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ABSTRACT 

EVALUATION OF HETEROGENEITY STATISTICS FOR HYDROLOGICAL 

REGIONAL FREQUENCY ANALYSIS 

Michael J. Wright, Ph.D. 

George Mason University, 2014 

Dissertation Directors: Drs. Mark Houck and Celso Ferreira 

 

When an engineering firm designs a dam, a government assesses its readiness for flood or 

famine, or a municipal water supply company invests in new infrastructure, lives and 

major financial investments are at stake. To design a sturdy dam, prepare a sufficient 

emergency response, size a water treatment plant, or answer many other important 

questions, estimates of the magnitude and frequency of future precipitation events are 

often needed. Because the societal and financial costs of erroneous estimates can be 

extremely high, mechanisms exist to quantify and minimize the error of estimation. 

Precipitation gauge records are often pooled to reduce the error of quantile estimates by 

increasing sample size. This introduces a new error component proportional to 

heterogeneity, the degree to which the constituent gauges diverge from the regional 

average. Precipitation frequency analysts, especially in data-poor regions, use 

heterogeneity statistics to evaluate whether a candidate regionalization adds more error 
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through heterogeneity than it reduces through increased sample size. This dissertation 

assesses the relationship between error in quantile estimates and five heterogeneity 

statistics proposed in the literature, offering precipitation analysts quantifications of these 

statistics’ efficacy and making recommendations for their use. All five-or-more-site 

regionalizations of a twelve-gauge Minnesota dataset are enumerated and Monte Carlo 

simulation is used to estimate quantile error and the heterogeneity statistics. Linear 

relationships found between heterogeneity estimators and quantile error are compared to 

those found in simulation experiments isolating the heterogeneity-related component of 

quantile error. Two statistics have highly linear relationships to error in both the 

simulation and enumeration studies. The less linear statistic is more robust to deviation 

from the hypothesis that regional coefficient of variation and skewness ranges increase in 

tandem as heterogeneity rises. Novel heterogeneity thresholds are defined for this 

statistic. This research offers context and validation for a family of popular heterogeneity 

statistics whose relative utility has previously been unclear. Precipitation analysts using 

the regional frequency analysis framework to answer questions about precipitation 

magnitude now have a full reckoning of the utility of these statistics, increasing the level 

of confidence they can have in the accuracy of their results.
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1: INTRODUCTION 

The global water cycle operates on a superhuman scale, forming part of the 

fundamental context within which all of our priorities, goals, hopes and fears must be 

evaluated. Precipitation extremes often leave destruction and misery in their wake; this is 

beyond the power of engineering or science to prevent. However, applying the tools of 

probability theory to the fundamental workings of the water cycle allows us to plan, in 

some limited fashion, for these potentially catastrophic events and to mitigate their 

effects through good design and diligent preparation. To achieve these goals it is vital to 

quantify and minimize the error of statistical estimates. 

A quantile is the value below which a given fraction or percentage of a dataset 

lies. Decision-makers in fields such as agriculture and engineering use quantile estimates 

of precipitation for long-term planning. How likely is monthly precipitation to fall below 

a drought threshold? How often does it rain more than ten inches in a day? Estimating 

magnitude as a function of probability is perhaps most important, as in these examples, at 

the extremes. However, extreme events by definition rarely appear in the data records, 

and an event that was equally likely to impact multiple locations will appear overly likely 

at one location but go unrecorded at all others.  

As sample size increases, the data become a better representation of underlying 

probability. Increasing record length can only be accomplished by waiting, but multiple 
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gauges can be pooled to create a regional dataset with many times the sample size of its 

constituents. However, each gauge’s reduced error due to increased sample size must be 

balanced against the error added by assuming homogeneity – identically shaped 

probability distributions – among the region’s constituent gauges.  

If a region of gauges is proposed, some statistical test must be used to validate the 

appropriateness of the grouping. Simulation studies in which a homogeneous region and 

equivalent heterogeneous regions with a known degree of variation from the regional 

mean are compared have been used to isolate the error of quantile estimation added due 

to heterogeneity. In this study the relationship between heterogeneity statistics and the 

error of quantile estimation for real data is examined for simulated data and for real 

precipitation data at durations ranging from one day to thirty days in length. 

Quantifications of the heterogeneity-error relationship are offered for the consideration of 

future precipitation analysts, as they provide a statistical basis on which to defend the 

precipitation gauge regions formed in their studies. 

1.1: Regional frequency analysis 

 The pooling of a region of gauges, or sites, into a regional dataset is typically 

preceded by normalization; each gauge’s record is divided by that gauge’s mean or 

median, or some other value, referred to as the “index flood”. The normalized data can be 

used to generate normalized regional quantile estimates which when multiplied by a site’s 

index flood are transformed into at-site quantile estimates. This allows gauges with 

different magnitudes but similarly shaped probability distributions to benefit from the 

increase in sample size provided by a region with low heterogeneity. It also allows the 
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index flood, which if chosen as a statistic like the mean or median requires less sample 

size to achieve a given accuracy threshold than extreme quantile estimates, to be 

determined by at-site data. The procedure of multiplying regional estimates with a more 

stable at-site statistic means that uncertainties associated with regionalization have less 

effect at quantiles close to the index flood. However, to achieve the promise of improved 

extreme quantile estimates the balance between sample size and regional heterogeneity 

must be struck.  

1.2: Linear moments 

A statistical summary of the shape of a gauge and a region’s probability 

distribution is necessary for quantification of the concepts used in regional frequency 

analysis. After data have been re-ordered from low to high their empirical distribution 

can be quantified and transformed into parameters for a frequency distribution. Regional 

frequency analysts have long used the conventional moments of data, such as mean, 

coefficient of variation, skewness, and kurtosis, to summarize the ‘shape’ of the empirical 

probability distribution (Dalrymple, 1960). Equations exist to create a probability 

distribution when given these values as parameters. However, research has shown that 

hydrological data are better modeled through the use of linear moments, which 

approximate the behavior of the conventional moments with weighted polynomials 

(Hosking et al., 1985).  

Because higher-order conventional moments require increasingly large exponents 

to be applied to the difference between each data point and the record’s mean, estimates 

are unstable and outliers have a large effect on the calculations. When these moments are 
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used to parameterize a distribution and the distribution in turn is used to generate new 

data, the synthetic dataset often poorly reflects the characteristics of the original data. 

Also, sample estimates of conventional moments often have unfavorable algebraic 

bounds, most notably for skewness, whose value is dependent on sample size – a major 

problem for analysts seeking to find quantile estimates for short gauge records. Linear (or 

L-) moments are constructed so that the difference between each data point and the mean 

is not exponentiated but instead is multiplied by a polynomial. This reduces the effect of 

outliers and can be modeled by sample estimates with more favorable algebraic bounds. 

1.2.1: Fitting probability distributions using L-moments 

 After L-moment ratios have been calculated for a dataset (whether at a single 

gauge or after regional pooling) they can be used as parameters in equations that calculate 

quantile, cumulative distribution and probability density functions for probability 

distributions defined by statisticians. Parameterizations using both conventional and 

linear moments are available for the most commonly used distributions. The most famous 

probability distribution is the Normal, which for centuries has been recognized as a 

reasonable model for many types of data. Another family of distributions including the 

Fréchet, Weibull and Gumbel distributions is derived from extreme-value theory and fits 

many types of data well, especially at extreme quantiles.  

The Normal is a two-parameter distribution, taking only the mean and coefficient 

of variance of data and assuming a given skewness and kurtosis value. A three-parameter 

distribution additionally takes the skewness as an input so that only the kurtosis is 

assumed; except for the first parameter, which is the mean or first moment, distributions 
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are parameterized by moment ratios. “Generalized” three-parameter probability 

distributions have been defined which bring together multiple two-parameter 

distributions, such as the Generalized extreme-value distribution. The four-parameter 

Kappa distribution unifies several three-parameter distributions and the five-parameter 

Wakeby acts as a “parent distribution” to an even larger set of distributions. Equations for 

these and other probability distributions can be found in Appendix A of Hosking and 

Wallis (1997). 

Distributions with too many parameters run the risk of overfitting the data. 

Higher-order L-moments require more sample size for accurate estimation; at low sample 

sizes, sample estimates of higher-order L-moments are likely to be significantly different 

from the properties of the underlying distribution. This risks enshrining random variation 

due to insufficient sample size as a characteristic of the data, resulting in inaccurate 

quantile estimates. However, distributions with too few parameters enforce distributional 

assumptions regarding higher-order moment ratios that may be at odds with the data. For 

example, precipitation data is typically highly skewed and the Normal distribution 

models unskewed data; extreme quantile estimates outputted from the Normal for most 

precipitation data would be wildly inaccurate. A useful distribution must possess 

distributional assumptions for higher-order moments that have been shown to be broadly 

applicable to the type of data in question while retaining the ability to represent the 

idiosyncrasies of the analyzed data record.  

Hydrologists typically approach this problem by using the mean, the coefficient of 

variation and the skewness of data as parameters while using the kurtosis of the data to 
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determine which of a set of three-parameter distributions is most applicable to the data. In 

this way the issue of overfitting is ameliorated but the kurtosis data excluded from the 

parameter set is used for guidance as the distribution is chosen. Three-parameter 

distributions which have been found to provide close fits to hydrologic data include the 

Pearson Type III, the Lognormal, and the Generalized extreme-value distributions. The 

process requires an assumption that events of a given magnitude occur at a fixed 

probability over time, with the shape of the underlying probability distribution remaining 

unchanged between past and future data. 

1.3: Estimating heterogeneity 

 After data have been sorted from lowest to highest, L-moment ratios can be 

calculated for the data or nonparametric statistics based only on the empirical distribution 

of the observed data can be formulated. In both cases a measure of the difference between 

the ‘shape’ of the dataset at each site and in the pooled regional dataset can be averaged 

across all sites in the region to find a regional heterogeneity value. The squared 

difference between at-site and regional L-moment ratios averaged across all sites in the 

region offers a summary of heterogeneity with respect to variation, skewness, or kurtosis. 

When the fraction of a site’s dataset below a reference threshold is compared to the 

fraction of the total pooled data under that threshold (after correcting for normalization) 

the difference between the two can be averaged across all member sites of a region to 

create a nonparametric measure of regional heterogeneity. Equations for evaluated 

statistics are presented in the manuscripts that have been incorporated into this 

dissertation below. 
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Because the L-moment ratios of a dataset can also be used to parameterize a 

probability distribution, data generated from that distribution can be assessed for 

heterogeneity across a large number of Monte Carlo simulations. Monte Carlo methods 

can also be applied to nonparametric statistics through sampling with replacement from 

the observed data. In the first case a distributional assumption is incorporated into the 

method; the second requires the assumption that the data record represents an unbiased 

sampling from the underlying probability distribution. 

1.4: Estimating quantile error 

 Reducing error of quantile estimation, especially at extreme quantiles, is 

ultimately the purpose of regional frequency analysis. For simulated data where ‘true’ L-

moment ratios are assigned at each site, the difference between at-site and pooled 

regional quantile estimates (after multiplying the normalized regional estimate by the at-

site index flood) can be squared and averaged across all sites in the region to obtain an 

estimate of the error of quantile estimation. Through application of the assumption of an 

underlying probability distribution Monte Carlo simulation can be applied to real data; 

averaging simulated regions’ error measures across all simulations can quantify the 

degree to which regional quantile estimation adds error. The simulated regions used in 

this analysis can be generated with intersite correlations taken into account.  

Because true at-site L-moment ratios are unknown for real data and the estimates 

which are available are sample statistics, the range of variation in L-moment ratios across 

the region and therefore the magnitude of a heterogeneity estimate is increased by 

sampling error. If simulated regions are generated from a distribution fitted with L-
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moment ratios estimated from real data, another round of sampling error will further 

increase the range of variation observed between the sites’ L-moment ratios. The at-site 

L-moment ratios used as the basis for generation of simulated regions must therefore be 

shrunk toward the regional mean. The degree of shrinkage must be calibrated so as to 

counteract the effects of sampling error, resulting in the generation of simulated regions 

with estimated heterogeneity nearly equal to the original region. Equations for this 

method are presented in the manuscripts included in this dissertation, below. 

The four subsequent chapters of this dissertation comprise three manuscripts 

submitted to peer-reviewed journals and a Conclusion section. The first paper has been 

accepted at the Journal of Hydrology, the second has been submitted to Water Resources 

Research, and the third has been submitted to the Journal of Hydrologic Engineering. 

Drs. Mark Houck and Celso Ferreira are co-authors on all papers, while Dr. Jason 

Giovannettone is a co-author as well on the second. These authors assisted in creating the 

experimental framework of the research. They also offered constructive commentary at 

every stage of the research and offering edits to the manuscripts of which they are co-

authors. The papers present methods for evaluating heterogeneity statistics and offer 

conclusions regarding the effectiveness of various heterogeneity statistics used in the 

literature. The Conclusion section summarizes the findings of the three papers and offers 

future directions for research. References are listed after the Conclusion section. 

The citations for the papers are as follows: 

Wright, M.J., Ferreira, C.M., Houck, M.H., 2014. Evaluation of heterogeneity statistics as 

reasonable proxies of precipitation quantile estimation in the Minneapolis-St. Paul 

region. Journal of Hydrology, doi: 10.1016/j.jhydrol.2014.03.056. 
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Wright, M.J., Ferreira, C.M., Houck, M.H., Giovannettone, J.P., 2014. The relationship 

between Monte Carlo estimators of heterogeneity and error for daily to monthly 

time steps in a small Minnesota precipitation gauge network. Water Resources 

Research (submitted). 

Wright, M.J., Ferreira, C.M., Houck, M.H., 2014. Discriminatory power of heterogeneity 

statistics with respect to error of precipitation quantile estimation. Journal of 

Hydrologic Engineering (submitted). 
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2: EVALUATION OF HETEROGENEITY STATISTICS AS REASONABLE 

PROXIES OF THE ERROR OF PRECIPITATION QUANTILE ESTIMATION IN 

THE MINNEAPOLIS-ST. PAUL REGION 

Abstract 

 Estimating precipitation frequency is important in engineering, agriculture, land 

use planning, and many other disciplines. The index flood method alleviates small sample 

size issues due to short record length by calculating normalized quantile estimates for 

averaged data from a “region” of gauges. For a perfectly homogeneous region this adds 

no error; heterogeneity statistics seek to quantify a real-world region’s deviation from this 

assumption. Hosking and Wallis (1997) introduced a Monte Carlo heterogeneity statistic 

called here H1 and used a simulation study to assess its utility while rejecting two similar 

statistics called here H2 and H3. A nearly linear relationship was found between H1 and 

the percentage root mean square error (RMSE) increase due to heterogeneity, establishing 

H1 as a “reasonable proxy” of quantile error. The H1-percent RMSE added relationship 

found in the simulation experiment was used to find equivalent RMSEs for heterogeneity 

thresholds against which all three H statistics were tested. In this study the “reasonable 

proxy” relationship is evaluated across a highly skewed daily precipitation dataset in 

Minnesota for H1, H2, and H3. Simulated regions used in quantile error estimation are 

generated using at-site L-moment ratios scaled toward the regional mean with a shrinkage 
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multiplier. A linear relationship is found between Monte Carlo estimates of quantile 

RMSE and both H1 and H2 across all possible regionalizations of twelve gauges. H2’s 

relationship is less linear than H1’s as quantified by Pearson’s r. A synthetic study is also 

undertaken using the same sample sizes, regional L-moment averages, and between-site 

variations as the Hosking and Wallis (1997) simulation. The H2-percent RMSE added 

relationship is found to be nearly as linear as for H1, complementing the enumeration 

study’s findings. Because H2’s linear relationship with percent RMSE added has 

approximately one-fourth the slope of the H1-RMSE relationship, heterogeneity 

thresholds calculated with reference to H1 should not be applied to H2. H2 thresholds can 

be derived from the H2-percent RMSE added relationship in analogous fashion to the 

method used in Hosking and Wallis (1997) for H1. The resulting thresholds are one-

fourth the magnitude of the H1 thresholds. 

2.1: Introduction 

 Rare or extreme precipitation events, which include events classified as natural 

disasters, have major ecological, economic, and public safety significance. Sample size is 

often a limiting factor in the estimation of extreme hydrological events; one rule of thumb 

for flood frequency estimation is that for reliable estimates of a return period T the record 

length in station-years must exceed 5T (Robson and Reed, 1999). Many statistical 

hydrologists have followed the index flood method of Dalrymple (1960), in which 

sample size is increased by grouping gauges, or “sites”, into regions, calculating a 

regional “growth curve” normalized by an index such as the mean or median of the at-
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gauge data, and estimating at-site quantiles by multiplying the index flood and the 

regional growth curve. 

 Linear moments, analogues of conventional central moments like skewness and 

kurtosis based on probability weighted moments (Greenwood et al., 1979), are often used 

in this context. L-moment estimators have lower bias than other common methods of 

estimation at small sample size (Hosking et al., 1985; Lettenmaier et al, 1987). They are 

less biased than conventional moment estimators, are not bounded by sample size, and 

are more robust to outliers. L-moment ratios can be more reliably predicted from a 

subsample than conventional moment ratios. L-moment ratios, the second through fourth 

of which are denoted the coefficient of L-variance (L-CV), L-skewness, and L-kurtosis 

(the first L-moment ratio does not exist), provide greater insight into the underlying 

distribution of high-skew data than conventional moment ratios. For example, L-moment 

ratio diagrams are used as decision aides for identifying the underlying distribution of 

regional data (Hosking, 1990; Vogel and Fennessey, 1993; Hosking and Wallis, 1997; 

Zafirakou-Koulouris et al., 1998). 

 L-moment analysis of regions formed according to hydrological characteristics 

has been conducted in recent decades on streamflow (Vogel et al., 1993a; Ouarda et al., 

2008; Noto and Loggia, 2009) and precipitation data (Guttman et al., 1993; Werick et al., 

1994; Adamowski et al., 1996; Alila, 1999; Smithers and Schulze, 2001; Kyselý et al., 

2007; Modarres and Sarhadi, 2011). L-moment ratios for daily data series using “wet-

day” (non-zero only) and full datasets have been evaluated across the United States 

(Hansong and Vogel, 2008). Regional frequency analysis models using fuzzy regions 
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(Jingyi and Hall, 2004; Rao and Srinivas, 2006) and fractional-membership regions of 

influence (Burn, 1990; Zrinji and Burn, 1994; Gaál et al., 2008) represent alternatives to 

the strict regional membership model. 

 The regional pooling mechanism of the index flood method involves the 

assumption of homogeneity across the sites in a candidate region - at-site differences in 

L-moment ratios are assumed to be due solely to sampling variability. The degree to 

which the homogeneity assumption is violated is therefore likely to be related to quantile 

error.  Statistics quantifying the heterogeneity of a region based on Monte Carlo 

simulation have been proposed which sample from a Generalized extreme-value 

distribution (Lu and Stedinger, 1992; Alila, 1999). 

 Hosking and Wallis (1997) define three statistics based on the between-site 

variation of L-moment ratios, H1, H2, and H3. All three H statistics fit the Kappa 

distribution with the average L-moment ratios of the region in question and use Monte 

Carlo simulation to generate simulated regions from the Kappa. For the real region and 

for each simulated region a statistic called V1, V2, or V3 is calculated using the sum of the 

squared difference between each site's L-moment ratio values and the regional average. 

V1 uses only the L-CV, V2 incorporates L-CV and L-skewness, and V3 incorporates L-

skewness and L-kurtosis. H1 is calculated when V1 for the real region minus the mean of 

V1 for simulated regions is divided by the standard deviation of simulated regions' V1; H2 

and H3 are calculated analogously (see Equations 6-9). 

 A simulation study is used in Hosking and Wallis (1997) to reject H2 and H3 and 

to accept H1. Heterogeneous regions' RMSEs are divided by their equivalent 
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homogeneous region's RMSE. This isolates the RMSE increase due to heterogeneity. H1 

is shown to have a linear relationship with percent RMSE added due to heterogeneity. 

Results for H2 and H3 are not reported. 

 Hosking and Wallis (1997) define thresholds below which regions can be 

considered “possibly” and “definitely” heterogeneous with reference to a range of percent 

RMSE added values implied by the H1-percent RMSE added relationship. H1 = 1 is found 

to indicate a 20-40% increase in RMSE, while H1 = 2 is associated with 40-80% 

increases. These thresholds are also applied to H2 and H3, which are found to rarely 

exceed them. 

 Viglione et al. (2007) investigate H1 and H2 as well as two nonparametric 

heterogeneity statistics by measuring the fraction of simulated regions that are correctly 

and incorrectly identified as heterogeneous. The threshold of H = 2 is used for both H1 

and H2. They confirm the utility of H1 for simulated data with L-skewness below 0.23 

and reject H2. The bootstrap Anderson-Darling test is found to be more powerful than 

either statistic for data with higher skewness. 

 Two approaches are used in this study to quantify the power of H1, H2, and H3 as 

proxies of error due to heterogeneity. The original Hosking and Wallis (1997) simulation 

study is recapitulated and results for H2, and H3
 
are presented alongside those for H1. 

Thresholds for H2 are found using its linear relationship to quantile error, not H1's. An 

enumeration study is also conducted, estimating H1, H2, H3, and quantile error for all 

possible regionalizations of a small daily precipitation gauge dataset. Components of 

error unrelated to heterogeneity are preserved in this study, allowing the heterogeneity 
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statistics' relationships with total estimated quantile error to be compared to the ideal case 

represented in the simulation experiment. 

 The remainder of this paper is structured as follows. Daily precipitation gauge 

data from which all possible regions are to be enumerated are presented in the following 

section, Section 2. Section 3 introduces the equations and methods used to calculate 

linear moments of the data, estimate regional heterogeneity, assign a regional 

distribution, estimate the RMSE of regional quantile estimates, and perform a simulation 

experiment analogous to that presented in Hosking and Wallis (1997). Section 4 presents 

the results first of the simulation experiment, then of the enumeration experiment, which 

compares heterogeneity and error estimates across all possible regions formed from the 

selected precipitation gauges. Section 5 discusses the results; section 6 summarizes the 

paper and offers conclusions and potential avenues of future research. 

2.2: Data 

 Mean annual precipitation in Minnesota ranges from the low teens to above 30 

inches, with the mean annual precipitation generally increasing from the northwest to the 

southeast. Moist air carried from the Gulf of Mexico is an important source of 

precipitation in Minnesota. Almost half of yearly precipitation occurs in June, July, and 

August (Baker et al., 1967). Rainfall quantiles have been estimated for Minnesota using 

the Generalized extreme-value distribution on the annual maximum series (Blumenfeld 

and Skaggs, 2011) and strict-membership regional analysis using L-moments (Werick et 

al., 1994), as well as a study comparing several methods including regional L-moment 
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analysis (Huff and Angel, 1992). Updates to the NOAA Precipitation Frequency Atlas of 

the United States (Perica and coauthors, 2013) for Minnesota are underway. 

 Precipitation gauge data were provided by the Minnesota State Climatology 

Office from a high-density rain gauge network made up of hundreds of long-record 

volunteer gauges. Reliable observers' records were collected and quality controlled for 

inclusion in the updated version of NOAA's Precipitation Frequency Atlas of the United 

States (Perica and coauthors, 2013), which incorporates the L-moment, regionalization, 

and Monte Carlo error estimation procedures of Hosking and Wallis (1997). Estimates 

for Volume 8, “Midwestern States” are available online at 

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html. 

 From a database of daily precipitation totals at 341 Minnesota gauges, 57 which 

did not skip a full month between the start and end of the record were selected for further 

analysis. Twelve of these gauges were clustered in the Minneapolis-St. Paul region, 

mostly in Ramsey County which contains St. Paul (Figure 1, Table 1). The longest record 

length of the twelve sites is 3751 days of non-zero precipitation and the shortest is 1134 

days. The wet-day precipitation records of this group are subjected to further analysis 

below. 

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html
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Figure 1 Location of gauges in degrees latitude and longitude  
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Table 1 Selected Minnesota rain gauges; ID, sample size, first and last month of data record, and location in 

degrees latitude and longitude 

Gauge ID # # days Start date End date Latitude Longitude 

11 1714 Feb 1982 Feb 1996 44.86 -93.32 

35 1191 Jan 1999 Jan 2009 45.01 -93.06 

39 2419 Jan 1978 Aug 1998 45.04 -92.99 

46 2765 Dec 1980 Nov 2008 45.12 -93.28 

78 1518 Dec 1975 Apr 1990 44.97 -93.20 

104 3751 Jan 1976 Nov 2008 45.09 -93.26 

149 1488 Aug 1993 Nov 2008 44.86 -93.05 

150 1787 Jul 1993 Nov 2008 44.91 -93.08 

266 1859 May 1992 Oct 2008 45.00 -93.20 

268 1438 Sep 1990 Nov 2004 45.04 -93.06 

272 1134 Sep 1998 Nov 2008 45.04 -93.22 

328 3572 Sep 1979 Dec 2007 44.96 -92.97 

  

 

 

The “lmomRFA” package for the statistical language R (R Core Team, 2012) was 

used to calculate L-moments, distribution parameters, and both the tested heterogeneity 

statistics and the error statistics used to compare them. “lmomRFA” documentation is 

available online at http://cran.r-project.org/web/packages/lmomRFA/lmomRFA.pdf. The 

package applies FORTRAN code available at http://lib.stat.cmu.edu/general/lmoments. 

Scientific computing resources were provided through the Extreme Science and 

Engineering Discovery Environment (XSEDE) network on the Steele computing cluster 

at Purdue University. 

http://cran.r-project.org/web/packages/lmomRFA/lmomRFA.pdf
http://lib.stat.cmu.edu/general/lmoments
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2.3: Analysis 

2.3.1: Linear moments 

 The Hosking (1990) approach begins from the probability weighted moments 

(PWM) of Greenwood et al. (1979), defined in Equation (1): 

  

Equation 1 

      [ ( )]   
  

 Where F(X) is the cumulative distribution function (cdf) of X, X(F) is the inverse 

cdf or quantile function of X for probability F, and βr is the rth-order PWM (β0 is equal to 

the mean μ = E(X)). Hosking (1990) defines the L-moments λr+1 in Equation (2): 
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     ∑     
   

 

   

 

  

 With p
*
r,k calculated according to Equation (3): 

  

Equation 3 
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 λ1 is the mean of a data record, λ2 measures its dispersion, λ3 measures its 

skewness, and λ4 measures its kurtosis. From these L-moments, L-moment ratios are 
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constructed; the L-CV or coefficient of L-variation is τ = λ2 / λ1 and the ratios of L-

skewness and L-kurtosis are calculated using r = 3 and 4 respectively in Equation (4): 

  

Equation 4 

         
  

 The sample estimate of βr is br, estimated using Equation (5): 

  

Equation 5 
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 Where n is the number of data points at the precipitation gauge and xj:n is the jth-

smallest of the data points. 

 The sample estimate of λr is lr and the sample estimate of  τr is tr with the sample 

estimate of the L-CV denoted as t; these are calculated using Equations (2-4), substituting 

br for βr. L-moment ratio values for selected gauges are presented in Table 2. 
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Table 2 Selected Minnesota rain gauges: ID and selected L-moment statistics 

Gauge ID # Mean (L1) L2 t3 t4 

11 0.292 0.188 0.516 0.282 

35 0.271 0.180 0.538 0.295 

39 0.289 0.187 0.531 0.304 

46 0.327 0.200 0.475 0.240 

78 0.279 0.177 0.502 0.269 

104 0.277 0.178 0.509 0.264 

149 0.335 0.213 0.513 0.282 

150 0.305 0.198 0.514 0.267 

266 0.316 0.206 0.522 0.286 

268 0.334 0.215 0.520 0.285 

272 0.311 0.202 0.514 0.267 

328 0.271 0.176 0.520 0.273 

  

 

 

2.3.2: Heterogeneity measures 

 In the heterogeneity statistics of Hosking and Wallis (1997), pooled gauge data 

are fitted to the Kappa distribution and simulated regions with the same number of sites 

and record lengths as the real data are generated. A measure V of between-site L-moment 

ratio variation is calculated for the regional data and for each of many iterations of each 

simulated region. The mean of V for all simulated regions, μV, is subtracted from true 

regional V and the result is divided by the standard deviation of V for all simulated 

regions, σV, to produce the heterogeneity statistic H (Equation (6)). 
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Equation 6 

  
    

  
 

  

 Three variants of V and therefore of H are identified. H1 is calculated from V1, H2 

from V2, and H3 from V3. V1 is calculated from the second L-moment ratio, V2 from the 

second and third, and V3 from the third and fourth (Equations 7-9): 

Equation 7 
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 The (i) superscript indicates the at-site L-moment ratio value for gauge i; the R 

superscript indicates the regional average L-moment ratio. N is the number of sites in the 

region and ni is the number of data points at site i. The region containing all twelve sites 

has H1, H2 and H3 values 4.01, 1.44, and 0.77, respectively. 

 Hosking and Wallis (1997) conduct simulations of regions with varying 

homogeneity, defined using linear variations in the at-site L-moment ratio values to 

which the Kappa distribution is fitted, to find a nearly linear relationship between H1 and 

the ratio between RMSEs of a heterogeneous region and its corresponding homogeneous 
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region. This finding is interpreted to show that H1 is “a reasonable proxy for the likely 

error in quantile estimates.” H2 and H3 were found to have little discriminatory power 

based on similar reasoning. Heterogeneity is found to be indicated by H1 > 2 and 

homogeneity by H1 < 1, while regions with intermediate values may be improved by 

redefinition. 

2.3.3: Distribution fitting 

 L-moment ratio diagrams, especially L-skewness/L-kurtosis plots, are useful for 

choosing a distribution to fit to the data. Power-law approximations of the relationship 

between t3 and t4 for each of several three-parameter distributions are provided in 

FORTRAN at http://lib.stat.cmu.edu/general/lmoments.  

 Graphing these curves against the t3 and t4 values of the data allows for graphical 

testing of the hypothesis that simulated data drawn randomly from the distribution will 

have similar higher-order moment values to the fitted data. The higher-order L-moment 

ratios of the 57 precipitation gauges selected from the Minnesota dataset are best 

described by the t3 – t4 relationship inherent in the Pearson type III distribution (Figure 

2); the pattern is comparable to that observed in Hanson and Vogel (2008)'s nationwide 

wet-day dataset. Hosking and Wallis (1997) provide a mathematical analogue to this 

graphical line-fitting test. 

 Equations for deriving the Pearson type III distribution's parameters from L-

moment ratios and plotting its cumulative distribution and probability density functions 

can be found in Appendix A.9 of Hosking and Wallis (1997). 

 

http://lib.stat.cmu.edu/general/lmoments
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Figure 2 L-skewness/L-kurtosis plot of Minnesota data 

 

 

 

2.3.4: Quantile error estimation 

 Hosking and Wallis (1997) outline a Monte Carlo procedure for estimating the 

error of quantile estimates taking heterogeneity and inter-site  dependence into account 

(Section 6.4, Table 6.1). This procedure has been implemented in the R package 

“lmomRFA” as the function “regsimq”. “Regsimq” creates simulated regional data on a 
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site-by-site basis from a list of at-site frequency distributions and parameters; in this 

study all sites will be fitted to the Pearson type III distribution. 

 A region of simulated sites is formed with similar heterogeneity to the true region 

for which error is being estimated. These simulated sites are used in “regsimq” as the 

“true” data against which root mean square error (RMSE) estimates are calculated. 

Hosking and Wallis (1997) state that “some arbitrariness is inevitable” at this stage, as 

many different patterns of L-moment ratio variation can produce similar heterogeneity. In 

section 6.5 of that monograph an example is offered in which L-moment ratios are 

created for each member gauge of the simulated region by linearly scaling the second L-

moment ratio, L-CV, across a fraction of the observed variance, the fraction being varied 

until simulated H1 is nearly equal to true H1. Higher L-moment ratios are set equal to the 

regional average. 

 However, for this paper's dataset it is found that such a procedure often outputs 

physically impossible at-site Pearson type III parameters, i.e. the minimum quantile 

estimate is negative. Linearly scaling the L-CV and the higher-order L-moment ratios, 

with or without permutation to vary at-site combinations of L-moment ratios, does not 

eliminate this problem, which is not observed in the true at-site data. An alternative 

procedure is used which avoids precipitation estimates below zero. 

 The observed difference between at-site and regional average L-moment ratios is 

reduced by shrinking the at-site values toward the regional averages. This counteracts the 

tendency of sampled data from a distribution to vary across a wider range of L-moment 

ratio values than seen in the original population. Theoretical justification of shrinkage 
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estimators can be found originally in Stein (1956), who showed that the multivariate 

sample mean is inadmissible, and from a Bayesian perspective in Lindley and Smith 

(1972). Shrinkage is accomplished by applying a multiplier with value between 0 and 1. 

A multiplier of 0 sets all at-site L-moment ratios equal to the regional average, a 

multiplier of 1 leaves the true at-site L-moment ratios unchanged, and a multiplier of 0.5 

creates a simulated region with at-site L-moment ratios halfway between the regional 

average and the true at-site values. 

 Prior to running “regsimq” the average correlation between each pair of gauges in 

the dataset is calculated according to Hosking and Wallis (1997) using Equation (10): 

Equation 10 
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 rij is the sample correlation between gauges I and j, k is the index and nij is the 

number of time points for which both gauges I and j have data Qik, and  ̅  is calculated 

using Equation (11). 

Equation 11 
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 Table 3 shows the correlation between all twelve sites; a correlation of zero 

indicates that the sites shared no days of record. 
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Table 3 Correlation between twelve sites in dataset 

Site ID 11 35 39 46 78 104 149 150 266 268 272 328 

11 1 0 0.69 0.49 0.67 0.61 0.71 0.77 0.70 0.60 0 0.54 

35 - 1 0 0.83 0 0.60 0.80 0.87 0.81 0.88 0.66 0.84 

39 - - 1 0.46 0.69 0.70 0.30 0.36 0.48 0.54 0 0.50 

46 - - - 1 0.57 0.67 0.73 0.77 0.77 0.82 0.67 0.73 

78 - - - - 1 0.84 0 0 0 0 0 0.66 

104 - - - - - 1 0.49 0.55 0.58 0.66 0.87 0.64 

149 - - - - - - 1 0.86 0.70 0.73 0.55 0.77 

150 - - - - - - - 1 0.76 0.79 0.60 0.83 

266 - - - - - - - - 1 0.79 0.62 0.76 

268 - - - - - - - - - 1 0.66 0.78 

272 - - - - - - - - - - 1 0.67 

328 - - - - - - - - - - - 1 

 

 

  

 The average inter-site correlation  ̅ is then calculated using Equation (12). 

Equation 12 
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 “Regsimq” uses  ̅ as an estimate of the correlation ρ between all gauge pairs and 

creates a correlation matrix of the form in Equation (13): 

Equation 13 
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 “Regsimq” generates multivariate Normal correlated data for each simulated 

gauge, transforms them using the Pearson type III distribution parameterized as above, 

normalizes the data and finds the simulated region's average L-moment ratios, which are 

fitted to the Pearson type III distribution. Normalized quantile estimates, also known as 
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“growth curves”, are calculated for the simulated region for the specified number of 

iterations. For a list of non-exceedance probabilities F the root mean square error 

comparing at-site growth curve estimation Qi to the regional growth curve  ̂ 
( )

 is 

averaged across all iterations m and all sites i, creating a root mean square error estimate 

for each non-exceedance probability (Equation 14). 

Equation 14 
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 All possible regions containing five or more sites from the twelve selected gauges 

are enumerated. Each region's heterogeneity statistics are calculated over 2500 iterations 

in “regtst”, the function in “lmomRFA” for calculating the three heterogeneity statistics. 

One hundred iterations are performed for each of ten randomly generated, correlated 

simulated regions with 0.75 of observed L-moment ratio deviation from the regional 

average. The fraction of observed deviation is decreased by 0.1 if simulated H1 is greater 

than true regional H1 and increased by 0.1 otherwise, and one hundred iterations of ten 

regions are run again. When simulated H1 drops below, or rises above, true H2, the mean 

of the last two multipliers is tested and the closest fit of the three is used to scale true at-

site L-moment ratios toward the regional mean, creating the simulated sites used in a 

2500-iteration run of the error estimation routine “regsimq”. The maximum multiplier 

allowed is 0.95 and the minimum is 0.05. 

 For example, if simulated H1 was greater than true H1 for a multiplier of 0.75, but 

simulated H1 was less than true H1 for 0.65, a multiplier of 0.7 would also be evaluated; 
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the multiplier among 0.65, 0.7, and 0.75 producing the smallest value of |true H1 – 

simulated H1| would be used to create the simulated sites inputted into “regsimq”. 

2.3.5: Evaluation of heterogeneity statistics across simulated data 

 A synthetic study is undertaken recapitulating and extending the simulation 

experiment conducted in Hosking and Wallis (1997) and summarized there in Section 

4.3.4, Table 4.1, and Figure 4.2. This study features simulated regions whose sites' L-

moment ratio values exhibit 0% to 50% variation around the regional average L-CV and 

L-skewness values. 100 realizations of each region are generated. Both regional average 

L-CV and L-skewness and the ranges of their variation between sites are set equal, with 

two minor exceptions at low L-skewness. 

 The Generalized extreme-value distribution is used to output quantile estimates at 

each simulated site for both initial L-moment ratios and data generated using these ratios, 

from which the RMSE is calculated for each simulated region at any given non-

exceedance probability using Equation (14). Heterogeneity estimates are calculated 

according to Equations 6-9 using 500 Monte Carlo iterations and averaged across each of 

the 100 realizations of each region. The RMSE ratio between a heterogeneous region and 

its homogeneous equivalent is then compared to heterogeneity estimates; a linear 

relationship signifies “reasonable proxy” status for the heterogeneity statistic in question. 

Pearson's r is used to quantify the linearity of the relationship. 
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2.4: Results 

2.4.1: Results of simulation experiment 

 The simulation experiment described in the preceding section outputted similar 

results to those described in Table 4.1 of Hosking and Wallis (1997) for H1. Averages of 

the H statistics are taken across 100 simulations for each set of L-moment ratios. In 

Figure 3, depicting the linear relationship between each H statistic and percent RMSE 

added due to heterogeneity for a non-exceedance frequency of 0.01, results for H1 are 

similar to Figure 4.2 in Hosking and Wallis (1997). Results for H2 and H3 are not 

reported in that monograph but Figure 3 indicates a relationship between H2 and percent 

RMSE added due to heterogeneity that is similar to that found for H1, albeit less linear 

and with a lower slope. Pearson's r score of heterogeneity statistics plotted against 

percent RMSE added is found to decrease from H1 to H2 to H3 (Figure 4). 
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Figure 3 Percent RMSE added due to heterogeneity for simulated regions plotted against (a) H1, (b) H2, and (c) 

H3 at non-exceedance probability of 0.01. 

 

 

  

 
Figure 4 Pearson’s r of linear fit between percent RMSE added due to heterogeneity and the H statistics. 
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2.4.2: Results of enumeration experiment 

 The scaling procedure for creating simulated datasets produced similar H1 values 

to that of the true region outputted; the average discrepancy was less than 0.02, while 

more than half of the fitted regions had a discrepancy lower than 0.125 and the maximum 

was 1.065. The ranges of discrepancies were similar for low, medium, and high 

multipliers. Most regions with positive H1 were fitted using a multiplier of 0.85 or above, 

while regions with negative H1 required multipliers as low as 0.05. Figure 5 shows the 

number of regions to which a given multiplier was assigned. 
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Figure 5 Bar plot of multipliers used to create simulated data for 3,302 enumerated regions 

  

 

 

 For all enumerated regions, estimates of the relative RMSE for quantile estimates 

were found using “regsimq” for non-exceedance probabilities 0.001, 0.01, 0.1, 0.3, 0.5, 

0.7, 0.9, 0.99, 0.999, and 0.9999. Estimates at non-exceedance probabilities 0.001, 0.01, 

0.02, … 0.98, 0.99, and 0.999 are presented for a representative region in Figure 1006. 

RMSE estimates are lowest for non-extreme probabilities above 0.5, and are larger at 
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extreme precipitation events (i.e. non-exceedance probabilities closest to 0.0 or to 1.0), 

with low non-exceedance probabilities registering significantly higher RMSE estimates 

than high non-exceedance probabilities. All regions generally follow this pattern. 

 

 

 

 
Figure 6 Relative RMSE plotted against non-exceedance probability for 1000 iterations of a representative 

region. Probabilities sampled in the analysis are marked with dots 
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 Plotting heterogeneity estimates against an estimate for quantile error over all 

possible regions formed from a gauge network reveals several discrete populations of 

regions. These populations exhibit different relationships between heterogeneity and error 

and different patterns of variation in that relationship across non-exceedance frequency 

and the heterogeneity statistics H1 to H2 to H3. 

 Regions with multipliers below 0.65 are a subset of regions with negative H1 for 

which an unusually small range of at-site L-moment ratio variation was required to match 

the observed H1. This procedure, which is a part of the Hosking and Wallis (1997) 

methodology for finding the error of quantile estimates, obfuscates the relationship 

between heterogeneity and error for a subset of low-heterogeneity regions, resulting in a 

diffuse cloud rather than linear correlation. Low absolute values of root mean square 

error estimates also obfuscate any heterogeneity-error relationship that may be present, 

but through a different mechanism; as error approaches zero, the relationship between 

heterogeneity and error grows more linear, but the slope becomes perfectly horizontal 

and heterogeneity cannot function as a predictor of error. The Pearson's r correlation 

measure approaches zero in both of these cases and can in fact become negative, for 

which reason the r
2
 statistic was not used. Taking these shortcomings of the method into 

account, Pearson's r offers a good statistical summary of the degree to which 

heterogeneity is a “reasonable proxy” of error. 

 The definitions of these populations, which are based on gauge constituency and 

the multiplier used to scale at-site L-moment ratios toward the regional mean, may reflect 

variation in the relationship between heterogeneity and quantile error across regions with 
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different characteristics. Plots of H1, H2, and H3 against RMSE colored by site- and 

multiplier-based filters are presented at representative non-exceedance probabilities 

(Figure7), and Pearson's r for the relationship between the three H statistics and RMSE 

across representative non-exceedance probabilities is presented in Figure 8 for each of 

Figure 7's clusters. 
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Figure 7 H1, H2, and H3 plotted against relative RMSE. Regions with multipliers less than or equal to 0.6 are 

colored black; regions including site 46 are colored dark gray; regions with multipliers higher than 0.6 and not 

containing site 46 are colored light gray 
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Figure 8 Pearson’s r of the linear fit between relative RMSE and H1, H2, and H3. 

 

 

 

 The distribution of regions in Figure 7 is separated into two groups based on 

whether site 46 is a member. Site 46 is the gauge with the lowest L-CV, L-skewness and 

L-kurtosis in the analyzed dataset. In L-moment ratio graphs such as Figure 2 it is an 

outlier, and regions containing it have higher heterogeneity than regions that do not. As a 

result, a high-heterogeneity cluster composed of regions containing site 46 appears on 

Figure 7 and is colored in dark gray. The clusters are most separated for H1, while for H3 

they slightly overlap. 

 For most regions, the H-RMSE relationship measured using Pearson's r in Figure 

8 becomes more positive as RMSE decreases and non-exceedance probability increases. 
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For a small population of low-heterogeneity regions not containing site 46, however, 

Pearson's r becomes more negative as RMSE decreases and non-exceedance probability 

increases. The group of regions not containing site 46 is therefore split into two clusters 

that exhibit different patterns of variation; these clusters can be defined by whether the 

region's fitted multiplier for RMSE simulation is 0.60 or below, or 0.65 or above (black 

or light grey in Figure7, respectively). The former cluster generally contains lower-

heterogeneity regions than the latter, but there is significant overlap. Only regions not 

containing site 46 had heterogeneities low enough to necessitate low multipliers, creating 

simulated regions with small variance from the mean. 

2.5: Discussion 

 In the simulation experiment the performance gap between H2 and H1is relatively 

narrow, indicating that L-skewness offers a useful amount of heterogeneity information 

in the presence of L-CV variation. H2 is consistently a slightly less faithful proxy for 

error than H1 across the simulated regions, but like H1 it can also be plotted against 

percent RMSE added due to heterogeneity and threshold values can be described as 

equivalent to a range of percent RMSE added. Analogously to the process used for 

associating H1's thresholds to ranges of percent RMSE added, Figure 3 can be visually 

inspected to estimate the range of added RMSE spanned by simulated data with H2 near a 

threshold value. H2 = 0.25 could in this way be described as equivalent to a 10-50% range 

of RMSE increase and H2 = 0.5 as equivalent to a 30-90% range of added RMSE. Note 

that H2 has a less linear relationship with RMSE than H1, implying that the ranges of 

RMSE associated with H2 should be wider than those associated with H1. Further 
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supporting these proposed thresholds is the consistent 4:1 relationship between H1 and H2 

across the simulated dataset (Figure 9). 

 

 

 

 
Figure 9 Average H1 plotted against average H2 across all simulations. 

 

 

 

 In the enumeration experiment, the population of regions fitted with low 

multipliers is characterized by negative H1 values. This can indicate high between-site 
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cross-correlation in a region (Hosking and Wallis, 1997), a regional characteristic that 

could be related to the lesser linearity of the H-RMSE relationship for the population of 

regions fitted with low multipliers. The inter-site regional correlations calculated using 

Equations 10-13, however, were similar for regions generated using low and high 

multipliers. The association between low multipliers and a less positively linear H-RMSE 

relationship also may be related to the small between-site variation in L-moment ratios 

for simulated regions created using low multipliers in the Monte Carlo estimation 

procedure for quantile error. 

 Regions with higher multipliers lacking site 46 make up a low-RMSE, low-H 

cluster with characteristics blending those of the low-multiplier and site-46-containing 

clusters. As the order of the L-moment ratios used increases from H1 to H2 to H3, this 

cluster transitions in Figure 8 from a site 46 profile toward a low-multiplier profile. All 

three populations of regions see the relationship between Pearson's r and non-exceedance 

frequency grow more linear as the H statistic correlated with RMSE increases from H1 to 

H2 to H3. Pearson's r scores generally increase from H1 to H2 to H3. 

 The H-RMSE relationship, in general, becomes more linear as RMSE decreases. 

Regions fitted with multipliers higher than 0.60 tend to exhibit a positive linear 

correlation between H and RMSE. In this respect, the high-heterogeneity population of 

regions including site 46 are especially strong. This suggests that at these L-moment ratio 

magnitudes, the relationship between homogeneity and quantile error of a region 

becomes less linear at low heterogeneities. The procedures used for estimating error and 
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heterogeneity may introduce variance to the relationship. Nevertheless, all three H 

statistics appear to be related to Monte Carlo RMSE estimates. 

2.6: Summary and Conclusion 

 Hosking and Wallis (1997) find that H1 has power as a proxy of error while H2 

and H3 do not, but simulation and enumeration studies conducted here paint a more 

nuanced picture. H1 remains the favored heterogeneity statistic across simulated and real-

world datasets across a wide range of skewness, but H2 is nearly as effective.  The 

efficacy of H2 has been obscured through the application of thresholds constructed with 

reference to the linear relationship between H1 and percent RMSE added, which has a 

higher slope than the H2-percent RMSE added relationship. 

 Both the enumeration experiment on real data, which compared heterogeneity 

statistics to estimated RMSE, and the simulation experiment, which compared 

heterogeneity statistics to percent RMSE added due to heterogeneity, found linear 

relationships between H and RMSE. The enumeration experiment reported total error 

without isolating the error due to heterogeneity. For the enumeration experiment, other 

error components not related to heterogeneity may have played a role in lowering 

Pearson's r scores and introducing multiple populations of regions with different linear 

relationships to estimated RMSE. 

 The enumeration experiment used quantile error estimation procedures adapted 

from Hosking and Wallis (1997), in which regional variance in L-CV was replaced with 

linearly varying values spanning a smaller range than the sample data. Linear variation in 

one L-moment ratio was replaced with shrinkage multipliers for each at-site value of all 
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L-moment ratios, creating a region more comparable to the original sample data. The 

adapted method can be described as an application of shrinkage theory. 

 H2's consistently lower numerical values cause poor performance in significance 

tests conducted using thresholds based on H1, specifically the H = 2 heterogeneity 

threshold, but the linear relationship between H2 and percent RMSE added is nearly as 

striking as that for H1 and offers justification for analogous H2-specific thresholds. The 

thresholds derived for H2 above are one possible alternative, but H2's inferior linearity 

with respect to error makes H2 thresholds less reliably indicative of a given range of error 

added than H1 thresholds. For this reason, the performance of an H2 threshold at 

separating heterogeneous from homogeneous regions is not likely to match the 

performance of H1 thresholds. However, an H2 threshold derived from the H2-percent 

RMSE added relationship is much more likely to offer acceptable performance than an 

H2 threshold derived from the H1-percent RMSE added relationship. 

 This study supports the use of H1 as the primary heterogeneity estimator and 

quantifies the degree of its superiority over H2 and H3. Although H2 is less linear with 

respect to error than H1, it also conveys heterogeneity information and with appropriate 

thresholds can offer a supplementary indication of regional heterogeneity. H2 offers a 

great deal of linearity with respect to error due to heterogeneity and is therefore a useful 

supplementary measure to H1. H1 need not stand alone representing regional 

heterogeneity. 
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3: THE RELATIONSHIP BETWEEN MONTE CARLO ESTIMATORS OF 

HETEROGENEITY AND ERROR FOR DAILY TO MONTHLY TIME STEPS IN 

A SMALL MINNESOTA PRECIPITATION GAUGE NETWORK 

Abstract 

 Precipitation quantile estimates are used in engineering, agriculture, and a variety 

of other disciplines. Index flood regional frequency methods pool normalized gauge data, 

assuming homogeneity among the constituent gauges of the region, and output unitless 

regional quantile estimates which are rescaled at each gauge. Because violation of the 

homogeneity hypothesis is a major component of quantile estimation error in regional 

frequency analysis, heterogeneity estimators should be “reasonable proxies” of the error 

of quantile estimation. In this study three Monte Carlo heterogeneity statistics tested in 

Hosking and Wallis (1997) are plotted against Monte Carlo estimates of quantile error for 

all five-or-more-gauge regionalizations in a twelve-gauge network in the Twin Cities 

region of Minnesota. Upper-tail quantiles with non-exceedance probabilities of 0.75 and 

above are examined at time-steps ranging from daily to monthly. A linear relationship 

between heterogeneity and error estimates is found and quantified using Pearson’s r 

score. Two of Hosking and Wallis (1997)’s heterogeneity measures, incorporating the 

coefficient of variation in one case and additionally the skewness in the other, are found 

to be reasonable proxies for quantile error at the L-moment ratio values characterizing 
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these data. This result, in addition to confirming the utility of a commonly used 

coefficient of variation-based heterogeneity statistic, provides evidence for the utility of a 

heterogeneity measure that incorporates skewness information. 

3.1: Introduction 

 Precipitation quantile estimation is important in a variety of fields, including civil 

engineering and agriculture. Estimation of upper quantiles is particularly important for 

evaluating the likelihood of major flood events, for which stream flow gauges are also 

used. Regardless of data source, accurate statistical estimation of uncommon extreme 

events requires large sample size for acceptable accuracy. Statistical methods which can 

improve the utility of low-sample-size data help analysts tackle these problems. 

 Linear moments (Greenwood et al., 1979) are often used as parameters for 

probability distributions by statistical hydrologists in place of the conventional moments 

due to the lower bias of their sample estimators, especially in cases of small sample size 

or high skew, and their lack of algebraic bounds such as those depending on sample size 

for conventional moment estimators (Vogel and Fennessey, 1993). They are more robust 

to outliers and offer more reliable inferences about the identity and parameterization of 

an underlying probability distribution from small sample size (Hosking, 1990). 

 Dalrymple (1960) established the index flood method, in which gauge records are 

normalized by an index such as the mean and pooled. From these regional data, unitless 

regional frequency estimates are made which are multiplied by the at-site indices to 

produce frequency estimates for each gauge. This assumes that after normalization, 

quantile estimates for all gauges in a region can be described by a single frequency 
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distribution. The degree to which this homogeneity assumption is violated is estimated by 

heterogeneity statistics – generally the homogeneity assumption is considered to be valid 

if estimated regional heterogeneity is below some threshold. 

 Regional frequency analysis using linear moments, sometimes abbreviated RFA-

LM e.g. Núñez et al. (2011) and Maeda et al. (2013), uses the index flood approach and 

therefore requires the use of a validated heterogeneity statistic. Hosking and Wallis 

(1993) proposed three heterogeneity statistics, denoted H1, H2, and H3 or “the H 

statistics” in this study. The use of H1 was preferred, based on simulation experiments 

demonstrating that H1 was a “reasonable proxy” for error. These statistics, most notably 

H1, have been used to defend the utility of candidate regionalizations in several related 

subfields of hydrology. 

 For rainfall gauge data, monthly (Núñez et al., 2011) and annual precipitation 

totals (Guttman, 1993; Lin and Chen, 2006; Parida and Moalafhi, 2008; Modarres and 

Sarhadi, 2011; Dikbas et al., 2012) are among the time steps and recurrence intervals to 

which the H statistics have been applied. They have also been used to defend 

regionalizations of gauges for annual maximum rainfall over assumed durations of 5-120 

min  (Adamowski et al., 1996), 5 min – 24 hrs (Alila, 1999; Smithers and Schulze, 2001), 

1-24 hours (Norbiato et al., 2007; Um et al., 2010), 24 hours (Huff and Angel, 1992; 

Szolgay et al., 2009; Gabriele and Chiaravalloti, 2013), 1-72 hrs (Bradley, 1997), and 1-7 

days (Kyselý et al., 2007; Kyselý and Picek, 2007; Yang et al., 2010; Ngongondo et al., 

2011).  
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 The regionalization of stream flow gauge data has been defended using the H 

statistics for cases including annual peak discharge or maximum flood (Zrinji and Burn, 

1996; Burn and Goel, 2000; Kjeldsen et al., 2002; Jingyi and Hall, 2004; Abida and 

Ellouze, 2006; Atiem and Harmancioğlu, 2006; Rao and Srinivas, 2006; Srinivas et al., 

2007; Noto and La Loggia, 2009; Gaume et al., 2010; Guse, 2010; Saf, 2010; Hussain, 

2011; Kar et al., 2012; Rianna et al., 2012; Seckin et al., 2013), partial duration series for 

different numbers of peaks in a year (Pham et al., 2013), and annual 7-day minimum flow 

(Modarres, 2008; Dodangeh et al., 2013). 

 Santos et al. (2011) applied the H statistics to the Standardized Precipitation Index 

(SPI), a drought index calculated using annual maximum and peak-over-threshold 

precipitation data, while Feng et al. (2013) applied them to maximum daily precipitation 

in the three days after a drought. For gridded precipitation data the H statistics have been 

used in regional frequency analyses of annual totals (Satyanarayana and Srinivas, 2009) 

and for maximum annual precipitation at 1-5 day time steps (Marx and Kinter, 2007). 

 Other homogeneity tests include the Lu-Stedinger test (Lu and Stedinger, 1992), 

used in Gaál and Kyselý (2009), Alila’s S test (Alila, 1994) used in Alila (1999), and the 

K-sample Anderson-Darling test (Scholz and Stephens, 1987), which is ascertained as 

superior to H1 for highly skewed simulated data by Viglione et al. (2007). Chebana and 

Ouarda (2007) extend the Hosking and Wallis homogeneity test to the multivariate case, 

as applied in Sadri and Burn (2011), while Castellarin et al. (2008) propose a correction 

to the test accounting for cross-correlation between gauge records. Bhuyan et al. (2010) 
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compares L-moments to the LH-moments of Wang (1997) for annual maximum flood 

data. 

 No single investigation can evaluate the utility of the H statistics for all the data 

types to which they have been applied. However, daily precipitation gauge data can be 

aggregated to longer time steps, allowing for the characterization of the H statistics’ 

performance across data with a wide range of statistical properties. The limited size and 

spatial extent of the gauge network used in this study minimize the effects of climatic 

variation due to distance and topography. The study area’s small spatial and wide 

temporal scope allows the relative performance of the H statistics to be assessed across 

wide ranges of variance, skew, and kurtosis while controlling for many of the sources of 

unpredictability in real data. 

 The remainder of the paper is structured as follows. First, the study area and the 

data set are explicated in Section 2. Next the steps of the analysis are described, 

beginning with the aggregation of daily data into longer time steps in Section 3.1 and 

continuing to a discussion of L-moment theory in Section 3.2. In this section formulae for 

the linear moments are introduced (Section 3.2.1), followed by methods for estimating a 

candidate regionalization’s heterogeneity (Section 3.2.2), choosing and fitting a 

probability distribution for a candidate regionalization (Section 3.2.3), and estimating 

error (Section 3.2.4). Section 3.3 describes the method by which the H statistics are 

validated through comparison to estimates of quantile error. Section 4 contains the results 

of the analysis, starting with a description of the variance in L-moment ratios and the 

number of data points equal to zero as time step is varied (Section 4.1). Next, the 
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probability distributions to which regionalizations of each time step were fitted are 

presented in Section 4.2, after which the correlations between heterogeneity and error 

estimates across time steps and non-exceedance frequencies are presented in Section 4.3. 

Finally, Section 5 offers conclusions. 

3.2: Data 

 The data used in this study, comprising daily precipitation totals measured by 

volunteers across Minnesota, were collected and quality controlled for inclusion into 

Perica et al. (2013). This process winnowed the volunteer high-density gauge network to 

341 gauges, 57 of which did not skip a full month between the start and end of the data 

record. Twelve such gauges were present in the Minneapolis-St. Paul or Twin Cities 

region (Figure 10, Table 4). These gauges provide thousands of measurements from four 

decades while spanning slightly more than a quarter of a degree in latitude and longitude. 

In the remainder of this paper, the relationship between Monte Carlo estimates of 

heterogeneity and quantile error of estimation is investigated for all 3,302 valid (five- or 

more-gauge) regionalizations within this dense gauge network.  

 

 

 



51 

 

 
Figure 10 Spatial extent of selected gauges, gauges without missing months, and remainder of dataset. 
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Table 4 Precipitation gauge dataset 

Gauge ID # # days Start date End date Latitude Longitude 

11 1714 Feb 1982 Feb 1996 44.86 -93.32 

35 1191 Jan 1999 Jan 2009 45.01 -93.06 

39 2419 Jan 1978 Aug 1998 45.04 -92.99 

46 2765 Dec 1980 Nov 2008 45.12 -93.28 

78 1518 Dec 1975 Apr 1990 44.97 -93.20 

104 3751 Jan 1976 Nov 2008 45.09 -93.26 

149 1488 Aug 1993 Nov 2008 44.86 -93.05 

150 1787 Jul 1993 Nov 2008 44.91 -93.08 

266 1859 May 1992 Oct 2008 45.00 -93.20 

268 1438 Sep 1990 Nov 2004 45.04 -93.06 

272 1134 Sep 1998 Nov 2008 45.04 -93.22 

328 3572 Sep 1979 Dec 2007 44.96 -92.97 

 

 

 

3.3: Analysis 

3.3.1: Aggregation of higher time steps from daily precipitation totals 

 Daily precipitation totals were aggregated across time steps ranging from one to 

thirty-five days; intervals that included one or more days of missing record were 

eliminated. Data were collated for several starting points within each time step and all 

possible starting points for selected time steps. For example, all seven starting points for 

the seven day time step were analyzed. For short time steps a significant proportion of the 



53 

 

data consists of time steps with zero recorded precipitation; these “true zeroes” were 

preserved in the analysis. 

3.3.2: Regional Frequency Analysis using Linear Moments (RFA-LM) 

 Hosking and Wallis (1997) outlined an index-flood regionalization approach to 

hydrological quantile estimation, denoted here as RFA-LM. The mean of at-gauge or at-

site data is used to normalize the data prior to regional pooling. After a candidate 

regionalization’s degree of deviation from the assumption of regional homogeneity is 

found to be below a certain threshold, a probability distribution is chosen and fitted to the 

L-moment ratios of the normalized regional data. A unitless regional ‘growth curve’ of 

quantile estimates across a range of non-exceedance probabilities is multiplied by each 

gauge’s at-site mean to produce at-site quantile estimates. The statistical package 

“lmomRFA”, which is written in the programming language R (R Core Team, 2012), is 

used to implement this method. 

 Regionalization and L-moment analysis according to the methods of Hosking and 

Wallis has been applied to Minnesota for totals across durations from one month to five 

years (Werick, 1994), for daily data (Huff and Angel, 1992), and for five-minute to sixty-

day durations (Perica et al., 2013). Frequency estimates from the latter study with upper 

and lower bounds of a 90% confidence interval are available at 

http://hdsc.nws.noaa.gov/hdsc/pfds/. 

3.3.3: Linear Moments 

 Hosking and Wallis (1997) define the L-moments λr+1 in Equation 15 for k from 0 to r: 

http://hdsc.nws.noaa.gov/hdsc/pfds/
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Equation 15 
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 Where p*r,k is defined in Equation 16: 

Equation 16 
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 And βk is the probability weighted moment, defined in Equation 17 for the 

quantile function x(u): 
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 The sample estimate of βr is br, estimated using Equation 18 where n is the 

number of data points in the record and xj is the j
th

 data point ordered from smallest to 

largest: 
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 The L-moments of particular concern are usually the first four:  λ1 is the mean of 

a data record, λ2 measures the dispersion, λ3 measures skewness, and λ4 measures 

kurtosis. From these L-moments, L-moment ratios are constructed; the L-CV or 

coefficient of L-variation is τ = λ2/ λ1, while L-skewness and L-kurtosis are calculated 

using r = 3 and 4 respectively in Equation 19:  
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Equation 19 

         
  

 The sample estimate of λr is lr and the sample estimate of τr is tr with the sample 

estimate of the L-CV denoted as t; these are calculated using equations 1-5, substituting 

br for βr. 

3.3.4: Heterogeneity statistics 

 Heterogeneity statistics quantify the degree to which a candidate regionalization 

deviates from the hypothesis of homogeneity – identical L-moment ratios at all of the 

candidate regionalization’s constituent gauges. Three statistics defined by Hosking and 

Wallis (1997), denoted H1, H2, and H3 are used in this study. Following the method in 

that monograph, pooled gauge data are fitted to the four-parameter Kappa distribution 

and simulated regions with the same number of sites and record lengths as the real data 

are generated. Equations for the four-parameter Kappa distribution can be found in the 

Appendix of Hosking and Wallis (1997). 

 A measure V of between-site L-moment ratio variation is calculated for the 

regional data and for each of many iterations of each simulated region. Three variants of 

V and therefore of H are identified. H1 calculates V from the second L-moment ratio, 

while H2 considers the second and third and H3 the third and fourth. The (i) superscript 

indicates the at-site L-moment ratio value for gauge i; the R superscript indicates the 

regional average L-moment ratio. N is the number of sites in the region and ni is the 

number of data points at site i. Equations 20-23 are used to calculate V and H for the 
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three variants. In Equation 23 μV is the mean of V across all simulated regions and σV is 

the standard deviation.  

Equation 20 
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 Hosking and Wallis (1997) calculated the ratio between root mean square errors 

(RMSEs) of simulated regions with heterogeneous linear moments and their equivalent 

homogeneous regions and found a positive linear relationship between error added due to 

heterogeneity and H1. H1 was therefore considered a “reasonable proxy” of the error 

associated with heterogeneity. H2 and H3 were not found to possess this quality. The 

authors recommended the use of H1, with H1 > 2.0 indicating heterogeneity and H1 < 1.0 

indicating homogeneity. Intermediate values of H1 between 1.0 and 2.0 indicate possible 

heterogeneity. 
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3.3.5: Choice of a distribution 

 Three-parameter probability distributions, which are fitted to the mean and the 

second and third L-moment ratios, cannot model all L-skewness/L-kurtosis combinations. 

For a given L-skewness (the third parameter of these probability distributions) there can 

be only one L-kurtosis; L-kurtosis as a function of L-skewness, a relationship unique to 

each three-parameter probability distribution, can be plotted against the L-skewness and 

L-kurtosis of data to ascertain which distribution fits the data most accurately. In this 

way, linear moment ratios can be plotted on an L-skewness/L-kurtosis plot as a graphical 

aid in fitting distributions (Vogel and Fennessey, 1993).  

 Hosking and Wallis (1997)’s Z statistic is a Monte Carlo statistic based on the 

difference between a candidate regionalization’s average L-kurtosis and the expected L-

kurtosis of a three-parameter distribution fitted to the candidate regionalization’s average 

mean, L-CV, and L-skewness. This quantifies the relationship used in graphical 

estimation and provides a reasonable measure of goodness of fit for three-parameter 

distributions.  

 Simulated data are generated from a given three-parameter distribution after 

fitting that distribution to the candidate regionalizations’ average L-moments. The Z 

statistic is calculated from the bias B4 and the standard deviation σ4 of L-kurtosis, t4. Z 

scores for a three-parameter distribution DIST, Z
DIST

, are calculated using L-kurtosis for 

each gauge m within a region, t
(m)

4, and regional average L-kurtosis, t
R

4,  across Nsim 

simulations, as well as the L-kurtosis of each fitted distribution τ
DIST

4, in equations 24-26:  
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 The distribution with the lowest Z score provides the best fit to the data. The 

“somewhat arbitrary” convention of accepting the hypothesized distribution when Z
DIST

 

has absolute value less than 1.64 is derived from the assumption of a standard Normal 

distribution, representing a 90% confidence level. However, the assumption of 

homogeneity underlies the assumption of Normality, undermining the justification for 

this criterion so that it is “not recommended as a formal test”. Equations for τ
DIST

4 for five 

three-parameter distributions, the Generalized logistic, Generalized Pareto, Generalized 

extreme-value, Pearson type III, and Lognormal, are available in table A.3 of the 

Appendix of Hosking and Wallis (1997).
 

3.3.6: Estimation of quantile error 

 Hosking and Wallis (1997) establish a Monte Carlo simulation routine that 

estimates the root mean square error of the regional quantile estimate for a given quantile. 

The method requires not only the true L-moment ratios of the regionalized gauges but 
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also a simulated region, based on the true data but with less L-moment ratio variation. 

Observed data incorporates sampling error, which increases L-moment ratio variation; 

using the unadjusted observed data as the basis for Monte Carlo generation of regions 

would result in simulated regions with inaccurate, high sampling errors. The average 

observed L-moment ratio values are preserved in this method, but variation around these 

values is reduced to below the observed level. Theoretical justification for scaling 

variation toward the mean can be found in the literature discussing shrinkage estimators, 

beginning with Stein (1956), who showed that the multivariate sample mean is 

inadmissible. Lindley and Smith (1972) discuss shrinkage estimators in a Bayesian 

context. 

 The degree to which observed L-moment variation is dampened toward the 

regional mean in the simulated region is determined by testing a multiplier of 0.75 then 

adding or subtracting 0.10 depending on whether this simulated region generates lesser or 

greater heterogeneity, measured using H1, than observed data from the constituent gauges 

of the candidate regionalization. Coefficient of L-variation, L-skewness, and L-kurtosis 

values at each site are all multiplied by the same multiplier. The multiplier is increased or 

decreased by 0.10 until the observed regional heterogeneity is passed, at which point the 

multiplier halfway between the two whose heterogeneities bracket the observed regional 

heterogeneity is also tested. Among these three multipliers, the multiplier generating the 

heterogeneity closest to true regional heterogeneity is selected.  

 Once a simulated region with a known fraction of the observed L-moment 

variation has been defined, quantile estimates at a range of non-exceedance frequencies F 
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are calculated for M randomized instantiations of this region,  

 ̂ 
[ ]

( ). Relative root mean square error is calculated for each frequency F across N 

gauges and M simulations with reference to the quantiles present in the observed data 

  ( ) using Equation 27:  

Equation 27 

  ( )     ∑√   ∑ (
 ̂ 

[ ]
( )    ( )

  ( )
)

  

   

 

   

 

  

3.3.7: Evaluation of heterogeneity-error relationship across time steps 

 In this study the “reasonable proxy” relationships between heterogeneity statistics 

and error are quantified by plotting, for all analyzed time steps and starting points, each 

of the H statistics against estimated relative RMSE for the 3,302 valid regionalizations of 

the twelve-gauge network. The multiplier described in Section 3.2.4 is used as a threshold 

to identify a population of regionalizations with very low multipliers characterized by 

lack of a linear relationship between heterogeneity and error. This anomalous population, 

whose heterogeneity-error relationship may be obfuscated by the near-homogeneity of 

the simulated regions used to estimate error, represents a small minority of all possible 

regionalizations.  

 Because the large majority of regionalizations with high multipliers are observed 

to form linear clusters when quantile error of estimation is plotted against each of the H 

statistics, the Pearson’s r statistic is a reasonable summary of the degree to which 

heterogeneity statistics are proxies of error. Pearson’s r is then calculated for this 
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population of regionalizations, indicating the degree to which a positive linear correlation 

exists between heterogeneity and error across the analyzed data set after accounting for 

limitations of the error estimation routine.  

 For two vectors x and y with n entries each whose mean values are  

 ̅ and  ̅, Pearson’s r is calculated using Equation 28:  

Equation 28 
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3.4: Results 

3.4.1: Aggregation of daily data 

 The method of aggregation described in Section 3.1 is applied to twelve Twin 

Cities precipitation gauges with daily records. Because the starting point of “Day One” is 

arbitrary (whether determined by reference to a calendar or, as here, starting with the first 

day of recorded data in the oldest of the twelve analyzed gauges), all starting points have 

equal relevance. At-site L-moment ratios are calculated for all possible starting points 

and time steps from one to thirty days in length. In Figures 11 and 12 the solid line 

indicates the average across all twelve gauges and all possible starting points for the time 

step on the x axis; the dotted lines indicate the maximum and minimum value at any of 

the gauges and starting points. The fraction of time steps without measured precipitation, 

denoted “true zeroes” here, decreases quickly as time step increases (Figure 11).  
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Figure 11 Percentage of intervals in which no precipitation was recorded. Solid line is mean of non-zero 

percentages across all sites and starting points, dashed lines are maximum and minimum percentage at any site 

or starting point 

 

 

 

 Generally, an inverse relationship is observed between length of time step and 

magnitude of linear moment ratios. Sample size decreases as length of time step 

increases; decreasing sample size may also drive an increase in variation around the 

average. The Twin Cities of Minnesota present a wide range of L-moment ratio values 
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across the spectrum from daily to monthly precipitation aggregates. The coefficient of L-

variation ranges from 0.4 to 0.9, L-skewness from 0.8 to 0.2 and L-kurtosis from 0.6 to 

below 0.1 (Figure 12).  

 

 

 

 
Figure 12 (a) Coefficient of L-variation (t). (b) L-skewness (t3). (c) L-kurtosis (t4). Solid line is mean across all 

sites and starting points, dashed lines are maximum and minimum value at any site or starting point 

 

 

 

3.4.2: Fitting a distribution 

 Average L-moment ratios having been calculated for each 5-or-more-site 

regionalization of the twelve gauge records at each time step and starting point, an 

appropriate distribution can be fit to each regionalization. The Z score method of Section 

3.2.3 is used for this purpose. Along with heterogeneity and error results, Z scores are 

presented in this study at the starting point of Day One for time steps one through 

nineteen, the even numbers from 20 to 30 inclusive, and the 35-day time step. Results are 
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presented at all starting points for time steps seven and fourteen. Other starting points and 

time steps were evaluated through the same methods and produced similar results.
 
As 

Figure 13 illustrates, the L-kurtosis/L-skewness relationship at these gauges is similar to 

that produced by the Pearson type III distribution for less than fourteen days and to the 

Generalized Pareto for longer time steps. 
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Figure 13 Graphical juxtaposition of observed data and five three-parameter probability distributions at a 

starting point of Day One. Points: L-skewness and L-kurtosis (t3 and t4) of analyzed gauges at selected time 

steps. Lines: L-kurtosis outputted by three-parameter distributions as a function of L-skewness 

 

 

 

 Shifting the starting point for a time step can result in markedly different patterns 

across an L-kurtosis/L-skewness graph. Figure 14 illustrates that for a 7-day or weekly 

time step, the gap between two clusters of sites for a starting point of Day One disappears 

when using a starting point of Day 4. Conversely, the 14-day or biweekly time step has a 

densely packed cluster of sites for a starting point of Day One; an outlier site appears 

when the starting point is shifted to Day 7. These patterns, although they are the result of 

random variation, can have the effect of changing the distribution that best fits the data. 
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Figure 14 Graphical juxtaposition of observed data and five three-parameter probability distributions. Points: 

L-skewness and L-kurtosis (t3 and t4) of analyzed gauges at 7- and 14-day time steps for two starting points each. 

Lines: L-kurtosis outputted by three-parameter distributions as a function of L-skewness 

 

 

 

 For each regionalization, Z scores are calculated for each of the five three-

parameter distributions listed above. Either the Generalized Pareto (GPA) or the Pearson 

Type III (PE3) distributions offer the best fit across all regionalizations in the data set, for 

all starting points and time steps. Figure 15 illustrates the percentage of regionalizations 



67 

 

best fitting these distributions across time steps for the starting point of Day One. |Z
GPA

| 

is consistently below 1.64 at long time steps for all or nearly all regionalizations, but 

|Z
PE3

| is often above 1.64 at short time steps. No other Z statistic’s absolute value is less 

than 1.64 for any regionalization across seventy tested time step-starting point 

combinations.  

 

 

 

 
Figure 15 Percentage of regionalizations across a range of time steps (using starting point of Day One) with best 

fit for Pearson Type III and Generalized Pareto distributions 

 

 

 

 For time steps near fourteen days in length, the percentage of regionalizations best 

fit using the Pearson Type III or Generalized Pareto distributions varies as the starting 
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point changes. Figure 16 illustrates the percentage of regionalizations best fit by Pearson 

type III and Generalized Pareto for the fourteen-day time step across all starting points. 

Random variation in the L-moment ratios of each constituent gauge as starting point is 

varied results in each regionalization’s average L-kurtosis moving closer to or farther 

from the predicted value for each distribution. Because the Z statistic is a Monte Carlo 

statistic, random sampling also contributes to variance in the Z scores for each 

distribution, which can affect the ranking of the distributions. At the biweekly time step, 

most starting points result in the Generalized Pareto distribution being the best fit for 

more than three quarters of regionalizations, while several other starting points result in 

the same majority fitting to the Pearson Type III distribution. While both distributions 

were used to generate data for all starting points at the fourteen-day time step, the results 

were very similar. 
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Figure 16 Percentage of regionalizations at 14-day time step across all starting points with best fit for Pearson 

Type III and Generalized Pareto from a set of five three-parameter distributions 

 

 

 

 Distributions are fit using equations in the Appendix of Hosking and Wallis 

(1997). While the estimated quantiles for low non-exceedance values can be negative 

when true zeroes are included in the analysis, a physically impossible result, this study 

focuses on the upper tails of the distribution. Quantile estimates at all analyzed sites, 

starting points, and time steps were positive for non-exceedance probabilities considered 

here (0.75 and greater). 
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3.4.3: Comparing heterogeneity and error estimates 

 All 3,302 valid regionalizations of the twelve-gauge dataset are evaluated for 

heterogeneity and error using Monte Carlo simulation at several time steps ranging from 

one to thirty-five days. After screening for low-multiplier regionalizations whose 

observed L-moment ratio variation is less than required for the accurate estimation of 

quantile error, correlations between error and the H statistics for the remaining 

regionalizations are measured using Pearson’s r. 

 The multiplier step produces a minority of regionalizations at every time step for 

which a small fraction of the observed L-moment ratio variation was required to create a 

synthetic region matching the true H1. Almost all of these regionalizations had negative 

H1 values.  Despite their low heterogeneity, these regionalizations’ estimated errors are 

often high when fitted by the Pearson Type III or Generalized Pareto distributions. 

Because simulated quantiles are compared to true quantiles from the original data, it is 

unsurprising that estimated error is high when the simulated region’s L-moment ratios are 

dissimilar to the original region. Regionalizations with a multiplier threshold of ≤ 0.50 

are removed from the analysis due to their highly nonlinear clustering and the lack of a 

positive correlation between heterogeneity and error. Changing the threshold from 0.50 to 

0.45 or 0.55 only slightly modifies the results. A threshold of 0.50 achieves acceptable 

performance at separating the main body of regionalizations, whose heterogeneity and 

error statistics are both high or low simultaneously, from the anomalous low-weighted 

regionalizations containing low heterogeneities and high errors.  
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 High multipliers become less common as time step increases, but the most 

common multipliers for all time steps are above the threshold of 0.50 (Figure 17). 

Nevertheless, the number of regionalizations fitted with multipliers equal to or below 

0.50 steadily increases at short time steps (Figure 18). For longer time steps the 

relationship is less well defined, but in general longer time steps result in a greater 

number of low-multiplier regionalizations. Most regionalizations at all time steps have 

high multipliers and pass this screening step. Figure 19 illustrates the number of low-

multiplier regionalizations at all starting points for the weekly and biweekly time steps; 

some starting points have very few low-multiplier regionalizations while others have 

more.  
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Figure 17 Number of regionalizations fitted to each multiplier at selected time steps for starting point of Day 

One. Low-multiplier threshold is illustrated as heavy dashed line. 

 

 

 

  

 
Figure 18 Number of regionalizations fitted with a multiplier less than or equal to 0.50 over a range of time steps 

for a starting point of Day One 
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Figure 19 Number of regionalizations fitted with multiplier equal to or below 0.5 for all starting points at time 

steps of seven (left) and fourteen (right) 

 

 

 

 Pearson’s r scores drawn from the relationship between heterogeneity and error 

are plotted for a given combination of starting point, time step, heterogeneity statistic, 

and non-exceedance frequency in Figure 20. While multiple linear relationships can be 

discerned in Figure 20 (the cluster with the highest heterogeneity contains all 

regionalizations incorporating site 328 which has outlier L-moment ratio values), only the 

diffuse cluster with multipliers less than or equal to 0.50 is eliminated before Pearson’s r 

is calculated for the remaining regionalizations. Some starting points and time steps have 

multiple linear clusters visible in H-RMSE graphs, and some do not. These linear clusters 

are visible across many non-exceedance frequencies and for all three H statistics. The 

clusters can sometimes overlap, especially for H3.  
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Figure 20 Relative Root Mean Square Error at the non-exceedance frequency of 0.90 plotted against H1 for 

3,302 regionalizations at a time step of 7 days and a starting point of Day 4. Regionalizations are differentiated 

by the magnitude of the fitted multiplier 

 

 

 

 For the heterogeneity statistics H1 and H2, correlation between heterogeneity and 

error for regionalizations with multipliers above 0.50 is slightly negative as measured by 

Pearson’s r for non-exceedance frequencies below 0.90 (Figure 21). Pearson’s r scores 

become slightly positive for all three heterogeneity statistics at a non-exceedance of 0.90. 

For a non-exceedance frequency of 0.95, the Pearson’s r correlation is closer to 0.50, 
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while at non-exceedance frequencies of 0.99 and 0.999 correlations are consistently 

above 0.60, albeit with some drop-off at the longest time steps. These observations made 

from Figure 21 indicate the presence of a linear relationship between H1 and H2 and 

quantile error estimates for high non-exceedance frequencies across a wide range of time 

steps, and therefore, of L-moment ratio values.  
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Figure 21 Pearson’s r of H1 (solid line), H2 (dashed line), and H3 (dotted line) for regionalizations with a 

multiplier of above 0.50 compared with estimated Root Mean Square Error at upper-tail non-exceedance 

frequencies across a range of time steps for a starting point of Day One 

 

 

 

 Figure 21 also illustrates the opposite tendency for the heterogeneity statistic H3.  

This statistic exhibits near-zero correlation with RMSE for non-exceedance frequencies 
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below 0.95 but varies between 0.1 and 0.5 for higher non-exceedance frequencies. While 

H3’s Pearson’s r scores are greater than those of H1 and H2 at lower frequencies, the 

correlations are still nearly zero and no strong linear relationship can be discerned using 

Pearson’s r. However, H3 lags behind where H1 and H2 exhibit their highest Pearson’s r 

scores with reference to their correlation with RMSE. 

3.4: Conclusions 

 Daily data from twelve Twin Cities precipitation gauges are aggregated using 

different time steps, and all valid regionalizations of these gauges are evaluated for 

heterogeneity and error. A positive linear correlation between two heterogeneity 

estimators and error estimates is observed for extreme quantiles (events with non-

exceedance frequency of 0.95 or greater). These results offer evidence suggesting that H1 

and H2, but not H3, are reasonable proxies of RMSE for non-exceedance probabilities of 

0.95 and above. 

 Regionalizations with low multipliers appear to have been affected by limitations 

inherent in the Monte Carlo error estimation mechanism used in this study. This method 

assumes that heterogeneity is produced by both sampling variance and the true scatter in 

L-moment ratio values within a region. Monte Carlo simulation involves the generation 

of samples, which adds sampling error. In order to prevent each iteration from being 

served a double dose of sampling error, the sampling error of the observed data must be 

ameliorated before fitting to the distribution. This is the role of the multiplier. When 

observed H1 is very low – usually below zero – a multiplier of below 0.5 is necessary to 

reconcile the observed spread of L-moment ratios with observed H1. The simulated 
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region thus produced is considerably different from the original data, so it is unsurprising 

that the error of quantile estimation increases. Issues leading to the fitting of low 

multipliers affected only a small minority of regionalizations even for the most heavily 

affected time steps and starting points. 

 The results of this analysis corroborate the simulation experiment in Hosking and 

Wallis (1997) indicating that one of the heterogeneity statistics used here is a “reasonable 

proxy” of the error of quantile estimation. In that monograph, results for H2 and H3 were 

not reported. The results of this analysis indicate a functional distinction between H1 and 

H2 on the one hand, which had poor correlations with RMSE at low non-exceedance 

frequencies but were useful proxies of estimated RMSE at high non-exceedance 

frequencies, and H3 on the other, which was less effective at high non-exceedance 

frequencies, but only marginally more effective than H1 and H2 at low non-exceedance 

frequencies.  

 The relative efficacies of H1 and H2 are similar across this dataset and both 

present a linear relationship with error estimates despite the continued presence of error 

components not related to heterogeneity. The presence of multiple linear clusters for 

many combinations of H statistic, starting point and time step also had the effect of 

reducing Pearson’s r scores between the H statistics and estimated relative RMSE. 

Evidence of a linear relationship between heterogeneity estimators and error estimates in 

real data strengthens the “reasonable proxy” argument for the heterogeneity estimators’ 

accurate reflection of the heterogeneity error term in regional frequency analysis.  
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 This methodology can be extended through expansion in scope. Several aspects of 

the study are amenable to further exposition. Other heterogeneity measures, including 

multivariate heterogeneity statistics, could be compared to error; indeed, other measures 

of error could be considered. The geographical scope of the analysis could be widened to 

include a broader area, or the relationship between heterogeneity and error could be 

investigated in a dataset from some other part of the world. If a larger gauge network is 

used and computational resources are insufficient for full enumeration, a random subset 

of regionalizations could be selected at which error and heterogeneity are estimated. 
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4: DISCRIMINATORY POWER OF HETEROGENEITY STATISTICS WITH 

RESPECT TO ERROR OF PRECIPITATION QUANTILE ESTIMATION 

Abstract 

 At low sample size, sampling error may be reduced by pooling multiple gauge 

records. This creates an error component due to heterogeneity, the degree to which the 

pooled regional data’s quantile estimates are different from the true at-site quantiles. 

Heterogeneity statistics attempt to quantify the degree to which error is added due to 

regional heterogeneity. They are justified through elucidation of a “reasonable proxy” 

relationship with error caused by heterogeneity and through the ability of heterogeneity 

thresholds to detect heterogeneous regions. In this study, previous findings regarding 

three heterogeneity statistics proposed by Hosking and Wallis (1997), denoted H1, H2, 

and H3, are revisited; the finding that H1 is superior to H2 and H3 is amended based on 

simulation experiments and upon enumeration of all possible regionalizations of a small 

gauge dataset across time scales from daily to monthly. Thresholds defined based on H1 

are shown to be four times too high for application to H2, and new thresholds are derived 

for H2. Two nonparametric heterogeneity statistics are tested and found to achieve only 

the unsatisfactory performance level of H3. 
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4.1: Introduction 

 Large sample size is required for accurate estimation of the likelihood of extreme 

precipitation events. However, long precipitation data records are often unavailable, 

especially in developing nations and sparsely populated locales. Pooling the sample size 

offered by multiple precipitation gauges can reduce the error of quantile estimation 

associated with sample size, but only at the cost of introducing a new component of error. 

The degree to which a group or region of gauges or sites violates the hypothesis of 

identical underlying probability distributions, or homogeneity, is termed heterogeneity. 

Quantile error associated with heterogeneity must be balanced against the reduction in 

quantile error effected by the pooling of multiple gauge records.  

Heterogeneity statistics have been established in the literature based on their 

ability to detect heterogeneous regions (Viglione, 2007) and the degree to which the 

value of the heterogeneity statistic acts as a “reasonable proxy” for the magnitude of 

quantile error added due to heterogeneity (Hosking and Wallis, 1997). These studies have 

established a number of heterogeneity statistics and offered tests of statistical power 

based on the performance of thresholds at distinguishing heterogeneous from 

homogeneous regions, but results for “reasonable proxy” analyses of several statistics 

have not been presented. Because the relationship between a heterogeneity statistic and 

quantile error added due to heterogeneity was used by Hosking and Wallis (1997) to 

define thresholds, this relationship can also be characterized for other statistics to 

determine the reasonableness of thresholds that are assigned. 
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In this study a simulation method previously used in the literature to quantify the 

“reasonable proxy” relationship for one heterogeneity statistic is extended to others. 

Additionally, a novel enumeration method is applied to a small Minnesota daily 

precipitation gauge dataset. All possible regionalizations of the gauges for data 

aggregated at time steps from daily to monthly are evaluated through the method of linear 

moments. Estimates of quantile error are compared to heterogeneity statistics in 

analogous fashion to the simulation experiment. Because heterogeneity-error 

relationships are linear in both cases, the Pearson’s r statistic is a reasonable measure of 

the utility of a heterogeneity statistic as a proxy for quantile error. Guidance is presented 

for precipitation frequency analysts regarding the relative utility of the statistics here 

considered and heterogeneity thresholds are estimated for statistics with strong linear 

relationships to error. 

This manuscript is subdivided into sections labeled Data, Analysis, Results, and 

Conclusions. The Data section describes the precipitation gauge dataset used in the 

enumeration study. The Analysis section introduces linear moments and the regional 

frequency analysis method, and then explicates heterogeneity and error statistics as well 

as methods used in the enumeration and simulation studies. The Results section describes 

the outcomes of these studies, and the Conclusions section reviews the results with 

reference to the literature and offers guidance to precipitation frequency analysts. 

4.2: Data 

 Twelve daily precipitation gauges with more than a thousand days of record and 

no missing months were selected from a Minnesota high-density rain gauge network. The 
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Minnesota State Climatology Office maintains hundreds of long-record volunteer daily 

precipitation gauges in a statewide high-density precipitation gauge network. A quality-

controlled subset of these gauges was included in the dataset for the 14
th

 version of 

NOAA's Precipitation Frequency Atlas of the United States (Perica et al., 2013). 

Cartographic maps for all states currently covered by NOAA Atlas 14, including 

Minnesota, can be accessed at http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_maps.html.  

The Minnesota State Climatology Office prepared data from 341 gauges for 

submission to NOAA. Of these, 57 gauges which did not skip a full month between the 

start and end of the record were further considered and twelve clustered in the 

Minneapolis-St.Paul region were selected (Figure 22, Table 7). The longest record length 

of the twelve sites is 3751 days of non-zero precipitation and the shortest is 1134 days. 

The wet-day (non-zero) precipitation records of this group are used as the basis for the 

enumeration experiment. 

 

 

 

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_maps.html
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Figure 22 Map of Minnesota gauge network. Full state map on left, Twin Cities region on right. 
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Table 5 Characteristics of selected precipitation gauges 

Gauge ID # # days Start month End month Latitude Longitude 

11 1714 Feb 1982 Feb 1996 44.86 -93.32 

35 1191 Jan 1999 Jan 2009 45.01 -93.06 

39 2419 Jan 1978 Aug 1998 45.04 -92.99 

46 2765 Dec 1980 Nov 2008 45.12 -93.28 

78 1518 Dec 1975 Apr 1990 44.97 -93.20 

104 3751 Jan 1976 Nov 2008 45.09 -93.26 

149 1488 Aug 1993 Nov 2008 44.86 -93.05 

150 1787 Jul 1993 Nov 2008 44.91 -93.08 

266 1859 May 1992 Oct 2008 45.00 -93.20 

268 1438 Sep 1990 Nov 2004 45.04 -93.06 

272 1134 Sep 1998 Nov 2008 45.04 -93.22 

328 3572 Sep 1979 Dec 2007 44.96 -92.97 

 

 

 

4.3: Analysis 

 Regional frequency analysis, in which multiple gauges’ data are normalized by 

the at-site mean or median and a unitless regional quantile function is parameterized by 

the pooled data, has been used in hydrology since Dalrymple (1960). At that time the 

conventional moments of the dataset were used to parameterize probability distributions, 

which in turn outputted quantile estimates. However, a set of polynomial statistics 

imitating the conventional moments called linear or L-moments have been shown to 

possess superior properties for the analysis of hydrological data. Their sample estimates 
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have lower bias, are more robust to outliers than conventional sample moments and are 

not bounded by sample size (Hosking et al., 1985; Lettenmaier et al., 1987; Hosking, 

1990; Vogel and Fennessey, 1993). The Hosking and Wallis (1997) regional frequency 

analysis framework, referred to here as Regional Frequency Analysis using Linear 

Moments (RFA-LM), uses probability distributions parameterized by the L-moments of 

real and simulated data to generate synthetic data through Monte Carlo simulation. This 

method is applied to generate regional quantile estimates and to approximate their error, 

as well as for the calculation of heterogeneity statistics. 

The statistical language R (R Core Team, 2012) was used to run the calculations 

in this study. For RFA-LM calculations and calculation of the Hosking-Wallis 

heterogeneity statistics H1, H2, and H3, the “lmomRFA” package was used. “lmomRFA” 

documentation is available online at http://cran.r-

project.org/web/packages/lmomRFA/lmomRFA.pdf. The package applies FORTRAN 

code available at http://lib.stat.cmu.edu/general/lmoments. For the nonparametric 

bootstrap Anderson-Darling (AD) and Durbin-Knott (DK) test statistics the package 

“homtest” was used; “homtest”, which contains functions for the calculation 

homogeneity tests described in Viglione et al. (2007), was used to calculate 

nonparametric heterogeneity statistics. Documentation for the “homtest” package is 

available at http://cran.r-project.org/web/packages/homtest/homtest.pdf. 

http://cran.r-project.org/web/packages/lmomRFA/lmomRFA.pdf
http://cran.r-project.org/web/packages/lmomRFA/lmomRFA.pdf
http://lib.stat.cmu.edu/general/lmoments
http://cran.r-project.org/web/packages/homtest/homtest.pdf
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4.3.1: Linear moments 

 Linear moments are derived from the probability weighted moments (PWMs) of 

Greenwood et al. (1979). Hosking and Wallis (1997) define the (r+1)th L-moment λ of a 

quantile function x(u) as the product of a polynomial p*r,k and the probability-weighted 

moment βk in Equations 29-31: 

Equation 29 
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 The sample estimate of βr is br, estimated using Equation 32 where n is the 

number of data points in the record and xj is the j
th

 data point ordered from smallest to 

largest: 

Equation 32 
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 λ1 is calculated identically to the arithmetic mean, λ2 measures variance, λ3 

measures skewness, and λ4 measures kurtosis. L-moment ratios are often used to 
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represent the second through fourth moments. The L-CV or coefficient of L-variation is τ 

= λ2/ λ1, while L-skewness τ3 and L-kurtosis τ4 are calculated using Equation 33:  

Equation 33 

         
  

 The sample estimate of λr is lr the sample estimate of the L-CV is t, and the 

sample estimate of τr is tr. These are calculated using Equations 34 and 35:  

Equation 34 
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Equation 35 

         
  

4.3.2: Homogeneity statistics 

Because the L-moments analytical framework offers parameterizations for 

probability distributions, Monte Carlo statistics can be formulated that quantify the 

concepts of heterogeneity and quantile error.  In addition, statistics can be formulated 

from a nonparametric standpoint in which nothing is assumed about the shape of the 

dataset. Like the L-moment statistics the process begins with the sorting of the data 

record from low to high, but this information is used not to parameterize a probability 

distribution from which simulated data will be drawn but to make estimates directly, 

using the original data.  

Nonparametric heterogeneity statistics compare the empirical distribution of each 

gauge’s data record to the distribution of the pooled dataset, while Monte Carlo 
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heterogeneity statistics generate many simulated regions from a flexible probability 

distribution and make comparisons between observed and simulated data. Nonparametric 

statistics avoid assumptions about the data at the cost of assuming the data record 

contains all possible future events, while Monte Carlo statistics make distributional 

assumptions in return for sample size limited not by the data record but by computational 

resources. In addition, if the distributional assumption has validity, the simulated regions 

are likely to contain rare events that did not appear in the original dataset but have 

relevance to quantile estimates for future events. 

 Homogeneity statistics quantify the degree to which the homogeneity assumption 

is violated for a candidate regionalization of gauge data. If all sites have identical 

probability distributions (after normalization) the regional pooling step serves to increase 

sample size with no quantile error added. If only minor differences exist between gauges, 

the increase in sample size can still decrease quantile error more than regional 

heterogeneity increases it. However there must exist some threshold of heterogeneity at 

which error reduction due to increased sample size is cancelled out by increased quantile 

error due to the pooled dataset’s inability to represent faithfully each individual gauge’s 

probability distribution. The numerical value of a heterogeneity statistic should impart 

information on the magnitude of quantile error due to heterogeneity, which in turn allows 

thresholds to be assigned for heterogeneity statistics with reference to the equivalent 

heterogeneity-associated error.  
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4.3.3: Hosking-Wallis statistics 

 The statistics proposed by Hosking and Wallis (1997) as part of the RFA-LM 

methodology have achieved wide use in hydrology. These heterogeneity statistics are 

referred to in this study as H1, H2 and H3 individually, and collectively as the Hosking-

Wallis statistics. 

 Quantiles of annual maximum precipitation for events of a known duration (e.g. 

5-minute, daily, or weekly) have been estimated using RFA-LM methods, including the 

use of the Hosking-Wallis heterogeneity statistics (Huff and Angel, 1992; Adamowski et 

al., 1996; Bradley, 1997; Alila, 1999; Smithers and Schulze, 2001; Kyselý et al., 2007; 

Kyselý and Picek, 2007; Norbiato et al., 2007; Szolgay et al., 2009; Um et al., 2010; 

Yang et al., 2010; Ngongondo et al., 2011; Gabriele and Chiaravalloti, 2013). RFA-LM 

has also been used for quantile estimates of monthly (Núñez et al., 2011) and annual 

(Guttman, 1993; Lin and Chen, 2006; Parida and Moalafhi, 2008; Modarres and Sarhadi, 

2011; Dikbas et al., 2012) precipitation totals. RFA-LM has also been widely applied to 

stream flow gauge data, particularly for quantile estimation of annual maximum floods 

(Zrinji and Burn, 1996; Burn and Goel, 2000; Kjeldsen et al., 2002; Jingyi and Hall, 

2004; Abida and Ellouze, 2006; Atiem and Harmancioğlu, 2006; Rao and Srinivas, 2006; 

Srinivas et al., 2007; Noto and La Loggia, 2009; Gaume et al., 2010; Guse, 2010; Saf, 

2010; Hussain, 2011; Kar et al., 2012; Rianna et al., 2012; Seckin et al., 2013). 

 A wide variety of hydrological variables have been subjected to RFA-LM 

analysis in an attempt to reduce quantile error of estimation due to low sample size. The 
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Hosking-Wallis statistics have been used to defend regionalizations of partial duration 

series (Pham et al., 2013) and annual minimum flow over a weekly duration (Modarres, 

2008; Dodangeh et al., 2013) for stream flow data as well as quantile estimates for 

maximum daily precipitation immediately following a drought (Feng et al., 2013). The 

Standardized Precipitation Index (SPI) (Santos et al., 2011) and gridded precipitation data 

(Marx and Kinter, 2007; Satyanarayana and Srinivas, 2009) have also been subjected to 

RFA-LM analysis. 

 While three-parameter distributions are ultimately preferred for outputting 

regional quantile estimates, Hosking and Wallis (1997) estimate heterogeneity by using 

the candidate region’s data to parameterize the more flexible four-parameter Kappa 

distribution, from which simulated regions are drawn using Monte Carlo sampling. For 

the real region and all simulated regions a statistic V can be calculated as the sum of the 

squared deviations from the mean across all sites for a given L-moment ratio or ratios. 

The mean and standard deviation of V across all simulated regions is calculated and 

compared with V for the true data to calculate H, a heterogeneity statistic.  

Three formulations of V are proposed by Hosking and Wallis (1997), one using 

only the L-CV (t), one using the L-CV and L-skewness (t3), and one using the L-

skewness and L-kurtosis (t4). These statistics are denoted as V1, V2, and V3 respectively 

in Equations 36-38. The R superscript indicates the regional average, and i is the index of 

the N sites in the region. 
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 In Equation 39, μV is the mean and σV is the standard deviation of V across all 

simulated regions. H1 is calculated using V1, H2 using V2, and H3 using V3. 

Equation 39 

  
    

  
 

  

4.3.4: Nonparametric rank-order statistics 

 Sorting a dataset from lowest to highest value is the first step of both the moment-

based methods previously described and of nonparametric methods in which only 

observed data are used. Viglione (2007) expresses the Anderson-Darling (AD) and 

Durbin-Knott (DK) tests as estimators of regional heterogeneity. The degree of similarity 

between the empirical distributions of the pooled regional data and each constituent site 

is established and averaged into a regional estimate of heterogeneity. 
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 If k sites, whose index is i, with ni data points each, are pooled into the ordered 

sample Z1 < … < ZN, where N is the sum of ni for all i, the k-sample Anderson-Darling 

test statistic, here denoted as AD, can be calculated using Equation 40:  

Equation 40 
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 Mij is the number of data points at site i that are less than or equal to Zj. A 

nonparametric bootstrap approach determines percentage points for the test. Sampling 

with replacement from the pooled sample to create k artificial sites with ni data points 

each, normalizing each site by its mean or median, and calculating AD for the synthetic 

region gives Nsim values of AD which can be ranked low to high. A threshold equivalent 

to a 5% probability of heterogeneity is extrapolated from the 95
th

 percentile of the 

empirical distribution of AD values, which serves as an approximation of the distribution 

of AD under the null hypothesis of homogeneity. The true region is accepted as 

homogeneous if it has a lower AD score than at least 95% of a population of synthetic 

regions formed by sampling with replacement from the pooled regional data. 

 The Durbin-Knott test quantifies the heterogeneity amongst a candidate region’s 

dispersion or variance, analogously to H1, but it is a rank test. A measure Di can be 

calculated at each of k sites in which the empirical distribution function of the pooled 

regional data HN(x) is evaluated at each data point j of ni, the length of the site’s record. 

Di is shown in Equation 41 below. 
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Equation 41 
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 Because Di is normal under the hypothesis of homogeneity, a statistic DK defined 

by Equation 42 has a chi-square distribution with k-1 degrees of freedom, allowing a 

threshold value to be determined for the 5% significance level. If the region’s DK is 

above the threshold, the region is considered heterogeneous. Note that no simulations are 

required in the calculation of DK.  

Equation 42 
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4.3.5: Root Mean Square Error (RMSE) of regional quantile estimates 

 As part of their explication of the RFA-LM method, Hosking and Wallis (1997) 

introduced a simulation procedure for quantifying the error of quantile estimation. While 

the simulation experiment defending the H statistic sampled from a distribution 

parameterized by known L-moment ratios to obtain simulated quantile estimates, the L-

moment ratios of real data represent sample estimates and incorporate sampling error. If 

the simulated regions were generated from the observed sample L-moment ratios they 

would receive a double dose of sampling error, so the range of L-moment ratio variation 

within the candidate region must be shrunk so that the simulated regions will have a 

similar range of L-moment variation to that seen in the original data.  
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4.3.6: Shrinkage estimators 

 If a dataset with a given range of variation in L-moment ratios like L-CV, L-

skewness, and L-kurtosis is used to parameterize a probability distribution, simulated 

data outputted by the distribution will generally have a wider range than the original data. 

This is due to the randomizing effect of sampling error. It follows that shrinking the 

degree of variation in these L-moment ratios toward the regional mean to some 

appropriate level will result in the generation of data which due to sampling error regains 

the range of variation seen in the original data. Theoretical support in the general 

multivariate case can be found in Stein (1956), while Bayesian logic supporting 

shrinkage estimators is offered by Lindley and Smith (1972). 

 Shrinkage estimators are applied to the error estimation routine by running 

preliminary simulations in which various fractional multipliers are applied to the range of 

variation about the regional average in L-CV, L-skewness, and L-kurtosis. The multiplier 

resulting in an H1 that is closest to the H1 of the original observed data is taken as the 

appropriate degree of shrinkage so that added sampling error restores the appropriate 

range of variation. This shrinkage multiplier is used to create simulated data for the error 

estimation routine. 

4.3.7: Goodness of fit for a probability distribution 

 Hosking and Wallis (1997)’s Z statistic is a Monte Carlo statistic measuring 

goodness of fit for a three-parameter distribution. Monte Carlo simulation using a given 

distribution parameterized by the mean, L-CV and L-skewness of the regional data 
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generates Nsim synthetic regions. The Z statistic measures how well the three-parameter 

distribution predicts the data’s value of L-kurtosis, t4. The bias B4 and the standard 

deviation σ4 of L-kurtosis, used in calculating Z, are calculated in equations 43 and 44. 

For a three-parameter distribution DIST with a fixed L-kurtosis after parameterization, 

τ
DIST

4, Z
DIST 

is calculated using the at-site L-kurtosis of site m, t
(m)

4, and regional average 

L-kurtosis t
R

4 in equation 45:  

Equation 43 
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Equation 45 

      
  
       

    

  
 

  

Hosking and Wallis (1997) list formulae providing τ
DIST

4 for five three-parameter 

distributions, the Generalized logistic, Generalized Pareto, Generalized extreme-value, 

Pearson type III, and Lognormal, in Table A.3.
 

4.3.8: Monte Carlo estimation of quantile error 

 Correlations between the constituent sites of the region are incorporated into the 

Monte Carlo process of simulated data generation by sampling from a multivariate 

Normal distribution with a covariance matrix that is based on the correlation between 
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constituent gauges at times when both recorded data. The Monte Carlo process by which 

simulated data are generated, described above for the Hosking-Wallis Monte Carlo 

heterogeneity statistics, can be modified to incorporate inter-site correlations. First, data 

fitting a multivariate Normal distribution are generated. This process requires a 

correlation matrix, which is calculated from the sample data as follows.  

 Average inter-site correlation  ̅ is calculated for the region using rij, the average 

correlation between each pair of gauges i and j in the dataset, in Equation 48. rij is 

calculated according to Hosking and Wallis (1997) using Equation 46: 

Equation 46 

    
∑ (     ̅ )(     ̅ ) 

 ∑ (     ̅ ) ∑ (     ̅ )
 

      
 

  

 k is the index and nij is the number of time points for which both gauges i and j 

have data Qik, while  ̅  is calculated in Equation 47. 

Equation 47 
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Equation 48 calculates the average intersite correlation for the region,  ̅, from rij 

 
Equation 48 

 ̅   
 

 
 (   )   ∑ ∑   

       

 

  

 Table 6 shows the correlation at the one-day time step between all twelve sites. 

Sites with correlations of zero share no time points with common data; the start date of 

one is after the end date of the other. 

 

  



98 

 

Table 6 Correlation between twelve sites in dataset for the one day time step 

Site ID 11 35 39 46 78 104 149 150 266 268 272 328 

11 1 0 0.69 0.49 0.67 0.61 0.71 0.77 0.70 0.60 0 0.54 

35 - 1 0 0.83 0 0.60 0.80 0.87 0.81 0.88 0.66 0.84 

39 - - 1 0.46 0.69 0.70 0.30 0.36 0.48 0.54 0 0.50 

46 - - - 1 0.57 0.67 0.73 0.77 0.77 0.82 0.67 0.73 

78 - - - - 1 0.84 0 0 0 0 0 0.66 

104 - - - - - 1 0.49 0.55 0.58 0.66 0.87 0.64 

149 - - - - - - 1 0.86 0.70 0.73 0.55 0.77 

150 - - - - - - - 1 0.76 0.79 0.60 0.83 

266 - - - - - - - - 1 0.79 0.62 0.76 

268 - - - - - - - - - 1 0.66 0.78 

272 - - - - - - - - - - 1 0.67 

328 - - - - - - - - - - - 1 

 

 

 

 “Regsimq” uses  ̅ to create a correlation matrix of the form in Equation 49, with 

as many columns and rows as there are sites in the region. Note that the regional average 

correlation, not the specific inter-site correlation rij, is used in Equation 49.  

Equation 49 
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The correlated multivariate Normal data are then fed into the quantile function of 

the probability distribution used to model the region, resulting in data having the 

appropriate ‘shape’ given the distributional parameters while retaining the appropriate 

inter-site correlations. The function “regsimq” in “lmomRFA” is used to calculate 

quantile error estimates in R.  

The shrinkage estimator procedure described above is applied to each site’s L-

moment ratios, which are moved toward or away from the mean by a multiplier that, 
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when the shrunken L-moments are used to parameterize Monte Carlo simulations, result 

in the closest H1 to the original region. “Regsimq” generates multivariate Normal 

correlated data at each simulated gauge, transforming the data using the three-parameter 

distribution with the lowest absolute value of Z.  The data are normalized and the 

simulated region's average L-moment ratios are found at each , which are fitted to the 

chosen distribution and used to output quantile estimates. Equation 50 estimates the root 

mean square error (RMSE) of the regional normalized quantile estimate  ̂ 
( )

 as a 

predictor of at-site quantile estimate Qi for a list of non-exceedance probabilities F. 

Equation 50 
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4.3.9: Pearson’s r and linearity 

 The establishment of H as a heterogeneity statistic in Hosking and Wallis (1997) 

was primarily driven by the relationship found between the statistic and quantile error 

added due to heterogeneity. This relationship is linear in nature and exhibits tight 

correlation without a great deal of spread. This characteristic was used to establish that 

certain threshold values of H were equivalent to relatively narrow ranges of added error. 

The phrase “reasonable proxy” was used to describe the relationship of H to percent 

RMSE added due to heterogeneity. However, no quantitative method of assessing the 

reasonableness of the proxy relationship was presented. 

 Because the relationship between H and percent RMSE added due to 

heterogeneity was linear, the degree to which the one is a reasonable proxy of the other 
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can be assessed by quantifying the linearity of the relationship between the two statistics. 

A common statistical measure of the strength of a linear relationship is Pearson’s r. Here, 

Pearson’s r is used to quantify the degree to which a heterogeneity statistic is a 

“reasonable proxy” for error. Because only linear relationships with positive slopes 

represent a valid proxy relationship in this case, r
2
 is not used. Pearson’s r is defined with 

reference to two vectors x and y with n elements each and mean values of  ̅ and  ̅ in 

Equation 51: 

Equation 51 
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4.3.10: Aggregation of data for enumeration study 

 Daily precipitation data from the Twin Cities region of Minnesota were 

aggregated into larger time steps for all possible starting points. For example, a time step 

of two days in length has two possible starting points, while a weekly time step has seven 

and a monthly thirty. Starting points are essentially arbitrary and are defined with 

reference to the first day of record in the oldest of the twelve gauges. Missing days of 

record are noted and any time step including a missing day is eliminated from the 

aggregated record. Otherwise, the daily records are summed to create each aggregated 

data point. 

 Data with lower time steps have higher skewness, likely due to the highly 

seasonal nature of daily precipitation totals where many winter days will receive almost 

no precipitation while the summer months see large volumes of precipitation. As the time 
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step is increased, high-volume precipitation events that are shorter than the time step tend 

to become aggregated with low-precipitation periods and vice versa, reducing the degree 

to which total precipitation volume is concentrated in a small percentage of data points.  

Analysts should be aware that for records with large sample size in areas with 

highly seasonal precipitation the most accurate quantile estimates for short time steps will 

be achieved by computing the linear moments of data from only the season in question. 

For the purposes of testing heterogeneity statistics across a wide range of L-moment ratio 

values, however, the characteristics of the full dataset without seasonal screening are 

favorable. 

4.3.11: Simulation study 

In Hosking and Wallis (1997) a simulation study is presented in which the error of 

quantile estimates at regions of varying heterogeneity is divided by error at an equivalent 

homogeneous region to isolate the component of error due to heterogeneity. Known L-

moment ratios for each simulated site are used to find a ‘true’ quantile estimate. The root 

mean square error (RMSE) with reference to the ‘true’ quantile estimate is calculated for 

quantile estimates drawn from data generated using a Generalized extreme-value 

distribution fitted to the known L-moment ratios. 

The RMSE due to heterogeneity is found to scale linearly with a measure based 

on V1 and heterogeneity thresholds are established through reference to this linear 

relationship; H = 1 represents 20-40% RMSE added and H = 2 represents 40-80% RMSE 

added. H statistics based on V2 and V3 were found to rarely exceed these thresholds and 
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were not recommended as heterogeneity estimators. While the measure H that is 

proposed by the authors uses V1, the authors provide calculations for H statistics based on 

V2 and V3 as well in publicly available FORTRAN and R code. In this study the three H 

statistics described by Hosking and Wallis (1997) are denoted H1, H2, and H3, 

respectively. 

 Results for H2 and H3 were not presented in the original study. Here the 

experiment is recapitulated and is additionally applied to the nonparametric heterogeneity 

statistics. The “reasonable proxy” relationship with regard to heterogeneity-related error 

is described for all five heterogeneity statistics. Each heterogeneity statistic-RMSE 

relationship is evaluated using the degree of linearity as quantified using Pearson’s r. For 

statistics possessing a clear linear relationship with error, the slope of the relationship is 

used in analogous fashion to Hosking and Wallis (1997) to propose heterogeneity 

thresholds. 

 Table 7 presents the L-moment ratio values used in the simulation study, which 

can also be seen in Table 4.1 in Hosking and Wallis (1997). For a number of 

homogeneous regions, equivalent regions with varying degrees of heterogeneity are 

compared and the ratio between each heterogeneous region’s quantile error and the error 

of its homogeneous equivalent are calculated. The simulated regions designated in the 

table have a variety of sample sizes and L-moment ratio ranges, allowing for a fairly wide 

range of error added due to heterogeneity to be investigated.  

Table 7 indicates each region’s average L-CV and the range between the highest 

and lowest at-site L-CVs. L-skewness is equal to L-CV at all sites, with the exception of 
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the two simulation scenarios where average L-CV is equal to 0.15, its lowest value. The 

homogeneous, 30% heterogeneous, and 50% heterogeneous regions with average L-CV 

equal to 0.15 have average L-skewness of 0.1; the 30% heterogeneous region has an L-

skewness range of 0.09, and the 50% heterogeneous region has a range of 0.15.  

For regions otherwise unspecified, at-site L-CV and L-skewness varies linearly 

around the regional mean. Bimodal regions have half of the sites equal to the lower 

bound of the range and half equal to the upper. Most regions have equal sample size at all 

sites. The exceptions, which are all composed of 21 sites, are marked (a), (b), (c), and (d). 

Sites in region (a) have sample sizes of 50, 48, 46, …, 10; sites in region (b) have sample 

size 10, 12, 14, …, 50; sites in region (c) have sample sizes 50, 46, …, 14, 10, 14, …, 46, 

50; and sites in region (d) have sample sizes 10, 14, …, 46, 50, 46, …, 14, 10.  

The L-CV and L-skewness of the simulated regions, along with a mean of 1, are 

inputted as parameters to the Generalized extreme-value distribution and one hundred 

simulated regions are created. RMSE estimates at the 0.01, 0.1, 0.99, and 0.999 non-

exceedance frequencies are calculated, along with the five heterogeneity statistics, H1, 

H2, H3, and AD are calculated at each of the 100 instantiations of each region using 500 

simulations, while DK is not a Monte Carlo statistic and so was calculated once for each 

instantiation. The one hundred values of each heterogeneity statistic and RMSE estimate 

are averaged for each region in Table 7. 
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Table 7 Simulation study 

  

Region type 
L-CV # of 

sites 
Region type 

L-CV # of 
sites Average Range Average Range 

Hom n = 30 

0.2 0 6 Het 30% (a) 0.2 0.06 21 
0.2 0 11 Het 30% (b) 0.2 0.06 21 
0.2 0 21 Het 30% (c) 0.2 0.06 21 
0.3 0 21 Het 30% (d) 0.2 0.06 21 

0.15 0 21 

Hom n = 30 

0.2 0 2 

Het 30% n = 
30 

0.2 0.06 6 0.2 0 4 
0.2 0.06 11 0.2 0 10 
0.2 0.06 21 0.2 0 20 
0.3 0.09 21 

Bimodal 20% n = 
30 

0.2 0.04 2 
0.15 0.45 21 0.2 0.04 4 

Het 50% n = 
30 

0.2 0.1 6 0.2 0.04 10 
0.2 0.1 11 0.2 0.04 20 
0.2 0.1 21 

Bimodal 30% n = 
30 

0.2 0.06 2 
0.3 0.15 21 0.2 0.06 4 

0.15 0.075 21 0.2 0.06 10 

Hom n = 60 
0.2 0 6 0.2 0.06 20 
0.2 0 11 

Bimodal 50% n = 
30 

0.2 0.1 2 
0.2 0 21 0.2 0.1 4 

Het 30% n = 
60 

0.2 0.06 6 0.2 0.1 10 
0.2 0.06 11 0.2 0.1 20 
0.2 0.06 21 

    
Het 50% n = 

60 

0.2 0.1 6 
    0.2 0.1 11 
    0.2 0.1 21 
     

 

 

4.4: Results 

4.4.1: Enumeration study results 

 The relationship between each of five heterogeneity statistics and estimated 

quantile RMSE is investigated at time steps ranging from daily to monthly. The 

distribution chosen to model the data is made on the basis of the Z scores for three-

parameter distributions. Across hundreds of starting point – time step combinations, not 
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one region among all 3,302 possible enumerated regions in the dataset sees the 

Generalized logistic, Generalized extreme-value, or Generalized Normal distribution 

record the lowest Z score among the five distributions tested. All regions in simulations 

with time steps shorter than eleven days record the lowest absolute value of Z score for 

the Pearson type III distribution. Conversely, all tested time step – starting point 

combinations for starting points of greater than eighteen days in length saw the 

Generalized Pareto record the lowest absolute Z score for all enumerated regions.  

For time steps of twelve to seventeen days in length some regions fit the 

Generalized Pareto better according to the Z test while others fit the Pearson type III 

better. The percentage of regions best fitting each varies in seemingly random fashion as 

starting point is varied, while time steps closer to twelve see more regions fit the Pearson 

type III than the Generalized Pareto, and vice versa for time steps closer to seventeen. For 

these intermediate time steps the distribution chosen has little effect on the observed 

relationship between error and heterogeneity statistics, probably because the distributions 

output very similar L-kurtosis when parameterized with a given L-skewness at these 

magnitudes. The Generalized Pareto is used to model all regions for time steps greater 

than thirteen, while all regions for time steps of thirteen and below are modeled with the 

Pearson type III distribution. 

Figure 23 offers a graphical analogue to the results of these Z tests; it also 

illustrates the similarity between the Pearson type III and Generalized Pareto distributions 

in the sector of the L-skewness/L-kurtosis graph where time steps with regions fitting 

both distributions are found to plot. The presence of sites from the biweekly, or fourteen-
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day, time step near the intersection of the Pearson Type III and Generalized Pareto lines 

offers a graphical rationale for using Generalized Pareto at and above the fourteen-day 

time step and Pearson type III below. 

 

 

 

 
Figure 23 At-site L-skewness and L-kurtosis for different time steps at starting point of one plotted against 

curves representing L-moment ratios of data outputted by five three-parameter distributions. 
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While regions whose shrinkage multipliers are below 0.50 do not fall into a linear 

cluster, perhaps due to the dissimilarity between the heavily shrunken simulation regions 

and the original data, high-multiplier regions often do, especially for H1 and H2 and to a 

lesser degree for H3. AD and DK, instead of displaying a generally linear cluster with a 

positive slope, tend to display other patterns. Examples of H-RMSE plots at a non-

exceedance probability of 0.999 are illustrated for the one- and fifteen-day time steps in 

Figures 24 and 25. In both cases two clusters can be discerned when H1, H2, or H3 is 

plotted against RMSE, one at a low and one at a high heterogeneity, with the clusters 

having greater separation for H1 than H2, and for H2 than H3. This is more easily seen in 

the one-day than the fifteen-day time step, but in Figure 25 the distribution of regions 

when H1 is plotted against RMSE is composed of two overlapping clusters, while for the 

H3-RMSE plot the degree of overlapping has increased to the point where only one 

cluster is visible.  

Despite the high-RMSE, low-heterogeneity points visible in the H1, H2 and H3 

plots in Figure 24, which are found to comprise the majority of regions with shrinkage 

multipliers below 0.5, a linear relationship with a positive slope between these 

heterogeneity estimators and RMSE exists for a large population of regions at the one day 

time step. The pattern seen in the H1, H2, and H3 plots in Figure 25, where a more diffuse 

cluster exhibiting a positive slope comprises all regions, including low-multiplier ones, is 

broadly representative for time steps longer than three days. AD and DK do not exhibit 

linearity to the degree seen for H1, H2, and H3. 
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Figure 24 Estimated RMSE calculated using the Pearson type III distribution plotted against five heterogeneity 

statistics for the one day time step at 0.999 non-exceedance frequency 
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Figure 25 Estimated RMSE calculated using the Generalized Pareto distribution plotted against five 

heterogeneity statistics for the fifteen day time step and starting point three at 0.999 non-exceedance frequency 

 

 

 

 Pearson’s r between the five heterogeneity statistics and estimated RMSE at the 

0.999 non-exceedance probability is plotted across time steps from daily to 35 days in 

length at starting point one in Figure 26. Similar patterns are observed for other starting 

points, while non-exceedance probabilities below 0.95 exhibit low Pearson’s r for all 

heterogeneity statistics, possibly due to the predominance of non-heterogeneity-related 

components in the RMSE of quantile estimates. Here the patterns illustrated for the two 

cases above are summarized at all analyzed time steps into a single value indicating the 

degree of linearity between RMSE and each heterogeneity statistic. The clustering 

observed in H1 and H2 plots translates to a higher Pearson’s r than seen for the other 

heterogeneity statistics due to these statistics’ greater linearity with respect to RMSE. H3 

consistently exhibits a less linear relationship with RMSE than H1 or H2, while AD and 

DK’s nonlinear relationship with RMSE visible in Figures 24 and 25 translates to 

consistently low Pearson’s r scores. 
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Figure 26 Pearson’s r between estimated RMSE and five heterogeneity statistics at 0.999 non-exceedance 

frequency for 1-35 day time steps at starting point one 

 

 

 

4.4.2: Simulation study results 

 Results confirmed the analysis of Hosking and Wallis (1997) with regard to the 

linearity of H1 and the slope of its relationship with percent RMSE added due to 
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heterogeneity. This relationship is depicted for the five heterogeneity statistics here 

considered in Figure 27 for the non-exceedance frequency 0.99. At non-exceedance 

frequencies of 0.01, 0.1, 0.99, and 0.999 the heterogeneity statistic-RMSE added 

relationship was evaluated and Pearson’s r of the relationship was taken to provide a 

numerical basis for cross-comparison between the statistics. H1 and H2 had the most and 

second-most linear relationships with RMSE added at all four non-exceedance 

frequencies, as seen in Figure 28.  
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Figure 27 Percent RMSE added due to heterogeneity for simulated regions plotted against (a) H1, (b) H2 (c) H3, 

(d) AD and (e) DK at non-exceedance probability of 0.99. 
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Figure 28 Pearson’s r of linear fit between percent RMSE added due to heterogeneity and the heterogeneity 

statistics. 

 

 

 

 H2 is found to consistently have approximately one-fourth the magnitude of H1 

across all simulations (Figure 29). 
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Figure 29 Average values of H2 plotted against H1 for all simulations 

 

 

 

4.5: Conclusions 

 The Hosking-Wallis heterogeneity statistics H1 and H2 have superior performance 

to H3 and the nonparametric statistics in both experiments. When heterogeneity-

associated error is isolated in a simulation experiment a weak linear correlation can be 
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detected between error and the Anderson-Darling statistic’s value, but for total estimated 

error in the enumeration experiment no linear relationship was noted. The relationship 

between error and the Durbin-Knott statistic was not well defined in either experiment. 

 Because the error estimation methods used in this study are L-moment based and 

utilize Monte Carlo simulation, it is possible that the superior performance of the 

Hosking-Wallis statistics can be partly explained by the Monte Carlo and L-moment 

structure they share with the error estimation routine. A nonparametric measure of error 

such as bootstrapped standard error could be used in order to provide an alternative error 

measure which may be biased in favor of the nonparametric statistics.  

 H1 emerges from these analyses as the most effective proxy of error among the 

heterogeneity statistics. This applies for total error and for simulation experiments in 

which error due to heterogeneity is isolated. However, H2 is nearly as effective, and 

because its values are generally one-fourth the magnitude of those for H1 the thresholds 

derived with reference to the H1-RMSE relationship severely understate the efficacy of 

H2 at identifying heterogeneous regions.  

The similarity between the H1-RMSE and H2-RMSE relationships, and the 

presence in the literature of arguments defending threshold values for H1 based on the H1-

RMSE relationship, allows for the analogous characterization of threshold values for H2. 

They are one-fourth the magnitude of the equivalent thresholds for H1; H2 < 0.25 would 

indicate a homogeneous region, while H2 > 0.5 would indicate heterogeneity. It must be 

noted, however, that due to the slightly greater degree of scatter in an H2-RMSE plot as 

compared to an H1-RMSE plot the range of added RMSE that is considered equivalent to 
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a given H2 value should be wider than the RMSE ranges described as equivalent to H1 in 

Hosking and Wallis (1997). If H1 = 1 is equivalent to 20-40% added RMSE, H2 = 0.25 

can be considered equivalent to 10-50% added RMSE; if H1 = 2 is equivalent to 40-80% 

added RMSE, H2 = 0.50 can be considered equivalent to 30-90% added RMSE. For both 

H1 and H2, equivalent RMSEs are approximations drawn from the empirical relationship 

between each H statistic and heterogeneity-associated RMSE in simulated experiments. 

Because H2 is measured using two L-moment ratios while H1 uses only one, H2 is 

more robust to violations of the assumption that regional heterogeneity will be expressed 

relatively evenly across the L-moment ratios. At low sample sizes, the most important 

use case for regional frequency analysis, there exists the potential for this assumption to 

be violated purely due to the randomizing effects of sampling error. This potential for 

robustness must be balanced against effectiveness as a proxy for error; for this reason, H3 

is not likely to serve as an effective heterogeneity statistic despite its relatively robust 

two-L-moment-ratio formulation.  

H1 and H2 outperform the nonparametric statistics in the studies presented here, 

but some linearity could be detected for the Anderson-Darling statistic, indicating that 

even an L-moment based measure of error can exhibit linearity with reference to a 

nonparametric heterogeneity statistic. However, the relationship has a low enough 

Pearson’s r that for any given Anderson-Darling value only a very wide range of 

equivalent RMSE can be described. For this reason Anderson-Darling threshold values 

analogous to those derived for H1 and H2 are not proposed. 
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5: CONCLUSION 

Throughout history, major hydrological events such as floods and droughts have 

had devastating effects on human communities. Estimating the frequency of extreme 

hydrological events such as hundred-year floods is difficult without very large sample 

size, but reliable precipitation or streamflow gauges are scarce and rarely have more than 

a few decades of record, especially in developing regions of the world. Because of the 

important real-world ramifications of inaccurate estimates, such as floods due to dam 

failure or inadequate preparation for a famine caused by drought, a considerable amount 

of energy has been invested in reducing error.  

Regionalization, the pooling of multiple gauges to increase sample size, is one 

proposed method. It requires the estimation of error caused by heterogeneity within the 

region so that the dissimilarity between gauges in the region can be shown to add less 

error than the increase in sample size removes. In recent decades, regionalization research 

has moved toward the use of linear moments and Monte Carlo simulation, known as 

regional frequency analysis using linear moments or RFA-LM. In the United States, 

regulatory agencies are debating changes to decades-old methods for estimating flood 

and storm magnitudes; RFA-LM methods represent a possible source of new ideas. This 

research, which indicates that two statistics are reliable indicators of error due to 
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heterogeneity, strengthens the case for RFA-LM as a reliable method for obtaining low-

error estimates of extreme hydrological event magnitudes. 

In the course of this research, simulation and enumeration studies were conducted 

across a wide range of moment values for the purpose of evaluating the utility of various 

heterogeneity statistics. Both methodologies found that two statistics, H1 and H2, offered 

reasonable linearity with respect to both total and heterogeneity-associated RMSE. While 

H1 has the slightly more linear relationship to error as measured using Pearson’s r in both 

cases, it is based on only one L-moment ratio. While the assumption that “for most kinds  

of data, sites with high L-skewness tend to have high L-CV too” was sufficient for 

Hosking and Wallis (1997) to recommend the use of H1, the sample estimate of each 

statistic is subject to random sampling error. Given that the purpose of the regionalization 

framework is to counteract the deleterious effects of small sample size, including 

sampling error, analysts may wish to evaluate whether their data suffer from this 

limitation as they ascertain which heterogeneity statistic or statistics to use as a diagnostic 

tool in their regionalization studies. 

Precipitation analysts can use this information to justify the use of H1, H2, or both 

in conjunction as estimators of heterogeneity. Results had not previously been published 

indicating the degree to which H2, H3, AD, and DK are “reasonable proxies” to error; in 

addition, H2’s heterogeneity thresholds had previously been defined using H1’s 

relationship with error, which has a higher slope than H2’s relationship with error. By 

presenting the results of validation experiments and offering lower thresholds for H2, this 

research aids precipitation analysts in quantifying the degree to which quantile estimates 
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from their regionalizations are affected by heterogeneity. Analysts using L-moment 

regionalization methods on stream flow and other physical variables may also find these 

results to be of interest, particularly the results of the simulation study. 

5.1: Linearity with respect to error of heterogeneity statistics 

 H1, which has long been a widely used heterogeneity statistic, is confirmed as a 

“reasonable proxy” of heterogeneity-associated error. Thresholds set for H1 and justified 

with respect to error are confirmed to be in accordance with the linear relationship 

established by simulation experiments. However, H2 is nearly as linear and across 

simulation experiments has a fairly consistent 1:4 relationship with H1 in terms of 

magnitude. Nonparametric statistics have a much less linear relationship with error across 

these simulations, with the k-sample Anderson-Durbin test statistic (AD) slightly 

outperforming the Durbin-Knott statistic (DK). H3 has a similar linearity to AD. 

 Enumeration experiments support these conclusions, with H1 and H2 again 

appearing to be in a class of their own in terms of Pearson’s r for the relationship between 

each heterogeneity estimate and RMSE. AD and H3 have similar r values at long time 

steps. Linear relationships are overall less strong, which may reflect the presence of many 

non-heterogeneity related components of error. 

5.2: Selection of heterogeneity statistics 

H1 is the highest-performing statistic across the gamut of studies presented here; it 

is also the only statistic considered which uses only one L-moment ratio. Hosking and 

Wallis (1997) defended this by noting that real data tend to see equivalent variance in 
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different L-moment ratios, so that heterogeneity will manifest itself in both L-skewness 

and L-CV, not in only one or the other. This assumption, however, can be violated 

through the action of sampling error at low sample size, the very case for which regional 

frequency analysis is of greatest utility. If a low-sample-size dataset happens to exhibit 

greater heterogeneity in L-skewness than L-CV, H1 would underestimate the 

heterogeneity while H2 would be ideally equipped to incorporate information from both 

L-moment ratios. 

The nonparametric statistics here considered did not exhibit high performance as 

“reasonable proxies” of error in the simulation or enumeration studies. Because the error 

metric used here is calculated through Monte Carlo procedures using L-moment ratios, it 

is perhaps unsurprising that Monte Carlo heterogeneity statistics based on L-moment 

ratios would offer a better proxy for error than statistics that were derived from a 

different theoretical basis. Nevertheless, a “reasonable proxy” relationship between 

quantile error associated with heterogeneity and these statistics has not been established. 

Most datasets are likely to exhibit heterogeneity in all L-moment ratios, and H1’s 

ability to act as a “reasonable proxy” to error in these cases is unequaled by the other 

heterogeneity statistics whose performance was quantified in these analyses. 

Nevertheless, H2 offers nearly equivalent performance and is robust too. Although the 

above argument could be logically extended to L-kurtosis, H3 exhibits poor linearity with 

respect to error and is not recommended for use. 
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5.2.3: Heterogeneity thresholds for recommended statistics 

 Much of the basis for rejecting H2 as inferior to H1 has been its inability to 

recognize heterogeneous regions as measured by the number of such regions exceeding 

thresholds that were set with reference to the H1-percent RMSE added due to 

heterogeneity relationship. When the simulation study used to derive these thresholds is 

used for H2, however, a roughly 4:1 relationship between H1 and H2 values is noted. Both 

statistics are linear with respect to percent RMSE added, but the H2-RMSE slope is one-

fourth the H1-RMSE slope. Thresholds set according to the H1`-RMSE relationship, 

therefore, are roughly four times too high when applied to H2, which is likely related to 

past findings that H2 lacked the power to identify heterogeneous regions. When the 

methodology of Hosking and Wallis (1997) is used to find heterogeneity thresholds, 

appropriate thresholds for H2 should have around one-fourth the magnitude of thresholds 

derived for H1. 

5.3: Future directions of research 

 This research represents a small subset of the approaches that could be used to 

validate heterogeneity statistics. Estimating error through nonparametric bootstrap 

methods may yield a better estimation of the performance of nonparametric heterogeneity 

statistics and could help isolate the degree to which L-moment-based heterogeneity 

statistics’ linearity with respect to L-moment based estimates of error is due to the 

commonality of their design. Data from other parts of the world influenced by different 

climatic processes could be analyzed using the enumeration method, or a random subset 

of all possible enumerations could be evaluated for precipitation gauge networks with a 
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larger number of gauges. Other heterogeneity statistics, including alternative L-moment-

based methods, could be analyzed for a “reasonable proxy” relationship with error. The 

relationship between H1 and H2 can be analyzed in a literature review, where the ratio 

between reported values for the two statistics can be compared to that obtained in the 

simulated experiments above. 
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