
 
 

New Phase Transition Mechanisms in Compressed Silica 

A Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at George Mason University 

by 

Qingyang Hu 

Master of Science 

George Mason University, 2014 

Director: Howard Sheng, Associate Professor 

School of Physics, Astronomy and Computational Science 

Fall Semester 2014 

George Mason University 

Fairfax, VA



ii 
 

ACKNOWLEDGEMENTS 

I am indebted to my thesis advisor, Prof. Howard Sheng for his guidance, support 

and training I have received during my dissertation research. I would also like to 

sincerely thank my friends, Adam Cadien, Alex Koufos and Dr. Weixiao Ji, for their 

encouragement and help in completing my research. 

I would further like to acknowledge valuable discussions and insights I have 

received from my predoctoral fellowship advisor, Dr. Ho-kwang Mao at the Geophysical 

Laboratory, Carnegie Institution of Washington. I greatly appreciate the help I have 

received from Dr. Jinfu Shu, Dr. Wenge Yang, Dr. Xujie Lü, Dr. Li Zhang, Dr. Huiyang 

Gou and Dr. Zhenling Yang at the Carnegie Institution of Washington, for helping me 

carry out my experiments and analyze experimental data. 

I am grateful to the members of my dissertation committee, Dr. Estela Blaisten-

Barojas, Dr. Dimitrios A. Papaconstantopoulos, Dr. Fernando E. Camelli and Dr. Maria 

Emelianenko for their valuable comments and willingness to carefully read the thesis. 

The research described in this dissertation was sponsored in part through the grant 

No. DMR-0907325 with the National Science Foundation. The work at Carnegie 

Institution of Washington was sponsored by EFree, an Energy Frontier Research Center 

funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy 

Sciences under Award Number DE-SC0001057. 

 



iii 
 

TABLE OF CONTENTS 

Page 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 

List of Abbreviations or Symbols ..................................................................................... xii 

Abstract ............................................................................................................................ xiii 

I.   Introduction ................................................................................................................... 1 

1.1 A review of silica structures ...................................................................................... 1 

1.1.1 SiO2 phase diagram ............................................................................................ 2 

1.1.2 Four-coordinated silica structures ...................................................................... 3 

1.1.3 Highly coordinated silica structures ................................................................... 5 

1.1.4 Silica samples studied in this thesis .................................................................... 7 

1.2 Pressure-induced behaviors of silica ......................................................................... 7 

1.2.1 Pressure-induced amorphization: the history ..................................................... 7 

1.2.2 Historic research work on -quartz .................................................................... 8 

1.2.3 Compression experiments on coesite and simulations ..................................... 11 

1.2.4 An outstanding question: Is PIA real? .............................................................. 13 

1.3 Modeling the Si-O system ....................................................................................... 14 

1.3.1 Pair potentials ................................................................................................... 15 

1.3.2 First-principles methods ................................................................................... 16 

References  .................................................................................................................... 18 

II.  Research Approaches .................................................................................................. 24 

2.1 Density functional theory ........................................................................................ 24 



iv 
 

2.1.1 Total energy in density functional theory ......................................................... 24 

2.1.2 The exchange-coorelation energy and its approximation ................................. 26 

2.1.3 Born-Oppenheimer approximation and self-consistent field method ............... 27 

2.2 Pseudopotentials methods ....................................................................................... 29 

2.2.1 Norm-conserving pseudopotentials .................................................................. 29 

2.2.2 Projected augmented-wave pseudopotentials ................................................... 30 

2.3 Ionic geomrtric relaxation ....................................................................................... 32 

2.4 Molecular dynamics ................................................................................................ 33 

2.4.1 Molecular dynamics in Verlet’s scheme .......................................................... 34 

2.4.2 Canonical ensemble .......................................................................................... 35 

2.4.3 Isothermal-isobaric ensemble: the Parrinello-Rahman method........................ 37 

2.4.4 Car-Parrinello type molecular dynamics .......................................................... 38 

2.5 Barrier crossing algorithms ..................................................................................... 41 

2.5.1 Metadynamics ................................................................................................... 41 

2.5.2 Nudged elastic band method ............................................................................. 43 

2.6 Lattice dynamics: phonon calculations ................................................................... 45 

2.7 Experimental approaches ........................................................................................ 46 

2.7.1 Single crystal samples ...................................................................................... 46 

2.7.2 Diamond anvil cell............................................................................................ 47 

2.7.3 Energy dispersive X-ray diffraction from synchrotron radiation source .......... 50 

References ..................................................................................................................... 53 

III.  A new transition mechanism in compressed coesite.................................................. 58 

3.1 X-ray diffraction experiment ................................................................................... 58 

3.1.1 Experimental setup ........................................................................................... 58 

3.1.2 Coesite single crystal ........................................................................................ 59 

3.1.3 Ostensible amorphization of coesite ................................................................. 60 

3.1.4 Coexistence of metastable phases and post-stishovite ..................................... 62 

3.1.5 The monoclinic type post-stishovite  ................................................................ 67 

3.1.6 The evolution of coesite X-ray diffraction patterns .......................................... 69 

3.2 Equations of state .................................................................................................... 70 

3.2.1 Quantum ESPRESSO setup.............................................................................. 70 



v 
 

3.2.2 Experimental and computational equations of state ......................................... 71 

3.2.3 Structrual evolution in compressed coesite ...................................................... 73 

3.2.4 Four metastable strcutures ................................................................................ 75 

3.2.5 The monoclinic post-stishovite structure .......................................................... 75 

3.3 Ab initio molecular dynamics .................................................................................. 77 

3.3.1 First-principles MD in CPMD .......................................................................... 77 

3.3.2 Configuring metadynamics in CPMD .............................................................. 78 

3.3.3 First-principles MD up to 40 GPa: distorted coesite ........................................ 81 

3.3.4 Free energy landscape ...................................................................................... 82 

3.3.5 The transition sequence .................................................................................... 85 

3.3.6 Phonon calculations .......................................................................................... 87 

3.4 Conclusion and disscusion ...................................................................................... 89 

References ..................................................................................................................... 91 

IV.  Hierarchical solid-state transformations of -quartz under high pressure ................ 94 

4.1 X-ray diffraction experiment ................................................................................... 94 

4.1.1 Experimental preparations ................................................................................ 94 

4.1.2 -quartz single crystal ...................................................................................... 95 

4.1.3 Emergence of a quartz II phase ........................................................................ 96 

4.1.4 Coexistence of -quartz, quartz II and post-stishovite phases ......................... 98 

4.1.5 The high pressure post-stishovite phase ......................................................... 101 

4.1.6 A summary on the evolution of the diffraction spectrum of quartz ............... 104 

4.2 Structural optimization and lattice dynamics ........................................................ 106 

4.2.1 First-principles structural optimization .......................................................... 106 

4.2.2 A comparison of simulation models ............................................................... 107 

4.2.3 Equations of state of compressed -quartz .................................................... 109 

4.2.4 Change of enthalpy of silica polymorphs ....................................................... 110 

4.2.5 Free energy calculations ................................................................................. 112 

4.3 Metadynamics ....................................................................................................... 115 

4.3.1 Metadynamics simulations for -quartz ......................................................... 115 

4.3.2 Phase transformation to the quartz II structure ............................................... 116 

4.3.3 Free energy landscape .................................................................................... 120 



vi 
 

4.3.4 Phase transition to the post-stishovite phase .................................................. 124 

4.3.5 Pressure dependence of the transition pathways ............................................ 126 

4.3.6 Mechanical instability examined by phonon calculation ............................... 127 

4.4 Ab initio molecular dynamics ................................................................................ 129 

4.4.1 Computational details ..................................................................................... 130 

4.4.2 Lattice distortion of -quartz .......................................................................... 131 

4.4.3 Formation of the quartz III structure  ............................................................. 132 

4.4.4 Phonon calculation of -quartz and quartz III................................................ 137 

4.4.5 Transition path studied with the nudged elastic band method ........................ 141 

4.5 Conclusion and disscusion .................................................................................... 145 

References ................................................................................................................... 147 

Bibliography ................................................................................................................... 150 

 



vii 
 

LIST OF TABLES 

Table Page 

Table 3.1 Orientation parameters for the metastable phases at 26 GPa ............................ 63 

Table 3.2 Lattice parameters of the four distinct metastable structures at 26 GPa 

determined from the experiment ....................................................................................... 64 

Table 3.3 Lattice parameters of monoclinic post-stishovite at 40 GPa ............................ 66 

Table 3.4 Structural properties and k-points meshes for coesite and post-stishovite. ...... 71 

Table 3.5 Lattice parameters of the four distinct metastable structures at 40 GPa 

determined from the simulation ........................................................................................ 75 

Table 3.6 Scaling factors and gaussian shape parameters for different silica phases used 

in metadynamics simulation of coesite ............................................................................. 80 

Table 4.1 Crystallographic data for monoclinic post-stishovite ..................................... 100 

Table 4.2 Lattice types and k-points meshes for different silica polymorphs ................ 106 

Table 4.3 Scaling factors and gaussian shape parameters for the metadynamics 

simulations at various pressures...................................................................................... 116 

Table 4.4 Lattice parameters for the quartz II structure at 35 GPa ................................. 117 

Table 4.5 Crystallographic data for the quartz III structure at 50 GPa ........................... 136 

 

 

 



viii 
 

LIST OF FIGURES 

Figure Page 

Figure 1.1 Pressure-temperature phase diagram of silica up to 12 GPa ............................. 3 

Figure 1.2 Structural representations of -quartz at ambient conditions ........................... 4 

Figure 1.3 Structural representations of coesite at ambient conditions .............................. 4 

Figure 1.4 Structural representations of various high pressure silica polymorphs ............. 6 

Figure 1.5 Neutron diffraction patterns of compressed ice Ih phase ................................... 8 

Figure 1.6 X-ray diffraction pattern of the P21/c type monoclinic post-quartz at 45 GPa . 9 

Figure 1.7 Phase transition from coesite to -PbO2-type post-stishovite ........................ 12 

Figure 1.8 Equations of state of various silica polymorphs from BKS force field 

calculations ....................................................................................................................... 16 

Figure 2.1 Simplified flow chart of self-consistent field theory calculation .................... 28 

Figure 2.2 Schematic representation of the PAW transformation ..................................... 31 

Figure 2.3 Schematic representation of the free energy surface for a one-dimensional 

problem ............................................................................................................................. 43 

Figure 2.4 Diamonds in the form of single crystal and powder........................................ 47 

Figure 2.5 The diamond anvil cell .................................................................................... 48 

Figure 2.6 Designs of diamond avil seats ......................................................................... 49 

Figure 2.7 Generation of synchrotron beam ..................................................................... 51 

Figure 2.8 Workflow for solving the structure of a high pressure sample ....................... 51 



ix 
 

Figure 3.1 Microscopic images of coesite sample loaded in a DAC ................................ 59 

Figure 3.2 An indexed 2D diffraction pattern of coesite at 6 GPa. .................................. 60 

Figure 3.3 A split 2D diffraction pattern of single-crystal coesite sample compressed at 

26 GPa. .............................................................................................................................. 61 

Figure 3.4 The evolution of the selected (111) diffraction peak from coesite during 

compression. ..................................................................................................................... 62 

Figure 3.5 Four copies of the highlighted diffraction pattern at 26 GPa .......................... 63 

Figure 3.6 A X-ray diffraction pattern for compressed coesite at 37 GPa. ...................... 65 

Figure 3.7 Energy-dispersive X-ray diffraction patterns of coesite at 53 GPa. ................ 68 

Figure 3.8 Evolution of coesite X-ray spectrum up to 53 GPa. ........................................ 69 

Figure 3.9 The specific volume of coesite as a function of pressure during the 

compression experiment ................................................................................................... 72 

Figure 3.10 Structural representation with polyhedra of coesite at 20 GPa ..................... 73 

Figure 3.11 Structural evolution of the four silica metastable phases at 40 GPa ............. 74 

Figure 3.12 Structural representation with polyhedra of post-stishovite at 40 GPa ......... 76 

Figure 3.13 Pressure convergence of ab initio simulation pressure at 40 GPa ................. 78 

Figure 3.14 The evolution of Si-O bond angle in a compressed coesite unit cell ............ 81 

Figure 3.15 Free energy landscape showing the transition pathways from coesite to post-

stishovite obtained by ab initio metadynamics simulation at 40 GPa and 300 K............. 82 

Figure 3.16 Summary of ab initio metadynamics simulation ........................................... 83 

Figure 3.17 The evolution of the coordination number of Si atoms ................................. 85 

Figure 3.18 Illustration of the structural transition from coesite (C2/c) to monoclinic post-

stishovite (P2/c) derived from ab initio metadynamics simulation .................................. 86 

Figure 3.19 Phonon dispersion curves for four distinct metastable structures ................. 88 



x 
 

Figure 4.1 An optical microscopic image of -quartz sample at 62 GPa.. ....................... 94 

Figure 4.2 X-ray diffraction pattern of -quartz at 12 GPa. ............................................. 96 

Figure 4.3 Single-crystal XRD image of compressed -quartz at 25 GPa. ...................... 97 

Figure 4.4 Single-crystal XRD image of compressed α-quartz at 36 GPa. ...................... 99 

Figure 4.5 Single-crystal 2D XRD image and its integrated X-ray spectrum of 

compressed sample at 45 GPa......................................................................................... 101 

Figure 4.6 X-ray diffraction spectrum of the compressed quartz sample at 55 GPa. ..... 102 

Figure 4.7 XRD patterns for pressurizing an α-quartz single crystal. ............................ 103 

Figure 4.8 Evolution of the X-ray diffraction pattern of compressed single-crystal α-

quartz sample. ................................................................................................................. 105 

Figure 4.9 Equations of state of -quartz from ab initio calculations and experiments. 108 

Figure 4.10 Specific volumes of silica polymorphs as a function of pressure. .............. 110 

Figure 4.11 Changes of enthalpy of seven compressed silica polymorphs at different 

pressures. ......................................................................................................................... 111 

Figure 4.12 Temperature dependence of the vibrational free energy per SiO2 unit for 

quartz and post-stishovite silica phases ...................................................................... 113 

Figure 4.13 Pressure dependence of calculated Gibbs free energy ................................ 114 

Figure 4.14 Snapshots of the quartz II at 35 GPa ........................................................... 118 

Figure 4.15 The evolution of the coordination number of Si atoms ............................... 119 

Figure 4.16 Reconstructed free-energy landscape showing the transition pathway from α-

quartz to post-stishovite. ................................................................................................. 120 

Figure 4.17 Reconstructed free-energy landscapes with the changes of Si coordination 

number ............................................................................................................................ 122 

Figure 4.18 The evolution of enthalpy, volume and lattice parameters of SiO2 ............. 123 



xi 
 

Figure 4.19 Representations of the post-stishovite structure .......................................... 125 

Figure 4.20 Phonon dispersion curves and total vibrational density of states for 

monoclinic post-stishovite at 35 GPa ............................................................................. 126 

Figure 4.21 Reconstructed free-energy landscape at 30 and 40 GPa ............................. 127 

Figure 4.22 Phonon dispersion curve and total vibrational density of states for quartz II 

structure at 35 GPa. ......................................................................................................... 128 

Figure 4.23 Structural representation with polyhedrons of three silica structures projected 

along the b-axis. .............................................................................................................. 131 

Figure 4.24 Structural changes of distorted -quartz. .................................................... 132 

Figure 4.25 Snapshots of quartz, distorted quartz and quartz III along the a-axis. ........ 133 

Figure 4.26 Snapshots of quartz, distorted quartz and quartz III along the b-axis. ........ 134 

Figure 4.27 Snapshots of quartz, distorted quartz and quartz III along the c-axis. ........ 135 

Figure 4.28 Calcualted X-ray diffraction spectrum for the quartz III phase at 50 GPa. . 137 

Figure 4.29 Phonon calculation of compressed -quartz. .............................................. 138 

Figure 4.30 Softening of phonons at K point in the Brillouin zone. ............................... 139 

Figure 4.31 Atomic shuffling in the phase transition from quartz to the quartz III 

structure........................................................................................................................... 140 

Figure 4.32 Mechanical stability for the quartz III structures. ....................................... 141 

Figure 4.33 The cohesive energy values on the transition path from -quartz phase to the 

quartz III phase calculated by ssNEB. ............................................................................ 142 

Figure 4.34 The enthalpy values on the transition pathway from the -quartz phase to the 

quartz III phase calculated by ssNEB. ............................................................................ 144 

 

 



xii 
 

LIST OF ABBREVIATIONS 

Gigapascal ....................................................................................................................... GPa 

X-ray Diffraction .......................................................................................................... XRD 

Pressure Induced Amorphziation .................................................................................... PIA 

Density Functional Theory ............................................................................................ DFT 

Molecular Dynamics ....................................................................................................... MD 

Diamond Anvil Cells  ................................................................................................... DAC 

Weight percent  ............................................................................................................. wt % 

kilobar  ........................................................................................................................... kbar 

Long Range Translational Order ...................................................................................LRO 

Beest, Kramer and van Santen ....................................................................................... BKS 

Self-Consistent Field ...................................................................................................... SCF 

Local Density Approximation....................................................................................... LDA 

Generalized Gradient Approximation  .......................................................................... GGA 

Becke exchange functional and the Lee-Yang-Parr correlation functional ................ BLYP 

Projector Augmented-wave  ......................................................................................... PAW 

Car-Parrinello  ................................................................................................................... CP 

Nudged Elastic Band .....................................................................................................NEB 

Collective variable ........................................................................................................... CV 

Minimum-Energy Path.................................................................................................. MEP 

Vienna Ab Initio Simulation Package......................................................................... VASP 

Transition States Tools VASP  ....................................................................................VTST 

Density Functional Perturbation Theory ...................................................................... DFPT 

 



xiii 
 

 

 

 

 

ABSTRACT 

 

 

 

NEW PHASE TRANSITION MECHANISMS IN COMPRESSED SILICA 

 

Qingyang Hu, Ph.D 

 

George Mason University, 2014 

 

Dissertation Director: Dr. Howard Sheng 

 

 

Silicon dioxide, also known as silica, is a fundamental constituent of the Earth interior. 

Silica exists in many crystal structures, but with the same chemical composition. These 

crystal forms are termed as silica polymorphs. Phase transitions among silica polymorphs 

have long been a focus of theoretical and experimental pursuits, for their great 

significance in geophysics and materials science. Pressure alters the atomic arrangements 

through phase transformations and establishes a new dimension in the phase diagrams of 

many compounds. Pressurizing silica to extreme conditions, e.g., up to several tens of 

gigapascals (GPa), not only helps discover new silica phases that are stable in deep Earth, 

but also sheds new light on the elusive densification mechanism of this rudimentary 

oxide material.  

 

This thesis focuses on pressure-induced behavior of compressed silica at room 

temperature (i.e., 300 K), with an emphasis on two silica polymorphs: coesite and -
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quartz. To this end, extensive experimental and computational efforts have been 

undertaken in this thesis, aiming to tackle two major unsolved issues in this area: the 

nature of the phase transition between different silica polymorphs and the general 

densification mechanism of silica-like materials. 

 

The theoretical research in this thesis employs state-of-the-art first-principles 

computational calculations, combining in situ synchrotron radiation experiments, to 

characterize silica solids under high pressure. The combined theoretic and experimental 

treatment has been tested on a variety of compressed solid systems previously and is 

found powerful in solving a number of puzzles pertaining to the phase behavior of silica. 

The main research results are summarized as follows: 

a) Compressing single-crystal coesite SiO2  under hydrostatic pressures of 26~53 

gigapascal (GPa) at room temperature, a new polymorphic phase transition mechanism is 

discovered by means of single-crystal synchrotron X-ray diffraction (XRD) experiment 

and first-principles computational modeling. The transition features the formation of 

multiple previously unknown triclinic phases of SiO2 on the transition pathway as 

structural intermediates, which eventually transforms into the monoclinic post-stishovite 

phase. The metastable phases are similar in volume and degenerate in free-energy, but 

distinct in structures and X-ray diffraction patterns. Coexistence of the low-symmetry 

phases results in extensive splitting of the original coesite x-ray diffraction peaks that 

appear with dramatic peak broadening and weakening, thus resembling an amorphous 

material. Also discovered is the long-sought but never confirmed Si in five-coordination 
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populated in the metastable phases. This work provides new insights into the structural 

transition of SiO2 crystal under high pressures, and clarifies the issue of the pressure-

induced amorphization (PIA) of coesite, which has often been cited as an archetypal 

example of the PIA phenomena in general. 

b) The second part of my thesis is centered on the phase transition of compressed 

-quartz. Two competing transition pathways of -quartz under high pressure are 

uncovered, being reconstructive vis-à-vis displacive in their respective nature, toward 

different new phases. By means of in situ single-crystal X-ray diffraction experiment (0-

60 GPa) in conjunction with advanced ab initio modeling, I demonstrate that, under 

quasi-static compression conditions at room temperature, compressed -quartz transits 

via an intermediate metastable phase (quartz II) emerging at 26 GPa en route to a new 

monoclinic-type post-stishovite structure. Under conditions where this thermally 

activated transition is kinetically frustrated, it is found that the ultimate stability of -

quartz is controlled by its phonon instability, constituting alternatively a displacive 

transition mechanism of -quartz into a new post-quartz phase. The discovery of the two 

competing transition pathways, achievable at the same pressure range but under different 

kinetic conditions, puts into perspective of previously seemingly discordant results of 

compressed -quartz, and helps clarify the role of phonon softening played in phase 

transition, paving way to understanding the complex phase behavior of a vast silicate 

family in geologically important conditions. 

 

This thesis makes contributions to the fundamental understanding of the phase transition 
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mechanisms of silica. Since silica is considered as an archetypal compound in studying 

tetrahedrally bonded materials such as silicates as well as other silica-like materials, this 

thesis work has far-reaching implications to many branches of materials science and 

geophysics. 

 

The thesis is structured as follows. In Chapter II, I give a brief outline to the various 

crystalline structures of silica and describe the general concepts in its pressure-induced 

behaviors. A short discussion about the computational approaches to model the pressure 

effects of silica is followed, based on the literature as well as my own studies. In Chapter 

III an introduction of the theoretical background that serves as the foundation of my 

simulations and experiments is illustrated. The basics of the density functional theory 

(DFT) and how it is incorporated into modern supercomputing are recapitulated. This 

chapter also covers the basics of first-principles molecular dynamics (MD), and the use of 

barrier-crossing algorithms and lattice dynamics to investigate the dynamical properties 

associated with silica phase transitions. On the experimental side, a review of structural 

characterization methods utilized in this thesis, e.g., X-ray diffraction techniques and the 

high pressure loading instrument - the diamond anvil cell (DAC), are provided at the end 

of the chapter. 

 

Having introduced the preliminaries in Chapters II and III, the original contributions of 

the thesis are presented. The pressure-induced behavior of coesite is dealt with in Chapter 

IV, where the technical details and results from my experimental and computational 



xvii 
 

research are illustrated.  Chapter V is dedicated to the description of the competing 

transition pathways in -quartz, where a comprehensive study on the pressure-dependent 

X-ray diffraction spectrum, equation-of-state, lattice dynamics simulation and first-

principles MD with barrier crossing algorithms is presented. 
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I. INTRODUCTION 

Pressure alters the physical and chemistry properties of materials and allows phase 

transitions to occur that defy much of our understandings under the ambient condition
1-3

. 

One of the archetypal compounds used for high pressure research is silicon-dioxide
4,5

, 

which builds up 50 weight percent (wt %) of Earth’s bulk based on the chondritic model 

and exhibits complicated phase transitions under a variety of pressure and temperature 

conditions
6-12

. The efforts in interpreting the nature of silica phase transition not only 

provide a densification mechanism for this fundamental compound, but also have 

universal significance in interpreting the phase transition of many other oxide materials. 

From a different perspective, the driving force for the intense study of the pressure-

induced behavior of silica also arises from its important role in explaining global plate 

movement, which is one of the major thrusts in geophysics and materials science. 

In this chapter, I will begin with a brief introduction to the structures of reported 

SiO2 polymorphs, followed by a summary of previous findings and problems encountered 

in the studies of the pressure effect of silica. I will also provide an overview about 

computational modeling methods to deal with such problems. 

 

1.1 A review of silica structures 

Materials in the solid state can exist in either the crystalline or the amorphous form. 
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A crystal is a solid whose atoms are arranged in an ordered pattern well-defined by its 

long-range translational order (LRO). In contrast, an amorphous solid lacks LRO and 

atomic packing thereof is disordered. According to thermodynamic laws, crystals are 

stable phases in nature. The formation of amorphous solids, however, is usually a 

kinetically driven process under non-equilibrium formation conditions. For instance, the 

conventional route to form an amorphous solid involves melt liquid-quenching, where the 

liquid vitrifies into a glass (i.e., an amorphous solid) due to insufficient relaxation time to 

form a crystal. 

 

1.1.1 SiO2 phase diagram 

As a dominant constituent of the Earth’s crust and mantle and a ubiquitous 

technological material with an extremely wide range of applications, the structure 

varieties of silica are of great interest to the broad audience of materials science. 

Silica exists in many crystalline forms as well as the amorphous form. These 

minerals have different structures, different symmetry and different physical properties, 

etc., but all with one same composition - SiO2. A brief phase diagram
13

 showing the 

variety of silica polymorphs under 12 GPa is given in Fig. 1.1, where at least six silica 

polymorphs have been confirmed by both experiments and simulations
14-17

. 
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Figure 1.1. Pressure-temperature phase diagram of silica up to 12 GPa. The phase 

boundaries are based on the work by Swamy et al.
13

. 

 

 

 

1.1.2 Four-coordinated silica structures 

Among those silica polymorphs, the ambient silica -quartz naturally exists in 

many mines, known as the Tripoli or powder quartz. It has a trigonal crystal system 

(space group P3121) with 9 atoms (3 silicon and 6 oxygen atoms) in one unit cell. Three 

corner-linked Si-O tetrahedra signify the structure, each of which is made of one center 

silicon atom, surrounded by four oxygen atoms (Fig. 1.2). -quartz is very stable at 

ambient condition until the pressure is raised to 35 kilobar (kbar) at 1050 K, where the 

first high-pressure polymorph of silica was synthesized, named after the chemist Loring 

Coes. Jr. in 1953
14

.  
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Figure 1.2. Structural representations of -quartz at ambient conditions: (a) with Si-

O polyhedra. (b) viewed in a ball-stick model. (c) A 3-dimensional view for one unit cell. 

The black box indicates one -quartz unit cell. 

 

 

 

 

Figure 1.3. Structural representations of coesite at ambient conditions: (a) Si-O 

polyhedra. (b) viewed in the ball-stick model. (c) A 3-dimensional view for one unit cell. 

The black box sketches out one coesite unit cell. 

 

 

 

Coesite has a monoclinic structure (space group C2/c) with a greater size unit cell, 

where 16 pairs of SiO2 unit (48 atoms) are packed in one unit cell, built with corner-

sharing tetrahedra rings. It has a unique 4-member-ring structure, distinguishing it from 
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the 6-member-ring structure of -quartz (Fig. 1.3). Both -quartz and coesite have great 

densification potential since their silicon atoms are in low chemical coordination. 

Therefore -quartz and coesite are chosen as the main silica candidates in my thesis. 

1.1.3 Highly coordinated silica structures. 

The Si-O tetrahedral structure is unstable at high pressure and has a tendency to 

transform into the six-coordinated octahedral structure
15-20

. While many packing forms of 

silica octahedra are theoretically available, three of them (see Fig. 1.4a-c) are most cited 

as they are reported stable at individual pressure ranges
8,12,15

. Stishovite
15

 is the first 

reported six-coordinated silica polymorph with space group P42/mnm. The layered 

octahedra unit cell contains six oxygen atoms and exists as the stable SiO2 form in lower 

mantle regime. At center mantle pressure, two six-folded silica polymorphs, known as the 

CaCl2-type
8
 (space group Pnnm) and the -PbO2-type

12
 (space group Pbcn) post-

stishovite are mentioned in the literature. The polyhedra representations in Fig. 1.4bc 

show how the edge-sharing octahedra chains form along the c-axis of the high-pressure 

silica polymorphs. 
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Figure 1.4. Structural representations of various high-pressure silica polymorphs: (a) 

stishovite at 10 GPa. (b) CaCl2-type post-stishovite at 63 GPa. (c) -PbO2-type post-

stishovite at 40 GPa. (d) Fe2P silica at 700 GPa from simulations. 

 

 

 

Four silica units at the corner of CaCl2-type post-stishovite create a straight 

octahedra chain. While in the -PbO2-type post-stishovite, two octahedra in the center of 

the unit cell completes in a zigzag ABAB stacking. Beyond Earth core pressures (e.g. in 

deep interiors of Jupiter), computational simulation predicts that the hexagonal Fe2P type 

(Fig. 1.4d) is the stable silica form above 700 GPa
11

, where the silicon atoms are 

coordinated with 9 oxygen atoms. The space group is P62m and 9 atoms (3 Si + 6 O) are 

closely packed in one unit cell. 
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1.1.4 Silica samples studied in this thesis 

In short, a plethora of crystal structures exhibit in the SiO2 system at different 

pressure and temperature conditions
8,11-15

. Although the crystal structures of silica high-

pressure polymorphs have been subject to extensive research in the past, exactly how 

four-coordinated silica transforms under high pressure has not been clearly 

understood
5,6,10

. It motivated us to investigate two major silica polymorphs: -quartz and 

coesite, and to revisit their phase transitions at room temperature and study the transition 

mechanism from four Si-O coordinated to six-coordinated silica polymorphs.  

 

1.2 Pressure-induced behaviors of silica 

 

1.2.1 Pressure-induced amorphization: the history 

One of the challenges in the high-pressure research of silica is its phase transition 

to an amorphous state upon compression. Besides quenching from melts, there have been 

tremendous scientific interests in such a novel phase transition in which a crystal directly 

transforms into a glass in the solid state, termed as solid-state amorphization
20

. The 

pressure-induced amorphization (PIA) – referring to the transition from crystal to glass 

driven by high pressure conditions was first discovered in ice by Mishima et al.
22

. In his 

research, the diffraction pattern of crystalline ice was greatly smoothed and weakened at 

liquid nitrogen temperature (77K) and 220 kbar pressure, indicating the loss of LRO in 

ice Ih. The same phenomenon was confirmed by Strässle et al. in his neutron diffraction 

study (see Fig. 1.5), where the amorphization was shown by the evolution of neutron 

diffraction patterns in compressed ice
23

. The discovery of PIA in ice opened up a new era 
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in high pressure research. Studies on PIA were soon extended to numerous other 

materials
24

, including silicate minerals
25-30

, other organic
31-33

 and inorganic materials
34-44

. 

 

 

 

 

Figure 1.5. Neutron diffraction patterns showing the gradual amorphization of ice Ih 

phase with increasing pressure at 130 K. Patterns are compared with calculated peaks 

position in upper figure. (Figure is taken from ref. 22) 

 

 

 

1.2.2  Historic research work on -quartz 

The PIA phenomenon complicates our understanding on the phase transition of 

compressed silica. At room temperature, pioneering energy-dispersive X-ray diffraction 

studies of compressed polycrystalline -quartz showed it collapses to an amorphous 
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structure above 25 GPa
24

. In the same paper, the high pressure polymorph of silica – 

coesite also exhibits amorphization around 30 GPa. Both PIA phenomena were observed 

in powder silica samples, where the halos on the diffraction patterns disappeared. In the 

discussions of small thermal activation
24

, the amorphization was reasoned to originate 

from the elastic instability on the crystal potential surface. 

 

 

 

 

Figure 1.6. X-ray diffraction pattern of the P21/c type monoclinic post-quartz at 45 

GPa. The figure is taken from ref. 10. 

 

 

 

However, ensuing experiments on -quartz renewed our understanding on the 

established PIA phenomenon. Slow compression experiments carried out by Tsuchida and 

Yagi revealed that quartz transformed into poorly crystalized stishovite at 60 GPa
6
. The 

pressure range surpassed the PIA pressure by ~30 GPa and suggested a crystalline type 
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phase transition can occur at room temperature. At 22 GPa, Kingma et al. found 

additional diffraction peaks appeared, coexisting with low-quartz peaks
45

. Named as the 

quartz II phase in her paper, the new silica phase later discovered has the C2 space group 

and has alternating layers of silicon tetrahedra and octahedra
46,47

. A similar observation 

was confirmed by Haines et al., who also compressed -quartz to 45 GPa and found the 

coexistence of quartz II and a new monoclinic silica phase
10

 (see the powder diffraction 

pattern in Fig. 1.6). In his paper, the so-called post-quartz phase has 6 SiO2 units in the 

unit cell and it was suggested that a hydrostatic experimental condition is very important 

to the observed phase transition.  

No sooner after the discovery of PIA in experiment, Binggeli
48

 et al. employed 

first-principles simulation and found a geometrically optimized silica polymorph above 

60 GPa. The oxygen atoms in this structure have a b.c.c. like sublattice and the silicon 

atoms can either occupy the tetrahedral or the octahedral sites. Mechanism-wise, they 

claimed the PIA in -quartz is due to the elastic instability raised from phonon mode 

softening at the K point in the Brillouin zone at 19 GPa by pair potentials
49-51

 and 32 GPa 

from ab initio calculations
52

 (A phonon, or a quasiparticle, represents an excited state in 

the quantum mechanical quantization of the modes of vibration of elastic structure of 

interacting particles). By following the evolution of elastic moduli as a function of 

pressure, Tse et al. 
53 

also explained that PIA in quartz is due to mechanical instability in 

the crystal. Later on, Dean and co-workers suggested that the silicon atoms could be 

easily displaced from tetrahedral sites to octahedral sites at high pressure
54

.  

Aside from static calculations, molecular dynamics with first-principles schemes 
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revealed that silica densification followed a two-step mechanism and the amorphization 

observed in experiment was interpreted as a result of the large shear stress on silica unit 

cells
16,55

. The two-stage mechanism confirmed that the formation of the previously 

reported b.c.c like sublattice
48

 is controlled by the strong repulsion between large oxygen 

anion, and the cations redistribute into the newly created interstices, leading to an abrupt 

coordination change.  

The exact structure of the quartz II phase has been long sought in the studies of 

silica. By annealing -quartz from a major phonon instability in first-principles 

molecular dynamics, Wentzcovich et al. produced a combined edge-sharing octahedra 

and five-coordinated cuboid silica phase
56

. Later studies employing pair potential models 

suggested a C2 structure of quartz II, in which silicon tetrahedra link silicon octahedra 

layers
46,47

. In 2006, studied with the metadynamics approach, the quartz II phase was 

reported to feature 3×2 octahedra chains
57

. It is worthwhile to note that by implementing 

such a barrier-crossing algorithm, Martonák et al. suggested -quartz actually proceeds 

with a direct crystalline transition into the stishovite structure at 15 GPa
57,58

. Such a 

crystalline phase transition contradicts with early X-ray diffraction experiments
24

. 

Nonetheless, it suggests that the phase transition in compressed quartz be a more 

complicated process than the previously observed amorphization. 

1.2.3  Compression experiments on coesite and simulations 

Angel et al.
59 

revealed an anomalous compression mechanism in compressing 

single-crystal coesite under 11 GPa, where the second derivatives of bulk moduli exhibit 

an initial softening with increasing pressure. Later researches also showed that the five 
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Si-O-Si angles continue to decrease upon compression, leading to the rotation of silicon 

polyhedra
60

. At higher pressures, compressed coesite lost its XRD signals and became an 

amorphization-like structure above 30 GPa
24

. By examining the microstructure under 

electric microscope and Raman spectrometry, Kingma et al.
 28

 predicted that some degree 

of atomic packing ordering was still kept in the amorphized structure. However, such 

ordering was unable to be explicitly observed experimentally or simulated at that time. 

Until recently, Cernok et al. 
61

suggested compressed coesite actually transforms into a 

crystalline phase at 34 GPa, although the exact atomic structure was not shown.  

From first-principles MD with the metadynamics algorithm, coesite was shown to 

transform into an -PbO2-type post-stishovite structure at 22 GPa and 600 K
57,58

, where a 

small energy barrier (0.18 a.u./SiO2 unit) was overcome. In the evolution of the transition, 

six-coordinated octahedra gradually take form and the b-axis was predicted as the most 

compressible axis (Fig. 1.7). 

 

 

 

Figure 1.7. Phase transition from coesite to -PbO2-type post-stishovite. Structural 

evolution during the transition from coesite (a) to the -PbO2-type post-stishovite (d). 

Intermediate states (b) and (c) show the initial growth and competition of chains of 

octahedra in different planes. The figure is taken from ref. 57. 
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The new post-stishovite structure has an edge-sharing octahedra structure and the 

new lattice was reported to form with preferred layering on the (120) plane. The lattice 

was suggested to be reconstructed since the resultant phase has no topological 

relationship with its parent phase. Despite the scarcity of experimental evidence, these 

theoretical works hint at a new transition mechanism different than the PIA in 

compressed coesite. 

Comprehensively, the interpretation of PIA evolves with the applications of new 

experimental techniques, especially the application of advanced structural 

characterization techniques (e.g. synchrotron radiation), pressurization instrumentation 

(e.g. diamond anvil cells
62

), electronic microscopy techniques
63-65

 and faster 

supercomputers. Therefore I am motivated to employ state-of-the-art experimental and 

theoretical techniques to uncover the underlying phase transition mechanism of coesite in 

this thesis. 

 

1.2.4 An outstanding question: Is PIA real? 

Though many experiments and simulations have been carried out in the last decade, 

the mystery of PIA in silica still persists as the exact structural nature of the amorphous 

or amorphous-like phase is not known. There is much renewed interest in revisiting the 

phase transition in silica, which is the main driving force of the thesis. 

I propose a new transition mechanism in this thesis, in an effort to clarify the 

long-standing mystery of PIA in silica. Compressed silica at room temperature actually 

transforms into metastable states, en route to their high-pressure structures. Those 

metastable structures usually have topotaxial relationships with the parent silica crystal 
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and serves as the transition intermediates bridging the phases with different silicon 

coordination numbers. The metastable crystalline phases of silica could be equally 

important and more intriguing than the stable crystalline phases. High pressure and low 

temperature create conditions that favor the denser packing from 4- to 5- to 6-

coordination
66,67 

while hinder the true equilibrium and preserve metastable intermediate 

states. Therefore the possibility of the formation of a fully disordered phase must be 

reputed because it lacks long-distance atomic diffusion
28

, advocating that a portion of 

crystal ordering should still be present. In general, previous results from both 

experimental and computational works indicate the nature of the formation of the 

intermediate phase is still puzzling and plentiful details remain to be uncovered. Herein 

lies the motivation for optimizing the experimental protocol as well as mapping out the 

energy landscape with advanced simulation techniques to uncover the true phase 

transition mechanism of silica.  

1.3 Modeling the Si-O system 

Modeling the Si-O force field for computational simulation is a long-pursued 

objective in computational science. An ideal potential model should include: a) Robust 

computational accuracy at any position on the phase diagram. b) Fast and well parallel 

scaled computing speed, supporting massive simulation comparable to macroscopic 

systems. While the first objective is achieved by first-principles theories, it is on the cost 

of much computational power and the size of the simulation system is restricted to 

hundreds of atoms. On the other hand, although empirical potential models are still far 

from perfect, they can afford the simulation of millions of atoms in millisecond time scale. 
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In this section, I will review the potential models in history based on their applicability of 

silica systems. By comparing the results under different settings, I seek to employ the 

most appropriate methods for my computational research on high-pressure silica. 

 

1.3.1 Pair potentials 

Empirical interatomic potentials were popular in the 1990s. For instance, Lasaga et 

al.
68

 developed a pair-potential force field for silica from ab initio calculations, which 

enabled large-scale computer simulation. Though a plethora of other potentials have been 

published
69,70

, the most successful and widely used semi-empirical model is probably the 

one established by van Beest, Kramer and van Santen (BKS)
71

. The BKS model could 

predict reasonable silica structural changes at low to medium pressures range (up to ~25 

GPa). Studies based on the BKS model showed quartz transforms into an amorphous 

phase at 21 GPa
72

. Recently the BKS model was proved to be appropriate in predicting 

the high temperature phase transition of silica
73

 and shockwave compression
74

.  

It is worth noting that, pair potentials due to their empirical nature may lead to 

unphysical behaviors. One caveat about the BKS model is that its validity for phase 

transitions in the transition boundaries and high-pressure regime has not yet to be 

confirmed. In Fig. 1.8, the BKS model predicts a phase boundary between coesite and the 

anatase-type silica at around 26 kbar (corresponds to 28 Å
3
/SiO2 unit in volume in Fig. 

1.8). However, both experiments
5,45 

and first-principles simulations
44

 failed to support the 

existence of such a silica phase at the predicted pressure range. The artificial stability of 

the anatase-type silica phase therefore represents a so far unknown artifact of the BKS 

model. 
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Figure 1.8. Equations of state of various silica polymorphs from BKS force field 

calculations (results taken from ref. 58). The predicted anatase-type silica phase 

contradicts with first-principles calculations
44

 and experiments
5,45

. 

 

 

 

1.3.2 First-principles methods 

Hence, correct prediction of the phase behavior of the materials and accurate 

assessments of their thermodynamic and kinetic properties under arbitrary 

thermodynamic conditions still necessitate computational models that are free of 

empirical factors. First-principles calculations enable more accurate atomistic simulations 

without relying on empirical interatomic potentials. The methods based on the density 

functional theory
75,76

 are particularly useful in implementing reliable computer 

simulations in condensed matter physics. Literature DFT based first-principles studies on 

the hydrostatic compression of coesite showed a gradual softening in shear elastic moduli 

with increasing pressure, in contrast to the rising of its bulk modulus
77

. This observation 

implied that the high-pressure disordering in coesite may be coupled with its anomalous 
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lattice instability. Peral et al.
78

 conducted an ab initio MD simulation on one of the 

silicate materials (zeolite) and suggested that PIA is the result of a first-order transition 

associated with very localized, weakly interacting structure (like silicon tetrahedra in 

silica) distortions that become unstable upon compression. Durandurdu conducted 

constant pressure first-principles MD and suggested hydrostaticity plays an important 

role in the crystalline phase transition. Under different degrees of hydrostatic conditions, 

silica could either transform to the anatase-type structure, stishovite or CaCl2-type post-

stishovite structures
79

. 

Needless to say, understanding the phase transition behavior of silica through first-

principles simulation is of vital importance to the interpretation of its densification 

mechanism. As indicated in the previous section that the pair potentials available in 

literature may lack the capability of describing the transition from Si tetrahedra to 

octahedra, first-principles simulation approaches will be undertaken in this thesis.  
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II. THEORETICAL APPROACH 

 

2.1 Density functional theory 

The density functional theory (DFT) is a quantum mechanical modeling method in 

solving the electronic structure of ionic systems
1-4

. With this theory, the potential energy 

of the system can be determined by functionals, i.e. functions of another function, which 

in DFT is the spatially dependent electron density.  

 

2.1.1. Total energy in density functional theories 

DFT finds its firm theoretical justification in the Hohenberg-Kohn theorems
1
, which 

are summarized as below: 

a). The ground-state energy of a many-electron system is a unique functional of its 

electron density. 

b). The energy functional is minimized at its correct ground-state electron density. 

A typical expression for a ground-state interacting system of electrons with classical 

nuclei fixed at position *𝐫 + is written as: 

E,*ϕ +- = E ,*ϕ +- + ∫𝑉  𝑡 (𝐫 )𝑛(𝐫 )𝑑𝐫 +
 

 
∫𝑉 (𝐫 )𝑛(𝐫 )𝑑𝐫 + E  ,𝑛-    (2.1) 

The ground state of the system can be obtained by minimizing the value of E,*ϕ +-, 

which is the so-called Kohn-Sham energy
2
. Equation (2.1) is an explicit functional of the 
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set of auxiliary functions *ϕ +, the Kohn-Sham orbitals that satisfy the orthonormality 

relation 〈ϕ |ϕ 〉 = 𝛿  . The ground associated electronic one-body density or ground-state 

charge density n(𝐫 ) is built from occupied orbitals, 

n(𝐫 ) =  ∑𝑓 |ϕ (𝐫 )|
 

𝑜  

 

                                                 (2.2) 

where *f + are integer occupation numbers. In the Eq. (2.2), the obtained charge density 

is a completely antisymmetrised product of one-electron wave functions ϕ (𝐫 ), the 

Slater determinant, commonly named as the “Kohn-Sham determinant”, that satisfying 

the Schrödinger equation: 

                         𝐻  ϕ (𝐫) = 𝜖 ϕ (𝐫)       (2.3) 

The eigenvalue 𝜖  refers to the lowest energy of the system at ground state. The 

Kohn-Sham Hamiltonian 𝐻  , deriving from the equation 2.1, consisting of the kinetic 

energy term, the local potential term and the exchange correlation term that describes the 

many-body effects, will be discussed in detail in the next paragraph. 

The first term in the energy functional Eq. (2.1) is the kinetic energy of a non-

interacting reference system: 

𝐸 ,*ϕ +- =  ∑𝑓 〈ϕ |−
1

2
𝛻 | ϕ 〉

𝑜  

 

                                     (2.4) 

including the same number of electrons exposed to the same external potential as in the 

fully interacting system. The second term, the external potential, comprises the Coulomb 

interactions between electron-nuclei interactions and inter-nuclei interactions. 
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𝑉  𝑡(𝐫 ) = −∑
Z 

|𝐑 − 𝒓|
 

+ ∑
Z Z 

|𝐑 − 𝐑 |
   

                               (2.5) 

The third term is the Hartree energy, indicating the classical electrostatic energy of 

two charge clouds which stem from the electronic density. It is obtained by integrating 

electrostatic energy spatially: 

𝑉 (𝐫 ) = ∫
n(𝒓 )

|𝒓 − 𝒓′|
 𝑑𝒓′                                                (2.6) 

 

2.1.2.  The exchange-correlation energy and its approximation 

The last contribution in the Kohn-Sham energy is the exchange-correlation energy 

E  ,𝑛-, which is defined as the remainder between the exact energy and its Kohn-Sham 

decomposition in terms of the previous contributions. The approximation of this term is 

crucial to the implementation of the density functional theory and many works have been 

done to improve its accuracy and applicability for different systems. A discussion 

focusing on the utilization of the exchange-correlation functional in the framework of 

first-principles simulation is for example given in ref. 5. In the simplest case this term can 

be approximated into an interacting but homogeneous electron gas at the density given by 

the local density  𝑛(𝐫)  at space-point r. This simple but surprisingly successful 

approximation is the famous “local density approximation (LDA)” that has been applied 

to a wide range of ionic systems
6
.  

𝐸  
   ,𝑛- =  ∫𝑛(𝐫) 𝜖   

   (𝑛(𝐫))𝑑𝒓                                         (2.7) 

Despite its remarkable success, LDA tends to perform inaccurately for strongly 

correlated systems, for example it incorrectly predicts the Mott insulator nature of 



 27 

transition metal oxides XO (X=Fe, Mn, Ni)
7
. A significant improvement of the accuracy 

has been achieved by introducing the so call “generalized gradient approximation” 

(GGA), where this exchange-correlation energy is approximated by an integral over a 

function that depends on the charge density as well as its spatial gradient
8
: 

𝐸  
   ,𝑛- =  ∫𝑛(𝐫) 𝜖   

   (𝑛(𝐫), ∇𝑛(𝐫))𝑑𝒓                                 (2.8) 

It extends the applicability of density functional calculations to the realm of 

complex quantum physics and chemistry and has been extensively tested on molecules, 

crystals, surfaces and many other ionic systems
9-15

. For consistency purposes, only the 

GGA functionals were used throughout this thesis. 

 

2.1.3.  Born-Oppenheimer approximation and self-consistent field method 

The approach to solve the static electronic structure is based on the Born-

Oppenheimer approximation
16

, where the electronic motion is considered much faster 

than the nuclear motion. We assume the nuclei are frozen among the motion of electrons. 

By constructing the Hamiltonian for the many-particle system, the Schrödinger equation 

can be solved in a self-consistent manner, named as the self-consistent field theory 

(SCF)
17-19

. The computational flowchart of SCF is showed in Fig. 2.1, as the calculation 

is initialized by guessing a set of properly antisymmetrised wavefunctions (the slater 

determinant). The numerical solutions of the Schrödinger’s equation can be found by 

diagonalizing the Hamiltonian and solving a matrix problem. The charge density will be 

updated according to the newly computed eigenvalues. The potential energy, interatomic 

forces and the charge density of the current step are compared with the prior step. If the 
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difference falls below the preset threshold, the system is considered as converging into a 

self-consistent ground state. If not, the charge density  is mixed with the previous step’s 

in some mixing algorithm (e.g. linear mixing as in equation 2.9). 

 

 

 

Figure 2.1. Simplified flow chart of self-consistent field theory calculation. 

 

 

 

                𝜌 𝑛
𝑛+ = 𝛼𝜌𝑜𝑢𝑡

𝑛 + (1 − 𝛼)𝜌 𝑛
𝑛                   (2.9) 

where the in and out are the input and output charge density, and  is the proportion in 

the linear mixing. The mixed charge density is sent into the loop and starts a new iteration. 

Such iteration continues until the converge criterion is satisfied. For each system, the self-

consistent solution gives a converged charge density distribution under a controlled 

accuracy and the state obtained is considered as the ground state in the preset 

computational constrains. 
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2.2 Pseudopotentials methods 

The Schrödinger equation (2.3) is solved by expanding the wavefunction: 

                             ϕ(𝒓) = ∑ 𝑎  𝜑 (𝑟)     (2.10) 

The equation converts the Schrödinger equation to an eigenvalue problem. The 

form of ϕ  distinguishes different electronic structure methods from each other. For 

example in the augmented plane wave (APW) method, ϕ  has a spherical harmonics 

from inside a sphere surrounding the atomic sites and a plane wave from outside these 

spheres (called the muffin-tin spheres). Inside the muffin-tin radius the wave functions 

are expressed in terms of Bessel functions while expressed as Neumann functions 

outside
20-24

. These methods, termed as all-electrons methods, solve for all electrons in the 

system and therefore demand a considerable amount of computational power to calculate 

even a small ionic system (1 or 2 unit cells). Another class of methods freezes the core 

electrons, separating them from the valence electrons. These methods, known as the 

pseudopotential methods, replace electronic degrees of freedom in the Hamiltonian by an 

effective potential, leading to a reduction of number of electrons in the system and 

thereby allow for faster calculation or the treatment of larger systems. 

2.2.1 Norm-conserving pseudopotentials 

The pseudopotentials used for most ab initio simulation in this thesis are generated 

from all-electron atomic calculations. Most of those pseudopotentials are built on the 

basis of four general conditions: 

1. The generated valence pseudo-wavefunction should be nodeless. 

2. The normalization of pseudo wave function inside the core region is conserved so 
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that the wave function outside the core resembles that of the all-electron atom as closely 

as possible. This is known as the norm-conserving condition. 

3. Within the core region, the charge density from the all-electron wave function 

should be equal to the one from normalized pseudo-wavefunction: 

∫ 𝑟 |𝜓𝑙
𝑝𝑠(𝑟)|

 
𝑑𝑟

𝑟𝑐

0

= ∫ 𝑟 |𝜓𝑙
𝑡(𝑟)| 𝑑𝑟

𝑟𝑐

0

                                     (2.11) 

This constrain suffers problematic results if the wave function is expanded with a 

plan-wave basis outside the core-region, where the rugged pseudopotentials at the core 

boundaries can occur when the kinetic energy cut-off is not large enough. In some cases 

the typical kinetic energy cut off has to be set very large to ensure the smoothness of 

pseudopotentials. 

4. The eigenvalues calculated from both all-electron wavefunction and normalized 

radial pseudo-wavefucntion should be equal. 

We employed the combination of the Becke exchange functional and the Lee-Yang-

Parr correlation functional (BLYP) to account for the exchange-correlation energy, 

parameterized by Goedecker et al.
25

. A typical kinetic cut-off is 150-200 Ry in the 

majority of our simulations, producing well-converged potential energy and its 

derivatives (e.g. inter-atomic force, cell stress tensor) for the silicate systems. 

2.2.2 Projected augmented-wave pseudopotentials 

For the norm-conserving pseudopotentials introduced in the previous section, the 

all-electron wave function gets replaced inside some core radius by a soft, nodeless, 

pseudo wave function. Since the pseudo and all-electron wave functions are identical 

outside the core radius, pseudo wave function must have the same norm as the all-
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electron wave function within the chosen core radius. As shown previously, the core 

radius needs to be as large as the outermost maximum to well reproduce the charge 

distribution and moments of the all-electron wave function. Therefore in strongly 

localized systems (like hydrogen, oxygen, transition metal and rare earth elements), it 

requires a large kinetic plane wave cutoff (up to 200 Ry in some of my simulations). To 

compromise at the stake of sacrificing accuracy and reliability, Blöchl proposed a linear 

transformation to connect the pseudo and all-electron wave functions, named as the 

projector augmented-wave method (PAW)
26-27

.  

 

 

 

 

Figure 2.2. Schematic representation of the PAW transformation. The pseudized 

wavefunction is constructed by the oscillatory part close to atoms (two atoms in the 

figure, represented by two hills) and a smooth interstitial function. 
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The derivation of the PAW method is complicated
28

. In general, the PAW method is 

based on a formal division of the whole space into two distinct regions: a collection of 

non-overlapping spherical regions around each atom and the remainder (see Fig. 2.2). It 

introduces a set of localized projector functions to reproduce the all-electron wave 

functions. Since the projector functions are parameterized, it only requires a portion of 

wave function cutoff as in the all electron methods, thus significantly boosts computation 

speed. The PAW method is widely used in simulation packages like CASTEP, VASP, 

ABINIT, etc. Although the PAW method is not extensively used in this thesis, we still 

applied it to our work whenever necessary, mainly to validate our computational results 

achieved from using different types of pseudopotentials. 

2.3 Ionic geometric relaxation 

In determining the optimal configuration of an ionic system, geometric relaxation is 

a popular method to calculate the static structural properties at the minimum energy (also 

known as the 0 K configurations). Generally speaking, geometric optimization starts from 

a given point on the free energy landscape and attempts to find the configuration of 

minimum energy.  

The geometric optimization problem is more of a mathematic optimization problem. 

We employed first-principles potentials and the quasi-Newton optimization method
29

 to 

find the minimum energy in the degree of freedom of 3N-6 (N is the number of atoms). 

The quasi-Newton method is a first order optimization method since the second order 

Hessian matrix does not need to be explicitly computed. It is a generalization of the 

secant method to find the root of the first derivative for multidimensional problems. A 
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simplified 1D problem is showed below: 

𝐸(𝒙𝒌 + ∆𝒙) = 𝐸(𝒙𝒌) + ∇𝐸(𝒙𝒌)∆𝒙 +
1

2
∆𝒙𝑻𝐵∆𝒙                            (2.12) 

where ∇𝐸(𝒙𝒌)  is the gradient of potential which is set to zero, and B is an 

approximation of Hessian matrix. The gradient of the approximation is: 

∇𝐸(𝒙𝒌 + ∆𝒙) = ∇𝐸(𝒙𝒌) + 𝐵∆𝒙                   (2.13) 

which is the secant function. The determination of B matrix is the core issue in quasi-

Newton method and many algorithms are available. The Broyden-Fletcher-Goldfarb-

Shanno algorithm
30

 is used in this thesis by default, which usually yields reasonable 

results. The matrix B at the kth Newton step is shown below: 

𝐵 + = 𝐵 +
𝐸 𝐸 

𝑇

𝐸 ∆𝒙
𝑇 −

𝐵 ∆𝒙(𝐵 ∆𝒙)
𝑻

∆𝒙𝑻𝐵 ∆𝒙
                                    (2.14) 

where B can be initialized as the identity matrix. The optimizer is applied every time a 

SCF solution is reached, known as one ionic step. The criterion of convergence is 

measured by the change of interatomic force and total energies. We set the force criterion 

as 1×10
-2 

eV/Å on each atom in most cases. However, the actual convergence criteria will 

be specified in each individual section under different computational environments.  

2.4 Molecular dynamics 

Unraveling the mechanism of phase transitions is the major goal in this thesis. The 

phase transition can be considered as a kinetic process, as the atomic positions and cell 

variables are dynamically changing under various pressure and temperature conditions. In 

this section we deal with those dynamical properties with molecular dynamics (MD) 

simulation. 
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2.4.1 Molecular dynamics in Verlet’s scheme 

The goal of this section is to derive molecular dynamics of classical particles from 

the fundamental Verlet’s method
31

, without the input of any potential models. Starting 

from the Hamiltonian of an arbitrary N-body system: 

𝐻 = ∑
1

2
𝑚 𝑣 

 

𝑁

 = 

+ ∑∑𝑈(𝒓𝒊, 𝑹𝑰)

𝑁

 

𝑁

   

                                         (2.15) 

where mi is the mass of ith particle and vi is its mechanical velocity. The ri and RI are 

electronic and nuclear degrees of freedom respectively. In the Verlet’s method, the initial 

position and velocities conditions are known as: 

*𝒓𝟏(0), 𝒓 (0), … , 𝒓𝑁(0)+ 

*𝒓 ̇(0), 𝒓 ̇(0),… , 𝒓𝑁̇(0)+ 

The movement at time step t is derived from the Taylor expansion of motions (cut 

off at the third term of the Taylor expansion): 

𝒓 (𝑡) ≡  𝒓 (0) + 𝒓𝑖̇(0)𝑡 +
𝐹𝒓𝒊(0)

2𝑚 
𝑡                                    (2.16) 

𝒓𝑖̇(𝑡) ≡  𝒓𝑖̇(0) +
𝐹𝒓𝒊(0) + 𝐹𝒓𝒊(𝑡)

2𝑚 
𝑡                                        (2.17) 

Based on this trajectory in the phase space, the numerical average values A of the 

motion can be calculated: 

〈𝐴〉𝑛𝑡 ≅ 
 

𝑛𝑡
∑ 𝐴,𝒓(𝑠𝑡), 𝒓̇(𝑠𝑡)-𝑡𝑛

𝑠=0                   (2.30) 

Those averaged values are useful in defining the equilibrium of the simulated 

systems. In statistical mechanics equivalence, we can define an idealization consisting of 

a large number of virtual copies for the N-body system, known as the thermodynamics 
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ensemble. For example, MD simulations run in an isolated system, the total energy E, 

volume V and the number of particles N are conversed. In such systems the values of 

NVE are constants, known as the microcanonical ensembles: 

〈𝐴〉 ≡  𝐴̅𝑁𝑉𝐸                            (2.31) 

We principally use two types of ensembles to achieve targeting temperature and 

pressure: the canonical ensemble (NVT) and the isothermal-isobaric ensemble (NPT). 

Introductions for both ensembles are given in the following sessions. 

2.4.2 Canonical ensemble 

A system with the canonical ensemble is in thermal equilibrium with a heat bath. 

While the constant temperature is achieved by exchanging heat with the heat bath, the 

simulation box is fixed so that the number of particles and volume are kept constant. In 

this thesis NVT ensembles were mainly used to equilibrate the structures to a stable state 

and examine their thermal stability.  

There are many thermostats available for constant temperature molecular dynamics 

simulations. In this thesis, we employed the Nosé-Hoover thermostat to achieve the 

realistic constant temperature condition
32

. The Nosé-Hoover method has been commonly 

used as one of the most accurate and efficient methods for many simulation systems. 

The spirit of the Nosé-Hoover algorithm is the extended Lagrangian that contains 

additional, artificial coordinates and velocities to describe particle fluctuations at a certain 

temperature. In a system of N particles, with coordinates qi, masses mi, momenta pi and 

potential energy (q) and time t, Nosé
32

 introduced an additional degree of freedom s 

acting as an external system on the simulated system. The external system has virtual 
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variables (coordinates qi’, momenta pi’ and time t’) that relates to the real simulated 

system: 

𝒒𝒊 = 𝒒𝒊
 , 𝒑𝒊 =

𝒑𝒊
 

𝑠
, 𝑡 = ∫

𝑑𝑡 

𝑠

𝑡 

0

                                   (2.32) 

 The extended Lagrangian is constructed as: 

𝐿 =  ∑
𝑚 

2
𝑠 

𝑁

 = 

𝒒̇ 
  −𝜙(𝒒 ) +

𝑄

2
𝑠̇ − 𝑔𝑘𝑇In𝑠                             (2.33) 

where Q is an effective mass associated to s and g=3N+1 is the degree of freedom of the 

system. The value of Q, also known as the thermal inertia parameter, determines the rate 

of the heat transfer. The chosen of Q has to be appropriate to ensure the efficiency and 

validity of the simulated canonical ensemble. Equation 2.33 relates the coordinate and 

momenta of the virtual system. Thus the Hamiltonian of the extended system can be 

represented by: 

𝐻 = ∑
𝒑𝒊

 𝟐

2𝑚 𝑠 

𝑁

 = 

+ 𝜙(𝒒 ) +
𝑝𝑠
 

2𝑄
𝑠̇ − 𝑔𝑘𝑇In𝑠                             (2.34) 

where 𝑝𝑠 =
  

 𝑠̇
= 𝑄𝑠̇  is the partial derivative of Lagrangian with s. Based on the 

Hamiltonian and the relationship between virtual variables and real variables, the real 

space equation of motion are
33

: 

𝑑𝒒𝒊

𝑑𝑡
=

𝒑𝒊

𝑚 
                                                                                 (2.35) 
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𝑑𝒑𝒊

𝑑𝑡 
= −

𝜕𝜙

𝜕𝒒𝒊
− 𝑠 

𝑝𝑠

𝑄
𝒑𝒊                                                        (2.36) 

𝜕ln (𝑠)

𝜕𝑡
𝑠 

𝑝𝑠

𝑄
                                                                             (2.37) 

𝑠
𝑑 𝒔

𝑑𝑡 
=

1

𝑄
(∑

𝒑𝒊
𝟐

2𝑚 𝑠
 

𝑁

 = 

− 𝑔𝑘𝑇)                                            (2.38) 

These equations describe the Nosé-Hoover thermostat. Values like coordinate and 

momenta can be calculated by propagating equations of motion over time. By choosing 

the right value of Q, we can impose time average value of temperature to be equal to the 

prescribed value. 

2.4.3 Isothermal-isobaric ensemble: the Parrinello-Rahman method 

The implementation of an isothermal-isobaric ensemble is more complicated. We 

allow the full flexibility of the simulation cell to generate a constant pressure condition, 

as described in the paper by Glenn
34

. This method, hinged on the Parrinello-Rahman 

method
35-36

, is a robust hybrid method that removed some inconsistencies
 
in the prior 

schemes
37-38

. The partition function, yielding the probability distribution in space, is 

determined by the following equation under hydrostatic pressures: 

𝑍 = ∫𝑑𝒉 exp ,−𝛽𝑃  𝑡 det(𝒉)-𝑄(𝒉)det ,𝒉- −𝑑          (2.39) 

where h is the normal matrix of cell parameters, Pext is the external pressure, and Q(h) is 

a canonical partition function. This is a fully nonlinear treatment of the case that isotropic 

tension is applied along the instantaneous lattice vectors. The incorporation of the 
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variation of lattice matrix enables the changes of cell variables upon the applied external 

pressure. The equilibrium of the system is achieved by comparing the averaged internal 

pressure calculated from the above equation and the set external pressure. The shape of 

the cell is adjusted accordingly. 

More details of the Parrinello-Rahman method can be found in the original 

methodology papers
34-36

. Successful implementations of this method in MD studies of 

silica are discussed in a review article by Rajappa
39

. 

2.4.4 Car-Parrinello type molecular dynamics 

Incorporating the spirit of molecular dynamics and the DFT representation of 

energy, we are able to simulate the motion of condense matter in the scheme of first-

principles calculation. As we have discussed in section 2.1, first-principles MD under the 

Born-Oppenheimer approximation
16

 resolves the static electronic structure problem in 

each MD step. A self-consistent potential energy has to be reached at each MD step; 

hence the number of self-consistent cycles equals to the number of MD steps. The Car-

Parrinello (CP) type MD was proposed by R. Car and M. Parrinello in 1985, in an effort 

to permit the application of density-functional theory to much larger systems than 

previously feasible
40

. In CPMD, the following objectives are achieved: (i) integrating the 

equations of motion on the time scale set by the nuclear motion. (ii) intrinsically take 

advantage of the smooth time evolution of the dynamically evolving electronic subsystem 

as much as possible. The second thrust allows us to avoid explicit SCF calculation on 

each MD step.  

Algorithmically, the CP type MD transforms the separation of fast electronic and 
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slow nuclear motion into a classical-mechanical adiabatic energy-scale separation in the 

framework of dynamical system theory. The energy of the electronic subsystem 

〈Ψ0|𝐻|Ψ0〉 is a function of the nuclear positions {RI}. But at the same time it can be 

considered to be a functional of the wave function and thus of a set of orbitals {i}. Its 

force on the nuclei is obtained from the derivative of a suitable Lagrangian with respect 

to the nuclear positions. In addition, possible constrains within the set of orbitals have to 

be imposed, such as the orbital orthonormality. These constrains might not only be a 

functional of set of orbitals {i}, but also a function of the nuclear positions {RI}. Both 

these dependences have to be taken into account properly in deriving the CP type 

equations of motion, since it is crucial to generate a proper energy-conserving dynamical 

evolution. In light of this, Car and Parrinello introduced the following class of 

Lagrangians
41

.  

ℒ = ∑
 

 
𝑀𝐼𝑹𝐼

 ̇
𝐼 + ∑ 𝜇〈𝜙𝑖

̇ |𝜙𝑖
̇ 〉 − 〈Ψ0|𝐻|Ψ0〉 + 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠         (2.45) 

where MI is the mass of nuclear and  is the fictitious mass of the electron. The equations 

of motion for both nuclear positions and orbitals are obtained from the associated Euler-

Lagrange equations: 

𝑑

𝑑𝑡

𝜕ℒ

𝜕𝑹𝐼
̇
=

𝜕ℒ

𝜕𝑹𝐼
                                                          (2.46) 

𝑑

𝑑𝑡

𝜕ℒ

𝜕𝜙𝑖
̇
=

𝜕ℒ

𝜕𝜙 
                                                          (2.47) 

Now plug in the functional derivatives respect to orbitals. The generic Car-

Parrinello equations of motion are calculated to be of the form: 
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𝑀𝐼𝑹𝑰
̈ (𝑡) = −

𝜕

𝜕𝑹𝐼

〈Ψ0|𝐻|Ψ0〉 +
𝜕

𝜕𝑹𝐼

*𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠+                      (2.48) 

𝜇𝜙𝑖
̈ (𝑡) = −

𝛿

𝛿𝝓 

〈Ψ0|𝐻|Ψ0〉 +
𝛿

𝛿𝝓 

*𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠+                        (2.49) 

The above equations can be further simplified by using the Kohn-Sham theory in 

conjunction with position-independent constrains as discussed earlier in chapter 2.1. The 

constraints are explicitly represented by: 

*𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠+ = ∑ Λ   , (〈𝜙 |𝜙 〉 − 𝛿  )                (2.50) 

where the proper orbital orthonormality 〈𝜙 |𝜙 〉 = 𝛿  , must be imposed by Lagrange 

multipliers ij. Hence it generates the well-established Car-Parrinello equations of motion: 

𝑀𝐼𝑹𝑰
̈ (𝑡) = −∇𝐼〈Ψ0|𝐻

  |Ψ0〉                    (2.51) 

𝜇𝜙𝑖
̈ (𝑡) = −𝐻  𝜙 + ∑ Λ   𝜙                    (2.52) 

The nuclei evolve in time at a certain physical temperature ∝ Σ𝐼𝑀𝐼R𝐼
 ̇, while the 

electron fictitious temperature ∝ Σ 𝜇〈𝜙𝑖
̇ |𝜙𝑗̇〉 can be associated accordingly with the 

electronic degrees of freedom. The fictitious temperature is lower when the electronic 

subsystem is close to its instantaneous minimum energy, where it is close to the Born-

Oppenheimer surface. Thus the wave functions optimized for the initial configuration of 

the nuclei will stay close to its ground state also during time evolution of it is kept at a 

sufficiently low fictitious temperature. 

The CP type MD is targeting on separating the nuclear and electronic motions such 

that the fast electronic subsystem stays cold also for long times but still follows the slow 

nuclear motion adiabatically. How and to what extent to achieve this target requires 
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complex technical investigation, such as decoupling of nuclear and electron subsystems 

as well as adiabatic time evolution. Therefore the lengthy details on implementing CPMD 

simulations will not be discussed in this thesis. However, the practice was analyzed in 

details in the pioneering paper based on well-controlled model systems
42

. The 

adiabaticity issue was also addressed in mathematics by Bornemann and Schütte
43

 and in 

terms of a generalization to a second level of adiabatic decoupling
44

. 

2.5  Barrier crossing algorithms 

While ab initio MD empowers us to investigate the transition pathway, very often 

the large kinetic energy barrier separating different phases makes conventional MD 

simulations highly inefficient. We introduce two methods in this session: metadynamics 

and nudge elastic band method (NEB) to deal with barrier-involved problems. 

Metadynamics is specialized in escaping energy barriers by artificially filling the free 

energy landscape. It is a powerful method to search for metastable structures. On the 

other hand, the NEB method can accurately calculate the transition pathway connecting 

two phases close in the phase space. 

2.5.1 Metadynamics 

The Metadynamics algorithm was first introduced by A. Laio and M. Parrinello in 

2002
45,46

. It provides a new computational method to sample rare events. The 

metadynamics algorithm describes the system as a function of collective variables (CVs) 

S. The collective variable can be one or combinations of order parameters that 

characterize the system in a timescale of t. Its potential Vmtd is described as: 

𝑉𝑚𝑡𝑑 = 𝑉𝑚𝑡𝑑(𝑺𝜶, 𝑡)                          (2.53) 
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The choice of collective variables largely depends on the nature of the system. In 

general, the changes of CVs reflect the evolution of the structure during phase 

transformation. However the number of CVs needs to be as small as possible, to 

minimize the efforts to synchronize the energy depositing progress, where many 

unexpected issues can occur (e.g. the hill surfing problems
47

). In this thesis we initially 

performed test-runs on many order parameters and extract the most efficient CVs. The 

initialization has to be done before the actual execution of any metadynamics simulation 

and ensured the efficiency of the further simulation. During a molecular dynamics run 

with the metadynamics algorithm, the free energy is reconstructed at each time interval 

by adding a history-dependent potential, which is usually the sum of repulsive Gaussian 

potentials hills centered along the trajectory of CVs. Therefore the reconstructed 

Hamiltonian is the sum of first-principles energy and the free energy from metadynamics. 

𝐻(𝒓, 𝜌(𝒓), 𝑺𝜶, 𝒕) = 𝐻𝐸(𝒓, 𝜌(𝒓)) + 𝑉𝑚𝑡𝑑(𝑺𝜶, 𝑡)             (2.54) 

𝑉𝑚𝑡𝑑(𝑺𝜶, 𝑡) = ∑ 𝑕(𝑡 ) exp [−
(𝑺𝜶

𝒊 − 𝑺𝜶)
 

2𝛿𝒔
 ]

𝑡  𝑡

                               (2.55) 

In order to determine the shape of the Gaussian functions (height h(ti) and width s), 

it is helpful to run CPMD without depositing any bias energy for each CV combination to 

give an indication of the width of the well. The potential hills are added to the history-

dependent potential Vmtd(S,t) with a meta-time step that is one or two orders larger than 

the MD time step. The potential encourages the system to build up in the reactant state, 

until it escapes via the local minima transition state to the next minima. Processing with a 

small hills results in better resolution so that the multidimensional free energy landscape 
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is obtained to arbitrary accuracy as the negative sum of Vmtd(S,t) (see Fig. 2.3).  

 

 

 

 

Figure 2.3. Schematic representation of the free energy surface for a one-

dimensional problem. The simulation starts at local minima A and transits through the 

intermediate state B before reaching the global minimum. Numbers indicates the number 

of Gaussian hills deposited onto the free energy surface during the simulation progress. 

 

 

 

Since the appearance of the energy surface depends on the complex properties of 

transition states, the exact details in implementing metadynamics follows a case-by-case 

manner, where their details can be found in each individual section. 

2.5.2 Nudged elastic band method 

The transition pathway directly connecting two stable phases is studied with the 

widely used nudged-elastic band method
48

. When the initial and final states of a reaction 
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are known, the NEB relaxes an initial path to a minimum-energy path (MEP). The 

structures on the transition pathway are called “replicas”, where multiple replicas can be 

initialized as the geometric intermediates. The energy and force of the system were 

calculated at each ionic step until it satisfied the preset convergence criterion. Here we 

used the so-called solid-state NEB (ssNEB)
49

, which is specialized in dealing with phase 

transitions involving cell shape changes. In this method, a Jacobian is used to combine 

atomic and cell degrees of freedom so that the MEP is insensitive to the choice of unit 

cell size and geometry: 

𝐽 = Ω /3𝑁 /6                       (2.56) 

where  is the volume of the unit cell and N is the number of atoms in the cell. It 

connects the strain from the cell into the same unit of atomic position, so that the changes 

in the configurations Rss is formed by concatenating the strain  and changes in atomic 

coordinates R: 

Δ𝐑𝒔𝒔 = *𝐽ϵ, Δ𝐑+                      (2.57) 

The ssNEB was implemented in VASP
50

, together with the Transition States Tools 

VASP (VTST)
49

. Full geometry optimizations were made on both the -quartz and quartz 

III structures. The projected augmented-waves (PAW) pseudopotentials with the Perdew-

Wang GGA parameterization
51

 for Si and O with a 550 eV plane basis cutoff were used in 

these calculations. Since -quartz is metastable at high pressures, we employed a 

Hessian-based geometric optimization method such that it is possible to optimize the 

structure onto local maxima (first order saddle point) without transforming into the quartz 

III phase. Then the initial phase (-quartz) and the final phase (quartz III) are sampled 
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with 16 replicas with equal image distances connecting the two reactant phases. We 

adopted a forced-based quick-min optimizer
52 

to find the MEP in the phase transition 

pathway and the forces typically converged within 200 ionic steps. 

2.6 Lattice dynamics: phonon calculations 

The purpose for phonon calculations in this work is three-fold. (i) To examine the 

mechanical stability of the derived metastable phases. Both the necessary and sufficient 

condition for the mechanical stability of a crystal is the phonon stability
53,54

, i.e., 

𝝎(𝐪, 𝒔)𝟐 > 𝟎 holds for any wave vector q and vibration mode s. A phonon mode that has 

imaginary frequency, i.e., 𝛚(𝐪, 𝐬)𝟐 < 𝟎 , will lower the energy of the system, and 

indicate the crystal is mechanically unstable. (ii) The phonon vibration modes are used to 

estimate the Gibbs free energy of the crystals based on the quasi-harmonic 

approximation. (iii) To monitor the phonon-softening behavior of the Brillouin zone 

boundary of -quartz and to see at what pressure the phonon instability (an indicator of 

mechanical instability) kicks in.  

The first-principles phonon calculation was based on the same BLYP type GGA 

pseudopotential
25

 with the Quantum Espresso phonon code. After completely relaxing the 

atomic structure, we computed the dynamical matrix on a grid of wave vectors in the 

Brillouin zone by the Density Functional Perturbation Theory (DFPT). The long range 

dipole-dipole interaction is taken into account using the dielectric tensor. It is possible to 

calculate the phonon frequencies at any wave vector q by reconstructing the dynamical 

matrix, known as the Fourier interpolation method. 
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The grid size and accuracy control is much dependent on the simulation size and 

systems. The technical details of phonon calculations will be discussed separately for 

each system. 

2.7 Experimental approaches 

The experiments we have conducted in this thesis are targeted on identifying the 

atomic structure of silica samples at high pressures. Accurately identifying the atomic 

structure of a compressed sample is an outstanding problem ever since the establishment 

of high pressure science. In this session, we introduce two major technical advancements 

employed in our high pressure research: i) the use of Diamond Anvil Cell (DAC) as a 

pressurization instrument. ii) the application of energy dispersive X-ray diffraction 

technique as a structure characterization tool. 

2.7.1 Single crystal samples 

Before discussing the experimental techniques, we introduce the use of single 

crystal samples that differentiate ours from other experiments. Powders and single crystal 

are two major sample categories in high pressure research. While powder samples can be 

recognized as the assembling of extremely tiny single crystals with arbitrary crystal 

orientations, single crystal samples have a well-defined crystalline orientation (Fig. 2.4 

shows a comparison under electronic microscope). 
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Figure 2.4. Diamonds in the form of (a) single crystal and (b) powder under 

scanning electronic microscopy (SEM). The SEM photo of polycrystalline diamonds, 

showing arbitrary crystalline orientations, are grained in size of around 20×20 m, 

manufactured by Beijing Grish Hitech Co., Ltd.
55 

 

 

 

The advantages of using single crystal samples are: i) Single crystals are much 

more sensitive to minor structural changes (e.g. lattice distortion and metastable 

transition) than powders. ii) Eliminating the size and orientation effects encountered in 

polycrystalline samples and iii) Enable direct comparisons between experiment and ab 

initio simulation.  

Therefore the single-crystal experiment is ideal to observe the metastable structures 

and the transition sequence, which serves as the primary sample type in this thesis. 

2.7.2 Diamond anvil cell 

Pressure, in its physical definition, can be increased by two methods: raising the 

force F applying perpendicular to the surface of an object, or shrinking the contact area S. 

𝑝 =
𝐹

𝑆
                                                                    (2.58) 
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Efforts on achieving extreme pressure never stop. The state-of-the-art static 

pressurization experiments reported a 440 GPa pressure in a specially designed diamond 

anvil cell
56,57

, where no other material than the diamond could survive under such 

circumstance without being crushed or losing crystalline shapes. Diamond, the ambient 

metastable allotrope of carbon, is known as the toughest mineral on earth and also most 

transparent to X-rays. Because of its extraordinary thermodynamical and optical 

properties, diamond is the ideal solid pressure medium for high pressure science. 

 

 

 

Figure 2.5. The diamond anvil cell. (a) Schematics cross section of the core of a 

diamond anvil cell. A sample and a piece of ruby (the pressure indicator) were sealed 

together by a gasket. Tightening of the screws moves the casings and the diamond closer 

together and builds pressure. The backing plate holds the diamond in place. (b) 

Visualization of electromagnetic radiation penetrating through DAC’s axial direction, 

allowing scientific measurements. 
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The design of DAC, shown in Fig. 2.5, has been well established in this area and it 

is also the pressurizing instrument used in my thesis. The core component of DAC is a 

pair of well-aligned diamond anvils, where the contact area is minimized to amplify the 

compression effect at the same stress. The opening on the backing plates allows radiation 

rays scattered on a small piece of sample (Fig. 2.5b). 

 

 

 

 

Figure 2.6. Designs of diamond anvil seats: (a) Representation of diamond anvil on the 

emergent beam side. It has shorter height than standard designed diamond anvils. (b) 

Diamond anvil put onto the cBN seat. X-rays are able to pass through the seat with 

lowered intensity, allowing open angles even wider than the seat hole size. 

 

 

 

Specifically, DAC in the Mao-Bell design
58

 was used as the major apparatus for 

compressing single crystal samples. The diamond anvil (300 m in culet diameter, 

manufactured by Almax-easyLab, Co. Belgium
59

) is eight-sided and in oblate shape (Fig. 

2.6), particularly designed for wide open-angle synchrotron experiments. The seat on the 

incident beam facet is made of the tungsten carbide, which has great hardness but absorbs 

most X-rays. On the emergent beam side, the seat is made of cubic boron nitride (cBN) 
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that is semi-transparent to X-rays. Whereas cBN is not as hard as tungsten carbide, we are 

granted wider diffraction angles even beyond the seat hole size on the emergent side by 

using this seat. It ensures a solid platform for applying pressure up to 60~70 GPa (the 

maximum pressure is also determined by the culet size, crystallization quality and many 

other factors). Diffracted beam permeating though the cBN seat can still reach the image 

plate in half intensity. The comprehensive experimental setup for different samples 

studied in this thesis will be demonstrated in separate sections, as their specifications vary. 

2.7.3 Energy dispersive X-ray diffraction from synchrotron radiation source 

Back to the 1940s, synchrotron radiation was named after its discovery in a general 

electric synchrotron accelerator built in 1946 and announced in May 1947 by Frank 

Elder and his research group
60,61

. They observed electromagnetic radiation emitted when 

charged particles were accelerated radially ( 𝐚 ⊥ 𝐯 ). By using bending magnets, 

undulators and/or wigglers, accelerated electrons (close to lightspeed) perform a 

snakelike motion in a giant storage ring circuit (Fig. 2.7). The synchrotron radiation 

beams are generated by the acceleration of ultrarelativistic charged particles through 

magnetic fields. Generally speaking, the radiation produced in this way is extremely 

strong in intensity (e.g. 1×10
6
~1×10

8
 times greater than a regular X-ray diffractometer) 

and the frequencies generated can range over the entire electromagnetic spectrums. Those 

characteristics are ideal for high pressure research since the sample in DAC is very tiny. 

While a traditional diffractometer can take months to render a good quality DAC 

diffraction pattern, X-rays emitted in synchrotron radiation circuit are capable doing the 

same amount of job in seconds. 

http://en.wikipedia.org/wiki/General_Electric
http://en.wikipedia.org/wiki/General_Electric
http://en.wikipedia.org/wiki/Electromagnetic_radiation
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Figure 2.7. Generation of synchrotron beam from (a) bending magnets and (b) 

undulator. The inset figure (c) is a schematic build-up to the giant electrons storage ring. 

Line stations are constructed along the running direction of accelerated electrons.  

 

 

 

 

 

 

Figure 2.8. Workflow for solving the structure of a high pressure sample. (a) A 

schematic procedure for solving the structure of compressed sample. (b) Two 

dimensional X-ray diffraction pattern of a single crystal coesite sample. Deriving from 

the Bragg’s law, the incoming beam is deflected by an angle according to the reciprocal 

lattice vectors of sample, producing reflection spots on the image plate. 
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Since the wavelength of hard X-rays are close to the magnitude of atomic spacing 

in molecules and condense matters, it can be used as a tool to identify the structure of 

a crystal, in which the crystalline atoms cause a beam of incident X-rays to diffract into 

many specific directions. In light of the Bragg’s law, the incident beam is deflected in the 

angle  based on the spacing d between the diffraction planes: 

2𝑑 sin 𝜃 = 𝑛𝜆                        (2.59) 

where  is the wavelength of the beam and n is any integer. High energy incident beam 

diffracts on the sample in DAC, received by the image plate behind it (Fig. 2.8a). The 

diffraction pattern is spotty like from our single crystal samples and each spot represents 

a specific plane in its reciprocal space (Fig. 2.8b).  

Experiment is initialized by focusing the beam to the rotational center of the sample. 

A pre-scan is necessary to avoid those angle positions that the diffraction signals were 

mostly absorbed by diamonds. Diffraction patterns are collected onto a plate detector at 

each X-ray incident angle (1
o
 per image) typically from -15

o
 to 15

o
. An additional image 

scanning over the same range of scattering angle is taken to show the integrated 2D 

diffraction pattern. The single crystal structure and its orientation matrix are calculated by 

the difference vector approach implemented in the package GSE_ADA
62

. The 

mathematical details including predicting and refining crystalline structure from 

reciprocal vectors can be found in a book reference
63

. 
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III. A NEW PHASE TRANSITION MECHANISM IN COMPRESSED COESITE 

 

3.1 X-ray diffraction experiment 

3.1.1 Experimental setup 

In order to determine the crystalline structure of coesite under pressure, multiple 

XRD experiments were performed on coesite single crystals. The typical sample size is 

(W)40 m×(L)40 m×(T) 10m, synthesized using a multi-anvil apparatus
1
. The crystal 

orientation was determined in situ. The advantages of using single crystal samples have 

been discussed in chapter 2.6.3. Experiments were mainly conducted at the 16 IDB 

station of High Pressure Collaborative Access Team (HPCAT) of the Advanced Phonon 

Source (APS), Argonne National Laboratory (ANL). At the time of experiment, the X-ray 

beam has a wavelength of 0.4066 Å, equivalent to 30.5 keV in beam energy. 

The single crystal coesite sample was loaded into in a tungsten gasket with hole 

diameter 170 m, seated on a 300 m culet. To ensure the best hydrostatic condition, 

helium gas was employed as the pressure medium. Since helium gas is extremely 

compressible, the hole size shrank by more than half (measured in diameter) after gas 

loading (Fig. 3.1). 
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Figure 3.1.  Microscopic images of coesite sample loaded in a DAC: before (left) and 

after (right) aerating pressure medium. One ruby ball and gold powders (indicated by 

golden arrows) were loaded along with the coesite sample for pressure calibration. The 

gasket hole size, decreased from 170 m to around 80 m after filling helium gas. The 

equilibrated pressure was around 1.7 GPa. 

 

 

 

Pressure was calibrated in situ based on the equation of state of gold powders and 

ruby fluorescence line shift in an off-line hutch. The uncertainty in the pressure 

measurement is ±0.80 to 1.98 GPa, derived from the pressure change within each 

experiment interval. 

3.1.2 Coesite single crystal  

Fig. 3.2 shows an indexed 2D diffraction pattern from one coesite sample at 6 

GPa. The diffraction images were processed in such a way that the strongest diffraction 

peaks from coesite sample were included but most saturated diamond peaks were masked 

out. Since strong diamond diffraction signals traveling through the seat can cause 

secondary powder diffraction (i.e., Debye-Scherrer rings which are centered on the given 

diamond peaks
2
), the way the image is processed is for clarity purposes.  
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Figure 3.2.  An indexed 2D diffraction pattern of coesite at 6 GPa. All major peaks 

were refined to a monoclinic coesite structure with space group C2/c, as labeled in red 

boxes. The index (hkl) denotes a plane orthogonal to a direction (h, k, l) in the basis of 

the reciprocal lattice vectors. 

 

 

 

In short, the d-spacing values of the spots in the graph are larger than 1.30 Å. 

Diffraction peaks less than 1.30 Å in d-spacing are still tractable, which are indexed in 

the original raw images. At 6 GPa all diffraction peaks are readily indexed to a 

monoclinic coesite structure, where sharp single crystal patterns are clearly shown. The 

dark ring at the image center and some other minor spots are due to either defects on the 

image plate or the beam pinhole. 

3.1.3 Ostensible amorphization of coesite 

The sharp coesite diffraction pattern persists up to 26 GPa, when all original coesite 
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diffraction spots split into multiple sharp spots (Fig. 3.3). The zoomed-out section of peak 

(111) is also displayed in the left panel of Fig 3.4, where at 26 GPa three extra spots 

emerge with different d-spacing values and such a split phenomenon remains visible until 

around 40 GPa. 

 

 

 

Figure 3.3. A split 2D diffraction pattern of single-crystal coesite sample compressed 

at 26 GPa. The black boxes were indexed to four intermediated silica phases that have a 

topotaxial relationship with its parent coesite structure.  

 

 

 

The diffractions spots do not split along the same diffraction ring, suggesting the 

creation of multiple crystalline structures rather than a crashed crystal with different 

orientations. The diffraction pattern after splitting can be uniquely fit into four distinct 

but nearly isochoric structures (Fig. 3.5). Their orientations, as summarized in Table 3.1, 
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although close to each other, are unique in their own rights. The lattice parameters of 

each metastable phase at 26 GPa are solved one by one. The lattice parameters at a lower 

pressure are taken as the seed to search for the closest structure from the split pattern. The 

indexed peaks from the search are removed from the pattern and the search continues for 

the next structure until the diffraction peaks are fully indexed. The diffraction peaks are 

eventually completely covered by the assembly of four triclinic structures. It is found that 

those isovolumetric metastable phases have a topotaxial relationship with the parent 

coesite crystal, as the a and c axis were distorted, resulting in triclinic structures (Table 

3.2).  

 

 

 

Figure 3.4. The evolution of the selected (111) diffraction peak from coesite during 

compression. Left figure: changes of coesite (111) peak at 18 GPa, 26 GPa and 37 GPa, 

respectively, as it splits into 4 spots. Right figure: the evolution of integrated 1-D 

diffraction spectrum of the (111) peak up to 53 GPa. The peaks are widened by one 

magnititude and their intensities are significantly lowered. 
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Table 3.1. Orientation parameters for the metastable phases at 26 GPa, in comparison 

with coesite single crystal at 18 GPa. The orientation variation of the metastable phases is 

finite in comparison with the parent coesite single crystal. The meanings of the rotation 

angles (,  and ) characterizing the orientation of the crystals are illustrated in the 

picture on the right. 

    

M1 20.48(4) 0.93(4) 102.14(2) 

M2 17.09(3) 0.55(2) 106.88(1) 

M3 22.34(5) -1.73(2) 106.78(0) 

M4 6.64(4) -3.58(1) 101.59(0) 

18 GPa 9.39(1) -4.71(2) 109.94(0) 

 

 

 

 

 

Figure 3.5. Four copies of the highlighted diffraction pattern at 26 GPa, taken from 

the red dashed box on the left 2D pattern. The contributions from the four individual 

metastable structures (M1-M4) are highlighted in different colors (right figure). 
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Table 3.2. Lattice parameters of the four distinct metastable structures at 26 GPa 

determined from the experiment. The triclinic metastable structures have a reduced 

symmetry compared to coesite. 

 a (Å) b (Å) c (Å)    V (Å
3
/SiO2 unit) 

M1 6.572(8) 12.085(2) 6.585(1) 98.20(0) 117.64(3) 98.43(2) 27.81(4) 

M2 6.572(7) 11.715(3) 6.585(2) 94.08(1) 117.63(5) 94.38(2) 27.79(5) 

M3 6.572(9) 11.715(3) 6.813(2) 94.03(0) 121.09(4) 94.03(2) 27.79(5) 

M4 6.573(8) 11.599(2) 6.812(2) 90.16(0) 121.10(3) 90.06(1) 27.80(4) 

 

 

 

It is notable that this phenomenon is in contrast to the reported formation of an 

intermediate amorphous phase
3
, where diffraction peaks might be just too weak to be 

detected from the image plate. The peak widening, accompanying with the split of 

diffraction spots, results in much lowered diffraction intensities (Fig. 3.4). At 40 GPa, the 

peak intensities have decreased by almost one order of magnitude, resembling the 

pressured-induced amorphization phenomenon reported earlier
3,4

.  We conjecture that 

the ostensible amorphization behavior reported in earlier works might be due to either 

low X-ray diffraction intensities or low detector sensitivity. 

3.1.4 Coexistence of metastable phases and post-stishovite 

A new set of diffraction pattern from a denser silica phase appeared at 32 GPa and 

coexisted with the existing metastable phases. At those pressures the spatial resolution of 

the single crystal diffraction pattern is insufficient to resolve any new distorted crystal 

structures, which however can be mitigated by integrating the spotty patterns into 1D 

diffraction spectrums. At 37 GPa, whereas peaks from the metastable phases are still 



 65 

strong, new peaks appear and are highlighted in Fig. 3.6 (red arrows in the 2D diffraction 

pattern and red stars in the integrated spectrum plot). 

 

 

 

 

Figure 3.6. X-ray diffraction pattern for compressed coesite at 37 GPa. The 2D single 

crystal pattern (top graph) contains a phase mixture of the metastable silica phases and a 

new phase (indicated by red arrows). The integrated diffraction spectrum (bottom graph) 

is indexed to the later resolved post-stishovite phase (red stars and bars). 
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The majority of the diffraction peaks at 40 GPa are contributed from the metastable 

phases, but the new peaks are later confirmed to be a monoclinic type post-stishovite 

structure (space group P2/c, e.g., crystallographic data at 40 GPa is summarized in Table 

4.3), corresponding to a new phase with a higher density. The post-stishovite phase is 

stable up to 53 GPa (the highest pressure achieved in this work) at room temperature and 

is clearly different from either the monoclinic coesite structure or the triclinic metastable 

structures discovered in Figure 3.4. 

 

 

Table 3.3. Lattice parameters of monoclinic post-stishovite at 40 GPa. The experiment 

data was obtained at 300 K. The simulation data was extracted from ab initio 

metadynamics simulation followed by complete geometric relaxation (including cell 

parameters and atom positions) at 0 K. The differences of the lattice parameters between 

experiment and simulation are less than ~3%, which falls within the accuracy of first-

principles calculations. 

 Simulation Experiment 

Space group P2/c P2/c 

Z 4 4 

a (Å) 3.869(5) 4.002(2) 

b (Å) 4.342(3) 4.589(2) 

c (Å) 4.949(3) 4.651(4) 

 91.58(2) 92.50(5) 

 (g/cm
-3

) 4.80(1) 4.68(0) 

 

 

 

First-principles calculations at similar conditions were carred out and the resutls 

were compared with my experiments. The silicon six-coordinated post-stishovite is 

confirmed by ab initio molecular dynamics simulation with the metadynamics algorithm 
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and the results will be discussed in section 3.3. The lattice parameters and the density of 

the new structure emerging from metadynamics are provided in Table 3.3. The structures 

are geometrically optimizated by the quasi-Newton algorithm to reach the local energy 

minimum. The calcualted results exhibit a reasonably good match with the experiments, 

where the difference in lattice parameters falls within the error of first-principles 

calculations (~2% in terms of lattice parameters). 

3.1.5 The monoclinic type post-stishovite 

The diffraction signals from the metastable phases completely disappear above 45 

GPa. The remaining diffraction spots corresponding to the post-stishovite phase persist 

up to the highest experimental pressure at 53 GPa (Fig 3.7). To resolve the lattice 

parameters, the crystal structure from ab initio MD is taken as the initial seed for 

structural refinement. Again, those visible peaks can be indexed into the above-

mentioned monoclinic post-stishovite phase, whose structure is distinctly different from 

the -PbO2
5
 and ZrO2

6
 types of post-stishovite structure reported in the literature. 

The diffraction pattern calculated from ab initio simulations is corrected for 

Lorentz, polarization and multiplicity factors to compare with the observed pattern. The 

extra experimental peaks highlighted by the green crosses are possibly contributed from 

α-PbO2-type silica residuals, shown by the small ticks at the bottom. The peak positions 

of the α-PbO2-type silica are obtained based on its equation of state provided by the X-ray 

helper program at Advanced Photon Source, Argonne National Laboratory. The ab initio 

simulation results match the observations from the single-crystal XRD experiment, 

suggesting that the new silica phase can be stable in the medium-lower mantle of the 
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Earth. 

 

 

 

 

Figure 3.7. Energy-dispersive X-ray diffraction patterns of coesite at 53 GPa. The 

2D pattern of the monoclinic post-stishovite (indexed for one grain) is shown in the upper 

figure. Its integrated spectrum fits to the post-stishovite phase (red bars with indexed 

hkl). The diffraction patterns of MD-simulated post-stishovite and the residual -PbO2-

type silica phase are indicated by the brown and green bars, respectively. 
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3.1.6 The evolution of coesite X-ray diffraction patterns 

In summary, from the energy dispersive X-ray diffraction experiment on single 

crystal coesite, we find the transformation from the coesite phase to four intermediate 

metastable phases, en route to the monoclinic type post-stishovite phase (Fig 3.8). 

 

 

 
Figure 3.8. Evolution of coesite X-ray diffraction spectrum up to 53 GPa. Starting 

from the coesite phase (1.2~18 GPa, space group C2/c), coesite transform into the 

coexistence of four triclinic metastable structures (26~43 GPa) and the monoclinic type 

post-stishovite phase (32~53 GPa space group P2/c). The split of the original coesite 

peaks is observed at 26 GPa, resembling an ostensible amorphization process. The 

spectrums in the red color indicate the region where silica metastable structures are 

discernible in the experiment. The blue colored spectrums correspond to the new post-

stishovite phase. The intensities of all spectrums are all scaled to fit the figure size as 

indicated by the scaling factors in the figure. 
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The isovolume intermediate phases, coexisting in the pressure range of 26-43 GPa 

at room temperature, are manifested by the split of the peaks with different d-spacing 

values. Peak intensities are significantly reduced at high pressures (Fig 3.8). With the 

help of first-principles modeling, a new monoclinic post-stishovite phase has been 

identified. The experiment indicates that the four-coordinated coesite phase eventually 

transforms to six-coordinated post-stishovite, consistent with previous studies
7,8

. Such a 

coordination transition is believed to be common to the silica family and silicates upon 

compression
9-11

. 

From the single-crystal experiments, a new phase transition pathway of coesite is 

identified, featuring the formation of multiple intermediate phases. By compressing 

coesite single crystals at room temperature, four metastable phases are captured in the 

pressure range of 26~43 GPa. Such a phenomenon may have been mistakenly interpreted 

as an amorphization behavior in the past due to poor signal resolution in the experiment. 

It is the first time to demonstrate how coesite transits into the six-coordinated post-

stishovite phase at room temperature. 

 

3.2 Equations of state 

3.2.1 Quantum ESPRESSO setup 

The equations of state for coesite and post-stishovite have been evaluated by 

optimizing the structure at different pressures based on first-principles methods. The 

geometric optimization was conducted in the framework of DFT with the simulation 

package Quantum ESPRESSO ver. 5.0.1
12

. The generalized gradient approximation 
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under the Becke-Lee-Yang-Parr parametrization was implemented to describe the 

exchange corelation functional
13,14

. For silica, 4 valence electrons were considered for Si 

atoms (2s
2
2p

2
) and 6 for O atoms (2s

2
2p

4
). A plane-wave basis set with kinetic energy cut 

off of 150 Ry (~2041 eV) was found sufficient to converge the total energy less than 

2.7×10
-7

 eV, and the forces acting on each atom less than 0.05 eV/Å. The Monkhorst 

mesh of k-points sampling the Brillouin zone were summarized in the following table: 

 

 

 

Table 3.4. Structural properties and k-points meshes for coesite and post-stishovite. 

 Z Space group k-points mesh # irreducible k-points 

coesite 16 C2/c 3×3×3 14 

post-stishovite 4 P2/c 3×3×3 14 

 

 

 

Hydrostatic pressure was applied by adding the pulay stress to the diagonal elements 

of the stress tensor. At each pressure, the system was optimized for atomic position, cell 

shape and cell volume. The resultant external pressure is within 0.1 GPa difference of the 

targeting pressure, confirming the optimization is in good accuracy. 

 

3.2.2 Experimental and computational equations of state 

 

The experimental equations of state for compressed coesite are compared with my 

first-principles geometric optimization results in Fig. 3.9: 
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Figure 3.9. The specific volume of coesite as a function of pressure during the 

compression experiment. The color markers are: coesite (magenta down triangles), 

metastable transition intermediates (green squares) and monoclinic post-stishovite (blue 

triangles). The experimental data are compared with first-principles calculations of the 

equations of state (EOS) of coesite (consistent with the experimental EOS
14,15

) and 

monoclinic post-stishovite. 

 

 

 

The simulated equations of state are found to match the experimental data very 

well, with an accuracy of 3% in terms of volume. The intermediate phases appearing at 

the 26 GPa deviate from the EOS of coestie, with an additional 2% volume collapse. 

Such a volume collapse becomes more pronounced at higher pressures (e.g., 35 GPa). 

Due to poor diffraction signals from the metastable structures at those pressures, 

however, their volumes cannot be accurately determined. The volume of the monoclinic 
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post-stishovite phase is comparable with the static calculations in general. The 

experimentally solved volumes in the range of 32-40 GPa are slightly higher than the 

predicted values, which presumably, as mentioned in the literature
4
, is due to defects 

generated during the phase transition. 

3.2.3 Structural evolution in compressed coesite 

The structural representations are extracted from the MD simulations followed by 

geometric optimization at 0 K. The following graphs demonstrate the structural evolution 

from coesite (Fig. 3.10) to the metastable silica phases (Fig. 3.11), eventually to the 

monoclinic post-stishovite phase (Fig. 3.12). 

 

 

 

Figure 3.10. Structural representation with polyhedra of coesite at 20 GPa. The 

4×2×4 supercell is projected along the c-axis. The polyhedra representation is shown in 

the left figure and the wired framework representation is shown in the right figure. 

Corner-sharing tetrahedra are colored in blue. One signature four-member ring of coesite 

is sketched out by the orange solid line in the wired structure. 

 

 

 

Coesite is a high-pressure polymorph of silica and was first synthesized from dry 



 74 

sodium metasilicate and diammonium at 3.5 GPa and 750 K
16

. The silica units are 

arranged in corner linked tetrahedra, the same Si-O unit as -quartz. One monoclinic 

coesite unit cell contains a total number of 48 atoms, signified by its 4-silica-member 

rings (Fig. 3.10b). From the simulation, the four-member rings are distorted to 

compensate the volume change during compression, which has been explained by Angel 

et al. as the anomalous compression in coesite
17,18

. From the experiment, splitting peaks 

appear at 26 GPa as a result of symmetry-breaking, indicating that the atomic structure of 

coesite has changed. 

 

 

 

Figure. 3.11. Structural evolution of the four silica metastable phases at 40 GPa. The 

4×2×4 supercell is projected along the c-axis. Structure representations with polyhedra 

are shown on the left while the ball-and-stick model structures are shown on the right. 

Silica tetrahedra are colored in blue and six-coordinated octahedra are colored in green. 

Four intermediate phases are numbered in the order in which the transition sequence was 

observed in the metadynamics simulation. 
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3.2.4 Four metastable structures 

Four metastable phases (M1-M4, see Fig. 3.11) have been observed in both 

experiment and simulation. Starting from the four-coordinated coesite phase, the number 

of six-coordinated silica unit gradually increases. Five-coordinated polyhedra are also 

captured as the intermediate network to help stabilize the system. Their lattice parameters 

are summarized in Table 3.5. The structures are optimized at 40 GPa. Whereas the exact 

one-to-one correspondence of the metastable structures from the experiment and the 

computation is difficult to come by, the softening of the c-axis and the overall changes of 

the lattice parameters have been well reproduced by simulation. 

 

 

Table 3.5. Lattice parameters of the four distinct metastable structures at 40 GPa 

determined from the simulation. The triclinic metastable structures were optimized at 0 K 

and their errors were estimated from the fluctuation of molecular dynamics. 

 a(Å) b(Å) c(Å)    V (Å
3
/SiO2 unit) 

M1 6.20(7) 11.14(14) 6.01(8) 96.81(10) 117.57(11) 92.78(9) 22.69(28) 

M2 6.21(5) 11.04(9) 6.05(5) 97.11(3) 117.32(7) 92.97(5) 22.67(19) 

M3 6.26(8) 10.59(12) 6.45(8) 95.95(8) 124.51(12) 91.58(8) 21.76(27) 

M4 6.29(7) 10.45(11) 6.54(6) 94.91(6) 124.37(8) 95.78(4) 21.72(22) 

 

 

 

3.2.5 The monoclinic post-stishovite structure 

The monoclinic post-stishovite phase (Z=4, space group P2/c) is the most 

compressed phase among all silica polymorphs studied in this work. Its silicon polyhedra 

are arranged in edge-sharing six-coordinated octahedra, as shown in Fig. 3.12. The 



 76 

reconstructed six-folded octahedra blocks result in a much smaller inter-atomic distance 

in comparison to other tetrahedra based silica systems. The transition from coesite to 

post-stishovite involves large atomic displacements. It is interesting to note that the post-

stishovite phase can be pressure-quenched to ambient conditions. Both experiment and 

simulations support that such a phase transition is not reversible, suggesting a 

reconstructive type from the observation of structural changes
19

. 

 

 

 

Figure 3.12. Structural representation with polyhedra of post-stishovite at 40 GPa. 

The silica supercell is projected along the c-axis of the simulation box. Structure with 

polyhedral is shown in the left figure and the ball-stick framework is shown on the right 

of the figure. Edge-sharing octahedra are colored in blue. 

 

 

 

While the static properties of compressed coesite are illustrated by the EOS curves, 

the details of the phase transition at room temperature are directly monitored by the ab-

initio molecular dynamics simulation, which will be discussed in the next section. 
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3.3 Ab initio molecular dynamics 

3.3.1 First-principles MD in CPMD 

In order to elucidate the role of high pressure on the structural changes of coesite, 

first-principles MD has been conducted. First-principles MD simulation was performed 

with the Car-Parrinello MD (CPMD) package
20

. One coesite unitcell (48 atoms, space 

group C2/c) was slowly compressed to 40 GPa, and equilibrated for 2 picoseconds at 300 

K with ab initio MD in an NPT ensemble. During ab initio MD simulation, the 

fluctuations of fictitious electron kinetic energy were restricted by the velocities scaling 

method in a range of 300 K and the nuclear degree of freedom was controlled by the 

Nosé-Hoover chain thermostats
21

.  

Although the cell edges and cohesive energies were directly monitored in the 

simulation, the pressure and enthalpy were not. The stress tensor matrix of the system 

was recorded every 100 MD steps and the Cauchy stress tensor   can be defined as: 

  [

         

         

         

]                      (3.1) 

The instantaneous pressure was then calculated from the determinate of the stress 

tensor matrix. 

  √        
                        (3.2) 

The stress tensor is very sensitive to the change of lattice parameters. Small 

thermodynamical fluctuations lead to tremendous jumps in instantaneous pressures and 

such values cannot represent the observable pressure of the system. Therefore the 

calculated pressure should be an averaged value over the simulation period. In this spirit, 

the pressure is averaged over the simulation time and we checked the convergence by 
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comparing with the designated pressure value. Based on the convergence of force, a 

plane wave energy cutoff of 150 Ry has been used in all of the MD simulations, 

sufficient to converge pressure (see, e.g. Fig. 3.13, where pressure converges at 40 GPa 

after 50,000 timesteps.).  

 

 

 
Figure 3.13. Pressure convergence of ab initio simulation pressure at 40 GPa. The 

pressure was calculated from the determinant of the Cauchy stress matrix and averaged 

over simulation time. It converged to 40 GPa within a few tens of thousands of MD steps. 

 

 

 

The enthalpy of the system, consisting of the cohesive energy U and the pressure-

volume term PV, was then calculated from its definition: 

                                (3.3) 

 

3.3.2 Configuring metadynamics in CPMD 

 In order to handle barrier-crossing processes, the metadynamics algorithm
22 

is 

employed. The basis of this method has been discussed in chapter 2.5.1. For 
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metadynamics simulation, various combinations of collective variables (CVs) have been 

carefully tested. For the coesite system, the most efficient CVs were found to be the cell-

edges (lengths) of b and c axis combined with the average coordination number of silicon 

atoms, which is defined by the following equation: 

𝐶𝑁  
1

𝑁𝑆𝑖
∑∑

1 −   𝑖𝑗/ 0 
6

1 − (
 𝑖𝑗

 0
)
                                                 

𝑗

 3.4 

𝑖

 

where dij refers to Si-O bond distance; d0 is a reference bond length (2.1 Å); i and j loop 

over silicon and oxygen atoms respectively. Consequently, the bias energy V(s, t) along 

the metadynamics simulation is given by:  

       ∑     [−
       

   
 ]                        (3.5) 

where t denotes simulation time, and si is the value of the ith CV. The height h and width 

   of the Gaussian hill shape were carefully selected to facilitate the metadynamics 

simulation. The fluctuations of all the CVs were first monitored without modifying the 

free-energy landscape. These trail runs enabled us to determine the energy scaling factors 

to synchronize all CVs, satisfying the relationship: 

                                     (3.6) 

where ωi is the fluctuation range for the ith CV. The Gaussian width    was set to be ¼ 

of the fluctuation of a CV type and applied to all CVs by multiplying their scaling factors. 

The height of the Gaussian type bias energy was chosen within 0.5~2.0 kbT, depending 

on the phase regions of the simulation samples (A shallower height, e.g., 0.5 kbT, was 
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applied near the saddle point of the phase transition). Such potential heights were proved 

efficient in filling most energy wells as shown in similar works
23,24

. 

After a bias energy was deposited at each metastep, the system was equilibrated with 

lengthy ab initio MD simulations. The number of MD steps was determined in such a 

way that the CV displacement is comparable with the width of the bias energy, avoiding 

the so-called “hill surfing problems”
25

. Therefore the metadynamics timestep was chosen 

adaptively such that a Gaussian was placed at ti once the following condition was 

fulfilled: 

|    −    𝑖 |  
 

 
                        (3.7) 

As soon as a phase transition was identified, the energy deposition parameters were 

updated. The table below briefly summarizes the parameters used in sampling SiO2 

polymorphs at 40 GPa and 300 K. 

 

 

Table 3.6. Scaling factors and gaussian shape parameters for different silica phases used 

in metadynamics simulation of coesite. 

 1(b) 2(c) 3(coordination)   (a.u.) h(kbT) 

Coesite 2.5 2.5 1.0 0.08 2.0 

M1 & M2 1.0 1.5 1.0 0.06 0.5 

M3 & M4 2.0 2.0 1.0 0.08 1.0 
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3.3.3 First-principles MD up to 40 GPa: distorted coesite 

During the compression of coesite to 40 GPa, the monoclinic structure is found to 

be slightly distorted but all Si atoms remain to be tetrahedral coordinated by oxygen, 

corroborating the previously reported compression mechanism of coesite at low 

pressures
17,18

 (see Fig. 3.14) 

 

 

 

Figure 3.14. The evolution of Si-O bond angle in a compressed coesite unit cell. The 

bond angle relationship is shown on the right panel. Si and O atoms are represented by 

blue and red balls respectively. The Si-O tetrahedra are colored in blue. 

 

 

 

Geometric relaxation up to 40 GPa has been carried out and closely monitored the 

change of five typical bond angles in coesite. The Si1-O1-Si1 bond-angles keep as 180°, 

preserving the central symmetry in the C2/c space group. The decrease of all other bond 

angles represents the rotation of Si-O polyhedra as an effort to compensate the volume 

reduction during compression. Such observations match prior literature results on single 
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crystal coesite
17,18

. 

At 40 GPa, the distorted triclinic coesite structure survive long time ab initio MD 

simulation (up to 4.8 picoseconds), indicating that an energy barrier prevents further 

structural changes and also suggesting the ab initio MD method is ineffective to 

overcome the energy barrier. 

3.3.4 Free energy landscape 

 To circumvent this issue, the metadynamics method
22

 was introduced to accelerate 

sampling of the potential energy surface and explore possible transition pathways of 

coesite.  

 

 

 

Figure 3.15. Free energy landscape showing the transition pathways from coesite to 

post-stishovite obtained by ab initio metadynamics simulation at 40 GPa and 300 K. 

A hypothetical transition pathway is shown in the left panel (dotted line). Several local 

energy minima (M1-M4) are present between the stable coesite and post-stishovite 

phases. The stability of the various structural intermediates has been confirmed with 

phonon calculations, where no imaginary vibration modes are identified. 
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Figure 3.16. Summary of ab initio metadynamics simulation. The evolution of 

enthalpy, potential energy, volume and lattice parameters of SiO2 (starting from coesite) 

along the ab initio metadynamics simulation sampling the potential energy surface. The 

simulation was carried out at 300 K and 40 GPa, using Si coordination number (see the 

text) as the collective variable. The metastable phases emerging from metadynamics 

(M1-M4) are found to have similar volumes but different short-range order structures. 
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Following the prescribed simulation protocol, within a few hundreds of metasteps, 

the system undergoes a direct transition from coesite to a monoclinic post-stishovite 

structure, and four distinct metastable structures are captured along the transition path, 

exactly matching the experimental observations. The free-energy landscape is shown in 

Fig. 3.15, where the derived free energy landscape is projected along cell edge b (s1) and 

c (s2). At each metastep, a two-dimensional Gaussian type energy is added to the energy 

landscape. The energy intensity z as a function of s1 and s2 is calculated by: 

         ∑     (−
   𝑖 −    

 

        
−

   𝑖 −    
 

        
)

    

                       3.8  

 

The free energy landscape is reproduced by summating all gaussian type energies 

throughout the simulation time. Four metastable phases (labeled as M1 to M4) labeled at 

the energy dips are observed, as they are frequently visited structures in the 

metadynamics simulation. Those structures can survive after running a short MD 

simulation (2 nanoseconds). By tracking the evolution of the cell edges, a hypothetical 

transition pathway can be sketched out, connecting the four metastable phases between 

the coesite and post-stishovite silica phases (Fig 3.15, right figure). Details about the 

energetics, lattice parameters and coordination changes during the metadynamics 

simulation will be illustrated in Fig. 3.16 and 3.17 respectively. 

 

 



 85 

 
Figures 3.17. The evolution of the coordination number of Si atoms along the ab 

initio metadynamics simulation (see Fig. 3.16). The bonding length threshold between 

Si and O was set to be 2.1 Å for coordination number calculations. With increasing 

metadynamics steps, the coordination number of Si changes from four to six, indicating 

that the compressed metastable phases have mixed structural motifs with different 

coordination numbers along the transition pathways.  

 

 

 

3.3.5 The transition sequence 

The initial silicon tetrahedral structure distorts and the connections between 

neighboring silicon atoms are broken after the first 81 metasteps. The system then 

become trapped between two competing metastable structures (e.g., see Fig. 3.14), 

signified by the development of two six-coordinated silicon polyhedra connected 

perpendicularly to the (110) plane, as shown in Fig. 3.18 b&c.  
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Figure 3.18. Illustration of the structural transition from coesite (C2/c) to 

monoclinic post-stishovite (P2/c) derived from ab initio metadynamics simulation. 

Structural evolution from (a) coesite to (f) monoclinic post-stishovite phase. (b)(c)(d)(e) 

correspond to the metastable phases (M1-M4)  identified from metadynamics 

simulation, manifesting the SiO6 octahedra units (colored in green) formed along the 

(120) plane (The SiO4 tetrahedra units are colored in blue).  

 

 

 

The appearance of the two metastable structures is associated with the unit cell to 

shorten by 7.7% along the c-axis. The new structural motifs with five and six-coordinated 

polyhedra stabilized the lattice and the free energy barrier between M1 and M2 is 

relatively small. Therefore local crossings between the two phases are possible at the 

simulation temperature. With prolonged metadynamics simulation, more six-coordinated 
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silicon atoms form along the (120) plane, resulting in an expansion of the c-axis and a 

compression of the b-axis (Fig 3.18 d&e). Correspondingly two more metastable 

structures with similar enthalpies are identified from the small dips M3 and M4 in Fig. 

3.14, where silicon octahedra are observed to align alternately along the (120) plane. It 

finally transforms into the monoclinic post-stishovite phase after around 170 metasteps, 

accompanying a large drop in enthalpy. At this point, a total of 14.6% volume collapse is 

achieved by the phase transition from coesite to post-stishovite, resulting from the 

reconstruction of the edge-sharing six-coordinated octahedra structure (Fig. 3.18 f). An 

amount of kinetic energy, equivalent to 2.6 kBT at 40 GPa and 300 K, is required to 

activate the transition from coesite to its first two metastable phases (M1 & M2). 

The activation barrier to M3 & M4 is much smaller, estimated to be 0.7 kBT from 

the height of the M2 phase. No further phase transitions are identified after a total of 300 

metasteps, in agreement with the static calculation where the post-stishovite phase 

appears to be a stable phase above 40 GPa. The changes of Si coordination along the 

metadynamics simulation are shown in Fig. 3.17, illustrating the reconstructive nature of 

the phase transition. The newly discovered transition mechanism of compressed coesite is 

different from what has been reported by Martonák et al.
26,27 

3.3.6 Phonon calculations 

It is interesting to note that all the four metastable phases emerging from ab initio 

metadynamics (M1-M4) contain five-coordinated Si atoms, which have not been reported 

previously.  
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Figure 3.19. Phonon dispersion curves for four distinct metastable structures. The 

four metastable structures were identified from the metadynamics simulation. No 

negative modes are found at 26 GPa to show they are mechanical stable. 

 

 

 

The mechanical stability of the metastable structures was investigated through ab 

initio MD simulation and it is found they are able to keep their coordinations up to 40 

GPa at room temperature. The metastable structures were further quenched to 26 GPa and 

0 K for phonon dispersion calculations (see Fig. 3.19). All structures were fully relaxed at 

26 GPa and 0 K. Phonon calculation was implemented by the Quantum Espresso code 

with the same potential and kinetic cutoff used in CPMD. A 2×2×2 Monkhorst-Pack 

mesh was adopted to ensure the geometric optimized unit cell has an energy convergence 

of 1.0×10
-7

 eV, and the forces acting on each atom less than 0.01 eV/Å. The vibrational 
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frequencies were collected by finding the eigenvalues of the dynamical matrices on a grid 

of q-vectors same as the k-point mesh. Fourier interpolation was used to calculate the 

modes along the high symmetry points in the Brillouin zone. 

No imagery vibration modes are found for those transition intermediates in the 

Brillouin zone; therefore they are confirmed to be metastable in the pressure range of 

interest. These metastable phases match the experiment results in the same pressure range 

(26 GPa~40 GPa), in which the four sets of diffraction patterns can be explained by the 

formation of the metastable structures in an on-going phase transition. The metastable 

structures from the experiment also show that the lattice parameter in the b-axis continues 

to decrease and the c-axis is greatly softened, which is exactly reproduced by the 

simulation. In the ab initio metadynamics simulation, the lattice parameters of the 

resulting monoclinic post-stishovite are comparable with the experimental data (Table 

3.3). 

3.4 Conclusion and discussion 

In summary, using the integration of hydrostatic single-crystal x-ray diffraction, 

multiple crystal-solving techniques, and ab initio computer simulation, not only the long 

standing enigma of PIA of coesite is resolved, also we make several surprisingly 

important discoveries. Four new structures of SiO2 that have not been reported or 

calculated previously were observed in this work. These intermediate phases can co-exist 

at the same time and have distinct coordination numbers. The long-sought for five-

coordinated Si are also predicted to exist in all four new phases. Those five-coordinated 

silicon polyhedra exist to stabilize the compressed coesite phase between 26 to 45 GPa. 
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We conclude that the ostensible PIA might actually result from a mixture of low 

symmetry crystalline phases en route from Si tetrahedra to octahedra. Such a phase 

mixture, evidenced by diffraction-peak splitting, is only observable in single crystal 

experiments because single crystal diffraction patterns are extremely sensitive to minor 

lattice distortions. Moreover, our results demonstrate the power of this low-temperature 

(300 K) approach to freeze the intermediate phases and garner true understanding of the 

transition mechanism of refractory materials. 
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IV. HIERARCHICAL SOLID-STATE TRANFORMATIONS OF -QUARTZ 

UNDER HIGH PRESSURE 

 

4.1 X-ray diffraction experiment  

4.1.1 Experimental preparations 

We performed compression experiments with single crystal -quartz samples and 

used the XRD technique to identify the crystalline structures. The experiments were 

conducted at the 16 BMD station of High Pressure Collaborative Access Team (HPCAT) 

of the Advanced Phonon Source (APS), Argonne National Laboratory (ANL), Chicago. 

At the time of experiment, the X-ray beam had a wavelength of 0.4246 Å, equivalent to 

29.2 keV in beam energy.  

 

 

 

Figure 4.1. An optical microscopic image of -quartz sample at 62 GPa.  
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The single crystal -quartz sample was loaded into in a tungsten gasket with hole 

diameter 160 m, seated on a 300 m culet. One ruby ball was found at the edge of the 

hole (Fig. 4.1). The gasket hole was estimated to be around 80 m at 62 GPa. 

To ensure the best hydrostatic condition, helium gas was employed as the pressure 

medium. Up to the highest pressure we have achieved in the experiment, the single 

crystal quartz was still securely sealed in the DAC without any physical damages (see 

Fig. 4.1 for the microscopic image at 62 GPa). The pressure was calibrated by ruby 

fluorescence line shift in an off-line hutch. The uncertainty in the pressure was ±0.81 to 

1.94 GPa, derived from the pressure change within each experiment interval. 

4.1.2 -quartz single crystal 

The upper graph in Fig. 4.2 shows an indexed 2D diffraction pattern from the 

sample at 12 GPa. The diffraction image was processed in such a way that the strongest 

diffraction peaks from the single-crystal quartz sample were included but most saturated 

diamond peaks were masked out. Since strong diamond diffraction signals traveling 

through the seat can cause secondary powder diffraction (i.e., Debye-Scherrer rings 

which are centered on the given diamond peaks
1
), the way the image is processed is for 

clarity purposes. 
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Figure 4.2.  X-ray diffraction patterns of α-quartz at 12 GPa. The original 2D single 

crystal pattern is shown in the top panel. In the bottom integrated spectrum, all major 

peaks were refined to a trigonal α-quartz structure with space group P3121, as indicated 

by the green bars. 

 

 

 

4.1.3 Emergence of a quartz II phase 

At 25 GPa (Fig. 4.3), although α-quartz peaks are still strong in intensity, a new set 
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of diffraction spots emerge, with a distinct crystalline orientation. 

 

 

 

 

Figure 4.3. Single-crystal XRD images of compressed -quartz at 25 GPa. The 

integrated diffraction spectrum, shown in the bottom graph, indicates a phase mixture. 

According to the high-pressure results, the sample contains compressed -quartz (green 

bars), quartz II (space group P1, down golden triangles) and the monoclinic post-

stishovite phase (space group P2/c, blue stars). 
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In order to solve the structure, the 2D pattern is integrated to a 1D diffraction 

spectrum. The appearance of the sharp (101) peak from -quartz indicates the 

compressed sample still contains a considerable amount of low-quartz phase. However, 

with regard to the new diffraction peaks, we fail to associate them with any distorted -

quartz crystals. As we shall see later, the new peaks are possibly contributed from two 

new phases, the metastable quartz II phase (marked by golden down triangles) and the 

monoclinic post-stishovite phase (marked by blue stars). The rationale for the formation 

of the new phases is based on the simulation results at 36 GPa, which will be discussed 

the in the following section. 

4.1.4 Coexistence of -quartz, quartz II and post-stishovite phases 

The diffraction pattern, drawn in the magenta curve (Fig. 4.4), reflects a three-

phase mixture: the compressed α-quartz, the monoclinic type post-stishovite (P2/c space 

group) and the quartz II phase (P1 space group). The quartz II structure was originally 

discovered when compressing -quartz to 22 GPa
2
 and its diffraction peak positions are 

indicated by the green bars in Fig 4.4. The exact structure of quartz II is still under 

debate
3,4

, which cannot be solved from the current experiment neither mainly because too 

few peaks are available for solving the crystalline structures. However, the calculated 

diffraction peaks from first-principles MD partially match the quartz II structure at the 

same pressure, which lends us support to analyze the structure of quartz II as shall be 

seen in the next section. The quartz II structure in the simulation is predicted to be a 

metastable phase intervening the transition pathway from α-quartz to post-stishovite.  
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Figure 4.4. Single-crystal XRD image of compressed α-quartz at 36 GPa. The 

diffraction signal from α-quartz is rather poor at 36 GPa. The 2D pattern is integrated into 

a diffraction spectrum to resolve the high pressure phase of silica, as shown in the bottom 

figure. 
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Table 4.1. Crystallographic data for monoclinic post-stishovite. The experiment data was 

obtained at 300 K and 36.3 GPa. The simulation data was obtained from ab initio 

metadynamics followed by geometric relaxation (including cell parameters and atom 

positions) at 35 GPa and 0 K. The differences of the lattice parameters between 

experiment and simulation are less than ~4% in cell parameters. The atomic positions 

solved from simulation are shown on the right. 

 Experiment Simulation Wyckoff positions from simulation 

Z 4 4 Space group P2/c 

a (Å) 4.059(4) 3.956(5)    x        y       z 

b (Å) 4.607(4) 4.883(3) Si1 0.000    0.152    0.250 

c (Å) 4.651(8) 4.397(3) Si2 0.500    0.652    0.250 

 92.62(10) 90.95(2) O1 0.265    0.383    0.419 

 (g/cm
-3

) 4.59(3) 4.69(1) O2 0.765    0.117    0.581 

 

 

 

The eight blue bars (Fig. 4.4), used for indexing the monoclinic post-stishovite 

structure, were extracted from the single crystal X-ray diffraction pattern. Those peaks 

were used for refining the post-stishovite silica phase. The d-spacing values of the eight 

peaks from the 2D diffraction pattern ware found to match the simulation data, 

confirming that the pattern indeed corresponds to the monoclinic phase. Hence, the post-

stishovite structure from simulation is used as the initial structural seed and employed a 

non-linear least-square fitting method (using the package Unitcell
5
) to refine the 

structure. The structure is managed to fit to a monoclinic post-stishovite silica structure 

(space group P2/c) that is slightly distorted from an orthorhombic structure with a larger 

beta angle. This newly found post-stishovite phase has the same structure as the high 

pressure monoclinic phase resulting from compressed coesite. The fit lattice parameters, 

compared to the simulation, are showed in Table 4.1. 
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4.1.5 The high pressure post-stishovite phase 

 

 

 

Figure 4.5. A single-crystal 2D XRD image (upper panel) and its integrated X-ray 

spectrum (bottom panel) of compressed sample at 45 GPa. Blue bars were the single 

crystal peaks used for fitting the monoclinic post-stishovite structure. Other peaks that are 

not indexed for post-stishovite are from quartz II residuals. Owning to the poor intensity 

of diffraction signals at 45 GPa, those peaks that are hardly distinguishable from the 

detector background were excluded from the spectrum. The peaks labeled in the spectrum 

have relatively higher intensities. 

 



 102 

Upon the completion of phase transition (Fig. 4.5), some low intensity peaks from 

post-stishovite are strengthened.  

We provide the diffraction pattern at 45 GPa, where some peaks can still be 

identified from the residual quartz II phase. The remaining eight strong peaks are used to 

obtain the lattice parameter at 45 and 55 GPa. The refined crystal structure generates a 

list of diffraction peaks belonging to the post-stishovite phase and is used to locate more 

post-stishovite peaks at those pressures. Using such a double-index approach, more 

diffraction peaks from the post-stishovite phase are confirmed. The diffraction peaks in 

Fig. 4.6 are purely from the monoclinic type post-stishovite. 

 

 

 

Figure 4.6. X-ray diffraction spectrum of the compressed quartz sample at 55 GPa. 

The pattern is indexed to a monoclinic post-stishovite silica structure. Some low intensity 

peaks that cannot be recognized in the wide scan diffraction image are confirmed in the 

step scan images. 

 

 

 

The crystallinity of the new high pressure phase in compressed -quartz is not 
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perfect at room temperature. In Fig 4.7 the evolution of one diffraction spot (the (011) 

peak in -quartz) is shown, where its intensity is greatly lowered during compression. 

 

 

 

Figure 4.7. XRD patterns for pressurizing an α-quartz single crystal at (a) 12GPa, α-

quartz single crystal. (b) 55GPa, crystallized monoclinic type post-stishovite. (c) The 

evolution of the integrated diffraction spectrum within the solid box shown in Fig. (a) and 

(b). The (111) peak is almost 10 times lowered in intensity at 41 GPa. The spread along 

the d-spacing is very obvious at higher pressures, resembling the amorphization 

phenomenon if powder samples were used. 

 

 

 

The full width at the half maximum at 45 GPa is around 10 times greater than at 12 

GPa. Such peak weakening resembles what is observed in compressing powder -quartz, 

where the diffraction peaks from the sample gradually disappeared above 25 GPa. The 

weak diffraction peaks from the high pressure phase, however are able to be detected 

using the single crystal technique thanks to a better intensity contrast between sample 

diffraction and the background. 
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4.1.6 A summary on the evolution of the diffraction spectrum of quartz 

In summary, from the energy dispersive X-ray diffraction experiment on single 

crystal samples, the -quartz phase transforms to an intermediate quartz II phase, en 

route to the monoclinic type post-stishovite phase. The evolution of the XRD spectrum is 

shown in Fig. 4.7.  

The intermediate phase, coexisting with the high-pressure post-stishovite phase at 

25-45 GPa, gradually loses all its diffraction signals during compression above 25 GPa. 

At the same time, the diffraction peaks from the post-stishovite phase sustain and are 

strengthened. The coordination of silicon in low pressure phase (four-coordinated silicon) 

increases to six, requiring re-bonding and lots of atomic displacements to accomplish. 

Thermodynamically, the recoordination needs a huge amount of kinetic energy to ensure 

a transformation into a less defected crystal, similar to the work done with the laser 

heating technique or the multi-anvil
6
 approach. However, by compressing the sample at 

room temperature, the intermediate phase can be clearly identified. The mechanism of 

this phase transition will be discussed in the energetic analysis in the next section. 
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Figure 4.8. Evolution of the X-ray diffraction pattern of compressed single-crystal α-

quartz. Starting from the α-quartz phase (12 GPa, green bars, space group P3121), it 

slowly transformed into the quartz II phase (25 GPa, space group C2) and the monoclinic 

type post-stishovite phase (space group P2/c). Symbols indicate the new emerging peaks 

are either attributed from quartz II (yellow down triangles) or post-stishovite (blue stars). 

Quartz II appears to be the intermediate phase (yellow bars) and it coexists with the post-

stishovite phase (blue bars) from 25 to 45 GPa. It completely crystalized into the more 

compressed post-stishovite phase at 55 GPa, where quartz II peaks are too weak to be 

observed. The intensities of all spectrums were scaled to fit the box size. The 

abbreviations in the figure are: quz, quartz; quzII, quartz II; psv, post-stishovite. 



 106 

4.2 Structural optimization and lattice dynamics 

4.2.1 First-principles structural optimization 

The first-principles structure optimizations were performed in the framework of 

density functional theory (DFT) through package Quantum ESPRESSO ver. 5.0.1
7
. The 

generalized gradient approximation under the Becke-Lee-Yang-Parr parametrization was 

implemented to describe the exchange corelation functional
8,9

. The norm-conserving 

pseudopotentials were used with 4 valence electrons for Si (2s
2
2p

2
) and 6 for O atoms 

(2s
2
2p

4
). A plane-wave basis set with kinetic energy cut off of 200 Ry (2721 eV) was 

found sufficient to converge the total energy less than 2.7×10
-7

 eV. All structures were 

fully relaxed (relax cell variable and atomic postions) so that the forces acting on each 

atom are less than 0.01 eV/Å. The unit cells of four silica polymorphs were used for the 

equations of state calculation, in which their Brillouin zones were sampled by a 

Monkhorst mesh of k points. The simulation variables for each silica polymorph are 

summarized in the Table 4.2: 

 

 

Table 4.2. Lattice types and k-points meshes for different silica polymorphs. 

 Z Space group k-points mesh # irreducible k-points 

-quartz 3 P3121 3×3×3 7 

quartz II 12 P1 3×3×3 14 

quartz III 3 C222 3×3×3 14 

stishovite 2 P42/mnm 5×5×5 18 

CaCl2 silica 2 Pnnm 4×4×4 30 

-PbO2 silica 4 Pbcn 3×3×3 10 

post-stishovite 4 P2/c 3×3×3 14 
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Hydrostatic pressure was applied by adding the pulay stress to the diagonal elements 

of the stress tensor. At each pressure, the system was optimized for atomic position, cell 

shape and cell volume. 

4.2.2 A comparison of simulation models 

Besides the BLYP type GGA potential in Quantum ESPRESSO, LDA and GGA
10,11

 

based simulations were also carried with the package of Vienna Ab Initio Simulation 

Package (VASP)
12

 to compare with the simulation models used in this thesis. Our results 

were also compared with the high-accuracy (but computationally demanding) hybrid 

HSE functional calcuations
13

. The calculated equations of state are compared with many 

experimental and computational data available in the literature
3,14,15 

on low quartz, shown 

in Fig. 4.8. 

According to the simulation results, all the three types of exchange-correlation 

funcitonals used in this work (GGA and LDA with VASP, and BLYP type GGA potential 

with Quantum ESPRESSO) reproduce the same geometrically relaxed crystal structures. 

However, below 10 GPa, the volume obtained from the GGA/VASP method is 

overestimated by ~10%. The systematic deviation in GGA/VASP does not reflect a 

different description of atomic arrangements, but merely a superposed isotropic pressure 

arising from the gradient corrections. It motivates us to adopt a better GGA functional for 

the system. For the LDA treatment, although it produces more accurate compression 

curves, it fails to give a reasonably accurate prediction of the quartz to stishovite 

transition pressure
16-18

. According to the literature
18

, the energy difference of the -quartz 

and stishovite per SiO2 unit is correctly predicted to be 0.57 eV (compared to an 
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experimental value of 0.54 eV
16,17

) with the gradient correction, while in LDA the energy 

difference is significantly underestimated. 

 

 

 

Figure 4.8. Equations of state of -quartz from ab initio calculations and 

experiments. The data labeled in blue open circles employed the PAW pseudopotential 

with GGA parameterization and a 550 eV kinetic energy cutoff implemented in VASP. 

The yellow inversed triangles were taken from the LDA modeling of exchange 

correlation energy in VASP with the same cutoff as GGA. The red star markers were 

calculated from the BLYP type exchange-correlation functional in Quantum ESPRESSO. 

The brunswick green diamonds were calculated from the hybrid HSE functional 

implemented in VASP. The equations of state were compared with reference data
3,14 

and 

experiments
15

. Based on the results, the BLYP parameterization is chosen for this work. 
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Finally, the BLYP parameterization with the gradient correction has both accurate 

lattice parameters prediction and reasonable energy difference between quartz and 

stishovite. The tests indicate that the BLYP type exchange-correlation functional is 

among the best to model -quartz, with an accuracy of within 1% volume difference in 

comparison with the experiments, which also compares favorably with the high-accuracy 

hybrid HSE functional. Therefore the GGA pseudopotential with the BLYP-type 

exchange-correlation parameters is mainly used in this work. At high pressures (>20 

GPa), the Perdew-Wang type GGA implemented in VASP is found to be on a par with the 

BLYP functional, which is used in the NEB calculations with VASP. 

4.2.3 Equations of state of compressed -quartz 

The equations of state from first-principles simulations generally match well with 

the experimental data (Fig. 4.10). The experimentally refined cell volumes of -quartz 

(green solid squares with error bars) are consistent with the volume changes from the 

simulation.  

The quartz II and quartz III structures are both layered edge-sharing octahedral 

structures, linked by silicon tetrahedra. Both structures have octahedra versus tetrahedra 

number ratio of 2:1, showing the collapse of volume upon pressurization. The most 

compressed phase in this work, the post-stishovite phase, is around 18.7% denser than the 

-quartz phase and 10.7% more compressed than the quartz II phase (compared at 30 

GPa and 300 K). The post-stishovite phase appears at 25 GPa and can be fully identified 

above 35 GPa as a six-coordinated structure, which is considered as the stable Si-O 

polyhedral unit in Earth mantle-core pressure region. The large volume collapse from the 
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four-coordinated to six-coordinated system strongly influences the occurrence of 

earthquakes and plate movements. 

 

 

 
Figure 4.10. Specific volumes of silica polymorphs as a function of pressure. 

Experimental results (solid squares with error bars) are compared with the equation of 

states from simulation (dashed open circles): -quartz (red, space group P3121), quartz II 

phase (blue, space group P1), quartz III phase (orange, space group C222) and 

monoclinic post-stishovite (purple, space P2/c). 

 

 

 

4.2.4 Change of enthalpy of silica polymorphs 

The changes of enthalpy under pressure for many silica polymorphs are shown in 

Fig. 4.11. The enthalpy curves for three additional competing six-coordinated silica 

phases are provided: stishovite, the CaCl2-type silica
19

 and the -PbO2-type silica
20

.  
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Figure 4.11. Changes of enthalpy of seven compressed silica polymorphs at different 

pressures: -quartz (space group P3121), quartz II phase (space group P1), quartz III 

phase (space group C222), monoclinic post-stishovite (space group P2/c), stishovite (light 

blue stars, space group P42/mnm), CaCl2-type post-stishovite (space group Pnnm) and -

PbO2-type post-stishovite (space group Pbcn). The enthalpies are presented with respect 

to -quartz. Note that at the pressure range of 30-60 GPa, the enthalpies of the competing 

post-stishovite structures are virtually indistinguishable. 

 

 

At low pressures (<10 GPa), -quartz is more energetically favored among all the 

calculated silica polymorphs. However, the four-coordinated silica structure becomes less 

stable than its six-coordinated polymorphs at upper mantle pressure (e.g. stishovite is 

predicted more energetically favored above 12 GPa). In the range of 30-60 GPa, six-

coordinated silica is energetically stable, however, the enthalpies of four competing 

highly coordinated silica phases are virtually indistinguishable. The more accurate results 

on the change of free energy, which contains vibrational energies at 300 K will be 
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illustrated in section 4.2.5. In order to reproduce the transition in the experiment, first-

principles MD with metadynamics was performed at various pressures (30, 35 and 40 

GPa). The results from metadynamics simulations are discussed in section 4.3.  

As has been discussed in section 4.1.6, the phase transition from -quartz to the 

post-stishovite phases is of a reconstructive type, where an intermediate quartz II phase 

which involves large atomic displacements. If such a transition is thermodynamically 

prohibited (e.g. compressed at very low temperatures), the calculations also predict a 

second enthalpy crossover at 50 GPa, where a new silica structure (named as quartz III 

here) is more energetically favorable. The thermodynamic driving force for such a 

structural transformation is discussed in chapter 4.4. 

4.2.5 Free energy calculations 

In order to establish a more accurate assessment on the phase stability of silica 

polymorphs, rigorous Gibbs free-energy calculations were performed by taking into 

account the vibration energy contribution. The Gibbs free energy 𝐺(𝑇, 𝑃, 𝑉) at certain 

pressure, temperature and volume can be derived as: 

𝐺 = 𝑈0 + 𝐹 + 𝑃𝑉                                                             (4.1) 

including cohesive energy 𝑼𝟎, the vibrational energy term and the pressure-volume term. 

The vibrational free energy is estimated by assuming the quasi-harmonic approximation 

(QHA), which treats vibrations as if they do not interact. Under this approximation the 

system is equivalent to a collection of independent harmonic oscillators, establishing the 

quantum mechanical energy levels of the system. In the QHA, the vibrational free energy 

𝑭(𝑻, 𝑽) is computed from
21

: 
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𝐹(𝑇, 𝑉) =
1

2
∑ℏ𝜔(q, 𝑠)

q,𝑠

+ 𝑘𝐵 ∑ln{2sinh
ℏ𝜔(q, 𝑠)

2𝑘𝐵𝑇
}

𝑞,𝑠

                       (4.2) 

where 𝜔(𝐪, 𝑠) the phonon frequency of the sth mode for a given wave vector q; 
Bk is 

the Boltzmann constant, h Plank’s constant and T the temperature. The pressure P is then 

calculated explicitly as a derivative of the free energy with respect to volume V. 

𝑃 = −
𝜕(𝑈0 + 𝐹)

𝜕𝑉
|𝑇                                                      (4.3) 

Based on the calculations of the free energy on a variety of pressures, the equation 

above can be used to interpolate the free energy over a wide range of pressures: 

𝐹𝑖 = 𝐹𝑖−1 − (𝑈0𝑖 − 𝑈0𝑖−1) − 𝑃𝑖(𝑉𝑖 − 𝑉𝑖−1)                                   (4.4) 

The interpolated vibrational free energy Fi is propagated from its neighboring cohesive 

energy Uoi and volume Vi by the forward Euler method. 

 

 

 

Figure 4.12. Temperature dependence of the vibrational free energy per SiO2 unit 

for quartz and post-stishovite silica phases. 
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Figure 4.13. Pressure dependence of calculated Gibbs free energy for α-quartz (red 

squares), quartz III (orange dots) and post-stishovite (blue triangles). In addition to 

enthalpy, the vibration free energy is included as a part of the total Gibbs free energy. The 

transition pressure to post-stishovite is exactly at 20 GPa. 

 

 

 

Fig. 4.12 shows examples of the vibration free energy for the -quartz and post-

stishovite phases at their equilibrated pressures. The vibrational contribution in the free 

energy increases as the system is more compressed, and is lowered as the temperature 

decreases. The vibration energy at 300 K and the interpolated values at the equilibrated 

pressures has been calculated for both -quartz and post-stishovite phases (Fig. 4.13). 

The driving force for the transition from -quartz to post-stishovite was 

rationalized by assessing the Gibbs free energies of the phases from first-principles 

calculation. The thermodynamic analysis at 300 K (see Fig. 4.13) indicates that the free-

energy crossover of the two phases occurs at 20 GPa. The post-stishovite is predicted to 
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be more stable than the -quartz phase after the energy crossover. The theoretical 

prediction is in excellent agreement with the experiments where the stable monoclinic 

post-stishovite phase only appears at pressures at 20~25 GPa, signifying a 

thermodynamic catastrophe of -quartz at room temperature. 

 

 

4.3 Metadynamics 

While thermodynamically permissible, the actual phase transition is dictated by its 

kinetics to overcome local energy barriers. Metadynamics simulations
 
have been carried 

out as a barrier crossing method to survey the free energy landscape of the phase 

transition.  

4.3.1 Metadynamics simulations for -quartz 

Metadynamics simulation was performed with the CPMD package
22

 using the same 

BLYP type pseudopotential. A 2×2×1 -quartz supercell (36 atoms) was slowly 

compressed to three pressures, 30, 35 and 40 GPa, respectively. The simulation system 

was equilibrated for 2 picoseconds at 300 K with ab initio MD in an NPT ensemble. 

During ab initio MD simulation, the fluctuations of fictitious electron kinetic energy were 

restricted by a velocities scaling in a range of 300 K while the nuclear degree of 

freedom was controlled by the Nosé-Hoover chain thermostats
23

.  
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Table 4.3. Scaling factors and gaussian shape parameters for the metadynamics 

simulation at various pressures. 

 1(a) 2(c) 3(coordination)   (a.u.) h(kbT) 

30 GPa 3.5 4.5 2.0 0.08 1.0 

35 GPa 4.0 4.0 2.0 0.06 1.0 

40 GPa 4.0 4.0 2.0 0.05 1.0 

 

 

 

For the metadynamics simulation of the phase transition from -quartz to post-

stishovite, numerous test runs were performed on many order parameters, and the most 

efficient CVs were extracted. The collective variables were eventually chosen to be the 

cell-edges (lengths) of the a and c axis as well as the average coordination number of 

silicon atoms. The values of the scaling factors and Gaussian shape parameters are listed 

in the Table 4.3. 

The Gaussian shape, determined from the fluctuation of collective variables at the 

tested run, becomes shallower as simulation pressure increases. This is expected since the 

shrinkage of crystal volume constrains the thermodynamical fluctuation of crystal lattice. 

The optimized Gaussian shape is ensured to work efficiently until a phase transition is 

observed, where according to the prescription
24

, the simulation should restart with a new 

set of parameters. However, in these cases, the restart is not necessary and the same set of 

variables is applied without any problems to study the whole sequence of transition. 

4.3.2 Phase transformation to the quartz II structure 

Through ab initio metadynamics simulation, we successfully map out and resolved 



 117 

the structures of the intermediate quartz II phase and the monoclinic-type post-stishovite, 

and quantified the energy barriers for the transition. The phase transformation from -

quartz to quartz II (space group P1, see lattice parameters in Table 4.4) takes 52 

metasteps at 35 GPa and 300 K to complete. Quartz II has alternating layers of six-

coordinated octahedra and four-coordinated tetrahedral where the number ratio of 

octahedra and tetrahedral is 2:1 (Fig. 4.14c-f), characterized by its 3×2 kinks of 

octahedral chains (Fig. 4.14e). Oxygen atoms in the quartz II phase form an ordered C2 

type of sublattice. The octahedra chains are forming along on the (100) plane, building up 

the layered structure (Fig. 4.14 a&b). 

 

 

 

Table 4.4: Lattice parameters for the quartz II structure (space group P1) at 35 GPa. The 

structures are taken at the 70
th

 metastep from my metadynamics simulation and  are 

fully optimized for cell variable and atomic positions. 
 

 Simulation, P=35 GPa 

Space group P1 

Z 12 

a (Å) 8.806 

b (Å) 8.462 

c (Å) 4.379 

 92.05 

 89.36 

 119.48 

 (g/cm
-3

) 4.21 

 

 

In order to identify the transition sequence, the coordination number is calculated 
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along the trajectory of the metadynamics simulation. The coordination number of Si is 

calculated by counting the number of oxygen atoms around Si atoms with a 2.3 Å radial 

cutoff. The cutoff is taken from the first peak distance in the radial distribution function at 

each individual pressure. 

 

 

 

 

 

Figure 4.14. Snapshots of the quartz II (P=35 GPa) projected along the (a)(b) a-axis, 

(c)(d) b-axis and (e)(f) c-axis. The polyhedron representations are shown on the left 

panel, where four-coordinated tetrahedra are colored in blue and six folded octahedral are 

colored in green. One simulation unit cell of silica (32 atoms) is plotted in solid frame. 
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As shown in Fig. 4.15, the number of six-coordinated silicon atoms jumps to 8 at 

57
th

 metastep. During this transition, 2/3 silicon atoms become six-coordinated. The 

intermediate quartz II phase is the metastable phase. In the metadynamics simulation, it is 

stable for another 27 metasteps before transforming to the post-stishovite phase (Fig. 4.15 

and Fig. 4.16c). 

 

 

 

Figure 4.15. The evolution of the coordination number of Si atoms along the ab initio 

metadynamics simulation. The bond length threshold between Si and O was set to be 

the distance of first peak in the radial distribution function. The quartz II structure has 

mixed octahedra and tetrahedra in 2:1 ratio. With prolonged metadynamics steps, the 

coordination number of all Si atoms changes to six, indicating the formation of the new 

post-stishovite phase. 

 

 

 

Different from the four metastable structures observed in compressed coesite, the 
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coexistence of other intermediate phases is not observed in quartz. The quartz II phase is 

reproduced in all the metadynamics runs. 

4.3.3 Free energy landscape 

Unlike the previously reported barrier free process
3
, the transition from -quartz to 

quartz II at 35 GPa and 300 K requires to overcome an energy barrier of ~1 kbT. The 

energy barrier is estimated from the dip height of -quartz on the reconstructed free 

energy surface (Fig. 4.16a). 

 

 

 

Figure 4.16. Reconstructed free-energy landscape showing the transition pathway 

from α-quartz to post-stishovite. The energy landscape is obtained from ab initio 

metadynamics simulation at 35 GPa and 300 K (see text) and is projected along the a- 

and c-axis of the SiO2 simulation unit cell. A hypothetical transition pathway, 

corresponding to the minimum energy path, is shown in the right panel (dotted line). One 

local energy minimum, the metastable quartz II phase, is present between the stable -

quartz and post-stishovite phases. The mechanical stability of quartz II has been 

confirmed with phonon calculations, where no imaginary vibration modes is identified.  
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A minimum energy path is found on the free energy surface (Fig. 4.16b), 

qualitatively showing the changes of cell edges during the transition. The free energy 

landscape is also projected along another two combinations of collective variables 

(coordination number vs. cell edge a or c) (Fig. 4.17), where the heights of kinetic 

barriers are consistent with the height from Fig. 4.16. The evolution of enthalpy and 

lattice parameters is quantitatively shown in Fig. 4.18. During the process, the cell-edge 

of the a-axis is compressed by 8.7% while the c-axis is compressed by 7.0%, leading to a 

10.9% volume collapse. The length of the b-axis of the simulation box, however, stays 

almost unchanged throughout the phase transition. The volume drop, achieved by the 

compression of the a and c axes, forms edge-sharing octahedra chains along the (100) 

plane in the quartz II phase (Fig. 4.14). The calculated diffraction patterns of quartz II are 

in good agreement with the experiments (Fig. 4.4), confirming the validity of the derived 

quartz II structure. 
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Figure 4.17. Reconstructed free-energy landscape with the changes of Si 

coordination number. The energy landscape is obtained from ab initio metadynamics 

simulation at 35 GPa and 300 K (see text) and is projected along the two combination of 

collective variables: (a)(b) a-axis and Si coordination number, (c)(d) c-axis and 

coordination number. One local energy minima, the metastable quartz II phase, is present 

between the stable -quartz and post-stishovite phases. The height of the kinetic barrier 

from quartz to quartz II is consistent with the energy landscape projected along the a and 

c axis. 
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Figure 4.18. The evolution of enthalpy, volume and lattice parameters of SiO2 

(starting from -quartz) along the ab initio metadynamics simulation sampling the 

potential energy surface. The simulation was carried out at 300 K and 35 GPa.  
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4.3.4 Phase transition to the post-stishovite phase 

With prolonged metadynamics simulation (e.g., 79 metasteps at 35 GPa, Fig. 4.15-

18), the system is able to escape from the energy well of quartz II, and transforms into the 

stable monoclinic-type post-stishovite phase (P2/c), which has the same structure as I 

have observed in the experiment. Since no further phase transitions are observed after 

another 300 hundred metasteps, I stop the metadynamics simulation where the difference 

in deposited energy for the -quartz and post-stishovite matches what they have been 

predicted from thefree energy calculations (Fig. 4.13). During the phase transition from 

quartz II to the more stable post-stishovite phase, a large enthalpy drop is observed after 

overcoming a small free energy barrier (0.5 kBT from Fig. 4.18). Volumes continue to 

drop by 8.7%, mainly contributed by compression of a-axis (4.4%) and in c-axis (12.2%), 

which agrees well with the experimental EOS in Fig. 4.10.  

The monoclinic type post-stishovite structure has edge-sharing octahedra arranged 

along the [100] direction of the original simulation box (Fig. 4.19). The unit cell, which 

contains four silicon atoms and eight oxygen atoms, is checked for mechanical stability 

by phonons calculations on the fully optimized structure at 35 GPa (see Fig. 4.20). No 

negative modes are identified, confirming it is truly mechanically stable. The 

crystallographic data of the post-stishovite structure matches reasonably well the 

experimental results, shown in Table 4.1.  
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Figure 4.19. Representations of the post-stishovite structure projected on the (a)(b) 

(010) plane and (c)(d) (001) plane. The structures are taken from ab initio metadynamics 

at 35 GPa and 300 K. The left-hand figures show the formation of edge sharing octahedra 

chains (colored in green). The figures on the right show the stacking layers of six-folded 

silicon-oxygen frameworks. One unit cell of monoclinic type post-stishovite (space group 

P2/c, 12 atoms per unit cell) is sketched in the black solid box. 
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Figure. 4.20. Phonon dispersion curves and total vibrational density of states for 

monoclinic post-stishovite at 35 GPa. (a) Dispersion sampling direction in the 

monoclinic Brillouin zone along the high symmetry points. (b) Phonon dispersion curve 

with phonon density of states for the monoclinic post-stishovite at 35 GPa. The post-

stishovite is extracted from metastep 150 of the metadynamics simulation and convert to 

a monoclinic-type lattice unit. 

 

 

 

4.3.5 Pressure dependence of the transition pathways 

The same phase transition is also reproduced at 30 GPa and 40 GPa using the same 

computational methods (Fig 4.21). The phase transformation from -quartz to post-

stishovite requires significant rearrangement of both anions and cations, corresponding to 

a thermally activated process. At room temperature, the thermal energy is not enough for 

the system to overcome the kinetic energy barrier quickly, and consequently, compressed 

silica undergoes a sluggish kinetic process, manifested by the coexistence of multiple 

phases over a wide pressure range, which is exactly what have been observed in the 

experiment. The amount of energy triggering the rearrangement, relative to the free 

energy barrier, significantly increases at higher pressure (e.g. at 40 GPa, Fig. 4.21d). 



 127 

 

 

Figure 4.21. Reconstructed free-energy landscape at 30 and 40 GPa. (a)(b) 30 GPa 

and (c)(d)40 GPa. The energy landscape is projected along a-axis and c-axis. The dip 

height of the compressed quartz and the quartz II phase significantly increases at 40 GPa, 

indicating the energy barrier is much higher in a close-packed system. The order 

parameters monitored during the phase transition (the coordination number, a and c-axis) 

at all pressures are comparable, as the same intermediate quartz II phase is observed and 

the final post-stishovite phase has the same space group at 35 GPa.  

 

 

 

4.3.6 Mechanical instability examined by phonon calculations 

The mechanical stability of the quartz II phase was checked in two steps. After 
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extracting the structure from the metadynamics simulation, a set of ab initio MD 

simulation has been carried out to study its thermal instability (e.g. 10
5
 MD steps, equal 

to 2.4 picoseconds, at 300 K). The equilibrated structure is shown in Fig. 4.14, where the 

original atomic positions in quartz II are well kept. The quartz II structure was then 

completely optimized for atomic position, volume and cell shape using a Quasi-Newton 

algorithm to reach the local minimum energy state. 

 

 

 

Figure 4.22. Phonon dispersion curves and total vibrational density of states for 

quartz II structure at 35 GPa. (a) Dispersion sampling direction in the Brillouin zone 

of the simulation cell. (b) Phonon dispersion curve with phonon density of states for the 

quartz II phase at 35 GPa. The post-stishovite structure was extracted from metastep 70 

of the metadynamics simulation. Phonons were calculated for the fully optimized 

structure at the same pressure. 

 

 

 

The mechanically stability was further tested by calculating the phonon dispersion 

curves (Fig 4.22). The simulation used the above mentioned BLYP-type pseudopotential 

and a plane wave cutoff of 200 Ry. A 2×2×2 Monkhorst-Pack mesh was adopted to 
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ensure that the geometric optimized simulation cell achieves an energy convergence to 

2.1×10
-9

 eV, and the forces acting on each atom less than 0.05 eV/Å. The vibrational 

frequencies were collected by finding the eigenvalues of the interatomic force constant 

matrices on a grid of q-vectors same as the k-point mesh. Then the Fourier interpolation 

is performed to calculate the modes along the high symmetry points in the Brillouin zone. 

No negative modes are identified at 35 GPa, implying the intermediate quartz II 

phase is mechanically stable. The X-ray diffraction patterns (Fig. 4.7) also support the 

observation of quartz II phase in pressure range of 25-45 GPa, reproducing the simulation 

results. 

 

4.4 Ab initio molecular dynamics 

The transition from -quartz to the post-stishovite phase requires significant 

rearrangements of both cations and anions. This reconstructive phase transition of -

quartz is a thermally activated process. At room temperature, the thermal energy is not 

enough for the system to overcome the kinetic energy barrier rapidly, and consequently, 

compressed silica undergoes a sluggish kinetic process, manifested by the coexistence of 

multiple phases over a wide pressure range, which is exactly what have been observed in 

the experiment. 

Naturally, if the phase transition described above is kinetically prohibited, e.g., at 

very low temperatures where the kinetic energy is far below the phase transition energy 

barrier, the -quartz phase will be trapped in the local energy minimum of the potential 

well, being kept metastable to even higher pressures. As such, the ultimate stability of -
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quartz is controlled by a new transition mechanism. 

4.4.1. Computational details 

First-principles MD is highly computationally demanding, e.g. the classic Born-

Oppenheimer MD (BO-MD)
25

 requires self-consistency calculation on each time step. 

BO-MD with 10
5
 timesteps in magnitude is approaching the computational limit using 

state-of-the-art computational hardware, which is still too short to ensure system running 

at equilibrium conditions. Therefore we performed ab initio MD on the Car-Parrinello 

scheme
26,27

 in CPMD for the following considerations: (i) The BLYP type 

pseudopotential used in CPMD predicts the correct equation of state of silica at low 

pressures (Fig. 4.8), however it is not as much computationally demanding as the hybrid 

HSE potential, which also produced simulational results that match the experiments. (ii) 

Though the BLYP type exchange-correlation functional requires a much higher plane 

wave cutoff (a typical cutoff of is 170 Ry, which is four times what is used in VASP), the 

nuclear and electronic coordination are separated in CPMD, significantly reducing the 

overall computational time. The simulation of the phase transition can thus be achieved at 

a reasonable computational cost. (iii) CPMD has comprehensive supports for barrier 

crossing algorithms, like metadynamics. The same GGA type pseudopotential with the 

BLYP parameterization was employed for -quartz simulations in CMPD. However, a 

170 Ry kinetic energy cutoff is needed to ensure accurate evaluation of pressure and 

lattice parameters. A 2×2×1 -quartz unit cell was gradually compressed to 50 GPa under 

a NPT ensemble (constant particle number, pressure and temperature
28

). The temperature 

was conserved at 300 K by the Nosé-Hoover thermostat
23

. 
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We performed first-principles MD (without running metadynamics) for this 

purpose. The results discussed here are based on regular ab initio simulation, which turns 

out to be inefficient in overcoming the energy barrier at low temperatures (e.g., 300 K) 

and certain pressures (e.g., 40 GPa). In the following sections, I will illustrate that the 

transition actually becomes a barrier-free process at room temperature and high pressure. 

 

4.4.2. Lattice distortion of -quartz 

At 40 GPa, the signature six-member ring structure is distorted but the tetrahedra 

framework is still kept (Fig. 4.23a&b).  As reported by many pioneering works
29-31

, the 

distortion involves simultaneous rotation of all SiO4 helical spiral along the [110] axis 

and the Si-O-Si bond angle approaches to 120° upon lattice compression (Fig. 4.24).  

 

 

 

Figure 4.23. Structural representation with polyhedrons of (a) quartz (P=1 bar), (b) 

distorted quartz (P=35 GPa) and (c) quartz III (P=50 GPa) structures projected 

along the b-axis. The cornered sharing tetrahedra are colored in blue and edge sharing 

octahedra are colored in green. One computational unit cell of silica is sketched in black 

solid frame. The signature six-member ring in -quartz (labeled in orange solid lines) is 

stretched along the [101] axis under pressure, forming the layered six-coordinated 

octahedra structure above 50 GPa. 
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Figure 4.24. Structural changes of distorted -quartz. The distortion involves the 

rotation of silicon polyhedron along the [110] axis. 

 

 

 

4.4.3. Formation of the quartz III structure 

It is interesting to point out that beyond 50 GPa the edge-sharing octahedra are 

found forming along the (100) plane, gradually transforming into a new post-quartz phase 

that has not been reported before (the structural representations projected along three 

coordination axes are shown in Fig. 4.25-4.27). The new post-quartz phase (space group 

C222) has alternating layers of tetrahedra and octahedra. The projected plane along the a-

axis clearly shows the close-packed octahedra (Fig. 4.25). The planes of edge-sharing 

octahedra are linked by layers of silicon tetrahedra, as shown in Fig. 4.26 & 4.27 where 

the atomic structure is projected along the b and c axis, respectively.  
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Figure 4.25. Snapshots of (a)(b) quartz (P=0 GPa), (c)(d) distorted quartz (P=35 

GPa) and (e)(f) quartz III (P=50 GPa) structures along the a-axis. The polyhedron 

representations are shown on the left panel, where four-coordinated tetrahedra are colored 

in blue and six folded octahedral are colored in green. One unit cell of silica is plotted in 

the solid frame. 
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Figure 4.26. Snapshots of (a)(b) quartz (P=1 bar), (c)(d) distorted quartz (P=35 

GPa) and (e)(f) quartz III (P=50 GPa) structures along the b-axis. The polyhedron 

representations are shown on the left panel, where four-coordinated tetrahedra are colored 

in blue and six folded octahedral are colored in green. One unit cell of silica is plotted in 

the solid frame. 
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Figure 4.27. Snapshots of (a)(b) quartz (P=1 bar), (c)(d) distorted quartz (P=35 

GPa) and (e)(f) quartz III (P=50 GPa) structures along the c-axis. The polyhedron 

representations are shown on the left panel, where four-coordinated tetrahedra are colored 

in blue and six folded octahedral are colored in green. One unit cell of silica is plotted in 

the solid frame. 

 

 

 

We also calculated the geometrically optimized lattice parameters and atomic 

coordinates at 50 GPa (Table 4.5). The new phase, named as quartz III here, is only 



 136 

metastable above 50 GPa and 300 K. It recovers to the distorted -quartz structure after 

releasing pressure below 50 GPa without an obvious pressure hysteresis. Experimentally, 

however, the observation of the phonon instability may be preempted or obscured by 

other transitions pathways occurring at lower pressures. The volume change as a function 

of pressure has already been shown in Fig. 4.9 & 4.10. 

 

 

Table 4.5: Crystallographic data for the quartz III structure (space group C222) at 50 

GPa. The structures are extracted from first principles MD simulation and geometric 

optmized for its cell variable and atomic positions at fixed pressures employing the same 

pseudopotentials in the eqations of states calculations. Atoms are at its Wyckoff positions. 

The X-ray diffraction spectrum is calcualted with labels in Fig. 4.28. 

 P=50 GPa Wyckoff positions from simulation 

Space group      C222 

Z 6      x     y     z 

a (Å) 3.637(4) Si1 (x,y,z) 0.250, 0.250, 0.740 

b (Å) 10.067(9) Si2 (x,y,z) 0.000, 0.000, 0.000 

c (Å) 3.698(7) O1 (x,y,z) 0.250, 0.250, 0.260 

(g/cm
-3

) 4.42(1) O2 (x,y,z) 0.748, 0.092, 0.243 
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Figure 4.28. Calculated X-ray diffraction specturm for the quartz III phase at 50 

GPa. The miller indices labeling are shown at each diffraction peaks. 

 

 

 

4.4.4. Phonon calculation of -quartz and quartz III 

At very low temperatures where the kinetic energy is far below the phase transition 

energy barrier, the -quartz phase will be trapped in the local energy minimum of the 

potential well, being kept metastable to even higher pressures. Under this circumstance, it 

is shown that the ultimate stability of -quartz is controlled by the phonon softening at 

the K point (1/3, 1/3, 0) of the Brillouin zone boundary.  

Phonon calculation was performed with the Quantum Espresso code with 200 Ry 

kinetic energy cutoff. All structures (quartz and quartz III) were completely relaxed at 

various pressures. The dynamical matrix was calculated on the 4×4×4 wave vector grid in 

reciprocal space, from which the interatomic force constant matrix was derived. The 

long-range dipole-diploe interactions were taken into account separately using the 

calculated dielectric tensor. Fourier interpolation was used to calculate the modes along 
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the high symmetry points in the Brillouin zone. The calculated LO-TO splittings at the 

gamma point are in good agreement with literature
34,35

.  

 

 

 

Figure 4.29. Phonon calculation of compressed -quartz. (a) Dispersion sampling 

direction in the trigonal Brillouin zone along the high symmetry points. (b)-(e) Phonon 

dispersion curves of compressed quartz from 30-60 GPa. The  is the center of the 

Brillouin zone and other points like K, M and A are located at the zone boundary. 

Imaginary modes were found around K point above 50 GPa, where four-coordinated Si-O 

structure were no longer mechanically stable. 

 

 

 

The phonon dispersion curves of -quartz have been theoretically calculated in Fig. 
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4.29. Noticeable of the phonon dispersion curves is the phonon softening of the K point 

with increasing pressure, which is illustrated in Fig. 4.30. The K-point phonon instability 

is clearly seen when the pressure reaches as high as 49 GPa. Above 49 GPa, the negative 

vibrational modes around the K point indicate that atomic vibrations along the K point 

will destabilize the -quartz structure, leading toward the formation of a new phase 

without thermal excitation (Fig. 4.31).  

 

 

 

 

Figure 4.30. Softening of phonons at K point in the Brillouin zone. The -quartz 

structures are slowly compressed over 50 GPa and are fully optimized before the phonon 

calculation. Negative phonon mode is observed above 49 GPa at K point, where the new 

quartz III is formed. 
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Figure 4.31. Atomic shuffling in the phase transition from quartz to the quartz III 

structure. The green arrows in the left figure indicate the eigenvectors of atom 

movement, calculated from the negative phonon modes 50 GPa. 

 

 

Such a transition process involves short-distance atomic shuffling, as shown in Fig. 

4.31, belonging to a diffusionless transformation process. The newly formed phase after 

lattice collapse has a C222 structure where anions form close-packed b.c.c like structures 

and one third of cations occupy the tetrahedral sites of O atoms and two thirds of the 

cations occupy the octahedral sites. This post-quartz phase has been previously predicted 

to form, but the results show this athermal process occurs at much higher pressure (above 

49 GPa). The new structures are also checked for their mechanically stability at 50 and 60 

GPa (Fig. 4.32), where no negative modes are recognized. The crystallographic data of 

the resulting post-quartz structure (see Table 4.5) is distinctly different from the quartz II 

phase seen in the experiment.   
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Figure 4.32. Mechanical stability for the quartz III structures. (a) Sampling 

dispersion path in the orthorhombic Brillouin zone. (b) Phonon dispersion curve with 

phonon density of states of quartz III with the C222 structure at 50 GPa and (c) 60 GPa. 

The post-quartz structure was geometrically optimized before calculating phonon 

dispersion (red curves) and total phonon density of states (blue vertical curves). 

 

 

 

4.4.5. Transition path studied with the nudged elastic band method 

To corroborate the mechanism of phonon-softening, the energy barrier separating 

-quartz and the post-quartz (termed as quartz III) phase was analyzed using the solid-

state nudge elastic band method
34

.  
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Figure 4.33. The cohesive energy values on the transition path from -quartz phase 

to the quartz III phase calculated by ssNEB. The first-principles calculations predict 

quartz III phase is more energetically favorable than -quartz above 45 GPa. The energy 

barrier from the prospective of potential energy is greatly lowered upon pressurization. 

The lower panel shows the structural changes along the transition pathway. The initial 

and final structures are -quartz and quartz III respectively. The middle snapshot was 

taken from the saddle point of the transition path, where two silicon atoms are five-

coordinated. 

 

 

 

Since -quartz is metastable at high pressure, the Hessian based geometrically 
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optimized method is employed so that it is possible to optimize the structure into local 

saddle points without transforming into the quartz III phase. Similarly, low pressure 

structures of quartz III were optimized under the same treatment. A total number of 16 

replicas were initialized as the geometric intermediates for -quartz and quartz III phase. 

The convergence of force is the signature of finding the minimum-energy path (MEP), 

and the energy and force of the system are calculated at each ionic step until it satisfied 

the preset convergence criterion (0.05 eV/Å on each atom). 

The change of cohesive energy on the transition pathway is plotted in Fig. 4.33. 

The quartz III phase is more energetically favorable than -quartz above 45 GPa. Also 

the height of potential energy barrier is much lower at higher pressure (decrease by 73% 

at 60 GPa compared with 30 GPa). The energy barrier in this figure may be indicative of 

the energy difference caused by different stacking schemes of atoms. However, the free 

energy change caused by the volume collapse (i.e., the volume contribution) is not 

included. In order to survey the pressure effects in this transition, enthalpy was calculated 

on the same transition pathway (Fig. 4.34). At 30 GPa, compressed -quartz needs to 

overcome an energy equal to 1.05 kBT (at 300K). It is evident from the calculation that 

the free energy barrier disappears when the pressure reaches the critical value of ~49 

GPa. Such a phase transition can be directly observed in ab initio MD simulations at 300 

K. 
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Figure 4.34. The enthalpy values on the transition pathway from the -quartz phase 

to the quartz III phase calculated by the ssNEB method. The inset in the figure shows 

the decrease of the enthalpy barrier from 30~55 GPa, where above 50 GPa the energy 

barrier vanishes, and -quartz spontaneously transforms to the quartz III phase. The 

results coincide with the phonon-instability rationale illustrated in the text. The lower 

panel shows the structural changes along the transition pathway. The initial and final 

structures are -quartz and quartz III respectively. The middle snapshot was taken from 

the saddle point of the transition path at 30 GPa, where two silicon atoms in the unit cell 

are five-coordinated. 
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4.5 Conclusion and discussion 

In summary, densification of silica can follow multiple transition pathways, greatly 

affected by its pressurization conditions. The transition from -quartz to monoclinic post-

stishovite is clarified by the single-crystal X-ray diffraction experiments and simulation, 

where pressure is applied relatively slowly. Such a slow compression process leads to an 

intermediate quartz II phase as a structural intermediate. If this transition is 

thermodynamically prohibited, i.e. by fast loading or compressing -quartz at very low 

temperatures, our first-principles MD supports the existence of a new quartz III phase 

above 49 GPa.  

Mechanism-wise, it is demonstrated that the two above-mentioned transitions are 

controlled by distinct transition mechanisms: a reconstructive transition pathway from -

quartz to monoclinic post-stishovite involving an intermediate phase, as opposed to a 

displacive transition from -quartz to a new quartz III phase induced by phonon 

instability. The ultimate pressure limit for the existence of -quartz is predicted to be 49 

GPa. The new high-pressure phases discovered in this work are among the many possible 

polymorphs of silica, whose polyhedra building blocks are arranged in unique patterns 

that would require specific pathways to achieve. Such competing mechanisms may be 

operative simultaneously under certain experimental conditions and may give rise to 

complicated phase behaviors as seen in previous experimental works. Our findings point 

to the fact that, akin to the superheating limit of crystals
35

, solid-state transformation 

under high pressure follows a succession of structural stability limits arising from 

thermodynamic, kinetic and mechanical considerations, resulting in a hierarchy of 
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structural transition pathways, which is believed to be common to a wide range of 

crystals with relatively open structures. 



 147 

REFERENCES 

1 Dera, P., et. al. High pressure single-crystal micro X-ray diffraction analysis with 

GSE_ADA/RSV software. High Pressure Res. 33, 466-484 (2013) 

2 Kingma, K. J., R. J. Hemley, H. K. Mao & D. R. Veblen, New high-pressure 

transformation in alpha-quartz, Phys. Rev. Lett., 70, 3927-3930 (1993) 

3 Campañá, C. Müser, H. M., Tse. J. S. & Schöffel D. H. Pressure-induced phase 

transition of quartz and the relation between the three hypothetical post-quartz phases. 

Phys. Rev. B 70, 224101 (2004) 

4 Choudhury, N. & Chaplot, S. L. Ab inito studies of phonon softening and high-

pressure phase transition of -quartz SiO2. Phys. Rev. B 73, 094304 (2006) 

5 Holland, T. J. B. & Redfern, S. A. T. UNITCELL: a nonlinear least-squares program 

for cell-parameter refinement and implementing regression and deletion diagnostics. 

J. Appl. Cryst. 30, 84 (1997) 

6 Kawai, N. & Endo, S. The generation of ultrahigh hydrostatic pressures by a split 

sphere apparatus. Rev. Sci. Instrum. 41, 1178-1181 (1970) 

7 Giannozzi P., et. al. QUANTUM ESPRESSO: a modular and open-source software 

project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 

(2009). 

8 Lee, C., Yang, W., & Parr, R. G. Development of the Colle-Salvetti correlation-energy 

formula into a functional of the electron density. Phys. Rev. B, 37, 785. (1988). 

9 Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. 

Chem. Phys. 98, 5648 (1993). 

10 Perdew, J. P., et al. Erratum: Atoms, molecules, solids, and surfaces: Applications of 

the generalized gradient approximation for exchange and correlation. Phys. Rev. B 

48, 4978 (1993). 

11 G. Kresse & D. Joubert. From ultrasoft pseudopotentials to the projector augmented-

wave method. Phys. Rev. B 59, 1758 (1999). 



 148 

12 G. Kresse & J. Furthmüller. Efficiency of ab-initio total energy calculations for 

metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15 

(1996). 

13 Paier, M., Marsman, K., Hummer, G.,  Kresse, I. C. & Gerber, J. G. Ángyán, 

Screened hybrid density functionals applied to solids.  J. Chem. Phys. 124, 154709 

(2006). 

14 Demuth. Th., Jeanvoine, Y., Hafner, J. & Ángyán, J. G. Polymorphism in silica 

studied in the local density and generalized-gradient approximations. J. Phys.: 

Condens. Matter 11, 3833 (1999). 

15 Levin, L., Prewitt, C. T. & Weidner, D. J. Structure and elastic properties of quartz at 

pressure. Am. Mineral. 65, 920 (1980). 

16 Holm, J. L., Kleppa, O. J. & Westrum, E. F. Thermodynamics of polymorphic 

transformations in silica. Thermal properties from 5 to 1070° K and pressure-

temperature stability fields for coesite and stishovite. Geochim. Cosmochim. Acta. 

31, 2289-2307 (1967). 

17 Akaogi, M & Navrotsky. A, Calorimetric study of high-pressure polymorphs of 

MnSiO3. Phys. Earth. Planet. Inter. 36, 124 (1984). 

18 Hamman, D. R. Generalized gradient theory for silica phase transitions. Phys. Rev. 

Lett. 74, 660-663 (1996). 

19 Andrault, D., Fiquet, G. F, Guyot, F. & Hanfland, M. Pressure-induced Landau-type 

transition in stishovite. Science 282, 720-724 (1998). 

20 Miyahara, M., et al. Discovery of seifertite in a shocked lunar meteorite. Nat. 

Commun. 4, 1737 (2013). 

21 Dove, M. T. Introduction to lattice dynamics. Ch. 5, (Cambridge University Press, 

New York, 2010). 

22 Andreoni, W. & Curioni, A. New advances in chemistry and materials science with 

CPMD and parallel computing. Parallel Comput. 26, 819-842 (2000). 

23 Martyna, G. K., Klein, M. L. & Tuckerman, M. Nosé-Hoover chains: the canonical 

ensemble via continuous dynamics. J. Chem. Phys. 97, 2635-2643. (1992). 

24 Ensing, B., Laio, A., Parrinello, M. & Klein, M. L., A recipe for the computation of 

the free energy barrier and the lowest free energy path of concerted reactions. J. 

Phys. Chem. B 109, 6676-6687 (2005). 



 149 

25 Born. M. & Oppenheimer. R. Zur quantentheorie der molekeln. Annalen der Physik 

(IV. Folge), 84, 457-484 (1927). 

26 Car. R. & Parrinello. M. Unified approach for molecular dynamics and density-

functional theory. Phys. Rev. Lett. 55, 2471-2474 (1985). 

27 Mermin. N. D. What’s wrong with this Lagramgean? Phys. Today 41, 9 (1988). 

28 Martyna G. J., Tobias D. J. & Llein M. L. Constant pressure molecular dynamics 

algorithms. J. Chem. Phys. 101, 4177 (1994). 

29 Chelikowsky, J. R., King, Jr. H. E., Troullier, JN., Marins, J. L., & Glinnemann, J. 

Structural properties of -quartz near the amorphous transition. Phys. Rev. Lett. 65, 

3309 (1990).  

30 Tse, T. S. & Klug, D. D. Mechanical stability of quartz: A molecular-dynamics 

study. Phys. Rev. Lett. 67, 3559-3562 (1991). 

31 Hazen, R. M., Finger, L. W., Hemley, R. J., & Mao, H-K, High-pressure crystal 

chemistry and amorphization of -quartz. Solid State Commun. 72, 507. (1989). 

32 Gonze, X., Allan, D. C. & Teter, M. P. Dielectric tensor, effective charges, and 

phonons in -quartz by vibrational density-functional perturbation theory. Phys. Rev. 

Lett. 68, 3603 (1992). 

33 Choudhury, N. & Chaplot, S. L. Ab initio studies of phonon softening and high-

pressure phase transitions of -quartz SiO2. Phys. Rev. B 73, 094304 (2006). 

34 Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding 

minimum energy paths, J. Chem. Phys. 128, 134106 (2008). 

35 Tallon, J.L. A hierarchy of catastrophes as a succession of stability limits for the 

crystalline state. Nature 342, 658 - 660 (1989). 

 



 

150 
 

BIOGRAPHY 

Qingyang Hu graduated from Hangzhou Senior Middle School, Hangzhou, Zhejiang 

Province, China in 2005. He received his Bachelor of Science from Beijing Jiaotong 

University, Beijing, China in 2009. He received his Master of Science in Computational 

Science from George Mason University in 2013. 


