial profile in informal settlement 
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Plan Convexity was calculated from the topographic modeling tools in ENVI™. 

The plan convexity (intersecting with the XY plane) measures the rate of change of the 

aspect along the plane. As a measure of surface curvature, plan convexity is orthogonal to 

profile convexity, with positive values representing convexity and negative values 

concavity. Plan convexity is in the direction of minimum gravity effects (Exelis, 2009). 

Profile Convexity was calculated from the same topographic modeling tool. The 

profile convexity (intersecting with the plane of the z axis and aspect direction) measures 

the rate of change of the slope along the profile. Profile convexity is measured in the 

direction of maximum gravity effects (Exelis, 2009), and similar to the Plan Convexity 

metric, negative values are concave and positive values are convex. 

  

Classification Accuracy 
 

The following table summarizes the classification accuracy of the NDVI, spectral 

angle mapper (SAM), and pseudo-builtup methods from a sample of 84 random points. 

Ground truth was measured through visual interpretation of the orthorectified true color 

and false color composites.  Sample points were selected in order to exceed the binomial 

probability theory requirements according to the equation: 

    
        

  
 

where p is the expected percent accuracy of the entire classification, q=100−p, e is the 

allowable error and Z=2 (+/−  2 standard deviations capturing all values with 95% 

confidence) (Jensen, 2005, p. 501).  With an expected mapping classification accuracy of 
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85% and allowing for an error of 8%, N=79.  Given that 79 points are the minimum 

required to measure accuracy to the specified standard, seven points were selected 

randomly from each of the twelve settlements, resulting in 84 sample points for the 

accuracy assessment. 

 

In Figure 34 the green dots represent the randomly placed sample point locations used to 

assess accuracy.  Table 18 lists the accuracy results for the sample points. 

 

Figure 34 Sample Point Locations for Classification Accuracy Assessment 
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Table 18 Accuracy Results from Vegetation, Asphalt, Soil and Pseudo Built-up classes 

Error Matrix 

  
VEG 
(NDVI) ASPHALT (SAM) SOIL (SAM) 

BUILTUP 

(PSEUDO)6 

Correct 18 19 10 54 
Actual (Ground 
Truth) 20 23 12 58 

Commission (Users) 2 6 3 2 

Omission (Producers) 3 4 2 2 

Overall % Accuracy 0.90 0.83 0.83 0.93 
Omission % Error 0.15 0.17 0.17 0.03 
Commission % Error 0.10 0.26 0.25 0.03 

 

  Overall accuracy for NDVI was 90%, for asphalt 83%, for soil 83% and for pseudo 

built-up 93%.  These classifications were performed using different methods appropriate 

for the feature or material being extracted. Settlement feature comparison and the 

numerous methods needed to develop metrics using both remote sensing and GIS data 

precluded estimation of Kappa which is normally performed when an image is 

completely segmented into all known classes in order to account for chance error. In this 

research, not all classes were mutually exclusive. In other words, Asphalt and Dirt Roads 

could both be considered components of the Pseudo Built-up class. Therefore, the 

reported accuracy uses a modified approach. 

                                                 
6
 Pseudo Built-up can include asphalt, so not all categories are mutually exclusive because different 

classification algorithms were used based on the settlement attribute to be measured.  For example, soil and 

asphalt can be considered a component of a built-up area. 
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The next section explains the principles behind the modeling approaches selected 

to perform this multivariate assessment of each variable‟s contribution to distinguishing 

informal and formal settlements. 

Settlement Indicator Modeling Methods 
 

This section describes the modeling methods used to differentiate settlement type 

using sample data. Three primary methods were applied.  First, the t-test of independent 

means determines statistical significance of group membership between informal and 

formal communities at the settlement level. The t-test evaluates the hypothesis that two 

samples have the same means. The reported probability is the likelihood that the two 

samples tested are sufficiently similar to be from the same population. Therefore, a very 

low (p) value is preferred if a measured variable is hypothesized to produce significantly 

different results between the two samples tested.  The unpaired t-statistic measures the 

ratio of the difference between the two means and the standard error of the difference of 

means from the „pooled variance‟ which is the bottom part of the equation: 

   
        

 
       

    
    

      

    
 

 
 

 

 

where t represents student‟s t-statistic,     represents the mean of group A (e.g., informal), 

df'A is the degrees of freedom of the informal group, df’B is the degrees of freedom of 

group B (the formal group). With unequal variances, s of both samples is used to compute 
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df' where nA is the number of samples in group A and nB is the number of samples in 

group B as follows: 

     
 
  

 

  
  

  
 

  
 

 

 
  

 

  
 

 

       
 
  

 

  
 
 

     

 

This method of computing df' creates non-integer degrees of freedom for some variables.  

Despite the small sample size, the value for a variable may be the mean (μ) of up to 

several thousand points depending on whether the variable being measured is road 

accessibility-related, actual pixel values of surface materials, or vegetation polygons, for 

example. 

The second method was Discriminant Function Analysis (DFA), also known as 

Discriminant Analysis (DA).  DA creates a linear function that differentiates samples in 

informal or formal communities through the appropriate mix of variables and loadings, 

similar to factor analysis.  The variables selected by DA are those most likely to predict 

group membership to determine whether a sample is from an informal/slum area, or a 

formal/planned community.  DA is most appropriate for the following: 

 Classifying cases into binary groups via a discriminant prediction equation 

 To determine the most parsimonious way to distinguish among groups 

 To determine the percent of variance in the dependent variable explained 

by the independents 

 To discard variables which are little related to group distinctions 

(Garson, 2012) 

 

Discriminant Function Analysis is a form of multivariate analysis of variance 

(MANOVA) that expects a categorical dependent variable instead of continuous value. 
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The discriminant function is tested for significance in discriminating between the two 

parent populations of settlement type.  The result uncovers the most powerful linear 

combination of predictor variables that can be constructed to maximally separate the 

group means (Griffith & Amrhein, 1997).  A discriminant function D is created as a 

linear combination of discriminating (independent) variables such that: 

D = b1x1 + b2x2 + ... + bnxn + c, 

where the b's are discriminant coefficients, the x's are discriminating variables (i.e., the 

indicators), and c is a constant. The coefficients maximize the distance between the 

means of the criterion variable (settlement type), and the criterion variable is categorical 

rather than interval/ratio (Griffith & Amrhein, 1997).  The following diagrams visualize 

this separability. 

 

 

                              Figure 35  Two-classes projected in 2D space (http://www.aiaccess.net) 
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Figure 35 shows the overlap in response when the bounds of Class C2 and C1 are both 

projected onto the X2, or X1 axis.  In Figure 36, the discriminant function D represents a 

linear function that maximizes the separability between the two classes. 

 

 

Figure 36  Linear Discriminant Function that maximizes class separability (adapted from 

http://www.aiaccess.net) 

 

 

 There are some notable assumptions in the DA model, including a Gaussian 

distribution of variables, equality of covariance matrices, error independence, and non-

zero variance within samples (Griffith & Amrhein, 1997). DA also assumes similar 

numbers of samples in the dependent groups.  Another limitation is that DA excludes the 

entire sample even if only one variable for that sample had a missing.  An example is in 

the connectivity of nodes in the road network, the variable Connected Node Ratio (CNR). 

Some samples had 0 nodes, resulting in a null value for CNR for those samples. This 
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resulted in 18/127 samples being excluded entirely from the analysis as a result of several 

variables having missing values. 

Some of the assumptions in DA are not always strictly enforceable with real data, 

so a non-parametric method called Decision Trees was tested as well.  Decision Trees, 

also known as Classification and Regression Trees (CART), do not make any 

assumptions regarding the statistical distribution of the dependent or independent 

variables, handling Gaussian and multimodal data equally as well (Sugumaran, Pavuluri, 

& Zerr, 2003). Also, the predictor variables can be a mixture of categorical, interval-ratio, 

or continuous datatypes.  CART methods are not affected by outliers or collinearities, 

heteroscedasticity, or distributional errors affecting parametric methods like DA 

(Yohannes & Hoddinott, 1999).  CART models create a series of decision branches that 

include certain values for variables that provide a cut-off to assign a case, or sample, to a 

given class (informal or formal).  The successive branches of the tree achieve a series of 

exhaustive and exclusive partitions among the set of samples the decision maker wants to 

classify (Diaz Martinez, Fernandez Menendez, & Vargas, 2004). The main concept 

behind CART algorithms is to choose the variable that provides sufficient information to 

realize the appropriate partition each time a new branch is created, and ultimately to 

classify the training set with the variables contributing most to the classification.  

The main benefits of the classification and decision tree approach for the 

researcher are ease of interpretation and the ability to produce a “rule set” clearly listing 

the variable value combinations and numerical differences making up the decision rule at 
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each branch. In the present research, the rule will explain whether a sample should be 

classified as informal or formal based on the rule applied. 

A limitation of CART is that it is not based on a probabilistic model that could, 

for example, predict confidence intervals for the classification results (Yohannes & 

Hoddinott, 1999). Another cited limitation is that CART performs local and not global 

feature selection, so that each node split is a local decision based on the values of the 

remaining samples not used for prior splits (Friedl & Brodley, 1997).  If a globally 

optimal solution for all variables is preferred, the CART method may theoretically not 

solve the researcher‟s problem. 
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RESULTS 

This section discusses the results of the research that are intended to (1) define the 

set of statistically significant indicators that distinguish settlement type (informal from 

formal), (2) determine if imagery and elevation data alone are sufficient to distinguish 

informal from formal settlements, and (3) to perform a multivariate evaluation of 

indicators from roads, vegetation, soil, image texture, and geomorphology.  The results 

are first reported by settlement, where each of the 12 settlements is treated as a sampling 

unit.  This was done in order to winnow an acceptable subset from the 23 indicators to 

include ones that do not co-vary. After discussing the results at the settlement level, the 

results at the grid cell (sub-sampling unit) are reported. 

 

Results from Sampling by Settlement. 
 

The results in this section explain indicator performance at the settlement level 

before random sub-sampling was conducted. Sampling by settlement treats each 

settlement as a single observation, meaning that within-settlement variation is not 

recognized. Recall that 6 informal and 6 formal settlements were delineated in the image 

scene from expert knowledge and according to certain principles that focus the measures 

on residential areas. The first phase of the research explored whether the proposed 

indicators produced different results between the two types of settlements - informal or 
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formal - using each settlement as the sample unit.  If an indicator did not show significant 

difference when a t-test of independent means was applied, it could theoretically be 

excluded from the model.  Significance was considered at the 90% confidence level. 

According to Bartlett et al. (2001, p. 45), an α of 0.1 is acceptable if the researcher 

simply wishes to identify differences or as a precursor to other statistical testing. These 

conditions correctly describe the current requirement. 

The second phase of the research involved proportional stratified random sub-

sampling with 150m
2
 grid cells overlaid on the image scene, then selecting 50% of 

settlement-intersecting grid cells randomly from each settlement to achieve a sample size 

large enough to test statistical significance of the model (Beyer, 2004).  Of the 50% 

selected, only grid cells with ≥ 25% overlapping coverage of the settlement boundary 

were included in the sample.  

 

Scale-related Results by Settlement 
 

Lacunarity and fractal dimension were tested as scale-related measures from prior 

research applied to informal settlements to evaluate structure and pattern.  They were also 

measured to evaluate performance between both formal and informal settlement types, 

since the results from the literature review were somewhat contradictory.   The current 

research shows the built-up areas comprised of man-made materials yield differences that 

appear at certain spatial scales, yet are more random at others. 
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Lacunarity and Fractal Dimension 
 

Lacunarity (Λ) is considered scale-dependent because the result depends on the 

box size used.  Earlier, it was mentioned that higher heterogeneity is expected to produce 

higher Λ values. Figure 37 is an example of how a single sub-scene of a formal settlement 

was transformed from its false-color composite to an NDVI image from a density slice of 

all values < 0.09 and then inverting the Black/White result to a pseudo built-up 

(foreground) binary image to compute lacunarity.  The term „pseudo built-up‟ is used to 

avoid confusion with more formalized methods that measure built-up areas, such as the 

normalized difference built-up index (NDBI) also found in the literature, which requires 

the mid-IR band such as that available from the Landsat Thematic Mapper sensor. 

However, Landsat-based indices have a resolution of 28.5m
2
 pixel sizes, which is too 

large to meaningfully identify smaller settlement areas.  Figure 37 displays an example of 

the image transformation required to generate the pseudo built-up binary image used for 

Lacunarity and Fractal measurement. 

Figure 37 Image Transformation for lacunarity and fractal analysis 
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It was also reported earlier that Fractal Dimension for a given box size (DB ) has been 

studied in several contexts in the literature, from measuring street edges in relation to the 

building outlines and sizes, to measuring housing patches in sprawl areas, to measuring 

entire cities, with mixed results. No effort specifically focused on fractal dimension of 

informal settlements, prompting the test as a measure for this research.  In Figure 38, DB 

and Λ, respectively, are listed for the pseudo built-up settlements in the study area.  The  

box size of 200 was selected because it had the lowest (p) value, indicating better  

 

 

Figure 38 Lacunarity of Formal and Informal settlements by Box Size 
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performance than other box sizes chosen (50, 100, and 500).  The Lacunarity results for  

various box sizes in the formal and informal settlements are reported in Appendix C.  

Figure 38 shows Lacunarity (Λ) for the 6 formal and 6 informal settlements by 

different scales or box sizes. The variance for the box size of 500 is wider, and the box 

sizes of 50 and 100 did not exhibit useful differentiation between settlement types.   

 

 

 

The box size of 200 shown in the box plot in Figure 39 has a smaller range of lacunarity 

among formal settlements (less variation), and a slightly larger range for the informal 

Figure 39 Box Plot of Lacunarity by Settlement Type 

(formal vs. informal) 
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values.  If the box size is selected specifically to capture feature variation for features of a 

given size, then a box size of 200 should capture dwellings that are up to 8.4m x 8.4m, or 

up to approximately 27ft per side, whereas a much larger box size could capture several 

dwellings together. A larger box size would therefore not capture the heterogeneity of 

settlements with predominantly smaller sized shacks and houses and the spaces 

separating them. The reduced significance exhibited by the experiments with a box size 

of 100 (p=0.149) and a box size of 500 (p=0.24) demonstrated this fact.  Table 20 reports 

the consolidated results for both Lacunarity and Fractal Dimension with settlements as 

sampling units. 

 

Table 19 Fractal Dimension and Lacunarity, box size 200, by settlement 

   

Foreground Λ=1+cv
2
  

Box Size 200, 
Binary 

Count of Boxes 

with FG Pixels 
Fractal (DB), 

Binary 

Informal      

Satelite 1.088 3187 1.877 

Berlin 1.059 536 1.827 

Joya 1.123 4792 1.806 

LoDeCoy 1.059 295 1.665 

Peronia1 1.044 2933 1.907 

Peronia2 1.144 2157 1.833 

Formal      

Terrazas 1.045 2285 1.913 

Balcones 1.022 3042 1.917 

Mirador2 1.056 1178 1.94 

GTowns2 1.047 592 1.89 

GTowns3 1.042 510 1.806 

Pinares 1.074 7856 1.908 

. 

At the settlement level, Lacunarity and Fractal Dimension were somewhat 

negatively correlated with a Pearson‟s product moment correlation coefficient of −0.253. 
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With n=12 and p=0.427, this correlation was not significant. Lacunarity was generally 

higher in the informally settled areas, and based on the total number of sliding boxes for 

which Λ was computed, there was a statistically significant difference between the 

informal and formal settlement types. There was only an 87% chance the parent means 

(using the unpaired t-test) from the grayscale built-up images were from different 

underlying populations, while the binary image performed significantly better with 

p(0.052), leading to the conclusion that lacunarity on binary image built-up areas may 

differentiate these types of settlements in Guatemala.  Table 21 shows the results of a t-

test of unpaired means with the results of the box size 200 for both fractal dimension and 

lacunarity outlined in black. 

 

Table 20  Correlation of Scale-related measures, settlement level 

Pearson 

Correlation Coefficient 

Fractal 
Dimension 

Lacunarity −0.253 

 

Table 21 Significance of scale-related measures by settlement 

Image Type (p) value t-score 

Λ(r50) , Binary 0.92 0.1076 

Λ(r100) , Binary 0.14 1.5821 

 Λ(r200) , Binary 0.05 −2.2 

Λ(r500) , Binary 0.23 1.278 

Λ(r100) , Grayscale 0.15 1.57 

Λ(r200) , Grayscale, 0.85 0.194 

Fractal D – binary built-up, box size 200 0.079 1.9 

Fractal D – grayscale built-up, box size 200 0.58 .59 
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The results are also consistent with the Filho & Sobreira (2007) findings of higher 

lacunarity in the informal versus formal areas. Mean Λ(r200)  is 1.047 for the formal and 

1.086 for the informal settlements.  

Fractal dimension is calculated using the formula: DB =  −lim[logNε/logε], the 

negative limit of the ratio of the log of the number of boxes at a certain scale over the log 

of that scale (Karperien, FracLac for ImageJ, V2.5). Fractal dimension of the binary 

image using the sliding box method and box size (scale) of 200 produced the only 

promising result from the unpaired t-test  (p=0.079) that fractal dimension of built-up 

areas in the informal vs. the informal communities yield different results. No significant 

difference was detected on the grayscale image (p = 0.58).  Table 21 summarizes the 

results in tabular format. 

As an interesting exercise and because of the simplicity of creating a binary 

representation of all asphalt roads following classification, DB was also computed on 

asphalt roads in the image subsets, yielding no statistically significant difference. This is 

likely because the same underlying structural process contributed to their creation 

regardless of whether the settlement was rich or poor, and the same government 

infrastructure resources would have been used.   

        Fractal dimension and lacunarity are not intuitive to measure and interpret but were 

used to determine if the spatial scale of analysis impacts the results.  In this research, the 

Λ(r200)  and DB(200) represent a box of 8.4m
2
 and provide the best discriminatory power. 

This is likely due to the range of smaller buildings and built-up structures that can still be 

detected surrounding the vegetation and the gaps.  In the informal areas, lacunarity 
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increases with box size, but is most significantly different than formal and exhibits the 

smallest σ and range for Λ(r200).   The results for lacunarity at the settlement level were 

the expected results, but fractal dimension results were inconsistent with Cooper (2005) 

where higher fractality implied higher urban fragmentation. 

 
     Topographic-related results by settlement  

 

Underlying topography is a fixed aspect of the landscape and is related to 

geomorphology. The terrain that dwellings are built upon impacts residents‟ living 

conditions related to weather, climate, and natural (or man-made) hazards. The results of 

the four topographic-related measures are reported here: slope on roads, degree slope, 

plan convexity (curvature), and profile convexity (curvature). Neither plan curvature nor 

profile curvature are correlated with degree slope, but degree slope is highly correlated 

with slope on roads.  

 

Table 22  Correlation of topographic measures, settlement level 

Pearson 

Correlation Coefficient 

Degree Slope 
on Roads 

Degree Slope Profile 
Convexity 

Degree Slope 0.988   

Profile Convexity −0.119                      −0.127                                 

Plan Convexity −0.362                      −0.377                              0.116                           

 

Table 23 Significance of topographic measures by settlement 

Indicator p-value t-score Degrees of Freedom 

Slope (degrees) 0.03 2.52 9.9 

Profile Convexity 0.044 −2.3 9.93 

Plan Convexity 0.17 −1.47 9.44 

Degree Slope (on roads)  0.065 −2.07 9.77 
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Slope in Degrees 
 

Guatemala is a very mountainous country, so the slope indicator was selected because 

higher slopes in more difficult to build locales were expected in the informal areas. The 

mean degree slope was calculated for the 12 settlements using a 3x3 kernel from the 30m 

ASTER data over the entire region.                               Figure 40, and Table 23 show 

mean degree slope for each settlement type.  

 

 

                              Figure 40 Degree Slope - Formal Settlements 

 



132 

 

 

 

The mean degree slope is higher in the informal settlements and lower in the formal 

settlements, except for the outlier Terrazas which means “Terraces” (in Spanish) - a 

formal settlement built for its views. The p-value (0.03) reported in Table 29 from the t-

test reveals that slope is a good discriminator of settlement type.  

 

Profile and Plan Convexity 
 

The results of the t-test of means for plan convexity are displayed in Table 23 

displays plan convexity overlaid with settlement boundaries. Formal settlements are 

magenta and informal settlements are in red. Highly negative numbers (more concave) 

are black, and less negative numbers are white.  

Figure 41 Degree Slope - Informal Settlements 
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Plan convexity, which represents the rate of change of the angle of aspect, 

measures the curvature of contours. A contrasting measure is profile convexity  

 

(sometimes referred to as profile 

curvature) which calculates the downhill 

or uphill rate of change in slope in the 

gradient direction. Negative values are 

concave upward, indicating an 

accelerated flow of water over the 

surface, while positive values are 

convex upward indicating reduced flow 

over the surface.  One should expect 

highly negative profile convexity values 

could cause water to pool.  Plan 

convexity should approach zero on very steep slopes and have extremely low values in 

floodplains (Evans & Cox, 1999).  In the entire image, plan convexity ranged from -1093 

(divergent flow over the surface) to 10,308 (highly convex) over all settlement cells.   In 

the horizontal plane where effects of gravity are minimized (Wood, 1996) the informal 

areas were slightly less convex (μ 350 vs. μ 442 for formal). The differences are highly 

statistically significant when all pixels in the plan convexity image are evaluated as 

sampling units (e.g., plan convexity for all informal settlement cells are then compared to 

plan convexity for all formal settlement cells). However, by comparing the results for 

Figure 42 Plan Convexity with settlement 

boundaries superimposed 
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plan convexity at the settlement level using the mean of all pixels within the settlement 

boundary as the sampling unit, the t-test shows an insignificant difference (t = −1.476, p 

= 0.17) between the formal and informal settlements. 

In profile convexity (the vertical plane), gravity effects on flow are maximized  

(Wood, 1996).  The mean profile 

convexity is lower, at −0.704 for all 

informal cells and −0.545 for all formal 

cells. Despite steeper slopes, there is 

geomorphically more concavity in the 

vertical direction in the informal terrain. 

The differences are highly statistically 

significant when all pixels from the 

profile convexity image are treated as 

samples for a given settlement type.  When profile convexity is averaged for each 

discrete settlement, the t-test results are still statistically significant, t= −2.3, (p) = 0.044.  

The recommendation is to use profile convexity and not plan convexity for subsequent 

testing. 

 

Figure 43 Profile Convexity with settlement 

boundaries superimposed. 
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Spectral-related results by settlement 
 

Spectral information from imagery is especially useful to understand and classify 

surface materials. The spectral properties of soil, vegetation, and asphalt from the 

imagery were used to evaluate vegetation percent, vegetation patch size, compactness 

ratio, soil percent, and surface materials on roads (soil or asphalt) with results shown in 

Table 25.  

 

Table 24  Correlation of Spectral-related measures, settlement level 

Pearson 

Correlation 

Coefficient 

Compactness 
Ratio 

Soil Percent Vegetation  
Percent 

Asphalt Road 
Content 

Dirt Road 
Percent 

Vegetation Patch Size 
(area) 

−0.501 −0.119 0.796 0.242 −0.107 

Compactness Ratio  0.074 −0.621 −0.339 0.17 

Soil Percent   −0.101 −0.268  

 

 

Table 25 Significance of spectral-related measures, settlement level 

Indicator p-value t-score Degrees of 

Freedom 

Vegetation Percent 0.0006 −4.9 10 

Mean Vegetation Patch 

Size 

0.08 −1.94 7.84 

Mean Vegetation Patch 

Compactness Ratio 

0.000073 −7.55 7.84 

Soil Percent 0.32 1.067 9.44 

Asphalt on Roads 0.037 −2.39 9.81 

Dirt on Roads 0.35 0.97 9.68 
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It was hypothesized there would be more vegetation in the formal areas, given 

that presence of vegetation has been associated with higher quality of life in prior 

research.  The percent of vegetation is significantly lower in the informal areas and this 

difference is highly statistically significant (p = 0.0006). Mean percent vegetation in the 

informal settlements was 6.5% compared to 13.9% in the formal settlements.  A related 

measure is Mean Vegetation Patch Size.  Vegetation patches were hypothesized to be 

smaller in the informal settlements. Mean vegetation patch size was slightly statistically 

significant (p = 0.08), with an overall mean patch size of 8.2m
2
 in the informal 

settlements, which was smaller than the mean of 10.4m
2
 in the formal settlements.  

Using the Vegetation Patch Compactness Ratio measure, vegetation patches were 

hypothesized to be more circular in the informal areas representing a lack of purpose for 

vegetation, compared to informal areas where vegetation could be used to line streets and 

land parcels or as ornamental borders.  The mean compactness ratio for informal 

settlements was 0.74 and 0.71 for the formal settlements, yielding a highly statistically 

significant difference (p=0.000073) where vegetation is more elongated and less circular 

in the formal areas. 

The difference in soil percent at the settlement level between formal and informal 

settlements was not statistically significant (p = 0.31). However, it will become clear 

later that the internal variability hidden by summarizing the entire settlement by using the 

percent soil coverage actually obscures important differences that appear in the smaller 

formal vs. informal samples. 
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Mean asphalt percent coverage of roads in the formal areas was higher:  42% vs. 

18% in the informal areas. At p=0.03, the asphalt road coverage exhibits a statistically 

significant difference between formal and informal settlements.  For Dirt Road coverage, 

however, the hypothesis that significantly more dirt-covered roads would be found in 

informal settlements was not proven. The results shown in Table 25 reveal that dirt road 

content was not a significant discriminator.  

Road network-related results by settlement 
 

Roads are a direct representation of the movement of people across a landscape, 

and their composition, shape, and topology are necessary to understand how settled 

residential areas are interconnected.  The roads measures that do not include surface 

materials in their definition are instead used to evaluate accessibility.  Informal 

settlements are hypothesized to be less accessible, with more dead ends, simple 

intersections, and less interconnectedness.  Before reviewing the results of the road 

accessibility measures, a description of measure correlation is included.  Connected Node 

Ratio and Mean Node Valence are highly positively correlated (Pearson r=
 
0.7687).  

Connected Node Ratio and Percent Dangles are negatively correlated                

(Pearson r= −0.6698). Mean Node Valence is slightly positively correlated with Pct 

4Way Intersections (Pearson r=0.4493) and slightly negatively correlated with Percent 

Dangles (Pearson r= −0.4072).  
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Table 26 Correlation of road network-related measures, settlement level 

Pearson 

Correlation Coefficient 

Connected 
Node Ratio 

Mean Node 
Valence 

Pct 4Way  
Intersections 

Pct Dangles Road 
Density 

Mean Node Valence 0.7687     

Pct 4Way Intersections 0.1721                 0.4493    

Pct Dangles −0.6698                −0.4072                   -0.1324   

Road Density 0.1405                  0.1000                     0.0744           0.0041  

Unpaved-to-paved Ratio −0.0503            -0.1065                    −0.0877           0.1015                  −0.1523 

 

 

Table 27 Significance of Road Connectivity measures by settlement  

Indicator p-value t-score Degrees of 

Freedom 
Connected Node Ratio 0.0082 3.28 8 

Ratio of 4-way 

Intersections 

0.0004 5.29 8 

Dangle Ratio 0.0052 3.56 8 

Road Density per Area 0.016 2.87 9.93 

Unpaved-to-paved Road 

Ratio 

0.337 1.05 5.09 

Mean Node Valence 0.166 1.49 9.96 

 

Connected Node Ratio is [(intersections−dangles)/intersections], with 

intersections defined as ≥ 3 connected nodes (Song & Knapp, 2004; Dill, 2004).  

Connected Node Ratio was statistically significant. This is likely due to the fact that this 

ratio does not measure the degree of connectedness of all intersections, only their rate.  

The ratio of 4-Way intersections to all intersections, representing a magnitude of 

connectedness, was statistically significant.  There were more 4-way intersections in the 

formal areas, indicating higher connectivity of the street network.  The dangle ratio is a 

ratio of dead-ends or cul-de-sacs to all nodes and is negatively correlated with the 

connected node ratio (Pearson r = −0.6698) and positively correlated with mean node 
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valence (Pearson r = 0.7687) because to a certain extent, all of these measures rely on 

intersection valence.   

The last road accessibility measure was Mean Node Valence.  This measures the 

mean intersection size among all 2-way, 3-way and 4-way intersections (there was only 

one 5-way intersection in the dataset).   There was only slight statistical significance for 

this measure at a confidence of only 84% taking the mean of all node valence values for 

all intersections within a settlement. If, however, all node valence values are combined 

together into their representative settlement type (e.g., all formal valence values and all 

informal valence values) the result is then highly statistically significant:                         

(p = 1.5*e
-8

, t =5.73, df = 606).  In this case, the mean node valence for all formal 

settlements is 1.47 but the informal settlements were less-connected with a mean valence 

of only 1.13. 

Texture-related results by settlement 
 

 Higher texture measures of entropy, contrast and lower GLCM correlation
7
 

(Haralick et al., 1973) were expected in informal settlements compared to planned 

communities.  GLCM Correlation is a measure of image linearity or linear dependence of 

the intensity values of pairs of pixels in the panchromatic band.  The texture measures of 

Contrast (a measure of local variations in an image) and entropy (a measure of the 

randomness of intensity distribution of pairs of grey-level pixel values) were also 

produced for road surfaces at the settlement level.   The expected higher values for 

                                                 
7
 The texture measure of „GLCM correlation‟ is different than the Pearson Correlation Coefficient, which is 

a standard statistic of correlation between measured variables. 
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Contrast and Entropy in the informal areas are due to the wider variety of building 

products and often discarded materials used to patch and extend the roofs of structures. 

When constrained to the road surface, these expected higher values are due to the more 

variable condition of road surfaces, with debris and discarded materials found more often 

on roads in informal areas.  Prior efforts stated that correlation, entropy, mean, and 

variance are not well-correlated with each other (Warnick et al., 2008).  However with 

settlements as samples, Entropy and GLCM Correlation were highly negatively 

correlated, and GLCM Mean and Entropy were positively correlated.  The hypothesis that 

entropy is a useful measure of heterogeneity and would be higher in the informally settled 

areas was also tested (Gong & Xu, 2006).  The following table lists the correlation 

coefficients for settlement-level values of each of the texture measures attempted. 

 

 

Table 28 Correlation of texture-related measures by settlement 

Pearson 

Correlation 

Coefficient 

Contrast GLCM 
Mean 

GLCM 
Correlation 

Entropy GLCM 
Variance 

Dissim-
ilarity 

Contrast 
Roads 

GLCM MEAN 0.411       

GLCM Correlation −0.502 −0.883      

Entropy 0.916 0.547 −0.701     

GLCM Variance 0.994 0.359 −0.444 0.882    

Dissimilarity 0.926 0.261 −0.421 0.779 0.924   

Contrast Roads 0.608 0.674 −0.555 0.722 0.558 0.347  

Entropy Roads 0.551 0.775 −0.612 0.683 0.510 0.256 0.949 

 

Many of the texture measures are highly correlated.  The texture measures of 

GLCM Correlation, Entropy, Contrast, GLCM Mean, Variance, and Dissimilarity were 

calculated by settlement. GLCM Contrast and Entropy constrained to the buffered road 
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network were also calculated.  GLCM Contrast and Entropy on Roads were highly 

positively correlated.  The mean texture measure of GLCM Correlation was lower for all 

informal settlements merged together −40.3 vs.  −35.47 for all formal settlements merged. 

 

 

Table 29 Significance of Texture related measures by settlement  

Indicator p-value t-score Degrees of 

Freedom 

GLCM Correlation  0.016 3.008 8.19 

Entropy 0.039 2.59 6.1 

Entropy on Roads 4 * e
-5

 7.35 9.1 

Contrast 0.119 1.72 8.8 

Contrast on Roads 5.3 * e
-6

 8.75 10 

GLCM Mean 0.01 3.44 7 

GLCM Variance 0.17 1.46 9.6 

Dissimilarity 0.72 0.35 8.2 

 

In terms of GLCM Correlation, the difference between the two settlement types is 

significant.  Based on these results, GLCM Correlation, Entropy, Entropy on Roads and 

Contrast on Roads, and GLCM Mean appear to be good measures to evaluate differences 

in settlement structure. 

 

 Variable Correlations and Exclusions 
 

In multivariate statistical modeling, prior correlation between included variables 

contributes to model misspecification by including extraneous variables.  This section 

and Appendix B describe how variables were evaluated and which ones were eliminated 
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from the model due to the multicollinearity condition.  The graphics in Appendix B 

provide details of bivariate correlations that existed among several of the 23 originally 

measured indicators.  

Pearson‟s r was calculated for all pairs of variables on all 127 grid cells to 

determine whether one or more correlated variables should be excluded to avoid the 

multicollinearity condition prior to Discriminant Function and CART modeling.  

Spearman‟s ρ was also computed on grouped data to determine whether correlation 

between the variables differed for informal settlements and formal settlements.  The 

scatterplots in Appendix B show the fitting of a regression line for the grouped data in 

order to visualize the direction of the relationship, and where further explanation was 

needed, histograms provided additional visualization of these distributions.   

 

Table 30 lists the variables that were excluded, followed by a narrative summary.  

 

Table 30 Summary and Explanation for Excluded Variables 

Variable 

Excluded 
Result 

Variable 

Correlation  
Explanation 

Fractal 

Dimension 

Lacunarity was a 

marginally better 

settlement type 

discriminator 

Slightly Negative 

with Lacunarity 

Lacunarity is a measure of gappiness or 

translational or rotational invariance in an 

image scene, while Fractal D is a measure 

of complexity showing how the pseudo-

builtup areas fill the space at a given scale 

(or box size). Overall mean Fractal D was 

higher for informal settlements – an 

indication of higher complexity. 

Mean Node 

Valence 

Not significant at the 

settlement level 

Positive with 

Connected Node 

Ratio 

Higher node valence is an indication of a 

more connected street network.  

Not significant at the 

settlement level 

Negative with 

Dangle Ratio 

Higher node valence is inversely 

proportional to the dangle ratio in a road 

network 
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Percent 

Dirt Roads 

Not significant at the 

settlement level 

Positive with 

Unpaved-to-Paved 

Road Ratio 

In several of the samples, only dirt roads 

existed, while in others there were no dirt 

roads at all. Asphalt roads were 

consistently distributed through all 

samples with a higher proportion in formal 

areas. 

Unpaved-

to-Paved 

Road Ratio 

Not significant at the 

settlement level, 

distribution is 

independent 

Positive with Percent 

Dirt Roads 

The proportion of dirt to asphalt was not a 

useful measure and naturally was 

correlated with Percent Dirt Roads. 

Vegetation 

Percent 

Veg. Percent provides 

less information than 

shape-based measures 

of vegetation. 

Positive with Mean 

Vegetation Patch 

Area.  

The more vegetation existed in a sample, 

the larger the area of each patch.  This is 

an expected relationship. Veg. Percent was 

excluded in favor of more detailed patch-

based measures. 

Veg. Percent provides 

less information than 

patch-based measures 

of vegetation. 

Negative with Mean 

Compactness Ratio. 

The more informal a settlement, the more 

compact its vegetation. Formal settlements 

exhibit more elongated vegetation patches. 

Entropy High correlation with 

multiple other 

variables. Variance 

Inflation Factor 

highest for Entropy, 

so not retained. 

High Positive with 

Contrast 

Informal settlements have a wider variety 

of structure shapes and sizes to indicate 

randomness of intensity distribution (no 

preferred gray level pairs in the distance 

vector measured by entropy). Contrast (as 

a measure of local variation) is also higher 

in the informal settlements. 

GLCM Correlation is 

an additional measure 

that is lower in 

informal settlements. 

Negative with 

GLCM Correlation. 

Relationship stronger 

in formal 

settlements. 

The higher the entropy, the lower will be 

the correlation between grey levels in the 

image scene. GLCM Correlation is a 

measure of image linearity. 

GLCM 

Mean 

Significant correlation 

with Contrast on 

Roads and with 

Entropy 

High positive with 

Entropy on Roads 

The higher GLCM mean represented a 

higher grey level value over all pixels in 

the selected region for informal areas. 

Contrast on 

Roads 

To improve 

robustness with 

increased variety of 

texture measures, 

retain Entropy on 

Roads, since Entropy 

overall was already 

excluded. 

High Positive with 

Entropy on Roads. 

The higher the entropy on the roads, the 

higher, too, will be the contrast because 

these two measures are positively 

correlated. Contrast captures sum of 

squares variance, while entropy captures 

the orderliness of pixel values in a sliding 

window. Informal settlements have higher 

contrast on roads. 

Degree 

Slope on 

Roads 

Using 30m pixels, 

overall degree slope is 

a more robust 

indicator than on 

roads because of 

higher N. 

Near perfect high 

positive correlation 

with Degree Slope 

If smaller elevation pixels were available, 

slope on roads may be preferred, but use of 

this measure was limited by pixel size. 

Informal settlements overall have higher 

slope. 
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Lacunarity and Fractal Dimension were slightly negatively correlated. The 

original hypothesis that Lacunarity would be higher in the informal settlements required 

lacunarity to be tested for sufficiency as a discriminator and to compare the results in this 

research to the conflicting results reported in prior research. Due to correlation between 

lacunarity and fractal dimension and the higher discriminatory power of lacunarity at the 

settlement level, fractal dimension was excluded.  Connected node ratio (CNR) and mean 

node valence were highly positively correlated, but mean node valence was not a 

significant discriminator at the settlement level (p=0.166) and was therefore dropped.  

Percent Dirt Roads and Unpaved-to-paved Road Ratio were positively correlated, but 

neither alone provided useful discriminatory power to the model. Also, both variables 

have extreme outliers, so both of these indicators were dropped.  Despite the higher 

significance level of Vegetation Percent compared to Vegetation Patch Size when 

comparing the means at the settlement level, the additional shape information derived 

from vegetation patches was preferred. Therefore Vegetation Percent was removed from 

the model while Vegetation Patch Size was retained.   

The texture measures of GLCM Correlation and Contrast were correlated with 

Entropy.  Even though Entropy was more significant in discriminating settlement type at 

the settlement level, the need to explore additional metrics was preferred for the potential 

contribution to the science of settlement analysis. Entropy was also correlated with  
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multiple other measures and suffered the highest variance inflation factor (VIF)
8
 of all 

variables (5.38), so Entropy was excluded. Contrast on Roads was highly positively 

correlated with Entropy on Roads, but since Entropy was already excluded, the potential 

for increased model robustness and greater variable diversity meant Entropy on Roads 

was retained while Contrast on Roads was excluded. Page 205 in Appendix B lists the 

variance inflation factors for all variables.  Last, Degree Slope on Roads was excluded 

due to the large pixel size of the underlying DEM dataset in comparison to the size and 

location of some of the road segments, and the potential for better explanatory power 

using all of the slope pixels in a settlement area instead of just constraining them to the 

road surface.  Plan Convexity was also removed from the model because it lacked 

significance (p=0.17 from t-test of independent means).   

After excluding the above variables, Table 31 lists the remaining fourteen 

variables that were used for DA and CART, and the number of missing values. 

 

 

 

                                                 
8
 VIF of a predictor variable k is measured by 

 

    
  where   

  is the R
2 
value obtained by regressing the k

th
 

predictor variable on the remaining predictors.  VIF shows how much the variance of the estimated 

regression coefficient bk is "inflated" by the existence of correlation among the predictor variables in the 

model. A VIF of 1 means that there is no correlation among the k
th

 predictor and the remaining predictor 

variables. VIFs exceeding 4 should be investigated further, and VIF‟s exceeding 10 indicate incorrect 

predictor specification due to multicollinearity (Simon, 2004) 
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Table 31  Un-correlated variables included in discriminant analysis 

Number Variable Name # Missing 

Values 

% Missing 

Values 
Variable 

Category 

1 
Lacunarity 

  Scale-dependent 

Measures 

2 Connected Node Ratio (CNR) 6 4.7% 

Roads Measures 

3 Pct 4-Way Intersections
9
 17 13.3% 

4 Pct Dangles 6 4.7% 

5 Asphalt Road Content
10

 2 1.6% 

6 Road Density   

7 Vegetation Patch Area   

Spectral Measures 8 Veg. Compactness Ratio   

9 Soil Coverage   

10 GLCM Correlation   

Texture Measures 11 Contrast   

12 Entropy on Roads   

13 Degree Slope   Topographic 

Measures 14 Profile Convexity   

 

 

Results from Sampling by Grid Cell 
 

This section describes the results from measuring the indicators using the sub-

sampling method described earlier.  In this section, each sampling unit was 150m
2
 (or 

less) and intersected with the settlement boundary. Figure 44 illustrates this point with 

two side-by-side samples in the informal settlement of Berlin.  The left image shows a 

zoomed-in view of the smallest and largest sized samples as they occurred randomly in 

the sample design, side-by-side.  The smallest sample was only 5,691m
2
 while the largest 

                                                 
9
 No intersections existed 

10
 Roads classified as neither asphalt nor dirt. 
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wass 22,500m
2
, or 150x150m as a square randomly-selected sample that fit completely 

within the settlement boundary.   The smallest sample‟s area covered at least 25% of the 

original settlement, but its area was constrained by the outer settlement boundary.  

 

 

Figure 44 Sample Grid Coverage over Settlement Boundary 

 

This is easier to visualize in the image on the right side of Figure 44, where the irregular 

shaped black line represents the boundary of the settlement of Berlin, so that all random 

samples in Berlin (there were 5, outlined in red) are clipped to the Berlin boundary.  

These random samples originally came from the overlaid grid in the Figure 17.  Recall 

that the final 127 samples that intersected the settlements were randomly and 
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proportionally selected to ensure at least 25% of their area intersected the settlement 

boundaries, and that the sample size was sufficient to ensure model robustness. 

Discriminant Function Analysis Results 
 

Discriminant Function Analysis (DFA), or DA, was used to determine which linear 

combination of variables performed best at discriminating settlement type according to 

the equation: 

D = b1x1 + b2x2 + ... + bnxn + c, 

where the D is the discriminant function, bn coefficients of the independent variables xn 

maximize the distance between the means of the criterion variable of settlement type 

(Griffith & Amrhein, 1997).  The Wilks' lambda (F-test) tests if the discriminant model 

as a whole is significant. If the F test shows significance for a variable, then the 

individual independent variables will be assessed to see which differ significantly in 

mean by group to classify the dependent variables. For each variable Xj, Wilk‟s Lambda 

is the ratio of the within-group sum of squares and total sum of squares, as follows:   

               
                           

                    
 

 

(El Ouardighi, El Akadi, & Aboutajdine, 2007).   The closer the corresponding Λj for 

variable Xj is to 0, where 0 ≤ Λj ≤ 1, the better its ability to differentiate, and the more Xj 

contributes to the discriminant function.  Λj = 1 indicates all group means are the same 

and no differences exist.  

In the present research, the removal of variable collinearity creates a DA model 

that now tests only 14 of the original 23 variables. The included variables are listed in 
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Table 31.   In solving for the Discriminant Function, it is noted that 18 samples have at 

least 1 missing value in one or more variables (see Table 31), and were excluded from the 

analysis. The variables with the most missing values were related to road accessibility 

and road surface metrics due to several samples with minimal road coverage and zero 

intersections or nodes.  The model was run with and without the stepwise constraints.  

When the stepwise requirement was relaxed the model incorporated 12 variables instead 

of 6 and only Percent Dangles was explicitly rejected due to a low tolerance value. In 

SPSS, tolerance is reported as a measure of variable dependence or collinearity, so a low 

value indicates that other variable(s) still co-vary with it.  Having this many variables 

could result in overfitting, which makes the model less generalizable and is not 

preferable.  

The stepwise method was therefore applied to avoid overfitting.  The probability 

of significance using the F-ratio must be ≤ 0.05 to be entered/included and ≥ 0.2 to be 

excluded.  The exclusion F-ratio was somewhat relaxed because of the robust effort to 

eliminate prior correlated variables.  Table 32 lists the 6 variables in the discriminant 

function that had greatest contribution to the model. The table includes the tolerance or 

proportion of the variance not accounted for by other independent variables, and the 

Wilks‟ Lambda result.  The low Wilks‟ Lambda for each variable in Table 32 shows that 

Entropy on Roads, Mean Vegetation Patch Area, Compactness Ratio, Profile Convexity, 

Road Density, and Soil Percent by Grid were needed to distinguish settlement type.   
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Table 32 Variables selected by Discriminant Function Analysis 

 
Variables Included in the Analysis 

  Tolerance 

Sig. of F 
to 

Remove 
Wilks' 

Lambda 

Entropy_Roads .966 .000 .442 

Mean Veg Area .915 .001 .281 

CompactnessRatio .850 .000 .292 

ProfileConvexity .906 .000 .289 

RoadLenPerArea .903 .005 .275 

SoilPctByGrid .906 .011 .271 

 

The reported canonical correlation (0.863) between the discriminant scores and 

the groups they define is suitably high, with the resulting DA function explaining 100% 

of the variance in the dependent variable.  This discriminant function is positively 

separating samples into the correct groups because the proportion of the total variance in 

the DA scores not explained by differences between the groups is low. The χ
2
 reports the 

ability of this discriminant function to distinguish settlement types.  χ
2 

for the function, 

where fi is the observed count for classi and Fi is the expected count for classi and sample 

size = 108  (127 −17 missing values −2 parameters to be estimated (informal/formal) –1) 

is: 

    
       

 

  
    

 

   

 

 

This result is significant at α=.005.   
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The separability of informal and formal discriminant function scores (y-values) 

displayed by their histograms are graphically shown in Figure 45 and Figure 46 where 

Formal (SettleType=2) and Informal (SettleType=1) are shown with a common x-axis 

scale of −5 to +5. The mean score for formal settlements is −1.8 and for informal 

settlements is +1.64 indicating good separability. 

 

 

Figure 45  Histogram of Discriminant Function Scores - Formal Settlements 
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Figure 46  Histogram of Discriminant Function Scores - Informal Settlements 

 

After cross-validation, 92.1% of the cases were correctly classified. The cases that were 

not correctly classified were distributed fairly evenly across settlements (3 cases 

misclassified Informal as Formal - 1 from Satélite, 1 from Joya, 1 from Peronia; and 5 

cases misclassified Formal as Informal - 1 from GTowns2, 2 from Piñares, 1 from 

Balcones and 1 from Terrazas).  This implies the DA function is effectively 

differentiating settlement type. The standardized canonical discriminant function beta 

coefficients are shown in Table 33.  
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Table 33 Standardized Canonical Discriminant Function Coefficients 

 

 

 

Based on the results in Table 33, the final discriminant function is written as: 

 

D(formal, informal)  = (0.336 × RoadLenPerArea)     +   (−0.373 × MeanVegArea) +  

                           (0.452 × CompactnessRatio)  +   (0.304 × SoilPctByGrid) + 

             (0.767 ×  EntropyRoads)         +   (−0.418 × ProfileConvexity) + c). 

 

The group centroids are listed in Table 34.  If the canonical coefficient multiplied by the 

variable‟s measured value is summed for all variables using the above D(formal, informal) 

equation, any sample with a result closer to 1.6 means the settlement is most likely 

informal. If the result is closer to −1.7 the settlement is most likely formal. The cut score 

of −0.0155 is half the centroid difference. This means if the result for a new sample is < 

−0.0155 the settlement would be classified as formal, while a result  > −0.0155 would be 

classified as informal. 
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Table 34  Discriminant Function Group Centroids 

 

 

 

Table 35  Discriminant Analysis Cross Validation Results 

 

 

It is notable that at least one variable was selected in the DFA from four of the 

five major categories of Texture, Topography, Roads, Spectral-related measures, and 

Scale-related measures. This means capturing a broad spectrum of settlement structural 

characteristics is required to differentiate informal and formal neighborhoods.  
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Variables Required for Classification using Discriminant Analysis 
 

Lacunarity  measures „gappiness‟ of image texture and translational or rotational 

invariance, while Fractal Dimension measures self-similarity across scales described as 

complexity of image texture.  During sub-sampling, lacunarity was the only Scale-related 

metric evaluated, and it did not contribute meaningfully to the DA function.  As a way to 

confirm the related measure of fractal dimension was also not a useful differentiator, a t-

test of means was applied to all 127 samples for Fractal Dimension. The result failed to 

discriminate between settlement types, confirming that fractal dimension is not useful in 

capturing patterns of built-up areas in small area samples (≤ 150m
2
 sample cells).  Fractal 

Dimension and Lacunarity should only be used at the settlement scale.   

Entropy on roads was a novel approach to constraining a texture metric to an 

anthropogenic feature common to all residential areas.  Entropy, as a measure of disorder 

in grey level tonal value, was significantly higher in the informal areas.   Mean 

Vegetation Patch Size is smaller in the informal areas.  This is a direct indication of how 

little greenspace is preserved in such settlements, and its minimal size and shape.  

Compactness ratio was a vegetation patch shape-related indicator derived from spectral 

information that was higher in the informal settlements.  This means in addition to being 

small in size the vegetation patches are not elongated in the informal areas, possibly 

contrasting with border or ornamental plantings found in more affluent or planned areas.  

Soil Percent was an unexpected discriminator, with the result that excess soil was found 

in the informal settlement samples. It is not known if the reason for the excess soil is 

from building construction areas exposed on the imagery capture date, more unpaved 
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parking lots, or fallow garden soil. The result could underscore the high soil content 

where informal settlements in a constant state of building and regeneration, described in 

the literature as in-situ accretion or densification (J. X. Barros, 2004; Griffin & Ford, 

1980; Gilbert, 1996).   

Profile Convexity was the only significant topographic metric needed for the 

result. The informal settlements had more negative Profile Convexity values, and were 

therefore built on more concave terrain in the gradient (upward, downward) direction.  

This results in a minimization of gravity effects of flow over the surface, which implies a 

more disturbed ground shape, and less desirable locations for building and habitation.   

The more negative profile convexity in the informal settlements is an indication of terrain 

that may be susceptible to pooled water.  From a terrain perspective, builders often wish 

to build on ridgelines and not beneath them. Building in the concave parts of the 

landscape appears to be a good indicator of the informal settlement type. Further 

modeling of drainage profiles, surface and subsurface hydrologic regimes, and soil 

infiltration rates are needed to go beyond this initial speculation, but the result is the more 

negative the profile convexity measure, the less desirable may be the land for human 

habitation.   

Road Density was also a very significant variable in predicting settlement type, 

with informal settlements having higher road density.  Bias was avoided by summing 

asphalt and dirt road lengths together instead of only including asphalt roads, yet it seems 

apparent that the more densely populated a region, the more roads there will be, and 

urban informal settlements are more densely populated by their nature.  An additional 
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attribute of road width could improve this measure by adding to the understanding of 

road structure, but higher resolution imagery would be needed to capture accurate road 

widths.  This indicator could also possibly contribute to current efforts measuring 

population density from imagery. Without the added certainty of building outlines, care 

must be taken when interpreting its meaning.  Also, this indicator may not be useful 

where multi-story informal settlements predominate, such as in Rio de Janeiro in Brazil.  

Classification and Regression Tree Results 

 
This section describes the results from the CART approach.  CART was selected 

for its potential to overcome the restrictions of the DA model, namely the inability to 

incorporate any samples with missing data, prohibition of multicollinearity among 

variables, and the preference for variables normally distributed. CART is a non-

parametric approach that efficiently selects from among a large number of variables the 

ones most able to explain the dependent variable class (e.g., informal or formal). It uses a 

recursive partitioning method that divides the entire sample space into binary subsamples 

by seeking variable splits that produce homogenous subgroups.  For the purposes of this 

discussion, samples (150m
2
 grid cells) and cases are used synonymously.   

The important variables in the CART model differed only marginally from DA, 

and fewer categories were needed to group samples by settlement type. The contribution 

of GLCM Correlation (Texture) and Profile Convexity (Topographic) were almost 

negligible in the CART analysis (3% and 1% contribution, respectively). This means only 

the categories of Texture, Spectral Properties and Road Networks were needed in order to 
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classify settlements, unlike DA which also required Topographic measures. Greater 

parsimony is obtained when using CART for classification because fewer variables must 

be added to the model.  The variable importance is summarized in Table 36, and also 

includes surrogate splitters that are used when missing values impact the splitting criteria.  

Asphalt Road Content, Connected Node Ratio, and Road Density were not actually used 

in the final decision tree, but still contribute significant information content when 

considered as surrogate splitters. 

 

Table 36  Variables deemed important in CART compared to DA 

Variable Name 

 

Variable 

Group 

% Info. per 

variable, CART 

Used in 

DA 

Result? 

Entropy on Roads  Texture    100% Y 

Mean Vegetation Patch 

Size 
Spectral       75% Y 

Vegetation Patch 

Compactness 
Texture      58% Y 

Asphalt Road Content Spectral       53% N 

Connected Node Ratio 
Road 

Accessibility 
     52% N 

Road Density Spectral      37% Y 

GLCM Correlation Texture       3% N 

Profile Convexity Topographic       1% Y 

 

Variables not used by the DA model but with > 50% information content to the 

CART model were Asphalt Road Content and Connected Node Ratio.  The fact that 

Entropy on Roads, Mean Vegetation Patch Size, and Vegetation Compactness comprised 

three of the top four variables in both the CART and DA models reveals the importance 

of these categories of indicators when differentiating settlements.  
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Variables Required for Classification using CART 
 

 The optimized CART result produced a 7-node classification. Figure 47 displays  

the tree.  The tree shows Entropy on Roads is the most important criteria, with 65 cases 

having entropy values ≤ 1.51, of which nearly 90% are informal. Vegetation Patch Size is 

the next most important criteria as the splitting variable used for both sides of the top 

level split. For the right side of the tree, Vegetation Patch Size of ≤ 21m
2
 contains 45 

cases, of which 100% are informal. The vegetation patch size for the left side of the top 

split contains 50 cases > 14.6m
2
 giving a good indication that mean vegetation patch size 

for 61 of the 69 formal settlements is > 14.6m
2
. The third split on the left side of the 

diagram is somewhat counterintuitive because there were 7 informal and 3 formal 

settlements with mean vegetation patch size of > 12m
2
.  The tree helps visualize the  

variability that still exists among the informal cases, with some having vegetation patches 

as large as their formal counterparts. Continuing down the left side of the tree, the final 

split occurs with two formal cases having a GLCM Correlation of > −33.68, while 90% 

of the remaining cases are informal with a lower GLCM Correlation.  On the right side of 

the tree, after separating into two groups based on Vegetation Patch Size of 21.2m
2
, the 

remaining 17 cases greater than the cutoff are further divided into formal and informal 

based on compactness ratio, with 100% of informal samples classified as having 

compactness > 0.69. Recall that a circle has compactness of 1, so the informal settlements 

can be described as having small, compact vegetation patches lacking complex shapes. 
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For CART, the impact of missing data was minimal. Of all variables used in the 

decision tree (primary or surrogate splitters), Connected Node Ratio (a Roads measure) 

was missing 4.7% of values and Asphalt Road Content was missing 1.6% of values.  The 

model was unaffected by other variables that were missing data, such as Percent 4-Way 

Intersections and Percent Dangles because these were not used as splitting criteria. When 

Figure 47 CART Decision Tree Diagram 
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cross-validation was performed, the estimate of overall classification accuracy was 

87.5%.  The misclassification rate for test data by class is shown in Table 37, where 7 

informal and 9 formal cases were misclassified on cross-validation. 

 

Table 37  Misclassification for test data, CART model 

Class 

 
N Cases N  Misclassified 

Pct 

Error 

1 (Informal)  58 7 12.07 

2 (Formal) 69 9 13.04 

 

Classification accuracy was ≥ 87% with only four variables (Entropy on Roads, 

Vegetation Patch Size, Vegetation Patch Compactness, and GLCM Correlation) used as 

primary splitters. Although the CART model is less accurate than the DA model, which 

reported 92% accuracy after cross validation, it requires fewer variables to complete.   

Entropy on Roads, Vegetation Patch Size, and Vegetation Compactness were the only 

measures needed to classify 92% of cases (117/127). The added splitting criteria of 

GLCM Correlation completed the classification with an overall 87.5% accuracy, which 

still exceeds the 80% lowest acceptable margin of error suggested by the international 

Expert Working Group on Slum Mapping (Sliuzas et al., 2008, p. 15).  
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CONCLUSIONS 

The research objectives, reiterated here, were: 

1. To test the hypothesis that foundational measures derived from roads, 

vegetation, soil, image texture, and geomorphology evaluated with 

multivariate methods can distinguish settlement structure of residential areas. 

 

2. To determine if imagery and elevation data alone are sufficient to distinguish 

informal from formal settlements. 

 

3. To develop a small set of statistically significant indicators that distinguish 

settlement type to be used by organizations such as the UN HABITAT and 

urban planners without the need for field work or surveys. 

 

This research proved that a limited set of indicators derived from remote sensing 

image analysis and GIS techniques were required to correctly distinguish informal from 

formal settlements in an urban scene. Although field reconnaissance was conducted to 

define the areas for testing purposes, no household surveys or questionnaires were used.   

Figure 48 graphically depicts the relative importance of each indicator variable by 

modeling method. For the CART result, the y-axis represents the percent of that 

variable‟s information content that is useful in deciding whether to classify a sample as 

informal or formal. For DA, the y-axis represents the absolute size of the variable‟s 

correlation with the discriminant function as a measure of agreement.  
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Figure 48  Relative variable importance by modeling method 

 

 

Reducing variable dimensionality. 
  

Limiting the measured indicators to texture, vegetation characteristics derived 

from spectral information, and geomorphology from elevation data is a more economical 

way to parsimoniously pre-process large amounts of imagery to reveal significant 

differences in settlement types. The settlement boundary must be delineated to mask the 

results, and roads must be vectorized and buffered (for Entropy on Roads), but road 

accessibility measures may not be needed for the CART approach. However, the trade-

off for parsimony is accuracy. The predictive accuracy of the CART methods tested 
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through cross-validation was high (87.5%), but not as high as the DA method (92%). 

Using DA, the additional pre-processing required to include road accessibility enjoys the 

added benefit of increased predictive accuracy, and both methods fall comfortably above 

the suggested 80% minimum margin of error for measuring informal settlements. 

 

Differentiating informal from formal settlements. 

The diversity of land features, mixed-use settlements, topographic variation, and 

the heterogeneity of building materials and neighborhood structure in informal 

settlements worldwide serve to limit universal applicability of the proposed measures.  

Based on the contribution of this research, however, new indicators could easily be 

developed for extremely arid climates, low-lying, littoral or riparian areas proximate to 

oceans or large water bodies, or settlements with snow or frost during large parts of the 

year. These characteristics impact settlement structure and where the impoverished 

choose to live.  Despite regional variability, many of the metrics that were significant in 

Guatemala City will be relevant elsewhere. Road accessibility, topography, texture, and 

spectrally-derived materials such as asphalt and vegetation provide the information 

needed to quantify a settlement‟s structure.  The conclusions for each category are 

summarized here. 

Road Accessibility 

All settlements have roads or pathways – paved and unpaved. Road topology, 

surface materials and road distribution can lead to an understanding of settlement quality 

and road accessibility. Intensely urban areas with warrens of dead-ends and many road 
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fragments typify the world‟s worst slums (Davis, 2007). This research has contributed a 

variety of roads measures that could be applied anywhere to evaluate accessibility by 

showing that informal settlements exhibit lower road accessibility than formal areas. 

 

Topography and Geomorphology 

Topographic indicators derived from elevation data that have been constrained to 

the settlement boundaries of residential areas provide an understanding of how terrain 

impacts residents.  From elevation, detailed geomorphology can be ascertained. The 

choice and cost of home sites is influenced by slope, curvature (profile and plan 

convexity), and other geomorphic properties that also impact hydrologic or volcanic flow 

and drainage in residential areas. In other parts of the world, instead of steep slopes, 

informal settlements might be found in floodplains susceptible to inundation. This 

research proves that aspects of geomorphology can discriminate between informal and 

formal settlements.  A broad geomorphic profile that includes soils and hydrologic flow 

regimes would provide even more detail. 

 

 Texture 

The classic texture measures of Entropy and GLCM Correlation differ 

significantly between informal and formal areas. When constrained to roads, entropy is 

the strongest settlement type discriminator of all, and is an indication that road variability 

is high in informal areas.  GLCM correlation, as a measure of image linearity or linear 

dependence of the intensity values on neighboring pixels is higher in the formal 
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settlements.  This represents a level of evenness and consistency of intensity values over 

such settlement areas. Texture can be measured from most advanced remote sensing 

image processing tools, but the ability to constrain the results to residential areas and 

specifically to the roads is a new approach that could be useful in settlement analysis 

worldwide. 

 

Spectral-related measures 

Spectral properties of dominant materials such as vegetation, asphalt, and soil 

extracted from imagery and then quantified demonstrate significant differences between 

informal and formal settlements. Vegetation was the most important feature material used 

to differentiate settlements. When NDVI-derived vegetation is transformed into vector 

features from pixels, it was demonstrated that compact shape and small size of the 

resulting vegetation patches were among the top three most significant metrics.  Given 

that local materials based on natural resources are often a component of road surfaces or 

roofs, selecting some key materials such as asphalt (or concrete) and soil proved 

extremely indicative of the dissimilarities in settlement types. Asphalt was found more 

often on roads of more upscale formal communities, while soil coverage over the entire 

area and not just of the road surface was higher in informal rather than formal 

settlements. 

 

 



167 

 

 

 Scale-related measures of built-up areas 

The Scale-related category that includes the measures of Lacunarity and Fractal 

Dimension was previously reported in the literature to measure the structural qualities of 

slums in other parts of Latin America, yet those published results were inconsistent. The 

conclusion of this research is that higher Lacunarity (but not Fractal Dimension) does 

characterize a settlement‟s built-up areas as informal versus formal. However, the smaller 

the sampling unit, the less useful this indicator becomes. Lacunarity is not a 

straightforward indicator and requires significant image preparation and pre-processing. 

Therefore, its practical applications are limited. 

To summarize, this research proves that the structure of a settlement can be 

quantified by the spectral properties of dominant materials, road surfaces and 

accessibility, image texture, geomorphology from elevation data, and especially 

vegetation shape, size and distribution and that significant differences exist between 

informal and formal settlements using these characteristics.  Settlement types can be 

correctly differentiated with 87-92% accuracy without the need to extract individual 

dwelling footprints. Relying only on multispectral VHR imagery and digital elevation 

data provides a means to measure settlements without sophisticated ancillary datasets or 

household surveys.  This is a major step toward scientific measurement of indicators that 

can be associated with quality of life and economic wellbeing from imagery and provides 

simplified methods for annual monitoring of slum conditions. 
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Limitations 
 

The objective in this research was to apply multivariate analysis using a variety of 

possible remote sensing and GIS-based indicators to assign image areas to one member 

of a binary group (formal or informal) in a part of the world containing urban slums, and 

often lacking usable data.  Household surveys and other ancillary data were excluded for 

reasons of safety, cost and lack of availability. As a result, the socio-economic indicators 

of quality of life and economic status, which are known to be lower in slums and 

informal settlements, would still require survey data for validation. This research did not 

use any ancillary data, such as census or real estate records. However, even if such data 

were available in small spatial units such as neighborhoods, their boundaries would not 

coincide precisely with measurable physical settlement boundaries of residential areas 

like the initial sampling units created here.  The modifiable areal unit problem (MAUP) 

would likely arise, so that instead of measuring a neighborhood, the measurement would 

be applied to an administrative boundary, and the results would likely differ (Wong, 

2004; Wong & Lee, 2005; O‟Sullivan & Unwin, 2003).  In this way, the limitations of 

this research are also an advantage. 

Another limitation is that single-story buildings were assumed to be dwellings. 

This is because the extraction of multi-story buildings from imagery requires additional 

algorithms to distinguish shadows and may need to incorporate alternative sensors such 

as LIDAR or RADARSAT.  If the distortion of spectral information caused by shadows 

was accounted for, some indicators such as road surface may have slightly different 
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results. This research was therefore applicable to neighborhoods of mostly single or two-

story dwellings. 

Part of the criteria for selecting a settlement boundary was its residential status.  

In this part of Guatemala, family-run businesses that adjoin residences are common, as 

are other mixed-use structures. The intentional exclusion of much-larger buildings as 

commercial (e.g., industrial facilities, apartment buildings, or office buildings) was a 

heuristic that was not systematically derived. This could present a slight conflict given 

the mixed-use nature of property in urban areas of Latin America. Visual reconnaissance 

and settlement boundary demarcation conducted in the early stages of the research was 

intended to exclude these non-residential areas. It should also be mentioned that refugee 

camps (Giada et al., 2003) are a distinctly different settlement type often with regular 

patterns and self-similar shapes that were not the focus in this research. The regularized 

structure of refugee camps could possibly lead to a different set of indicators. 

A final limitation concerns the absence of any indicators based on dwelling 

footprints. Extracting accurate building outlines is non-trivial, and though attempted, was 

not completed for reasons visually apparent in Figure 21. Much research is currently 

dedicated to the building extraction problem, but the test areas are small (usually < 100 

dwellings). The scope of those efforts would not scale upward to the larger settlement 

areas measured here (4km
2
 total area) because shape and image variability increase 

dramatically with study area size in urban communities. Intrinsically, this research has 

overcome the limitations caused by difficulties in using dwelling footprint metrics 
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because it reveals an alternative way to successfully differentiate informal from formal 

settlements. 

 

Recommendations for Future Research 
 

The most practical next step is to apply the significant indicators from this research 

(Entropy on Roads, Vegetation Patch Area, Vegetation Patch Compactness, Asphalt 

Road Content, Road Density, Connected Node Ratio, GLCM Correlation, Profile 

Convexity, and Soil Percent) to study areas with different climatic regimes, historical 

settlement patterns, and building vernacular in order to generalize indicators to other 

regions.  Measuring improvement or deterioration of slum conditions over time could 

then easily be performed from imagery using change detection techniques, which is 

considerably less costly and devoid of the risks inherent in annual field surveys. 
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APPENDICES 

APPENDIX A – STATISTICS FOR ALL VARIABLES 

 

 

Statistical significance of the difference in means for all variables 
 

Independent Samples Test - Stratified Proportional Random Sampling by Grid Cell – All 127 

Samples 

  t-test for Equality of Means - unequal variances 

Variable Name t df 
Significance     
(2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

90% Confidence 

Interval of the 

Difference 

Lower Upper 

FractalD 2.872 102.12 .005 .037 .013 0.016 .058 

Lacunarity -.583 109.55 .561 -.003 .006 -0.013 .006 

CNR -5.576 69.47 .000 -.191 .034 -0.248 -.134 

MeanNodeVal -4.369 104.65 .000 -.440 .101 -0.606 -.273 

Pct4Way -2.464 76.59 .016 -.111 .045 -0.185 -.036 

PctDangl 5.576 69.47 .000 .191 .034 0.134 .248 

AsphRdPct -6.164 121.24 .000 -.236 .038 -0.299 -.173 

DirtRdPct 2.792 112.52 .006 .064 .023 0.026 .102 

RoadLenPerArea 3.391 121.61 .001 .012 .004 0.006 .018 

Upaved:PavedRdSurface .125 121.10 .901 1.856 14.837 -22.737 26.450 

Mean Veg Area -7.931 100.83 .000 -18.688 2.356 -22.600 -14.776 

Compactness 8.061 113.08 .000 .025 .003 0.020 .030 

SoilPctByGrid 2.451 77.06 .016 2.044 .834 0.656 3.432 

VegPctByGrid -11.418 105.45 .000 -10.348 .906 -11.852 -8.844 

Mean_Correlation -5.186 109.86 .000 -4.463 .861 -5.891 -3.036 

Mean_Contrast 2.786 124.12 .006 2.279 .818 0.923 3.634 

MeanEntropy 8.020 102.20 .000 .092 .011 0.073 .111 

Mean_Contrast_Roads 8.374 88.99 .000 9.755 1.165 7.819 11.691 

MeanEntropy_Roads 10.969 124.40 .000 .417 .038 0.354 .480 

DegreeSlopeRoads 3.467 108.85 .001 6.922 1.997 3.610 10.234 

DegreeSlope 3.379 109.34 .001 6.445 1.907 3.281 9.609 

ProfileConvexity -3.331 87.05 .001 -.279 .084 -0.419 -.140 

PlanConvexity -.815 124.98 .417 -.549 .673 -1.665 .567 

 



172 

 

Descriptive statistics for CART and DA modeled variables 
 
 Valid 

N 
Min Max Mean StdDev Var Skew-

ness 
Kurtosis 

AsphRdPct 125 .001 .867 .31807 .243869 .059 .396 -1.022 

CNR 121 0.000 1.000 .88363 .202752 .041 -1.986 3.815 

Compactne
ssRatio 

127 .634 .740 .68580 .021348 .000 .241 .200 

GLCM 
Correlation 

127 -49.693 -23.053 -37.45168 5.509143 30.351 .286 -.123 

Entropy on 
Roads 

127 .485 2.116 1.50651 .298962 .089 -.286 -.100 

Mean Veg 
Patch Size 

127 4.217 86.524 24.04613 16.76815
5 

281.171 1.408 1.906 

Profile 
Convexity 

127 -2.31 .73 -.5783 .46979 .221 -.789 1.676 

RoadLength 
PerArea 

127 .014 .157 .04841 .021191 .000 1.714 5.729 

SoilPct  127 .902 30.838 7.37421 4.521307 20.442 1.824 5.587 

 

Descriptive statistics for variables used in DA by settlement type 
 
Settlement  
Type                   Indicator Min Max Mean 

Std. 
Deviation Skewness 

Formal RoadLenPerArea .014 .128 .04280 .020439 1.615 

CompactnessRatio .634 .724 .67429 .016046 -.293 

Mean Veg Area 4.755 86.524 32.580 17.3745 1.042 

SoilPct 1.453 12.949 6.440 2.6929 .190 

Entropy_Roads .485 1.917 1.31621 .225243 -.523 

ProfileConvexity -1.38 .18 -.4507 .32311 -.396 

Informal RoadLenPerArea .024 .157 .05509 .020269 2.436 

CompactnessRatio .664 .740 .69948 .018700 .314 

Mean Veg Patch 
Size 

4.217 51.036 13.892 8.2656 2.359 

SoilPctByGrid .902 30.838 8.484 5.8504 1.408 

Entropy_Roads 1.153 2.116 1.732 .2026 -.810 

ProfileConvexity -2.31 .73 -.7300 .56585 -.362 
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All variable histograms and descriptives 

Asphalt Road Content 

 

 
Statistics 

AsphRdPct 

N 
Valid 125 

Missing 2 

Mean .3181 

Std. Error of Mean .02181 

Std. Deviation .24387 

Variance .059 

Skewness .396 

Std. Error of Skewness .217 

Kurtosis -1.022 

Std. Error of Kurtosis .430 

Range .87 

Minimum .00 

Maximum .87 

Percentiles 

25 .0821 

50 .2831 

75 .5064 
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Connected Node Ratio (CNR) 
 

Statistics 

CNR 

N 
Valid 121 

Missing 6 

Mean .8836 

Std. Error of Mean .01843 

Std. Deviation .20275 

Variance .041 

Skewness -1.986 

Std. Error of Skewness .220 

Kurtosis 3.815 

Std. Error of Kurtosis .437 

Range 1.00 

Minimum .00 

Maximum 1.00 

Percentiles 

25 .8000 

50 1.0000 

75 1.0000 
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Vegetation Compactness 
 

Statistics 

Compactness 

N 
Valid 127 

Missing 0 

Mean .6858 

Std. Error of Mean .00189 

Std. Deviation .02135 

Variance .000 

Skewness .241 

Std. Error of Skewness .215 

Kurtosis .200 

Std. Error of Kurtosis .427 

Range .11 

Minimum .63 

Maximum .74 

Percentiles 

25 .6723 

50 .6855 

75 .6949 
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Slope (in degrees) 
 

Statistics 

DegreeSlope 

N 
Valid 127 

Missing 0 

Mean 17.0683 

Std. Error of Mean .97230 

Std. Deviation 10.95730 

Variance 120.063 

Skewness 1.074 

Std. Error of Skewness .215 

Kurtosis .334 

Std. Error of Kurtosis .427 

Range 44.40 

Minimum 3.81 

Maximum 48.21 

Percentiles 

25 8.4528 

50 13.4163 

75 23.8344 
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Slope on Roads 
 

Statistics 

DegreeSlopeRoads 

N 
Valid 127 

Missing 0 

Mean 17.1231 

Std. Error of Mean 1.01955 

Std. Deviation 11.48974 

Variance 132.014 

Skewness 1.124 

Std. Error of Skewness .215 

Kurtosis .510 

Std. Error of Kurtosis .427 

Range 47.61 

Minimum 3.24 

Maximum 50.85 

Percentiles 

25 8.0759 

50 13.6938 

75 23.0237 
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Dirt Road Percent 
 

Statistics 

DirtRdPct 

N 
Valid 125 

Missing 2 

Mean .0723 

Std. Error of Mean .01162 

Std. Deviation .12995 

Variance .017 

Skewness 2.508 

Std. Error of Skewness .217 

Kurtosis 6.742 

Std. Error of Kurtosis .430 

Range .71 

Minimum .00 

Maximum .71 

Percentiles 

25 .0001 

50 .0089 

75 .0816 
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Fractal Dimension (D) 
 

Statistics 

FractalD 

N 
Valid 127 

Missing 0 

Mean 1.8811 

Std. Error of Mean .00641 

Std. Deviation .07220 

Variance .005 

Skewness -1.309 

Std. Error of Skewness .215 

Kurtosis 2.841 

Std. Error of Kurtosis .427 

Range .44 

Minimum 1.56 

Maximum 2.00 

Percentiles 

25 1.8399 

50 1.8950 

75 1.9366 
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Lacunarity 
 

Statistics 

Lacunarity 

N 
Valid 127 

Missing 0 

Mean 1.0332 

Std. Error of Mean .00281 

Std. Deviation .03172 

Variance .001 

Skewness 1.675 

Std. Error of Skewness .215 

Kurtosis 2.850 

Std. Error of Kurtosis .427 

Range .15 

Minimum 1.00 

Maximum 1.15 

Percentiles 

25 1.0113 

50 1.0230 

75 1.0457 
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GLCM Contrast 
 

Statistics 

Mean_Contrast 

N 
Valid 127 

Missing 0 

Mean 15.6028 

Std. Error of Mean .42706 

Std. Deviation 4.81275 

Variance 23.163 

Skewness .967 

Std. Error of Skewness .215 

Kurtosis 3.596 

Std. Error of Kurtosis .427 

Range 34.06 

Minimum 4.31 

Maximum 38.37 

Percentiles 

25 12.9139 

50 14.7534 

75 18.4629 
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Contrast on Roads 
 

Statistics 

Mean_Contrast_Roads 

N 
Valid 127 

Missing 0 

Mean 9.3652 

Std. Error of Mean .70318 

Std. Deviation 7.92448 

Variance 62.797 

Skewness 1.022 

Std. Error of Skewness .215 

Kurtosis .387 

Std. Error of Kurtosis .427 

Range 35.76 

Minimum .45 

Maximum 36.21 

Percentiles 

25 2.5305 

50 6.7198 

75 14.5160 
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GLCM Correlation 
 

Statistics 

Mean_Correlation 

N 
Valid 127 

Missing 0 

Mean -37.4517 

Std. Error of Mean .48886 

Std. Deviation 5.50914 

Variance 30.351 

Skewness .286 

Std. Error of Skewness .215 

Kurtosis -.123 

Std. Error of Kurtosis .427 

Range 26.64 

Minimum -49.69 

Maximum -23.05 

Percentiles 

25 -41.3726 

50 -38.0030 

75 -33.8618 
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Entropy 
 

Statistics 

MeanEntropy 

N 
Valid 127 

Missing 0 

Mean 1.7936 

Std. Error of Mean .00726 

Std. Deviation .08178 

Variance .007 

Skewness -.846 

Std. Error of Skewness .215 

Kurtosis .350 

Std. Error of Kurtosis .427 

Range .39 

Minimum 1.54 

Maximum 1.93 

Percentiles 

25 1.7362 

50 1.8154 

75 1.8544 
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Entropy on Roads 
 

Statistics 

MeanEntropy_Roads 

N 
Valid 127 

Missing 0 

Mean 1.5065 

Std. Error of Mean .02653 

Std. Deviation .29896 

Variance .089 

Skewness -.286 

Std. Error of Skewness .215 

Kurtosis -.100 

Std. Error of Kurtosis .427 

Range 1.63 

Minimum .49 

Maximum 2.12 

Percentiles 

25 1.2696 

50 1.4979 

75 1.7549 
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Node Valence 
 

Statistics 

MeanNodeVal 

N 
Valid 121 

Missing 6 

Mean 2.7547 

Std. Error of Mean .05317 

Std. Deviation .58491 

Variance .342 

Skewness -.664 

Std. Error of Skewness .220 

Kurtosis .989 

Std. Error of Kurtosis .437 

Range 3.00 

Minimum 1.00 

Maximum 4.00 

Percentiles 

25 2.5147 

50 3.0000 

75 3.0000 
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Vegetation Patch Size (Area) 
 

Statistics 

Mean Veg Area 

N 
Valid 127 

Missing 0 

Mean 24.0461 

Std. Error of Mean 1.48793 

Std. Deviation 16.76815 

Variance 281.171 

Skewness 1.408 

Std. Error of Skewness .215 

Kurtosis 1.906 

Std. Error of Kurtosis .427 

Range 82.31 

Minimum 4.22 

Maximum 86.52 

Percentiles 

25 12.1448 

50 19.5893 

75 31.3453 
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4-Way Intersections 
 

Statistics 

Pct4Way 

N 
Valid 110 

Missing 17 

Mean .1243 

Std. Error of Mean .02271 

Std. Deviation .23823 

Variance .057 

Skewness 2.284 

Std. Error of Skewness .230 

Kurtosis 5.023 

Std. Error of Kurtosis .457 

Range 1.00 

Minimum .00 

Maximum 1.00 

Percentiles 

25 .0000 

50 .0000 

75 .1488 
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Dangle Ratio 
 

Statistics 

PctDangl 

N 
Valid 121 

Missing 6 

Mean .1164 

Std. Error of Mean .01843 

Std. Deviation .20275 

Variance .041 

Skewness 1.986 

Std. Error of Skewness .220 

Kurtosis 3.816 

Std. Error of Kurtosis .437 

Range 1.00 

Minimum .00 

Maximum 1.00 

Percentiles 

25 .0000 

50 .0000 

75 .2000 
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Plan Convexity 
 

Statistics 

PlanConvexity 

N 
Valid 127 

Missing 0 

Mean 4.6628 

Std. Error of Mean .33975 

Std. Deviation 3.82879 

Variance 14.660 

Skewness 1.645 

Std. Error of Skewness .215 

Kurtosis 4.176 

Std. Error of Kurtosis .427 

Range 21.65 

Minimum -.68 

Maximum 20.98 

Percentiles 

25 1.8996 

50 4.1526 

75 6.4428 
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Profile Convexity 
 

Statistics 

ProfileConvexity 

N 
Valid 127 

Missing 0 

Mean -.5783 

Std. Error of Mean .04169 

Std. Deviation .46979 

Variance .221 

Skewness -.789 

Std. Error of Skewness .215 

Kurtosis 1.676 

Std. Error of Kurtosis .427 

Range 3.04 

Minimum -2.31 

Maximum .73 

Percentiles 

25 -.8558 

50 -.5283 

75 -.2531 
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Road Density 
 

Statistics 

RoadLenPerArea 

N 
Valid 127 

Missing 0 

Mean .0484 

Std. Error of Mean .00188 

Std. Deviation .02119 

Variance .000 

Skewness 1.714 

Std. Error of Skewness .215 

Kurtosis 5.729 

Std. Error of Kurtosis .427 

Range .14 

Minimum .01 

Maximum .16 

Percentiles 

25 .0355 

50 .0441 

75 .0586 
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Soil Percent 
 

Statistics 

SoilPctByGrid 

N 
Valid 127 

Missing 0 

Mean 7.3742 

Std. Error of Mean .40120 

Std. Deviation 4.52131 

Variance 20.442 

Skewness 1.824 

Std. Error of Skewness .215 

Kurtosis 5.587 

Std. Error of Kurtosis .427 

Range 29.94 

Minimum .90 

Maximum 30.84 

Percentiles 

25 4.2448 

50 6.6480 

75 9.3461 
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Unpaved to Paved Road Ratio 
 

Statistics 

Upaved:PavedRdSurface 

N 
Valid 125 

Missing 2 

Mean 13.9481 

Std. Error of Mean 7.39504 

Std. Deviation 82.67910 

Variance 6835.833 

Skewness 7.218 

Std. Error of Skewness .217 

Kurtosis 53.206 

Std. Error of Kurtosis .430 

Range 676.50 

Minimum .00 

Maximum 676.50 

Percentiles 

25 .0000 

50 .0351 

75 .9668 

 

 
 

 



195 

 

Vegetation Percent 
 

Statistics 

VegPctByGrid 

N 
Valid 127 

Missing 0 

Mean 12.5475 

Std. Error of Mean .65918 

Std. Deviation 7.42858 

Variance 55.184 

Skewness .703 

Std. Error of Skewness .215 

Kurtosis -.272 

Std. Error of Kurtosis .427 

Range 30.60 

Minimum 1.19 

Maximum 31.79 

Percentiles 

25 6.0017 

50 11.0610 

75 17.1744 
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APPENDIX B – BIVARIATE CORRELATIONS FOR ALL VARIABLES 
 

 

 

The graphics in this appendix evaluate bivariate correlations prior to inclusion in 

the model. Pearson‟s r (correlation coefficient) for each variable pair is reported in order 

to help determine whether any of the variables should be excluded from the model due to 

prior correlation.  There were two ways of testing statistical significance used in this 

research to improve model performance and exclude co-variates. One is the t-test of 

means at the settlement level. This treats the mean for each settlement as a sample, so 

there are 6 informal and 6 formal samples.  The second way of evaluating significance 

was the Pearson r where all 127 randomly selected sample grid cells represented the 

sample set. Then, Spearman‟s ρ was computed on grouped data to determine whether 

correlation between the variables differed by group (e.g., informal or formal).  The 

scatterplots show the fitting of a regression line for the grouped data in order to evaluate 

the distributions by group, and where further explanation was needed, histograms 

provided additional visualization of the distributions.   

 

FractalD and Lacunarity 
 

FractalD and Lacunarity are negatively correlated with a Pearson r of -0.699 for the un-

grouped population.  Fitting a linear regression line for each group produces a Formal R
2
 

of 0.406 and Informal R
2
 of 0.582.  A t-test of independent means with settlements as 

samples yields (p)=0.07 for Fractal Dimension and (p)=0.06  for Lacunarity. The 

discriminating power of Lacunarity at the settlement level was slightly higher than 

Fractal D, so Lacunarity was chosen for model inclusion. Additionally, Lacunarity was 

well-cited in the literature as a good differentiator of informal settlements. 
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Connected Node Ratio (CNR) and Mean Node Valence 
 

Connected Node Ratio (CNR) and Mean Node Valence are positively correlated with a 

Pearson r of 0.794 for the un-grouped population.  Fitting a linear regression line for each 

group produces a Formal R
2
 of 0.29 and a much higher Informal R

2
 of 0.762.  At the 

settlement level, the t-test of means for CNR produces a (p) value of 0.0082 while Mean 

Node Valence was not significant ((p)=0.166), therefore CNR was selected and Mean 

Node Valence was dropped from the model.  
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Dangle Ratio and Mean Node Valence 
 

Dangle Ratio and Mean Node Valence were negatively correlated with a Pearson r of      

-0.794 for the un-grouped population.  This is an expected relationship since the more 

dangles there are (dead end streets) in a sample, the less will be the mean number of 

roads intersecting at any given node.  Fitting a linear regression line for each group 

produces a Formal R
2
 of 0.29 and a much higher Informal R

2
 of 0.762.  At the settlement 

level, the t-test of means for Dangle Ratio had a (p) value of 0.0052 while Mean Node 

Valence was not significant. Mean Node Valence was already dropped based on its 

correlation with Connected Node Ratio, therefore Dangle Ratio was retained. 
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Percent Dirt Roads and Unpaved-Paved Road Ratio 
 

Percent Dirt Road surface is positively correlated with Unpaved-Paved Road Ratio as 

evidenced by a Pearson r of 0.612 for the un-grouped population. This relationship is 

understood from the context of having more road surface covered by dirt also impacting 

the ratio of dirt roads to asphalt roads. Fitting a linear regression line for each group 

produces a Formal R
2
 of 0.549 and a lower Informal R

2
 of 0.26.  The unpaved-paved road 
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surface ratio contained several distinct outliers that impact this comparison, seen in the 

following scatter plot.  At the settlement level, the t-test of means for Percent Dirt Road 

had a (p) value of 0.35 while Unpaved-Paved Road Ratio also did not exhibit a 

significant difference between the informal and formal means ((p) value of 0.337).  The 

two scatterplots show the outliers in the Unpaved:Paved Road Surface ratio, and the 

histograms demonstrate neither variable is normally distributed. Therefore both of these 

variables were excluded from the model. 
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Mean Vegetation Patch Area and Vegetation Percent 
 

Mean Vegetation Patch Area represents the mean area in m
2
 for vegetation patches 

intersecting each sample. It is highly positively correlated with Vegetation Percent 

(Pearson r of 0.796 for the un-grouped population, with similar high correlation for the 

formal and informal grid samples).  Fitting a linear regression line for each group 

produces a Formal R
2
 of 0.524 and a lower Informal R

2
 of 0.244.  At the settlement level, 

the t-test of means for Mean Vegetation Patch Area ((p) value of 0.08) was less 

significant than Vegetation Percent ((p) value of 0.0006) in differentiating between 

formal and informal means.  Vegetation Percent from the NDVI band ratio is a common 

remote sensing metric developed from a ratio of a multispectral image‟s red and near 

infra-red bands. As a purely pixel-based metric, it is simple to calculate. In comparison, 

Mean Vegetation Patch Area requires creating polygons from clusters of pixels and opens 

up rich possibilities to measure other shape-dependent values such as feature size and 

compactness. In this case, shape provides an additional level of detail needed for an 

object-based approach. Vegetation Percent will therefore be excluded from the model, 

and Mean Vegetation Area will be included instead. 
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Mean Compactness Ratio and Vegetation Percent 
 

Mean Compactness Ratio and Vegetation Percent are highly negatively correlated, with a 

Pearson r of -0.621 for the un-grouped population – the more vegetation in a sample, the 

less compact (or circular) will be its shape.  Fitting a linear regression line for each group 

produces a Formal R
2
 of 0.213 and a lower Informal R

2
 of 0.06.  At the settlement level, 

the t-test of means for Vegetation Patch Compactness Ratio with a (p) value of <0.00008 

was a slightly stronger differentiator between the informal and formal means than the 

Vegetation Percent with a (p) value of 0.0006.  As mentioned previously the added 

object-based information provided by the shape metric of compactness can provide 

additional meaning that can shed light on the reason for the vegetation. For example, 

elongated vegetation shape may indicate it was planted and is maintained to delineate 

property boundaries or as ornamental greenery in neat rows. On the other hand, a 

compact shape could indicate the vegetation was leftover as uncultivated or untended 

weeds or shrubs when vacant land continued to densify with additional dwellings as 

occurs somewhat randomly in informal settlements.  Vegetation Percent was already 

excluded from the model so Compactness Ratio is retained. 
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Asphalt Road Content and Entropy Texture Measure 
 

Asphalt Roads are found less often in samples having higher Entropy.  An Asphalt Road 

t-test of independent means at the settlement level has a (p) value of 0.037 - there is 

~94% confidence the means are significantly different between formal and informal 

settlements.  Using Spearman‟s ρ the correlation between Asphalt Road Content and 

Entropy is significant at the 0.05 level. These two measures are derived from different 
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methods.  Asphalt Road percent from spectral properties of bands 1, 2, 3 & 4 of 

Quickbird imagery, while Entropy is from the GLCM Texture measure using only the 

Panchromatic Band.  The grouped Spearman‟s ρ is not significant for informal 

settlements but is positive and significant for the formal settlement type. 

 

 

 

 

 
 

Despite the popularity of Entropy as a measure of informality of settlement structure, in 

this multivariate model, an assessment of multicollinearity resulting from ordinary linear 
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regression reveals that Entropy suffers the highest variance inflation factor (VIF) of 5.4 

compared to all remaining included variables, displayed in the following table.  

 

 
 

The VIF is a measure of how much the variance of the estimated regression coefficient is 

inflated by predictor variable correlation. (see: 

http://online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.h

tml ).  Generally, a VIF of >4 is cause for concern. This VIF validates the decision to 

remove Entropy from the model. 

 

 

 

GLCM Correlation and Entropy 
 

The Texture metric of GLCM Correlation was highly negatively correlated with Entropy 

exhibiting a Pearson r of  -0.711.  The following histogram shows the GLCM Correlation 

measure is normally distributed. 

http://online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
http://online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
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Entropy is also fairly normally distributed with slight negative skewness (sk = 

−0.846) in the following figure. 

 

 
 

This relationship is not unexpected, since entropy is a measure of disorder in image tone, 

while GLCM correlation is a measure of linear dependence of grey levels on the grey 

levels of neighboring pixels in the panchromatic band. The t-test of independent means 

conducted at the settlement level reveals (p) = 0.035 for GLCM Correlation, with a very 

similar significance level for the texture metric of Entropy ((p)=0.039). 
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From Spearman‟s ρ in the previous table, the texture measures of Entropy and GLCM 

Correlation are highly negatively correlated for Formal settlements but less (negatively) 

correlated for Informal settlements.  Based on the prior decision to remove Entropy from 

the model due to its relationship with the Asphalt Roads measure, the texture measure of 

GLCM Correlation will be retained. 

 

 

Contrast and Entropy 
 

Contrast (sum of squares variance) and Entropy are highly positively correlated ( r= 

0.608). The t-test of means at the settlement level is less significant with (p)= 0.119 for 

Contrast but more significant ((p) = 0.039) for Entropy.  At the sub-sampling level, 

Entropy and Contrast were also significantly correlated within groups according to 

Spearman‟s ρ in the following table. 
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There was high correlation also between entropy and contrast on the un-grouped data: 

 

 
 

 

The present research demonstrates similar results to other works referenced in the 

literature that show Entropy is a good differentiator of informal settlements. Due to the 

contribution to the scientific literature of evaluating alternate GLCM texture measures 

than Entropy for their performance in differentiating settlement type from imagery, 

Entropy has been removed from the model and GLCM Contrast is retained at this point. 

 

Contrast on Roads and Entropy on Roads 
 

Following the same trend as the high correlation between Contrast and Entropy texture 

measures, Contrast on Roads is also highly positively correlated with Entropy on Roads 

(r = 0.685). At the settlement level the difference in means between formal and informal 
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settlement types using the Contrast on Roads metric is very significant at (p) = 0.000053) 

while Entropy Roads at the settlement level is also very significant at (p) = 0.0004.  

 

 

 
 

The grouped data exhibit similar high correlation between Contrast on Roads and 

Entropy Roads (p=0.74 for ungrouped, (p)=0.66 for the Informal group and (p)=0.45 for 

the Formal group). Since Entropy has already been excluded from the variable set, 

robustness could be increased by retaining Entropy on Roads.  Therefore Contrast on 

Roads will be excluded from the model. 

 

 
 

 

Degree Slope on Roads and Degree Slope 
 

Degree Slope Roads  and Degree Slope exhibit near perfect positive correlation because 

they are both derived from the same underlying elevation data (r = 0.988).  At the 

settlement level, the slope on roads has slightly less discriminatory power ((p) = 0.065) 

than overall Degree Slope ((p) = <0.001), which is likely due to the reduced number of 

slope pixels used for roads compared to the number of underlying slope pixels needed for 
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degree slope of the entire sample area.  For the same reasons a similar high positive 

correlation also appears on the ungrouped data (Spearman‟s ρ = 0.98). 

 

 
 

 

To investigate further, Spearman‟s ρ was also computed on the grouped data and also 

exhibited nearly perfect correlation (0.95 for Formal and 0.99 for Informal).  Due to the 

greater discriminatory power of degree slope for the entire sample area, Degree Slope on 

Roads will be eliminated from the model. 
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Summary of Variable Exclusions 
 

Of the bivariate correlations listed,   Fractal Dimension, Mean Node Valence, 

Vegetation Percent, Entropy, Contrast on Roads, and Degree Slope are the variables 

excluded because they are already correlated with other variables.  For similar reasons, 

Mean Node Valence (number of roads joining at a nodal point), Unpaved-to-Paved Road 

Ratio and Percent Dirt Roads were eliminated. 
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APPENDIX C - LACUNARITY RESULTS BY SETTLEMENT FOR ALL BOX 
SIZES 

 

IMAGE 

TYPE Box Size Settlement Formal 

Lacunarity 

Formal Settlement Informal 

Lacunarity 

Informal 

BINARY 49 Terrazas F 1.0762 Satelite I 1.061 

BINARY 49 Balcones F 1.0461 Berlin I 1.062 

BINARY 49 Mirador2 F 1.0515 Joya I 1.1212 

BINARY 49 GTowns2 F 1.0666 LoDeCoy I 1.0747 

BINARY 49 GTowns3 F 1.0737 Peronia1 I 1.0417 

BINARY 49 Pinares F 1.1169 Peronia2 I 1.0801 

BINARY 100 Terrazas F 1.0548 Satelite I 1.0712 

BINARY 100 Balcones F 1.0323 Berlin I 1.0593 

BINARY 100 Mirador2 F 1.0486 Joya I 1.1152 

BINARY 100 GTowns2 F 1.055 LoDeCoy I 1.074 

BINARY 100 GTowns3 F 1.0601 Peronia1 I 1.0417 

BINARY 100 Pinares F 1.0878 Peronia2 I 1.1067 

BINARY 200 Terrazas F 1.0447 Satelite I 1.0884 

BINARY 200 Balcones F 1.022 Berlin I 1.0593 

BINARY 200 Mirador2 F 1.0555 Joya I 1.1229 

BINARY 200 GTowns2 F 1.0467 LoDeCoy I 1.0587 

BINARY 200 GTowns3 F 1.0416 Peronia1 I 1.0442 

BINARY 200 Pinares F 1.0737 Peronia2 I 1.1436 

BINARY 500 Terrazas F 1.0658 Satelite I 1.1011 

BINARY 500 Balcones F 1.0187 Berlin I 1.0501 

BINARY 500 Mirador2 F 1.0917 Joya I 1.1374 

BINARY 500 GTowns2 F 1.043 LoDeCoy I 1.0064 

BINARY 500 GTowns3 F 1.0246 Peronia1 I 1.072 

BINARY 500 Pinares F 1.0866 Peronia2 I 1.1867 
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