
!

,I "

Date:

" /
..........

• .r",,/"

.~/",/

'Z'Vt·"'7'-­ -
I'~C (A

/'

,j/ ~~ !
" v 4 J

Department Chairperson

Program Director

Dean, College of Humanities
and Social Sciences

Summer Semester 2012

~ :0/~
4L •<4.

AGENT-BASED MODELS IN PUBLIC CHOICE

by

Richard R. Wallick

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Economics

Committee:

Director

George Mason University
Fairfax, VA

Agent-Based Models in Public Choice

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Richard R. Wallick

Master of Arts

George Mason University, 2007

Bachelor of Science

University of Calgary, 1992

Chairman: Charles K. Rowley, Duncan Black Professor Emeritus of Economics

College of Humanities and Social Sciences

Summer Semester 2012

George Mason University

Fairfax, VA

ii

Copyright 2012 Richard R. Wallick

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my advisor, Dr. Charles K. Rowley, without

whom this dissertation would not have been possible. The phrase “would not have been

possible” is an oft-invoked cliche, but in this case it is undeniably true. Dr. Rowley’s

encouragement and guidance have been invaluable at every step in the process. His

dedication to his calling should be an example to everyone who aspires to a life as a

scholar and educator. There is a certain paradox in the fact that Dr. Rowley has spent his

career proclaiming the dominance of self-interest in human affairs, and yet has

consistently put the interests of his students ahead of his own. I cannot explain this, but I

am grateful for it.

I also wish to thank Dr. Robert Axtell, who inspired me with visions of agent-based

modeling in just my third week of graduate school, at Pete Boettke’s weekly Politics,

Philosophy, and Economics workshop. I asked for his advice immediately after the

workshop and he kindly replied with guidance that has served me well in the intervening

years. I also owe a debt of gratitude to Dr. Omar Al-Ubaydli, who has helped me

understand how agent-based modeling can best serve the discipline of economics, and

who has kept me from tilting at windmills. And no George Mason University economics

dissertation is complete without an expression of gratitude to Mary Jackson, without

whom the entire edifice would crumble.

No one can complete an undertaking of this magnitude without a support network, and in

this respect I have been especially blessed. I want to thank Dianne for tolerating my

prolonged absences as I labored to complete this dissertation; if she has ever resented my

dedication to her rival, she never let it be known. My grandmother has now suffered

through two dissertations: that of my grandfather, and that of her grandson. I have

promised her that I would remain humble, and this is an easy promise to keep: the more I

learn, the more I understand how very much more there is yet to learn. Finally, I hope

mom and pop understand that while I may thank them for the thousands—literally

thousands!—of home-cooked meals and underlined newspapers, what I have really

appreciated, and what I could not have done without, is the steadfast support, unwavering

confidence, and unconditional love. Thank you from the bottom of my heart.

iv

TABLE OF CONTENTS

Page

List of Tables .. v

List of Figures ... vi

Abstract .. viii

Agent-Based Modeling, Public Choice, and Gordon Tullock .. 1

An Agent-Based Model of Regulatory Capture .. 26

An Agent-Based Model of the Condorcet Jury Theorem .. 68

Appendices .. 145

References .. 188

v

LIST OF TABLES

Table Page

3.1 Expected joint distribution of C1 and C2, no correlation ..94

3.2 Expected joint distribution of C1 and C2, correlations -1 and 194

3.3 Observed joint distribution of C1 and C2, various correlations95

3.4 GSS background and demographic questions..98

3.5 EARTHSUN as a function of GSS agent characteristics103

3.6 GSS scientific questions ..107

3.7 Regression results from the GSS ...110

3.8 Composite regression coefficients ...114

3.9 Behavior of wise agents ...120

vi

LIST OF FIGURES

Figure Page

1.1 Identical buyers, Walrasian auctioneer ..9

1.2 Identical buyers, price-setting sellers ...11

2.1 Tax rate by percent of citizens holding licenses ..44

2.2 Tax rate by percent of citizens holding licenses and deadweight costs45

2.3 Approval rating by transfer per licensee and deadweight cost46

2.4 Approval rating by transfer per licensee and dispersion of deadweight costs48

2.5 Approval rating by transfer per licensee and types of heterogeneity50

2.6 Approval rating by transfer per licensee and heterogeneity status51

2.7 Approval rating by transfer per licensee: detail ..53

2.8 Approval rating by persuasion per licensee ...54

2.9 Approval rating by percent of citizens holding licenses ..56

2.10 Approval rating by amount of cross-subsidy ...58

2.11 Approval rating by amount of cross-subsidy and degree of heterogeneity59

2.12 Approval rating by potential income of cross-subsidized agents60

2.13 Approval rating by amount of transfer and direction: homogeneous groups62

2.14 Approval rating by amount of transfer and direction: heterogeneous groups63

2.15 Approval rating by income heterogeneity..65

3.1 Likelihood of a correct vote by number of voters..80

3.2 Likelihood of a correct vote by number of voters: detail..82

3.3 Values returned by the model by number of runs ..84

3.4 Convergence by number of runs ..86

3.5 Convergence and run time by number of runs ...87

3.6 Convergence by voters and number of runs ..89

3.7 Likelihood of a correct vote by variance of voter distribution91

3.8 Likelihood of a correct vote by number of voters and distribution92

3.9 Percent of agents with C1=C2=0 by corr(C1,C2) ..97

3.10 Distribution of WORDSUM values from the GSS ..99

3.11 Likelihood of a correct vote by complexity: EARTHSUN only106

3.12 Likelihood of a correct vote by complexity: all questions116

3.13 Likelihood of a correct vote by agent confidence ..119

3.14 Likelihood of a correct vote by agent wisdom...122

3.15 Likelihood of a correct vote by agent wisdom: detail...123

3.16 Likelihood of a correct vote by agent wisdom: herding124

3.17 Likelihood of a correct vote by agent wisdom: wise vs. unwise126

vii

3.18 Likelihood of a correct vote by social network fragmentation127

3.19 Likelihood of a correct vote by social network fragmentation: detail129

3.20 Likelihood of a correct vote by complexity: wise vs. unwise.............................130

3.21 Likelihood of a correct vote by confidence: sincere vs. pivotal133

3.22 Likelihood of a correct vote by confidence: three judges134

3.23 Likelihood of a correct vote by confidence: unanimity135

3.24 Likelihood of a correct vote by confidence: pivotal vs. predominant137

3.25 Likelihood of a correct vote by complexity: GSS agents138

ABSTRACT

AGENT-BASED MODELS IN PUBLIC CHOICE

Richard R. Wallick, Ph.D.

George Mason University, 2012

Dissertation Director: Dr. Charles K. Rowley

 Public choice is the study of political science using the tools of economics. The

future of modeling in public choice may be glimpsed by examining its evolution in

economics. For problems that are influenced by heterogeneity of actors, social networks,

or emergence—the arising of a complex system from simple phenomena, such as Adam

Smith’s “invisible hand”—economists increasingly are turning to agent-based modeling.

This dissertation argues that public choice scholars can benefit from following the same

path.

 Chapter 1 introduces agent-based modeling, describing its advantages and its

disadvantages. By definition, the agent-based approach emphasizes methodological

individualism. Since methodological individualism is a cornerstone of public choice,

many public choice models are amenable to agent-based implementations. This is best

exemplified by a review of Gordon Tullock’s approach to modeling. The agent-based

approach features prominently in Tullock’s writings. Had he been armed with the

technology of the 21st century instead of the 20th, Tullock would have been an agent-

based modeler. Agent-based modeling offers a new vehicle for exploring Tullock’s

classic works.

 Chapter 2 demonstrates the agent-based approach by transforming a familiar

public choice model, Samuel Peltzman’s 1976 model of regulatory capture, into an agent-

based model. The agent-based version can explore situations that Peltzman’s formulation

cannot, such as the presence of bilateral transfers and the impact of heterogeneity among

citizens. Different types of heterogeneity affect the model’s predictions in different

ways. Taken as a supplement to Peltzman’s model, the agent-based version sheds new

light on an old problem.

 Chapter 3 then develops an extended agent-based model from scratch: a model of

Condorcet’s famous jury theorem. Condorcet’s theorem rests on three assumptions, each

of which may be questioned: voter homogeneity, voter independence, and voter

sincerity. The agent-based version explores the impact of relaxing each of these

assumptions. There is no shortage of rational choice models that relax these assumptions

independently, but only the agent-based version relaxes all three simultaneously. The

model is calibrated to represent a population like that of the United States, and used to

explore policy proposals.

1

1. AGENT-BASED MODELING, PUBLIC CHOICE, AND GORDON TULLOCK

1.1 Introduction

 The field of public choice has been described as “the application of economics to

political science” (Mueller 2003, 1), so it is not surprising that public choice theorists

have adopted the economist’s reliance on models. A model is an abstract, small-scale

representation of some real-world phenomenon. Suppose, for example, that one asks an

economist what will happen to the economy if the Federal Reserve raises banks’ reserve

requirements. The economist will respond by selecting a model, manipulating the reserve

requirements variable in that model, and reporting what the model predicts. Like

economists, public choice scholars create and manipulate models. The difference

between an economist and a public choice scholar is a matter of domain: economists

model economic phenomena, while public choice scholars model political phenomena.

Given their common heritage and shared approach, it seems likely that public choice

modeling will follow the same evolutionary path as economic modeling. This chapter

argues that this evolutionary path leads to agent-based modeling. It also argues that

Gordon Tullock started down this path long ago, and thus that Tullock, 50 years later,

remains at the forefront of the field he helped to found.

2

 Agent-based modeling is a computational technique. Contrasted with other forms

of modeling, agent-based modeling has two distinguishing features: support for

arbitrarily heterogeneous actors (or “agents”), and support for adaptive behavior. These

features may not seem impressive on their own, but when combined with a framework of

rules guiding agents’ interactions, they can produce almost startlingly complex results.

The ability of a self-interested agent “to promote an end which was no part of his

intention” was recognized by Adam Smith (1994 [1776], 485) over two centuries ago.

Hayek (1976, 2:33) calls it “spontaneous order”: “the position of each individual is the

resultant action of many other individuals, and nobody has the responsibility or the power

to ensure that these separate actions of many will produce a particular result.” It is for

this reason that Vriend (2002, 811) describes Hayek as “an agent-based computational

economist (ACE) avant-la-lettre.” By describing economic systems in terms of agents

and their interactions, Hayek followed the agent-based modeling approach implicitly.

Wagner (2008) observes that the same can be said of Gordon Tullock. If Hayek can be

called an ACE, so too can Tullock, whose “scholarly oeuvre ... reflects a deep

understanding and appreciation of spontaneous order theorizing” (ibid., 56). Tullock

anticipated the agent-based modeling approach. By continuing down that path, modern

scholars can explore Tullock’s work in new and deeper ways.

1.2 Economic modeling

 Economic models have taken different forms at different times in history. An

early form of economic modeling was mythology: in Roman times, for example, the

3

goddess Ceres protected crops. The Roman model of grain production was essentially

this: to obtain more grain, make Ceres happy (Spaeth 1996). This model may seem

simplistic to the modern reader, yet it was compelling enough to the Romans to motivate

the erection of temples dedicated to Ceres. The model was compelling because it

provided both explanatory and predictive power: it explained the dynamics of grain

production, and it offered a way of understanding seasonal output variations. But what

this model lacked—and what makes the model unacceptable to the modern reader—was

falsifiability. The absence of an ex ante definition of what precisely made Ceres happy

meant that no test could be devised that would disprove the model.

 A model’s lack of falsifiability does not mean that the model is wrong; a model

may be accurate, yet unprovable in any formal sense. But nonfalsifiable models are no

longer regarded as useful in the scientific community (Popper 1959). By contrast,

falsifiable models are useful. A falsifiable model is one that begins with assumptions,

applies logical deductions to those assumptions, and concludes by stating empirically

testable predictions. Such a model is disproved when the assumptions are granted but the

predictions are not fulfilled. Falsifiable models are powerful because they split the

problem being modeled into two distinct parts—the premises and the deductions—which

can be analyzed separately. For this reason, among others, mathematical models have

come to predominate the economics profession (Stigler, Stigler and Friedland 1995). A

mathematical model is the cleanest form of a falsifiable scientific model. Assumptions

are expressed as mathematical identities; predictions are the algebraic consequences of

those identities. Sociologist Vilfredo Pareto, writing in 1911, summarized the approach

4

now followed by all orthodox economists: “given the mathematical laws according to

which certain individuals usually behave, determine the consequences of these laws”

(Pareto 1955 [1911], 58).

 Mathematical models in economics have evolved from simple models, such as IS-

LM, to considerably more complex models. Many modern mathematical models of the

economy are rational choice models. Rational choice models embody two key ideas.

First, economic activity is generated by individual actors; macro-level activity is

produced by aggregating micro-level activity. Second, those individual actors have

“model-consistent expectations”: the actors understand the model and its consequences,

and use those consequences to guide their own behaviors. The latter characteristic is

intended to address the Lucas (1976) critique—the observation that real-life economic

actors react to policy changes. A model that does not address the Lucas critique may

make false predictions.

 An example of a rational choice model is the well-known model of monetary

policy of Barro and Gordon (1983). In the Barro-Gordon model, the economy manifests

an optimal rate of price inflation, p*. An inflation rate above p* is suboptimal because

“inflation is assumed to generate increasing marginal disutility” (Walsh 1998, 324), while

an inflation rate below p* is suboptimal because seigniorage opportunities are foregone,

and so “distortions due to taxes, monopoly unions, or monopolistic competition may lead

[output] to be inefficiently low” (ibid., 324). Bond-buyers in the Barro-Gordon model

form expectations about the inflation rate, p
e
. These expectations are important, because

the Barro-Gordon model includes a short-run Phillips curve relationship between output

5

and unexpected inflation: output increases when the actual inflation rate, p, exceeds p
e
.

If the monetary authority optimizes for the long run, it sets p = p*. But if the monetary

authority successfully convinces all bond-buyers that p will equal p*, and thus establishes

p
e
 = p*, it then faces a short-run incentive to renege, and set p > p* instead.

 In the Barro-Gordon model, bond-buyers have rational expectations, so they

understand the incentives of the monetary authority. If the monetary authority can renege

on its promise of p = p*, bond-buyers will account for this possibility by setting p
e
 > p*.

But they also know that there is an upper bound for p
e
: for sufficiently large p, the

disutility of p overwhelmes the utility of p - p
e
. (In the treatment in Walsh (1998), for

example, p enters the objective function quadratically and negative, while p - p
e
 enters

the function linearly and positive.) Because the bond-buyers understand the model, they

set p
e
 such that the monetary authority’s optimal behavior is to produce p = p

e
 (thus

removing the incentive to generate a suboptimal p > p
e
). One result of the Barro-Gordon

model is the demonstration that a monetary authority with the discretion to renege on its

commitments will always produce p > p*. This is known as “inflation bias” (Walsh

1998, 336). Barro and Gordon argue that in the presence of rational actors, a rule which

prevented the monetary authority from reneging on its commitments, and enforcing p =

p*, would be utility-enhancing.

 The Barro-Gordon model hinges on rational expectations. Without rational

expectations, the monetary authority could fool the bond-buyers repeatedly, and

permanently increase output. In order to employ rational expectations, Barro and Gordon

assume the following. First, the bond-buyers know the objective function that the

6

monetary authority will optimize. Second, the bond-buyers and the monetary authority

share the same information. Both of these assumptions have been challenged in the

subsequent literature. Blinder (1997) attacks the first assumption, suggesting that it is not

just the bond-buyers who form expectations about the monetary authority; the monetary

authority forms expectations about the bond-buyers, too, and factors those expectations

into its own behavior. Cukierman and Meltzer (1986, 1102) attack the second

assumption; they build a model in which “the policymaker uses information that the

public does not have.” Ireland (1999) offers a model which allows credibility to

supercede rational expectations. Gomes (2006) replaces rational expectations with

bounded rationality.

 In each of these cases, the modeler is augmenting the Barro-Gordon model to

support greater agent heterogeneity. The importance of models with heterogeneous

agents was identified by Haltiwanger and Waldman (1985, 326), who noted that

heterogeneity is “an aspect of the real world,” yet “most models that contain the

rationality assumption ignore the idea that agents tend to be heterogeneous in terms of

information-processing abilities.” Branch (2004, 592) echoes a similar sentiment, noting

that in the context of inflation expectations, “agents lack the requisite sophistication to

form expectations rationally.”

 The Cukierman and Meltzer (1986), Ireland (1999), and Gomes (2006) models

address different areas of heterogeneity (limited information, credibility, and bounded

rationality, respectively). In that sense, they share a common goal. Yet each of these

variations on Barro-Gordon is independent. None of these models builds upon its

7

counterparts. There is no philosophical reason why this should be so; a single agent

might exhibit heterogeneity in all three areas. The most likely reason for the lack of a

unified, “compound” model is tractability. In rational choice models, supporting

heterogeneity along a single dimension is not easy; supporting heterogeneity along three

dimensions may be simply too difficult. One might say that while it is possible to

represent heterogeneity in rational choice models, it does not “scale” well. Adding two

dimensions of heterogeneity is considerably more than twice as complicated as adding

one.

 This is an unfortunate circumstance. In an ideal world, these three models would

be combined into a single model, each building on the others. But the rational choice

formulations of these models preclude any such collaboration. Nor are these isolated

examples. Rubinstein and Wolinsky (1985, 1133), for example, model “the micro-

mechanisms of price formation and their role in shaping market outcomes.”

Heterogeneity in their model takes the form of employing exactly two types of actors:

buyers and sellers. All buyers are identical to all other buyers, and all sellers identical to

all other sellers. All actors “employ the same ... strategy ... against any potential

opponent” (ibid., 1134), and all actors share a common degree of urgency to trade. The

degree of heterogeneity is very low—but the rational choice framework allows no more.

To expand the range of heterogeneity, a different technique must be used. Gjerstad and

Dickhaut (1998) explore similar territory, but avoid these limitations by using

simulations. They do not describe their simulation framework, nor do they explain

8

exactly how they simulate their model, but one can infer that their approach is similar to

what is now known as agent-based modeling.

1.3 Agent-based modeling

 An agent-based model is a computational problem in which the fundamental unit

of analysis is the actual economic agent, rather than some aggregate or average of agents

(Epstein and Axtell 1996). The designer of an agent-based model imbues each agent

with preferences and behaviors, then allows the agents to interact. Those interactions

result in changes in agents’ endowments, and possibly in their future preferences and

behaviors. Over repeated iterations, equilibria may or may not emerge (Tesfatsion 2006).

The key benefit of the agent-based approach is that it imposes no limits on heterogeneity.

Additional degrees of heterogeneity may be added to an agent-based model at very low

cost. Support for arbitrary degrees of heterogeneity makes agent-based modeling the

ideal vehicle for incorporating behavioral and experimental economics into broader

economic models (Macal and North 2010).

 To get the flavor of agent-based modeling, consider a simple model of supply and

demand. Suppose there are S identical sellers with supply schedule Qs = a + bP, and B

identical buyers with demand schedule Qd = c – dP. In equilibrium, the quantity supplied

equals the quantity demanded, so the equilibrium price is found by setting SQs = BQd and

solving for P. The equilibrium price is (Bc-Sa)/(Sb+Bd), and the equilibrium quantity is

S(a + b(Bc-Sa)/(Sb+Bd)). When a=100, b=10, c=20, and d=7, a market with 1000 buyers

and 50 sellers would produce sales of 6000 units at a price of 2 per unit. If the market

9

then experienced a negative demand shock, and c dropped from 20 to 17, the new

equilibrium would be 5800 units at a price of 1.6 per unit.

 A simple agent-based model of supply and demand produces the same results.

Consider the simplest version of such a model: identical buyers, identical sellers, and a

Walrasian auctioneer. Each period the auctioneer determines the total-surplus-

maximizing price, and buyers and sellers are allowed to trade at that price (and only at

that price). The total-surplus-maximizing price is, of course, the same as the equilibrium

price in the Econ 101 model. Appendix 1 presents such a model, implemented in the

Python programming language. Figure 1.1 shows that the agent-based model produces

the same results as its Econ 101 counterpart. Before the demand shock, each period sees

6000 units sold at a price of 2 per unit. After the demand shock (in period 50), each

period sees 5800 units sold at a price of 1.6 per unit.

Figure 1.1: Identical buyers, Walrasian auctioneer

10

 Notice in Figure 1.1 that inventories are always zero. The Walrasian auctioneer is

able to foresee the demand shock and adjust production accordingly; therefore suppliers

are never left with unsold goods. In real life, this would be unlikely. The reason the

model produces an unrealistic prediction is that it assumes a surplus-maximizing

auctioneer. But this auctioneer does not exist in real life. What happens if we remove

the auctioneer from the model, and allow agents to set prices directly?

 Consider a simple algorithm for price-setting: at the end of each period, each

seller compares its sales with those of the previous period. If sales rose (fell) by X%, the

seller raises (lowers) prices by X% in the next period. In setting prices, the seller uses

only local knowledge (its own supply schedule and inventory). As Figure 1.2 shows, the

surplus-maximizing equilibrium price still emerges after a shock to demand, even without

a Walrasian auctioneer. The difference is that the adjustment is not instantaneous.

Sellers are unprepared for the demand shock, and inventories spike in the period of the

shock. Sellers respond by slashing prices. Prices fall too far, partially offsetting the

demand shock. Sellers then adjust in the other direction. Over time, average price

converges to the expected equilibrium. Without the auctioneer, the equilibrium must be

discovered; it must emerge.

11

Figure 1.2: Identical buyers, price-setting sellers

This simple example demonstrates the overlap between agent-based models and rational

choice models: in both modeling styles, individuals drive the model. The styles differ in

the way that they express these individuals. Rational choice models employ rational

agents, and produce closed-form results. Agent-based models employ arbitrary agents,

and produce emergent results. Each style has its advantages. Rational choice models use

rational expectations, so they are immune from the Lucas critique. Agent-based models

support any type of expectations, so they allow higher degrees of heterogeneity. Rational

choice models produce closed-form results, so their predictions can be tested

econometrically. Agent-based models produce emergent results, so they do not require

mathematical tractability.

 The agent-based modeler must address the susceptibility of agent-based models to

the Lucas critique. At first glance, it may seem that abandoning rational expectations is

12

an advantage, not a disadvantage: after all, real-world agents are not always rational.

But the assumption of rationality is safer than the assumption of irrationality; rationality

should be the point of departure. From an agent-based perspective, it is all too easy to

implement an agent in terms of rules rather than preferences. Rule-driven agents will

obey those rules even when it is not in the agent’s interests to do so; preference-driven

agents attempt to maximize their own utility, and will alter their behaviors in response to

policy changes. To address the Lucas critique, the modeler must model preferences.

 Modeling preferences not only addresses the Lucas critique; it “can throw light on

... endogenously arising innovative behaviour of agents as best response strategies”

(Markose 2005, F186). But Fagiolo, Moneta, and Windrum (2007, 208) note that the

Lucas critique may still be relevant, even when modeling preferences: agent-based

models are frequently calibrated according to real-world conditions, and “calibration has

a strongly conservative tendency.” If preferences are influenced by calibration, agents

are actually behaving in policy-invariant ways—adhering to behaviors that were more

appropriate under a different policy regime—even though it seems they are reacting to

policy changes. The subtle nature of this problem makes agent-based models even more

susceptible to the Lucas critique than the econometric models against which the critique

was first leveled. So a disadvantage of agent-based modeling, relative to rational choice

modeling, is that the former must work to avoid the Lucas critique, while the latter is

immune by construction.

 Another disadvantage of agent-based models, relative to rational choice models, is

that they are more susceptible to outright errors. A rational choice model produces a

13

closed-form solution, each step of which may be checked by skeptics. An agent-based

model produces an emergent solution by employing a computer program which is usually

difficult to read and even more difficult to verify. (The simple agent-based model of

supply and demand described earlier, for example, runs to four pages.) A reader who

disbelieves the predictions of an agent-based model is forced to wade through pages of

computer code, looking for something to criticize. Such a model is more likely to be

ignored than rejected. It is true that a similar charge could be made against some rational

choice models, with appendices containing proofs of theorems and lemmas that span

many pages. But people learn mathematics from their earliest days in school; demanding

that the reader work through a few pages of proofs may be acceptable. Demanding that

they learn computer programming is not.

 Agent-based modelers have made many attempts to address this criticism. For

example, as Tobias and Hofmann (2004, 1.3) note, “the use of already developed

simulation frameworks ... increases the reliability and efficiency” of agent-based models.

Such frameworks include AgentSheets, Ascape, Breve, Cormas, ECHO, JADE, Madkit,

MAGSY, MASON, MIMOSE, NetLogo, Ps-i, Quicksilver, RePast, SimAgent, SimPack,

StarLogo, Sugarscape, Swarm, TeamBots, and VSEit. The sheer number of frameworks,

by itself, indicates a lack of consensus on the best approach to agent-based modeling. A

key challenge for agent-based modelers is to converge upon a consensus approach that

combines brevity with reliability. The emergence of such a consensus will constitute a

major breakthrough in the field. Until that breakthrough arrives, modelers are left to their

own devices.

14

1.4 Agent-based modeling and public choice

 The motivation for such a breakthrough will continue to mount, however, as

agent-based models show greater degrees of descriptive and predictive power. This

breakthrough is likely to come in fields in which real-world complexity exceeds the

capacity of mathematical modeling. Public choice is one such field: for as Buchanan and

Tollison (1984, 14) put it, “[by] any comparison with politics, economic theory is

simple”. Economic interaction is impossible until “political exchange” has first occurred,

and political exchange “necessarily involves all members of the relevant community

rather than the two trading partners that characterize economic exchange” (ibid., 14).

This combination of economic and political exchange occurs, for example, in the

development of regulatory regimes: agents’ trading behaviors are shaped by regulations

over which they themselves, as voters, may have some degree of influence. The decision

to trade is a private choice; the decision to regulate is a public choice. Yet the same agent

is involved in both, and each impacts the other. As Tullock (2000, 5) observes, “the same

people engage in market activities and in politics.” Models of political behavior should

recognize this.

 That agent-based modeling is an ideal vehicle for exploring public choice is made

clear by a closer examination of the entities that public choice scholars seek to

understand. At the most elemental level, Buchanan and Tollison (1984, 13) criticize

analysis of the political sector which “models the government as some sort of monolith,

with a being of its own, somehow separate and apart from the individuals who actually

participate in the process.” The “government” is comprised of many different types of

15

individuals—all of them self-interested, in the sense of homo economicus, but potentially

with very different utility functions. In the legislative and executive realms, some pursue

power for its own sake; some pursue power for monetary gain; some pursue power

because they sincerely want to help others. Inevitably, too, some discover that doing

good can also mean doing well, and that power carries unexpected charms. Utility

functions change over time and with experience. Shifting utility functions are difficult to

model mathematically; they are highly suited to an agent-based approach.

 Modeling “government,” however, is about more than modeling group formation;

it is also about modeling group decision-making and group implementation. In each of

these areas, agent-based modeling offers advantages. Wagner (2007, 71) notes, for

example, that crafting a government budget is a process “of bottom-up emergence, in

which the aggregate entity called a budget is generated” via competition among political

agents. Modeling this process of political exchange is like modeling the process of

economic exchange: a model that assumes equilibrium, rather than allowing equilibrium

to emerge, is missing something important. (In real life there is no Walrasian

auctioneer.) Even when a budget does emerge, its implementation is left to bureaucrats,

whose interests may not coincide with those of the budget’s writers. As Niskanen (1968,

293) first observed, bureaucrats are not always best described as actors “who, for

whatever reason, want to be efficient.” Bureaucrats have their own utility functions, and

bureaucrats are affected by the institutions within which they operate. “The theory of

bureaucracy,” wrote Tullock (1976, 27), “should be based upon the assumption that

bureaucrats are as self-seeking as businessmen.”

16

 Agent-based modeling offers another key advantage for public choice scholars:

the ability to merge related but distinct models. Consider two separate models, one of the

budgeting process and another of the budget-maximizing bureaucrat. The bureaucrat

may belong to a labor union that places pressure on the budgeters (Tullock 1987), but this

connection between the two models is missing. Merging two mathematical models into

one is usually not feasible, while merging two agent-based models is a much simpler

task. This merging can be carried further, to bridge the gap between public choice and

macroeconomics. In macro models that feature the accounting identity GDP = C + I + G

+ NX, G is usually taken to be either exogenous or a function of C, I, and NX—thereby

completely ignoring over 50 years of study into the determination of G. An agent-based

treatment of G, when merged with agent-based macro models, makes public choice

directly relevant to macroeconomists.

1.5 Gordon Tullock: agent-based modeler

 The roadmap for the incorporation of agent-based modeling into public choice

was defined by Gordon Tullock himself. While exploring what he called “the General

Irrelevance of [Arrow’s] General Impossibility Theorem” (Tullock and Campbell 1970,

98), Tullock created—in 1970!—the first agent-based model in public choice. In

“Computer Simulation of a Small Voting System,” Tullock and Campbell describe a

computer program to explore cycling when a committee faces multiple motions, each of

which has multiple dimensions. “Because most issues in the real world probably have

more than one dimension,” they write, a computer model “should give a more realistic

17

measure of the importance of cycles in small voting bodies than has been made thus far”

(ibid., 99). They invoke their model with up to five dimensions, up to six motions, and

up to 25 committee members. “The most interesting feature” of their model, they report,

“is that the difference made by adding more dimensions is small” (ibid., 101). They also

find that in a two-dimensional issue space with three voters, there can be no cycles.

“Although this is obvious when analysed,” they write, “it was at first unexpected” (ibid.,

103). This production of unexpected insights is one of the promises of agent-based

modeling.

 Despite its usefulness, this would be the last agent-based model Tullock would

create. One can only speculate on the reasons he did not continue his foray into agent-

based modeling. Perhaps the technology at the time proved too unwieldy for extensive

use; their model was, after all, run on punch cards. Perhaps the computers of the time

were just too slow. Perhaps no one asked for the computer code that they offered to

provide upon request. Perhaps the prospect of continuing to implement models in Fortran

and Algol simply did not appeal to Tullock, or to others.

 It is certain, however, that Tullock did not abandon the approach for methological

reasons. A strict adherent of methodological individualism, Tullock’s models are

unfailingly expressed in terms of agents rather than aggregates. In “Information and

Logrolling,” for example, Tullock (1983a, 33) creates several agent-based models

“intended to be small-scale models of real-world situations.” He creates models “with a

very small number of people” because “such examples are easier to deal with” (ibid., 33).

But while using a small agent population “does not affect the conclusion,” it nonetheless

18

imparts an “aura of unreality” to the analysis, and this Tullock laments (ibid., 33). It is

regrettable that Tullock did not create an agent-based model in this instance. By doing so

he would have dispensed with the “aura of unreality” and bolstered his claim that the

small population “does not affect the conclusion” (ibid., 33).

 Tullock’s recognition of the importance of agent heterogeneity is a recurring

theme in his work. In “Hotelling and Downs in Two Dimensions,” Tullock (1967a)

extends Hotelling’s and Downs’s spatial model to multiple dimensions. He notes that in

Downs’s version of the model, “the distribution of the voters becomes crucial” (ibid., 56).

Concerning that aspect, Tullock notes that the “distribution of the nonvoters would be

quite different in different models, and this could be investigated quite easily” (ibid., 57).

Tullock then analyzes logrolling in a similarly multidimensional space, pausing to note

with regret that, due to the limits of his geometric approach, “we will have to represent

the preferences of interest groups, not individuals. Interest groups, of course, are built up

out of individuals, and normally do not represent a group of people with identical

preferences, but people who feel strongly on one issue and less strongly on others” (ibid.,

58). In this case Tullock has taken an approach common in economics: he has abstracted

away from heterogeneity in favor of “an approximation of the interest group [average]

preferences” (ibid., 58). It is clear that Tullock regrets having to do this.

 A few years later, in “A Simple Algebraic Logrolling Model,” Tullock (1970)

switches to an agent-based approach. Tullock considers “those situations in the real

world in which we observe logrolling” and writes that “we observe immediate differences

in the structure of the individual preferences... individuals are assumed to have intense

19

preferences on certain subjects” (ibid., 420). He then illustrates his model with three- and

five-dimensional examples. In each version, Tullock demonstrates that in the presence of

logrolling, “less than a majority of the voters... may be able to control the outcome”

(ibid., 423). The distribution of preferences, coupled with differences in district

configurations, determines the degree to which a minority of voters can do this. Tullock

concludes by stating that “this model... provides a basis for future research by

demonstrating that it is possible to obtain [Buchanan and Tullock’s 1962] conclusions

which differs from the widely used spatial models only by a minor change in parameters”

(ibid., 424). A decade later he followed his own advice and explored the issue further in

“Why So Much Stability?” (Tullock 1981). He extends his five-member legislative

model to 25 members and attempts to explain why, in such a system, “not only is there no

endless cycling, but acts are passed with reasonable dispatch and then remain unchanged

for very long periods of time” (ibid., 189). An agent-based model of logrolling,

calibrated with an agent population reflecting a country’s actual population and the form

of its legislature, would be the ideal vehicle to verify Tullock’s answer: that “this

stability [is not] a true equilibrium,” but rather “a random member of a large set [of

outcomes that] will be left unchanged for long periods of time” (ibid., 189).

 Tullock will always be associated with the concept of rent seeking. In “Efficient

Rent Seeking” (Tullock 1980), Tullock considers rent seeking as a game with a small

number of heterogeneous players. He begins with an assumption that “the individuals

can figure out the correct strategy” for optimal bidding for rents, and that “they assume

that the other people will be able to figure it out” as well (ibid., 101). He builds an

20

example of a rent-seeking game with eight different functional forms for probabilities of

winning and different numbers of players (2, 4, 10, and 15). From a social welfare point

of view, this game can have three different outcomes, which Tullock calls “zones.” In

the first zone, “expectancy of the players, if they all play, would be positive”: the prize

exceeds the cost of obtaining the prize (ibid., 102). In the second zone, “the sum of the

payments made by the individual players is greater than the prize; in other words, it is a

negative-sum game” (ibid., 104). In the third zone, “the individual players make

payments that are higher than the prize. It might seem obvious that no one would play

games of this sort, but, unfortunately, this is not true” (ibid., 104). The implications are

obvious: “as a good social policy, we should try to avoid having games that are likely to

lead” to zones two and three (ibid., 109). We should “attempt to lower the cost of rent

seeking, and ... move ... into zone I” (ibid., 112). But how, in the presence of

heterogeneous agents, does one structure the game to accomplish this result? Agent-

based modeling provides a solution: by extending Tullock’s 15-agent example to larger,

more representative populations, one can realistically compare different versions of the

game.

 The creation of small, illustrative, example-oriented models continued throughout

Tullock’s professional life. In “A New and Superior Process for Social Choices”

(Tideman and Tullock 1976) , Tullock and coauthor T. Nicolaus Tideman turn their

attention to demand revelation. They describe how “Vickrey showed that it would be

possible to motivate individuals to reveal their true supply and demand schedules for a

private good” and thus extend that concept to public goods (ibid., 1146). They begin

21

with “two alternatives, which may be conceived of as two policies or two candidates”

(ibid., 1147). They “then show how the process can be extended to more than two

options” (ibid., 1147). The important feature of their model is that individuals may have

different preferences. In a reply, Riker (1979) takes issue with the conclusions reached

by Tideman and Tullock. Riker offers an agent-based model of his own, with nine

classes of voters. Tideman and Tullock (1981, 325) respond to “the last case given by

Riker, in which there is in excess of three million voters, with a coalition of one hundred

and ten of these” able to hold sway over the majority. Tideman and Tullock conclude

that “Riker agrees with us that coalitions are possible in the demand revealing process,

but apparently he does not agree with us that they are much less likely than in ordinary

voting. It can be said, however, that the has not demonstrated that they would be more

likely than they are with ordinary voting, only that they can exist” (ibid., 328). In this

exchange, the two sides are arguing about a set of questions that easily could be answered

by an agent-based model, the workings of which are not in dispute.

 Tullock again turns to small example models in “Income Testing and Politics”

(Tullock 1982). He begins with a model that “has been designed ... to be extremely

simple and straightforward and hence easy to follow” (ibid., 99). He had noted that “no

direct transfer of the conclusions from the model into the real world is possible,” because

“the consequences we draw from this political model are very heavily affected by the

detailed assumptions about things such as preference curves and number of people”

(ibid., 99). In such a limited model, he suggests, it would not be possible to include

enough real-world detail to produce real-world conclusions. Tullock nevertheless

22

combines the model’s results with “unfortunately not very sophisticated” empirical

evidence to conclude that “in most of the cases in which income-tested programs have

been converted into universal programs, the poor have been injured” (ibid., 116). This is

a strong statement. In the 30 years that have passed since he made it, more empirical

results have surely been obtained. Those results, in conjunction with a stronger, agent-

based model, could strengthen or refute Tullock’s conclusion.

 Tullock explores government redistribution further in “Horizontal Transfers”

(Tullock 1983b). In an essay nearly a decade earlier, Tullock (1974, 7) had observed that

governments transfers do not necessarily flow to the poor from the rich, but rather to

parties with “sufficient political influence to initiate the transfer” from parties whose

“political influence proved insufficient to stop it.” In “Horizontal Transfers” he

constructs a model to explain why. He begins “with a simple model, which the reader

may think unrealistic” (Tullock 1983b, 24). He agrees that the model has unrealistic

elements, but that “the model is much discussed in the relevant public choice literature,

and there are certain aspects of the model that can be observed in the real world” (ibid.,

24). His model examines transfers among five agents, each of whom votes on

redistribution policy. “The net result,” he suggests, is “that everybody has the same

amount of money that they entered with” (ibid., 28). In real life, this result “would not be

expected with only five voters,” but with “a larger number of voters it is not unrealistic”

(ibid., 28). An agent-based model would put Tullock’s claim to the test.

 An important element of agent-based modeling is emergence, another feature of

Tullock’s research. In “Proportional Representation,” Tullock (1967b) discusses how

23

proportional representation arose in France. The French system “differs from the Anglo-

Saxon system simply in that if no candidate gets a majority in the first balloting, a runoff

is held in a few weeks in which only a plurality is necessary for election. These simple

rules, together with the French talent for intrigue, have led to a functioning proportional

representation system” (ibid., 148). In other words, a system “approximating

proportional representation” has emerged from the combination of agent behaviors and

institutional rules (ibid., 148). Would such a system produce similar results in England?

An agent-based model would allow exploration of the extent to which this system is

applicable to other (non-French) distributions of agent behavior. In “The Politics of

Persuasion,” Tullock (1967c) examines the emergence of consensus. Tullock was

famous for not voting in national elections; the benefit was simply not worth the cost.

But his extensive writings show that he did engage in persuasion. The ability to persuade

others “is more likely to affect the outcome of [an] election than is voting,” Tullock

states, with the caveat that “[t]here will be very great variation” in individuals’ abilities to

persuade (ibid., 124). To quantify the effects of this, he creates a ten-agent, ten-opinion

model, and shows how majority opinion emerges. In this model, Tullock demonstrates

two virtues of agent-based modeling. First, different distributions of agents can produce

different patterns of outcomes. Second, the persuasion model can be combined with the

earlier logrolling models to predict actual election results. Voters might, for example, be

persuaded that ethanol subsidies are inefficient; yet these same voters elect

representatives who support ethanol subsidies. The creation of a single model that

explains both phenomena is a topic worthy of research.

24

 Above all, Tullock never loses sight of the fact that agent behavior is the key to

understanding any problem in public choice. When Tullock turns to the question of voter

turnout, for example, he asks: “What is the payoff to the individual from voting?”

(Tullock 1967d, 108). A voter for whom “the estimated [benefit] is less than the cost of

becoming informed ... will not bother” (ibid., 103). The resulting concept of rational

ignorance explains how interest groups come to dominate the political process: “the

politician, in making up programs to appeal to rationally ignorant voters, would be

attracted by fairly complex programs which have a concentrated beneficial effect on a

small group of voters and a highly dispersed injurious effect on a large group of voters”

(ibid., 103). Rational ignorance also explains why “charitable activity is likely to be

badly designed and ineptly carried out” (Tullock 1966, 142). Donors “are apt to be

exceptionally ill informed about the effects of their gifts” (ibid., 142) because “incentives

for becoming well informed are extremely weak” (ibid., 146). Even the irrational can be

rational in the right circumstance: in dangerous situations, “[y]ou might threaten your

opponent with irrational behavior on your part and the threat is indeed rational” (Tullock

1972a, 66). Tullock then says that the “existence of this type of loss of temper then

automatically produces a bargaining range” (ibid., 66). (The behavior of Iraqi leader

Saddam Hussein, prior to the US invasion of 2003, is a relevant case study: Hussein

sought to produce, and indeed did produce for a period of time, a bargaining range.) In

modeling revolutions, Tullock observes that “if we are attempting to study the dynamics

of the revolution... we should turn to examination of the utility calculus of the

participants” (Tullock 1971, 94). Revolutions occur so infrequently, Tullock says,

25

because a single participant’s risk is likely to be greater than the potential reward. Yet

revolutions do, in fact, occur—though, as Tullock suggests, most forced changes of

government come through coups d’etat. In each of these instances, Tullock resorts to

analysis of the individual. Tullock, it might be said, is a natural-born agent-based

modeler.

1.6 Conclusion

 The history of modeling in political science has paralleled the history of modeling

in economics. In the beginning, economists and political scientists modeled by narrative.

Then came the explosion of mathematical economics. During the postwar period,

mathematical modeling came to dominate the economics profession; not long thereafter,

the economic style of modeling “invaded” (Tullock 1972b, 317) other social sciences.

The invasion of political science was led by Tullock, among others, who combined to

produce “a sizeable literature by economists and use of recognizable economic methods

in the field normally described as political science” (ibid., 317). This approach to

political science would come to be known—to Tullock’s occasional dismay—as public

choice. The world of economic modeling has, in the meantime, continued to evolve, and

agent-based modeling offers the potential to address many problems in economics that

hinge on heterogeneity, network effects, and emergence. The world of public choice

modeling is not far behind, and one of its founders, Gordon Tullock, has already shown

the way.

26

2. AN AGENT-BASED MODEL OF REGULATORY CAPTURE

2.1. Introduction

 “People of the same trade seldom meet together, even for merriment and

diversion, but the conversation ends in a conspiracy against the public, or in some

contrivance to raise prices.” So said Adam Smith (1994 [1776], 148), in a famous quote

on the formation of cartels. Taken out of context, Smith’s quote would seem to be a

blanket indictment of business owners: left unchecked, they will collude, to the

detriment of their customers. Standing alone, this quote is easily read as a justification

for government regulation of commerce. If businesses will inevitably collude, the public

must be protected from them.

 Yet Smith, in this famous quote, is not talking about how government regulation

can protect the public from predation. In fact, he is talking about the exact opposite. His

quote occurs in the middle of a passage on government regulation, and he is debunking

the notion that regulation exists for the benefit of the consumer. Instead, Smith claims,

regulation exists for the benefit of business—and the government enforces regulation not

to protect the consumer, but in exchange for a cut of the rent. “The pretence,” Smith

writes, that regulations “are necessary for the better government of ... trade, is without

any foundation” (ibid., 149). The “prerogative of the crown” to establish regulation

27

“seems to have been reserved rather for extorting money from the subject, than for the

defence of the common liberty against ... oppressive monopolies” (ibid., 143). “The

government of towns ... was altogether in the hands of traders and artificers; and it was

the manifest interest of every class of them, to prevent the market from being over-

stocked ... with their own particular species of industry” (ibid., 143).

 Smith does not use the term “regulatory capture”; and given his views, it is

possible that he would have objected to it. To call this phenomenon “regulatory capture”

is to imply that regulation has somehow gone wrong—that it started out on the right

track, but was then “captured” by the interests it was meant to control. Smith is clearly

expressing a more jaundiced viewpoint: the very purpose of regulation—at least the sort

of regulation that Smith has in mind—has always been the establishment of cartels.

Regulation has not been “captured” so much as bred in captivity. “It is to prevent [a]

reduction in price, and consequently of wages and profit, by restraining that free

competition which would most certainly occasion it, that all corporations [by which he

means civic regulatory bodies] ... have been established,” says Smith (ibid., 142). And

how does this happen? “The trades which employ but a small number of hands, run most

easily into such combinations,” he says (ibid., 145): a small number of merchants can

easily organize a cartel. And these cartels are “seldom opposed” by the citizens, who

“have commonly neither the inclination nor fitness” to organize (ibid., 147). In fact, not

only do they not resist the cartel, they may even support it: “the clamor and sophistry of

merchants and manufacturers easily persuade them that the private interest of a part, and

of a subordinate part of the society, is the general interest of the whole” (ibid., 147).

28

 The idea that governments regularly conspire with businesses to swindle the

consumer is controversial. At some level, one simply does not wish to believe it—not in

a democracy, at any rate. Or one might believe that this occurs from time to time—

“crony capitalism”—but that it is the exception rather than the rule. As a description of

crony capitalism, Smith’s story is perhaps believable. But is Smith, in 1776, decrying

crony capitalism, or regulation in general? Regulation encompasses more than cartels; in

the modern era it includes the Food and Drug Administration, the Clean Air Act, the

Securities and Exchange Commission. Smith lived before the Industrial Revolution; he

predated the Clean Air Act by two centuries. Did Smith mean to indict all regulation as a

tool crafted by rent-seeking businesses? Is it fair to apply Smith’s words to regulation in

the modern world?

 According to Samuel Peltzman (1989), the consensus answer before the 1960s

was no. In fact, until the 1960s even the most narrow interpretation of Smith’s claim—

that regulation of monopolies served businesses rather than consumers—was largely

ignored. “Until the early 1960s,” Peltzman writes, “the prevailing theory of regulation

was ... called the ‘normative analysis as a positive theory’ ... This theory ... regarded

market failure as the motivating reason for the entry of regulation” (ibid.). Regulation

existed “to lessen or eliminate the inefficiencies engendered by ... market failure” (ibid.).

The “most popular culprit was natural monopoly,” he says (ibid.). “The main role of

utility regulators was held to be prevention of private exploitation of the market power

that would inevitably flow from natural monopoly cost conditions” (Peltzman 1993). Of

course, monopoly power was not the only market failure for which regulation was the

29

cure. Indeed, Peltzman wryly notes, the “ingenuity of economists ensures that the list of

potential sources of market failure will never be complete” (Peltzman 1989). And

“credulity is strained when the list of market failures grows at roughly the same rate as

the number of regulatory agencies” (Peltzman 1993). Nevertheless, for two centuries,

Smith’s depiction of regulation was simply not considered a serious theory of regulation.

 In those two centuries, regulation expanded far beyond the scale ever witnessed

by Smith. Smith recognized that geography was a key factor in the establishment of

regulation: the “inhabitants of a town, being collected into one place, can easily combine

together,” he wrote, while the “inhabitants of the country, dispersed in distant places,

cannot easily combine together” (Smith 1994 [1776], 145). Twenty-five years after his

death in 1790, steam engines had begun to traverse Britain; fifty-five years after his

death, telegraph lines connected Washington and Baltimore. Transportation and

communication were making the world smaller. And with a smaller world came greater

opportunities to organize, and to regulate. Between 1870—just eighty years after Smith’s

death—and the 1930s, “regulation proliferated over railroads, gas and electric utilities,

radio and television broadcasting, truck and air transport,” and other enterprises (McCraw

1975). Yet Smith’s unromantic—some would say cynical—view of regulation gained

little traction. The “reasons for regulation varied according to the industry involved,”

says McCraw, but “the notion of the ‘public interest’ continued to dominate the rhetoric

of reformers, the utterances of presidents, and the decisions of commissioners” (ibid.).

Lawyers were regulated by 1890; dentists by 1900; embalmers by 1910; beauticians and

barbers by 1930 (Stigler 1971).

30

 Smith had correctly foreseen that a shrinking world would mean more regulation.

The progress of technology ensured that this prediction would have come true under any

regime. But the arrival of the Great Depression, and the New Deal that it hatched,

spawned an unprecedented increase in regulatory zeal. Franklin Delano Roosevelt, one

might say, was never one to let a crisis go to waste. Three months after taking office,

Roosevelt signed into law the National Industrial Recovery Act (NIRA), describing it as

“the most important and far-reaching legislation ever enacted by the American Congress”

(Barber 1996, 29). The NIRA “authorized the president ... to create an administrative

apparatus to approve ‘codes of fair competition’ submitted by trade and industrial

associations (ibid., 29). A “flood of regulatory law” followed—all of it designed,

ostensibly, to protect the public from “enterprises ... with a propensity toward corruption”

(McCraw 1975). Roosevelt’s administration achieved a “multiplication of regulatory

agencies” on a scale never before seen in the United States (ibid.). The NIRA, the

Agricultural Adjustment Act, the Securities Act, the Securities and Exchange Act, the

National Housing Act, the National Labor Relations Act, the Social Security Act, and the

Fair Labor Standards Act were all passed during the regulatory outburst of the New Deal

(Funk and Wagnalls 1971, 17:277).

 It was in the wake of the New Deal that Smith’s skepticism toward the “public

interest” view of regulation began to grow tiny roots. In 1936, Roosevelt established the

Committee on Administrative Management, tasked with streamlining the executive

branch. Its report the following year described a problem that Roosevelt had not

expected: the regulatory agencies had become a “headless fourth branch of government”

31

(Curtin 2009, 51), accountable to neither the president nor Congress. In response to this

perceived attack on regulation, Roosevelt’s appointee to the Securities and Exchange

Commission, James M. Landis, wrote his 1938 defense of regulation, The Administrative

Process. Regulatory agencies, says Landis, act not from self-interest, but rather with

“judgment [that] flows from a determination to promote the public interest” (Landis

1938, 64). He rejects the “fourth branch” criticism resoundingly: the “desirability of

four, five, or six ‘branches’ of government would seem to be a problem determinable not

in the light of numerology but rather against a background of what we now expect

government to do” (ibid., 47). Landis defended regulation boldly: regulation is what

government should be doing. To regulate is to serve the public.

 The outbreak of war put a temporary end to the debate over regulation. World

War II saw the most extensive government involvement in the economy in U.S. history,

with price controls imposed on goods comprising about 20% of the typical consumer’s

market basket (Rockoff 1984, 127). The argument that regulation amounted to a

conspiracy between government and businesses gained no traction in an atmosphere of

war, even one fought on distant continents. By the end of the war, Roosevelt was dead,

and so was the Depression. But most of the New Deal agencies survived.

 The postwar period saw a nascent return to skepticism about regulation.

Commentators began to notice how regulators “seemed to follow doctrines that equated

the ‘public interest’ with whatever the most powerful elements of [industry] wanted”

(McCraw 1975). The first formal diagnosis of regulatory capture came in 1952, when

Samuel Huntington claimed that the Interstate Commerce Commission, tasked with

32

regulating the railroads, had ended up serving the railroad industry instead. “When such

a commission loses its objectivity and impartiality by becoming dependent upon the

support of a single narrow interest group,” wrote Huntington (1952), “obviously the

rationale for maintaining its independence has ceased to exist.” He recommended its

abolition. Three years later, Marver H. Bernstein’s book Regulating Business by

Independent Commission generalized Huntington’s analysis, describing how business

interests might “capture and control” the agencies charged with their regulation

(Bernstein 1955, 146). And five years after that, in 1960, James M. Landis—the staunch

defender of regulation in 1938—performed a “stunning turnaround,” submitting to

President-elect Kennedy “a report roundly criticizing [regulatory] commissions and

recommending sweeping reforms” (Ritchie 1980).

 The stage had now been set for a paper that, in Peltzman’s (1993) words,

“profoundly affected the course of intellectual inquiry” into the theory of regulation.

George Stigler and Claire Friedland posed an innocent-sounding question: if regulation

mitigates monopoly power, shouldn’t we see a price difference between regulated and

unregulated markets? Stigler and Friedland (1962) provided an answer that few

expected: in a study of regulated and unregulated providers of electricity, regulation

seemed to have no effect on prices. There is a certain irony in the fact that this result

turned out to be incorrect; as Peltzman (1993) explains, a coding error led Stigler and

Friedland to understate the effects of regulation by a factor of 10. Nevertheless, the result

prompted several hundred more empirical studies of regulation. Many of these studies

suggested that regulation of monopolies had little to no effect on consumer prices, while

33

regulation of competitive industries tended to raise, not lower, consumer prices (ibid.).

Both of these results run counter to the view that regulation benefits the consumer.

 There is no evidence that Stigler and Friedland had Adam Smith’s hypothesis in

mind when they presented their results. Instead they provide two rather innocent

explanations for their findings of “the ineffectiveness of regulation” of electricity: the

lack of “any large amount of long run monopoly power” for energy production, and the

inability of the regulator to “[force] the utility to operate at a specified combination of

output, price, and cost” (Stigler and Friedland 1962). But these were not compelling

explanations. “As with much else in economics,” Peltzman (1993) writes, “evidence

preceded theory. In this case, the evidence ... seemed to ask for an explanation of why

regulation had come to work in this seemingly perverse way.” Nine years after his article

with Friedland, Stigler would provide a new explanation for the phenomenon they had

observed—an explanation that echoes Adam Smith.

 Stigler (1971) offers the first economic theory of regulation. Before this

landmark paper, “normative analysis as a positive theory” held sway: regulation exists

because it is in the public interest, and government’s role is to pursue the public interest.

Stigler offers a very different explanation for the existence of regulation: regulation

exists because there are entities that demand it, and there are entities that can supply it.

Stigler could not have been more clear about this: “as a rule,” he says, “regulation is

acquired by ... industry and is designed and operated primarily for its benefit” (ibid.).

“[E]very industry or occupation that has enough political power to utilize the state” will

do so (ibid.). The view that “regulation is instituted primarly for the protection and

34

benefit of the public at large” is “idealistic” (ibid.). The “problem of regulation” is not

why it sometimes goes wrong, but “why an industry ... is able to use the state for its

purposes” (ibid.).

 Stigler’s explanation is almost identical to that provided by Smith. “The state has

... the power to coerce,” and will use this power if it is paid to do so (ibid.). “The

industry which seeks regulation must be prepared to pay” (ibid.). “These costs ...

increase with the size of the industry seeking the legislation” (ibid.). Stigler even invokes

the same city/country distinction described by Smith: “expenses in the solicitation of

support ... are higher for a diffused occupation than a concentrated one” (ibid.). Stigler

expresses the same deep capture that Smith described. Stigler does, however, extend

Smith in three ways. First he explains how regulatory capture can exist even in a

democracy. In an unattributed allusion to Downs (1957), he explains that the “voter’s

[efforts] to learn the merits of individual policy proposals ... are determined by expected

costs and returns” (Stigler 1971)—it is not rational for most voters to care. In

consequence, the regulator ignores them entirely. Second, he expresses the supply-

demand equilibrium explicitly. Third, he extends the collective action problem to free

riders, as in Olson (1965).

 Stigler’s colleague Richard Posner describes Stigler (1971) as “pathbreaking”

(Posner 1974). Posner calls the public interest theory of regulation “unacceptable,”

“unsatisfactory,” and “contradicted by ... evidence” (ibid.). In contrast, the economic

theory described by Stigler is “precise and hard-edged” and “illuminating” (ibid.). But

Posner’s assessment of Stigler’s theory is not uniformly positive. The economic theory is

35

“promising,” but cannot “be said to have, as yet, substantial empirical support” (ibid.).

The theory “has not yet been refined to the point where it enables us to predict specific

industries in which regulation will be found” (ibid.). The “economic theory is still so

spongy that virtually any observations can be reconciled with it”(ibid.). A particularly

puzzling weakness, according to Posner, is the fact that “so many regulated industries

appear to be either extremely atomistic (like agriculture) or extremely concentrated (like

local telephone or electrical service)” (ibid.). How can the economic theory explain this

fact pattern?

 Peltzman was also impressed by Stigler’s “pioneering” work, describing it as “one

of those rare contributions—rare for the rest of us, though not for him—which force a

fundamental change” (Peltzman 1976). Stigler was able “to crystallize a revisionism in

the economic analysis of regulation that he had helped launch in his and Claire

Friedland’s work” (ibid.). It is clear that Peltzman admired Stigler, because Peltzman

takes particular care to acknowledge his “great intellectual debt to Stigler” while

nevertheless expressing “dissatisfaction with some of Stigler’s conclusions” (ibid.). That

dissatisfaction, and apparent encouragement from Posner, led Peltzman to write his

“extension and generalization” (ibid.) of Stigler (1971).

 Peltzman (1976) formalizes Stigler’s model. Peltzman begins with an elected

regulator/legislator who wishes to maintain office. Maintaining office means winning a

majority of votes. Votes are gained by conferring benefits and lost by imposing taxes.

Benefits accrue to small, concentrated groups, while taxes are imposed on large,

unorganized groups. Arranging the transfers is not without cost: the beneficiaries must

36

be organized, and the voters may need to be placated in some fashion. (Peltzman calls

this “education”; Smith calls it “clamor and sophistry.”) Imposing taxes also means

deadweight costs—a restriction that Peltzman describes as “less innocent than it

appears,” as it “rules out ... transfer[s] ... with no allocative effects” (ibid.).

 The voter plays a more significant role in Peltzman’s model than in Stigler’s

formulation. In Peltzman’s model, “the political process must pay [heed] to marginal

opposition” (ibid.). Peltzman thus answers one of Posner’s key questions. Monopolies

are regulated because the regulator can seize a portion of their rents and refund them to

voters; perfectly competitive industries are regulated because the regulator can help

generate rents at little political cost. The fact that the equilibrium is somewhere in the

middle explains why regulated industries are “either extremely atomistic ... or extremely

concentrated” (Posner 1974). As Dal Bo (2006) puts it, the “incentives for ‘regulatory

entry’ appear highest when industry is fully monopolistic or perfectly competitive to

begin with, because the power gains from moving price towards a middle range are

highest.” Peltzman’s model also explains why cross-subsidies exist: “minimization of

opposition ... from consumers” can be achieved by “exploiting differences among them”

(Peltzman 1976). For example, consider the market for long distance telephony. The

regulator benefits from a three-part regulatory structure: restrictions on competition for

providers, paid for by (implicit) taxes on users, with an offsetting subsidy for rural users.

When “one group of consumers has sufficiently large per capita demand ... relative to the

other group, the latter may become part of the winning group” (ibid.). In such a situation,

37

“political entrepreneurship will produce a coalition which admits members of the losing

group into the charmed circle” (ibid.).

 A sharp distinction had now been drawn between two theories of regulation: the

public interest theory and the economic theory. Readers familiar with the names Stigler,

Posner, and Peltzman will have recognized that all three were at the University of

Chicago. It is perhaps for this reason that the economic theory of regulation is associated

with “the Chicago view of public policy,” although it could equally “be seen as

complementary to the emerging literature on public choice, which was ... associated with

the names of Buchanan, Tullock, and the Virginia school” (Dal Bo 2006). Another

Chicago professor, Gary Becker, found himself “stimulated by the atmosphere created by

Stigler, Peltzman, Posner, and others” (Becker 1983), and crafted in response a somewhat

different take on regulation. Becker accepts Peltzman’s model as his starting point. He

begins by noting that the “political effectiveness of a group is mainly determined not by

its absolute efficiency ... but by its efficiency relative to [that] of other other groups”

(ibid.). A group benefits when it becomes relatively more efficient. Competition among

interest groups will therefore tend to promote efficiency. The implication is a

reconciliation between the public interest theory and the economic theory: regulation

prompts a pursuit of efficiency; pursuit of efficiency is welfare-enhancing; thus

regulation serves the public interest. “Becker argues that the political process will be

drawn toward efficient modes of redistribution in general and to efficiency-enhancing

regulation in particular” (Peltzman 1989). One might playfully paraphrase Becker by

38

saying that the regulator intends only his own gain, and he is in this led by an invisible

hand to promote an end which was no part of his intention.

 The writings of Stigler, Posner, Peltzman, and Becker allowed the economic

theory of regulation to gain widespread acceptance in the 1970s and 1980s. “By

conventional measures,” writes Peltzman, “the theory has been an academic success”

(ibid.). The “literature as a whole has made its mark on academic analyses of regulation”

(ibid.). It is interesting to note that this “academic success” occurred at exactly the same

time that the United States was witnessing widespread deregulation. The country saw a

“substantial elimination of regulatory constraints,” writes Peltzman, “unprecedented in

modern American history” (ibid.). “[E]ven as the ink was drying” on the economic

theory of regulation, “deregulation was sweeping aside many long-standing barriers to

competition” (ibid.). The theory was a success—except that “[n]ot one economist in a

hundred practicing in the early 1970s predicted the sweeping changes that were soon to

happen” (ibid.). Peltzman takes this in stride; this was “hardly the first or last forecasting

failure in economics” (ibid.). Nevertheless, “the fact that deregulation was such a

surprise partly reflects ... some general problems in the theory of regulatory entry and

exit” (ibid.). Peltzman describes deregulation as “one plausible response to forces that

called for regulatory change,” but “not ... the only plausible response”; “more or different

regulation would have been an equally plausible response” (ibid.).

 Peltzman considers “changes in the ... ‘economics’ of the regulated industries”

(ibid.) as a possible impetus for deregulation—a theme picked up by several later

researchers. Kroszner and Strahan (1999), for example, point to “broad technological,

39

legal, and financial innovations that altered the costs and benefits of ... regulations” as

factors in the deregulation of banking. Goff (1996, 133) says that “support [for

deregulation] within the air carrier industry for deregulation came primarily from

innovative firms like Federal Express.” In the electricity industry, “[t]echnological

change has reduced the economies of scale in power generation to a fraction of what they

were in preceding decades” (White 1996). “These changes arrive on the heels of more

than two decades of deregulatory activity” (ibid.). But Peltzman would not have been

convinced by this piecemeal defense of the economic theory. The economic theory

“purports to be a general model of the forces affecting regulation,” and Peltzman cannot

escape the conclusion that “the deregulation movement was selective” (Peltzman 1989).

Instead he chooses to “eschew a special-purpose absolution” of the economic theory

(ibid.). Peltzman concludes that the economic theory is “a modest step” that has proven

to be useful, but that “a full analysis of the scope and form of ... the institutional

underpinnings of regulation ... remains unwritten” (ibid.).

 Of course, it is possible that Peltzman is simply too modest. It is possible that the

deregulation movement in the 1970s was akin to the repeal of the Corn Laws in 1846: a

political shift induced by clear-headed arguments. Peltzman is willing to claim that had

these “deregulation initiatives ... been put to a vote of the American Economic

Association membership, all the initiatives would have passed with large majorities”

(ibid.). He goes on to say that “not since the rise of free trade in the nineteenth century

has so broad a professional consensus been so well reflected in policy” (ibid.). He is

40

unwilling to take credit for this fortuitous shift in policy, but it cannot be said that such

credit belongs anywhere else.

 This chapter presents an agent-based rendering of Peltzman’s 1976 model of

regulation. The technique of transforming a neoclassical model into an agent-based

model is called “agentizing” (Guerrero and Axtell 2011). As is often the case with

agentized models, the objective is to supplement, rather than supplant, the original

formulation. In particular, the agent-based approach permits exploration of the effects of

agent heterogeneity on regulatory regimes. This implementation extends the original

model by allowing bilateral regimes, and permits evaluation of the conclusions regarding

homogeneity and the size of government found in Peltzman (1980).

2.2. The model

 The model is written in Python, a general purpose computer language. Python

was chosen because it employs a rich and expressive syntax, is available at no charge
1
 for

many computer platforms, and encourages a concise programming style that is conducive

to publication. A model written in Python is likely to be about a fourth as long as the

same model written in Java (Lutz 2011, 1548). (For an introduction to programming

agent-based models in Python, see Downey (2012), chapter 10.)

 The basic unit of the model is the citizen. Each citizen is defined by five

attributes. The first attribute is the citizen’s potential income: the income the citizen

would receive in the absence of regulation. The second attribute is a measure of how the

1
 Python may be downloaded from www.python.org.

41

citizen reacts to increases in taxes, with 1 indicating no reaction, greater than 1 indicating

a decrease in effort, and less than 1 indicating an (improbable but theoretically possible)

increase in effort. The third attribute is the citizen’s ex-regulation approval of the

regulator, with 1 indicating full approval, 0 indicating full disapproval, and 0.5 indicating

indifference. The fourth attribute is a measure of how the citizen’s approval of the

regulator responds to changes in income. The response to a decrease in income is always

negative. A value of 1 means an approval response in constant proportion to the

decrease; greater than 1 means an increasing marginal response; and less than 1 means a

decreasing marginal response. The fifth attribute is the cost required to persuade the

agent to increase her support of the regulatory regime by one percentage point. The

agent-based nature of the model derives from citizen heterogeneity; no assumptions are

imposed concerning the distributions of these attributes across citizens.

 Each citizen belongs to exactly one group. A group may receive transfers from

any other group. In order to procure those transfers, a group may incur three types of

costs: a cost to persuade other groups, a cost to persuade the regulator, and a cost to

organize its own members. A tax is levied on each group in order to raise the necessary

transfers. By default, each group member pays the same tax rate, although this restriction

is later relaxed. The interpretations of “income” and “tax” are the same as in Peltzman

(1976): for “application to problems of regulation, [income] can be thought of as a

typical consumer’s surplus and [tax] a regulated price if producers are beneficiaries, or

[income] might be a producer’s surplus and [tax] the difference between the surplus-

maximizing price and the regulated price where consumers are beneficiaries.” In other

42

words, transfers may flow in either direction in the model. Unlike Peltzman’s model,

however, the agent-based model allows transfers in both directions at once.

 The total set of transfers in the model is called the regulatory regime. Regulators

are assumed to be elected by majority vote, so there is no distinction between the

regulator and the legislator. In Peltzman (1976), the regulator’s objective in crafting the

regime is vote maximization: a larger vote margin is preferred to a smaller vote margin,

even if both exceed 50%. In the agent-based model, the regulator may choose between

maximizing behavior and satisficing behavior. (A satisficing regulator would be as

content with 51% of the vote as with 100% of the vote.) Votes come from citizens. A

citizen bases her vote on five factors: her prior approval of the regulator, her actual

income under the regulatory regime, her potential income without the regime, her degree

of responsiveness to changes in income, and the degree to which she can be persuaded to

support a regime that is not otherwise in her own interests. The core model appears in

Appendix 2.A.

 Accompanying the model are three detailed implementations. The first

implementation, license.py, describes a licensing regime. Citizens are divided into

license holders and non-license holders, with the former receiving transfers from the

latter. The license implementation appears in Appendix 2.B. The second

implementation, subsidy.py, describes a regime of cross-subsidies. In this

implementation, an otherwise unviable regime is rendered viable by splitting the citizens

and granting a cross-subsidy to one of the subgroups. Labor unions are treated as a

special type of cross-subsidy. The cross-subsidy implementation appears in Appendix

43

2.C. The third implementation, bidirectional.py, supports a regulatory regime

characterized by bidirectional subsidies. This implementation extends Peltzman’s 1976

model to his 1980 analysis of the growth of government, and appears in Appendix 2.D.

2.3. The licensing model

 As a starting point, consider the licensing model. In the default version of this

model, there are 10,000 citizens. In the absence of licensing, each citizen would earn

$15,000. Some citizens are licensed. Licensing produces rents of $1000 for each

licensee. Each licensee will pay $100 in license fees, and it costs $50 per licensee to

organize support. A $1000 payment in “education” increases support for the regime

among nonlicensees by one percentage point. Natural entry and exit barriers to the

industry are low. Assume that voters are initially indifferent to the regulatory regime,

that there are no deadweight costs to taxes, and that their disapproval with decreases in

income is linear. The following specification explores this situation, gradually increasing

the percent of citizens with licenses from 1% to 99%:

import model, license

model.headings (["pct"])

for p in range (1, 100):

 pct = p / 100

 model.run (license.regime (percent=pct), ids=[pct], runs=1)

As the number of license holders increases, the volume of transfers increases, with more

transfers coming from fewer non-licensees. As a result, the tax rate imposed on

nonlicensees increases at a faster-than-linear rate. Figure 2.1 illustrates the results.

44

When the percent of citizens holding licenses reaches 80%, the tax rate on nonlicensees

required to finance the transfer exceeds 100%, and the regime becomes unattainable.

Figure 2.1: Tax rate by percent of citizens holding licenses

 The results of both Peltzman (1976) and Becker (1983) rely on the existence of

deadweight costs of taxation. When tax rates increase beyond a certain point, workers

withdraw from the labor market. After-tax income equals gross income times (1 -

taxrate), so deadweight loss enters the model as an exponent on (1 - taxrate), with larger

values mean higher deadweight losses. The following specification considers different

deadweight loss values:

import model, license

model.headings (["d", "pct"])

for d in [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]:

 for p in range (1, 100):

 model.run (license.regime (percent=p/100, deadweight=d),

 ids=[d, p/100], runs=1)

45

Figure 2.2 depicts the results. As potential deadweight losses increase, the maximum

viable tax rate decreases. However, the effect is insignificant when the percentage of

citizens holding licenses is small. Only when this percentage reaches 40% does the effect

become noticeable.

Figure 2.2: Tax rate by percent of citizens holding licenses and deadweight costs

 Figure 2.2 hints at a fundamental concept behind successful licensing schemes: if

both the number of licensees and the amount of the transfer are small, nonlicensees do

not object to the transfer. But as the size of the transfer grows, opposition mounts.

Consider a regime in which licensees comprise 1% of the population, with each licensee

willing to spend up to 10% of rents to persuade nonlicensees (“education” or “clamor and

sophistry”):

46

import model, license

model.headings (["d", "r"])

for d in [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]:

 for r in range (0, 110000, 10000):

 model.run (

 license.regime (received=r, sent=r*0.1, deadweight=d),

 ids=[d, r], runs=100)

Figure 2.3 relates the amount of the transfer to the resulting approval rating of the

regulator. Different deadweight costs produce very different results. When deadweight

costs are low, the regulator benefits from imposing a regulatory regime. When

deadweight costs are high, the regulator suffers. In between, the regulator benefits until

the amount of the transfer reaches a critical point. The regulator loses support by

imposing taxes but gains support by educating voters; the deadweight cost parameter

determines the relative strengths of these opposing forces.

Figure 2.3: Approval rating by transfer per licensee and deadweight cost

47

 The preceding results illustrate some of the comparative statics derived by

Peltzman (1976). Peltzman’s model assumes that all members of a group are

homogeneous. A key benefit of the agent-based approach is the ability to relax the

assumption of homogeneity without switching to a different model. A straightforward

extension of the previous example is the introduction of a distribution of deadweight

costs. The following code creates agents whose deadweight costs are distributed

lognormally. The lower bound of the distribution is 1.0, meaning no deadweight costs;

there is no upper bound. The sigma parameter dictates the degree of dispersion, with

zero meaning no dispersion (all agents share the same deadweight costs). Seven values

of sigma are explored:

import model, license

model.headings (["sigma", "r"])

for sigma in [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]:

 for r in range (0, 110000, 10000):

 model.run (license.regime (received=r, sent=r*0.1,

 deadweight=2.5, deadweight_sig=sigma), ids=[sigma, r])

Figure 2.4 shows the results. When dispersion is zero, the homogeneous result obtains:

the regulator’s approval rating hovers just above 50%. As dispersion increases, support

for the regulatory regime wanes. The higher the dispersion, the faster the decline in

approval. This explains why it “will pay the rational regulator to exploit differences

within the group that, taken as a whole, either wins or loses” (Peltzman 1976). If a subset

of the nonlicensee group has high deadweight costs, it is in the interest of the regulator to

identify and isolate that subset.

48

Figure 2.4: Approval rating by transfer per licensee and dispersion of deadweight costs

 The homogeneity assumption can be relaxed along any number of dimensions.

Different types of heterogeneity will alter the model’s results in different ways. The

following specification explores how the results from the homogeneous model compare

to the results from versions with different types of heterogeneity. The types of

heterogeneity are: potential income (lognormal), deadweight cost (lognormal), response

in approval rating due to lost income (lognormal), ex-regulation approval rating (normal),

and the amount the agent demands in “persuasion” to increase support for the regulatory

regime by one percentage point (normal). These five types are defined by:

dispersions = [

 {},

 {"potential_sig" : 1.0},

 {"deadweight_sig" : 1.0},

 {"response_sig" : 0.5},

 {"approval_sd" : 0.5},

 {"persuasion_sd" : 500}

]

49

The following specification introduces each type of heterogeneity in isolation of the

others:

import model, license

model.headings (["n", "r"])

for n,d in enumerate (dispersions):

 for r in range (0, 110000, 10000):

 model.run (license.regime (received=r, sent=r*0.1,

 deadweight=2.5, response=1.5, **d), ids=[n,r])

Heterogeneity in the responsiveness of agents to changes in income and in ex-regulation

approval ratings have little effect on the model’s results. All else equal, more dispersion

in income and in the cost of persuasion will increase approval of the regulatory regime.

The former effect is induced by the fact that more high-income agents implies a lower tax

rate: income is bounded at the lower end, but not at the upper end. More dispersion in

deadweight costs will decrease approval of the regulatory regime. See Figure 2.5.

50

Figure 2.5: Approval rating by transfer per licensee and types of heterogeneity

 Figure 2.5 depicts the independent effects of heterogeneity. It is also possible to

explore the cumulative effects of heterogeneity. First, define the homogeneous

characteristics:

homogeneous = {

 "deadweight" : 2.5,

 "response" : 1.5

}

Next, augment those characteristics with individual variation:

heterogeneous = {

 "deadweight" : 2.5,

 "response" : 1.5,

 "potential_sig" : 1.0,

 "deadweight_sig" : 1.0,

 "response_sig" : 0.5,

 "approval_sd" : 0.5,

 "persuasion_sd" : 500

}

51

Then exercise the model using both sets of characteristics:

import model, license

model.headings (["type", "r"])

for r in range (0, 110000, 10000):

 model.run (license.regime (received=r, sent=r*0.1,

 **homogeneous), ids=["homogeneous", r])

 model.run (license.regime (received=r, sent=r*0.1,

 **heterogeneous), ids=["heterogeneous", r])

As Figure 2.6 shows, the presence of agent heterogeneity significantly impacts the

predictions of the model. As the amount of the transfer grows, heterogeneity makes the

difference between approval and disapproval of the regulatory regime. Heterogeneity in

deadweight costs and ex-regulation approval exert downward pressure; heterogeneity in

responsiveness to losses in income and in persuasion exert upward pressure. The

cumulative effect of agent heterogeneity is to increase support for the regulatory regime.

Figure 2.6: Approval rating by transfer per licensee and heterogeneity status

52

 Figure 2.6 also reveals an interesting pattern: the degree to which agents approve

of the regulatory regime appears to oscillate as the transfer amount grows. Is this

oscillation a prediction of the model or a byproduct of its implementation? This question

can be probed by increasing the model’s resolution. The following code increases both

the horizontal and vertical resolution by a factor of ten. The horizontal resolution is

increased by sampling smaller transfer intervals. The vertical resolution is increased by

running the model 100 times per transfer interval and calculating an average result.

import model, license

model.headings (["r"])

for r in range (0, 110000, 1000):

 model.run (license.regime (received=r, sent=r*0.1,

 **heterogeneous), ids=[r], runs=100)

The higher resolution specification reveals that the approval rating oscillates in a

sawtooth pattern (see Figure 2.7). This pattern is a result of an assumption made by the

model’s default implementation: tax rates must be whole numbers. The existence of

deadweight costs means that the tax rate applied to each group cannot be calculated

directly; it must be determined by numerical methods. This means searching for the tax

rate which will produce the desired revenue. Only whole numbers are searched. This

illustrates both an advantage and a disadvantage of the agent-based approach. In the real

world, tax rates are usually whole numbers, so imposing this restriction actually sheds

light on the problem in a way that a continuous solution would not: a self-interested

regulator would set the transfer amount at the “top end” of a saw tooth. On the other

hand, the agent-based modeler is forced to follow this approach even when it does not

53

result in such serendipity. This illustrates why agent-based modeling should be another

tool, rather than the only tool, in the modeler’s toolkit.

Figure 2.7: Approval rating by transfer per licensee: detail

 Peltzman (1976) summarizes the problem facing regulators as follows: they

“must pick the size (n) of the group they will benefit, the amount (K) they will ask that

group to spend for mitigating opposition, and the amount (T) they will transfer to the

beneficiary group.” The effect of introducing heterogeneity on the last of these three

problems has now been explored. The effect on the middle problem—the amount spent

to mitigate opposition—can be explored in the same way:

54

import model, license

model.headings (["type", "s"])

for s in range (0, 50000, 1000):

 model.run (license.regime (received=50000, sent=s,

 **homogeneous), ids=["homogeneous", s])

 model.run (license.regime (received=50000, sent=s,

 **heterogeneous), ids=["heterogeneous", s])

In this specification, the transfer is fixed at $50,000. The model explores how regulator

approval varies with the amount spent to mitigate opposition. Figure 2.8 shows the

heterogeneous model’s prediction that approval levels off as persuasion funds approach

100% of the transfer; the homogeneous model predicts no such leveling. When some

agents have higher persuasion thresholds than others, the rate at which the regulator

benefits from “educating” these agents diminishes.

Figure 2.8: Approval rating by persuasion per licensee

55

 Finally, the model can explore the effects of heterogeneity on the question Stigler

originally posed. “The Stigler model leads ... to more than the near truism that [the ratio

of the size of the subsidized group to the subsidizing group] is less than one; it more

nearly asserts that the ratio is close to zero” (Peltzman 1976). Varying the size of the

subsidized group is easily accomplished:

import model, license

model.headings (["type", "pct"])

for p in range (1, 50):

 pct = p / 1000

 model.run (license.regime (received=50000, sent=5000,

 percent=pct, **homogeneous), ids=["homogeneous", pct])

 model.run (license.regime (received=50000, sent=5000,

 percent=pct, **heterogeneous), ids=["heterogeneous", pct])

Figure 2.9 depicts the results. When agents are homogeneous, Stigler’s prediction

matches the model: support falls as the number of licensees increases. Agent

heterogeneity provides the regulator with greater latitude. One reason for this

phenomenon is the application of a uniform tax rate: when some agents earn high

incomes, the collective tax rate falls for a given level of revenue. Another is that at least

some of these agents will manifest low deadweight costs; they will continue to work even

in the presence of diminishing returns.

56

Figure 2.9: Approval rating by percent of citizens holding licenses

2.4. The cross-subsidy model

 Figure 2.3 illustrates the effect of deadweight costs on the regulator’s approval

rating: for a given transfer, approval is higher when deadweight costs are lower. Figure

2.4 shows how holding the mean deadweight cost constant and increasing its dispersal

causes a decline in approval. If deadweight costs are distributed in a manner that is

uncorrelated with other characteristics, there is little the regulator can do. But if different

types of agents have different deadweight costs, the regulator has an incentive to partition

the agent population—a process analogous to price discrimination. The more “docile”

component of the population will subsidize not only the regulated entities, but also the

more “hostile” component of the population. Peltzman (1989) enumerates many

examples of this sort of cross-subsidization. A classic example is the U.S. telephony

market prior to deregulation in the 1980s: AT&T held a monopoly on telephony

57

services, and used its long distance service to subsidize local service. In effect, long

distance customers funded both AT&T’s monopoly rents and low-cost local service.

 Consider a situation in which there are two groups: a low deadweight cost group

and a high deadweight cost group. Each agent is a member of exactly one of these

groups. If the regulator can identify the high deadweight cost group and offer it a

subsidy, the regulator’s overall approval rating should increase. Approval from the low

deadweight cost group will decline, but the decline will be outpaced by increases in

approval from the high deadweight cost group. The following code tests this hypothesis

by using the cross-subsidy implementation of the model. One percent of the population

is directly subsidized. Another 10% of the population is cross-subsidized; this group has

deadweight costs of 2.5. The remaining 89% of the population pays all subsidies and has

deadweight costs of 1.0.

import model, subsidy

model.headings (["r"])

for r in range (0, 1600, 100):

 model.run (subsidy.regime (

 received=(50000, r), sent=(5000, r*0.05),

 deadweight=(1.0, 2.5)), ids=[r])

As Figure 2.10 shows, the regulator can increase its overall approval rating by

partitioning the agents. As the cross-subsidy increases, the rise in approval from the

subsidized group outpaces the fall in approval from the subsidizing group.

58

Figure 2.10: Approval rating by amount of cross-subsidy

 Figure 2.10 assumes that agents are homogeneous in their responses to taxation:

the more an agent’s income declines below its potential, the faster the regulator’s

approval rating falls. The agent-based approach allows heterogeneous populations to be

explored as well. The following code modifies its predecessor by varying the degree to

which agents blame the regulator for shortfalls in income:

import model, subsidy

model.headings (["s", "r"])

for s in [0.0, 0.5, 1.0, 1.5]:

 for r in range (0, 1600, 100):

 model.run (subsidy.regime (

 received=(50000, r), sent=(5000, r*0.05),

 deadweight=(1.0, 2.5), response_sig=(s, s)), ids=[s, r])

The higher the degree of heterogeneity, the less likely that a given cross-subsidy will

increase the regulator’s overall approval rating. For sufficiently high levels of

heterogeneity, the regime will cease to be viable, even with cross-subsidies. As Figure

59

2.11 shows, a cross-subsidy of $200 is sufficient when agents are homogeneous. But

when agents are highly heterogeneous, the minimum cross-subsidy rises to $1100.

Figure 2.11: Approval rating by amount of cross-subsidy and degree of heterogeneity

 Even when agents are homogeneous, the regulator must exercise care in choosing

the recipients of cross-subsidies. Cross-subsidies which are poorly targeted may

backfire. Consider a regulatory regime that includes a lump-sum transfer to a cross-

subsidized group. The following specification traces the behavior of the cross-subsidized

group as its potential income rises to match that of the general public:

import model, subsidy

model.headings (["p"])

for p in range (1000, 30000, 1000):

 model.run (subsidy.regime (

 received=(50000, 5000), sent=(5000, 500),

 potential=(30000, p), deadweight=(3.0, 1.0)), ids=[p])

60

Figure 2.12 reveals that as the cross-subsidized group’s potential income increases, the

lump-sum subsidy grows less and less important, and approval of the regulator declines.

If the regulator is unable to restrict cross-subsidies to low-income agents only, the cross-

subsidy will be counterproductive; the regulator should search for an alternative

partitioning. This is another way of expressing Becker’s (1983) argument that regulators

are incentivized to identify the least inefficient regulatory regimes.

Figure 2.12: Approval rating by potential income of cross-subsidized agents

2.5. The bidirectional model

 A consistent theme in the public choice literature is that “most government

income redistribution goes not to the poor but to people who for one reason or another

have sufficient political influence to get it” (Tullock 2005, 171). In practice,

redistribution policy is shaped by “alliances between well-intentioned people who are

61

attempting to do good by deceiving the average voter, and the people who are not

particularly well-intentioned and who are attempting to benefit by the same deception”

(ibid., 158). The redistribution regime thus ends up composed mainly of transfers both

from and to the middle class. Mueller (2003, 516) notes that the “most salient feature” of

modern government redistribution is its “lack of a uni-directional flow.” Parents send

their children to public schools and subsidize retirees via payroll taxes; at the same time,

seniors enjoy retirement and fund schools via property taxes.

 Peltzman’s 1976 model does not directly support the notion of bidirectional

transfers, but its agent-based implementation is easily extended to this case. The

following specification divides the population into two groups. The first group has 60%

of the population; the second group has 40%. The citizens in each group are identical,

differing only in the tax rates that they must pay. As before, tax rates are determined by

net outflows from the group.

import model, bidirectional

model.headings (["type", "r"])

for r in range (0, 1100, 100):

 model.run (bidirectional.regime (

 received=(r, 0), sent=(r*0.1, 0)), ids=["first", r])

 model.run (bidirectional.regime (

 received=(0, r), sent=(0, r*0.1)), ids=["second", r])

 model.run (bidirectional.regime (

 received=(r, r), sent=(r*0.1, r*0.1)), ids=["both", r])

The model produces three series. In the first two series, only one group receives

transfers. In the third series, both groups receive transfers. As Figure 2.13 reveals,

support for the regulatory regime is higher when transfers are directed to both parties

instead of only one. Furthermore, both parties prefer bilateral transfers to no transfers at

62

all. This is a product of what Peltzman calls “education.” In this model, senior citizens

feel an obligation to fund schools, and parents feel an obligation to support senior

citizens. Mutual dependence is preferred over autarky.

Figure 2.13: Approval rating by amount of transfer and direction: homogeneous groups

 These results accord with the findings in Peltzman’s subsequent study of the

growth of government, in which he notes the “counterintuitive result that, on balance,

more equality breeds a political demand for still more income equalization” (Peltzman

1980). Thus, “homogeneous interests become [an] important source of government

growth” (ibid.). The bidirectional model allows this thesis to be tested easily, by

introducing heterogeneous agents. The only difference between the following

specification and its predecessor is that the second group now resents having to fund

transfers to the first group.

63

import model, bidirectional

model.headings (["type", "r"])

for r in range (0, 1100, 100):

 model.run (bidirectional.regime (

 received=(r, 0), sent=(r*0.1, 0),

 deadweight=(1.0, 3.0)), ids=["first", r])

 model.run (bidirectional.regime (

 received=(0, r), sent=(0, r*0.1),

 deadweight=(1.0, 3.0)), ids=["second", r])

 model.run (bidirectional.regime (

 received=(r, r), sent=(r*0.1, r*0.1),

 deadweight=(1.0, 3.0)), ids=["both", r])

Figure 2.14 reveals that the regulator will not receive support for a regime which benefits

only the first group. A bilateral regime is viable, but even more viable is a regime in

which the first group subsidizes the second. This supports Peltzman’s thesis that

“homogeneous interests” are positively correlated with the size of government.

Figure 2.14: Approval rating by amount of transfer and direction: heterogeneous groups

64

 However, Peltzman also argues that the size of government tends to rise as

incomes equalize. The agent-based model can test this proposition. The following

specification creates two groups. In the first group, individuals have incomes of $50,000;

in the second group, individuals have incomes of $100,000. The percent of agents in the

first group is traced from 1% to 99%.

import model, bidirectional

model.headings (["pct"])

for p in range (1, 100):

 pct = p / 100

 model.run (bidirectional.regime (percent=pct,

 received=(1000, 1000), sent=(50, 100),

 potential=(50000, 100000)), ids=[pct])

The agent-based version of Peltzman (1976) predicts the opposite of the conclusion

presented in Peltzman (1980): as heterogeneity increases, support for the regulatory

regime increases. Figure 2.15 shows the shift from homogeneous (1%) to heterogeneous

(50%) and back to homogeneous (99%). The shape of the transition is unmistakeably

concave.

65

Figure 2.15: Approval rating by income heterogeneity

 The verdict on the effects of heterogeneity on regulatory regimes is therefore

mixed. Homogeneous interests tend to promote regulation, while homogeneous incomes

tend to discourage it.

2.6. Conclusion

 The study of regulatory capture dates back at least to the time of Adam Smith. In

The Wealth of Nations, Smith develops a view of regulation very similar to that

demonstrated by public choice scholars today: regulatory regimes do not always protect

those whom they purport to protect. Instead, regulation is a vehicle for self-advancement

by commercial interests; and citizens, placated with “clamor and sophistry,” generally do

not object. But despite Smith’s clear reasoning, this view was largely ignored for two

centuries. Not until Stigler (1971) reformulated Smith’s theory did the concept of

66

regulatory capture become widely accepted. In the intervening years, the dominant

theory of regulation was the normative-as-positive theory: regulation existed to protect

the weak from the strong.

 Stigler (1971) wholeheartedly rejects the protect-the-weak narrative. Instead,

Stigler argues provocatively that regulation exists entirely for the benefit of business.

Posner (1974) and Peltzman (1976) express appreciation for Stigler’s approach, but

object to his characterization of regulation as entirely one-sided. If regulation is entirely

in aid of business, how can regulation pass the ballot box test, as it most surely does?

Peltzman (1976) refines and formalizes Stigler’s vision. In Peltzman’s model, regulators

serve two masters: business and citizens. The regulator chooses the regime which

maximizes total support across both groups. To engineer such a result, the regulator will

attempt to divide each group into smaller groups and purchase support from those groups

separately. Thus regulatory regimes will often be accompanied by extensive networks of

cross-subsidies. Furthermore, regulatory regimes will tend to appear at the extreme ends

of the spectrum of competition: both monopolies and perfectly competitive industries are

likely to be regulated. Thirty-five years after its formulation, Peltzman’s model is still

the starting point for any discussion of regulation.

 Like any rational choice model, Peltzman (1976) faces a tradeoff between

tractability and complexity: as complexity increases, tractability decreases. Thus

Peltzman’s model handles heterogeneity in only a very limited way. Intergroup

heterogeneity is permitted to motivate cross-subsidies, but intragroup heterogeneity is

67

disallowed. Recasting Peltzman (1976) as an agent-based model allows exploration of a

full range of agent heterogeneity.

 Adding intragroup heterogeneity to the model reveals that such heterogeneity can

either promote or inhibit regulation. When all agents share a common tax rate, income

heterogeneity can increase support for regulation: high-income agents subsidize low-

income agents. But when agents splinter into factions, support for regulation declines.

Variability in the amount of “persuasion” required for an agent to support a transfer tends

to promote regulation. Deadweight costs are the biggest threats to regulation: even a

modest regulatory regime may prove unviable if agents are highly reactive to tax rates.

This outcome is consistent with the prediction of Becker (1983): regimes which

minimize deadweight costs will triumph. Peltzman emphasized the necessity of cross-

subsidies, and the agent-based model confirms Peltzman’s view. Partitioning citizens

according to their “elasticities of resistance” can make the difference between a

successful and unsuccessful regime.

68

3. AN AGENT-BASED MODEL OF THE CONDORCET JURY THEOREM

3.1. Introduction

 When Marie-Jean-Antoine-Nicolas Caritat, Marquis de Condorcet, was born into

French nobility in 1743, there was no reason to believe that he would be remembered,

two and a half centuries later, as a pioneer of the application of science to the social

condition. He came from a long line of military men, and might have followed his father

into that profession, had the latter not died in the line of duty, a mere month after his son

was born (Baker 1975, 2-3). Instead the young Condorcet was raised by Jesuits, and

became a man of letters. By the age of 21 he was considered among the top 10

mathematicians in Europe; by 30 he “had established himself as a mathematician,

academician, philosophe, and pamphleteer” at the Academy of Sciences (ibid., 7, 55).

 Working at the height of the Enlightenment, Condorcet shared the optimism of his

era. He “posited a relationship between scientific advance and social welfare,” and noted

that “in all countries where the physical sciences have been cultivated, barbarism in the

moral sciences has ... dissipated and ... error and prejudice have disappeared.” He

“insisted that scientific progress necessarily entailed the rationalization of the whole

social order” (ibid., 75). It was during this period—the years 1775 to 1785—that

Condorcet attempted to “reconcile the satisfaction of his mathematical abilities with the

69

imperatives of his passion for the public good” (ibid., 82). Thus was born, as he would

come to call it, social mathematics (ibid., 332).

 Condorcet regarded his 1785 “Essai sur l’application de l’analyse à la probabilité

des décisions rendues à la pluralité des voix” as his “most fundamental contribution to

social mathematics” (ibid., 183). His interest in the subject of what is now called public

choice was sparked by his association with his friend and fellow scientist Ann-Robert-

Jacques Turgot. Turgot had the unfortunate task in 1774 of informing the newly crowned

Louis XVI that “he had inherited a realm without a constitution... a constant war between

the king and his people” (ibid., 206). It was clear that power could no longer reside with

the King alone; some sort of collective decision-making process was needed, or chaos

would ensue. And so Condorcet wrote his Essai to answer a simple question: “Under

what conditions will the probability that the majority decision of an assembly or tribunal

is true be high enough to justify the obligation of the rest of society to accept that

decision?” (ibid., 228). Condorcet believed that his Essai presented a “mathematical

guarantee” that “assures the validity of a law passed by the smallest possible majority,

such that one can believe that it is not unjust to subject others to this law” (ibid., 230). In

other words, Condorcet claimed to have proven that majority rule was a morally

defensible scheme for making decisions.

 Although Condorcet’s jury theorem, as it came to be known, is now recognized as

“far superior to anything that had gone before,” its publication in the Essai failed to

impress. As Duncan Black explains, the jury theorem was described by Condorcet’s

contemporaries as “impracticab[le]” and “fantastic,” and it was dismissed as having “too

70

little value to detain us longer” (Black 1958, 160-162). But none of them, Black

concludes, “had really understood it” (ibid.). The genius of Condorcet’s theorem,

according to Black, is not the theorem itself, but rather that Condorcet had established “a

system of formal reasoning which is quite independent of the theory of probability”

(ibid., 163-164).

 Condorcet’s theorem can be summarized as follows. Suppose that a population of

N voters must cast a single vote on a single issue, and suppose that each vote may be

considered either “correct” or “incorrect.” For example, the voters might comprise a

jury, with a “correct” vote being to acquit if innocent or convict if guilty, and an

“incorrect” vote being to acquit if guilty or convict if innocent. The theorem states that if

all voters have a common probability P of voting correctly, and P exceeds 0.5, then the

probability of a correct vote approaches 1 as N approaches infinity. Consider a numerical

example: if a single voter votes correctly with probability 0.6, that voter’s judgments will

be correct 60% of the time. If a three-voter, majority-rule jury is convened, and each

voter votes correctly with probability 0.6, the jury’s judgments will be correct 64.8% of

the time
2
. As the number of jurors increases, the probability of a correct vote also

increases. In the limit, as N approaches infinity, the probability of a correct vote is 1.

 Condorcet himself did not actually provide a formal proof of his theorem; he

provided a much longer version of the above example (Condorcet 1995 [1785], 33), and

then asserted (but did not prove) that the probability of a correct vote approached 1 in the

2
 There are eight possible voting combinations (C=correct, I=incorrect): CCC, CCI, CIC, CII, ICC, ICI,

IIC, III. The probability of CCC is 0.6 * 0.6 * 0.6 = 0.216; the probability of CCI, CIC, or ICC is

0.6 * 0.6 * 0.4 * 3 = 0.432. So the probability of a correct vote is 0.216 + 0.432 = 0.648.

71

limit. Mueller (2003, 129) provides a simple mathematical exposition of the theorem.

Assuming N voters (where N is odd), the probability of a correct vote is the probability

that (N+1)/2 voters vote correctly, plus the probability that (N+1)/2+1 voters vote

correctly, and so on, up to all N voters voting correctly:

 ∑

The probability of h identical voters voting correctly is P
h

(1-P)
N-h

 C(N,h). That is: h

voters vote correctly (P
h
); N-h voters vote incorrectly ((1-P)

N-h
); and there are C(N,h)

different combinations of the h voters
3
. The probability of a correct vote is thus:

 ∑

As Young (1997, 183) demonstrates, as N approaches infinity, PN approaches 1 if P >

0.5, 0 if P < 0.5, and 0.5 if P = 0.5.

 The result of the jury theorem is reassuring to those who harbor concerns about

the fallability of democracy. The theorem means that if the average voter is even the

slightest bit more likely, on average, to be right than wrong, then majority rule will yield

the correct outcomes. Rousseau, for example, took comfort in this result, which

paralleled his own informal reasoning in Du contrat social: “Rousseau believed that the

pluses and minuses of individual interests would cancel out,” and the general will would

3
 In the previous example, if exactly two voters vote correctly, there are C(3,2) = 3!/(2!1!) = 3 different

combinations which yield a correct vote: CCI, CIC, and ICC.

72

emerge (Baker 1975, 231). The theme continues to resonate today; James Surowiecki’s

(2004) book “The Wisdom of Crowds” covered similar ground, and was a bestseller.

 Mueller (2003, 130) notes that Condorcet’s theorem, when expressed in the above

form, implies three assumptions. First, the same probability P applies to all voters:

voters are assumed to be homogeneous. Second, voter interaction does not matter:

voters are assumed to be independent. Third, no voter votes strategically: voters are

assumed to vote sincerely. As Mueller notes, each of these assumptions may be

questioned. Some voters are more likely to vote correctly than others; some voters can

influence other voters; and some voters might benefit from voting insincerely (ibid., 131).

 Condorcet’s theorem is, in the words of List and Gooden (2001), the “jewel in the

crown” of the argument that “democracy [is] the best ... procedure available” for

collective decision-making. The assumptions that Mueller enumerates are unwelcome

caveats to that argument: democracy is the best procedure available, if voters are

identical (though they are not), independent (though they are not), and vote sincerely

(though they may not). Following this strain of thought, the defense of democracy lies in

the degree to which Condorcet’s theorem holds when these assumptions are relaxed.

 Relaxing Condorcet’s assumptions is a challenge which has been accepted by

numerous researchers. Boland (1989) describes successful attempts to relax the first two

assumptions. Condorcet’s theorem is easily extended to heterogeneous agents whose

average probability of correctness exceeds 0.5 (Hoeffding 1956), and even to

circumstances in which a minority of sufficiently well-informed voters can overrule a

majority of less-informed voters (Miller 1986). The theorem can also be extended to

73

situations in which the first voter influences subsequent voters: convergence to a correct

result occurs more quickly when voters play “follow the leader” (Boland, Proschan and

Tong 1989). Koriyama and Szentes (2007) describe successful attempts to relax the third

assumption. When voters take into account not only their own “private” signal but also a

cumulative “public” signal inferred from the behavior of other voters, convergence to the

correct result can occur even in the presence of strategic voting (Feddersen and

Pesendorfer 1997). Myerson (1998) extends this result by illustrating that strategic voters

may not even need to know how many other voters have contributed to this cumulative

public signal.

 However, there are also situations in which relaxing these assumptions

undermines Condorcet’s theorem. Franz (2008) considers the question of whether

homogeneity and independence can be relaxed simultaneously, and concludes that while

it is possible to relax one or the other, relaxing both is problematic. Austen-Smith and

Banks (1996) develop a model in which strategic voting is demonstrated to be

inconsistent with Nash equilibrium, which implies that a “rational choice foundation for

the claim that majorities inevitably ‘do better’ than individuals ... has yet to be derived.”

Koriyama and Szentes (2007) develop their own model in which strategic voting, in the

presence of nonzero information costs, imposes an upper bound on optimal committee

size, contradicting the results of Condorcet’s theorem.

 Previous attempts to relax the assumptions that underlie Condorcet’s theorem

have something quite striking in common: none of them presents a model in which all

three assumptions are relaxed simultaneously. Riechmann (2001) suggests an

74

explanation: as rational choice models grow in complexity, the difficulty of making these

models tractable grows even faster. One cannot simply combine three separate models to

produce a single model that relaxes all three assumptions. However, computational

techniques, such as agent-based modeling, offer an alternative approach. Agent-based

modeling techniques can be used to construct a model which allows a fuller exploration

of Condorcet’s theorem, in which all three assumptions can be relaxed. Does the

Condorcet Jury Theorem still produce democracy-validating outcomes in the presence of

heterogeneous, adaptive, rational voters? An agent-based model can help answer this

question. This chapter presents such a model.

3.2. The model

 The model is written in Python. It contains three conceptual entities: the core

model itself, six supporting interfaces, and various specifications used to run the model.

The core model accepts as arguments a specification and a policy. The specification

instructs the model:

 how to construct agents;

 how to compute each agent’s likelihood of correctly evaluating a proposition;

 how to assign agents to social networks;

 the degree to which an agent is influenced by its social network;

 the type of effect an agent’s social network has on the agent’s behavior; and

 the voting strategy employed by each agent.

75

 The model begins by instantiating the agents using the specification’s agent

factory. Each agent is imbued with certain characteristics which may vary with the

specification. If a policy is supplied, this policy is applied to each agent, potentially

altering these characteristics. Each agent is assigned to a social network, with the

assignment potentially determined by the agent’s characteristics. A proposition is

presented to the agents. Each agent evaluates the proposition, using both its own

assessment and the assessments of other agents in its social network. A vote is then

taken. Voters may vote sincerely or they may vote strategically. The model tabulates the

votes. If the percent of correct votes exceeds the threshold required for passage, the vote

passes; otherwise it fails. The model repeats this process for multiple runs and calculates

the percent of runs in which a passing vote obtains. This value is the output of the model

and is returned to the caller. The model appears in source file model.py (Appendix

3.A.1).

 Each of the six values in the specification is defined via its own interface. Each

interface is defined by a function which takes a prescribed set of arguments (a signature)

and returns a value of a prescribed type. The function itself is provided in the

specification. If no function is provided, the interface’s “null” function is used instead.

The null function implements the interface in an intentionally trivial manner. For

example, the null agent factory creates agents that have no characteristics at all. (This

may sound uninteresting, but recall that in Condorcet’s original formulation, agents have

no independent characteristics. As will be shown later, the null functions are used to

implement most of the Condorcet specification.)

76

 The factories interface consists of a function which takes an integer N and returns

a list of N agents. Each agent is represented by a Python dictionary, which maps names

to values. For example, an agent might be represented by the dictionary {“MALE”: 1,

EDUC”: 0.8}, meaning that the agent is a male with 16 years of education (0.8 means

80% of the maximum of 20 years, which is 16). This dictionary defines the agent’s

characteristics. The null() function creates agents with no characteristics at all. The

characteristic() function accepts an argument containing a list of characteristics, their

distributions, and their correlations, and instantiates agents with characteristics drawn

from those distributions and with those correlations. This mechanism allows the modeler

to calibrate the model using real-world distributions. The agent factory interface appears

in source file factories.py (Appendix 3.A.2).

 The likelihoods interface consists of a function which takes a list of N agents and

returns a parallel list of N likelihoods of correctness. The null() function assigns each

agent a likelihood of correctness of 0.5. The constant() function assigns each agent a

specified constant likelihood. The distribution() function assigns each agent a likelihood

drawn from the supplied distribution. The characteristic() function assigns each agent the

likelihood returned by the supplied function. The likelihood interface appears in source

file likelihoods.py (Appendix 3.A.3).

 The confidences interface is nearly identical to the likelihoods interface: it

consists of a function which takes a list of N agents and returns a parallel list of N

degrees of confidence, one for each agent. Confidence is the level of confidence that the

agent has in its own likelihood of correctness. The null() function assigns each agent a

77

confidence of 1, meaning the agent is completely confident (and thus unaffected by its

social network). The constant() function assigns each agent a specified constant

confidence. The distribution() function assigns each agent a confidence drawn from the

supplied distribution. The characteristic() function assigns each agent the confidence

returned by the supplied function. The confidence interface appears in source file

confidences.py (Appendix 3.A.4).

 The networks interface consists of a function which takes a list of N agents and

returns a parallel list of N network assignments. The null() function assigns each agent to

its own unique social network (meaning, effectively, no social network). The grid()

function assigns agents to networks geographically, so that each agent has “neighbors.”

The number of dimensions, the distributions along each dimension, and the total size of

each dimension may all be specified. The uniform() function divides agents into

networks arbitrarily and uniformly. The partition() function assigns agents to social

networks based on agent characteristics; the agent population is partitioned into an

arbitrary number of networks of any combination of characteristics. The network

interface appears in source file networks.py (Appendix 3.A.5).

 The effects interface consists of a function which takes a list of N triples of the

form (network, likelihood, confidence) and returns a parallel list containing N revised

likelihoods. The null() function returns each agent’s original likelihood unchanged. The

mean_reversion() function pulls an agent’s likelihood toward the average of its social

network; the lift_up() function pushes the likelihood toward the top of the agent’s social

network; and the pull_down() function pulls the likelihood toward the bottom of the

78

agent’s social network. The herd() function moves the likelihood toward the majority

view. The effects source code appears in effects.py (Appendix 3.A.6).

 Finally, the strategies interface consists of a function which takes a list of N pairs

of the form (likelihood, confidence), one pair for each agent, and returns the percent of

agents who vote correctly. The null() function implements a sincere vote: each agent

votes according to its likelihood. The predominant() function implements a peer-effects

strategy: agents vote sequentially, and each agent may consider both its own likelihood

(“private information”) and the voting pattern of other agents (“public information”).

The pivotal() function implements the peer-effects strategy only when the last voter is the

pivotal voter. The exhibitional() function implements exhibitional voting: each agent

votes may consider both its own likelihood and the preferences of an audience (e.g., in

the case of an elected official, constituents). The strategies source code appears in

strategies.py (Appendix 3.A.7).

 These six interfaces allow the model to relax each of the assumptions implicit in

Condorcet’s formulation of his theorem. The factories and likelihoods interfaces allow

the homogeneity assumption to be relaxed. The networks, confidences, and effects

interfaces allow the independence assumption to be relaxed. The strategies interface

allows the sincerity assumption to be relaxed. In each case, the interface provides

multiple approaches for relaxing the assumptions. If none of these approaches is

sufficient for a desired model specification, new approaches can be added. The ease by

which new approaches can be created is one of the strengths of the agent-based approach.

79

3.3. Demonstrating the model

 The preceding section provided an overview of the model. Such an overview is

essential for understanding the model; yet the overview, on its own, fails to communicate

how the model is actually used. This section demonstrates the model by replicating

Condorcet’s original results, and prepares the way for further exploration of his famous

theorem.

 As stated earlier, the behavior of the model is dictated by its specification. The

simplest possible specification of the model is the null specification. In this intentionally

trivial specification, all agents vote correctly with probability 0.5, all agents are

independent, and all agents vote sincerely. The null specification can be invoked by

calling the model’s percent() function without providing a specification argument. The

following Python code runs the model using the null specification:

import model

print ("voters pct_correct")

for voters in range (1, 200, 2):

 print (voters, model.percent (count=voters))

The model is invoked 100 times, starting with one voter and ending with 199 voters (with

an odd number of voters each time). As Figure 3.1 shows, the percent of model

invocations that result in a correct vote hovers around 50, regardless of the number of

voters.

80

Figure 3.1: Likelihood of a correct vote by number of voters

 The results in Figure 3.1 accord with intuition: if every voter flips a coin, a

majority vote will be correct roughly half the time. Condorcet’s theorem asserts that if

every voter can do a little better than flipping a coin—can vote correctly with P > 0.5—

then a large enough electorate will yield a correct majority vote with certainty. The

Condorcet specification explores this assertion.

 The Condorcet specification expresses the theorem as originally outlined by

Condorcet. In Condorcet’s formulation, each agent votes correctly with a fixed

probability. In terms of the likelihood interface, this means using the constant() function

instead of the null() function. The Condorcet specification, therefore, consists of a single

value: a constant likelihood function. (The Condorcet specification appears in

condorcet.py; see Appendix 3.B.1.) The following code defines the entire Condorcet

specification:

81

import likelihoods

def spec (likelihood):

 return {

 "likelihood": lambda a: likelihoods.constant (a, likelihood)

 }

The spec() function returns the Condorcet specification, which contains only one

element: a likelihood function. The likelihood function returns the same likelihood for

each agent; that likelihood is provided when the specification is requested. Thus, a

Condorcet specification for a voter that votes correctly with P = 0.6 would be created as

follows:

condorcet.spec (0.6)

The following code invokes the model using the Condorcet specification with

probabilities between 0 and 1, in increments of 0.1. The electorate ranges from 1 to 199

voters, with the number of voters always odd:

import model, condorcet

print ("likelihood count pct_correct")

for likelihood in range (0, 11):

 for voters in range (1, 200, 2):

 print (likelihood / 10, voters, model.percent (

 spec=condorcet.spec (likelihood / 10), count=voters)

Figure 3.2 shows the results of running the Condorcet specification. When each voter’s

likelihood of correctness is less than 0.5, the percent of correct votes approaches zero.

The closer the likelihood is to zero, the faster the percent of correct votes approaches

zero. Conversely, when each voter’s likelihood of correctness is greater than 0.5, the

percent of correct votes approaches 100. When the likelihood of correctness is exactly

82

0.5, the results are identical to the null specification: the percent of correct votes hovers

around 50. Figure 3.2 expresses the essence of Condorcet’s theorem.

Figure 3.2: Likelihood of a correct vote by number of voters: detail

 Of special interest is the case when the number of voters is 1. A single voter with

likelihood of correctness P will vote correctly P * 100% of the time. But consider the

fact that each individual vote is binary—that is, each vote must be either 0% correct or

100% correct. Figure 3.2 thus implies that the model obtains its results by holding

multiple votes and returning the average over all iterations. This is indeed the case, and

is a common approach in agent-based modeling. By holding multiple votes, the model is

able to discern the overall voting trend. A voter who votes correctly with P = 0.6 will

never cast a (single) vote that is 60% correct; every vote is either 0% correct or 100%

83

correct. However, when casting a large number of successive votes, such a voter will

cast a correct vote about 60% of the time.

 Consider the situation in which there is a single voter who votes correctly with

likelihood P, and the model holds R votes, returning the average correctness over those R

votes. If R = 1, the model will return either 0% (0/1) or 100% (1/1). If R = 2, the model

will return 0% (0/2), 50% (1/2), or 100% (2/2). As R tends to infinity, the model will

tend to return P * 100%. The relationship between R and the average value returned by

the model can be explored by this invocation:

import model, condorcet

print ("runs iteration pct_correct")

for r in range (1, 1000):

 for i in range (100):

 print (r, i, model.percent (

 spec=condorcet.spec (0.6), count=1, runs=r))

In this code, a single voter votes correctly with likelihood 0.6. The number of runs varies

from 1 to 999. For each of these values, the model is invoked 100 times. Figure 3.3

depicts the results. When R = 1, the model always returns either 0% or 100%. When R =

2 the model always returns 0%, 50%, or 100%. When R = 3 the model always returns

0%, 33%, 67%, or 100%. As R approaches 1000, the values returned by the model

converge toward 60%.

84

Figure 3.3: Values returned by the model by number of runs

 Figure 3.3 demonstrates that in the single-voter case, the model’s meaningfulness

rises with R. When the model is run with a value of R that is “too small,” the noise

induced by the binary nature of voting overwhelms the voter’s likelihood of being

correct, and the results are meaningless. But how small is “too small”? This question

can be rephrased more precisely as follows: if the model is invoked X times with R runs

per invocation, and thus produces X results, what percent of those X results are within

some range ϵ of the average result? For example, if the single-voter model is invoked

100 times with R = 1 and P = 0.6, it produces 100 results, all of which are either 0% or

100% (each vote is either incorrect or correct). Given P = 0.6, we would expect 40 of

these invocations to return 0% and 60 to return 100%, for an average return value of

60%. Given ϵ = 10%, we would say that the model exhibits zero convergence: none of

the 100 invocations returned a value within 10 percentage points of the average value of

85

60%. (They all returned either 0% or 100%, and neither value is within 10 percentage

points of 60%.)

 The model provides a function, convergence(), which allows convergence to be

explored easily. The following code invokes the single-voter model 100 times for values

of R from 1 to 999, with P = 0.6, and reports the percent of invocations that are within

10%, 5%, and 1% of the average result:

import model, condorcet

print ("epsilon runs convergence")

for e in [0.10, 0.05, 0.01]:

 for r in range (1, 1000):

 print (e, r, model.convergence (

 spec=condorcet.spec (0.6), epsilon=e, count=1, runs=r))

Figure 3.4 shows the results. When the number of runs is small, convergence is low:

only a small percentage of runs are within epsilon of the average. As the number of runs

increases, convergence increases. Not surprisingly, convergence rises more rapidly when

epsilon is larger: convergence to 10% of the average occurs more quickly than

convergence to 5% of the average. This illustrates a general rule in agent-based

modeling: the larger the number of runs, the fewer spurious results.

86

Figure 3.4: Convergence by number of runs

 The preceding analysis implies that the modeler should set the number of runs

very high. This conclusion would be correct if the marginal cost of each run were zero.

However, this is generally not the case in computer models, because each run takes a

nonzero amount of time. A tradeoff exists between the number of runs and the amount of

time needed to execute the model. This code demonstrates that tradeoff:

import time, model, condorcet

print ("runs convergence seconds")

for r in range (1, 1000):

 start = time.time()

 pct = model.convergence (

 spec=condorcet.spec (0.6), epsilon=0.1, count=1, runs=r)

 end = time.time()

 print (r, pct, end-start)

Figure 3.5 shows that both convergence and elapsed time increase with the number of

runs. Convergence, however, plateaus around 400 runs; elapsed time increases without

87

bound. The optimum number of runs, then, is the number of runs that it takes for

convergence to plateau. Beyond that point, the marginal benefit is zero, but the marginal

cost is greater than zero. For the single-voter model with P = 0.6, the optimal number of

runs is around 400.

Figure 3.5: Convergence and run time by number of runs

 The preceding invocations have explored the single-voter model. The single-

voter model requires multiple runs per invocation, because each vote is always

unanimous, and thus many runs are necessary to detect the overall trend. But when the

number of voters exceeds 1, each vote is no longer unanimous. (If there are five voters,

for example, there are six possible outcomes: 0-5, 1-4, 2-3, 3-2, 4-1, and 5-0. Only two

of these are unanimous.) Increasing the number of voters reduces the “swing” between

adjacent model results: the difference between a 0-1 vote and a 1-0 vote is 100% (all

88

voters switch votes), while the difference between a 0-5 vote and a 1-4 vote is 20% (only

one of the five voters switches votes). The reduced swing implies that convergence

should occur more quickly as the number of voters increases. Indeed, Condorcet’s

theorem can be rephrased in exactly those terms: as the number of voters increases, the

number of runs required for convergence should approach 1. The relationship between

the number of voters and the rate of convergence is explored by the following code,

which invokes the model using 1, 11, 101, and 1001 voters:

import model, condorcet

print ("runs count convergence")

for r in range (1, 400):

 for c in [1, 11, 101, 1001]:

 print (r, c, model.convergence (

 spec=condorcet.spec (0.6), epsilon=0.1, count=c, runs=r))

Figure 3.6 shows the inverse relationship between number of voters and number of runs

required for convergence. As the number of voters increases, the number of runs

required for convergence decreases. When the number of voters is 1001, convergence is

almost immediate. This is another illustration of Condorcet’s theorem.

89

Figure 3.6: Convergence by voters and number of runs

3.4. Relaxing the assumptions

 As Mueller (2003, 130) notes, Condorcet’s formulation of his theorem is based on

three assumptions: homogeneity, independence, and sincerity. Given the fact that none

of these assumptions may hold, is Condorcet’s theorem relevant to the real world? The

agent-based approach allows exploration of this question. The model’s plug-in

framework allows great flexibility in relaxing Condorcet’s assumptions. These

assumptions are relaxed by providing alternate specifications of the model. This section

analyzes some of these specifications.

3.4.1. Relaxing the homogeneity assumption

 In Condorcet’s formulation, voters are homogeneous: each voter votes correctly

with a fixed likelihood that is common to all voters. A simple way to introduce

90

heterogeneity is to allow voters to possess different likelihoods of correctness. In the

following specification, likelihoods of correctness are distributed normally across the

population of voters:

import model, likelihoods, distributions

print ("stddev pct_correct")

for s in range (50):

 print (s / 10, model.percent (

 spec={"likelihood": likelihoods.distributions (

 distributions.normal (0.6, s / 10))}))

The only difference between this specification and the Condorcet specification is that the

likelihood of correctness now varies by agent. Likelihoods are distributed normally with

a mean of 60% and standard deviations ranging from 0 to 5, in increments of 0.1. The

range of the normal distribution is infinite, so values less than 0% are mapped to 0%, and

values greater than 100% are mapped to 100%.

 When the variance is 0, the model is identical to Condorcet’s specification, and

the likelihood that voters reach the correct decision approaches 100%. As the variance

increases, the tails become thicker. The mean of the distribution is still 60%, but the

distribution is more dispersed. The lower and upper boundaries, 0% and 100%, are

encountered with increasing frequency. The polarizing effect reduces the likelihood of a

correct vote: given a finite number of voters and an increasing variance, the number of

voters who vote correctly 0% of the time approaches the number of voters who vote

correctly 100% of the time. Fewer and fewer voters are left to decide the contest. This

works directly against the Law of Large Numbers—the principle that underlies

Condorcet’s theorem. In the presence of heterogeneity, more voters are needed to

91

produce the correct vote. Figure 3.7 shows how the likelihood of a correct vote decreases

as the variance of the distribution increases.

Figure 3.7: Likelihood of a correct vote by variance of voter distribution

 The agent-based approach is especially useful in situations that do not lend

themselves to closed-form solutions. Consider, for example, the Cauchy distribution.

The Cauchy distribution has no expected value; all of its moments are undefined. This

implies that the closed-form version of the Law of Large Numbers cannot be used to

explore the Cauchy distribution. However, the agent-based approach can be used to

investigate its properties. The following code compares two voter distributions: a

normal distribution with mean (and median) 60% and standard deviation 1.0, and a

Cauchy distribution with median 60%:

92

import model, likelihoods, distributions

normal = distributions.normal (0.6, 1.0)

cauchy = distributions.cauchy (0.6)

normalspec = {"likelihood": likelihoods.distribution (normal)}

cauchyspec = {"likelihood": likelihoods.distribution (cauchy)}

print ("count normal cauchy")

for c in [1, 11, 101, 1001, 10001]:

 print (c,

 model.percent (spec=normalspec, count=c)

 model.percent (spec=cauchyspec, count=c))

As Figure 3.8 shows, Condorcet’s results emerge under both distributions, but slightly

faster under the normal distribution than under the Cauchy.

Figure 3.8: Likelihood of a correct vote by number of voters and distribution

 Using distributions to define voter likelihoods is a simple way to relax

Condorcet’s assumption of homogeneity. It demonstrates that heterogeneity works

against the Law of Large Numbers. But applying this approach to the real world is

difficult: there is no reason to believe that likelihoods of correctness follow any

93

particular distribution. It seems probable that many different characteristics contribute to

the likelihood that an agent votes correctly. For real-world applications, a more robust

form of heterogeneity is needed.

 So far, all invocations of the model have used the null() agent factory. To explore

full heterogeneity, the characteristic() factory can be used instead. The characteristic()

factory allows the modeler to define agents by any number of characteristics. These

characteristics can then be used to influence the agent’s likelihood of voting correctly.

For example, suppose agents are believed to have two characteristics, C1 and C2, which

shape voting behavior. Suppose that C1 ϵ {0.0, 1.0} and C2 ϵ {0.0, 0.5, 1.0}. Then there

are six possible agent types: (C1, C2) ϵ {(0.0, 0.0), (0.0, 0.5), (0.0, 1.0), (1.0, 0.0), (1.0,

0.5), (1.0, 1.0)}. Each of these agent types may exhibit a different likelihood of

correctness. (Characteristics need not be discrete; C1 and C2 are presented as discrete for

ease of exposition.)

 The model allows C1 and C2 to be distributed differently and to covary. These

features allow the model to simulate real-world distributions. To continue the example,

let C1 be distributed such that P(C1=0.0) = 1/3 and P(C1=1.0) = 2/3, and let C2 be

distributed such that P(C2=0.0) = 3/20, P(C2=0.5) = 7/20, and P(C2=1.0) = 1/2. Then

Table 3.1 shows the expected distribution of agent types across the agent population,

assuming that C1 and C2 are uncorrelated.

94

Table 3.1: Expected joint distribution of C1 and C2, no correlation

 C1 = 0.0 C1 = 1.0 Total

C2 = 0.0 5.00% 10.00% 15.00%

C2 = 0.5 11.67% 23.33% 35.00%

C2 = 1.0 16.67% 33.33% 50.00%

Total 33.33% 66.67% 100.00%

When C1 and C2 are uncorrelated, P(C2=c|C1) equals P(C2=c): C1 and C2 are

independent. When C1 and C2 are correlated, P(C2=c|C1) is no longer equal to P(C2=c).

Table 3.2 extends Table 3.1 by depicting two additional cases: corr(C1,C2) = -1 and

corr(C1,C2) = 1. The independent distributions of C1 and C2 are unchanged, but the

joint distributions are different. When corr(C1,C2) = -1, an agent with C1 = 0.0 is least

likely to have C2 = 0.0. When corr(C1,C2) = 1, an agent with C1 = 0.0 is most likely to

have C2 = 0.0.

Table 3.2: Expected joint distribution of C1 and C2, correlations -1 and 1

corr=-1 C1 = 0.0 C1 = 1.0 Total

C2 = 0.0 0.00% 15.00% 15.00%

C2 = 0.5 0.00% 35.00% 35.00%

C2 = 1.0 33.33% 16.67% 50.00%

Total 33.33% 66.67% 100.00%

corr=1 C1 = 0.0 C1 = 1.0 Total

C2 = 0.0 15.00% 0.00% 15.00%

C2 = 0.5 18.33% 16.67% 35.00%

C2 = 1.0 0.00% 50.00% 50.00%

Total 33.33% 66.67% 100.00%

95

These distributions may be created in the model by using the spaced_list() distribution.

The following code creates 10,000 agents, each with characteristic C1 ϵ {0.0, 1.0} and

C2 ϵ {0.0, 0.5, 1.0}, distributed as specified above:

import factories, distributions

c1 = distributions.spaced_list ([1, 2]) # 1/3, 2/3

c2 = distributions.spaced_list ([3, 7, 10]) # 3/20, 7/20, 10/20

for corr in [-1, 0, 1]:

 print (factories.profile (factories.characteristic (10000, [

 ("c1", c1, []),

 ("c2", c2, [corr])]))

The above code considers three values for corr(C1,C2): -1, 0, and 1. The results are

shown in Table 3.3. Notice that the results are very close to the expected results as

shown in Tables 3.1 and 3.2.

Table 3.3: Observed joint distribution of C1 and C2, various correlations

corr=-1 C1 = 0.0 C1 = 1.0 Total

C2 = 0.0 0.00% 15.00% 15.00%

C2 = 0.5 0.00% 35.48% 35.48%

C2 = 1.0 33.22% 16.30% 49.52%

Total 33.22% 66.78% 100.00%

corr=0 C1 = 0.0 C1 = 1.0 Total

C2 = 0.0 5.15% 10.03% 15.18%

C2 = 0.5 12.14% 22.70% 34.84%

C2 = 1.0 16.85% 33.13% 49.98%

Total 34.14% 65.86% 100.00%

corr=1 C1 = 0.0 C1 = 1.0 Total

C2 = 0.0 14.77% 0.00% 14.77%

C2 = 0.5 18.27% 17.59% 35.86%

C2 = 1.0 0.00% 49.37% 49.37%

Total 33.04% 66.96% 100.00%

96

 Table 3.3 shows that the joint distribution of C1 and C2 shifts with their degree of

correlation. The table shows three different degrees of correlation: perfect negative

correlation, zero correlation, and perfect positive correlation. Intermediate correlations

may be explored using the model as well. Consider the subset of agents with C1 = C2 =

0.0, which appears three times in Table 3.3. When corr(C1,C2) is -1, these agents

constitute about 0% of the constructed population. When corr(C1,C2) = 0, these agents

constitute about 5% of the constructed population. When corr(C1,C2) = 1, these agents

constitute about 15% of the constructed population. So as the correlation shifts from -1

to 1, the proportion of agents with C1 = C2 = 0 shifts from 0% to 15%. The following

code traces this shift, and explores the intermediate correlations:

import factories, distributions

c1 = distributions.spaced_list ([1, 2])

c2 = distributions.spaced_list ([3, 7, 10])

print ("corr percent")

for c in range (-100, 101):

 agents = factories.characteristic (1000, [

 ("c1", c1, []),

 ("c2", c2, [c / 100])])

 print (c / 100, factories.profile (agents)[{"c1": 0, "c2": 0}])

Figure 3.9 depicts the results. The discrete nature of characteristics C1 and C2 causes the

shifting correlations to induce a step-wise shift in the proportion of the agent population

with C1 = C2 = 0.0.

97

Figure 3.9: Percent of agents with C1=C2=0 by corr(C1,C2)

 The characteristic() agent factory, then, permits an impressive degree of agent

heterogeneity. But in order to exploit this capability, one must identify a source for

distributions of characteristics in a population of interest. When the population of interest

is the United States public at large, a good source of characteristic distributions is the

General Social Survey (GSS). The GSS is a bienniel face-to-face survey conducted by

the University of Chicago’s National Opinion Research Center. Its website claims that

“[e]xcept for the U.S. Census, the GSS is the most frequently analyzed source of

information in the social sciences
4
.”

 The GSS asks respondents several different types of questions. One set of

questions is designed to solicit opinions on contemporary issues. Another set is designed

to collect background and demographic information. A third set is designed to test

4
 Retrieved from http://www3.norc.org/GSS+Website/About+GSS/ on December 10, 2011.

http://www3.norc.org/GSS+Website/About+GSS/

98

general scientific knowledge. For purposes of Condorcet’s theorem, the second and third

sets make the GSS a uniquely valuable survey: the second set can be used to define agent

distributions, and the third set can be used to infer likelihoods of correctness. Taken

together, these two sets of questions allow Condorcet’s theorem to be tested against a

real-world population.

 Table 3.4 shows a selection of the background and demographic questions. Eight

questions are shown. Four of the questions are volitive—the answer depends at least in

part on choices made by the respondent, and may (arguably) be affected by policy—and

four are not.

Table 3.4. GSS background and demographic questions

Name Question text

AGE 13. Respondent's age

EDUC 15. What is the highest grade in elementary school or high school that

you finished and got credit for?

SEX 23. Code respondent's sex

RACE 24. What race do you consider yourself?

PARTYID 56. Generally speaking, do you usually think of yourself as a

Republican, Democrat, Independent, or what?

HISPANIC 1601. Are you Spanish, Hispanic, or Latino/Latina? IF YES: Which

group are you from?

WORDSUM 1612k. Total number of correct words.

CONRINC 1658. Inflation-adjusted personal income.

The only non-self-explanatory variable in Table 3.4 is WORDSUM. To determine

WORDSUM, the respondent is asked to select the correct definition of ten words, one at

a time. Each word is accompanied by four definitions, one of which is correct.

WORDSUM is the total number of words defined correctly. The source of the words in

99

the vocabulary test is the Weschler Adult Intelligence Scale. WORDSUM tends to

correlate with other measures of general intelligence, so it is sometimes used as a proxy

for intelligence (Zhu and Weiss 2005). Figure 3.10 shows the distribution of

WORDSUM for the 25,638 respondents who took the vocabulary test.

Figure 3.10: Distribution of WORDSUM values from the GSS

 These eight questions can be used to define a population that represents the

United States. Each question corresponds to an agent characteristic whose distribution

can be derived from GSS data. For example, the PARTYID question allows each

respondent to describe herself as a strong Democrat (0), a moderate Democrat (1), a

Democrat-leaning independent (2), an independent (3), a Republican-leaning independent

(4), a moderate Republican (5), or a strong Republican (6). In the GSS model

specification, this characteristic is called repub, and is expressed as follows:

100

import distributions

repub = distributions.unspaced_list ([

 (0, 8761),

 (1, 11697),

 (2, 6508),

 (3, 8126),

 (4, 4764),

 (5, 8755),

 (6, 5356)

])

 The numbers in the above definition were taken from the GSS. For the period

1972-2010, a total of 53,967 respondents answered the PARTYID question. Of these,

8,761 described themselves as strong Democrats, 11,697 described themselves as

moderate Democrats, and so on. The result of this code is a characteristic called repub,

with discrete values evenly spaced between 0 (corresponding to GSS coding 0) and 1

(corresponding to GSS coding 6). In the case of the GSS specification, there are eight

such characteristics, one for each of the questions in Table 3.4. This means the GSS

specification defines eight characteristics: age, male, black, hisp, educ, word, inc, and

repub. (The definitions of these distributions appear in gss.py; see Appendix 3.B.2).

Additional characteristics can, of course, be added at any time with minimal effort.

 When multiple characteristic distributions are provided, their correlations may

also be provided. This information is conveyed to the agent factory by building the lower

triangle of the correlation matrix, one row at a time. The following code defines the eight

agent characteristics as derived from the GSS, including their correlations:

101

import factories

def factory (count):

 return factories.characteristic (count, [

 ("age", age, []),

 ("male", male, [0.01]),

 ("black", black, [-0.06,-0.08]),

 ("hisp", hisp, [-0.13, 0.03,-0.11]),

 ("educ", educ, [0.07,-0.04,-0.10,-0.24]),

 ("word", word, [0.17,-0.05,-0.17,-0.19,0.43]),

 ("inc", inc, [0.23, 0.25,-0.11,-0.12,0.37,0.22]),

 ("repub", repub, [0.02, 0.11,-0.29,-0.10,0.03,0.06,0.11])

])

In this example code, the GSS specification is used to create 10,000 agents. One agent is

selected at random and its characteristics printed.

import gss, random

agents = gss.factory (10000)

print (agents[int (random.random() * len (agents))])

The above code produces output like this:

{'male': 0.0, 'word': 0.5, 'age': 0.5070422535211268, 'repub':

0.8333333333333334, 'hisp': 0.0, 'black': 0.0, 'educ': 0.8,

'inc': 0.4501699957501063}

The above output means that in this instance, the randomly selected agent was female,

scored 5/10 on the vocabulary test, was almost 51 years old, a moderate Republican, not

Hispanic or black, had a Bachelor’s degree, and earned about $112,500 per year in 2010

dollars.

 What makes the GSS useful in the context of Condorcet’s theorem is that it asks

more than just demographic questions; it also asks questions concerning general scientific

knowledge. A typical example of a scientific question in the GSS is EARTHSUN. The

preamble to EARTHSUN (and several related questions) is as follows:

102

1044. Now, I would like to ask you a few short questions like

those you might see on a television game show. For each

statement that I read, please tell me if it is true or false. If

you don't know or aren't sure, just tell me so, and we will skip

to the next question. Remember true, false, or don't know.

EARTHSUN is the tenth question in section 1044, and reads as follows:

j. Now, does the Earth go around the Sun, or does the Sun

go around the Earth?

There are two notable aspects to this question. First, it is a positive question, not a

normative question. It does not ask whether the respondent thinks the Earth should orbit

the Sun; it asks the respondent, does the Earth orbit the Sun? Second, it offers the

respondent the option of saying “don’t know.” This means that when a respondent

answers the question with anything other than “don’t know,” she implies that she believes

she does know. The respondent is evaluating alternatives and rendering a judgment on

which alternative is correct. In other words, the respondent is voting.

 It is probably not too much of a stretch to say that there is now a consensus in the

scientific community that the Earth orbits the Sun. Stating that this is “true,” however,

invites an unnecessary detour into epistemology. For purposes of this analysis, let us

assume that if the Earth orbits the Sun, EARTHSUN has an objectively correct answer.

When interpreted in this way, EARTHSUN allows us to estimate a likelihood of

correctness. The results from the GSS are interesting, to say the least. This question was

asked of 4,310 respondents. Of the 3,966 respondents who answered, 3,144 (79.3%) said

the Earth orbits the Sun, and 822 (20.7%) said the Sun orbits the Earth. For this

103

particular question, then, and assuming that the Earth orbits the Sun, the average

respondent has a likelihood of correctness of 79.3%.

 Some readers might find 79.3% to be distressingly low; for many readers, a value

closer to 99% might have been expected. But note that 79.3% is significantly larger than

50%. Condorcet’s theorem tells us that an electorate composed of these respondents

would be very likely to render, in the aggregate, a correct vote on EARTHSUN. That is,

if every respondent answered the question correctly with P=0.793, a correct vote would

be assured. Yet the preceding analysis revealed that heterogeneity works against the Law

of Large Numbers. So an average likelihood of correctness of 79.3% may not, in fact, be

large enough to produce a correct aggregate vote. It depends on the heterogeneity of the

voters.

 In the GSS specification, voters are heterogeneous along eight characteristics.

The results of a simple linear regression, using EARTHSUN as the dependent variable

(with the correct answer coded as 1 and the incorrect answer coded as 0) and the eight

characteristics as the independent variables, are shown in Table 3.5.

Table 3.5: EARTHSUN as a function of GSS agent characteristics

Characteristic Coefficient

(Constant) 0.369

Age (normalized) -0.158

Sex (male=1) 0.086

Race (black=1) -0.125

Hispanic (yes=1) 0.013

Years of education (normalized) 0.398

Word score (normalized) 0.346

Real income (normalized) 0.042

Degree Republican (normalized) -0.013

104

These coefficients may be combined to create a likelihood function for a GSS agent. The

following code creates 10,001 agents whose characteristics are representative of the GSS

sample. It uses the regression coefficients to form a likelihood of correctness for

EARTHSUN:

import gss, likelihoods

def likelihood (agents):

 return likelihoods.characteristic (agents, lambda agent: 0.369+

 agent["age"] * -0.158 +

 agent["male"] * 0.086 +

 agent["black"] * -0.125 +

 agent["hisp"] * 0.013 +

 agent["educ"] * 0.398 +

 agent["word"] * 0.346 +

 agent["inc"] * 0.042 +

 agent["repub"] * -0.013)

agents = gss.factory (10001)

print (sum (likelihood (agents)) / len (agents))

The result returned by this code is 79.0%, which is very close to the 79.3% reported by

the GSS. This confirms that the agents created by the GSS agent factory are

representative of the GSS sample. Now the model can be used to determine whether

these voters will, in the aggregate, vote correctly on EARTHSUN:

import model

print (model.percent (spec={

 "factory" : gss.factory,

 "likelihood" : likelihood

}, count=10001, runs=1))

The model says yes: a population of 10,001 voters, with characteristics distributed

according to the GSS sample, will vote correctly on the question of whether the Earth

orbits the Sun. Condorcet’s theorem proved this result for a homogeneous population;

105

the model has replicated the result for a heterogeneous population similar to that of the

United States.

 In this case, the agent’s likelihood function has a precise meaning: it is the

likelihood that an agent will correctly answer the EARTHSUN question, based on eight

agent characteristics. A more general likelihood function would compute the likelihood

of correctness for any question, not just EARTHSUN. An agent who answers the

EARTHSUN question correctly might not enjoy the same success with more complex

questions. Consider an array of questions, each somewhat more complex than its

predecessor, beginning with EARTHSUN and ending with a question of infinite

complexity. The following code gradually discounts the likelihood function to reflect

such an array of questions:

import gss, model, likelihoods

def likelihood (agents, complexity):

 return likelihoods.characteristic (agents, lambda agent:

 ((1 – complexity) * (0.369 +

 agent["age"] * -0.158 +

 agent["male"] * 0.086 +

 agent["black"] * -0.125 +

 agent["hisp"] * 0.013 +

 agent["educ"] * 0.398 +

 agent["word"] * 0.346 +

 agent["inc"] * 0.042 +

 agent["repub"] * -0.013)))

print ("complexity pct_correct")

for c in range (101):

 print (c / 100, model.percent (spec={

 "factory" : gss.factory,

 "likelihood" : lambda agents: likelihood (agents, c / 100)}))

106

The results are shown in Figure 3.11. They suggest that GSS agents produce correct

votes even on more complex subjects, so long as the complexity does not cause each

agent’s likelihood of correctness to diminish more than about 35%.

Figure 3.11: Likelihood of a correct vote by complexity: EARTHSUN only

 The likelihood function depicted above was derived from the results of one

sample question, EARTHSUN. A more robust likelihood function can be obtained from

averaging the answers of many sample questions. The GSS contains 33 questions for

which, in the context of this model, correct answers may be said to exist. (Notably

excluded from this list are questions involving the evolution of the human species and the

effect of humans on the global climate: even if these issues enjoy a degree of consensus,

their inclusion in this model would invite unnecessary criticism. Interested readers are

107

encouraged to use the GSS to develop alternative models using the same framework.)

The 33 questions are shown in Table 3.6.

Table 3.6. GSS scientific questions

Name Question text

ASTROSCI 1037. Would you say that astrology is very scientific, sort of

scientific, or not at all scientific?

EXPDESGN 1041. Now, please think about this situation. Two scientists want to

know if a certain drug is effective against high blood pressure. The

first scientist wants to give the drug to one thousand people with

high blood pressure and see how many of them experience lower

blood pressure levels. The second scientist wants to give the drug to

five hundred people with high blood pressure, and not give the drug

to another five hundred people with high blood pressure, and see

how many in both groups experience lower blood pressure levels.

Which is the better way to test this drug?

EXPTEXT 1042. Why is it better to test the drug this way?

ODDS1 1043. Now, think about this situation. A doctor tells a couple that

their genetic makeup means that they've got one in four chances of

having a child with an inherited illness. a. Does this mean that if

their first child has the illness, the next three will not have the

illness?

ODDS2 b. Does this mean that each of the couple's children will have the

same risk of suffering from the illness?

HOTCORE 1044. Now, I would like to ask you a few short questions like those

you might see on a television game show. For each statement that I

read, please tell me if it is true or false. If you don't know or aren't

sure, just tell me so, and we will skip to the next question.

Remember true, false, or don't know. a. First, the center of the Earth

is very hot. Is that true or false?

RADIOACT b. All radioactivity is man-made. (Is that true or false?)

BOYORGRL c. It is the father's gene that decides whether the baby is a boy or a

girl. (Is that true or false?)

LASERS d. Lasers work by focusing sound waves. (Is that true or false?)

ELECTRON e. Electrons are smaller than atoms. (Is that true or false?)

VIRUSES f. Antibiotics kill viruses as well as bacteria. (Is that true or false?)

CONDRIFT h. The continents on which we live have been moving their locations

for millions of years and will continue to move in the future. (Is that

true or false?)

EARTHSUN j. Now, does the Earth go around the Sun, or does the Sun go around

108

the Earth?

SOLARREV k. How long does it take for the Earth to go around the Sun: one day,

one month, or one year?

SCIIMP3 1072. Now I'm going to read you some statements about science and

scientists. Please look at Card B19. How important are each of the

following in making something scientific? c. The conclusions are

based on solid evidence.

SCIIMP4 d. The researchers carefully examine different interpretations of the

results, even ones they disagree with.

SCIIMP7 g. Other scientists repeat the experiment, and find similar results.

NOSUN 1077. The next few questions are about the Arctic and the Antarctic.

The Arctic is the region around the North Pole; Antarctic is the

region that contains the South Pole. These questions are like ones

you might see on a television game show. If you don't know or aren't

sure, just tell me so, and we will skip to the next question.

Remember true, false, or don't know. b. The sun never shines at the

South Pole. (Is that true or false?)

NANOKNW1 1082. Here are a couple of true-false questions about

nanotechnology. As before, if you don't know or aren't sure, just tell

me so, and we will skip to the next question. Remember true, false,

or don't know. a. Nanotechnology involves manipulating extremely

small units of matter, such as individual atoms, in order to produce

better materials. (Is that true or false?)

NANOKNW2 b. The properties of nanoscale materials often differ fundamentally

and unexpectedly from the properties of the same materials at larger

scales. (Is that true or false?)

SCITEST2 1415. For each statement below, just check the box that comes

closest to your opinion of how true it is. In your opinion, how true is

this? b. Antibiotics kill bacteria, but not viruses.

SCITEST3 c. Astrology - the study of the star signs - has some scientific truth.

SCITEST5 e. All man-made chemicals cause cancer if you eat enough of them.

CLONING The cloning of living things produces genetically identical copies.

(Is that true or false?)

MABOYGRL DOES MOM'S GENE DECIDE BABY'S SEX

ANHEAT Please look at Card I-1. The two objects shown there have the same

mass, but object B loses heat more quickly than object A. Which

combination of bodily features would be best suited to a small

animal that lives in a cold climate and needs to minimize heat loss?

LFTPLANE Which of the following is a key factor that enables an airplane to

lift?

STORMTXT DO YOU SEE LIGHTNING BEFORE HEARING THUNDER

LITMSTXT WHY LITMUS PAPER DOESN'T CHANGE COLOR IN MIXED

SOLUTION

109

EROSION Which one of the following is not an example of erosion?

GENES Traits are transferred from generation to generation through the...

UPBREATH For which reason may people experience shortness of breath more

quickly at the top of a mountain than along a seashore?

DAYNIGHT Please look at Card I-3. Day-night rhythms dramatically affect our

bodies. Probably no body system is more influenced than the

nervous system. The figure on Card I-3 illustrates the number of

errors made by shift workers in different portions of [missing] Based

on the data illustrated in the figure, during which of these time

periods did the most errors occur?

WEIGHING As part of a laboratory experiment, five students measured the

weight of the same leaf four times. They recorded 20 slightly

different weights. All of the work was done carefully and correctly.

Their goal was to be as accurate as possible and reduce [missing]

Which of the following is the best method to report the weight of the

leaf?

 Table 3.6 provides the material for 33 ordinary least squares regressions, each

with a scientific question as the dependent variable and the eight respondent

characteristics as the independent variables. Before running the regressions, each

respondent answer in Table 3.6 is recoded, with 0 meaning 0% correct and 1 meaning

100% correct. The recoding may take one of three forms, depending on the question:

Binary questions. VIRUSES asks the respondent whether antibiotics kill viruses

as well as bacteria; the GSS coding is 1 for true and 2 for false. The correct

answer is assumed to be false; thus 2 is recoded to 1 (correct) and 1 is recoded to

0 (incorrect).

Multiple choice questions. SOLARREV asks the respondent how long it takes for

the Earth to orbit the Sun. The respondent is given three choices: one day, one

month, and one year. One year is recoded to 1 (correct) and the others are

recoded to 0 (incorrect).

110

Sliding scale questions. SCITEST5 asks the respondent whether all man-made

chemicals cause cancer if eaten in sufficient quantities. The respondent is given

four choices: definitely true, probably true, probably not true, definitely not true.

Definitely not true is recoded to 1 (fully correct), probably not true is recoded to

0.67 (somewhat correct), probably true is recoded to 0.33 (somewhat incorrect),

and definitely true is recoded to 0 (fully incorrect).

The results of the 33 regressions are summarized in Table 3.7. The independent variables

appear across the top; the dependent variables appear in the far left column. Values

shown are coefficient estimates with standard errors in parentheses. (Significance levels

are not shown in Table 3.7, but will be explored shortly.)

Table 3.7: Regression results from the GSS

 AGE SEX RACE HISPANIC EDUC

ANHEAT 0.108

(0.165)

0.035

(0.043)

-0.094

(0.064)

0.023

(0.066)

0.625

(0.18)

BOYORGRL 0.015

(0.104)

-0.179

(0.027)

-0.089

(0.043)

-0.109

(0.043)

-0.03

(0.109)

CLONING 0.267

(0.158)

0.071

(0.046)

0.041

(0.074)

0.015

(0.067)

0.061

(0.179)

CONDRIFT -0.091

(0.066)

0.045

(0.017)

-0.112

(0.028)

-0.063

(0.028)

0.089

(0.069)

DAYNIGHT 0.009

(0.107)

-0.02

(0.029)

-0.024

(0.042)

0.063

(0.044)

0.469

(0.115)

EARTHSUN -0.158

(0.08)

0.086

(0.022)

-0.125

(0.034)

0.013

(0.034)

0.398

(0.085)

ELECTRON -0.135

(0.109)

0.029

(0.029)

-0.1

(0.047)

-0.016

(0.047)

0.275

(0.115)

EROSION 0.403

(0.151)

0.217

(0.04)

-0.116

(0.061)

-0.012

(0.061)

0.218

(0.16)

EXPDESGN -0.324

(0.08)

0.008

(0.022)

0.037

(0.034)

0.035

(0.035)

0.283

(0.087)

111

EXPTEXT -0.487

(0.105)

0.001

(0.028)

-0.109

(0.045)

-0.046

(0.045)

0.535

(0.114)

GENES -0.054

(0.092)

-0.078

(0.025)

-0.223

(0.037)

-0.046

(0.037)

0.224

(0.099)

HOTCORE -0.017

(0.052)

0.042

(0.014)

-0.049

(0.023)

-0.041

(0.022)

-0.017

(0.055)

LASERS -0.416

(0.105)

0.229

(0.028)

-0.168

(0.045)

-0.194

(0.044)

0.221

(0.108)

LFTPLANE 0.15

(0.151)

0.207

(0.04)

-0.155

(0.062)

-0.198

(0.06)

0.271

(0.161)

LITMSTXT -0.28

(0.189)

0.14

(0.047)

-0.12

(0.094)

-0.113

(0.078)

0.617

(0.195)

MABOYGRL 0.02

(0.302)

-0.074

(0.083)

0.011

(0.125)

0.112

(0.151)

0.973

(0.34)

NANOKNW1 0.005

(0.123)

0.018

(0.034)

-0.158

(0.065)

-0.019

(0.058)

0.04

(0.137)

NANOKNW2 0.024

(0.178)

-0.029

(0.049)

0.071

(0.112)

0.053

(0.082)

0.123

(0.194)

NOSUN -0.133

(0.1)

0.086

(0.027)

-0.09

(0.046)

-0.06

(0.047)

0.264

(0.103)

ODDS1 -0.003

(0.064)

0.032

(0.017)

-0.108

(0.027)

-0.113

(0.028)

0.076

(0.068)

ODDS2 -0.087

(0.085)

0.056

(0.023)

-0.194

(0.036)

-0.132

(0.036)

0.165

(0.091)

RADIOACT 0.157

(0.078)

0.032

(0.021)

-0.11

(0.034)

-0.176

(0.034)

0.154

(0.085)

SCIIMP3 0.017

(0.052)

0.013

(0.014)

-0.046

(0.024)

-0.01

(0.025)

0.105

(0.057)

SCIIMP4 -0.015

(0.054)

-0.014

(0.015)

-0.063

(0.024)

-0.018

(0.026)

0.135

(0.059)

SCIIMP7 0.057

(0.065)

-0.009

(0.018)

-0.07

(0.029)

-0.015

(0.032)

0.011

(0.072)

SCITEST2 0.141

(0.08)

-0.039

(0.021)

0.021

(0.031)

0.087

(0.035)

0.183

(0.084)

SCITEST3 -0.253

(0.087)

0.048

(0.023)

-0.059

(0.034)

-0.021

(0.039)

0.129

(0.092)

SCITEST5 0.212

(0.06)

0.051

(0.016)

-0.05

(0.026)

-0.002

(0.025)

0.198

(0.063)

SOLARREV -0.226

(0.098)

0.093

(0.027)

-0.153

(0.047)

-0.098

(0.042)

0.353

(0.103)

STORMTXT -0.275

(0.15)

0.1

(0.04)

-0.307

(0.073)

-0.002

(0.059)

0.716

(0.158)

112

UPBREATH -0.187

(0.123)

0.105

(0.032)

-0.3

(0.05)

-0.256

(0.048)

0.478

(0.133)

VIRUSES 0.161

(0.097)

-0.11

(0.026)

-0.24

(0.041)

-0.164

(0.042)

0.359

(0.103)

WEIGHING -0.174

(0.134)

0.034

(0.034)

-0.128

(0.052)

-0.111

(0.052)

0.563

(0.142)

 WORD-

SUM

CONR-

INC

PARTY-

ID

Constant R
2
 N

ANHEAT 0.44

(0.123)

-0.05

(0.248)

0.081

(0.066)

-0.148

(0.148)

0.106 509

BOYORGRL 0.302

(0.08)

0.375

(0.123)

-0.003

(0.041)

0.626

(0.094)

0.079 1099

CLONING 0.012

(0.13)

-0.12

(0.208)

0.029

(0.068)

0.726

(0.145)

0.033 176

CONDRIFT 0.126

(0.05)

0.069

(0.079)

-0.095

(0.026)

0.834

(0.059)

0.044 1210

DAYNIGHT 0.328

(0.082)

0.139

(0.162)

0.055

(0.043)

0.317

(0.096)

0.115 551

EARTHSUN 0.346

(0.062)

0.042

(0.097)

-0.013

(0.033)

0.369

(0.071)

0.096 1274

ELECTRON 0.33

(0.084)

-0.052

(0.128)

0.062

(0.043)

0.335

(0.096)

0.046 1058

EROSION 0.345

(0.115)

0.085

(0.222)

0.055

(0.059)

-0.049

(0.136)

0.122 612

EXPDESGN 0.214

(0.062)

0.039

(0.098)

0.035

(0.033)

0.611

(0.073)

0.038 1259

EXPTEXT 0.563

(0.081)

0.116

(0.127)

0.028

(0.043)

-0.059

(0.096)

0.11 1255

GENES 0.335

(0.071)

0.005

(0.135)

-0.04

(0.037)

0.654

(0.084)

0.173 619

HOTCORE 0.116

(0.04)

0.008

(0.063)

0.015

(0.021)

0.87

(0.046)

0.026 1217

LASERS 0.392

(0.082)

0.253

(0.121)

0.047

(0.043)

0.348

(0.092)

0.173 964

LFTPLANE 0.406

(0.115)

-0.145

(0.219)

-0.018

(0.061)

0.092

(0.137)

0.119 592

LITMSTXT 0.449

(0.146)

0.179

(0.24)

0.031

(0.067)

-0.122

(0.162)

0.143 328

MABOYGRL 0.443

(0.267)

-0.309

(0.515)

0.181

(0.13)

-0.193

(0.263)

0.242 101

NANOKNW1 0.107 0.032 -0.052 0.796 0.025 446

113

(0.093) (0.123) (0.048) (0.113)

NANOKNW2 0.06

(0.125)

0.016

(0.192)

0.135

(0.068)

0.596

(0.158)

0.017 351

NOSUN 0.18

(0.078)

0.102

(0.104)

-0.074

(0.042)

0.649

(0.09)

0.085 503

ODDS1 0.189

(0.05)

0.105

(0.077)

0.033

(0.026)

0.714

(0.058)

0.071 1249

ODDS2 0.326

(0.066)

-0.155

(0.104)

-0.047

(0.034)

0.577

(0.077)

0.075 1249

RADIOACT 0.336

(0.062)

0.143

(0.095)

0.058

(0.032)

0.42

(0.072)

0.118 1212

SCIIMP3 0.1

(0.04)

0.05

(0.054)

0.036

(0.022)

0.762

(0.048)

0.066 487

SCIIMP4 0.105

(0.042)

0.016

(0.056)

-0.017

(0.022)

0.788

(0.05)

0.065 480

SCIIMP7 0.073

(0.05)

0.131

(0.067)

-0.038

(0.027)

0.819

(0.06)

0.041 483

SCITEST2 0.134

(0.055)

0.076

(0.104)

0.108

(0.033)

0.399

(0.067)

0.061 693

SCITEST3 0.11

(0.061)

0.049

(0.113)

-0.062

(0.036)

0.487

(0.074)

0.042 694

SCITEST5 0.258

(0.046)

0.057

(0.074)

0.029

(0.024)

0.385

(0.053)

0.092 1274

SOLARREV 0.345

(0.076)

-0.291

(0.112)

0.005

(0.04)

0.427

(0.088)

0.077 976

STORMTXT 0.394

(0.115)

0.429

(0.208)

0.024

(0.059)

-0.034

(0.138)

0.191 465

UPBREATH 0.446

(0.093)

0.279

(0.181)

0.066

(0.048)

0.182

(0.11)

0.263 622

VIRUSES 0.611

(0.075)

0.187

(0.12)

0.048

(0.04)

-0.037

(0.086)

0.191 1270

WEIGHING 0.252

(0.1)

0.376

(0.191)

0.136

(0.051)

0.195

(0.117)

0.141 622

 Two interesting trends are readily gleaned from Table 3.7. First, WORDSUM

always has a positive effect on correctness: the coefficient is positive in each of the 33

regressions. None of the other demographic characteristics exhibit this effect. (Even

114

EDUC has a few negative coefficients, though none is statistically significant.) Second,

each characteristic’s degree of significance varies widely across the scientific questions.

The interpretation of this result is that some questions are harder than others. This

implies that in order to combine these results into a single measure of likelihood of

correctness, we must adjust for the difficulty of the question.

 A composite coefficient for each characteristic can be constructed by computing a

weighted average of all 33 reported coefficients. (This is why the variables were

normalized before running the regressions.) Coefficients are weighted by their t-stats, so

a coefficient with a t-stat of 6 receives twice the weight of a coefficient with a t-stat of 3.

Statistically insignificant coefficients are included, but exert comparatively little

influence (their t-stats are low). This construction yields a single estimate for the

likelihood of correctness among the general population when confronted with an

objective question of average complexity. Table 3.8 shows the composite coefficients,

along with unweighted averages of their standard errors.

Table 3.8: Composite regression coefficients

Characteristic Composite coefficient

Constant 0.636 (0.10)

Age (normalized) -0.111 (0.11)

Sex (male=1) 0.062 (0.03)

Race (black=1) -0.148 (0.05)

Hispanic (yes=1) -0.111 (0.05)

Years of education (normalized) 0.385 (0.12)

Word score (normalized) 0.334 (0.09)

Real income (normalized) 0.123 (0.14)

Degree Republican (normalized) 0.031 (0.04)

115

If each coefficient is interpreted as a point estimate, and if we assume that the variation

among agents along each characteristic is distributed normally, then an agent in the GSS

specification has the following likelihood function:

import random, likelihoods

def likelihood (agents):

 return likelihoods.characteristic (agents, lambda agent:

 random.gauss (0.636, 0.10) +

 random.gauss (-0.111, 0.11) * agent["age"] +

 random.gauss (0.062, 0.03) * agent["male"] +

 random.gauss (-0.148, 0.05) * agent["black"] +

 random.gauss (-0.111, 0.05) * agent["hisp"] +

 random.gauss (0.385, 0.12) * agent["educ"] +

 random.gauss (0.334, 0.09) * agent["word"] +

 random.gauss (0.123, 0.14) * agent["inc"] +

 random.gauss (0.031, 0.04) * agent["repub"])

 The GSS specification can now be used to test Condorcet’s theorem against a

real-world population. Consider a range of questions with complexity measured from 0

to 1, with 0 meaning as complex as the average scientific question asked by the GSS, and

1 meaning infinitely complex. The following code examines how the likelihood of a

correct vote decreases as complexity increases:

import gss, model

print ("complexity pct_correct")

for c in range (40, 61):

 print (c / 100, model.percent (spec={

 "factory" : gss.factory,

 "likelihood" : gss.complexity (complexity)}))

Figure 3.12 shows the results. A population similar to that of the United States could be

expected to vote correctly on scientific issues considerably more complex than those

asked by the General Social Survey: not until complexity approaches 0.5 does the vote

depart from certainty.

116

Figure 3.12: Likelihood of a correct vote by complexity: all questions

 In subsequent sections, the GSS specification will be used to explore specific

policy recommendations. But first, there are two more assumptions to be relaxed:

independence and sincerity.

3.4.2. Relaxing the independence assumption

 In Condorcet’s formulation of his theorem, voters vote independently, without

influence from other voters. Voting is a two-stage operation: voters make independent

assessments, and those assessments are then aggregated (Austen-Smith and Banks 1996).

Omitted from this process is any consideration of the influence one voter may have on

another. This is an unfortunate omission, because models which include agent interaction

may produce strikingly different results than models which exclude it. Glaeser,

Sacerdote and Scheinkman (1996), for example, apply agent interaction to a model of

117

crime. In their model, agents exhibit differing degrees of susceptibility to influence from

peers. When some agents are highly susceptible to the influence of their peers, small

swings among the low-susceptibility agents can produce large effects: the followers act

as amplifiers for the leaders. Glaeser et al. suggest that this phenomenon may explain the

high variance of crime rates in time and space—a phenomenon that is difficult to explain

without peer effects.

 Up to this point, the agent-based exploration of Condorcet’s theorem has assumed

voter independence. This assumption can be relaxed by adding three new functions to

the model specification: confidence, network, and effect. The confidence function

expresses the degree of confidence that the agent has in its own likelihood of correctness,

ranging from 0 (meaning zero confidence, and so highly influenced by its peers) to 1

(meaning perfect confidence, so never influenced by its peers). The network function

expresses the construction of the social networks. The effect function expresses the

effect of an agent’s social network: mean reversion, lifting up, pulling down, or voting as

a bloc (“herding”).

 To explore network effects, consider first a simple invocation of Condorcet’s

theorem. The following code creates 10,001 identical voters, each with a likelihood of

correctness of 0.51. When these voters vote independently, the model predicts that the

vote will be correct over 95% of the time:

118

import model, condorcet

print (model.percent (spec=condorcet.spec (0.51), count=10001))

Likewise, when the likelihood of correctness is 0.49, and voters vote independently, the

vote is correct less than 5% of the time. But when network effects are introduced, these

results may no longer hold. In the following specification, voters do not vote

independently. Instead, each voter has a confidence level, and the agent’s vote is a

confidence-weighted average of its own assessment and the collective assessment of

other agents in its network. In other words, each agent takes into account not only its

own “private signal” but also a cumulative “public signal” (Austen-Smith and Banks

1996). When there is no collective assessment—because all agents lack confidence in

their own judgments—the collective assessment degenerates to a coin flip. This

specification creates a single social network and uses the mean reversion effect: the

voter’s likelihood of correctness is adjusted toward the group mean.

import model, likelihoods, confidences, networks, effects

print ("likelihood, confidence pct_correct")

for l in [0.49, 0.51]:

 for c in range (101):

 print (l, c / 100, model.percent (spec={

 "likelihood" : lambda a: likelihoods.constant (a, l),

 "confidence" : lambda a: confidences.constant (a, c / 100),

 "network" : lambda a: networks.uniform (a, 1),

 "effect" : lambda t: effects.mean_reversion (t)}))

Figure 3.13 shows how voter confidence affects the likelihood of a correct vote. When

voters have zero confidence, the result is essentially a coin flip, and the likelihood of a

correct vote hovers around 50%. As voters increase in confidence, more and more

contribute to a cumulative public signal. As confidence tends toward 1, the likelihood of

119

a correct vote tends toward either 0% or 100%, depending on each agent’s independent

likelihood. This specification demonstrates how Condorcet’s theorem is undermined

when voters do not trust their own judgments.

Figure 3.13: Likelihood of a correct vote by agent confidence

 The above example demonstrates that relaxing independence can transform a

certain vote into an uncertain vote. Relaxing independence may also yield an even more

interesting result: it can transform an incorrect vote into a correct vote. Consider a

specification in which voters are “wise.” In a voting context, wisdom might be defined

as the degree to which an agent defers to the consensus, relative to its own likelihood of

correctness. In other words, wisdom means knowing when one is likely to be wrong. A

“wise” agent defers to others when its likelihood of correctness is low; an “unwise” agent

does not. Table 3.9 expresses the behavior of wise agents.

120

Table 3.9: Behavior of wise agents

High likelihood of

correctness

Low likelihood of

correctness

High confidence

Wise agents:

do not defer (rightly)

Overconfident agents:

do not defer (wrongly)

Low confidence

Underconfident agents:

defer (wrongly)

Wise agents:

defer (rightly)

The series shown in Figure 3.13 express the two columns of Table 3.9. The first column

represents the P=0.51 situation: when agents are underconfident, they become overly

deferential, and a correct vote degrades to an uncertain vote. The second column

represents the P=0.49 situation: when agents are underconfident, they defer to better

informed agents, and an incorrect vote improves to an uncertain vote. Note that in both

cases, it is the certainty of the result, not the result itself, which is affected. In Figure

3.13, an incorrect vote can only become uncertain; it cannot become correct. To

transform an incorrect vote into a correct vote, agents must be imbued with wisdom.

 Wisdom is represented by the top-left to bottom-right diagonal in Table 3.9. A

wise agent defers when its likelihood of correctness is low, and does not defer when its

likelihood of correctness is high. Such an agent can be expressed in the model by

assigning to the agent a wisdom characteristic between 0 to 1, and defining the agent’s

confidence as:

121

confidence = 1 + wisdom * (likelihood - 1).

Perfectly wise agents (wisdom=1) will defer to the consensus in proportion to their own

likelihood of correctness, while perfectly unwise agents (wisdom=0) will ignore the

consensus in all cases. (The wise voter specification appears in wise.py; see Appendix

3.B.3.)

 Consider a specification in which voters are independent, and vote correctly with

a likelihood that is normally distributed with mean 0.49 and standard deviation 0.1:

import model, likelihoods, distributions

print (model.percent (spec={

 "likelihood": lambda agents: likelihoods.distribution

 (agents, distributions.normal (0.49, 0.1))}))

When voters are independent, this specification yields a correct vote less than 10% of the

time. Now consider the same specification, but with agents imbued with differing

degrees of wisdom. The following code traces the likelihood of a correct vote as a

function of agent wisdom:

import model, wise

print ("wisdom pct_correct")

for w in range (101):

 print (w / 100, model.percent (

 spec=wise.spec (0.49, 0.1, w / 100)))

As Figure 3.14 shows, the results are dramatic. When wisdom is zero, voters are

independent, and the likelihood of a correct vote remains less than 10%. As wisdom

increases, those voters with lower likelihoods of correctness begin listening to those with

higher likelihoods of correctness. “Wisdom” leads lower likelihood voters to discount—

122

rationally—the values of their own likelihoods. As wisdom approaches 1, the likelihood

of a correct vote exceeds 90%. It is important to realize that this occurs despite the fact

that the average agent is less than 50% likely to vote correctly when voting

independently. Given suitably wise voters, relaxing independence has transformed an

incorrect vote into a correct vote.

Figure 3.14: Likelihood of a correct vote by agent wisdom

 The preceding result accrues from two separate mechanisms. First, wise voters

recognize their own ignorance. Second, in deciding how to vote, each voter is moved

toward the mean of the group. These two mechanisms may be explored separately. The

following code extends the previous example to two additional network effects. The “lift

up” effect moves each voter toward the most informed voter of the group; the “pull

down” effect moves each voter toward the least informed voter of the group.

123

import model, wise, effects

print ("effect wisdom pct_correct")

for e, effect in enumerate (effects.all_effects):

 for w in range (101):

 print (e, w / 100, model.percent (

 spec=wise.spec (0.49, 0.1, w / 100, effect)))

Not surprisingly, the mean reversion effect produces results somewhere between the lift

up effect and the pull down effect. As Figure 3.15 shows, the pull down effect

neutralizes much of the influence of wisdom, while the lift up effect enhances it. These

two extremes represent the upper and lower bounds, respectively, of the efficacy of

wisdom.

Figure 3.15: Likelihood of a correct vote by agent wisdom: detail

 A fourth network effect may also be explored: the herd effect. In the herd effect,

voters always vote with the majority. Note that this is not the same as the mean reversion

effect. In mean reversion, the majority opinion influences the voter’s likelihood: the

124

voter is taking collective wisdom into account, and the vote becomes a function of public

and private information. In the herd effect, the majority opinion defines the voter’s

likelihood: the voter wishes to vote with the majority, even if this means disregarding

private information. Figure 3.16 shows that the herd effect manifests a tipping point, and

is more severe than the mean reversion effect. This is essentially the effect that Glaeser

et al. (1996) describe: the more “followers” in society, the less likely that a single

equilibrium will emerge.

Figure 3.16: Likelihood of a correct vote by agent wisdom: herding

 Figures 3.15 and 3.16 demonstrate that wisdom can improve outcomes. However,

embedded in the underlying specification is the assumption that wisdom and likelihood of

correctness are uncorrelated. But what if these attributes go together? Consider an agent

specification in which wisdom is positively correlated with likelihood of correctness. In

125

such a specification, less informed voters would continue to vote with high degrees of

(false) confidence. Confidence would be parabolic, with high values at the extremes of

the likelihood spectrum, and low values in the middle:

confidence = 4 * wisdom * likelihood * (likelihood - 1) + 1

The “unwise” specification implements such an agent (see Appendix 3.B.4). The

following code explores the difference in outcomes between true wisdom (i.e., linear

confidence) and selective wisdom (i.e., parabolic confidence), once again using an agent

with a normally distributed likelihood of correctness of mean 0.49 and standard deviation

0.1:

import model, wise, unwise

print ("spec wisdom pct_correct")

for s, spec in enumerate ([wise.spec, unwise.spec]):

 for w in range (101):

 print (s, w / 100, model.percent (

 spec=spec (0.49, 0.1, w / 100)))

As Figure 3.17 shows, when voters with lower likelihoods of correctness are immune

from acquiring wisdom, incorrect votes are no longer transformed into correct votes.

Increases in wisdom continue to have an effect, but the effect is no longer sufficient to

alter the outcome of the vote. Johnson and Fowler (2011) describe how such a situation

might arise.

126

Figure 3.17: Likelihood of a correct vote by agent wisdom: wise vs. unwise

 The preceding explorations of agent interaction have examined a single social

network—a network in which all voters interact with all other voters. This describes the

situation that arises in juries and, to some extent, in legislative bodies. In large-scale

elections, however, voter influence is typically confined to a small subset of voters. This

subset is called the voter’s social network. The following code explores how

fragmentation of social networks can influence outcomes. (This specification is called

the “fragmented” specification and appears in fragmented.py; see Appendix 3.B.5.)

Voters are distributed normally, with a mean likelihood of correctness of 0.5 and a

standard deviation of 0.1. Without network effects, these voters would vote correctly

50% of the time. Three network effects are analyzed: pull down, mean reversion, and

lift up. Social fragmentation is gradually increased.

127

import model, effects, fragmented

print ("effect fragmentation pct_correct")

for e, effect in enumerate (effects.standard_effects):

 for f in range (20):

 print (e, f, model.percent (

 spec=fragmented.spec (0.5, 0.1, f * 250 + 1, 0, effect)))

Figure 3.18 shows the results. When there is a single social network, the lift up effect

ensures a correct vote, and the pull down effect ensures an incorrect vote. As the number

of social networks increases, the influence of voters in the distribution’s tails wanes. If

exceptionally well informed voters exert a positive effect on their peers, social

fragmentation diminishes electoral outcomes (fewer peers benefit from the positive

influence). If exceptionally poorly informed voters exert a negative effect on their peers,

social fragmentation improves electoral outcomes (fewer peers suffer from the negative

influence). If neither of these effects predominate, the result is mean reversion, and

social fragmentation does not change electoral outcomes.

Figure 3.18: Likelihood of a correct vote by social network fragmentation

128

 Underlying Figure 3.18 is the assumption that social networks are constructed

arbitrarily. This assumption gives high-likelihood agents the opportunity to influence

low-likelihood agents, and vice versa. But in the real world, social networks are not

constructed arbitrarily. It is possible that some of the same factors that drive a voter’s

likelihood of correctness—education and intelligence, for example—may also drive a

voter’s social networks. When social networks are correlated with likelihood of

correctness, the advantages of the lift up effect vanish quickly. The following code traces

the lift up effect as social networks grow in size. Six different degrees of correlation are

examined:

import model, effects, fragmented

print ("correlation fragmentation pct_correct")

for c in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]:

 for f in range (20):

 print (c, f, model.percent (spec=fragmented.spec (

 0.5, 0.1, f * 250 + 1, c, effects.lift_up)))

As Figure 3.19 demonstrates, the lift up effect becomes meaningless when voters arrange

their social networks in relation to their likelihoods of correctness. As the correlation

between social networks and likelihoods of correctness increases, the opportunity for

high-likelihood voters to influence low-likelihood voters evaporates.

129

Figure 3.19: Likelihood of a correct vote by social network fragmentation: detail

 The potential correlation between a voter’s likelihood of correctness and his or

her social network presents an identification problem for empiricists. Consider once

again the GSS specification. In the GSS specification’s likelihood function, the

coefficient on EDUC is 0.385. To what degree does this coefficient represent learning,

and to what degree does it represent social conformity, organized along educational

lines? Without an instrument to distinguish between them, it is impossible to say.

Nevertheless, it is possible to explore how social networks might affect the voting

performance of real-world agents.

 The GSS specification implements two of the confidence functions presented

earlier: wise() and unwise(). In both functions, education is used as a proxy for wisdom.

The wise() function employs a linear confidence relationship, and the unwise() function

employs a convex confidence relationship. Each agent’s social network is a function of

130

its characteristics. The following code explores the relationship between the two

confidence functions:

import gss, model

print ("confidence complexity pct_correct")

for c, confidence in enumerate ([gss.wise, gss.unwise]):

 for complexity in range (40, 61):

 print (c, complexity / 100, model.percent (spec={

 "factory" : gss.factory,

 "likelihood" : gss.complexity (complexity / 100),

 "confidence" : confidence,

 "network" : gss.network (gss.profile),

 "effect" : effects.mean_reversion}))

As Figure 3.20 shows, there is a margin in which wise agents outperform unwise agents.

Education is used as a proxy for wisdom, so Figure 3.20 implies that an education which

stresses “knowing thyself” improves voting outcomes, relative to an education which

does not (holding total years of education constant).

Figure 3.20: Likelihood of a correct vote by complexity: wise vs. unwise

131

For a real-world population, then, network effects may matter, over and above their direct

influence on a voter’s likelihood of correctness.

3.4.3. Relaxing the sincerity assumption

 The third assumption underlying Condorcet’s theorem is sincerity: the voter

votes his or her conscience. The public choice literature, however, is full of examples in

which voters might depart from conscience (Mueller 2003, 133). Legislators, for

example, might vote in favor of a bill in order to impress constituents or other legislators,

rather than because the legislator believes the bill to be sensible. Pivotal jurors may

believe that the accused is innocent, yet rationally vote to convict (Feddersen and

Pesendorfer 1996). Some mechanisms of insincere voting—logrolling, pandering to

constituents—are beyond the scope of Condorcet’s theorem. Others, however, can be

explored by the agent-based model.

 All instances of the model have, so far, used the null() voting strategy. The null()

strategy implements sincere voting. An alternative to the null() strategy is the pivotal()

strategy. In the pivotal() strategy, the agent votes its conscience, unless it is about to cast

the deciding vote. In that case, the agent weighs its own likelihood of correctness

(private information) against the implied likelihood of correctness expressed by the other

voters (public information).

 For example, suppose that an agent is pivotal, and suppose it votes correctly with

a likelihood of 0.75. Suppose there are nine voters. The ninth voter, given his or her

priors, would have expected six voters to vote correctly and two to vote incorrectly.

132

Instead, four have voted correctly, and four incorrectly. What are the odds of this?

Using the formula provided in section 3.1, the odds are 0.75
4

(0.25)
4
 C(8,4) = 0.087. This

provides the pivotal agent with additional information: it is quite unlikely that other

agents hold private likelihoods of correctness of 0.75. (The probability of this is only

0.087.) It is reasonable—even if incorrect—to conclude that the observed voting pattern

is representative, and thus that other agents hold likelihoods of correctness lower than

0.75. A rational agent would react to this additional information by revising its opinion,

thus decreasing its own likelihood of correctness (Austen-Smith and Banks 1996).

 The following code explores such a situation. Each agent votes correctly with a

likelihood of correctness of 0.75. The model instantiates nine voters and holds a majority

vote. Two strategies are explored: sincere voting and pivotal voting.

import model, likelihoods, confidences, strategies

print ("strategy confidence pct_correct")

for s, strategy in enumerate ([strategies.null,

strategies.pivotal]):

 for c in range (101):

 print (s, c / 100, model.percent (spec={

 "likelihood" : lambda a: likelihoods.constant (a, 0.75),

 "confidence" : lambda a: confidences.constant (a, c / 100),

 "strategy" : strategy

 }, count=9, runs=1000))

Figure 3.21 displays the results. Under sincere voting, the majority vote is correct about

95% of the time. Under pivotal voting, lower-confidence pivotal agents conclude that

their likelihoods must be too high, and revise them downwards. The likelihood of a

correct vote decreases when low-confidence agents are pivotal. (High-confidence agents

133

ignore the possibility that they might be wrong, and resist downward revisions to their

likelihoods of correctness.)

Figure 3.21: Likelihood of a correct vote by confidence: sincere vs. pivotal

 As might be expected, the results become more pronounced as the number of

voters shrinks. Consider a three-judge panel, each of whose members votes correctly

with a likelihood of 0.75. Such a panel should vote correctly about 85% of the time. But

when the third judge is pivotal, and considers the (split) opinions of the other two judges,

the likelihood of a correct vote falls to around 75%. Figure 3.22 depicts this situation.

134

Figure 3.22: Likelihood of a correct vote by confidence: three judges

 A pivotal voter, then, can be misled by the consensus. By paying attention to the

consensus, a pivotal voter can reduce the likelihood of a correct vote. This situation is

especially dangerous in the context of a jury trial requiring a unanimous verdict, as

Fedderson and Pesendorfer (1998) observe. Consider the previous example of a three-

judge panel, and suppose that a unanimous “guilty” verdict is required to convict.

Suppose each judge votes correctly with likelihood 0.75; suppose also that the defendent

is not guilty. The likelihood of the first two judges voting guilty is 0.0625. If this occurs,

and if the third judge votes as a pivotal voter rather than a sincere voter, she will adjust

her likelihood of correctness downward. The following code models this situation:

135

import model, likelihoods, confidences, strategies

print ("strategy confidence pct_correct")

for s, strategy in enumerate ([strategies.null,

strategies.pivotal]):

 for c in range (101):

 print (s, c / 100, model.percent (spec={

 "likelihood" : lambda a: likelihoods.constant (a, 0.75),

 "confidence" : lambda a: confidences.constant (a, c/100),

 "strategy" : strategy

 }, count=3, runs=1000, majority=0))

Figure 3.23 illustrates the results. When the pivotal voter defers to the consensus, the last

chance for a (correct) “not guilty” verdict is lost. For low-confidence pivotal judges, the

likelihood of a correct verdict falls from over 98% to around 95%. Fedderson and

Pesendorfer (1998) use this fact to argue against the unanimity principle: a system which

places the final voter in this pivotal position encourages strategic voting, which can lead

to undesirable outcomes.

Figure 3.23: Likelihood of a correct vote by confidence: unanimity

136

 Another variation on pivotal voting is described by Mueller (2003, 130). Mueller

notes that if voting proceeded sequentially, and every voter took into account all of the

preceding votes, the probability of a correct vote “is no greater than that of any single

juror’s being correct.” The following code uses the predominant() strategy to test this

claim, using a jury of nine voters:

import model, likelihoods, confidences, strategies

print ("strategy confidence pct_correct")

for s, strategy in enumerate (strategies.all_strategies):

 for c in range (101):

 print (s, c / 100, model.percent (spec={

 "likelihood" : lambda a: likelihoods.constant (a, 0.75),

 "confidence" : lambda a: confidences.constant (a, c / 100),

 "strategy" : strategy

 }, count=9, runs=1000))

Each agent’s individual likelihood of correctness is 0.75. As Figure 3.24 shows, when

voters vote sincerely, the cumulative likelihood of a correct vote is around 95%. But

when voters vote sequentially, with each voter influenced by all previous voters, the

result stays near 75%. Only as confidence increases, and voters stop listening to previous

voters, does the result begin to rise. As Mueller observes, the excessive deference that

arises in predominant voting completely counteracts Condorcet’s theorem.

137

Figure 3.24: Likelihood of a correct vote by confidence: pivotal vs. predominant

 The pivotal and predominant strategies have, so far, been explored with constant-

likelihood voters. How do these voting strategies fare with real-world agents? The

following code examines this question, applying the sincere, pivotal, and predominant

strategies to a jury of nine agents defined by the GSS specification:

import gss, model, effects, strategies

print ("strategy complexity pct_correct")

for s, strategy in enumerate (strategies.all_strategies):

 for complexity in range (0, 101):

 print (s, complexity / 100, model.percent (spec={

 "factory" : gss.factory,

 "likelihood" : gss.complexity (complexity / 100),

 "confidence" : gss.wise,

 "network" : gss.network(),

 "effect" : effects.mean_reversion,

 "strategy" : strategy

 }, count=9, runs=1000))

As Figure 3.25 shows, real-world agents are sufficiently distinctive that the voting

strategy is immaterial. As complexity increases, all three strategies transition at about the

138

same rate. Relaxing the sincerity assumption may work against Condorcet’s theorem, but

relaxing the homogeneity assumption works in favor of it.

Figure 3.25: Likelihood of a correct vote by complexity: GSS agents

In a jury context, then, insincere voting does not undermine the likelihood of a correct

vote, when agents are constructed from a population similar to that of the United States.

3.5. Policy

 The preceding sections have assembled a voting model and calibrated it to the

United States. This section shows how the model might be used to consider the impact of

specific policies on voting outcomes.

 It should be noted at the outset that any calibrated agent-based model is subject to

the Lucas Critique. Calibrating a model in a policy-invariant way is difficult, if not

139

impossible. Nevertheless, there is insight to be gained from exploring such a model.

(One of the great benefits of the agent-based approach is that if a more structurally sound

specification is discovered, it can easily replace a prior specification.) The GSS

specification includes all of the features described in earlier sections: agents are

heterogeneous, exhibit convex confidences, belong to social networks derived from their

characteristics, are susceptible to influence from their social network, and vote sincerely.

Each of these features interact: for example, an increase in education affects not only an

agent’s likelihood of correctness, but also its confidence and social network. Votes are

assumed to involve issues with a complexity rating of 0.5, where 0.0 means “as complex

as the GSS science questions” and 1.0 means infinitely complex. Shifting this margin

may, of course, shift the policy results.

3.5.1. Partisanship

 Would less partisanship yield better outcomes? The following code compares

three scenarios: the status quo, an electorate 50% less partisan, and an electorate 50%

more partisan.

import gss, model

print (gss.percent ())

print (gss.percent (model.compress ("repub", 0.5)))

print (gss.percent (model.expand ("repub", 0.5)))

The status quo yields a correctness rate of about 50%. When partisanship decreases by

half, pushing voters from the extremes toward the middle, the correctness rate stays about

the same. When partisanship increases by half, the correctness rate increases slightly, but

140

not significantly. According to the model, there is no evidence that less partisanship

would yield better outcomes at the specified margin.

3.5.2. Education: general

 Would more education yield better outcomes? The following code compares

three scenarios: the status quo, an electorate 25% less educated, and an electorate 25%

more educated.

import gss, model

print (gss.percent ())

print (gss.percent (model.increase ("educ", 0.25)))

print (gss.percent (model.decrease ("educ", 0.25)))

The status quo yields a correctness rate of about 50%. At the specified margin, neither an

increase nor a decrease in education alters the correctness rate. However, when the effect

is raised from 0.25 to 0.75, both increases and decreases in education lower the

correctness rate. An increase lowers the correctness rate to 47%, while a decrease lowers

the correctness rate to 43%. This curious result stems from the use of education as a

proxy for wisdom, coupled with the convex confidence function: in some cases, the

increase in likelihood of correctness is more than offset by a decrease in confidence.

Upon reflection, however, the reader may not consider this result all that counterintuitive:

education often serves to teach the student how little he knows.

141

3.5.3. Education: minorities

Would more education yield better outcomes if it were targeted toward minority groups?

The following code extends the previous example by restricting it to minority voters:

import gss, model

def minority (agent):

 return agent["black"] or agent["hisp"]

print (gss.percent (model.increase ("educ", 0.25, minority)))

print (gss.percent (model.decrease ("educ", 0.25, minority)))

Unlike the previous case, educated targeted toward minority groups does have a slight

effect, all else equal. Increases in education increase the correctness rate by about 1

percentage point, while decreases in education lower the correctness rate by the same

amount. The same result is observed when the effect is changed from 0.25 to 0.75.

3.5.4. Income inequality: general

Would less income inequality yield better outcomes? The following specification

examines four options: an overall increase in income, an overall decrease in income, a

compression of incomes toward the median, and an expansion of incomes away from the

median.

import gss, model

print (gss.percent (model.increase ("inc", 0.25)))

print (gss.percent (model.decrease ("inc", 0.25)))

print (gss.percent (model.compress ("inc", 0.25)))

print (gss.percent (model.expand ("inc", 0.25)))

Neither an increase nor a decrease in income affects the correctness rate at the specified

margin. A compression of incomes leads to a slight decrease in the correctness rate,

142

perhaps because income is highly correlated with likelihood of correctness (and

uncorrelated with anything else). An expansion of incomes does not affect the

correctness rate. Although the Lucas Critique is surely relevant here, it must be

concluded that the model presents no evidence that a decrease in income inequality

would improve voting outcomes, relative to the status quo.

3.5.5. Income inequality: women

Would a change in income become relevant if it accrued mainly to women?

import gss, model

def female (agent):

 return not agent["male"]

print (gss.percent (model.increase ("inc", 0.25, female)))

print (gss.percent (model.decrease ("inc", 0.25, female)))

According to the model, the answer is no: changes in income do not translate to changes

in the correctness rate.

3.5.6. Income inequality: minorities

Would a change in income become relevant if it accrued mainly to minorities?

import gss, model

def minority (agent):

 return agent["black"] or agent["hisp"]

print (gss.percent ())

print (gss.percent (model.increase ("inc", 0.25, minority)))

print (gss.percent (model.decrease ("inc", 0.25, minority)))

Once again, the answer is no.

143

3.6. Conclusion

 At its heart, the Condorcet Jury Theorem is a defense of majority rule.

Foreshadowing Buchanan and Tullock by nearly two centuries, Condorcet recognized

that the unanimity principle was simply not efficient enough for the modern world. Yet

he recognized that imposing decisions by force, on unwilling subjects, was not something

to be done lightly. Condorcet found solace in his famous theorem. So long as the

average voter was at least slightly more than 50% likely to be correct, the majority could,

with a clear conscience, compel the minority.

 This chapter has presented an agent-based model of Condorcet’s theorem. It

demonstrated that Condorcet’s basic results are easily reproduced. It then relaxed

successively the three assumptions underlying Condorcet’s theorem: homogeneity,

independence, and sincerity. In each case, the model showed that it is possible to violate

the assumption in such a way as to maintain Condorcet’s result; but it is also possible to

violate the assumption such that the result is undermined. At least in part, then, the

assumptions underlying Condorcet’s theorem remain relevant. The model can be

calibrated to a real-world population. The General Social Survey was used to calibrate

the model to a population similar to that of the United States. The result is a model

which captures key features of voting in the United States, and can be used to explore the

effects of policies which shift those features.

 Political scientists may wish to use the model to assess the effects of proposed

policy changes on voting outcomes. A key advantage of the agent-based approach is that

it can be selectively upgraded; a researcher who wishes to make different assumptions

144

regarding voter behavior, or who wishes to use a different source to calibrate the model,

may do so with minimal effort. This chapter has demonstrated the usefulness of the

agent-based approach in public choice.

145

APPENDICES

1. supply-demand.py

define number of buyers, sellers, periods, and iterations

B = 1000

S = 50

P = 200

I = 10

consider Qs = a + bP, Qd = c - dP... give some

concrete values for a, b, c, and d

a = 100

b = 10

c = 20

d = 7

define a demand shock (a change to the value of c)

demand_shock = -3

define the Walrasian auctioneer

class auctioneer:

 # calculate the Walrasian equilibrium price

 def calculate (self, buyers, sellers):

 # begin with price zero and change it incrementally

 price = 0.0

 increment = 100.0

 # see whether the equilibrium price is positive or negative

 supply = sum (map (lambda s: s.quantity (price), sellers))

 demand = sum (map (lambda b: b.quantity (price), buyers))

 positive = (supply < demand)

146

 # discover the equilibrium price

 while abs (supply - demand) > 0.0000001:

 if supply < demand:

 price += increment

 if not positive:

 increment /= 2

 else:

 price -= increment

 if positive:

 increment /= 2

 supply = sum (map (lambda s: s.quantity (price), sellers))

 demand = sum (map (lambda b: b.quantity (price), buyers))

 # save the equilibrium price for later

 self.equilibrium = price

 # return the Walrasian equilibrium price

 def price (self):

 return self.equilibrium

create a Walrasian auctioneer

walras = auctioneer()

run a model

def run (name, model):

 # execute the model multiple times

 results = [model() for i in range (I)]

 # initialize totals

 units = [0 for p in range (P)]

 sales = [0 for p in range (P)]

 inventory = [0 for p in range (P)]

 # calculate totals

 for r in results:

 for (p,u,s,i) in r:

 units[p] += u

 sales[p] += s

 inventory[p] += i

 # calculate averages

 for p in range (P):

 units[p] /= I

 sales[p] /= I

 inventory[p] /= I

 # create the results file

 file = open (name + ".csv", "w")

 # write the header

 file.write ("Period,Volume,AvgPrice,Inventory\n")

 # write results

 for p in range (P):

 file.write ("%d,%f,%f,%f\n" %

 (p, units[p], units[p] and sales[p] / units[p], inventory[p]))

147

 # close the output file

 file.close()

define the basic model

def model (buyer_factory, seller_factory):

 # we haven't seen any results yet

 results = []

 # create the buyers and sellers

 buyers = [buyer_factory() for b in range (B)]

 sellers = [seller_factory() for s in range (S)]

 # for each period...

 for period in range (P):

 # introduce a demand shock

 if period == int (P / 4):

 for b in buyers:

 b.shock (demand_shock)

 # allow the auctioneer to determine the equilibrium price

 walras.calculate (buyers, sellers)

 # engage in production

 for s in sellers:

 s.produce()

 # initialize running totals

 units = 0

 sales = 0

 # for each buyer...

 for b in buyers:

 # identify the seller offering the best deal

 quantity = 0

 for s in sellers:

 if min (b.quantity (s.price()), s.inventory) > quantity:

 quantity = min (b.quantity (s.price()), s.inventory)

 seller = s

 # buy from this seller

 if quantity:

 seller.sell (quantity)

 units += quantity

 sales += quantity * seller.price()

 # determine end-of-period inventory

 inventory = sum (map (lambda s: s.inventory, sellers))

 # save this period's results

 results.append ((period, units, sales, inventory))

 # return the results to the caller

 return results

148

homogeneous buyers

class homogeneous_buyer:

 # initialize the buyer

 def __init__ (self):

 self.shift = 0

 # define demand quantity as a function of price

 def quantity (self, price):

 return max (c + self.shift - d * price, 0)

 # introduce a demand shock

 def shock (self, shock):

 self.shift = shock

price-taking seller

class walrasian_seller:

 # initialize inventory to zero

 def __init__ (self):

 self.inventory = 0

 # define supply quantity as a function of price

 def quantity (self, price):

 return max (a + b * price, 0)

 # this seller offers the Walrasian price

 def price (self):

 return walras.price()

 # produce goods

 def produce (self):

 quantity = self.quantity (self.price())

 if self.inventory < quantity:

 self.inventory += (quantity - self.inventory)

 # sell goods

 def sell (self, quantity):

 self.inventory -= quantity

learning seller

class learning_seller:

 # initialize inventory to zero and clear sales history

 def __init__ (self):

 self.inventory = 0

 self.prevsales = 0

 self.sales = 0

 # define supply quantity as a function of price

 def quantity (self, price):

 return max (a + b * price, 0)

149

 # offer the Walrasian price initially and then use history

 def price (self):

 return self.nextprice

 # produce goods

 def produce (self):

 if self.sales > 0 and self.prevsales > 0:

 self.nextprice *= (1.0 + (self.sales-self.prevsales) / self.prevsales)

 elif self.sales == 0 and self.prevsales > 0:

 self.nextprice *= 0.5

 else:

 self.nextprice = walras.price()

 quantity = self.quantity (self.nextprice)

 if self.inventory < quantity:

 self.inventory += (quantity - self.inventory)

 self.prevsales = self.sales

 self.sales = 0

 # sell goods

 def sell (self, quantity):

 self.inventory -= quantity

 self.sales += quantity

invoke the models

run ("classical",

 lambda: model (

 lambda: homogeneous_buyer(),

 lambda: walrasian_seller()))

run ("learning",

 lambda: model (

 lambda: homogeneous_buyer(),

 lambda: learning_seller()))

end of supply-demand.py

2.A. model.py

model.py: an agent-based model of regulation

import random

List the statistics to be calculated by the model.

stats = [

 "received",

 "sent",

 "organize",

 "regulator",

 "transfers",

 "taxrates",

 "actual",

 "potential",

150

 "pctvotes",

 "deadweight",

 "return"

]

The transfer class stores information about an intergroup

transfer. Each transfer is characterized by an amount

received from another group, the amount spent to convince

that group to undertake the transfer (e.g., "education"),

the amount spent to organize the transfer, and the amount

spent to convince the regulator to undertake the transfer.

class transfer:

 #

 # Define a transfer.

 #

 def __init__ (

 self,

 group,

 received,

 sent,

 organize,

 regulator):

 # remember the other group's identity

 self.group = group

 # remember the amount received from this group

 self.received = received

 # remember the amount sent to this group

 self.sent = sent

 # remember the amount spent to organize the transfer

 self.organize = organize

 # remember the amount sent to the regulator

 self.regulator = regulator

The group class defines a party to a transfer. When a group

receives a transfer, its members benefit; when a group sends

a transfer, its members suffer.

class group:

 #

 # Define a group.

 #

 def __init__ (

 self,

 name,

 factory,

 citizens,

 transfers):

151

 # remember the group name

 self.name = name

 # create the group's citizens

 self.citizens = [factory (self) for c in range (citizens)]

 # remember the number of citizens in the group

 self.members = len (self.citizens)

 # we haven't processed any transfers yet

 self.received_from = {}

 self.sent_to = {}

 self.organize = 0

 self.regulator = 0

 # for each transfer...

 for t in transfers:

 # remember the amount received from this group

 self.received_from[t.group] = t.received

 # remember the amount sent to this group

 self.sent_to[t.group] = t.sent

 # remember the amount spent to organize the transfer

 self.organize += t.organize

 # remember the amount sent to the regulator

 self.regulator += t.regulator

 #

 # Initialize a group. (This cannot be done in the

 # constructor, because we need access to *all* groups

 # to calculate some group characteristics.) The

 # decplaces argument defines the number of

 # decimal places in the tax rate.

 #

 def initialize (self, groups, decplaces=2):

 # initialize group variables

 self.received = 0

 self.sent = 0

 self.persuasion = 0

 self.taxburden = 0

 # remember the transfers received by this group

 for g in self.received_from.keys():

 self.received += self.received_from[g]

 # remember the amount spent to persuade other groups

 for g in self.sent_to.keys():

 self.sent += self.sent_to[g]

 # calculate this group's net transfers

 self.transfers \

 = self.received \

 - self.sent \

 - self.organize \

 - self.regulator

 # remember the amount received to be persuaded

 for g in groups:

 if self.name in g.sent_to:

 self.persuasion += g.sent_to[self.name]

152

 # determine this group's total tax burden

 for g in groups:

 if self.name in g.received_from:

 self.taxburden += g.received_from[self.name]

 # if we have no tax burden...

 if self.taxburden == 0:

 # we have no taxes

 self.taxrate = 0

 # if we have a tax burden...

 else:

 # determine the tax rate resolution

 resolution = 10 ** decplaces

 # for each possible tax rate...

 for tax in range (resolution + 1):

 # we haven't figured out the revenues yet

 raised = 0

 # calculate revenues raised at this tax rate

 for c in self.citizens:

 raised += (tax / resolution) * c.income (tax / resolution)

 # if we've raised enough revenue, stop looping

 if raised > 0.99 * self.taxburden:

 break

 # remember this group's tax rate

 self.taxrate = tax / resolution

The citizen class defines each agent. Each

citizen belongs to exactly one group.

class citizen:

 #

 # Define a citizen.

 #

 def __init__ (

 self,

 group,

 potential,

 deadweight,

 response,

 approval,

 persuasion):

 # remember this citizen's group

 self.group = group

 # remember this citizen's potential income

 self.potential = potential

 # remember the degree to which taxes discourage work

 self.deadweight = deadweight

153

 # remember the response accompanying a change in income

 self.response = response

 # remember this citizen's default approval of the regime

 self.approval = approval

 # remember the influence of persuasion

 self.persuasion = persuasion

 #

 # Determine the citizen's income for a given tax rate.

 #

 def income (self, taxrate):

 return self.potential * (1 - taxrate) ** self.deadweight

 #

 # Determine the citizen's actual income.

 #

 def actual (self):

 return \

 self.income (self.group.taxrate) + \

 self.group.transfers / self.group.members

 #

 # Determine the citizen's likelihood of voting for

 # the current regulatory regime.

 #

 def vote (self):

 return \

 self.approval * \

 (self.actual() / self.potential) ** self.response + \

 self.group.persuasion / self.group.members / self.persuasion

Execute the model.

def run (regime, ids=[], runs=10):

 # we haven't seen any totals yet

 totals = {}

 # for each group...

 for (n,f,a,t) in regime:

 # we haven't created any totals yet

 totals[n] = {}

 # initialize totals to zero

 for s in stats:

 totals[n][s] = 0

 # for each run...

 for r in range (runs):

 # create groups

 groups = [group (n,f,a,t) for (n,f,a,t) in regime]

154

 # initialize groups

 for g in groups:

 g.initialize (groups)

 # for each group...

 for g in groups:

 # find this group's totals

 total = totals[g.name]

 # update group totals

 total["received"] += g.received

 total["sent"] += g.sent

 total["organize"] += g.organize

 total["regulator"] += g.regulator

 total["transfers"] += g.transfers

 total["taxrates"] += g.taxrate

 # clear citizen totals

 actual = 0

 potential = 0

 deadweight = 0

 votes = 0

 # for each citizen in this group...

 for c in g.citizens:

 # update actual and potential income

 actual += c.actual()

 potential += c.potential

 # calculate deadweight loss

 deadweight += c.potential * (1 - c.group.taxrate) \

 - c.income (c.group.taxrate)

 # ask this citizen to vote

 votes += (c.vote() > random.random())

 # update the citizen totals

 total["actual"] += actual

 total["potential"] += potential

 total["deadweight"] += deadweight

 total["pctvotes"] += votes / g.members

 # calculate total group outflows

 outflows = g.sent + g.organize + g.regulator

 # calculate group's rate of return

 total["return"] += g.received / outflows if outflows else 0

 # calculate per-run averages

 for (n,f,a,t) in regime:

 for s in stats:

 totals[n][s] /= runs

 # clear the group totals

 agents = 0

 groups = {}

 weighted = {}

 # initialize group totals to zero

 for s in stats:

 groups[s] = 0

 weighted[s] = 0

155

 # calculate group totals

 for (n,f,a,t) in regime:

 for s in stats:

 groups[s] += totals[n][s]

 weighted[s] += totals[n][s] * a

 # determine the total number of agents

 for (n,f,a,t) in regime:

 agents += a

 # calculate the weighted averages

 for s in ["taxrates", "pctvotes", "return"]:

 groups[s] = weighted[s] / agents

 # allow intermediate output to be suppressed easily

 if False:

 # for each group...

 for (n,f,a,t) in regime:

 # print the group name

 print (n, end="\t")

 # print the ID columns

 for i in ids:

 print (i, end="\t")

 # print the statistics

 for s in stats:

 print (totals[n][s], end="\t")

 # print a newline

 print()

 # print the total name

 print ("total", end="\t")

 # print the ID columns

 for i in ids:

 print (i, end="\t")

 # print the statistics

 for s in stats:

 print (groups[s], end="\t")

 # print a newline

 print()

Print the column headings.

def headings (ids=[]):

 # print the group column heading

 print ("group", end="\t")

 # print the ID column names

 for i in ids:

 print (i, end="\t")

 # print the statistic column names

 for s in stats:

 print (s, end="\t")

156

 # print a newline

 print()

end of model.py

2.B. license.py

license.py: model a licensing regime

import random

import model

Define a licensing regime.

def regime (

 citizens = 10000,

 percent = 0.01,

 received = 1000,

 sent = 100,

 organize = 50,

 regulator = 0,

 potential = 15000,

 potential_sig = 0.0,

 approval = 0.5,

 approval_sd = 0.0,

 deadweight = 1.0,

 deadweight_sig = 0.0,

 response = 1.0,

 response_sig = 0.0,

 persuasion = 1000,

 persuasion_sd = 0.0):

 # determine the number of holders and nonholders

 holders = int (citizens * percent)

 nonholders = citizens - holders

 # define a transfer from nonholders to holders

 license = model.transfer (

 "nonholders",

 received * holders,

 sent * holders,

 organize * holders,

 regulator * holders

)

 # define a factory function for citizens

 citizen = lambda group: model.citizen (

 group,

 random.lognormvariate (0, potential_sig) * potential,

 random.lognormvariate (0, deadweight_sig) * (deadweight - 1) + 1,

 random.lognormvariate (0, response_sig) * (response - 1) + 1,

 random.gauss (approval, approval_sd),

 random.gauss (persuasion, persuasion_sd)

)

157

 # return the regulatory regime

 return [

 ("holders", citizen, holders, [license]),

 ("nonholders", citizen, nonholders, [])

]

end of license.py

2.C. subsidy.py

subsidy.py: model a cross-subsidy regime

import random

import model

Define a cross-subsidy regime.

def regime (

 citizens = 10000,

 percent = (0.01, 0.1),

 received = (1000, 200),

 sent = (100, 0),

 organize = (50, 0),

 regulator = (0, 0),

 potential = (15000, 15000),

 potential_sig = (0.0, 0.0),

 approval = (0.5, 0.5),

 approval_sd = (0.0, 0.0),

 deadweight = (1.0, 1.0),

 deadweight_sig = (0.0, 0.0),

 response = (2.0, 2.0),

 response_sig = (0.0, 0.0),

 persuasion = (1000, 1000),

 persuasion_sd = (0.0, 0.0)):

 # determine the number of direct subsidy recipients

 direct_count = int (citizens * percent[0])

 # determine the number of cross-subsidy recipients

 cross_count = int (citizens * percent[1])

 # determine the number of subsidizers

 public_count = citizens - direct_count - cross_count

 # define the direct subsidy

 direct = model.transfer (

 "public",

 received[0] * direct_count,

 sent[0] * direct_count,

 organize[0] * direct_count,

 regulator[0] * direct_count

)

158

 # define the cross-subsidy

 cross = model.transfer (

 "public",

 received[1] * cross_count,

 sent[1] * cross_count,

 organize[1] * cross_count,

 regulator[1] * cross_count

)

 # define a factory function for non-cross-subsidized citizens

 citizen = lambda group: model.citizen (

 group,

 random.lognormvariate (0, potential_sig[0]) * potential[0],

 random.lognormvariate (0, deadweight_sig[0]) * (deadweight[0] - 1) + 1,

 random.lognormvariate (0, response_sig[0]) * (response[0] - 1) + 1,

 random.gauss (approval[0], approval_sd[0]),

 random.gauss (persuasion[0], persuasion_sd[0])

)

 # define a factory function for cross-subsidized citizens

 special = lambda group: model.citizen (

 group,

 random.lognormvariate (0, potential_sig[1]) * potential[1],

 random.lognormvariate (0, deadweight_sig[1]) * (deadweight[1] - 1) + 1,

 random.lognormvariate (0, response_sig[1]) * (response[1] - 1) + 1,

 random.gauss (approval[1], approval_sd[1]),

 random.gauss (persuasion[1], persuasion_sd[1])

)

 # return the regulatory regime

 return [

 ("direct", citizen, direct_count, [direct]),

 ("cross", special, cross_count, [cross]),

 ("public", citizen, public_count, [])

]

end of subsidy.py

2.D. bidirectional.py

bidirectional.py: model a regime of bidirectional transfers

import random

import model

159

Define a bidirectional transfer regime.

def regime (

 citizens = 10000,

 percent = 0.60,

 received = (1000, 750),

 sent = (100, 50),

 organize = (100, 100),

 regulator = (0, 0),

 potential = (15000, 15000),

 potential_sig = (0.0, 0.0),

 approval = (0.5, 0.5),

 approval_sd = (0.0, 0.0),

 deadweight = (1.0, 1.0),

 deadweight_sig = (0.0, 0.0),

 response = (1.0, 1.0),

 response_sig = (0.0, 0.0),

 persuasion = (1000, 1000),

 persuasion_sd = (0.0, 0.0)):

 # determine the size of the first group

 first_count = int (citizens * percent)

 # determine the size of the second group

 second_count = citizens - first_count

 # define the subsidy from second to first

 first = model.transfer (

 "second",

 received[0] * first_count,

 sent[0] * first_count,

 organize[0] * first_count,

 regulator[0] * first_count

)

 # define the subsidy from first to second

 second = model.transfer (

 "first",

 received[1] * second_count,

 sent[1] * second_count,

 organize[1] * second_count,

 regulator[1] * second_count

)

 # define a factory function for the first group

 first_citizen = lambda group: model.citizen (

 group,

 random.lognormvariate (0, potential_sig[0]) * potential[0],

 random.lognormvariate (0, deadweight_sig[0]) * (deadweight[0] - 1) + 1,

 random.lognormvariate (0, response_sig[0]) * (response[0] - 1) + 1,

 random.gauss (approval[0], approval_sd[0]),

 random.gauss (persuasion[0], persuasion_sd[0])

)

 # define a factory function for the second group

 second_citizen = lambda group: model.citizen (

 group,

 random.lognormvariate (0, potential_sig[1]) * potential[1],

 random.lognormvariate (0, deadweight_sig[1]) * (deadweight[1] - 1) + 1,

 random.lognormvariate (0, response_sig[1]) * (response[1] - 1) + 1,

 random.gauss (approval[1], approval_sd[1]),

 random.gauss (persuasion[1], persuasion_sd[1])

)

160

 # return the regulatory regime

 return [

 ("first", first_citizen, first_count, [first]),

 ("second", second_citizen, second_count, [second])

]

end of bidirectional.py

3.A.1. model.py

model.py

import factories

import likelihoods

import confidences

import networks

import effects

import strategies

Determine whether a vote has passed.

def passed (percent, majority):

 return (

 majority == 1 and percent == 1 or

 majority < 1 and percent > majority)

This is the model driver. Its first argument is the model

specification, which may contain the following elements:

factory : a function that creates agents

likelihood : a function that computes likelihood of correctness

confidence : a function that computes degree of confidence

network : a function that assigns agents to networks

effect : a function that applies network effects

strategy : a function that implements a voting strategy

The model instantiates agents with characteristics defined

by the supplied agent factory. It assigns each agent to

a network. If a policy was supplied, it uses the policy

to modify agent characteristics. The model then determines

the likelihood that an agent would vote correctly if voting

independently. It adjusts these likelihoods based on each

agent's social network, then holds an actual vote. If a

majority of votes are correct, the vote passes; otherwise it

fails. The process is repeated a specified number of times.

The model returns the percent of runs that passed.

def percent (spec={}, policy=None, count=1001, runs=100, majority=0.5, avg=False):

161

 # we haven't examined the model specification yet

 factory = factories.null

 likelihood = likelihoods.null

 confidence = confidences.null

 network = networks.null

 effect = effects.null

 strategy = strategies.null

 # if an agent factory was specified, remember it

 if "factory" in spec:

 factory = spec["factory"]

 # if a likelihood function was specified, remember it

 if "likelihood" in spec:

 likelihood = spec["likelihood"]

 # if a confidence function was specified, remember it

 if "confidence" in spec:

 confidence = spec["confidence"]

 # if a network topology was specified, remember it

 if "network" in spec:

 network = spec["network"]

 # if a network effect was specified, remember it

 if "effect" in spec:

 effect = spec["effect"]

 # if a voting strategy was specified, remember it

 if "strategy" in spec:

 strategy = spec["strategy"]

 # ensure the number of agents is odd

 if count % 2 == 0:

 count += 1

 # we haven't seen any correct runs yet

 correct = 0

 # for each run...

 for r in range (runs):

 # instantiate the agents

 agents = factory (count)

 # if a policy was provided...

 if policy:

 # for each agent...

 for agent in agents:

 # apply the policy

 policy (agent)

 # determine each agent's independent likelihood of correctness

 agent_likelihoods = likelihood (agents)

 # confirm that each agent has been assigned a likelihood

 assert len (agent_likelihoods) == len (agents)

 # determine each agent's confidence

 agent_confidences = confidence (agents)

 # confirm that each agent has been assigned a confidence

 assert len (agent_confidences) == len (agents)

162

 # assign each agent to a network

 agent_networks = network (agents)

 # confirm that each agent has been assigned to a network

 assert len (agent_networks) == len (agents)

 # revise each agent's likelihood based on network effects

 agent_revised = effect (list (zip (

 agent_networks, agent_likelihoods, agent_confidences)))

 # confirm that each agent's likelihood has been revised

 assert len (agent_revised) == len (agents)

 # ask each agent to vote and record whether the vote was correct

 result = strategy (list (zip (

 agent_revised, agent_confidences)), majority)

 # if we should compute the average correctness...

 if avg:

 # remember the percent of correct votes

 correct += result

 # if we should compute the percent of passing runs...

 else:

 # remember whether this run passed

 correct += passed (result, majority)

 # return the percent of runs that were correct

 return correct / runs

Determine the degree of convergence exhibited

by a model specification.

def convergence (spec={}, policy=None, epsilon=0.01, iterations=100, **etc):

 # run the model the specified number of times

 pcts = [percent (spec, policy, **etc) for i in range (iterations)]

 # determine the average result

 avg = sum (pcts) / iterations

 # count the number of values within epsilon of the average

 converged = sum (map (lambda p: abs ((p - avg) / avg) < epsilon, pcts))

 # return the average value and the degree of convergence

 return (avg, converged / iterations)

Implement the increase policy: increase agent attributes.

def increase (characteristic, degree, predicate=lambda a: True):

 # nested function: compress the attribute

 def nested (agent):

 # if we should adjust this agent's value...

 if predicate (agent):

163

 # move it up toward the maximum

 agent[characteristic] += degree * (1 - agent[characteristic])

 # return the compression policy

 return lambda agent: nested (agent)

Implement the decrease policy: decrease agent attributes.

def decrease (characteristic, degree, predicate=lambda a: True):

 # nested function: compress the attribute

 def nested (agent):

 # if we should adjust this agent's value...

 if predicate (agent):

 # move it up toward the maximum

 agent[characteristic] -= degree * agent[characteristic]

 # return the compression policy

 return lambda agent: nested (agent)

Implement the compress policy: compress agent attributes.

def compress (characteristic, degree, predicate=lambda a: True):

 # nested function: compress the attribute

 def nested (agent):

 # if we should adjust this agent's value...

 if predicate (agent):

 # retrieve the characteristic

 c = agent[characteristic]

 # if the characteristic is below the median...

 if c < 0.5:

 # move it up toward the median

 agent[characteristic] += degree * (0.5 - c)

 # if the characteristic is at or above the median...

 else:

 # move it down toward the median

 agent[characteristic] -= degree * (c - 0.5)

 # return the compression policy

 return lambda agent: nested (agent)

Implement the expand policy: expand agent attributes.

def expand (characteristic, degree, predicate=lambda a: True):

 # nested function: expand the attribute

 def nested (agent):

164

 # if we should adjust this agent's value...

 if predicate (agent):

 # retrieve the characteristic

 c = agent[characteristic]

 # if the characteristic is below the median...

 if c < 0.5:

 # move it down away from the median

 agent[characteristic] -= max (c, degree * (0.5 - c))

 # if the characteristic is at or above the median...

 else:

 # move it up away from the median

 agent[characteristic] += min (1-c, degree * (c - 0.5))

 # return the expansion policy

 return lambda agent: nested (agent)

end of model.py

3.A.2. factories.py

factories.py

The model uses factories to create agents. The

model extracts the factory function from the

specification and calls it with a single argument:

the number of agents to be created. The function

returns a list of agents.

import random

Define the null factory. Each agent is

created with no characteristics.

def null (count):

 return [{} for c in range (count)]

Define a characteristic-based agent factory. Each

characteristic is described by three values: its

name, its distribution, and its correlation vector.

The distribution is expressed as a function which

returns a value between 0 and 1. The correlation

vector is a list of values between -1 and 1 which

express the correlation between the characteristic

and all preceding characteristics (that is, the

lower triangle of the correlation matrix).

165

Each agent's characteristics are assigned by taking

draws from the supplied distribution. After each

characteristic is drawn, it is correlated with each

of the preceding characteristics via a probabilistic

sort. The preceding characteristic is sorted in

ascending order, and the new characteristic is then

sorted in the same (corr > 0) or opposite (corr < 0)

order, with unsorted values being swapped with

probability abs(corr). Thus, specifying corr = 0

means that values are never swapped--there is no

correlation. Specifying corr = 1 or -1 means that

values are always swapped--there is full correlation,

either positive or negative.

def characteristic (count, characteristics=[]):

 # begin by creating agents with no characteristics

 agents = [{} for c in range (count)]

 # for each supplied characteristic...

 for (characteristic, distribution, correlations) in characteristics:

 # for each agent...

 for agent in agents:

 # draw values for each agent from the distribution

 agent[characteristic] = distribution()

 # for each correlation...

 for c in range (len (correlations)):

 # determine the sign of the correlation measure

 sign = 1 if correlations[c] > 0 else -1

 # sort agents by the correlated characteristic

 agents.sort (key=lambda agent: agent[characteristics[c][0]])

 # for each agent (in order of related characteristic)...

 for a in range (len (agents)):

 # if we select this agent to participate in the correlation...

 if random.random() < abs (correlations[c]):

 # for each subsequent agent...

 for aa in range (a+1, len (agents)):

 # if this value is (greater than, less than) the current value...

 if sign * agents[a][characteristic] > \

 sign * agents[aa][characteristic]:

 # swap the values

 tmp = agents[a][characteristic]

 agents[a][characteristic] = agents[aa][characteristic]

 agents[aa][characteristic] = tmp

 # return the agents

 return agents

Determine the profile of a list of agents.

Given a list of agents, return a list

containing the percent of agents with each

unique combination of characteristics.

166

def profile (agents):

 # we haven't processed any agents yet

 groups = []

 counts = []

 # for each agent...

 for agent in agents:

 # we haven't found this agent's group yet

 found = False

 # for each unique collection of characteristics...

 for n, group in enumerate (groups):

 # if this agent belongs to this group...

 if agent == group:

 # we've seen another agent in this group

 counts[n] += 1

 # remember we've found the group

 found = True

 # no need to keep looping

 break

 # if we didn't find this agent's group...

 if not found:

 # create a new group

 groups.append (agent)

 # we've seen one agent in this group

 counts.append (1)

 # determine the percent of agents in each group

 percents = map (lambda count: count / len (agents), counts)

 # return the agent groups and their counts

 return list (zip (groups, percents))

end of factories.py

3.A.3. likelihoods.py

likelihoods.py

Each agent votes correctly with some likelihood.

The model extracts the likelihood function from

the specification and calls it with a single

argument: a list of agents. The function returns

a list of likelihoods, one for each agent. Thus,

the length of the returned list of likelihoods is

equal to the length of the supplied list of agents.

167

Define the null likelihood.

def null (agents):

 return [0.5 for a in agents]

Define a constant likelihood.

def constant (agents, value=0.5):

 return [value for a in agents]

Define a distribution-based likelihood.

def distribution (agents, distribution=lambda: 0.5):

 return [distribution() for a in agents]

Define a characteristic-based likelihood.

def characteristic (agents, function=lambda a: 0.5):

 return list (map (function, agents))

end of likelihoods.py

3.A.4. confidences.py

confidences.py

Each agent possesses a level of confidence in

its likelihood of correctness. Confidence is

measured from 0 to 1.

Define the null confidence.

def null (agents):

 return [1 for a in agents]

Define a constant confidence.

def constant (agents, value=1):

 return [value for a in agents]

168

Define a distribution-based confidence.

def distribution (agents, distribution=lambda: 1):

 return [distribution() for a in agents]

Define a characteristic-based confidence.

def characteristic (agents, function=lambda a: 1):

 return list (map (function, agents))

end of confidences.py

3.A.5. networks.py

networks.py

The model allows agents to be assigned to social

networks. The model extracts the network function

from the specification and calls it with a single

argument: a list of agents. The network function

may, but is not required to, use information from

each agent to construct the social network. The

function returns a list of social networks, indexed

by agent. Thus, the length of the returned list

of network assignments is equal to the length of the

supplied list of agents.

import random

import distributions

Define the null network.

def null (agents):

 return [n for n in range (len (agents))]

Define a grid network. The caller supplies a

list of (distribution, groups) pairs. Distribute

agents in space according to the supplied distributions,

then group agents into networks based on adjacency.

def grid (agents, distributions=[]):

 # we haven't created any networks yet

 networks = []

 # for each agent...

 for agent in agents:

169

 # determine the agent's network

 network = [int (d() * g) for d,g in distributions]

 # save this agent's network

 networks.append (tuple (network))

 # return the networks to the caller

 return networks

Define a uniform network. Agents are

distributed evenly into the specified

number of networks.

def uniform (agents, groups):

 return grid (agents, [(random.random, groups)])

Define a characteristic-based network.

def characteristic (agents, function=lambda a: 0):

 return list (map (function, agents))

Define a partition network. Partition each characteristic

into some number of groups, then take the Cartesian product

of those groups. For example, a profile of the form

{"C1" : 2, "C4" : 3} will create six social networks--

the result of partitioning agents into two groups based

on characteristic C1 (less than half, greater than or

equal to half) and three groups based on characteristic

C4 (less than a third, greater than or equal to a third

and less than two thirds, greater than or equal to two thirds).

def partition (agents, profile={}):

 # extract characteristics from the profile

 characteristics = list (profile.keys())

 # extract dimensions from the profile

 dimensions = profile.values()

 # expand each dimension from d to [0,1,2,...,d-1]

 expanded = list (map (range, dimensions))

 # normalize each range from [0,1,...,d-1] to [1/d,2/d,...,1]

 ranges = list (map (

 lambda l: list (map (

 lambda n: (n+1) / len (l), l)), expanded))

 # we haven't created any networks yet

 networks = []

 # define a subfunction to handle recursion

 def recurse (pos, current):

 # if we've exhaused the possible ranges...

 if pos == len (ranges):

170

 # add the current network to the list

 networks.append (current)

 # if we haven't exhaused the possible ranges...

 else:

 # for each value in this range...

 for r in ranges[pos]:

 # make a copy of the current network

 network = current[:]

 # add this value to the network

 network.append (r)

 # recurse to capture the next range

 recurse (pos+1, network)

 # build the network definitions from the ranges

 recurse (0, [])

 # we haven't assigned agents to networks yet

 results = []

 # for each agent...

 for agent in agents:

 # for each network...

 for n in range (len (networks)):

 # assume this agent is a member of this network

 member = True

 # for each characteristic in the profile...

 for c in range (len (characteristics)):

 # if this agent's value is too big for this network...

 if agent[characteristics[c]] > networks[n][c]:

 # this agent isn't a member of this network

 member = False

 # no need to check the other characteristics

 break

 # if this agent is a member of this network...

 if member:

 # remember the agent's network

 results.append (n)

 # no need to check other networks

 break

 # return the networks to the caller

 return results

end of networks.py

171

3.A.6. effects.py

effects.py

Apply network effects. The model extracts the

effects function from the specification and calls it

with a single argument: a list of (network, likelihood,

confidence) tuples, with one tuple per agent. The

function groups likelihoods of related networks and

computes an aggregate effect for each network, then

applies the appropriate effect to each agent's likelihood.

The function returns the revised likelihoods for each

agent. Thus, the length of the returned list is

equal to the length of the supplied list of

(network, likelihood, confidence) tuples.

Define the null effect.

def null (tuples):

 return [l for (n,l,c) in tuples]

Apply an aggregation operator to each network

and recompute each agent's likelihood.

def operator (tuples, function=lambda l: 0):

 # we haven't seen any networks yet

 networks = {}

 # for each triple...

 for network, likelihood, confidence in tuples:

 # if we haven't seen this network before...

 if network not in networks:

 # create an empty list for this network

 networks[network] = []

 # add this likelihood to the network

 networks[network].append (

 likelihood * confidence + 0.5 * (1 - confidence))

 # we haven't processed any values yet

 values = {}

 # for each network...

 for network in networks.keys():

 # calculate the network's value

 values[network] = function (networks[network])

 # we haven't revised any likelihoods yet

 revised = []

 # for each tuple...

 for network, likelihood, confidence in tuples:

172

 # determine the revised likelihood

 revised.append (

 likelihood + (1 - confidence) * (values[network] - likelihood))

 # compute each agent's revised likelihood

 return revised

Define the pull-down effect: each agent

is pulled toward the minimum of its network.

def pull_down (tuples):

 return operator (tuples, lambda l: min (l))

Define the mean-reversion effect: each agent

is pulled toward the mean of its network.

def mean_reversion (tuples):

 return operator (tuples, lambda l: sum (l) / len (l))

Define the lift-up effect: each agent

is pulled toward the maximum of its network.

def lift_up (tuples):

 return operator (tuples, lambda l: max (l))

Define the herd effect: each agent votes

with the majority.

def herd (tuples):

 return operator (tuples,

 lambda l: 1 if sum (l) / len (l) > 0.5 else 0)

List the effects.

all_effects = [pull_down, mean_reversion, lift_up, herd]

end of effects.py

3.A.7. strategies.py

strategies.py

173

Implement voting strategies. The model extracts

the voting strategy from the specification and calls

it with two arguments: a list of (likelihood,

confidence) pairs, with one pair per agent, and the

percent of correct votes required to pass (the

majority). The function applies a voting strategy

and tallies the vote. The function returns the

percent of agents who voted correctly.

import math

import random

Given a likelihood, the total number of votes

cast, and the number of correct votes, calculate

the probability that we would have seen exactly

this number of correct votes.

def probability (likelihood, total, correct):

 tfact = math.factorial (total)

 cfact = math.factorial (correct)

 ifact = math.factorial (total - correct)

 cprob = likelihood ** correct

 iprob = (1 - likelihood) ** (total - correct)

 return tfact / cfact / ifact * cprob * iprob

Given the total number of votes cast and the

number of correct votes, calculate the most

likely probability of correctness of all

agents.

def mostlikely (total, correct):

 highl = 0

 highp = probability (highl, total, correct)

 for l in range (1, 101):

 p = probability (l / 100, total, correct)

 if p > highp:

 highl = l / 100

 highp = p

 return highl

Define the null strategy (sincere voting).

def null (pairs, majority):

 # allow each agent to vote

 votes = list (map (lambda p: p[0] > random.random(), pairs))

 # determine whether the vote passed

 return sum (votes) / len (votes)

174

Define the predominant strategy. Agents vote

one at a time. An agent's vote is a weighted

combination of two likelihoods: its private

signal and its evaluation of the likelihood

of the other agents' votes (so far).

def predominant (pairs, majority, order=lambda p: random.random()):

 # sort the agents into voting order

 pairs.sort (key=order)

 # extract the first likelihood and confidence

 likelihood, confidence = pairs[0]

 # the first agent votes sincerely

 correct = (likelihood > random.random())

 # one agent has voted so far

 total = 1

 # for each remaining agent...

 for likelihood, confidence in pairs[1:]:

 # if the agent recognizes s/he might be wrong...

 if confidence < 1 - probability (likelihood, total, correct):

 # determine the more likely likelihood

 likelihood = confidence * likelihood + (1 - confidence) * \

 mostlikely (total, correct)

 # cast a revised vote

 correct += (likelihood > random.random())

 # another agent has voted

 total += 1

 # determine whether the vote was correct

 return correct / total

Define the pivotal strategy. An agent votes sincerely,

except when it is the last agent to vote and its vote

is pivotal, in which case the agent switches to the

predominant strategy.

def pivotal (pairs, majority, order=lambda p: random.random()):

 # sort the agents into voting order

 pairs.sort (key=order)

 # determine the total number of votes, not counting the last vote

 total = len (pairs) - 1

 # determine the number of correct votes, except for the last vote

 correct = sum (map (lambda p: p[0] > random.random(), pairs[:-1]))

 # determine the last voter's likelihood and confidence

 likelihood, confidence = pairs[-1]

 # if the last voter is pivotal...

 if abs (correct / total - majority) < 0.000001:

175

 # if the agent recognizes s/he might be wrong...

 if confidence < 1 - probability (likelihood, total, correct):

 # determine the more likely likelihood

 likelihood = confidence * likelihood + (1 - confidence) * \

 mostlikely (total, correct)

 # cast a revised vote

 correct += (likelihood > random.random())

 # we've cast another vote

 total += 1

 # determine whether the vote was correct

 return correct / total

List the strategies.

all_strategies = [null, pivotal, predominant]

end of strategies.py

3.B.1. condorcet.py

condorcet.py

A Condorcet agent votes correctly with

a specified likelihood.

import likelihoods

Define the Condorcet specification.

def spec (likelihood):

 return {

 "likelihood": lambda a: likelihoods.constant (a, likelihood)

 }

end of condorcet.py

3.B.2. gss.py

gss.py

A GSS agent is one characterized by the

National Opinion Research Council's

General Social Survey.

176

import random

import model

import distributions

import factories

import likelihoods

import networks

import effects

import strategies

Define age distribution (age, count).

age = distributions.unspaced_list ([

 (18, 194), (19, 757), (20, 799), (21, 899), (22, 939), (23, 1100),

 (24, 1082), (25, 1200), (26, 1187), (27, 1221), (28, 1273), (29, 1149),

 (30, 1242), (31, 1165), (32, 1244), (33, 1193), (34, 1228), (35, 1212),

 (36, 1197), (37, 1165), (38, 1184), (39, 1045), (40, 1124), (41, 1052),

 (42, 1033), (43, 1073), (44, 1014), (45, 959), (46, 968), (47, 940),

 (48, 951), (49, 968), (50, 886), (51, 892), (52, 860), (53, 842),

 (54, 829), (55, 734), (56, 831), (57, 731), (58, 785), (59, 733),

 (60, 768), (61, 672), (62, 710), (63, 686), (64, 600), (65, 658),

 (66, 612), (67, 660), (68, 610), (69, 563), (70, 593), (71, 507),

 (72, 533), (73, 468), (74, 498), (75, 425), (76, 422), (77, 394),

 (78, 353), (79, 309), (80, 274), (81, 273), (82, 238), (83, 214),

 (84, 179), (85, 163), (86, 141), (87, 116), (88, 92), (89, 279)

])

Define sex distribution.

male = distributions.unspaced_list ([

 (0, 30827), (1, 24269)

])

Define Black distribution.

black = distributions.unspaced_list ([

 (0, 47462), (1, 7625)

])

Define Hispanic distribution.

hisp = distributions.unspaced_list ([

 (0, 15235), (1, 1715)

])

177

Define education distribution (years completed, count).

educ = distributions.unspaced_list ([

 (0, 148), (1, 39), (2, 139), (3, 232), (4, 299),

 (5, 382), (6, 725), (7, 837), (8, 2550), (9, 1873),

 (10, 2576), (11, 3295), (12, 16935), (13, 4579), (14, 5909),

 (15, 2414), (16, 6681), (17, 1604), (18, 1885), (19, 719),

 (20, 1086)

])

Define word-score distribution (words correct, count).

word = distributions.unspaced_list ([

 (0, 209), (1, 465), (2, 856), (3, 1555), (4, 2648), (5, 4165),

 (6, 5552), (7, 4009), (8, 2674), (9, 2060), (10, 1445)

])

Define income distribution (fraction of $250K/year, count).

inc = distributions.unspaced_list ([

 (0.00160, 29), (0.00170, 22), (0.00180, 53), (0.00190, 38),

 (0.00195, 44), (0.00210, 41), (0.00215, 42), (0.00220, 28),

 (0.00230, 55), (0.00240, 26), (0.00260, 36), (0.00270, 25),

 (0.00280, 36), (0.00290, 34), (0.00300, 52), (0.00310, 41),

 (0.00320, 42), (0.00330, 44), (0.00340, 49), (0.00360, 60),

 (0.00440, 45), (0.00500, 70), (0.00540, 60), (0.00570, 56),

 (0.00610, 92), (0.00640, 43), (0.00660, 39), (0.00680, 69),

 (0.00710, 75), (0.00750, 48), (0.00780, 69), (0.00830, 53),

 (0.00860, 42), (0.00900, 88), (0.00940, 58), (0.00960, 38),

 (0.01020, 34), (0.01070, 38), (0.01120, 41), (0.01125, 33),

 (0.01160, 53), (0.01165, 27), (0.01200, 72), (0.01220, 50),

 (0.01230, 47), (0.01260, 56), (0.01310, 27), (0.01315, 67),

 (0.01360, 37), (0.01370, 68), (0.01450, 23), (0.01453, 37),

 (0.01456, 78), (0.01490, 13), (0.01500, 40), (0.01570, 39),

 (0.01590, 53), (0.01640, 63), (0.01680, 33), (0.01690, 36),

 (0.01750, 24), (0.01760, 76), (0.01770, 26), (0.01790, 35),

 (0.01830, 19), (0.01860, 30), (0.01880, 37), (0.01930, 27),

 (0.01940, 41), (0.01960, 23), (0.02010, 113), (0.02020, 36),

 (0.02030, 44), (0.02060, 22), (0.02090, 28), (0.02100, 40),

 (0.02110, 43), (0.02140, 39), (0.02145, 37), (0.02150, 86),

 (0.02160, 16), (0.02170, 28), (0.02210, 47), (0.02270, 104),

 (0.02275, 30), (0.02290, 42), (0.02300, 33), (0.02305, 29),

 (0.02350, 32), (0.02390, 39), (0.02410, 19), (0.02415, 27),

 (0.02430, 28), (0.02460, 109), (0.02470, 39), (0.02490, 20),

 (0.02520, 28), (0.02530, 20), (0.02535, 61), (0.02580, 43),

 (0.02610, 21), (0.02650, 61), (0.02690, 33), (0.02700, 43),

 (0.02705, 116), (0.02750, 34), (0.02780, 43), (0.02810, 22),

 (0.02815, 35), (0.02840, 24), (0.02890, 34), (0.02920, 41),

 (0.02925, 26), (0.02950, 32), (0.02955, 39), (0.02990, 24),

 (0.03050, 30), (0.03080, 31), (0.03083, 41), (0.03086, 37),

 (0.03100, 28), (0.03130, 25), (0.03180, 61), (0.03190, 26),

 (0.03210, 41), (0.03260, 49), (0.03300, 37), (0.03320, 16),

 (0.03360, 28), (0.03370, 36), (0.03375, 35), (0.03470, 32),

 (0.03490, 21), (0.03500, 60), (0.03510, 48), (0.03520, 35),

 (0.03610, 55), (0.03615, 72), (0.03640, 28), (0.03720, 73),

 (0.03740, 47), (0.03760, 67), (0.03765, 38), (0.03770, 28),

 (0.03830, 14), (0.03850, 63), (0.03900, 35), (0.03960, 29),

 (0.03970, 26), (0.03973, 123), (0.03976, 59), (0.03980, 46),

178

 (0.04020, 23), (0.04040, 73), (0.04100, 46), (0.04200, 18),

 (0.04210, 69), (0.04220, 105), (0.04270, 29), (0.04300, 70),

 (0.04330, 34), (0.04350, 35), (0.04380, 78), (0.04420, 38),

 (0.04440, 36), (0.04500, 48), (0.04510, 53), (0.04570, 63),

 (0.04580, 32), (0.04600, 41), (0.04650, 97), (0.04710, 49),

 (0.04730, 49), (0.04735, 34), (0.04810, 110), (0.04830, 34),

 (0.04835, 45), (0.04840, 45), (0.04850, 108), (0.04920, 41),

 (0.05040, 52), (0.05050, 118), (0.05110, 60), (0.05130, 39),

 (0.05150, 74), (0.05220, 40), (0.05225, 51), (0.05280, 117),

 (0.05350, 85), (0.05400, 64), (0.05405, 40), (0.05410, 62),

 (0.05430, 42), (0.05500, 46), (0.05520, 52), (0.05530, 65),

 (0.05680, 42), (0.05685, 100), (0.05720, 31), (0.05730, 110),

 (0.05750, 61), (0.05880, 89), (0.05900, 64), (0.05910, 52),

 (0.06020, 37), (0.06040, 70), (0.06080, 67), (0.06090, 70),

 (0.06150, 75), (0.06170, 112), (0.06230, 42), (0.06240, 45),

 (0.06290, 67), (0.06320, 69), (0.06450, 123), (0.06510, 78),

 (0.06520, 42), (0.06525, 84), (0.06590, 36), (0.06620, 111),

 (0.06625, 58), (0.06720, 84), (0.06750, 97), (0.06760, 50),

 (0.06830, 56), (0.06870, 73), (0.06950, 92), (0.06980, 59),

 (0.07020, 75), (0.07030, 58), (0.07060, 44), (0.07100, 77),

 (0.07290, 111), (0.07300, 86), (0.07382, 54), (0.07384, 55),

 (0.07386, 93), (0.07430, 64), (0.07500, 139), (0.07520, 44),

 (0.07630, 161), (0.07690, 117), (0.07695, 72), (0.07750, 97),

 (0.07820, 69), (0.07890, 76), (0.07910, 88), (0.07960, 99),

 (0.07970, 63), (0.07990, 47), (0.08020, 106), (0.08050, 57),

 (0.08140, 118), (0.08240, 97), (0.08270, 100), (0.08300, 71),

 (0.08380, 109), (0.08400, 82), (0.08420, 96), (0.08510, 44),

 (0.08680, 87), (0.08720, 60), (0.08780, 48), (0.08785, 99),

 (0.08800, 118), (0.08830, 66), (0.08890, 80), (0.09020, 63),

 (0.09025, 83), (0.09030, 80), (0.09090, 56), (0.09095, 127),

 (0.09140, 70), (0.09220, 59), (0.09240, 81), (0.09400, 74),

 (0.09420, 68), (0.09540, 136), (0.09580, 56), (0.09660, 103),

 (0.09700, 193), (0.09740, 65), (0.09820, 101), (0.09890, 107),

 (0.09920, 64), (0.09950, 117), (0.09980, 122), (0.10060, 57),

 (0.10130, 57), (0.10160, 111), (0.10220, 78), (0.10225, 57),

 (0.10250, 74), (0.10300, 110), (0.10440, 78), (0.10490, 72),

 (0.10660, 105), (0.10660, 55), (0.10700, 140), (0.10800, 94),

 (0.10860, 49), (0.10870, 49), (0.11060, 101), (0.11110, 64),

 (0.11150, 131), (0.11240, 79), (0.11290, 122), (0.11370, 140),

 (0.11400, 62), (0.11430, 66), (0.11450, 60), (0.11470, 222),

 (0.11760, 81), (0.11770, 160), (0.11830, 49), (0.11890, 49),

 (0.12050, 67), (0.12080, 119), (0.12090, 72), (0.12140, 56),

 (0.12160, 89), (0.12170, 144), (0.12300, 60), (0.12320, 50),

 (0.12340, 175), (0.12460, 71), (0.12650, 166), (0.12740, 128),

 (0.12810, 68), (0.12910, 189), (0.12980, 64), (0.13230, 169),

 (0.13235, 90), (0.13290, 59), (0.13410, 63), (0.13430, 182),

 (0.13570, 71), (0.13770, 71), (0.13790, 73), (0.13910, 169),

 (0.13940, 67), (0.14040, 101), (0.14050, 80), (0.14190, 166),

 (0.14240, 70), (0.14290, 69), (0.14450, 102), (0.14500, 41),

 (0.14520, 54), (0.14590, 182), (0.14595, 123), (0.14750, 77),

 (0.14760, 96), (0.14950, 125), (0.14980, 50), (0.15260, 154),

 (0.15370, 175), (0.15380, 79), (0.15390, 79), (0.15500, 106),

 (0.15580, 55), (0.15640, 89), (0.15880, 301), (0.15950, 83),

 (0.16050, 107), (0.16230, 61), (0.16300, 71), (0.16490, 67),

 (0.16495, 95), (0.16610, 72), (0.16790, 63), (0.16830, 106),

 (0.16850, 183), (0.16890, 155), (0.17190, 53), (0.17440, 61),

 (0.17445, 69), (0.17510, 170), (0.17600, 111), (0.17670, 88),

 (0.18040, 61), (0.18180, 60), (0.18270, 85), (0.18600, 178),

 (0.18690, 48), (0.18810, 52), (0.18850, 61), (0.18930, 118),

 (0.19160, 48), (0.19260, 178), (0.19410, 198), (0.19490, 70),

 (0.19690, 89), (0.19840, 54), (0.19860, 85), (0.20120, 48),

 (0.20130, 41), (0.20200, 167), (0.20500, 96), (0.20600, 105),

 (0.20880, 32), (0.20980, 50), (0.21120, 160), (0.21320, 34),

 (0.21400, 136), (0.21510, 59), (0.21650, 70), (0.21680, 98),

 (0.21720, 90), (0.21750, 38), (0.22420, 87), (0.22490, 48),

 (0.22730, 108), (0.22810, 23), (0.22900, 40), (0.23000, 57),

179

 (0.23540, 109), (0.23640, 60), (0.23820, 176), (0.23830, 26),

 (0.24140, 45), (0.24690, 102), (0.25180, 57), (0.25280, 123),

 (0.25500, 17), (0.25540, 34), (0.25820, 78), (0.26090, 50),

 (0.26270, 95), (0.26460, 38), (0.26500, 63), (0.26810, 64),

 (0.26980, 55), (0.27410, 61), (0.27480, 31), (0.27660, 30),

 (0.27890, 54), (0.27900, 94), (0.28110, 34), (0.28890, 64),

 (0.29040, 59), (0.29110, 104), (0.29510, 16), (0.30300, 70),

 (0.30400, 30), (0.30760, 31), (0.30770, 24), (0.30890, 68),

 (0.31690, 49), (0.31890, 21), (0.32100, 41), (0.32120, 36),

 (0.32480, 25), (0.32970, 78), (0.32980, 20), (0.33220, 38),

 (0.33580, 14), (0.34100, 37), (0.34500, 12), (0.35280, 64),

 (0.35310, 37), (0.36340, 23), (0.36940, 42), (0.37450, 43),

 (0.37620, 50), (0.38540, 28), (0.38910, 23), (0.39860, 28),

 (0.40260, 36), (0.41120, 30), (0.41340, 25), (0.41530, 26),

 (0.42340, 50), (0.42360, 33), (0.42530, 26), (0.42800, 20),

 (0.43290, 35), (0.43900, 87), (0.44470, 53), (0.44970, 14),

 (0.45560, 29), (0.46510, 6), (0.47030, 66), (0.47300, 35),

 (0.48540, 22), (0.48680, 24), (0.49400, 22), (0.53190, 18),

 (0.55890, 47), (0.58050, 22), (0.62150, 88), (0.62530, 22),

 (0.62550, 7), (0.64390, 45), (0.70140, 40), (0.75900, 61),

 (0.83030, 13), (0.94280, 70)

])

Define Republicanism (degree, count).

repub = distributions.unspaced_list ([

 (0, 8761), (1, 11697), (2, 6508), (3, 8126),

 (4, 4764), (5, 8755), (6, 5356)

])

Define the GSS agent factory.

def factory (count):

 return factories.characteristic (count, [

 ("age", age, []),

 ("male", male, [0.01]),

 ("black", black, [-0.06, -0.08]),

 ("hisp", hisp, [-0.13, 0.03, -0.11]),

 ("educ", educ, [0.07, -0.04, -0.10, -0.24]),

 ("word", word, [0.17, -0.05, -0.17, -0.19, 0.43]),

 ("inc", inc, [0.23, 0.25, -0.11, -0.12, 0.37, 0.22]),

 ("repub", repub, [0.02, 0.11, -0.29, -0.10, 0.03, 0.06, 0.11])

])

180

Define an unmeaned version of the GSS likelihood

of correctness function.

def likelihood (agents):

 return likelihoods.characteristic (agents, lambda agent:

 random.gauss (0.636, 0.10) +

 random.gauss (-0.111, 0.11) * agent["age"] +

 random.gauss (0.062, 0.03) * agent["male"] +

 random.gauss (-0.148, 0.05) * agent["black"] +

 random.gauss (-0.111, 0.05) * agent["hisp"] +

 random.gauss (0.385, 0.12) * agent["educ"] +

 random.gauss (0.334, 0.09) * agent["word"] +

 random.gauss (0.123, 0.14) * agent["inc"] +

 random.gauss (0.031, 0.04) * agent["repub"])

Define the GSS network profiles.

profile = {

 "age" : 4,

 "male" : 2,

 "black" : 2,

 "hisp" : 2,

 "educ" : 5,

 "word" : 2,

 "inc" : 5,

 "repub" : 3

}

Define a GSS network.

def network (profile={}):

 return lambda agents: networks.partition (agents, profile)

Define a complexity-adjusted likelihood function.

def complexity (comp, function=likelihood):

 return lambda agents: \

 [(1 - comp) * l for l in function (agents)]

Define an agent's confidence.

def confidence (agents):

 return [1 for a in agents]

Define a wise agent's confidence.

def wise (agents):

 return [1 + agent["educ"] * (likelihood - 1)

 for agent, likelihood in zip (agents, likelihood (agents))]

181

Define an unwise agent's confidence.

def unwise (agents):

 return [4 * agent["educ"] * likelihood * (likelihood - 1) + 1

 for agent, likelihood in zip (agents, likelihood (agents))]

Define the GSS specification.

def spec (comp=0.5):

 return {

 "factory" : factory,

 "likelihood" : complexity (comp),

 "confidence" : unwise,

 "network" : network (profile),

 "effect" : effects.mean_reversion,

 "strategy" : strategies.null

 }

Define the GSS model.

def percent (p=None):

 return model.percent (spec=spec(), policy=p, count=1001, runs=10, avg=True)

end of gss.py

3.B.3. wise.py

wise.py

Implement a "wise" agent.

import distributions

import factories

import likelihoods

import confidences

import networks

import effects

Create agents with normally distributed

likelihoods of correctness and constant

wisdoms.

def factory (mean, std, wisdom):

 return lambda count: factories.characteristic (count, [

 ("L", distributions.normal (mean, std), []),

 ("W", distributions.constant (wisdom), [0])])

182

Retrieve the likelihood of correctness.

def likelihood (agents):

 return likelihoods.characteristic (agents,

 lambda agent: agent["L"])

Retrieve agent confidence.

def confidence (agents):

 return confidences.characteristic (agents,

 lambda agent: 1 + agent["W"] * (agent["L"] - 1))

Define the specification.

def spec (mean, std, wisdom, effect=effects.mean_reversion):

 return {

 "factory" : factory (mean, std, wisdom),

 "likelihood" : likelihood,

 "confidence" : confidence,

 "network" : lambda agents: networks.uniform (agents, 1),

 "effect" : effect

 }

end of wise.py

3.B.4. unwise.py

unwise.py

Implement an "unwise" agent.

import distributions

import factories

import likelihoods

import confidences

import networks

import effects

Create agents with normally distributed

likelihoods of correctness and constant

wisdoms.

def factory (mean, std, wisdom):

 return lambda count: factories.characteristic (count, [

 ("L", distributions.normal (mean, std), []),

 ("W", distributions.constant (wisdom), [0])])

183

Retrieve the likelihood of correctness.

def likelihood (agents):

 return likelihoods.characteristic (agents,

 lambda agent: agent["L"])

Retrieve agent confidence.

def confidence (agents):

 return confidences.characteristic (agents,

 lambda agent: 4 * agent["W"] * agent["L"] * (agent["L"] - 1) + 1)

Define the specification.

def spec (mean, std, wisdom, effect=effects.mean_reversion):

 return {

 "factory" : factory (mean, std, wisdom),

 "likelihood" : likelihood,

 "confidence" : confidence,

 "network" : lambda agents: networks.uniform (agents, 1),

 "effect" : effect

 }

end of unwise.py

3.B.5. fragmented.py

fragmented.py

Implement agents belonging to fragmented

social networks.

import distributions

import factories

import likelihoods

import confidences

import networks

import effects

Create agents with normally distributed

likelihoods of correctness, belonging to

a specific number of networks that are

correlated with likelihoods.

def factory (mean, std, netcount, netcorr):

 return lambda count: factories.characteristic (count, [

 ("L", distributions.normal (mean, std), []),

 ("N", distributions.quantized (netcount), [netcorr])])

184

Retrieve the likelihood of correctness.

def likelihood (agents):

 return likelihoods.characteristic (agents,

 lambda agent: agent["L"])

Retrieve agent confidence.

def confidence (agents):

 return confidences.characteristic (agents,

 lambda agent: 2 * agent["L"] * (agent["L"] - 1) + 1)

Retrieve agent network.

def network (agents):

 return networks.characteristic (agents,

 lambda agent: agent["N"])

Define the specification.

def spec (mean, std, count, corr, effect=effects.mean_reversion):

 return {

 "factory" : factory (mean, std, count, corr),

 "likelihood" : likelihood,

 "confidence" : confidence,

 "network" : network,

 "effect" : effect

 }

end of fragmented.py

3.C. distributions.py

distributions.py

Each distribution function returns another function

which, when called with no arguments, returns values

from the specified distribution, curtailed to the

range [0,1].

import math

import random

185

The curtail() function returns a function which

takes a draw from a distribution and ensures that

the result is between 0 and 1.

def curtail (distribution):

 # subfunction: invoke and curtail the underlying distribution

 def invoke (distribution):

 # fetch the next value from the distribution

 value = distribution()

 # if the value is less than 0, set to 0

 if value < 0:

 value = 0

 # if the value is greater than 1, set to 1

 elif value > 1:

 value = 1

 # return the value

 return value

 # return a function which returns a curtailed value

 return lambda: invoke (distribution)

Provide a constant distribution with the specified value.

def constant (value=0.5):

 return curtail (lambda: value)

Provide a bimodal distribution with the specified values.

def bimodal (value=0.5, low=0, high=1):

 return curtail (lambda: high if random.random() < value else low)

Provide a uniform distribution.

def uniform():

 return random.random

Provide a quantized distribution.

def quantized (count=1):

 return lambda: int (random.random() * count) / count

Provide a normal distribution over the specified range.

186

def normal (mean=0.5, std=0.1):

 return curtail (lambda: random.gauss (mean, std))

Provide a Cauchy distribution over the specified range.

def cauchy (median=0.5):

 return curtail (

 lambda: median + math.tan (math.pi * (random.random() - 0.5)))

It is often convenient to express distributions in terms

of numbers of individuals. For example, if we have a

population of 1000 individuals, and each individual can

have one of three education levels, it might be convenient

to express the distribution as [329, 517, 154]. The

spaced_list() function accepts a list of counts and

returns a corresponding distribution function. In this

example, the returned distribution function would return

0.0 with probability 0.329, 0.5 with probability 0.517,

and 1.0 with probability 0.154.

This function assumes that the counts are evenly spaced.

If the counts are not evenly spaced, either insert zeroes

to fill the gaps or use unspaced_list() instead. The

unspaced_list() function takes pairs of (value, count)

values, instead of the counts alone. For example,

consider a population of 1000 individuals with one

of four education levels, and suppose that the counts

are [329, 517, 0, 154] (that is, no individuals in

the sample have the third education level). In this

case, spaced_list() can be used (with the zero included),

because each value is evenly spaced from the others.

But in a distribution representing, e.g., income,

zero-filling many gaps would be tedious. In that

situation, use unspaced_list() instead. In the above

example, unspaced_list() would be called with the

following argument: [(1, 329), (2, 517), (4, 154)].

def unspaced_list (pairs):

 # subfunction: select a value according to a probability

 def select (probabilities):

 # generate a random value from the uniform distribution

 probability = random.random()

 # for each probability...

 for (p, v) in probabilities:

 # if we've selected the value with this probability...

 if probability < p:

 # return the associated value

 return v

 # sort the pairs

 pairs.sort (key=lambda p: p[0])

 # identify the minimum value

 minval = pairs[0][0]

187

 # identify the maximum value

 maxval = pairs[-1][0]

 # calculate the total count

 total = sum (map (lambda p: p[1], pairs))

 # we haven't seen any values yet

 count = 0

 # we haven't calculated any probabilities yet

 probabilities = []

 # for each value...

 for (v, c) in pairs:

 # we've seen another count

 count += c

 # normalize the value associated with this count

 value = (v - minval) / (maxval - minval)

 # save the probability and its normalized value

 probabilities.append ((count / total, value))

 # return the distribution function

 return lambda: select (probabilities)

def spaced_list (counts):

 # enumerate the counts and call unspaced_list()

 return unspaced_list (list (enumerate (counts)))

end of distributions.py

188

REFERENCES

189

REFERENCES

Austen-Smith, David and Jeffrey S. Banks. 1996. Information Aggregation, Rationality,

and the Condorcet Jury Theorem. American Political Science Review 90(1):34-

45.

Baker, Keith Michael. 1975. Condorcet: From Natural Philosophy to Social

Mathematics. Chicago: University of Chicago Press.

Ball, Philip. 2004. The Physical Modelling of Human Social Systems. ComPlexUs

1:190-206.

Barber, William J. 1996. Designs within Disorder: Franklin D. Roosevelt, the

Economists, and the Shaping of American Economic Policy, 1933-1945.

Cambridge: Cambridge University Press.

Barro, Robert J. and David B. Gordon. 1983. A Positive Theory of Monetary Policy in a

Natural Rate Model. Journal of Political Economy 91(4):589-610.

Becker, Gary. 1983. A Theory of Competition Among Pressure Groups for Political

Influence. Quarterly Journal of Economics 98(3):371-400.

Bernstein, Marver H. 1955. Regulating Business by Independent Commission.

Princeton: Princeton University Press.

Black, Duncan. 1987. The Theory of Committees and Elections. Cambridge:

Cambridge University Press.

Blinder, Alan S. 1997. What Central Bankers Could Learn From Academics—and Vice

Versa. Journal of Economic Perspectives 11(2):3-19.

Boland, Philip J. 1989. Majority Systems and the Condorcet Jury Theorem. Statistician

38(3):181-189.

________, Frank Proschan and Y.L. Tong. 1989. Modeling Dependence in Simple and

Direct Majority Systems. Journal of Applied Probability 26:81-88.

190

Branch, William A. 2004. The Theory of Rationally Heterogeneous Expectations:

Evidence from Survey Data on Inflation Expectations. Economic Journal

114:592-621.

Buchanan, James and Robert Tollison. 1984. The Theory of Public Choice-II. Ann

Arbor: University of Michigan Press.

Condorcet, Marquis de. 1995 [1785]. Essai sur l’application de l’analyse à la probabilité

des décisions rendues à la pluralité des voix. In The French Revolution Research

Collection. Oxford: Pergamon Press.

Cukierman, Alex and Allan H. Meltzer. 1986. A Theory of Ambiguity, Credibility, and

Inflation under Discretion and Asymmetric Information. Econometrica

54(5):1099-1128.

Curtin, Deirdre. 2009. Executive Power of the European Union. Oxford: Oxford

University Press.

Dal Bo, Ernesto. 2006. Regulatory Capture: A Review. Oxford Review of Economic

Policy 22(2):203-225.

Dietrich, Franz. 2008. The Premises of Condorcet’s Jury Theorem are not

Simultaneously Justified. CPNSS working paper 4(2). London: London School

of Economics, Center for Philosophy of Natural and Social Science.

Downey, Allen B. 2012. Think Complexity. Sebastopol, California: O’Reilly Media.

Downs, Anthony. 1957. An Economic Theory of Democracy. New York: Harper &

Row.

Epstein, Joshua M. and Robert Axtell. 1996. Growing Artificial Societies: Social

Science from the Bottom Up. Cambridge: MIT Press.

Fagiolo, Giorgio, Alessio Moneta, and Paul Windrum. 2007. A Critical Guide to

Empirical Validation of Agent-Based Economics Models: Methodologies,

Procedures, and Open Problems. Computational Economics 30(3):195-226.

Feddersen, Timothy J. and Wolfgang Pesendorfer. 1996. The Swing Voter’s Curse.

American Economic Review 86(3):408-424.

________. 1997. Voting Behavior and Information Aggregation in Elections with

Private Information. Econometrica 65(5):1029-1058.

191

________. 1998. Convicting the Innocent: The Inferiority of Unanimous Jury Verdicts

under Strategic Voting. American Political Science Review 92(1):23-35.

Funk and Wagnalls. 1971. New Encyclopedia. New York: Funk and Wagnalls.

Gjerstad, Steven and John Dickhaut. 1998. Price Formation in Double Auctions. Games

and Economic Behavior 22:1-29.

Glaeser, Edward L., Bruce Sacerdote, and Jose A. Scheinkman. 1996. Crime and Social

Interactions. Quarterly Journal of Economics 111(2):507-548.

Goff, Brian. 1996. Why Regulation? In Michael A. Crew (ed.), Regulation and

Macroeconomic Performance. New York: Kluwer Academic Publishers.

Gomes, Orlando. 2006. Optimal Monetary Policy under Heterogeneous Expectations.

ICFAI Journal of Monetary Economics 4:32-51.

Guerrero, Omar A. and Robert Axtell. 2011. Using Agentization for Exploring Firm and

Labor Dynamics. Emergent Results of Artificial Economies: Lecture Notes in

Economics and Mathematical Systems 652(4):139-150.

Haltiwanger, John and Michael Waldman. 1985. Rational Expectations and the Limits

of Rationality: an Analysis of Heterogeneity. American Economic Review

75(3):326-340.

Hayek, Friedrich A. 1976. Law, Legislation and Liberty. Chicago: University of

Chicago Press.

Hoeffding, Wassily. 1956. On the Distribution of the Number of Successes in

Independent Trials. Annals of Mathematical Statistics 27:713-721.

Huntington, Samuel P. 1952. The Marasmus of the ICC: The Commission, the

Railroads, and the Public Interest. The Yale Law Journal 61(4):467-509.

Ireland, Peter N. 1998. Expectations, credibility, and time-consistent monetary policy.

Working paper 9812, Federal Reserve Bank of Cleveland.

Johnson, Dominic D.P. and James H. Fowler. 2011. The Evolution of Overconfidence.

Nature 477:317-320.

192

Koriyama, Yukio and Balazs Szentes. 2007. A Resurrection of the Condorcet Jury

Theorem. Unpublished manuscript dated September 25, 2007, available at

<http://home.uchicago.edu/~szentes/resurr.pdf>.

Kroszner, Randall S. and Philip E. Strahan. 1999. What Drives Deregulation?

Economics and Politics of the Relaxation of Bank Branching Restrictions.

Quarterly Journal of Economics 114(4):1437-1467.

Landis, James M. 1938. The Administrative Process. New Haven: Yale University

Press.

List, Christian and Robert E. Gooden. 2001. Epistemic Democracy: Generalizing the

Condorcet Jury Theorem. Journal of Political Philosophy 9(3):277-306.

Lucas, Robert E. 1976. Econometric Policy Evaluation: a Critique. In K. Brunner and

A. H. Meltzer (Eds.), The Phillips curve and labor markets. Amsterdam: North-

Holland.

Lutz, Mark. 2011. Programming Python, Fourth Edition. Sebastopol, California:

O’Reilly.

Macal, Charles M. & Michael J. North. 2010. Tutorial on Agent-Based Modeling and

Simulation. Journal of Simulation 4:151-162.

Markose, Sheri M. 2005. Computability and Evolutionary Complexity: Markets as

Complex Adaptive Systems. The Economic Journal 115:F159-192.

McCraw, Thomas K. 1975. Regulation in America, a Review Article. The Business

History Review 49(2):59-83.

Miller, Nicholas R. 1986. Information, Electorates and Democracy: Some Extensions

and Interpretations of the Condorcet Jury Theorem. In B. Grofman and G. Owen

(Eds.), Information Pooling and Group Decision Making. Greenwich,

Connecticut: JAI Press.

Mueller, Dennis C. 2003. Public Choice III. Cambridge: Cambridge University Press.

Myerson, Roger B. 1998. Extended Poisson Games and the Condorcet Jury Theorem.

Games and Economic Behavior 25:111-131.

Niskanan, William A. 1968. The Peculiar Economics of Bureaucracy. American

Economic Review 58(2):293-305.

193

Olson, Mancur. 1965. The Logic of Collective Action. Cambridge: Harvard University

Press.

Pareto, Vilfredo. 1955 [1911]. Mathematical Economics. International Economic

Papers 5:58-102.

Peltzman, Samuel. 1976. Toward a More General Theory of Regulation. Journal of

Law and Economics 19:211-48.

________. 1980. Growth of Government. Journal of Law and Economics 23:209-287.

________. 1989. The Economic Theory of Regulation after a Decade of Deregulation.

In Brookings Papers on Economic Activity: Microeconomics. Washington:

Brookings Institution.

________. 1993. George Stigler’s Contribution to the Economic Analysis of Regulation.

Journal of Political Economy 101(5):818-832.

Popper, Karl. 1959. The Logic of Scientific Discovery. New York: Basic Books.

Posner, Richard. 1974. Theories of Economic Regulation. Bell Journal of Economics

and Management Science 5(2):335-58.

Riechmann, Thomas. 2001. Learning in Economics: Analysis and Application of

Genetic Algorithms. Heidelberg: Physica-Verlag.

Riker, W. H. 1979. Is “A New and Superior Process” Really New? Journal of Political

Economy 87:785-890.

Rockoff, Hugh. 1984. Drastic Measures: A History of Wage and Price Controls in the

United States. Cambridge: Cambridge University Press.

Rubinstein, Ariel and Asher Wolinsky. 1985. Equilibrium in a Market with Sequential

Bargaining. Econometrica 53(3):1133-1150.

Smith, Adam. 1994 [1776]. The Wealth of Nations. New York: The Modern Library.

Spaeth, Barbette S. 1996. The Roman goddess Ceres. Austen: University of Texas

Press.

Stigler, George. 1971. The Theory of Economic Regulation. Bell Journal of Economics

and Management Science 2:3-21.

194

________ and Claire Friedland. 1961. What Can Regulators Regulate? The Case of

Electricity. Journal of Law and Economics 5:1-16.

________, Stephen M. Stigler, and Claire Friedland. 1995. The Journals of Economics.

The Journal of Political Economy 103(2):331-359.

Surowiecki, James. 2004. The Wisdom of Crowds. New York: Anchor Books.

Tobias, Robert and Carole Hofmann. 2004. Evaluation of Free Java-Libraries for Social-

Scientific Agent Based Simulation. Journal of Artificial Societies and Social

Simulation 7(1):6.

Tesfatsion, Leigh. 2006. Agent-Based Computational Economics: a Constructive

Approach to Economic Theory. In L. Testfatsion & K. Judd (Eds.), The

Handbook of Computational Economics: Agent-Based Computational Economics,

Volume 2. Amsterdam: North-Holland.

Tideman, T. Nicolaus and Gordon Tullock. 1976. A New and Superior Process For

Making Social Choices. Journal of Political Economy 84:1145-1159.

________. 1981. Coalitions under Demand Revealing. Public Choice 36(2):323-328.

Tullock, Gordon. 1966. Information Without Profit. Papers on Non-Market Decision

Making 1:141-159.

________. 1967a. Hotelling and Downs in Two Dimensions. In Toward a Mathematics

of Politics. Ann Arbor: University of Michigan Press, 50-61.

________. 1967b. Proportional Representation. In Toward a Mathematics of Politics.

Ann Arbor: University of Michigan Press, 144-157.

________. 1967c. The Politics of Persuasion. In Toward a Mathematics of Politics.

Ann Arbor: University of Michigan Press, 115-132.

________. 1967d. Political Ignorance. In Toward a Mathematics of Politics. Ann

Arbor: University of Michigan Press, 100-114.

________. 1970. A Simple Algebraic Logrolling Model. American Economic Review

60:419-426.

________. 1971. The Paradox of Revolution. Public Choice 11:89-99.

195

________. 1972a. The Edge of the Jungle. In G. Tullock (Ed.), Explorations in the

theory of anarchy. Blacksburg, Virginia: Center for Study of Public Choice, 65-

75.

________. 1972b. Economic Imperialism. In J. M. Buchanan and R. D. Tollison (Eds.),

Theory of Public Choice: Political Applications of Economics. Ann Arbor:

University of Michigan Press, 317-329.

________. 1974. The Social Dilemma: the Economics of War and Revolution.

Blacksburg, Virginia: Center for Study of Public Choice.

________. 1976. An Essay in the Economics of Politics. London: Institure of

Economic Affairs.

________. 1980. Efficient Rent Seeking. In J. M. Buchanan, R. D. Tollison, and G.

Tullock (Eds.), Toward a Theory of the Rent-Seeking Society. College Station:

Texas A&M University Press, 97-112.

________. 1981. Why So Much Stability? Public Choice 37(2):189-202.

________. 1982. Income Testing and Politics: a Theoretical Model. In I. Garfinckel

(Ed.), Income-Tested Transfer Programs: the Case For and Against, 97-116.

________. 1983a. Information and Logrolling. In Economics of Income Redistribution.

Boston: Kluwer-Nijhoff, 33-48.

________. 1983b. Horizontal Transfers. In Economics of income redistribution.

Boston: Kluwer-Nijhoff, 17-31.

________. 1987. Public Choice. In J. Eatwell, M. Milgate, and P. Newman (Eds.), The

New Palgrave: a Dictionary of Economics, Volume 3. London: Macmillan,

1040-1044.

________. 2000. People Are People. In G. Tullock, A. Seldon, and G. L. Brady (Eds.),

Government: Whose Obedient Servant? A Primer in Public Vhoice. London:

Institute of Economic Affairs, 3-18.

________. 2005. The Economics and Politics of Wealth Redistribution. Indianapolis:

Liberty Fund.

________. and Colin D. Campbell. 1970. Computer Simulation of a Small Voting

System. Economic Journal 80:97-104.

196

Vriend, Nicholas. J. 2002. Was Hayek an ACE? Southern Economic Journal 68(4):811-

840.

Wagner, Richard E. 2007. Fiscal Sociology and the Theory of Public Finance.

Cheltenham, England: Edward Elgar Publishing.

________. 2008. Finding Social Dilemma: West of Babel, not East of Eden. Public

Choice, 135(1/2):55-66.

Walsh, Carl E. 1998. Monetary Theory and Policy. Cambridge: MIT Press.

White, Matthew W. 1996. Power Struggles: Explaining Deregulatory Reforms in

Electricity Markets. In Brookings Papers: Microeconomics 1996. Washington:

Brookings Institution.

Young, H. Peyton. 1997. Group Choice and Individual Judgments. In D. Mueller (Ed.),

Perspectives on Public Choice. Cambridge: Cambridge University Press.

Zhu, Jianjun and Lawrence G. Weiss. 2005. The Weschler Scales. In D. Hanagan and

P. Harrison (Eds.), Contemporary Intellectual Assessment: Theories, Tests, and

Issues. New York: The Guilford Press, 294-324.

197

CURRICULUM VITAE

Richard R. Wallick graduated from Taipei American School, Taipei, Taiwan, in 1987.

He received his Bachelor of Science in Computer Science from the University of Calgary

in 1992. He was employed as a software engineer in the Washington, D.C. area until

2005. He received his Master of Arts in Economics from George Mason University in

2007. He now works for the Bureau of Labor Statistics as a member of the Consumer

Price Index team.

