
Securing Light Weight Cryptographic Implementations on FPGAs Using Dual Rail with
Pre-Charge Logic

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Rajesh Velegalati
Bachelor of Science

SIR C.R.R College of Engineering, 2006

Director: Dr. Jens-Peter Kaps, Professor
Department of Electrical and Computer Engineering

Summer Semester 2009
George Mason University

Fairfax, VA



Copyright c© 2009 by Rajesh Velegalati
All Rights Reserved

ii



Dedication

I dedicate this thesis to my parents, Gopal and Janaki Velegalati. Thanks for supporting
me through various stages of my life.

iii



Acknowledgments

There are many people who have helped me through various stages of my thesis. First of
all, to my advisor Dr. Jens-Peter Kaps without whom this thesis would not be possible.
Thanks for taking me as your student. I am really looking forward to do my Ph.D under
you!!

I would like to thank Dr. David Hwang and Dr. Kris Gaj for their valuable support
and suggestion. I would also like to thank Dr. Alok Berry for patiently listing to my
presentation and providing valuable comments Additionally in no particular order i would
like to acknowledge the following people:

• The people at CERG, for providing a stimulating environment and also for goofing
around with me !!!

• My friends Sabari, Mahi, Venu, and Panci for supporting me through this thesis.

• Mrs.Kaps, the curry you made was awesome!

• To Xilinx tools developers, for making my life interesting!!!

• To Nick Ton who helped me a lot, and made my work much simpler.

iv



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Power Consumption in FPGAs . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Simple Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Differential Power Analysis . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Countermeasures Against DPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Dual-Rail with Pre-Charge Logic . . . . . . . . . . . . . . . . . . . . 10

2.2.2 A dynamic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 A differential logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Wave Dynamic Differential Logic . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Separated Dynamic Differential Logic . . . . . . . . . . . . . . . . . . . . . 11

2.5 Previous Work on DPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 SDDL for Light Weight Implementations ? . . . . . . . . . . . . . . . . . . . 13

3 Looking Into FPGA Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 CLBs and Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Switch Matrix and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Wide Dedicated Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Editing FPGA Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementing SDDL on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Pre-Charge Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



4.3 Complementing the Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Secure Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Power Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Hamming Weight Model . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.2 Hamming Distance Model . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Correlation Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Pearson’s Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Spearman Rank Correlation . . . . . . . . . . . . . . . . . . . . . . . 31

6 Test Circuit Description and Results . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Test Circuits Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 LFSR-SBOX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.1 Analysis of LFSR-SBOX test circuit . . . . . . . . . . . . . . . . . . 37

6.4.2 Analysis of AES test circuit . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



List of Tables

Table Page

1.1 Power consumption in a CMOS inverter . . . . . . . . . . . . . . . . . . . . 5

3.1 Operators used in LUT equation . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Results of LFSR and SBOX implementations . . . . . . . . . . . . . . . . . 37

6.2 Maximum Correlations for MUX-4 SDDL . . . . . . . . . . . . . . . . . . . 42
6.3 Maximum Correlations for MUX-16 SDDL . . . . . . . . . . . . . . . . . . . 42
6.4 Maximum Correlations for MUX-32 SDDL . . . . . . . . . . . . . . . . . . . 43
6.5 Slice consumption of Individual Components in AES . . . . . . . . . . . . . 43

6.6 Results of AES-SDDL Implementation . . . . . . . . . . . . . . . . . . . . . 45

vii



List of Figures

Figure Page

1.1 Side Channel Leakage from Cryptographic Device . . . . . . . . . . . . . . . 2

1.2 Current Flow in a CMOS inverter . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 SPA trace showing individual rounds in AES . . . . . . . . . . . . . . . . . 6

2.1 Masking Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 WDDL and SDDL version of NAND gate . . . . . . . . . . . . . . . . . . . 11

2.3 WDDL NAND gate operation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Configuration Logic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Slice Internal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Switch Matrix and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 A 4 by 1 Input Mux using Two LUTs . . . . . . . . . . . . . . . . . . . . . 19

3.5 A 16 by 1 Mux using Four Slices . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 A 32 by 1 Mux using Two CLBs . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Slice Internal Components Description in XDL . . . . . . . . . . . . . . . . 21

3.8 Routing Description in XDL . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Propsed SDDL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Pre-Charge circuit implementation in FPGA . . . . . . . . . . . . . . . . . 24

4.3 Duplicating Multiplexers in FPGA . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Complementing Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 SDDL Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 CPA Attack Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1 Block Diagram of Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Block Diagram of AES Module . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 AES module with a Wrapper Circuit . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Power Traces (5 mV/div, 1µs/div) . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Power Traces (5 mV/div, 1µs/div) . . . . . . . . . . . . . . . . . . . . . . . 39

6.6 DPA Attack on MUX-4 SE Implementation . . . . . . . . . . . . . . . . . . 40

6.7 DPA Attack on MUX-16 SE Implementation . . . . . . . . . . . . . . . . . 40

viii



6.8 DPA Attack on MUX-32 SE Implementation . . . . . . . . . . . . . . . . . 41

6.9 Placement of AES modules on FPGA fabric . . . . . . . . . . . . . . . . . . 44
6.10 Power Traces (5 mV/div, 1µs/div) . . . . . . . . . . . . . . . . . . . . . . . 45

6.11 DPA Attack on AES SE Implementation . . . . . . . . . . . . . . . . . . . . 46

6.12 DPA Attack on AES SDDL Implementation . . . . . . . . . . . . . . . . . . 46

ix



Abstract

SECURING LIGHT WEIGHT CRYPTOGRAPHIC IMPLEMENTATIONS ON FPGAS
USING DUAL RAIL WITH PRE-CHARGE LOGIC

Rajesh Velegalati, MS

George Mason University, 2009

Thesis Director: Dr. Jens-Peter Kaps

Recent advances in Field Programmable Gate Array (FPGA) technology are bound to

make FPGAs a popular platform for battery powered devices. Many applications of such

devices are mission critical and require the use of cryptographic algorithms to provide the

desired security. However, Differential Power Analysis (DPA) attacks pose a severe threat

against otherwise secure cryptographic implementations.

Current techniques to defend against DPA attacks such as Dual rail with Pre-Charge

Logic (DPL) lead to an increase in area consumption of factor 4 or more which is not

suitable for Light Weight implementations. Current secure implementations using DPL

require ASIC tools and a special ASIC library. In this thesis we show that moderate security

against DPA attacks can be achieved for DPL secured implementations using only FPGA

CAD tools augmented by some scripts. The resulting circuit has an area increase of not

much more than a factor two over standard FPGA implementations. We demonstrate our

approach by implementing a cryptographic algorithm on Spartan3E FPGA and assessing

the security it provides against DPA. We also study one of the Xilinx FPGA specific intrinsic

features - Wide Dedicated Multiplexer (WDM) -with respect to DPA.



Chapter 1: Introduction

With ever increasing miniaturization and ubiquity of computing devices such as smart

cards, WSN sensor nodes, RFIDs etc., security threats against them have become a growing

concern. Smart cards can be used for identification, authentication etc., as such they will

contain sensitive information like biometric data, personal information or cryptographic

keys. RFIDs are used just about anywhere, from pet-tags to food-tags, from clothing-tags

to missiles, anywhere that an unique identification system is needed. They are also used

in hospitals to control access to drugs or even to keep track of locations of doctors and

patients. The shared radio medium of the RFIDs allows for evasdropping which poses

threat to individual privacy. WSN nodes are generally used for applications involving

monitoring, tracking and controlling for example, WSN nodes could be deployed over a

battle field to detect enemy intrusion or to control a nuclear reactor. If an adversary

manges to obtain these devices either by stealing or purchasing, information inside these

devices gets compromised.

Even though these devices protect confidential information using cryptographic algo-

rithms that withstand rigorous cryptanalytic attacks, an adversary can obtain the secret

information by observing the so called side channel leakage from the cryptographic device.

These side channels can be power consumption [1,2], execution time [3], or electromagnetic

field [4,5] of the device. These side-channels leak information whenever the device performs

an operation using the secret data. Attacks which make use of such inherent physical leak-

age are called side-channel attacks (SCA). SCA pose a major threat because the physical

implementations of the cryptographic devices are difficult to control and often result in

unintended leakage of information.

Amongst these passive non-invasive techniques, the power analysis attack has received

the most amount of attention by the research community because it is very powerful, can

1
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Figure 1.1: Side Channel Leakage from Cryptographic Device

easily be conducted, and has been used successful many times. It can be applied to dedicated

cryptographic processors as well as to general purpose processors running a cryptographic

software. The fact that ultra-low power implementations of cryptographic algorithms per-

form most operations in a serial fashion, in order to conserve power, makes them even more

susceptible to SCA.

1.1 Motivation

Field Programmable Gate Arrays (FPGA) are a popular choice for applications where low

up-front cost, fast time to market and flexibility are important. Many of those applications

are based on battery powered mobile devices which require low power consumption. FPGAs

are less energy efficient than ASICs or embedded processors and hence they are not often

found in such applications. Recent advances in FPGA technology [6] however, will enable

FPGAs to become more popular in this market.

Light weight or low area consuming implementations of cryptographic algorithms fa-

cilitate the use of smaller and hence less expensive FPGAs or enable their use in battery

powered applications. Unfortunately Differential Power Analysis (DPA) attacks are a threat

to otherwise secure cryptosystems on embedded devices.

The goal of this thesis is two fold. The primary goal is to introduce a secure design

2



flow that enables us to achieve resistance to DPA attacks through Dynamic Differential

Logic(DDL) for light-weight implementations of cryptographic algorithms on FPGAs. The

secondary goal is to explore the Xilinx FPGA specific intrinsic features — Wide Dedicated

Multiplexer (WDM) — with respect to DPA.

1.2 Power Analysis

In the year 1999, Kocher et al. proposed power analysis attacks [1] on cryptographic devices.

The authors have discovered that the power consumption of the cryptographic devices can

be exploited to reveal the secret information. Power analysis attacks exploit the dependence

between the instantaneous power consumption of the cryptographic device and the data it

processes. These attacks are very powerful, do not require expensive equipment, and are

almost always are successful.

This thesis discusses the security of cryptographic implementations on FPGA and most

present FPGAs are build using Complementary Metal Oxide Semiconductor (CMOS) de-

vices . Hence it is necessary to understand power consumption in CMOS circuits.

1.2.1 Power Consumption in FPGAs

The power consumption in CMOS devices is the sum of Static or leakage power, which

is caused by the leakage current of each gate, and dynamic power, caused by switching

activity.

The static power consumption is the power that is dissipated when the device is powered

up but in idle state. The major component of static power is the leakage current, that

”leaks” either from source to drain or through the gate oxide, even when the transistor is

off. It is given by

PStatic = VDD ∗ Ileakage (1.1)

These leakage currents are dependent on temperature and process variation.

3



VDD

OUTPUTINPUT

C_LOAD

GND

VDD

OUTPUTINPUT

C_LOAD

GND

a) b)

Figure 1.2: Current Flow in a CMOS inverter

Dynamic power consumption takes up major share of total power consumed. It is the

switching power which is data dependent [7] and is given by

PDynamic = CloadV
2
DDNf (1.2)

where Cload is the gate load capacitance, N is the number of bits switching per clock cycle

and f is the clock frequency.

For each binary logic there can be only four types of transitions on the gate output.

Input transitions and corresponding power consumption of the CMOS inverter is shown in

Table 1.2.1.

Only when the output of a CMOS gate transitions from low to high, a certain amount of

energy is drawn from the power supply and partially stored in the load capacitor as shown

in Figure 1.2a) . On a high to low transition the load capacitor is discharged and the energy

is dissipated as shown in Figure 1.2b). Transitions from low to low and high to high do not

consume any dynamic power. The dynamic power consumption for FPGAs depends upon

the switching event of the core and the I/O of the FPGA and is a function of frequency as

4



Table 1.1: Power consumption in a CMOS inverter
Input transitions Output

0 → 0 0
0 → 1 Discharge
1 → 0 Charge
1 → 1 0

shown in Equation 1.2.

This fact is used by power analysis to determine the secret key.

Power analysis attacks are classified into two types, Simple Power Analysis (SPA) and

Differential Power Analysis (DPA) [1].

1.2.2 Simple Power Analysis

Simple power analysis technique involves direct interpretation of power traces generated

by an algorithm run on hardware. By observing the trace one can gain information about

the hamming weight of a certain byte of the key, and thus construct the key. For example

looking at Fig 1.3, a power trace measured from an FPGA implementing AES one can

guess the number of rounds (which by the way is 11 rounds). It is also possible to identify

the operation performed by the processor as, different operations have different power con-

sumption characteristics [8, 9]. Generally the SPA attacks are quite challenging since the

adversary needs to have detailed knowledge about the implementation of the cryptographic

algorithm that is being executed by the hardware.

1.2.3 Differential Power Analysis

Differential power analysis attacks (DPA) are the most popular and powerful type of power

analysis attack due to the fact that they do not require detailed knowledge about the

attacked device. DPA exploits the data dependency of the power consumption of crypto-

graphic device. Unlike SPA which requires few traces, DPA attack works with large number

of power traces.

5



Figure 1.3: SPA trace showing individual rounds in AES

In subsequent years many successful DPA attacks against cryptographic algorithms im-

plemented in software and on ASICs were published. However, four years later the first

results on successful DPA attacks against DES and RSA [10] and ECC [11] implementa-

tions on FPGAs were reported.

DPA attack methodology can be generalized in four steps.

1. STEP:1 Choose an intermediate result of the algorithm being executed which, should

be function of input data and key.

2. STEP:2 Measure the power consumption when the intermediate algorithm is being

executed.

3. STEP:3 Calculating the hypothetical values and building a power model.

4. STEP:4 Comparing the hypothetical power model with power consumption by per-

forming statistical tests

1.3 Thesis Organization

This thesis is organized as follows. In chapter 2 countermeasures against DPA and the

basics of Dual rail with pre-charged logic is described. Chapter 3 provides an overview of

the FPGA fabric and details about the editing of FPGA resources. Chapter 4 presents

our approach to implementing SDDL on FPGAs. Chapter 5 Covers the statistical tests

6



conducted over the course of this thesis. Chapter 6 presents the security evaluation of the

test circuits implemented with our approach and we conclude and point out some future

research ideas in chapter 7.
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Chapter 2: Countermeasures Against DPA

When it turned out that the cryptographic devices are vulnerable against power analysis,

there has been great motivation in development of countermeasures against DPA.

The countermeasures proposed against DPA can be grouped into two categories, Masking

and Hiding.

2.1 Masking

The principle behind Masking is to De correlate the relation between processed data and

power consumption. It makes use of random variable called masks, which randomizes the

intermediate data being processed while executing the algorithm. As long as the mask value

is not known, the circuit is DPA resistant.

The basic structure of the masking countermeasure is shown in Figure 2.1. The mask m

is XORed with the data inputs, and the final result O is obtained by XORing the masked

output O m with the mask m again.

Depending upon the number of masking bit used, there are two types of masking namely

Boolean and Algorithmic Masking.In Boolean Masking, the random masks are at bit level

i.e. a single bit. Logic styles like Random switching Logic (RSL) [12] and Masked Dual-rail

with Pre-charge Logic [13] belong to this category.. In contrast Algorithmic Masking uses

random masks at word level i.e. multiple bits. [14]. The Boolean Masking scheme can be

broken by first estimating the random mask value and then mounting a DPA attack using

these estimated value [15]. The Algorithmic Masking can also be broken by estimating

the the masked value which is dependent on the probability density function of the power

consumption [16].

8
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2.2 Hiding

Hiding countermeasures on the other hand, were proven to be more secure than masking [17]

as they requires more measurements to disclose the key compared to other counter measures.

Hiding makes use of the so called Dynamic and Diffrential Logic (DDL) or Dual rail with

Pre-Charge Logic (DPL) to make the resultant power consumption constant for each clock

cycle. We make use of the either notations alternatively through out this thesis.

DPL style was introduced by Tiri in 2004 [18]. The goal of DPL is to eliminate the

correlation between the data being processed and the power consumption of the circuit

by achieving constant power consumption per cycle, hence making a DPA attack infeasi-

ble. This is accomplished through duplication of the original circuit into a direct and a

complementary logic which follow two basic principles:

1. Constant switching activity: This guarantees a single switching event per clock cycle

and gate output. During each clock cycle either a gate output in the direct path

switches or the corresponding gate in the complementary path.

9



2. Constant load capacitance: The capacitive loads driven by the gates in the direct path

is equal to the load driven by the gates in the complementary path.

2.2.1 Dual-Rail with Pre-Charge Logic

The dynamic power consumption in a CMOS circuit depends on the output transitions of

the logic gates. This dependency is not symmetric i.e a 0 → 1 or 1 → 0 transition will

consume power whereas 0 → 0 or 1 → 1 will not. This makes the power consumption

dependent on the hamming distance of the data. The information thus obtained can be

exploited to reveal the secret key. The Dual rail with Pre-Charge logic style attempts to

remove the relation between power consumption and data.

2.2.2 A dynamic logic

will have two phases, so called Pre-charge and Evaluation phase which are alternating.

During pre-charge phase the output of logic gates is forced to a constant value (0 or 1).

Pre-charging of the output signal is done in order to have a transition at the gate output

when the inputs do not change, Thus making the power consumption data independent.

The original transition of the logic gates will occur in evaluation phase. The pre-charge

signal is generally the clock of the system. When the clock goes high, the pre-charge phase

occurs and when the clock goes low, the circuit evaluates to original output.

2.2.3 A differential logic

will have two circuits, direct and complimentary whose outputs will be inverse of each other

during evaluation phase. Lets assume that all outputs are pre-charged to 0. If an output

of the direct logic evaluates to 1 then the complementary logic will evaluate to 0 leading to

a single switching event. Similarly vice versa is also true thus achieving constant switching

activity.

Constant load capacitance means that the gates in the direct logic drive the same load

as the gates in the complementary logic. This requires that routing in both parts to be

10
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same, so called symmetrical routing.

There are two different DDL styles called Wave Dynamic Differential Logic (WDDL)

and Simple Dynamic Differential Logic (SDDL).

2.3 Wave Dynamic Differential Logic

WDDL is being used successfully for secure cryptographic implementations in ASICs. It is

an all positive logic which guarantees one transition per clock cycle. A pre-charge circuit

is added only at the register outputs and system inputs. Inverters are implemented by

cross connecting the outputs of direct and complementary circuits. A WDDL NAND gate

is shown in Fig. 2.2a). This DDL allows for a logic 0 wave to pass through the entire

combinational logic hence, the name ”wave” is added. WDDL logic style guarantees one

switching event per cycle. This can be seen from Figure 2.3. The waveform shows the

behavior of NAND gate using DPL logic style.

2.4 Separated Dynamic Differential Logic

SDDL allows the use of negative logic thus making it more flexible than WDDL. How-

ever, each time negative logic is used a pre-charge circuit should be added as shown in

Fig. 2.2b) because negative logic stops the precharge wave . Thus, unlike WDDL, SDDL

needs pre-charge circuit to be added not only at register outputs and at system inputs but

also a every gate output. In ASIC circuits this leads to an increase in the area compared to

11
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WDDL. In implementations on Xilinx FPGAs there is additional area over WDDL because

registers in logic only slices are not being used and can be used to insert pre-charge. Un-

fortunately SDDL is not considered secure as WDDL because negative logic can produce

glitches therefore SDDL cannot guarantee one switching event per clock cycle.

2.5 Previous Work on DPL

Recent implementation results of WDDL on FPGAs show two major drawbacks of this

technique [19]. WDDL requires the use of glitch free positive logic and duplication, which

leads to an increase in area consumption of more than a factor five over a single ended

design on FPGAs. Furthermore, balanced load capacitances cannot be guaranteed on an

FPGA because the required cross connections between the direct and the complementary

logic lead to unbalanced paths. Therefore, Yu proposes in [19] to use Double Wave Dy-

namic Differential Logic (DWDDL) which allows for balanced load capacitances on FPGAs.

However, it leads to an area increase of more than eleven times.

In [20] Guilley et al. evaluate methods which reduce the size of WDDL implementations

on FPGAs. They were able to reduce the size of a WDDL implementation of Triple DES
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by 23% [21] through new synthesis methods. However, this design is still much larger than

a single ended design due to the use of only positive logic as required by WDDL. Current

FPGA tools can not produce net lists with only positive logic, hence Guilley uses ASIC

tools and a special ASIC library containing hundreds of cells.

The power dissipation of a Xilinx VirtexTM-II FPGA consists to more than 60% of

power consumed by the routing resources [22]. This illustrates that it is important to

balance the paths of the direct and complementary logic. As this is not a trivial prob-

lem on FPGAs, masking schemes have been proposed specifically to overcome the routing

problem [13]. However, it has been shown in 2005 that circuits protected only by masking

are not secure [23]. Later publications demonstrated that masking does not remove the

need for balanced routing in WDDL designs [15,24].

The impact of current place-and-route methods on the security of a WDDL design was

explored in [25] with respect to balancing the timing delays. In [26] the authors propose

a new switch box design for FPGAs that enables balanced routing and is secure against

power as well as EM attacks.

2.6 SDDL for Light Weight Implementations ?

Unfortunately, applying WDDL to FPGAs is not straight forward. Firstly, FPGA CAD

tools cannot be restricted to use only positive logic when synthesizing an implementation.

Therefore, ASIC synthesizers are commonly used. Yu and Schaumont also show in [19] that

the replacement of inverters by cross connection will result in unsymmetrical routing, which

is undesirable.

In positive only architectures optimal usage of intrinsic features, for example fast inter-

connects, dedicated multiplexers, fast carry logic, shift registers, etc inside the FPGA fabric

cannot be exploited.

SDDL can be implemented using only FPGA CAD tools. A negative logic style requires

no cross connections between direct and complementary logic, hence symmetric routing is

13



possible in FPGAs. SDDL allows optimal usage of the intrinsic features inside the FPGA

thereby reducing the slice count. WDDL is considered to be a more secure logic style than

SDDL because it is glitch free. Hence, SDDL becomes an obvious choice.
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Chapter 3: Looking Into FPGA Fabric

There are a wide verity of FPGAs manufactured by different vendors like Xilinx, Altera,

Actel etc. This section describes the underlying structure of Xilinx Spartan3E FPGA which

we are using for laboratory testing. We also note that the architecture is similar to that

Altera FPGAs.

3.1 CLBs and Slices

The Configuration Logic Blocks (CLBs) contains the main logic resources for implementing

a wide variety of logic functions as well as for storing information. CLBs are arranged in

arrays of rows and columns and their densities varies from one FPGA to another. In Xilinx

Spartan3E FPGAs, a CLB is comprised of four slices, each containing two look-up tables

(LUT) and two storage elements that can be used as either flip-flops or latches. It also

contains two wide function multiplexers, fast carry logic and other miscellaneous elements.

The slice internal configuration is shown in Figure 3.1

The slices are further divided into two types, SLICEL (slice logic) and SLICEM (slice

memory) as shown in figure 3.2. The LUTs in SLICEM are used not only to implement

logic but can also be configured as 16-bit Distributed RAM or 16-bit Shift Register LUT

(SRL).

3.2 Switch Matrix and Routing

Each CLB is associated with programmable interconnect switch box or matrix that connects

the CLB to the adjacent and nearby CLBs (as shown in fig(to be added)). The routings

inside an FPGA fabric is categorized according to the distance of the output wire or line.
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to Neighbour

SLICE 3

SLICE 2

SLICE 1

SLICE 0

SWITCH

MATRIX

Figure 3.1: Configuration Logic Block

Long lines are bidirectional lines that distribute signals across the device. Hex lines are

connected to every third and sixth CLB, double lines connect every first or the second CLB

and the direct lines span one CLB.

An exception to these routing resources are the local interconnects, so called fast inter-

connects that exist between slices and between CLBs. These fast interconnects are used to

create Wide Dedicated Multiplexers (WDMs).

3.3 Wide Dedicated Multiplexers

WDMs are one of the special intrinsic features inside the Xilinx FPGA [27]. They are used

to effectively combine complex logic operations. These WDMs are implemented using the

dedicated two input multiplexers in the slice and the fast interconnects, that exist between

slices and between CLBs. Using conventional LUTs as multiplexers will add to the logic

delay and also have an additional routing delay and increase the area consumption. This

effect can be minimized by using WDMs. Also wide input logic functions can be easily
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Figure 3.2: Slice Internal Structure

realized using WDMs.

Every pair of LUTs in a slice is followed by a two input multiplexer called F5MUX (see

Figure 3.2) which effectively combines the output of the two LUTs to create a four input

multiplexer or a five input function as shown in figure 3.4. The F5MUX is present at the

bottom part of each slice. The second two input multiplexers at the top part of each slice

is called FiMUX (see Figure 3.2), where i can be 6, 7 and 8 depending on the level of logic

or multiplexer implemented. Each FiMUX drive the multiplexers of next higher number.

F6MUX combined with two slices can implement an 8 input multiplexer or a 6 input logic

function as shown in Figure 3.5. F7MUX and four slices i.e. one CLB can implement an

16 input multiplexer or a 7 input function. F8MUX along with 2 CLBs can implement an

32 input multiplexer or an 8 input function as shown in Figure 3.6. In this thesis we study

the effect of three levels of multiplexers or logic function, the F5MUX (4:1 MUX), F7MUX
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Figure 3.3: Switch Matrix and Routing

(16:1 MUX) and the F8MUX (32:1 MUX).

3.4 Editing FPGA Resources

We will be inserting pre-charge circuit and duplicating the original part after the design

is implemented i.e. we will be editing the FPGA resources at LUT level. There are two

methods to edit the resources in a FPGA at slice level, FPGA editor and Xilinx Design

Language (XDL). FPGA editor offers graphical user interface for the designer to the circuit.

Using FPGA editor small design changes can be made at ease but for an extensive change

in the design like inserting pre-charge circuit becomes impractical and cumbersome.Hence

we use XDL.

XDL describes the resources used in a design in ASCII format. Xilinx ISE contains

XDL tool which converts xilinx proprietary Native Circuit Description (NCD) file to XDL

file and vice versa. An XDL file will typically contain slice configuration information called

Instances and the routing between such instances called Nets.

An example of an Instance is shown in Figure 3.7. From such an instance description

18



LUT

LUT

F5MUX

BX

4

4

Figure 3.4: A 4 by 1 Input Mux using Two LUTs

Table 3.1: Operators used in LUT equation
Operators Symbols

Logical AND *
Logical OR +

Logical XOR @
Unary NOT ˜

one can know slice specific information for example the logic equation LUT implements etc.

Table 3.4 lists the operators used in an LUT equation.

The slice internal component representation format is always the same

Componentname = #ParameterV alue

If the value is other than #OFF, it indicates that the corresponding component is used

in the slice as shown in Figure 3.7.

The routing information is described in the net part of the XDL file. As shown in

Figure 3.8 Programmble Inter connects (PIPs) are always written as

pip tile wirex → wirey
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Figure 3.5: A 16 by 1 Mux using Four Slices
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SLICE 3 − F5MUX ,F8MUX

SLICE 0 − F5MUX,F6MUX

SLICE 1 − F5MUX,F7MUX

SLICE 3 − F5MUX

SLICE 2 − F5MUX,F6MUX

CLB

SLICE 0 − F5MUX,F6MUX

SLICE 2 − F5MUX,F6MUX

SLICE 1 − F5MUX,F7MUX

CLB

OUTPUT

FAST INTERCONNECTS

Figure 3.6: A 32 by 1 Mux using Two CLBs

Instance Name CLB Location Slice Location

LUT Logic Equation

Figure 3.7: Slice Internal Components Description in XDL
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Net Name

Output from N126_F − Pin Y goes to

Input to N1157_F − Pin G3 (LUT_G)

Input to N913_F −Pin G1 (LUT_G)

Point on Switch Matrix

Input PIP
Programmable Interconnect Point

Figure 3.8: Routing Description in XDL
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Chapter 4: Implementing SDDL on FPGA

In our proposed SDDL model, FPGA CAD tools are given the maximum flexibility to

optimize a given design for the target FPGA. Such an optimized design will allow logic

packing in LUTs and also make use of all the intrinsic features present in the FPGA. In this

thesis we are exploring the usage of Wide Dedicated Multiplexer (WDM). Using WDMs

reduces the area consumed by our design however, their effect on DPA resistance has not

been explored yet.

We apply SDDL only to the data path of the circuit, because it handles the secret

data. We allow the controller to leak, as it manipulates the public information about the

algorithm. This approach is similar to the security partitioning in cryptographic ASICs.

We also make the following assumptions in our SDDL model

• The wire connecting the LUT and the flip-flop/latch will not leak any information.

• The wire connecting two slices in the same CLB will not leak any information.

• Any wire between CLBs i.e. wire connecting a slice in one CLB to a slice in another

CLB will leak information.

Our proposed SDDL model is shown in Figure 4.1. Instead of applying De-morgan’s law

to obtain the duplicate part we simply invert the inputs and outputs of the original logic

gate. This technique is not suitable for ASICs because placing a inverter on both inputs

and outputs will increase the area consumption. Where as in FPGAs, we need to modify

only the logic equation in the LUTs, which will not cause any area overhead.
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Figure 4.2: Pre-Charge circuit implementation in FPGA

4.1 Pre-Charge Logic

Pre-charge insertion is done using the technique introduced by Yu and Schaumont in [19,

28].A flip-flop/latch is following every LUT. The pre-charge circuit is implemented using

an asynchronously cleared latch with an inverting enable input, which forces the output of

the LUT to logic ’0’ during the pre-charge phase as shown in Figure 4.2. If a flip-flop is

already used in the design then the pre-charge circuit should be inserted in a slice as near

as possible to the flip-flop so that the routing between the two slices is kept at minimum.
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Figure 4.3: Duplicating Multiplexers in FPGA

4.2 Duplication

The first step in creating the complementary path is duplication of the original path. Before

this can be done, appropriate CLB locations for the duplicate design must be chosen such

that they have the same routing resources as the original design. Then the original design is

copied (including routing), the components and nets are renamed and moved to the chosen

locations. This is done using the Xilinx Design Language described in the previous section

4.3 Complementing the Logic

The complemented path should produce outputs inverse to that of the direct path. If f(x)

is the equation which defines a LUT in the direct path, then it’s complimentary equation

g(x̄) is given by

g(x̄) = f(x̄) = f(x) (4.1)

WDMs use LUTs and slice internal multiplexers. Equation 4.1 holds for LUTs how-

ever, for the slice internal multiplexers only the select lines should be inverted as shown in

Figure 4.3.

Since we do not apply SDDL to the control block of the implementation, the control

signals are to be inverted before they are attached to the complementary block. This

method causes area overhead. Therefore, care must be taken, so that the control signal are

not inverted in the logic equation as shown in figure 4.4.
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Figure 4.4: Complementing Control Logic

4.4 Secure Design Flow

Our design flow for implementing SDDL on FPGAs uses Xilinx ISE Design suite 10.1 and

Perl scripts. It consists of three phases as show in Fig.

In the first phase, the single ended design is synthesized and implemented. Area con-

straints to be applied should perform the following tasks

• Constraints are to be applied to limit the design to one section of the FPGA fabric.

• It should also specify that the locations near registers should be left empty as they

will be needed to insert pre-charge in the next phase.

• The controller block is to be constrained in such a way that so that the distance

form the control signals to the direct and complementary path should as similar as

possible, so that there would not be any delay of operation between the direct and

complementary circuits.

In the second phase, the circuit description file from the first phase is converted into

ASCII representation format with help of XDL (Xilinx Design language) tool . Perl scripts

interpret the XDL file and insert pre-charge. Subsequently only Place and Route is executed.

In the third phase, the I/O connections are removed and the design is converted into

XDL format. Perl scripts duplicate and complement the original circuit resulting in an

SDDL implementation. However, as the I/O pins are still disconnected, and all the routing

has to be preserved, we use re-entrant routing only.
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Chapter 5: Statistics

This section describes the power models and statistical tests conducted over the course of

the thesis.

5.1 Power Models

In order to simulate the power consumption of the cryptographic device i.e. to relate the

power consumption with the data being processed we use the following two generic models.

5.1.1 Hamming Weight Model

It is a simple power model, which assumes that the power consumptions is directly propor-

tional to the Hamming weight (HW) i.e. number of bits that are set in the corresponding

data word [1, 29]. If W is binary data of length ’i’ given by

W =
i−1∑

i=0

wi2i (5.1)

then the Hamming weight of W is the number of bits that are set to ’1’, shown in

Equation 5.2.

HW (W ) =
i−1∑

i=0

wi (5.2)

This model is typically used when the attacker knows only the data value at a given

time, but not it’s previous or the next state value. The hamming weight model is generally
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not suited to describe the power consumption in CMOS devices as the reference state from

which the bits are switched may not necessarily be zeros.

5.1.2 Hamming Distance Model

Hamming Distance (HD) Model generalizes the hamming weight model. If D and W are

two consecutive states of the processed data then the Hamming distance between D and W

is given by

HD(D, W ) = HW (D ⊕W ) (5.3)

HD is basically the number of bits flipping from state D to state W. This model assumes

that 0 → 1 and 1 → 0 transitions have same power consumption, and it ignores the static

power consumption. It also assumes that there is a linear relationship between power

consumption and the HD. It is one of the most commonly used models and is well suited

to describe the power consumption in registers and data buses.

5.2 Correlation Power Analysis

Correlation Power Analysis (CPA) is generally based on the correlation between the power

consumption and the power model. The correct key is the one which maximizes the cor-

relation between power consumption and the power model. CPA is less prone to validate

false key hypothesis [30]. Figure 5.1 describes the attack methodology using CPA. Power

traces are obtained from the cryptographic devices which are then correlated with the power

model using a key hypothesis. The highest peak of the correlation plot gives us the correct

key hypothesis.

In this thesis we perform CPA using both Pearson’s Correlation [30,31] and Rank corre-

lation [32] in conjunction with either Hamming distance model or Hamming weight model

(depending upon the situation).

29



GUESS ?
CORRECT

KEY GUESS

OUTPUTS

INCORRECT

KEY GUESS
CORRECT

STATISTICAL TESTS

HYPTOTHETICAL
OUTPUTS
ORIGINAL

KEY GUESS
       DEVICE
CRYPTOGRAPHIC

       DEVICE
CRYPTOGRAPHIC
MODEL OF THE

DONE

REAL KEY

INPUTS

Figure 5.1: CPA Attack Flow

5.2.1 Pearson’s Correlation

The correlation between two variables reflects the degree to which the variables are related.

The most common measure of correlation is the Pearson Product Moment Correlation

(called Pearson’s correlation for short). When measured in a population the Pearson Prod-

uct Moment correlation is designated by the Greek letter rho (ρ). When computed in a

sample, it is designated by the letter ”r” and is sometimes called ”Pearson’s r.” Pearson’s

correlation reflects the degree of linear relationship between two variables. It ranges from

+1 to -1. A correlation of +1 means that there is a perfect positive linear relationship be-

tween variables. A correlation of -1 means that there is a perfect negative linear relationship
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between variables. A correlation of 0 means there is no linear relationship between the two

variables.

The Pearson’s Correlation between power consumption measurement samples P and

power consumption hypothesis samples G is given by

r(P, G) =
n

∑n
i PiGi −

∑n
i Pi

∑n
i Gi√

n
∑n

i P 2
i − (

∑n
i Pi)2

√
n

∑n
i G2

i − (
∑n

i Gi)2
(5.4)

where n is the number of samples or measurements.

Pearson’s Correlation assumes that the power consumption has a linear relationship

with the transitions on a data bus, which is true in case of platforms like micro controllers.

However on other platforms like FPGA and ASICs the relationship may not be linear [32].

Therefore, we also use Rank correlation to perform CPA on our test circuit.

5.2.2 Spearman Rank Correlation

The Spearman Rank correlation is a measure of monotonic relationship between two vari-

ables, in this case between power consumption and power model. It is used as an alternate

to Pearson’s Correlation when the data does not meet the assumption of linearity. Spear-

man correlation works by converting each variable to ranks and then correlating the ranked

variables. Ranks are given in the ascending order of the data value i.e. the lowest value of

the data gets a rank value of 1 and so on. If there is a tie in the rank then a mean rank is

given to tied data values. For example if there are three variables tied at rank 2 then the

three variables will receive a rank of 3(mean of 2,3 and 4 ranks).

Rank Correlation is represented by either ρ or rs. The Rank correlation between power

consumption samples P and power consumption hypothesis samples G is given by

rs(P, G) = 1− 6
∑n

i d2
i

n(n2 − 1
(5.5)

where di =Pi - Gi, and Pi, Gi are the ranks of the variables P and G.
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If there are tied ranks then the Rank correlation is computed as pearson’s correlation

between the rank values of the two variables.
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Chapter 6: Test Circuit Description and Results

6.1 Experimental Setup

We implemented our designs on a Xilinx Spartan 3e starter board containing a XC3S500eFG320-

4 FPGA. We removed the capacitances of the core voltage net and connected it to an ex-

ternal regulated power supply. Power consumption is measured using a Tektronics CT-1

current probe and an Agilent DSO6054A oscilloscope, which has a bandwidth of 500MHz

and samples at 4GSa/sec.

6.2 Test Circuits Description

6.2.1 LFSR-SBOX

We wanted to test our secure design flow on a smaller scale and also look at Wide Dedicated

Multiplexer (WDM) feature, before moving on to AES. The circuit shown in Fig. 6.1.

consists of some of the main building blocks of AES i.e. SBOX and key XORing. The test

circuit allows us to replicate a DPA attack on AES on a smaller scale. An 8-bit LFSR is

used to supply inputs to the SBOX. The output of the SBOX is XORed with key and stored

in register FF1. The dashed line in Fig. 6.1 indicates the part of the circuit that we want to

protect. The register FF2 drives the outputs of the chip and is implemented in I/O blocks

(IOB).

F
L

S
R

AES
S−BOX

8

Key
8

FF1 FF2 Q
8

Protected Part

Figure 6.1: Block Diagram of Test Circuit
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Powerguess = HD
(
lfsr − output(i−1), (SBOX−1(Keyguess ⊕Output))i

)
(6.1)

Powerguess = HD
(
0x00, (SBOX−1(Keyguess ⊕Output))i

)
(6.2)

The AES SBOX maps 8 input bits to 8 output bits using a substitution table. The Xilinx

tool implements this function by default as a mixture of boolean logic and multiplexers. The

usage of WDMs and the maximum size of the multiplexers can be controlled by the Xilinx

ISE tool. In our design we explore three AES SBOX implementations, SBOX implemented

using 4:1 multiplexer, 16:1 WDMs and 32:1 WDMs. The output of a 4:1 multiplexer can

be pre-charged within the same slice. On the other hand, the 16:1 WDM consists of 4

slices and only the output of the last slice can be pre-charged. In case of 32:1 WDM which

consists of 8 slices and only the output of the last slice can be pre-charged. The input LUTs

to the WDMs can contain negative logic and hence might produce glitches and disrupt

the pre-charge wave. These signals travel through local interconnects and might make this

design susceptible to DPA attacks. This leads to a trade off between security vs area.

The power model for the single ended cases is given by Equation 6.1. It calculates the

Hamming distance between the previous output of the LFSR and the estimated following

output. We estimate the following output of the LFSR for all possible key guesses.We use a

different power model to mount a DPA attack on SDDL designs, given by Equation 6.2. The

pre-charge phase sets all logic outputs to 0 therefore, the Hamming distance is computed

between 0 and the estimated outputs of the LFSR for all possible key guesses. This is equal

to their Hamming weight.

6.3 AES

The Advanced Encryption Standard (AES) [33] is one of the most widely used block ciphers.

It was designed to be resistant towards linear and differential cryptanalysis. AES is a block

cipher of fixed input size of 128 bits and key length of either 129 or 192 or 256 bits. For

our AES implementation we chose to use a key length of 128 bits. AES applies the same

round function ten times to its inputs during encryption. The round function consists of
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Figure 6.2: Block Diagram of AES Module

four different transformations sub bytes, shift rows, mix columns and add round key each

changing the input by applying linear, non linear and key dependent transformations. Our

AES implementation also assumes that the data input and the secret key are stored in

memory. The AES transformations are grouped into four stages

1. Initial AddRoundKey-SubBytes-ShiftRows

2. MixColumns

3. AddRoundKey-Subbytes-Shiftrows

4. FinalAddRoundKey

The data path of out AES implementation is shown in Figure 6.2. It is characterized

by pipelined architecture for stages 1 and 3 which reduces the number of clock cycle. Five

registers R0, R1, R2, R3, R4 are used of which R0 is used exclusively for RotWord

operation. R1 is used for key computation and state computation in MixColumns operation,

R2, R3, R4 are used for state computation. The boxes labeled as Keys and Data are 128

bit registers used for Round keys and State Memory respectively.

In order to provide different plain text and key as input to the AES module we built an

wrapper circuit as shown in figure 6.3. A 128-bit Linear Feedback Shift Register (LFSR)
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Figure 6.3: AES module with a Wrapper Circuit

provides input data to AES module. A 32:1 multiplexer is used to select the data or key

depending upon the address lines from the AES module.

Consider the data flow from R2, R3 and R4. Resetting the AES module changes the

data value these registers to 0x00. In the first clock cycle, the output of the register R3

changes from 0x00 to 0x63 i.e. SBOX value(R2) and the data value in R2 changes to the

input data XORed with key. In the subsequent clock cycle the data value in the register

R3 changes from 0x63 to SBOX value(R2). This sequence of change in the data values of

the register R3 i.e 0x00 → 0x63 → SBOX(Key ⊕ Inputdata) occurs every time the AES

module is reseted. Thus we know two consecutive data values of a register and can apply

HD model to simulate the power consumption of the register. Therefore, we use a counter

to reset the AES module after every 10 clock cycles. The power model for the single ended

cases is given by Equation 6.3.

It calculates the Hamming distance between the SBOX value of key guess xor data and

the hex value of 0x63. We estimate the following output of the SBOX for all possible key

guesses. We use a different power model to mount a DPA attack on SDDL designs, given

by Equation 6.4. The pre-charge phase sets all logic outputs to 0 therefore, the Hamming

distance is computed between 0 and the estimated outputs of the SBOX for all possible key

guesses. This is equal to their Hamming weight.
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Powerguess = HD (0x63, (SBOX((Keyguess ⊕Output))i) (6.3)

Powerguess = HD (0x00, (SBOX((Keyguess ⊕Output))i) (6.4)

Table 6.1: Results of LFSR and SBOX implementations
Design Slices Delay (ns) MTD
MUX-4 SE 134 9.08 500
MUX-4 SDDL 283 18.16 > 15, 000
MUX-16 SE 80 7.51 500
MUX-16 SDDL 168 14.59 > 10, 000
MUX-32 SE 70 8.088 500
MUX-32 SDDL 148 16.71 > 4000

6.4 Results and Analysis

6.4.1 Analysis of LFSR-SBOX test circuit

We have implemented three different designs of our test circuit. MUX-4 SE, MUX-16 SE and

MUX-32 SE are single ended implementations of our test circuit which use 4:1 multiplexer,

16:1 WDM and 32:1 WDM for the AES SBOX respectively. MUX-4 SDDL , MUX-16

SDDL and MUX-32 SDDL are three symmetrically routed SDDL designs of the said single

ended. Table 6.6 shows the results of our implementations and number of measurements to

disclosure (MTD) of the key.

The MUX-32 and MUX-16 designs are much smaller than the MUX-4 design and also

have a shorter critical path delay. All the SDDL designs are a little bit more than a factor 2

larger than the single ended designs. This is due to the fact that the outputs of the flip-flops

need to be pre-charged. This increases the area by one slice per two flip-flops. The delay

of the SDDL designs is roughly 2 times larger than the single ended designs because all

computations have to be performed during the evaluation phase which is half a clock cycle

in length.

Figure 6.10 shows the power consumption traces for all six designs. The single ended

wave forms have their peak near the rising edge of the clock. All the SDDL designs show

lower peaks during pre-charge phase and higher peaks during the evaluation phase. It can

also be clearly seen that the peaks of the SDDL designs are more uniform compared to the
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a) MUX−4 SE

e) MUX−16 SE (duplicated to increase signal strength)

c) MUX−32 SE (duplicated to increase signal strength)

Figure 6.4: Power Traces (5 mV/div, 1µs/div)

ones of the single ended. Therefore, they are less correlated to the data being processed.

This suggests that the SDDL designs are more difficult to attack.

We used a fixed 8-bit key value of 174 for all designs. The correlation plots between

power guess and power measured for the MUX-4 SE implementation (Fig. 6.6), the MUX-16

SE implementation (Fig. 6.7) and the MUX-32 SE implementations (Fig. 6.8) taken over

500 measurements shows a sharp peak at the key guess 174. Therefore all single ended

designs were broken.

The correlation plots for the SDDL design did not show a definite peak after 1024

measurements. Therefore, we had to take multiple sets of measurements. A set spans 1024
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d) MUX−4 SDDL

f) MUX−32 SDDL

e) MUX−16 SDDL

Figure 6.5: Power Traces (5 mV/div, 1µs/div)
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Figure 6.6: DPA Attack on MUX-4 SE Implementation
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Figure 6.7: DPA Attack on MUX-16 SE Implementation
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Figure 6.8: DPA Attack on MUX-32 SE Implementation

clock cycles (one measurement per clock cycle) each containing 800 samples. We sub-divide

each clock cycle into 10 intervals. These intervals are shown as rows in Tables 6.3, 6.2

and 6.4. For each interval we compute the maximum measured value. We correlate these

maximum values of each set with the power model using Equation 6.2. The correlation

peaks of 15 sets for MUX-4 SDDL design, 10 sets for MUX-16 SDDL design and 4 sets

for MUX-32 SDDL design and each interval are shown in the Table 6.2, 6.3 and 6.4

respectively.

The tables 6.3 and 6.2 show that the correct key of 174 appears sporadically with no

obvious pattern. From the Table 6.2 we estimate that the MTD to be larger than 15000

for MUX-4 SDDL design. Similarly it took 10 sets and 4 sets to confirm the correct key

i.e. 174 for MUX-16 SDDL design and MUX-32 SDDL designs respectively. Hence, we

estimate that the MTDs to be larger than 10,000 and 4,000 in case of MUX-16 SDDL

design and MUX-32 design respectively. The reason for the decrease in MTDs is the lack of

a pre-charge signal on the fast interconnects between the slices and also between the CLBs.

These interconnects are longer compared to the fast interconnects between the slices as used
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Table 6.2: Maximum Correlations for MUX-4 SDDL
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0 43 174 238 71 3 174 21 174 238 208 118 128 90 99 88
1 193 247 203 26 201 175 12 44 174 208 22 51 190 212 105
2 228 175 203 170 107 182 219 174 29 11 142 254 110 28 11
3 84 126 184 149 242 247 161 100 29 174 90 50 202 185 212
4 177 115 74 235 167 143 151 15 97 29 174 121 149 174 212
5 59 204 185 119 158 94 232 19 201 221 130 113 246 213 82
6 94 110 199 161 242 154 94 100 99 159 171 58 106 154 180
7 100 199 180 85 170 161 128 99 91 100 154 91 40 242 167
8 43 180 94 161 91 100 161 222 31 87 118 94 173 139 102
9 112 46 172 42 2 56 20 130 253 212 104 111 1 225 23

Table 6.3: Maximum Correlations for MUX-16 SDDL
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0 164 52 20 23 209 160 94 115 245 174
1 119 2 55 88 117 188 194 142 132 14
2 169 202 140 212 40 142 58 120 174 17
3 12 164 51 141 72 95 160 51 140 37
4 223 249 76 177 123 62 168 236 161 215
5 150 212 174 216 204 79 46 140 79 200
6 82 58 208 247 230 28 174 248 231 122
7 192 252 89 72 199 136 230 214 104 83
8 93 14 60 57 190 147 26 213 85 209
9 155 25 96 30 106 197 69 21 160 174

in the MUX-16 design and hence they leak more information

6.4.2 Analysis of AES test circuit

We have implemented two different designs of our AES circuit. AES-SE is a single ended

design which use 32:1 WDMs. AES-SDDL is the symmetrically routed design of the said

single ended.

Design consideration for AES-SDDL

From our earlier experiments, we concluded that MUX-4 SDDL design was the most secure

of the three, though it consumed more area compared to the other SDDL design. Therefore,
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Table 6.4: Maximum Correlations for MUX-32 SDDL
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0 142 185 60 43
1 240 98 146 59
2 138 34 99 61
3 138 210 68 24
4 174 174 174 174
5 141 230 217 157
6 78 34 22 91
7 194 103 116 213
8 11 169 58 27
9 194 194 141 127

Table 6.5: Slice consumption of Individual Components in AES
AES-Component slices count Slice count

before pre-charge after pre-charge
Data store + Mix columns 106 178
Key store + Key expansion 98 98
AES Computations 51 71
SBOX 64 129
Controller and address 74 74
Total 393 550

we restricted our AES design to use only 4:1 multiplexers. Due to this restriction the

slice consumption of SBOX component increased to twice that of the original value (refer

Table 6.5. Pre-charging increases the slice consumed by a register by a factor 2. For example

the data store register which is 128-bits in length can be implemented in 64 slices. After

pre-charging the area consumed by the data store component becomes 128 slices, which is

same in the case of key store register also. Duplicating the pre-charged data store register

again increases the area consumption of the final data store - SDDL design by a factor 2.

The resulting area overhead due to pre-charging and duplications of a total factor 4 greatly

effects the light weigh implementations which are severely area constraint.

Key register is a probable attack point, although the attack itself will be difficult i.e.

it will probably require more MTDs compared to attacking the registers R3 or R4. The

reason is that we cannot compute an HD model as the key store register output is always
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Figure 6.9: Placement of AES modules on FPGA fabric

an unknown value. We have to used the HW model in this case, which ultimately increases

the MTDs. Due to this reason and the fact that the SDDL version of key store register will

cause a large area over head, we decided not to duplicate the key store register. This is a

risk we are taking to limit the area over head although the security of the final SDDL design

may decrease. We also decided not to duplicate the controller as it leaks only the public

information of the algorithm. the Controller does not manipulate any sensitive information.

The parts which are not precharged and duplicated are shown in Figure 6.2 indicated by

the red lines and boxes.

Placement of controller inside the FPGA fabric is important. Controller provides signals

to both original and duplicate part. The length of the routings from controller to original

and duplicate path must be similar so that there is no delay in the operation of the original

and the duplicate part. We placed the controller as shown in Figure 6.9 as it mainly controls
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b) AES−SDDL

a) AES−SE

Figure 6.10: Power Traces (5mV/div, 1µs/div)

Table 6.6: Results of AES-SDDL Implementation
Design Slices Delay (ns) MTD
AES SE 393 14.213 500
AES SDDL 928 28.321 > 12, 000

the AES computation module.

The key byte which we are attacking is a fixed value of 10 for both designs. The

correlation plots between power guess and power measured for the AES SE implementation

taken over 500 measurements show a sharp peak at the key guess 10 as shown in Figure 6.11.

The correlation plots for the SDDL design did not show a definite peak after 500 mea-

surements. Therefore, we had to take multiple sets of measurements. We obtained a clear

peak for the correct key after 12,000 measurements as shown in Figure 6.12.

The final AES SDDL implementation is larger than the AES SE by a factor of 2.3. The

security provided by the AES SDDL is 20 times to that of the AES SE design.
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Figure 6.11: DPA Attack on AES SE Implementation
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Figure 6.12: DPA Attack on AES SDDL Implementation
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Chapter 7: Conclusion and Future Work

Perfect security does not exist. A high level of security is achievable but at the cost of

large area consumption. Our results show that we were able to achieve a moderate level of

security by using our design flow at an area increase by a factor of just greater than 2.3.

Thus showing that it is possible to apply Dynamic and Differential logic styles to low area

implementations on FPGAs. Our SDDL can still be broken mainly due to glitches. For

future work we plan to reduce the glitches and also examine the DPA resistance of other

intrinsic features provided in FPGAs.
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