
MAKING SHAPES FOLDABLE

by

Zhonghua Xi
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Jyh-Ming Lien, Dissertation Director

Dr. Mary Frecker, Committee Member

Dr. Yotam Gingold, Committee Member

Dr. Amarda Shehu, Committee Member

Dr. Qi Wei, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, The Volgenau School
of Information Technology and Engineering

Date: Spring Semester 2017
George Mason University
Fairfax, VA

Making Shapes Foldable

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at George Mason University

By

Zhonghua Xi
Master of Science

George Mason University, 2015
Bachelor of Engineering

Shanghai Jiao Tong University, 2009

Director: Dr. Jyh-Ming Lien, Professor
Department of Department of Computer Science

Spring Semester 2017
George Mason University

Fairfax, VA

Copyright c© 2017 by Zhonghua Xi
All Rights Reserved

ii

Acknowledgments

First, I would like to thank my committee members: Jyh-Ming Lien, Mary Frecker, Yotam
Gingold, Amarda Shehu and Qi Wei. In particular, I deeply appreciate Jyh-Ming Lien
for serving as my advisor throughout the Ph.D. program and bringing this interesting and
challenging research topic to me. I would also like to thank my co-authors: In-Suk Choi,
Yue Hao, Yun-hyeong Kim (and her mother), Young J. Kim, Guilin Liu and Yanyan Lu
for their hard work that made those publications possible. Thanks to several grad students
from MASC research group for their advice and support in this process: Evan Behar, Yue
Hao, Guilin Liu, Yanyan Lu, Arsalan Mousavian and Christopher Vo. Thanks to Huangxin
Wang for for editing and support. Also, thanks to the wonderful staff at the George Mason
University Computer Science Department for their help. Finally, I would like to thank my
mom and dad for their love, sacrifice, encouragement and support that I can dedicate my
time into research.

The author gratefully acknowledges the support of the National Science Foundation
grant EFRI 1240459.

iii

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . xiii

1 Introduction . 1

1.1 From Paper Folding to Self-Folding Machines 1

1.2 Foldable Objects . 2

1.2.1 Rigid Origami . 2

1.2.2 Nets of Polyhedra . 3

1.3 The Unfolding Problem . 5

1.4 The Folding Problem . 5

1.5 Making Shapes Foldable . 6

1.6 Fold as Compact as Possible . 7

1.7 Organization . 8

2 Background . 9

2.1 Rigid Origami . 9

2.1.1 Preliminary . 9

2.1.2 Planning and Simulating Origami Motion 13

2.1.3 Planning under Closure Constraints 14

2.2 Polyhedra Unfolding . 14

2.2.1 Preliminary . 14

2.2.2 Edge Unfolding . 16

2.2.3 Paper Crafting via Shape Segmentation 16

3 Rigid Origami . 18

3.1 FROG: A Randomized Path Planner for Rigid Origami 18

3.1.1 Finding Foldable Configuration . 19

3.1.2 Detecting Invalid Configuration . 21

3.1.3 Experimental Results . 21

3.2 MD-FROG: A Path Planner for Multi-DOF Rigid Origami 22

iv

3.2.1 Sampling In Discrete Domain . 23

3.2.2 Connecting Two Valid Configurations 25

3.2.3 Path Planning . 26

3.2.4 Experimental Results . 27

3.2.5 Continuous V.S. Discrete Sampling Strategy 27

3.3 Reusing Folding Path . 30

3.3.1 Crease Group and Essential Vertex 31

3.3.2 Reusing Folding Path . 32

4 Polyhedra Unfolding . 37

4.1 EU: A Genetic Algorithm for Unfolding . 37

4.1.1 Genetic Representation . 37

4.1.2 Fitness Evaluation . 37

4.1.3 Population Generation . 37

4.1.4 Selection, Mutation and Crossover 38

4.1.5 Experimental Results . 38

4.2 Simultaneously Segment and Unfold . 38

4.2.1 Learn from Failed Unfoldings . 38

4.2.2 Unfold the Mesh Multiple Times . 39

4.2.3 Analyze an Unfolding . 40

4.2.4 Segment . 42

4.2.5 Results . 43

4.3 Continuous Unfolding of Polyhedra . 43

4.4 Polyhedra Fabrication via Mesh Convexification 45

4.4.1 Reduce Local Concavity via Mesh Inflation 49

4.4.2 Reduce Concavity via Decomposition 52

5 Disjoint Convex Shell . 58

5.1 Introduction . 58

5.2 Related Works . 61

5.2.1 Convex Decomposition and Approximation 61

5.2.2 Polyhedra Unfolding . 61

5.3 Building Disjoint Convex Shell (DC-shell) 63

5.3.1 A Heuristic using Least Squares Fitting 63

5.3.2 Disjoint Convex Shells . 66

5.4 Convex Shell Simplification and Regularization 73

5.5 Unfolding and Folding DC-shells . 75

v

5.6 Experimental Results . 75

5.6.1 Running Time . 76

5.6.2 Quality Comparison . 77

5.6.3 Results from Convex Remeshing . 78

5.7 Fabricating Physical Models . 79

5.8 Conclusion . 81

6 Compact Folding . 93

6.1 Introduction . 93

6.2 Related Works . 95

6.2.1 Fold Thick Origamis . 95

6.2.2 Mesh Stripification . 96

6.3 Our Approach . 96

6.3.1 Mesh Voxelization . 97

6.3.2 Stripification of Quadrilateral Meshes 97

6.3.3 Thickness Accommodation . 98

6.3.4 Stacking . 100

6.4 Experimental Results . 103

6.4.1 Experimental Setup . 103

6.4.2 Finding Hamiltonian Paths . 103

6.4.3 Most Compact Stacking . 103

6.4.4 Finding Continous Folding Motions 104

6.4.5 Physical Models . 104

6.5 Conclusion . 104

7 Conclusions . 109

7.1 Future Researches . 109

Bibliography . 110

vi

List of Tables

Table Page

3.1 Running Time of Finding a Feasible Path. 25

3.2 Comparison Between Sampling Strategies. 30

3.3 Path Planning Time using Symmetry. 33

4.1 Running time of the Horse model in seconds. 57

4.2 Total running time of decomposing, unfolding and continuous folding in sec-

onds. 57

5.1 Running Time (seconds) . 76

5.2 Quality of DC-shells produced using least squares fit (LSF), SVM and exact

methods is measured by volume loss defined in Eq. 5.8. The penalty param-

eter C is 100 for all examples. The method with the largest volume loss for

each model is shown in bold. 78

5.3 Folding and unfolding time in seconds of segmented parts and their DC-shells.

Running times marked with ∗ indicate certain parts of the original models

have no valid nets. 80

5.4 Fabrication time by two adult subjects . 80

5.5 Fabricating time in minutes. Data collected from groups of three or four

9 and 12-year-old students at an elementary school. ∗ test conducted by

12-year-old students. 81

6.1 Running time of finding a Hamiltonian path. 105

6.2 The optimal compactness and volume ratio of the stacked Bunny model under

different thicknesses. 107

vii

List of Figures

Figure Page

1.1 Folding process of a 11×11 Miura crease pattern. 2

1.2 Left: A commercial paper craft designed by KitRex [1] that shows seg-

mented parts with anatomic meanings. Right: Segmentation results of the

Monkey model generated by the proposed method. 4

1.3 A sphere mesh and its net. 6

1.4 The folding process of a net of a sphere mesh. 7

2.1 A crease can be folded as either a mountain fold (in red) or a valley fold (in

blue). 9

2.2 An example of multi-vertex crease pattern. Mountain creases are shown as

solid lines in red, valley creases are show as dashed lines in blue. 10

2.3 Left: Mesh and its dual graph, Right: Spanning tree of the dual graph and

the unfolding of the mesh. 15

3.1 Miura crease pattern and the folding path of it found by the proposed method. 20

3.2 Crease patterns used in our experiments. Mountain creases are shown as

solid lines in red, valley creases are show as dashed lines in blue. 22

3.3 Folded states of crease patterns shown in Fig. 3.2. Note that some of the

models do not fold completely for the sake of better visualization.∗Folding

with DE material, which has a maximum folding angle of π/2. 23

3.4 Random sample one million configurations uniformly for a Waterbomb crease

pattern (Left) and a Miura crease pattern (Right) under different deformation

tolerances (DT). Red: has self-intersection, invalid. Yellow: deformation is

larger than tolerance, invalid. Magenta: within deformation tolerance but

actual folding angles are different from assigned ones, invalid. Blue: valid. . 24

3.5 Folding sequences of a rigid sailboat origami produced by the proposed plan-

ner which configurations sampled in the discretized configuration space of

the sailboat crease pattern. 27

3.6 Valid states and folding process of a Waterbomb crease pattern. 28

viii

3.7 Top: Crease patterns used in our experiments. Mountain creases are shown

as solid lines in red, valley creases are show as dashed lines in blue. Middle:

Crease patterns with crease lines in groups. crease lines in the same group are

shown in the same color. Bottom: Target shapes of above crease patterns. 29

3.8 Crease groups of a 3×3 Miura crease pattern. Crease lines belong to the

same crease group are shown in the same color. 34

3.9 Origami tessellations used in our experiments. 35

3.10 Folding paths found without using symmetry information. 36

4.1 Meshes and its nets found by the proposed method. 39

4.2 Average and best fitness of each generation. 40

4.3 Overview of the proposed method. Overlapped faces are shown in red in the

‘Overlapping analysis’ box. Foldability matrix after clustering is shown below

the ‘Clustering’ arrow, in which rows are sorted by cluster id. Pixel p(i, j)

indicates the probability that face fi does not overlap with face fj in the

unfoldings, the darker the higher. Each block along the diagonal represents

one cluster. If any of segment was failed to unfold to net or failed to fold

back, we can further segment it using the proposed method. This process is

repeated until all segments have nets and can be continuously folded back to

3D. 41

4.4 Left: Clustered foldability matrix of the monkey model. A darker pixel

indicates higher possibility of unfolding the corresponding face pair without

overlapping. 10 blocks along the diagonal represent the 10 clusters found and

correspond to the segmentation of the monkey model. Right: Before (top)

and after (bottom) isolated facets are reassigned. 42

4.5 Top left: The statue of Korean general Yi Sun-sin (3000 triangles) is decom-

posed into 11 clusters by the proposed method. Top right: The paper craft

of the model, which is 9.7 cm wide, 9.7 cm deep and 21.2 cm tall. Bottom

left: The nets generated by Pepakura (79 parts). Bottom right: The nets

generated by the proposed method (11 parts). The unfolder developed by [2]

is unable to unfold the model perhaps due to that the mesh is not water tight. 44

4.6 Valid configuration ratios of various original models (Org) and their compo-

nents decomposed by nearly convex decomposition (NCD) under two sam-

pling strategies. 45

4.7 Continuous folding process of the Bunny model. 46

ix

4.8 A convex mesh and its nets found by two heuristic methods: Steepest Edge

for net1 and Flat Tree for net2. Both nets were obtained within 0.01s. Net1’s

folding path is a straight line in the configuration space (only 1 edge was

checked). For net2, in order to find a feasible path, 1056 edges need to be

checked (approximately 1000 times slower) on average. 48

4.9 Pipeline of the fabrication of the model. 48

4.10 Inflated meshes with different inflation rate (IF). IF is shown as the caption,

the number in the parentheses indicates the number of hyperbolic vertices.

Top: uniform inflation, Bottom: constrained inflation. Hyperbolic vertices

are shown in red. 51

4.11 Left: Unfolding time, path finding time, path finding success rate as func-

tions of number of hyperbolic vertices. Note: x axis is in reverse order.

Right: that as functions of inflation rate. 53

4.12 Part-aware nearly convex decomposition. All components contain concavity

smaller than 0.05. 54

4.13 Decomposed meshes. 56

5.1 left: Overlapping convex shapes depicting a cow (top) and Donkey Kong

(bottom). middle: Cutting overlapping convex objects through their bound-

ary intersection results in large volume loss shown in red. right: Disjoint

convex shells created by our optimization method. The volume lost is signif-

icantly less. 59

5.2 The top three figures, from left to right, show the composite shape of Yoshi

model obtained from thingiverse.com, its convex hulls and its DC-shells. The

bottom two photos show the folded disjoint convex shells and assembled Yoshi

model. 60

5.3 A convex mesh its nets found by two heuristic methods: Steepest Edge for

net1 and Flat Tree for net2 [3]. Both net1 and net2 were obtained within

0.01s. Net1’s folding path is a straight line in the configuration space (only

1 edge was checked). For net2, in order to find a feasible path, 1056 edges

need to be checked (approximately 1000 times slower) on average. 62

5.4 Examples of composite shape used in the experiments including models cre-

ated by manual segmentation (a), part-aware decomposition (b)&(c), and

models composed of multiple overlapping parts (d). In all these examples,

the convex hulls of their parts overlap. 64

x

5.5 Top: The cut results in a gap after trimming. Bottom: Overlapping bound-

ary with disjoint interior is more desirable. 65

5.6 left: overlapping convex hulls of a Bowser model. middle: DC-shells created

using least-squares fitting heuristic. right: Results of proposed method. . 66

5.7 Complex near-coplanar overlap and extrusion between two convex objects . 67

5.8 (a) The problem of finding a cutting line that minimizes the sum of the

number of stars below the line and the number of circle above the line. (b)

The problem of (a) is equivalent to finding a point so that the sum of the

number of thick lines (dual of the circles) vertically below and the number

of thin lines (dual of the stars) vertically above the point is minimized. . . . 69

5.9 top: Changing penalty parameter µ from 0.01 to 10 affects SVM cuts. bot-

tom: Gaps shown in red below the spikes narrow at different rates as µ

increases from 0.1 to 10,000 because the spike on the left is buried deeper

than the one on the right. 83

5.10 Left: DC-shells created using SVM. The red regions are volumes trimmed

from the original input to create disjoint convex objects. The volume loss

1.62% of the volume of the union of the input convex hulls. Right: DC-shells

created using exact volume computation. The volume loss is at 0.86%. . . . 84

5.11 The cut between Ci and Cj on the left interferes with Ci and Cj . The cut

on the right does not. 84

5.12 Cuts between the tails and the torso of a Vulpix model interference and make

some tails completed separated from the torso. 85

5.13 Remeshing results using the proposed method (b) and using isotropic remesh

(c) and then reenforce convexity using convex hulls (d). Notice the skinny

triangles on Pikachu’s belly in (d). 86

5.14 Optimized nets of a Bulbasaur’s seed model. Convex hull area is reduced by

41.42% and total cut length is reduced by 50.41%. 87

5.15 A controlled study with two intersecting bars. From top to bottom: input

overlapping bars, and DC-shells created by least-squares fit heuristic, SVM

and exact methods. 88

5.16 Weighted average fatness with respect to number of iterations at four different

percentages of maximum volume increase: 1%, 10%. 100%. and 1000%. . . 89

5.17 Models used in our fabrication experiments in Section 5.7. 90

5.18 Models built from the composite shape and DC shells. 91

xi

5.19 Paper crafts created by 9-year-old school children. 92

6.1 Comparison of the actual size of the folded, unfolded and stacked states of a

cube model. The thickness of the panel is 5% of its size. 93

6.2 Pipeline of our approach. 94

6.3 The folded state of a cube model and its corresponding stacked state under

different thicknesses. l is the original panel size and t is the panel thickness. 97

6.4 The proposed method to fold thick panels. 99

6.5 Hinge length constraints during folding. 100

6.6 Front view of two stacking strategies. 101

6.7 A mountain model and its representative stackings of different number of piles.105

6.8 The color coded Hamiltonian paths of the models. 106

6.9 The compactest stacked states of the Bunny model (Fig. 6.8(d)) under dif-

ferent thicknesses. 106

6.10 The continuous unfolding motion of the Mountain model from its stacked

shape to target shape. The folding motion can be best visualized using our

web-based interactive folder at https://goo.gl/BDSWbd. 107

6.11 A Lego realization of the cube model and two other shapes folded from the

thick panel chain. 108

xii

Abstract

MAKING SHAPES FOLDABLE

Zhonghua Xi, PhD

George Mason University, 2017

Dissertation Director: Dr. Jyh-Ming Lien

Recent advances in robotics engineering and material science accelerate the development

of self-folding machines, the robots that can fold themselves from flat materials to functional

3D shapes. However, designing such self-folding machines remains extremely challenging.

First, finding a 2D (flat) structure that can be folded back to the original 3D shape in

nontrivial especially for non-convex shapes. Furthermore, whether there exists a folding

motion that continuously transforms the foldable object from one state to another without

self-intersection, is one of the major concerns but rarely explored area in self-folding robots.

In this dissertation, I study both unfolding and folding problems for two types of foldable

objects: rigid origami and nets of Polyhedra. I make three main contributions throughout

the dissertation: 1) Consider motion in foldability optimization when designing foldable

objects; 2) Make both unfolding and folding easier for the machine (algorithm) and human

folders via a new geometric data structure and a new foldability-aware segment strategy;

3) Propose a novel approach to compress an object with thick surface material to its most

compact form via stacking. This super compressed form enables the manufacturing (such

as 3D-printing) and transportation of large object in a significantly smaller space.

Chapter 1: Introduction

1.1 From Paper Folding to Self-Folding Machines

Paper folding, also known as Origami, is an ancient Japanese art. As a hobby, Origami

brings the joy to both children and adults for over a century. Many of us folded the classic

paper crane sometime in our life. As a mathematical model, Origami inspires innovations

in a wide range of domain including but not limit to maps, shopping bags, umbrellas that

are used in our daily life, medical devices for minimally invasive procedures and foldable

solar panels on the satellite. Recent advances in robotics engineering and material science

have enabled the development of self-folding machines which are the robots that can fold

itself from a flat sheet to one or more 3D target shapes to perform tasks. Rigid origami

and the nets of polyhedra are two most widely used models for such foldable objects.

Though there are some existing works on generating non-overlap unfoldings for a given

polyhedron, they have the following issues: 1) No motion is considered when finding nets

which is very important for robots to fold themselves. 2) Unoptimized nets are hard to

fold for both humans and robots. 3) The foldable structures are usually manufactured in

2D, which require much larger spaces than that of the folded 3D structures. 4) Thickness

of the material is often not considered. Our goal it to provide a computational framework

to design (self-)foldable structures, we will address all the above issues throughout this

dissertation.

1

Figure 1.1: Folding process of a 11×11 Miura crease pattern.

1.2 Foldable Objects

1.2.1 Rigid Origami

Rigid origami has been a fundamental model in many self-folding machines [4] that are

usually composed of mechanical linkage of flat rigid sheets joined by hinges, such as the

micro-thick folding actuators [5]. In the past, people have enjoyed many practical uses of

rigid origami, ranging from folding maps and airbags to packing large solar panel arrays for

space satellites and folding space telescope. In the near future, rigid origami will take the

form of self-folding machines and provide much broader applications, such as in minimally

invasive surgery, where there is a need for very small devices that can be deployed inside

the body to manipulate tissue [6]. Examples that illustrate the ability of transforming rigid

origami from a shape to another can be found in Fig. 1.1, where a large flat sheet can

be folded into a compact stick. A key issue in designing rigid origami is foldability that

determines if one can fold a given origami form one state to another. It is known to the

community that, given a crease pattern and a rigid goal configuration, the existence of

continuous rigid folding motion is not guaranteed in general [7]. Unfortunately, there is no

known criteria for determining whether a crease pattern or its tessellation can be folded

between two rigid configurations without violating the rigidity constraint. In practice, when

a crease pattern is designed, it usually requires its designer to create a physical copy and

then verify that a rigid folding motion does exist to bring the crease pattern to a rigid goal

2

configuration. This process can often be costly and time consuming. Our ideas for ad-

dressing rigid foldability issues include: adaptive randomized search and folding path reuse.

Specifically, we propose a deformation bounded folding planner that can ensure the rigid-

ity of the origami during continuous folding motions; such planning has not been achieved

before in the community. Given a tessellation formed with repetitive crease patterns, we

further take advantage of its symmetry to reduce the degrees of freedom (DOF). For rigid

origami with implicit folding orders, We propose a sampling-based motion planner that

generates configurations using only a small set of folding angles, such as those found in the

initial and final configurations and some commonly used angles such as π
2 and π. Given the

simplicity of the proposed method, it provides many advantages comparing with a strategy

that samples from the continuous space [8, 9]. First, our method can find more valid config-

urations in shorter sampling time. Second, our method can quickly discover implicit folding

order that provides critical information to guide the folding process of many origami. It

should be noted that, finding the implicit folding order, that requires the crease lines to be

folded in a very specific order, can be viewed as the notorious “narrow passage problem” in

sampling-based motion planners. Finally, contrary to the existing methods that only report

a single folding path, our method can provide multiple folding paths in different homotopic

classes.

1.2.2 Nets of Polyhedra

Making 3D shape from planar sheets is an ancient practice with many new applications,

ranging from personal fabrication of customized items [10], which is fueled by the recent

maker movement, to design of specialized instruments in self-folding machines [4] mostly

due to the advances in active materials. One of the prevailing methods for creating 3D

objects from planar materials is “unfolding and folding” [11]. Unfolding involves cutting a

given polyhedral mesh into surface patches and then flattening them. To ensure that a sur-

face patch can be flattened, existing methods either approximate the patch by developable

surfaces or ensure that the patch forms a net, i.e., a patch that can be cut and flattened by

3

rotating its facets along one of the incident edges without overlapping with other facets [3].

The flattened patches are then cut out of planar materials and folded back to 3D.

Either cutting a polyhedral mesh into nets or approximating with developable surfaces,

segmentation of the mesh (a process of breaking a mesh into multiple components) is usually

involved; either before the unfolding algorithm is applied or as a product of the unfolding

algorithms. Segmentation before unfolding is used as a preprocessing step to provide sim-

plicity, as well as semantics [12, 13]. As shown in Fig. 1.2, segmentation is also a common

technique used by paper craft designers. In the literature, shape segmentation is usually

done without considering foldability [14, 15]. Consequently, surface patches produced by

shape segmentation may still be cut into multiple nets or approximated by multiple de-

velopable surfaces which lose the semantic meaning and make folding and assembly less

intuitive thus time consuming.

Figure 1.2: Left: A commercial paper craft designed by KitRex [1] that shows segmented
parts with anatomic meanings. Right: Segmentation results of the Monkey model gener-
ated by the proposed method.

Segmentation can also be produced in order to avoid overlapping in the nets [16]. How-

ever, these nets often provide little shape information. In both scenarios, segmentation and

unfolding operations has been decoupled. We propose a strategy that produces polyhedral

4

nets by tightly coupling the edge unfolding and surface segmentation operations. Our ob-

jective is to algorithmically produce nets that resemble carefully designed paper craft such

as those shown in Fig. 1.2. We show that the proposed method naturally provides semantic

segmentation of the input mesh by unfolding the entire mesh multiple times. Even though

most likely, all of these unfoldings will contain overlaps, the proposed method learns from

these failures and identifies parts that may be unfolded into valid nets. Existing shape seg-

mentation methods rely heavily on shape features, such as curvature and geodesic distance.

On the contrary, the proposed method creates the segmentation directly from information

obtained from edge unfolding, therefore, ensures that every component in the segmentation

can be unfolded into a single net and maintain its semantics.

1.3 The Unfolding Problem

For a given 3D polyhedron, finding one or a set of 2D representations whose folded states can

(approximately) reconstruct the original polyhedron is called the unfolding problem. Each

2D component should not contain self-overlapping such that it can be physically realized.

These representations include but not limit to: cones and planes [12], generalized cylinders

[13], strips [17], crease patterns [18] and nets of polyhedra [2, 3, 16, 19]. In this dissertation,

we focus on the unfolding the polyhedra into nets, mainly for the following reasons: 1) the

folded shape is exactly the same as the original shape, 2) ease of fabrication 3) can be easily

folded as by a human folder or as a self-folding machine. In Fig. 1.3, we show an example

of the unfolding problem.

1.4 The Folding Problem

Once we have a 2D representation of the 3D shape, the next question we would like to

ask is whether there exists a folding motion that transforms the 2D shape to the original

3D shape? And if so, how can we find a feasible folding path efficiently. This is called the

continuous folding problem which is critical for realization a physical copy of the self-folding

5

(a) A sphere mesh (b) A net of the sphere mesh

Figure 1.3: A sphere mesh and its net.

machine that can fold itself without self-intersection. We show an example of the folding

process of a net of a sphere mesh in Fig. 1.4. However, this is problem is usually ignored

when solving the unfolding problem. In this dissertation, we tightly couple the unfolding

problem and the continuous folding problem and present methods for solving both problems

for rigid origami and nets of polyhedra.

1.5 Making Shapes Foldable

Throughout this dissertation, we propose several methods that efficiently unfold the given

polyhedron into one or a small set of nets and the motion that transforms the net(s) back

to the original shape. In Chapter 4, we present a method that simultaneously segments

6

Figure 1.4: The folding process of a net of a sphere mesh.

and unfolds a non-convex shapes into a few nearly convex components such that each com-

ponents can be easily unfolded. We propose a new geometric data structure called disjoint

convex shell (DC-shell) in Chapter 5. A DC-shell consists a set of interior disjoint convex

shapes that collectively approximate the original shape, such that each convex component

can be easily unfolded to a net.

1.6 Fold as Compact as Possible

In Chapter 6, we propose a novel approach to make shapes foldable by approximating them

with the surface voxelization. We also find the compactest folded state, we call it stacking,

when using non-zero thickness material of their surface voxelization, then the approximated

shape can be obtained by unfolding the stacking. From Fig. 1.3, we can see that the 2D

7

net have a significantly larger dimension then the folded 3D shape. Unlike the unfolding

problem, the stacking found by the proposed method is the compactest folded state of the

original 3D shape. The dimension can be significantly smaller than the original 3D shape,

this great advantage enables us to fabricate (e.g. 3D-printed) a large 3D shape which can not

be fit into the limited workspace. Our experimental results show that we can manufacture

a model whose each dimension is 8x larger than the 3D-printer.

1.7 Organization

In Chapter 2, I introduce the rigid origami and polyhedra unfolding and briefly review the

current literature as background material to help the readers better understand the foun-

dations for the rest of the dissertation. Chapter 3 focuses on rigid origami, we discuss the

modeling of the rigid origami and propose a randomized search algorithm to find feasible

folding paths for rigid origami with closure constraints. Chapter 4 discusses the polyhedra

unfolding problem in depth and various approaches used in pursuing this problem. Chap-

ter 5 discusses a new geometric structure called disjoint convex shell or simply DC-shell. A

DC-shell of a polyhedron is a set of pairwise interior disjoint convex objects that collectively

approximate the given polyhedron. We show the advantages of DC-shell in both unfolding,

folding and fabrication. Chapter 6 discusses the compact folding problem, we propose a

novel approach to fold a 3D model into its compactest state using a technique we called

stacking. The final chapter summaries my contributions to the origami folding/unfolding

community and discusses some potential future works.

8

Chapter 2: Background

2.1 Rigid Origami

2.1.1 Preliminary

Crease Pattern

Crease patterns are widely used in the literature to represent the rigid origami model. A

crease pattern is a straight-edged graph embedded in the plane. An edge of this graph

correspond to the location of a crease line in an unfolded sheet of paper. A crease can be

either mountain folded or valley folded. A mountain fold forms a convex crease at top with

the paper beside the crease folded down. On the other hand, a valley fold forms a concave

crease with both sides folded up. An example of mountain and valley folds is shown in

Fig. 2.1.

Valley

Mountain Mountain

Figure 2.1: A crease can be folded as either a mountain fold (in red) or a valley fold (in
blue).

9

v6

v2

v11

v5

v1

v4

v12

v7

v8

v9

v3

v10

Figure 2.2: An example of multi-vertex crease pattern. Mountain creases are shown as solid
lines in red, valley creases are show as dashed lines in blue.

Vertices in Crease Pattern

Vertices in the crease pattern can be categorized into two groups: real vertices and virtual

vertices. Vertices on the boundary of the paper are considered as virtual vertices and they

will not act as vertices for the purpose of our results. All other vertices on the paper are

considered as real vertices. For example, vertices v1 and v2 in Fig 2.2 are real vertices and

all the other vertices are virtual vertices.

Crease Lines and Faces

We use l(i,j) to denote a crease line that connects real vertex vi and vertex vj which can be

either real or virtual, and we use ρ(i,j) to denote the folding angle of l(i,j). We use F(i,j,...)

to refer the face that is on the left of
−−→
l(i,j) (e.g., F(1,3,..) is refer to F(1,3,4,5) in Fig 2.2). For

real vertex vi, we sort the crease lines l(i,jt) in the order of the plane angle α(i,j) which is

the angle between x-axis and
−−→
l(i,j). We use ci to denote the number of crease lines that are

connected to vi. For instance, in Fig 2.2, for real vertex v1, c1 = 5, the sorted crease lines

are {l(1,3), l(1,5), l(1,2), l(1,11), l(1,12)}.

10

Configuration

We use the folding angles of all crease lines as variables to represent the configuration of an

origami model. More specifically, we define a configuration C = {ρ(i1,j1), ρ(i2,j2), · · · , ρ(in,jn)}

for an origami with n crease lines, where ρ(ik,jk) is the dihedral angle of two faces that are

connected by the crease line l(ik,jk) on the folded shape. In this disseration, ρ is bounded

in [-π, π] for origami, otherwise adjacent faces will penetrate each other during the folding

process. In the real world, the range of ρ is further limited by the material (e.g., π/2 for

DE material in [20]). Given the limitation, we are able to simulate the most compact shape

when folding is done with real material. Given a crease pattern, the shape of the folded

origami can be determined by the configuration C instantaneously, however, whether there

exists a folding motion that continuously transform the crease pattern to the folded shape

remains unknown.

Foldable and Feasible Configurations

Given a configuration C = {ρ(i1,j1), ρ(i2,j2), · · · , ρ(in,jn)}, we can classify C according to its

foldability and feasibility. First, let vi be a real vertex in a foldable multi-vertex crease

pattern and let Bi be the 4 × 4 matrix which translates a point in <3 by vi. For crease

line l(i,j), let A(i,j) be the matrix in homogeneous coordinates which rotates the xy-plane

by plane angle α(i,j) (the angle needed to rotate in CCW that can make positive x-axis

overlap with the crease line
−−→
l(i,j)), and let C(i,j) be the matrix in homogeneous coordinates

which rotates by folding angle ρ(i,j) in the yz-plane. Then the folding matrix for the crease

line l(i,j) around vi will be χ((i,j),i) = BiA(i,j)C(i,j)A
−1
(i,j)B

−1
i . If we pick F(i,jci ,...)

(where ci

is the number of crease lines around vi) as F0 which will be fixed it in the xy-plane during

folding and multiply the folding matrices though all crease lines that are around vi in order

of their plane angles α(i,j), then

ci∏
t=1

χ((i,jt),i) = I (2.1)

11

These necessary conditions of foldability for multi-vertex rigid origami were first discov-

ered by Balcastro and Hull in 2002 [21].

There are several properties that the folded paper should have:

1. unstretchable,

2. flat (planar) for all faces,

3. free of self-intersection,

A foldable configuration Cfoldable only guarantees the first two properties. In order to have

a valid configuration C that satisfy all three of these properties, we need to check if C is free

of self-intersection. In order to do so, we will need a folding map for each face. A folding

map is a function that map a point in <2 to the corresponding point of folded state for a

given foldable configuration Cfoldable in <3. With the folding map for all faces, we can fold

the paper to the foldable configuration Cfoldable and perform collision detection to check the

feasibility of Cfoldable.

Folding Map

Let F0 be an arbitrary face that will be fixed in the xy-plane during the entire folding

process, and given another face F(ip,jp,...), let γ be any vertex-avoiding path starting from a

point in F0 and ending at a point in F(ip,jp,...) by crossing some crease lines. We say that a

path is vertex-avoiding if it does not intersect with any vertices. Let the crease lines that γ

crossed be, in order, l(i1,j1), ..., l(ip,jp). Then the folding map for (x, y) ∈ F(ip,jp,...) is:

f(x, y) = f(x, y, 0, 1) =

p∏
k=1

χ((ik,jk),ik)(x, y, 0, 1) (2.2)

Note that the folding map is independent of the path γ. This means no matter which

path we choose, the folding map remains the same if C is foldable configuration. This

12

property was first proved in [21]. Thus, we can pick the shortest path γ from F0 to F(ip,jp,...)

using depth-first-search and compute the production of rotation matrices as the folding map

for F(ip,jp,...).

2.1.2 Planning and Simulating Origami Motion

In 1996, Miyazaki et al. [22] simulate origami folding by a sequence of simple folding

steps, including bending, folding up, and tucking in. It is easy to reconstruct an animation

from a sheet of paper to the final model. However, the simplicity of folding steps limits

the types of origami models that could be represented in the system. Consequently, this

method is not suitable for many complex origami models whose folding process cannot be

represented as simple folding steps such as the Miura pattern shown in Fig. 1.1. Song

et al. [8] presented a probabilistic-roadmap-method (PRM) based framework for studying

folding motion. However, their kinematic representation of origami is a tree-structure model

whose folding angle of each crease line is independent of other crease lines. Although tree-

structure model greatly simplifies the folding map that can be easily defined along the path

from base to each face, this model is not applicable to represent the majority of the origami,

such as the one shown in Fig. 1.1, due to their closure constraints. Balkcom [23] proposed

a simulation method based on the ideas of virtual cutting and combination of forward and

inverse kinematics using a rigid origami model. Although this approach is computational

efficient, it cannot guarantee the correct mountain-valley assignment for each crease, i.e., a

mountain fold can become a valley fold or vice versa. More recently, Tachi [24] proposed an

interactive simulator for rigid origami model (known as Rigid Origami Simulator (ROS))

which generates folding motion of origami by calculating the trajectory by projection to

the constrained space based on rigid origami model, global self-intersection avoidance and

stacking order problems are not considered in his work. Perhaps the work closest to our

approach proposed in this disseration is by An et al. [5]. They proposed a new type of

self-reconfiguration system called self-folding sheet. They first construct the corresponding

folded state for a given crease pattern and angle assignment then continuously unfold the

13

paper using local repulsive energies (via a modification of ROS [24]). By reversing the

unfolding sequence, they obtained the path starting from a flat sheet and ending with the

desired folded state.

2.1.3 Planning under Closure Constraints

Although there exists little work on origami motion planning, there have been many methods

proposed to plan motion for articulated robots under closed-chain constraints [25, 26, 27, 28].

Interestingly, we see many similar ideas used in both closed-chain systems and origami

folding. For example, gradient decent was used by [24] for rigid origami simulation and

by [25] for generating valid configuration of a closed-chain system. Another example is

inverse kinematics, which plays the central role both in Balkcom’s simulator [23] and in

constructing the so-called kinematic roadmap [27, 29] for capturing the topology of free

configuration space. Tang et al. [30] proposed an efficient sampling-based planner for

spatially constrained systems. By sampling in the reachable distance space in which all

configurations lie in the set of constraint-satisfying subspaces and using a local planner,

they can significantly reduce the computation time for finding a path.

2.2 Polyhedra Unfolding

2.2.1 Preliminary

Nets of Polyhedra

Let M be a polyhedral mesh, the graph of mesh is defined as G(M) = (V,E), where V =

{vertices of M} and E = {edges of M}. The dual graph G′(M) of G(M) is defined as

G′(M) = (V ′, E′), where V ′ = {faces of M} and E′ = {(u, v)}, where u, v are faces and

share an edge in M.

The unfolding can be obtained by finding a spanning tree of the dual graph G′(M) [3].

Folding edges will be those edges that are crossed by dual edges in the spanning tree, all rest

of the edges are cut edges that will be cut in order to unfold the mesh. The an unfolding

14

of a polyhedron does not contain overlaps then it is called the net of the polyhedron. An

example of dual graph of a mesh and its unfolding is shown in Fig.2.3

Figure 2.3: Left: Mesh and its dual graph, Right: Spanning tree of the dual graph and
the unfolding of the mesh.

Configuration

We model the net of polyhedron as a multi-link tree-structure articulated robot. Similar

to rigid origami, we use the folding angles of all fold edges as variables to represent the

configuration of a net. More specifically, we define a configuration C = {ρi1 , ρi2 , · · · , ρin}

for a net with n fold edges, where ρi is the dihedral angle of two faces that connected by

the fold edge ei on the folded shape.

Folding Map

Let Fi0 be an arbitrary face that will be fixed in the xy-plane during the entire folding

process, and given another face Fip , let γ be a path starting from a point in F0 and ending

at a point in Fip by crossing some fold edges. Let the fold edges that γ crossed be, in order,

{ei1 , · · · , eip}, and let the faces γ entered be, in order, {Fi0 , Fi1 , · · · , Fip}. Then the folding

map for (x, y) ∈ Fik can be defined as,

15

fik(x, y) = fik(x, y, 0, 1) =


I4×4, if k = 0

fik−1
R(~e′ip , ρip), otherwise

(2.3)

where R(~e, ρ) is a rotation matrix that rigidly transforms a point by rotating around ~e for

ρ and ~e′ip is the folded state of edge eip .

2.2.2 Edge Unfolding

Mathematicians spend centuries in answering a question: given a polyhedron, is it always

possible to unfold the polyhedron by cutting on the surface of it, such that the unfolding of

the polyhedron does not contain overlapping? When cuts are restricted only to the edges

of polyhedra, it becomes an edge-unfolding problem. For edge-unfolding, counterexamples

were found for non-convex polyhedra; for convex polyhedra, though promising, it still re-

mains open [31]. Later, heuristic methods were proposed in the literature for unfolding

convex polyhedra to nets [3]. However, it becomes much harder to generate a single net

for non-convex shapes. Both [2, 16] generate more than one connected components for

complex non-convex shapes to avoid overlapping. The former one splits the unfolding when

overlaps were detected while the later one first splits the mesh into multiple pieces then

tries to merge them into one piece. All aforementioned works generate nets as final results,

however, whether there exists a continuous folding motion that transforms the net back to

its original shape is not considered in their works.

2.2.3 Paper Crafting via Shape Segmentation

Unfolding a non-convex polyhedron into a single connected component is hard but not nec-

essary for certain applications, such as paper crafting: making 3D models from flat sheets

16

of paper. For paper crafting, shape segmentation techniques were employed to simultane-

ously decompose and approximate the mesh into smaller pieces [12, 13, 17] such that the

unfolding problem becomes solvable and the approximated 3D model can be obtained by

assembling the folded shapes together. These approaches decompose the mesh into a few

patches and approximate each patch with a strip, a generalized cylinder or a developable

surface. Common drawbacks of these methods are that they could generate an arbitrary

number of pieces and the cuts can be at arbitrary locations on the mesh which make assem-

bling much harder and less fun, also the approximation ability is limited. Another category

of shape decomposition method worth noting is called Nearly Convex Decomposition (NCD)

[32, 33, 34], which segments a mesh into a controllable number (usually small) of part-aware

components that are nearly convex. Mesh convexification shows great advantages in un-

folding and continuous folding, and we can obtain either exactly the same model as the

original one by assembling folded nearly convex patches, or an approximated model (with

bounded error) by folding the nets generated from the convex hulls of those patches.

17

Chapter 3: Rigid Origami

3.1 FROG: A Randomized Path Planner for Rigid Origami

Similar to the problem faced in systems with closure constraints, traditional motion planners

that perform local planning using linear interpolation usually fail to connect two seemingly

nearby configurations. Moreover, we observe that, for rigid origami, whose folding angles

are highly constrained by each other, its folding pathway has very distinct characteristics

between the early folding stage and the rest of the folding process. That is, there are

abundant valid configurations when the origami is still flat, however, once the folding process

started, the folding pathway quickly becomes very narrow and highly non-linear due to the

closure constraints. This difference can be observed from the smoothness of the trajectories

shown in Fig. 3.1(b) and Fig. 3.1(c). The former is much smoother than the latter. As

we will see later in this section, these observations play important roles in designing our

randomized folding algorithm.

Finding a path in a highly constrained high-dimensional configuration space is always

challenging. We propose FROG(Folding Rigid OriGami), a randomized path planner for

rigid origami, to repetitively sample a configuration Cτ randomly near he best configuration

known to us C4 so far, and use a non-linear optimization approach to find a valid config-

uration locally around Cτ . FROG only expands the closest configuration to the goal and

uses an adaptive weight adjustment to balance between randomness and the desire to move

towards to the goal. Details of the proposed method are described in Algorithm 1.

Algorithm 1 first initializes the planner by setting the weight to W0, and set the closest

configuration C4 to S. In each step, it samples a random configuration Crand and find a

direction
−→
dir by linearly combining Crand and G with corresponding weights, 1 − weight

and weight, respectively. Then, a new configuration Cτ is created by moving C4 forward

18

Algorithm 1 FROG

Input: Start configuration S, goal configuration G
Output: Foldable and feasible path from S to G
1: weight←W0

2: C4 ← S
3: while G not reached do
4: Crand ← a random configuration

5:
−→
dir ← (1− weight) · Crand + weight ·G

6: Cτ ← C4 +D ·
−→
dir

7: C ← FindFoldable(Cτ)
8: if IsValid(C) and C is closer to G then
9: C4 ← C

10: weight← weight+W1

11: else
12: weight← weight−W2

13: end if
14: end while

distance D along
−→
dir. However, even if D is a tiny number, the target configuration Cτ is

usually unfoldable. Thus, we introduced the function FindFoldable for finding a foldable

configuration C around Cτ . If C is feasibly and it is closer to the goal G than C4, Algorithm 1

replaces C4 by C. We use Euclidean distance to measure how far away two configurations

are, however, other metric (e.g., 1-norm distance or infinity norm distance) can also be used.

Algorithm 1 repeats this process until G is reached. The value of weight will be adjusted

adaptively during the process.

3.1.1 Finding Foldable Configuration

Non-linear optimization (NLOPT) is used to find a foldable configuration in function Find-

Foldable in Algorithm 1. Given a configuration Cτ , FindFoldable pushes Cτ to a fold-

able configuration C near Cτ by minimize the objective function shown in Eq. (3.1).

F (C) =
nv

max
i=1
|
ci∏
k=1

χ((i, jk), i)− I| , (3.1)

19

(a) Crease pattern

-180

-120

-60

0

60

120

180

0 100 200 300 400 500 600 700

F
o

ld
in

g
 A

n
g

le

Folding Sequence

(b) Folding path

-8

-6

-4

-2

0

2

4

6

8

5 10 15 20 25 30 35 40 45 50

F
o

ld
in

g
 A

n
g

le

Folding Sequence

(c) First 50 steps of the folding path

Figure 3.1: Miura crease pattern and the folding path of it found by the proposed method.

20

where nv is the number of real vertices, ci is the number of crease lines incident to the real

vertex vi, and, finally, (i, jk) is the k-th crease lines around vi.

More specifically, for a given real vertex vi, we want the production of rotation matrices

of crease lines around vi to be as close to an identity matrix as possible. Since, in a

foldable configuration, each real vertex in the crease pattern should be an identity matrix

shown in Eq. (2.1). Special treatment for the stationary face F0, which is fixed in the

xy-plane, is required. The folding map of F0 shown in (2.2) should always be an identity

matrix regardless which closed vertex-avoiding loop γ is used for computing the folding map,

otherwise F0 will no longer stay in the xy-plane. Note that, NLOPT might still return an

unfoldable configuration due to that maximum iteration has been exceeded or no foldable

configuration exists around the configuration Cτ . These unfoldable configurations can be

filtered out by performing the foldability check on the returned configuration.

3.1.2 Detecting Invalid Configuration

A foldable configuration might still be an invalid configuration due to self-intersection. Thus

a collision checking is applied after the configuration C is returned by FindFoldable in

Algorithm 1. Local intersection is avoided by bounding the folding angle in [−π, π] for each

crease line. Global intersection is avoided by applying collision detection between faces of

the origami. In our implementation, we checking collision on all pairs of faces and we say an

origami has self-intersection if penetration is detected while face overlapping is considered

as valid.

3.1.3 Experimental Results

We show the crease pattens and their folded states used in our experimental in Fig. 3.2 and

Fig. 3.3 respectively. And we show the running time to find feasible folding paths for each

crease pattern in Table 3.1. From which we can see that the proposed algorithm efficiently

finds folding paths for rigid origami.

21

(a) L (b) L2 (c) Fly1 (d) Fly2

(e) Box1 (f) Waterbomb (g) Miura (h) Diamond

(i) Sailboat (j) Box2

Figure 3.2: Crease patterns used in our experiments. Mountain creases are shown as solid
lines in red, valley creases are show as dashed lines in blue.

3.2 MD-FROG: A Path Planner for Multi-DOF Rigid Origami

In this section, we present MD-FROG, a path planner for multi-DOF rigid origami. We

say an origami is Multi-DOF if there exists a configuration that under which one or more

crease lines can be folded/unfolded independently, i.e. its rigidity can be maintained without

folding other crease lines.

22

(a) L (b) L2 (c) Fly1 (d) Fly2

(e) Box1 (f) Waterbomb (g) Box2 (h) Diamond

(i) Sailboat (j) Miura (k) Miura (DE)∗

Figure 3.3: Folded states of crease patterns shown in Fig. 3.2. Note that some of the models
do not fold completely for the sake of better visualization.∗Folding with DE material, which
has a maximum folding angle of π/2.

3.2.1 Sampling In Discrete Domain

Traditional sampling strategies have difficult to effectively generate valid samples in the

configuration space for rigid origami with closure constraints even in lower dimensional

space. Some crease patterns have been shown to be 1-DOF mechanism such as the Miura

crease pattern [35] which means the valid configurations form a curve in the configuration

space, thus the probability of a random configuration to be valid is zero. Although we could

tolerant certain amount of deformation, the configuration space is still mostly occupied by

“obstacles” as shown in Fig. 3.4, only 0.044% of the configuration space is valid under 0.1%

deformation tolerance for the Miura crease pattern with number of crease lines reduced to

23

(a) Waterbomb 5% DT (b) Miura 5% DT

(c) Waterbomb 1% DT (d) Miura 1% DT

(e) Waterbomb 0.1% DT (f) Miura 0.1% DT

Figure 3.4: Random sample one million configurations uniformly for a Waterbomb crease
pattern (Left) and a Miura crease pattern (Right) under different deformation tolerances
(DT). Red: has self-intersection, invalid. Yellow: deformation is larger than tolerance,
invalid. Magenta: within deformation tolerance but actual folding angles are different from
assigned ones, invalid. Blue: valid.

24

Model DOF Time (s) Sampled Valid Tested

L 2 0.004 110 110 156
L2 4 8.317 40323 787 2047635
L22 4 0.010 331 331 407

Box1 6 0.101 250 250 15181
Diamond 6 0.514 1074 390 65033

Waterbomb 8 0.613 731 359 54046
Fly1 8 0.631 605 421 53613
Box2 9 1.463 864 358 126885
Fly2 11 2.425 864 460 127064

Miura 12 13.564 1813 677 511050
Sailboat 34 83.923 6103 1970 1396032

(Note: L22 is L2 with an intermediate state defined by user)

Table 3.1: Running Time of Finding a Feasible Path.

2 by taking symmetry into consideration [36]. And situation will become even worse in

higher dimensional configuration space.

To address this problem, instead of sampling in the continues domain with zero prob-

ability to generate a valid configuration, we propose the idea of sampling in the discrete

domain. For a crease line with target folding angle ρ, we only sample the folding angle from

its important angle set: {0, π, ρ} which are corresponding to the flat state, the fully folded

state and its target state. The total number of unique configurations for the origami with

n crease lines is 3n. For 1-DOF origami, usually it has only two continuous foldable config-

urations in the discrete domain which represent the initial state and the target state. And

for Multi-DOF origami we expect to find more valid and continuous foldable configurations.

3.2.2 Connecting Two Valid Configurations

Given two valid configurations, it is usually unknown whether a rigid foldable and collision

free path exist or not due to closure constraints which usually result in highly nonlinear

path. In order to connect two configurations, we employ two connection methods: linear

connection and nonlinear connection.

25

Linear connection An intuitive but turns out the most efficient way to connects

two valid configurations is by linearly interpolating the intermediate configurations. Two

configurations are rigid foldable to each other if all interpolated intermediate configurations

are rigid foldable and collision free.

Nonlinear connection If linear connection failed to connect two configurations which

means the path has to be nonlinear or even does not exist. We use a randomized search

method proposed in [9] to connect two valid configurations, which could find a nonlinear,

rigid foldable and collision free path.

3.2.3 Path Planning

We propose MD-FROG, a folding path planner for a Multi-DOF origami under the Lazy-

PRM framework [37]. First, we sample configurations in the discrete domain and add valid

configurations to the roadmap. We then connect all pairs of the configurations initially

and add the edges to the roadmap. Then a graph query is answered to find a path from

start node to target node. Connectivity checking will be applied only on the consecutive

nodes in the path. If two nodes cannot be connected, i.e., they are not continuous foldable

to each other, their corresponding edge is removed from the roadmap and a new path is

extracted. We repeat this process until all edges that connect consecutive nodes in the

path are validated. Finally, the rigid foldable and self-intersection free path is obtained by

combining all the path segments.

Via intermediate configurations, we found alternative folding path for the Waterbomb

crease pattern, folding path and folding process are shown in Fig. 3.6(b) and Fig. 3.6(d) re-

spectively. As we can see from Fig. 3.6(b), the origami folds to goal state via an intermediate

state and one of the path segments is linear.

26

Figure 3.5: Folding sequences of a rigid sailboat origami produced by the proposed planner
which configurations sampled in the discretized configuration space of the sailboat crease
pattern.

3.2.4 Experimental Results

3.2.5 Continuous V.S. Discrete Sampling Strategy

In order to evaluate our method, we conduct an experiment on the crease patterns shown

in Fig. 3.7. The number of crease lines n in the crease pattern we used are from 2 to 12

shown in Table 3.2, which equal to the dimensionality of the configuration space.

We uniformly sample one million random configurations in the configurations space and

compare the number of valid samples and their running time.

Sampling in continuous domain As we can see from Table 3.2, even in lower di-

mensional space (e.g., 2D) it can generate only a few valid configurations, for Waterbomb

and Miura crease pattern in 2D, the valid configurations are only about 1.02% and 0.13%

respectively. With the increase of dimensionality, it failed to find any valid configuration

even though the origami is Multi-DOF due to closure constraints.

Sampling in discrete domain For the proposed method, folding angles are sampled

only from each crease line’s important angle set: {0, π, ρ} as Discrete3. For comparison

27

(a) Folding path found by FROG[9]

(b) Alternative path found by MD-FROG[36]

-90

-60

-30

0

30

60

90

120

150

180

10 20 30 40 50 60 70

F
o
l
d
i
n
g

A
n
g
l
e

Folding Sequence

(c) Folding angle trajectories of (a)

-90

-60

-30

0

30

60

90

120

150

180

80 160 240 320

F
o
l
d
i
n
g

A
n
g
l
e

Folding Sequence

(d) Folding angle trajectories of (b)

Figure 3.6: Valid states and folding process of a Waterbomb crease pattern.

28

(a) L2 (b) Waterbomb (c) Miura (d) Sailboat

(e) L2 (f) Waterbomb (g) Miura (h) Sailboat

(i) Target shapes

Figure 3.7: Top: Crease patterns used in our experiments. Mountain creases are shown as
solid lines in red, valley creases are show as dashed lines in blue. Middle: Crease patterns
with crease lines in groups. crease lines in the same group are shown in the same color.
Bottom: Target shapes of above crease patterns.

29

we also sampled from another angle set: {0, π/2, π, ρ} as Discrete4. From Table 3.2 we

can see that, this strategy finds several intermediate configurations efficiently since we can

filter out duplicated configurations in constant time using a hashtable, and effectively as we

will see later those intermediate configurations are very important.

Model n
Continuous Discrete3 Discrete4

Valid Time (s) Valid Time (s) Valid Time (s)

Waterbomb∗ 2 10161 12.10 5 0.35 6 0.42

Miura∗ 2 1305 17.48 3 0.36 3 0.43

L2 4 1 10.31 5 0.45 6 0.52

Sailboat∗ 6 0 33.70 48 0.57 118 0.74

Waterbomb 8 0 10.97 71 0.73 114 0.89

Miura 12 0 17.35 7 0.94 7 7.13
∗ indicates that symmetry property is used.

Table 3.2: Comparison Between Sampling Strategies.

In this experiment we show that sampling in discrete domain is a powerful strategy to

generate valid samples for rigid origami with closure constraints. This strategy works even

when the sampling domain is small (in our case only three values) and enables us to discover

foldable states while sampling in continuous domain was not able to find any.

3.3 Reusing Folding Path

A tessellation is a type of crease pattern that can usually be viewed as an arrangement of

smaller repetitive crease patterns. As a result, the degrees of freedom of a tessellation is

usually very large (758 for a 12×22 Waterbomb and 1680 for a 24×24 Miura fold). Finding

valid folding motion for such as tessellation can be extremely time consuming. In order to

speed up the motion planner, we propose the idea of crease group and essential vertex by

exploiting symmetry in the tessellation. Computation reuse is a widely used technique to

30

improve the performance of a robotic system [38]. We propose the idea of reusing folding

path found on the essential crease pattern to fold large origami tessellation.

3.3.1 Crease Group and Essential Vertex

Given a large crease pattern (tessellation), crease lines can be gathered into groups naturally

due to symmetry property. We say that a set of crease lines are in one crease group if the

absolute value of their folding angles trace out the same folding trajectory. In Fig. 3.7

we can see that the absolute value of folding angles of 12 crease lines trace out only 2

trajectories. Given the crease groups, we define essential vertices as a set of real vertices

whose incident crease lines collectively cover all the crease groups. The smallest essential

vertices can be found by solving the set covering problem. An example of crease groups

is shown in Fig. 3.8, in which crease lines belong to the same crease group are shown in

the same color. From Fig. 3.8 we can see that the 3×3 Miura crease pattern has only two

crease groups: all vertical crease lines are in one group and all horizontal crease lines are in

another group, even though they have different type (mountain fold v.s. valley fold). Since

any of the real vertices can cover all the crease groups, the 3×3 Miura crease pattern has

only one essential vertex which could be v1 or v2 or v3 or v4.

By gathering crease lines from a large crease pattern into crease groups, the DOF

of the origami can be reduced from the number of crease lines to the number of crease

groups. Moreover, by identifying essential vertices, we only need to check the local foldabil-

ity (Eq. (3.1)) on essential vertices, a much smaller subset of real vertices than the number

of all the real vertices. Table 3.3 reports the size of crease groups and essential vertices of

6 crease patterns. As we can also see in Table 3.3, using symmetry and essential vertex

significantly reduces the computation time for finding a valid folding motion. We also tested

the running with and without collision detection. From Table 3.3 we can see when we use

full DOF for planning, the majority of the time is spent on finding valid configuration, col-

lision detection takes only about 2% of the running time for folding the 5× 5 Miura crease

pattern. However, when we use symmetry property and essential vertex, the running time

31

reduced significantly, collision detection (with almost the same amount of computation)

then dominates the running time which takes about 83% on average.

3.3.2 Reusing Folding Path

Given a crease pattern (tessellation), if this crease pattern is rigid foldable, it is expected

that the folding angles of all crease lines in the same crease group remains identical even

when planning is done using the full DOF.

32

Model RV/EV SYM EV DOF MI Time
(sec) CD (%)

3×3 Miura 4/1
× × 12 25 0.037 27.03
◦ × 2 5 0.016 56.25
◦ ◦ 2 5 0.014 64.29

5×5 Miura 9/1
× × 40 500 1.681 2.02
◦ × 2 5 0.098 81.63
◦ ◦ 2 5 0.082 85.37

24×24 Miura 529/1
× × 1680 N/A∗ N/A∗ N/A∗

◦ × 2 100 35.278 78.32
◦ ◦ 2 100 32.402 99.51

4×6 Waterbomb 15/3
× × 50 5 0.040 77.50
◦ × 4 5 0.037 81.08
◦ ◦ 4 5 0.034 88.24

8×10 Waterbomb 63/3
× × 182 5 0.406 79.80
◦ × 4 5 0.332 90.36
◦ ◦ 4 5 0.310 96.45

12×22 Waterbomb 231/3
× × 758 5000 499.048 11.27
◦ × 4 5 3.893 91.75
◦ ◦ 4 5 3.160 97.59

Note that the running time were obtained under 5% deformation upper bound. RV=Real Vertex, EV=Essential
Vertex, SYM=Symmetry, MI=Maximum Iteration, CD=Time cost for Collision Detection. The symbols ◦ and ×, in

the columns of SYM and EV, indicate if symmetry and essential vertex are used or not. *The planner failed to find
a valid path within the time limit due to high DOF.

Table 3.3: Path Planning Time using Symmetry.

33

v1 v2

v3 v4

v5

v6

v7

v8 v9

v10

v11

v12

v13

v14

v15

v16

(a) Crease pattern

(b) Crease groups

Figure 3.8: Crease groups of a 3×3 Miura crease pattern. Crease lines belong to the same
crease group are shown in the same color.

34

(a) 3× 3 Miura (b) 5× 5 Miura (c) 24× 24 Miura

(d) 4× 6 Waterbomb (e) 8× 10 Waterbomb

(f) 12× 22 Waterbomb

Figure 3.9: Origami tessellations used in our experiments.

35

-150
-120
-90
-60
-30

0
30
60
90

120
150

30 60 90 120 150 180

F
o
ld

in
g
 A

n
g
le

Folding Sequence
(a) 3×3 Miura DOF=12

-150
-120
-90
-60
-30

0
30
60
90

120
150

30 60 90 120 150 180

F
o
ld

in
g
 A

n
g
le

Folding Sequence
(b) 5×5 Miura DOF=40

Figure 3.10: Folding paths found without using symmetry information.

36

Chapter 4: Polyhedra Unfolding

4.1 EU: A Genetic Algorithm for Unfolding

As mentioned in Chapter 2, the unfolding of a Polyhedron can be obtained by finding a

spanning tree of the dual graph of the mesh. Heuristic methods assign different weights on

the dual edges such that the minimal spanning tree of the dual graph has a high probability

to be a net. In this section, we propose EU (Evolution of Unfoldings), a genetic algorithm

to evolve the unfoldings to nets.

4.1.1 Genetic Representation

Inspired by the heuristic methods for unfolding, we use the dual edge weights to represent

the gene. The length of the gene is equal to the number of the non-boundary edges of the

mesh and the range of the weight is from 0 to 1.

4.1.2 Fitness Evaluation

We evaluate the unfolding using the fitness score defined as: f = −(λoNo+λlNl), where No

is the number of overlaps in the unfolding and Nl is the number of hyperbolic vertices that

cause local overlaps in the unfolding, λo and λl are their coefficients. Since local overlaps

are harder to resolve than global ones thus they play a more important role in the fitness

function. Once the fitness score becomes zero, we found a net.

4.1.3 Population Generation

We use 3 existing heuristic methods: Steepest−Edge, Flat−Tree, Minimum−Perimeter

[3] to generate the initial population of p individuals which give us a good initialization with

a large variance in the unfoldings.

37

4.1.4 Selection, Mutation and Crossover

Tournament selection, uniform crossover and Gaussian mutation are used to create and

mutate individuals. In each generation, k children will be created to replace the worst k

parents.

4.1.5 Experimental Results

Without notice, we use the following parameters for all our experiments. Initial population

p = 400, tournament size t = 7, new children each generation k = 50, crossover probability

= 0.4, mutation probability = 0.02, mutation variance = 0.3, maximum generation gmax =

5000. We use λo = 1, λl = 10 for the weights.

The nets found by the proposed method are shown in Fig. 4.1. We show the average

and best fitnesses of each generation in Fig. 4.2 for the Bunny model and MoneyBox model

(shown in Fig. 4.1(c)), from which we can see that the proposed method quickly converges

to a valid solution after 200 generations.

4.2 Simultaneously Segment and Unfold

Segmentation and unfolding are both edge-cutting operations that determine the foldability

of a mesh, thus should not be decoupled. In this section, we will discuss a method that

first estimates the likelihood of every pair of faces that can be unfolded together without

overlapping, and then segments the mesh into face clusters that have high probabilities of

becoming valid nets. Upon the failure of unfolding a cluster in the segmentation, the cluster

is further segmented using the learned likelihood until all clusters are unfolded. Fig. 6.2

provides an overview of the proposed method.

4.2.1 Learn from Failed Unfoldings

To determine the likelihood of every pair of faces that can be unfolded together without

overlapping, the proposed method unfold the mesh multiple times using existing heuristics,

38

(a) Hand (b) Knot (c) MoneyBox (d) Pillow

Figure 4.1: Meshes and its nets found by the proposed method.

such as steepest edge for example. After the mesh is unfolded m times using these unfolding

heuristics, the proposed method analyzes whether two faces f1 and f2 belong to the same

connected component without overlapping in all of these unfoldings. If f1 and f2 belong

to the same non-overlapping connected component n times among m trials, then their

foldability likelihood is simply n/m. Thus, the result of this learning step is a symmetric

similarity matrix, called “foldability matrix”, in which a large value means that two faces

are likely to be unfolded without overlapping. We next describe each of these steps in detail.

4.2.2 Unfold the Mesh Multiple Times

As discussed earlier, an unfolding of a mesh is closely related to the minimum spanning

tree of the dual graph of the mesh. That is, a set of edge weights determines a specific

unfolding. Therefore, m unfoldings can be obtained by m sets of edge weights. If the

random unfolding heuristic is used, then m unfoldings can simply be created by drawing

m||E|| arbitrary numbers. If steepest edge or flat tree heuristics are used, then we draw

39

0 50 100 150 200
Num. of generations

5000

4000

3000

2000

1000

0

Fi
tn

e
ss

Avg. Fintess

Best Fitness

(a) Bunny-348

0 50 100 150 200
Num. of generations

5000

4000

3000

2000

1000

0

Fi
tn

e
ss

Avg. Fintess

Best Fitness

(b) MoneyBox-396

Figure 4.2: Average and best fitness of each generation.

m random unit vectors and use these vectors to determine the edge weights. Alternatively,

instead of drawing random vectors, we also experimented with the surface vectors of the

mesh, such as outward normal vectors of faces and vertices and vectors parallel to the edges.

We found no differences of how the vectors are selected. The number of vectors plays a

more influential factor.

4.2.3 Analyze an Unfolding

An edge unfolding usually contains multiple overlaps and is not a valid net. However, we

can still obtain valuable information about the foldability of the mesh from an invalid net.

Given an edge unfolding represented by a tree T , and let L = {(fi, fj 6=i)} be a list of

overlapping face pairs (fi, fj) in T . If L is empty, then we found a valid net; otherwise

we will use L to determine the foldability likelihood of T . Given a face f of T , let CC(f)

be a set of non-overlapping faces that contains f . We say that CC(f) is maximized if no

additional faces can be added to CC(f) without overlapping with the members of CC(f).

To compute the maximized CC(f), we start with CC(f) = {f}, and then iteratively test

the faces of T adjacent to the current CC(f) in breadth-first search manner, i.e., only

expand CC(f) via the fold edges and not the cut edges. Let f ′ be an adjacent facet that

40

...

...

U
nf

ol
d

Orignial mesh
Assemble

Overlapping analysis

Failed to fold

Clustering
Segmented mesh

Unfold
Failed to unfold

Fold

NetsContinuous folding

Figure 4.3: Overview of the proposed method. Overlapped faces are shown in red in the
‘Overlapping analysis’ box. Foldability matrix after clustering is shown below the ‘Cluster-
ing’ arrow, in which rows are sorted by cluster id. Pixel p(i, j) indicates the probability that
face fi does not overlap with face fj in the unfoldings, the darker the higher. Each block
along the diagonal represents one cluster. If any of segment was failed to unfold to net or
failed to fold back, we can further segment it using the proposed method. This process is
repeated until all segments have nets and can be continuously folded back to 3D.

41

does not overlap with the facets of CC(f), then CC(f) = CC(f) ∪ f ′.

After the maximized CC(f) is found, the foldability matrix M is updated so that all

elements between f and f ′ ∈ CC(f) are increased by one, i.e. M(f, f ′) = M(f ′, f) =

M(f, f ′) + 1, ∀f ′ ∈ CC(f). This operation is repeated for all faces for a given T .

When multiple unfoldings are performed on the same mesh, the foldability likelihood

matrix M accumulates the likelihood estimation.

4.2.4 Segment

After the foldability likelihood of all pairs of faces is determined, we use spectral clustering

to cluster the faces. Although other clustering methods can also be used, we found that

spectral clustering gives consistent and better results. For example, we attempted to use

Lloyd’s algorithm that ensures all clusters are made of connected faces, but this approach

usually results in sub-optimal clusters because the idea of cluster center cannot be easily

defined. An example of the clustered foldability matrix using spectral clustering can be

found in Fig. 4.4.

Figure 4.4: Left: Clustered foldability matrix of the monkey model. A darker pixel indicates
higher possibility of unfolding the corresponding face pair without overlapping. 10 blocks
along the diagonal represent the 10 clusters found and correspond to the segmentation of
the monkey model. Right: Before (top) and after (bottom) isolated facets are reassigned.

42

Spectral clustering does not consider face adjacency, therefore some triangles may be

separated from the main components. Our experiments show that, if there exist multiple

connected components in a given cluster, these isolated components are much smaller in size

than the main component in the given cluster. Therefore, a post-processing step is suffice

to enforce every cluster contains only connected facets. Given that f is a face disconnected

from the the largest component in its cluster Ci and is adjacent to the clusters {Cj 6=i}.

Then f is reassigned to a new cluster Cj such that

arg max
j

∑
f ′∈Cj

area(f ′)M(f, f ′) .

The snail model shown in Fig. 4.4 illustrates an example before and after the isolated

components are reassigned.

4.2.5 Results

We show that the nets produced by the proposed method can be used to create more complex

paper craft (e.g., 3000 faces in 36 hours in Fig. 4.5) comparing to the results reported in

the literature (e.g., 347 faces in 25 hours [16]).

4.3 Continuous Unfolding of Polyhedra

Once we obtained a net for the mesh, the next question we want to address is that whether

there exists a continuous folding motion that transforms the net back to the original mesh.

Since the net has a very high degree of freedom which equals to the |F |− 1 where |F | is the

number of faces, which could be hundreds or even thousands that makes traditional motion

planners failed to work. We employ the method from [11] to plan continuous folding motion

for the net. Instead of sampling in the continuous domain that has extremely low probability

(close to 0) to generate a valid configuration, this method only samples in discrete domain,

the folding angle of each crease line is sampled from {0, ρi}, where ρi is the target folding

43

Figure 4.5: Top left: The statue of Korean general Yi Sun-sin (3000 triangles) is decom-
posed into 11 clusters by the proposed method. Top right: The paper craft of the model,
which is 9.7 cm wide, 9.7 cm deep and 21.2 cm tall. Bottom left: The nets generated
by Pepakura (79 parts). Bottom right: The nets generated by the proposed method (11
parts). The unfolder developed by [2] is unable to unfold the model perhaps due to that
the mesh is not water tight.

angle of the i-th crease line. There are 2|F−1| possible states in the configuration space.

Fig. 4.6 shows the valid configuration ratios defined as |Cvalid|/|Csampled| of various models

and its nearly convex decomposition components whose DOFs range from 7 to 479 for two

sampling strategies, from which we can see that sampling in discrete domain maintains a

much higher probability, which is exponentially higher than uniform sampling.

Also, we can see that for discrete domain sampling, nearly convex decomposed patches

have a higher valid configuration ratio compare to that of original mesh which implies they

44

DOF
0 100 200 300 400 500

V
al

id
 R

at
io

10-4

10-3

10-2

10-1

100

Discrete - Org
Discrete - NCD
Continuous - Org
Continuous - NCD

Figure 4.6: Valid configuration ratios of various original models (Org) and their components
decomposed by nearly convex decomposition (NCD) under two sampling strategies.

are easier to fold. With those valid configurations sampled from discrete domain, Lazy-PRM

([37]) is employed to find feasible folding paths. Thanks to nearly convex decomposition,

those decomposed patches have a much higher probability that the folding path is a straight

line in the high dimensional configuration space and the feasibility of the path can be

tested in O(|F |2) with a naive collision detection method. The folding process of bunny

mesh found by the motion planner using discrete domain sampling is shown in Fig. 4.7.

We encourage readers to visit our web-based interactive folding process visualizer at http:

//masc.cs.gmu.edu/origami/folder.html to experience the complexity and beauty of

continuous folding.

4.4 Polyhedra Fabrication via Mesh Convexification

Paper crafting enables us to fabricate a target surface from one or multiple sheets of papers

which are easier to manufacture and transport [12, 13, 17]. This technique can be used to

45

http://masc.cs.gmu.edu/origami/folder.html
http://masc.cs.gmu.edu/origami/folder.html

Figure 4.7: Continuous folding process of the Bunny model.

design self-folding robot [4] with rigid materials that can fold itself from a flat sheet to a

3D functional shape via uniform heating [39], magnetism [20] or lighting [40]. Designing a

paper craft usually involves two main foldability analysis steps. The first step is to find a

2D representation (which could be a net, a crease pattern or a developable surface) whose

folded shape approximates entire or part of the mesh. We call this an instantaneous un-

folding problem, since the solution will be a function that instantaneously transforms the

polyhedron to the 2D representation without going through any intermediate configura-

tions. In this dissertation we focus on the net representation, which is the unfolding of the

polyhedron that does not contain overlaps. Finding a valid net of a given polyhedron is

known to be nontrivial because a polyhedron with |F | faces can have approximately 2
√
|F |

different unfoldings and most of them contain overlaps especially for non-convex polyhedra.

Suppose that we obtained a net, the second step is to find a foldable path that transforms

the net to its folded shape continuously without self-intersection. We call this a continuous

folding problem. Unfortunately, none of previous paper crafting works take continuous fold-

ing into consideration and assume that the net is always foldable. However, this assumption

46

is not always correct especially when folding non-convex patches with rigid materials. In

this dissertation, we model the net as a multi-link articulated robot and solve the folding

problem using motion planning approach. The dimensionality of the configuration space is

equal to |F | − 1, where |F | is the number of faces in the net, and it could be hundreds or

even thousands.

Though the problem of finding edge unfolding for convex polyhedra is still open, heuristic

methods work well in practice. Most, if not all, nets of convex polyhedra can be obtained in

O(|F |log|F |). Furthermore, the start state, i.e., the flat net and the goal state, i.e. original

convex polyhedron, may sometimes be linearly connected in the configuration space. This

property significantly reduces the path planning time to find a continuous folding motion.

Fig. 5.3 shows a convex polyhedron and its nets, one of whose folding path is a straight

line in the configuration space. However, when dealing with non-convex shapes, previous

works [2, 11] show that each step itself is challenging. Thus we employ mesh inflation to

remove local concave features and nearly convex decomposition method to segment a mesh

into several part-aware and nearly convex patches. Then both instantaneous unfolding and

continuous folding problems are solved for each patch separately. However, since the patch

is not exact convex, no heuristic methods guarantee to find a net for it (and there exist

some non-convex polyhedra that can not be unfolded), thus we employ a genetic algorithm

to find nets for those nearly convex patches. Once we obtained the net, motion planning

algorithm is used to find a continuous folding path for it. Nearly convex decomposition

shows great advantages in both steps. After we found the feasible folding paths for all the

patches, the only left step is to assemble the folded shapes. Our experimental results show

that the mesh convexification makes each step several folds faster in terms of total running

time than working on the original mesh alone. It also makes manufacturing and assembling

easier.

Given a mesh M, we first inflate the mesh to reduce surface concavity (Section 4.4.1),

then remove structural concavity by decomposing the mesh into several part-aware, nearly

convex components (Section 4.4.2). For each component we find a net using a genetic-based

47

(a) Mesh (b) Net1 (c) Net2

Figure 4.8: A convex mesh and its nets found by two heuristic methods: Steepest Edge for
net1 and Flat Tree for net2. Both nets were obtained within 0.01s. Net1’s folding path is
a straight line in the configuration space (only 1 edge was checked). For net2, in order to
find a feasible path, 1056 edges need to be checked (approximately 1000 times slower) on
average.

Original

Inflated

Decomposed

Net Continous folding

Assembled

Figure 4.9: Pipeline of the fabrication of the model.

algorithm (GA) [19], the initial population are generated using heuristic methods. Once we

obtained the net, motion planning is introduced to find a feasible path that folds the net

back to its 3D shape continuously to ensure we can build a physical copy even use rigid

materials instead of flexible materials, such as paper which could be easily bent during

folding. Finally, all the components can be assembled. The pipeline of proposed approach

is shown in Fig. 4.9.

48

4.4.1 Reduce Local Concavity via Mesh Inflation

Hyperbolic vertices are the main sources that cause existing unfolding methods fail to find

a net. Because every hyperbolic vertex must be incident to at least two cuts, reducing the

number of hyperbolic vertices implies the reduction in the variance of the number of cuts

of each vertex and therefore simplifies the unfolding. Many of these hyperbolic vertices can

be removed without affecting the overall shape. Inspired by physically based simulation to

inflate a concave mesh into a balloon, We propose to use the idea to pop up small dents

on the mesh and reduce the number of hyperbolic vertices so that the computation time of

finding a net can be reduced. In particular, we will show that the net of an inflated model

can be created with few modifications from an invalid unfolding generated by heuristic

methods, which are usually designed for convex shapes.

Uniform (Unconstrained) Inflation

Force caused by air pressure should be uniformly distributed on the entire face, in this

dissertation, we simplify the model and assume forces only exist on the local region of each

vertex v. Then the force on the vertex is a weighted average of forces on adjacent faces,

~fp = λpp
∑
i

φi~ni (4.1)

where λp is a coefficient, p is the pressure, φi is the section angle of each adjacent face and

~ni is the normal direction of that face. Since ~f = ~pA = ~npA, at the local disk region around

the vertex v, φ is proportional to A, thus we can use φ as the weight to compute the force

contributed by each adjacent face.

During inflation, vertices moved, edges deformed. By assuming the mesh is made of

elastic materials, the force applied to the vertex vi due to stress on edge −−→vivj can be defined

as,

~fij =
Ee∆L

−−→vivj
||−−→vivj ||

, (4.2)

49

where Ee is the elastic modulus of the material, ∆L is the length changed of the edge

defined as ∆L = Lcur −Lorg. Since we would like to have the mesh inflated, only stretched

case (∆L > 0) is considered, otherwise ~fij = 0.

The total elastic force on vertex vi is the summation of forces on adjacent edges,

~fe =
∑
j

~fij . (4.3)

The total force on each vertex is then,

~f = ~fp + ~fe . (4.4)

The position ~P of the vertex is updated in an iterative manner and we assume each

vertex has the same unit mass and zero mass elsewhere,

~Pt+1 = ~Pt + ∆t ~f . (4.5)

Constrained Inflation

Although uniform inflation works well in practice in terms of reducing the number of hyper-

bolic vertices, it introduces several undesired properties for our application: convex region

will be inflated as well and flat surfaces do not maintain.

Convex and Concave Edges In order to maintain convex regions and keep deep

concave regions, we multiply a stiffness ratio to the edges based on their current folding

angle,

~f ′e =


λse ~fe, edge is convex or deep concave

~fe, otherwise

(4.6)

where λse is the stiffness ratio coefficient.

50

Virtual Edges We add virtual elastic edges between the current position of the vertex

P ′ and its original position P to penalize large displacement of the elliptic vertex. The

pulling force applied to the vertex is similar to the one shown in Eq. (4.2),

~fv =
λvEv∆L

−−→
PP ′

||
−−→
PP ′||

(4.7)

λv =


1, hyperbolic vertex

λsv, elliptic vertex

(4.8)

where λsv is another stiffness ratio coefficient.

Finally, Eq. (4.4) can be rewritten as,

~f = ~fp + ~f ′e + ~fv (4.9)

(a) 0.0000(44) (b) 0.0918(48) (c) 0.1726(36) (d) 0.2371(20) (e) 0.2681(14) (f) 0.3182(0)

(g) 0.0000(44) (h) 0.0539(38) (i) 0.0705(28) (j) 0.0807(20) (k) 0.0830(6) (l) 0.0839(0)

Figure 4.10: Inflated meshes with different inflation rate (IF). IF is shown as the caption,
the number in the parentheses indicates the number of hyperbolic vertices. Top: uniform
inflation, Bottom: constrained inflation. Hyperbolic vertices are shown in red.

51

Implementation

Mesh inflation methods are implemented in JavaScript with an interactive UI which is

available at http://masc.cs.gmu.edu/origami/inflation.html.

Experimental Results

An example of mesh inflation can be found in Fig. 4.10, from which we can see that inflation

can reduce the number of hyperbolic vertices effectively. However without any constraints,

the mesh will be inflated to a sphere-like shape finally (if the pressure is high enough).

Though all the concave features were removed, the volume of the mesh increased radically.

Constrained inflation helps to achieve similar results with much less inflation. We also

measure the unfolding time, folding time and folding success rate on original mesh and

inflated ones. From Fig. 4.10 we can see that inflation removes hyperbolic vertices which

helps GA to find the net more efficiently and more effectively. It also helps to find the

feasible folding path more efficiently and more effectively. The reported unfolding time is

the average of 30 runs on each inflated mesh; path planning time is the average of 20 runs

on each found net; time limit for each trail is 600 seconds. And we can see that constrained

inflation achieves similar or better results with much less deformation compared to uniform

inflation.

4.4.2 Reduce Concavity via Decomposition

Shape segmentation is widely used in paper crafting [12, 13]. To increase the chance of

finding a net/feasible folding path for that net, several desired properties should be provided

in the final decomposition: (1) small in size, (2) convex or at least nearly convex, (3) part

aware, (4) and disjoint, if possible.

Small in size. One arguable question is how many components should one generate

for the mesh. If the answer is one, then we stay with the original mesh, both unfolding and

folding are challenging problems which might be even unsolvable (non-convex polyhedra do

not always have a net). If the answer is |F |, the number of faces, then both folding and

52

http://masc.cs.gmu.edu/origami/inflation.html

of Hyperbolic Vertices
01020304050

U
nf

ol
di

ng
 T

im
e

(s
)

0

5

10

15
original
uniform
constrained

Inflation Rate
0 0.1 0.2 0.3 0.4

U
nf

ol
di

ng
 T

im
e

(s
)

0

5

10

15
original
uniform
constrained

of Hyperbolic Vertices
01020304050

P
at

h
F

in
di

ng
 T

im
e

(s
)

0

50

100

150

200

250

300

350
original
uniform
constrained

Inflation Rate
0 0.1 0.2 0.3 0.4

P
at

h
F

in
di

ng
 T

im
e

(s
)

0

50

100

150

200

250

300

350
original
uniform
constrained

of Hyperbolic Vertices
01020304050

S
uc

ce
ss

 R
at

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

original
uniform
constrained

Inflation Rate
0 0.1 0.2 0.3 0.4

S
uc

ce
ss

 R
at

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

original
uniform
constrained

Figure 4.11: Left: Unfolding time, path finding time, path finding success rate as functions
of number of hyperbolic vertices. Note: x axis is in reverse order. Right: that as functions
of inflation rate.

53

(a) Pikachu (b) Bird

(c) Fish (d) Dragon (e) Squirtle

Figure 4.12: Part-aware nearly convex decomposition. All components contain concavity
smaller than 0.05.

unfolding can be done in O(1), however, it makes manufacturing and assembling impractical.

Fortunately, the number of decomposed patches can be controlled by user parameters.

Convexity. Convex objects are much easier to fold and unfold. Exact convex de-

composition produces overwhelmingly many components. Segmentation methods produce

nearly convex components produces decomposition with reasonable size. However, if the

component is not convex which means it is not guaranteed to have a net, and might be

difficult to find a net and plan folding motion.

Component semantic. Part-aware decomposition not only makes both unfolding and

folding much easier but also provides a natural experience for manufacturing and assembling.

Disjoint components. Replacing each nearly convex patch with its convex hull to

54

approximate the original mesh might be a key to both unfolding and folding problems.

Unfortunately, convex hulls of decomposed components usually collide with each other which

makes assembling impossible. How to segment the polyhedron that the convex hulls of the

decomposed components do not collide with each other is still an open problem.

In this disseration we employ a method called Convex Ridge Separation (CoRiSe) [34]

to decompose a 3D mesh to part-aware with controllable concavity of all components in the

decomposition. Examples of five decompositions are shown in Fig. 5.4. All components in

these examples contain concavity smaller than 0.05. The concavity of a shape is defined as

the maximum distance between the convex hull and the shape. It is important to note that

other segmentation methods can also be incorporated with the proposed framework as long

as the convexity of the component can be bounded. For example, an alternative approach

can use Continuous Visibility Feature [41] to repetitively segment the shape until certain

desired convexity is reached.

Experimental Results

Experiment Setup We implemented the proposed unfolding/folding methods in C++,

which will be released to the public domain. All data reported here were collected on a

2012 MacBook Pro with a 2.9 GHz Intel Core i7 CPU and 16GB Memory running Mac

OS X. Meshes used in the experiment are shown in Fig. 5.17 as their decomposed states,

components are shown in different colors.

Running Time We compare the running time of unfolding the entire mesh and sum of

running time of unfolding the decomposed components. The results (average running time

of 20 runs) are shown in Table 4.2 from which we can see that NCD can significantly reduce

the total running time especially on path planning, and the extra running time introduced

by CoRiSe is negligible. For path planning, the main reason that NCD helps is that a

convex shape usually has a good net that the start and goal are directly linear connectable

[11, 42]. Thus we do not even need to plan the path, but only need to validate it. And as we

can expect, NCD should have similar properties which will make continuous folding much

55

(a) Periscope (b) Periscope2 (c) Bunny

(d) Fish (e) Horse

Figure 4.13: Decomposed meshes.

easier. For the decomposition results of Periscope and Periscope2, all of their decomposed

components have a linear path that directly connects start and goal, which significantly

reduced the total running time (see Table 4.2).

For the fish model shown in Fig. 4.13(d), after nearly convex decomposition, the largest

component (the body) still has 333 faces (original mesh has 474 faces). However, since all the

components are nearly convex, both total running times (the summation of all components)

reduced significantly especially for finding the continuous motion, which is 17.47x faster.

For the horse model shown in Fig. 4.13(e), we obtained the net for the original mesh

which takes 219.87 seconds, however, we were not able to find a feasible folding path for

the net in a certain amount of time (>1 hour). Using the proposed idea, we decompose

the horse mesh to 7 part-aware and nearly convex components, in which, 4 for the legs, 1

56

Patch DOF LC Finding Net Path Planning

0 17 X 0.00 0.01

1 17 X 0.00 0.02

2 21 × 0.00 2.69

3 42 × 0.56 1.39

4 37 × 0.02 0.73

5 86 X 4.84 0.31

6 75 × 0.58 1.60

Sub Total 6.00 6.75

Total 12.75
LC: Whether Cs and Cg are linear connectable in Cfree.

Table 4.1: Running time of the Horse model in seconds.

Model # DOF CoRiSe Net Path Total Speedup

Periscope
1 27 - 0.08 7.05 7.13

59.33
2 13 / 13 0.00 0.00 0.12 0.12

Periscope2
1 43 - 0.21 12.40 12.61

48.50
3 13 / 15 / 13 0.00 0.09 0.17 0.26

Bunny
1 127 - 8.09 482.57 490.66

144.74
3 4 / 6 / 115 0.02 2.90 0.47 3.39

Fish
1 473 - 69.66 1848.86 1918.52

16.12
5 26 / 34 / 36 / 44 / 332 0.92 13.19 105.82 119.01

Table 4.2: Total running time of decomposing, unfolding and continuous folding in seconds.

for the head, 1 for the neck and 1 for the body. We then find the net and the folding path

for each component separately. Average running time of 20 trails of each patch is shown in

Table 4.1 from which we can see that nearly convex patch is more likely to be unfolded to

a net that the start and goal can be linearly connected, thus the path planning time can

be reduced significantly even in very high dimensional space. One thing worth noting is

that since we can find different nets for each component, the shape and the topology of the

nets, which determine whether start and goal are linearly connectable or not, have a huge

impact on the difficulty of finding a feasible folding path. How to measure the goodness of

a net in terms of its foldability is an interesting question and remains as future work.

57

Chapter 5: Disjoint Convex Shell

5.1 Introduction

Approximating a 3D mesh by DC-shells enables more applications that approximating it

using overlapping convex objects. Examples include faster and more robust collision re-

sponse, better local penetration depth estimation, faster volumetric meshing and more

realistic fracturing simulation. Without this constraint, the physical realization of the ap-

proximation is not even possible. We call this geometric structure, disjoint convex shell or

simply DC-shell. The word shell is used to avoid confusion with convex hull.

There are several ways to produce DC-shell, including solid convex segmentation [43].

In this dissertation, we assume that the input shape is composed of multiple parts or is seg-

mented either manually or algorithmically. Many meshes that are available in public sharing

sites, such as Thingiverse or Google 3D warehouse, or those created for video games and

animations come in this form. The convex hulls of the parts often overlap. Even under

this somehow simplified setting, we will show theoretically that the problem of converting

overlapping convex objects to disjoint convex objects is difficult and computationally expen-

sive. Figure 5.1 illustrates failed attempts of a straightforward approach that trims the

overlapping convex shapes using the least-squares fit of boundary intersections to find cut

planes.

Throughout the work, we will use mesh unfolding to demonstrate the power of DC-shell.

Mesh unfolding is an important computational problem in manufacturing a 3D shape from

a 2D material [12, 13, 17]. Designing a foldable shape from a 3D mesh usually involves two

main foldability analysis steps: instantaneous unfolding and continuous folding. Instan-

taneous unfolding instantaneously transforms a polyhedron to a 2D representation, which

could be a net, a crease pattern or a developable surface. Suppose that a net is obtained,

58

(a) input (b) heuristics (c) optimized

Figure 5.1: left: Overlapping convex shapes depicting a cow (top) and Donkey Kong
(bottom). middle: Cutting overlapping convex objects through their boundary intersection
results in large volume loss shown in red. right: Disjoint convex shells created by our
optimization method. The volume lost is significantly less.

the continuous folding problem aims to find a foldable path that transforms the net to its

folded shape continuously without self-intersection. Both steps are significantly easier for

convex shapes than non-convex shapes [3, 44].

In this disseration, we propose an optimization method for constructing DC-shells from a

given composite shape. We also contribute a new remeshing method that enhances the qual-

ity of DC-shells while guarantees the convexity and disjointness of the DC-shells. Through

its application in mesh unfolding, we show that DC-shells can be rigidly unfolded into

high-quality nets with minimal cut length and coverage. We verify the foldability of these

nets created from DC-shells algorithmically and through a user study with 102 school-age

59

Figure 5.2: The top three figures, from left to right, show the composite shape of Yoshi
model obtained from thingiverse.com, its convex hulls and its DC-shells. The bottom two
photos show the folded disjoint convex shells and assembled Yoshi model.

children.

We show that children can work together and create rather complex 3D paper crafts

around an hour in a hands-on story-telling class. Because these 3D paper crafts are made of

blocks of convex objects, students can freely reconfigure their poses and even enlarge certain

parts before assembly. Fig. 5.2 shows an example of a composite shape (Yoshi) obtained

from thingiverse.com that contains overlapping parts and its DC-shells and fabricated paper

model.

To the best of our knowledge, DC-shell is the first attempt to produce practical non-

overlapping convex approximation. By practical, we mean the number of disjoint convex

components is significantly smaller those created by existing methods. The most relevant

work that we found is in computational geometry. There, researchers studied methods to

60

cover disjoint convex sets with non-overlapping convex polygons [45]. Our problem, on the

other hand, is to find non-overlapping convex shapes approximating non-convex overlapping

sets.

5.2 Related Works

5.2.1 Convex Decomposition and Approximation

Convexity provides significant algorithmic benefits in many problems and motivates re-

searchers to approximate shapes with convex objects. Covering a shape with non-overlapping

convex shapes has been extensively studied. For example, exact convex decomposition

[43, 46, 47] segments mesh into disjoint convex components. Another example is tetrahe-

dral mesh generation. Both approaches can produce a large number of convex components.

Exact convex decomposition is known to produce O(r2) convex components for a polyhedron

with r reflex edges.

Approximations that allow overlapping convex shapes are more prevailing. For instance,

approximating a shape with a set of primitive convex shapes, such as spheres, boxes, ellip-

soids, and capsules, usually, forms a hierarchy of overlapping volumes. Another example is

approximate convex decomposition (ACD) [32, 34, 48, 49, 50] that approximates the input

mesh by a set of nearly convex shapes. Applications of ACD usually work solely with the

convex hulls of the segmented parts and ignore the input mesh. These convex hulls usually

overlap.

5.2.2 Polyhedra Unfolding

In the problem of unfolding the polyhedron to a 2D structure called the net, convexity

admits simple edge unfolding of every convex polyhedron [44]. Finding a valid net of a

given polyhedron is known to be nontrivial because a polyhedron with |F | faces can have

approximately 2
√
|F | different unfoldings and most of them contain overlaps especially for

non-convex polyhedra. However, if input shapes are convex polyhedra, heuristic methods

61

work well in practice. Most, if not all, nets of convex polyhedra with ||F || facets can be

obtained in O(|F |log|F |) time. However, it becomes much harder to generate a net for

non-convex shapes. Mitani and Suzuki [17] decompose the mesh into a few patches and ap-

proximate each patch with a strip, a generalized cylinder or a developable surface. Schlick-

enrieder [3] proposed heuristics methods for unfolding a polyhedron to a net. Takahashi

et al. [2], Straub and Prautzsch [16] extend [3] to unfold non-convex polyhedra. Recently,

Xi et al. [19] proposed an approach that segments a model into a smell set of semantic and

easily unfoldable parts by learning from failed unfoldings. All aforementioned works gener-

ate non-overlapping unfoldings, however, it is not guaranteed that there exists a continuous

folding motion that transforms the net back to its original shape.

(a) Mesh (b) Net1 (c) Net2

Figure 5.3: A convex mesh its nets found by two heuristic methods: Steepest Edge for net1
and Flat Tree for net2 [3]. Both net1 and net2 were obtained within 0.01s. Net1’s folding
path is a straight line in the configuration space (only 1 edge was checked). For net2, in
order to find a feasible path, 1056 edges need to be checked (approximately 1000 times
slower) on average.

In order to make a physical copy of the foldable shape that can be continuously folded

to its target shape from the net, we need to find a feasible folding path that can bring

the net to its target shape without self-intersection. Again, if the input polyhedron is

convex, the start state, i.e., the flat net and the goal state often can be linearly connected

62

in the configuration space. This property significantly reduces the path planning time to

find a continuous folding motion. Fig. 5.3 shows a convex polyhedron and its nets, one

of whose folding path is a straight line in the configuration space. However, when dealing

with non-convex shapes, previous works [2, 8, 51] show that each step remains extremely

challenging.

5.3 Building Disjoint Convex Shell (DC-shell)

Given a composite shape P composed of components {Pi}, which may either overlap or

overlap at boundaries with disjoint interiors. Fig. 5.4 shows examples of composite shapes

obtained from various sources. Given a pair of adjacent components Pi and Pj , the inter-

section of their convex hulls Ci ∩ Cj is usually not empty.

A first important observation is that the separator of two overlapping convex shapes

Ci and Cj mush be linear. If the separator is curved, one of the separated shapes must

be non-convex. Given that the separator must be a plane, it is desirable to constrain the

cutting planeH so that the disjoint shapes are separated without a gap in between (i.e. with

overlapping boundary on H). Fig. 5.5 illustrates this idea. To ease our future discussion, we

will use the term ‘trim’ to describe the operation of removing a small volume of an object

by interesting the object and the closed half space H+ or H− bounded by H. We will also

use C ′∗ to denote the trimmed shape, i.e., C ′i = Ci ∩H+ and C ′j = Cj ∩H−.

In the rest of this section, we will start with a heuristic that finds the cutting plane via

least squares fitting and discuss its limitations. To address these limitations, we formulate

an optimization problem and show that solving this optimization problem efficiently is

challenging even in the discrete domain.

5.3.1 A Heuristic using Least Squares Fitting

Naturally, our first attempt computes the intersection of convex hull boundaries ∂Ci and

∂Cj and the cut plane H least-squares fits the intersection. Because the cut plane H fits the

63

(a) Rocket (manual) (b) Brain (SDF [52])

(c) Ultraman (CoRise [34]) (d) Squirtle (Nintendo)

Figure 5.4: Examples of composite shape used in the experiments including models created
by manual segmentation (a), part-aware decomposition (b)&(c), and models composed of
multiple overlapping parts (d). In all these examples, the convex hulls of their parts overlap.

64

Figure 5.5: Top: The cut results in a gap after trimming. Bottom: Overlapping boundary
with disjoint interior is more desirable.

surface intersection, it is guaranteed that the trimmed shapes C ′i and C ′j is interior disjoint

but exterior connected without any gap. In many cases, this simple method creates decent

results as shown in Fig. 5.6.

Although this least-squares fitting approach is extremely fast and easy to implement, its

quality is unbounded. In particular, the volume trimmed by the cut plane is not considered

as shown in the examples in Fig. 5.1. In the cases that ∂Ci and ∂Cj intersect at coplanar or

nearly coplanar facets, have multiple connected-component intersection due to extrusion,

or have highly non-planar intersection, least-squares fitting is too local and greedy and is

clearly not a good approach. Fig. 5.7 shows two examples of such complications.

65

Figure 5.6: left: overlapping convex hulls of a Bowser model. middle: DC-shells created
using least-squares fitting heuristic. right: Results of proposed method.

5.3.2 Disjoint Convex Shells

To provide higher quality disjoint convex shells, it is desirable to minimize the volume of

the underlying volume removed by plane H in R3, therefore H should be derived from the

following optimization function:

arg min
H

(
vol(Pi ∩H+) + vol(Pj ∩H−)

)
, (5.1)

where H+ and H− are the half-spaces on the positive and negative sides of H. Because Pi

and Pj not only are non-convex but also often contain surface holes and are non-manifold,

the optimization problem in Eq. 5.1 becomes ill-defined for many composite models. Instead,

we will focus on the following problem:

arg min
H

(
vol(Ci ∩H+) + vol(Cj ∩H−)

)
. (5.2)

In addition, to ensure that no gap is introduced by H, H must pass through a point in

Ci∩Cj . Let oH be a 3D point on H and nH be the normal direction of H+. The constrains

ensure that oH ∈ Ci ∩ Cj and the objective function determines the exact position oH and

orientation nH so that the trimmed volume is minimized.

66

Ci

cut plane

Cj

Figure 5.7: Complex near-coplanar overlap and extrusion between two convex objects

The key to solving the aforementioned optimization problem is a formulation expressing

the volume of the intersection between a known convex object and unknown 3D plane. In

the literature, it is known that the function of the volume of a convex object intersected by

a moving half-space is highly non-linear even in R3. In fact, computing the exact volume of

a convex shape intersected by a translating plane in arbitrary dimension is known to be #P-

space hard [53, 54, 55]. Several approximation methods were introduced [54, 56]. Almost

all of these methods adopted the idea of uniform sampling of points inside the convex object

[57]. The idea is that, if points are sampled uniformly inside the convex shape, the number

of points approximates the volume. Naturally, we will start off our discussion by assuming

67

that the volumes are approximated by samples in Ci and Cj .

Approximating the Volume with Samples

In this section, we will present two methods that use uniform samples to determine the

separating plane. It is important to note that both methods can also handle points that are

created from the segmented components Pi even though our discussion assumes that points

are sampled from Ci.

Let Si and Sj be two point sets in R3 whose convex hulls overlap. We assume that Si

and Sj are uniformly distributed in a subspace of R3, such as the space enclosed by their

convex hulls. The objective is to find a plane H that minimizes the number of points from

the same set to be separated by H.

arg min
H

(
||Si ∩H+||+ ||Sj ∩H−||

)
, (5.3)

where ||X|| is the cardinality of a finite set X.

We first show that finding all optimal solutions of H takes O(||Si||3||Sj ||3) by reduction

from the classic ham sandwich problem.

Arrangement of Dual Points

Duality has been used in problems such as linear programming. In this method, we will

use an idea similar to that solves the ham sandwich problem [58, 59, 60]. That is, we will

find the plane H in the dual space in which a 3D point P ∗ = (a, b, c) represents a 3D plane

P in primal space with normal direction (a, b,
√

1− a2 − b2) and offset c from the origin.

Similarly, a point Q = (a, b, c) in the primal space becomes a 3D plane Q∗ in the dual space.

The problem of finding H is then equivalent to finding a point H∗ such that the sum of the

number of planes S∗i below H∗ and the number of planes S∗j above H∗ is minimized. Fig. 5.8

illustrates this idea in 2D. Next we show that finding all optimal cuts takes O(||Si||3||Sj ||3)

time.

Theorem 5.1. Given two finite point sets Si and Sj whose convex hulls overlap, finding

68

all optimal cuts of Eq. 5.3 takes O(||Si||3||Sj ||3) time.

Proof. To solve this dual version of our optimization problem, one will have to compute two

arrangements A(S∗i) and A(S∗j) of the planes S∗i and S∗j , respectively. In each arrangement,

every facet will be annotated with the number of planes blow the facet, called level [58].

It is easy to show that every point on the same facet has the same level. Computing such

arrangement and annotating its facets will take O(n3) time where n is the number of points

in Si or Sj . Finally, we overlap A(S∗i) and A(S∗j), and the solution reported as a pair of

intersecting facets (fi ∈ A(S∗i), fj ∈ A(S∗j)) such that level of fi minus the level of fj is

minimized. H∗ must be a point on the intersection of fi and fj . This leads to a computation

of the intersections of A(S∗i) and A(S∗j), which takes O(n3m3) time, where n and m are the

number of points in Si and Sj , respectively.

(a) primal (b) dual

Figure 5.8: (a) The problem of finding a cutting line that minimizes the sum of the number
of stars below the line and the number of circle above the line. (b) The problem of (a)
is equivalent to finding a point so that the sum of the number of thick lines (dual of the
circles) vertically below and the number of thin lines (dual of the stars) vertically above the
point is minimized.

69

Unfortunately, this approach, that finds all possible solutions of H, is impractical since

we only need one of such H. In the next section, we investigate a more efficient approach

using Support Vector Machine.

Using Support Vector Machine

Support Vector Machine (SVM) [61] is a widely used classifier due to its solid mathe-

matic background, its fast computation speed and high classification accuracy. SVM finds

a linear hyperplane to separate positive and negative data in feature space. The hyper-

plane is parameterized by c and d, where c is the normal vector and d is the offset of the

hyperplane. The distance from the closest point to the hyperplane is called margin. SVM

minimizes ||c||2 +µ
∑

i ζi where µ is user parameter and ζi is classification error, subject to

the constraint:

yi(c
Txi + d) >= 1− ζi ,

where yi ∈ {−1, 1} indicates the label of xi. This is known to be a quadratic programming

problem and can be solved efficiently in most cases.

Given point sets Si and Sj , finding the cut plane using SVM to minimize the Eq. 5.3 is

straightforward as we do not consider nonlinear kernel functions and the dimensionality of

our problem is low comparing to the dimensionality of typical classification problems solved

by SVM. However, it is worth noting that, in our problem of separating two convex shapes,

the penalty parameter µ plays a critical term as in majority of cases, the point sets Si and

Sj are not linearly separable and therefore the main task is to minimize the loss function∑
i ζi that is proportional to the distance of misclassified points to the margin.

This becomes problematic because the penalty parameter µ might need to be different

for different models and even between different parts within the same model. For models

whose convex hulls are linearly separable, small µ is sufficient. For models with significant

overlap between convex models, in particular when two overlapping convex shapes have

significant difference in size (i.e., one convex shape is much larger than the other one), µ

needs to be very large to ensure correct separation. Fig. 5.9 shows examples of different

70

µ creating different results. Sometimes, the gaps cannot be eliminated even when µ is as

large as ten thousand. In addition, as µ increases, the optimal solution becomes harder to

find and SVM takes much longer time to coverage and often fails to converge. Solutions

to handle such sampling discrepancy for classification problems usually involve assigning

weights to samples or increasing samples. Both approaches are not viable to us because the

size of samples represents volume.

It might also be tempting to separate only the points in Ci ∩ Cj , instead of all points

sampled, to avoid the aforementioned pitfalls. However, again, this local and greed approach

will create undesirable results in which the cut-off volume becomes unbounded.

Exact Volume Computation

The issue of the penalty parameter µ can be addressed if we can be less dependent on the

sampling discrepancy. The volume of the intersection between a convex shape C = {x ∈

Rn : bi − ai
Tx ≥ 0} and a translating plane H(x) = cTx + d is known to be the sum of a

linear function between the vertices of C and H(x) [55]:

VC =
∑
v∈C

max(0, H(v)n)

n!δvγ1 · · · γn
, (5.4)

where γi satisfies c =
∑

i aiγi and δv is |det([a1 · · ·an])|, and ai is the normal of a hyperspace

of C containing v.

Computing Eq. 5.4 in general space is #P-space hard mainly due to the curse of dimen-

sionality and the vertices v are unknown. Fortunately, our problem is in 3 space and all the

vertices of C are known. In 3D, the volume can be simplified to

VC =
∑
v∈C

max(0,H(v)3)

6δvγ1γ2γ3
=

∑
v∈(C∩H+)

(d+ cT v)3

∆v
. (5.5)

Now, if we let H translate, then VC is a function of d. Given two overlapping convex

71

shapes Ci and Cj , our goal is to find the offset d such that D = VCj − VCi is minimized1.

To determine d that minimizes D between a pair of consecutive vertices of Ci and Cj , we

simply find the roots of the following quadratic equation ∂D
∂d = 0, i.e.,

∑
v∈(Cj∩H+)

3(d+ cT v)2

∆v
−

∑
u∈(Ci∩H+)

3(d+ cTu)2

∆u
= 0 . (5.6)

Fig. 5.10 compares the DC-shells created using SVM with and without minimizing D.

The volume loss is decreased by half using exact volume computation.

Note that, it may be tempting to discard SVM entirely and find the cut plane H by

minimizing Eq. 5.6 with the full degrees of freedom. This means, c is also unknown, and we

will need to solve three first-order partial derivatives ∂D
∂cx

= 0, ∂D
∂cy

= 0 and ∂D
∂d = 0. However,

solving ∂D
∂c = 0 is very challenging as c appears in both nominator and denominator of

D, thus requiring us to find roots of three degree-4 polynomials with multiple degree-6

polynomial constraints. This will require further investigation in our future research.

Handling Interference Between Cuts

Our discussion so far has centered around the case of pairwise overlapping. When more

than two convex objects overlap sharing a common region, these cut planes can have mutual

interference. To describe this phenomenon more clearly, we first observe that: A cut plane

Hij between Ci and Cj can only affect the other overlapping pairs Ci and Ck if H−ij encloses

Ci ∩ Ck. When this happens, we say that Hij and Hik interfere mutually.

Notice that, this observation implies the scenarios of three or more overlapping objects

sharing a common region. Moreover, this observation also implies that interference can only

be realized through a shared object, i.e., Ci in our example.

It is important to note that under these interferences, our objective remains the same:

1We actually wanted to minimize VCj + vol(Ci) − VCi , but vol(Ci) is a constant so it is equivalent to

minimizing VCj − VCi .

72

minimizing volume loss. Therefore, the cut plane Hij interfering Hik should still trim Ci

and Cj as little as possible and, at the same time, it should also minimize the amount of

interference defined as the volume of H−ij ∩ (Ci ∩ Ck). This additional requirement can be

added to Eq. 5.6 to find a cut plane H between Ci and Cj that minimizes it inference to all

affected Ck:

∂D

∂d
+ λ

∂(
∑

k vol(Ck ∩ Ci∨j ,H−))

∂d
= 0 , (5.7)

where λ is a user defined weight that penalizes interference between H and the pair Ck and

Ci or Ck and Cj . In all experiments reported in this disseration, we chose a small λ = 0.01.

Eq. 5.7 can be solved using the same strategy discussed in the previous section as Ck ∩Ci∨j

is also convex. Fig. 5.12 shows before and after inference is penalized.

5.4 Convex Shell Simplification and Regularization

Convex shapes considered in this dissertation are created by taking the convex hulls of

composite shape. Consequently, their facets tend to be skinny and often densely packed

near certain spots. Before these convex objects are trimmed, it is often desirable to simplify

and remesh them to decrease the complexity and increase their regularity. The trimming

process discussed earlier may often produce many small and skinny sliver triangles. It is

critical that these slivers can be removed. Remeshing also makes unfolding and folding

easier, thus ease the fabrication process.

There have been extensive study of convex and non-convex polyhedra simplification

and remeshing, e.g., see reviews in [62]. In our case, we require that the simplified and

remeshed shape maintains its convexity and interior disjointness. We further require that

the simplified and remeshed convex shape must enclose the original convex shapes to avoid

introducing new gaps. Finally, under these critical constrains, we would like to minimize

the gained volume after remeshing.

Simplification. The progressive hull introduced by Sander et al. [63] can be easily

73

adopted for our requirements. The approach is based on a sequence of edge contractions,

in which an edge is contracted to a vertex. The vertex is placed according to a constrained

optimization problem. The constraints are that the vertex must be placed inside the cut

planes and outside the plane of every face incident to the edge. Equivalently, every tetrahe-

dron formed by connecting the new vertex to a face incident to the edge must add volume

to the shape. The progressive hull objective function minimizes the total added volume.

The next edge to contract is the one whose contraction adds the least volume. Edges with

no solution satisfying the constraints are skipped. The constraints and objective function

are linear, since the signed volume of a tetrahedron with three fixed vertices is linear:

A

3
n · (v − v0) ,

where v is the free vertex, v0 is any one of the fixed vertices, and n and A are the outward

unit normal and area of the triangle formed by the three fixed vertices. As a result, the

constrained optimization for each edge contraction is a small linear programming problem

that can be solved efficiently.

Regularization. Although many remeshing methods exist including isotropic remesh-

ing [64] and as-equilateral-as-possible remeshing [65]. To the best of our knowledge, no

remeshing method can ensure convexity. In fact, our study also finds that, while some

vertices are outside the original convex shape, most vertices are inside. This introduces

gaps between parts after remeshing. An example of such problems is shown in Fig. 5.13(c).

To regain convexity, Fig. 5.13(d) shows the convex hulls of Fig. 5.13(c) but regularity is

destroyed.

We propose a new method to address this problem using Laplacian smoothing [66] that

moves every vertex to the center of its neighbors. We formulate the remeshing problem as a

sequence of quadratic programming problems. Each quadratic programming problem mini-

mizes the distance between a vertex v and the center of its neighbors with linear constrains,

similar to the aforementioned constraints for progress hulls construction, ensuring that the

74

mesh remains convex and disjoint after moving v. A result obtained from the proposed

method can be found in Fig. 5.13(b). An extensive study of this new method can be found

in Section 5.6.3.

5.5 Unfolding and Folding DC-shells

While DC-shell can be used in many other domains (such as fracturing shown in the supple-

mentary video), our work on creating DC-shell is motivated by mesh folding and unfolding.

Although efficient algorithms exist for unfolding convex shapes [3], they did not consider

the quality of nets (e.g. ease of fabrication and foldability). In this dissertation, we extend

a genetic-based algorithm [19] to optimize the nets of DC-shells using the fitness function

f =
∑

iwixi, where xi is the feature value and wi is its corresponding weight.

Convex hull area and total cut length are two features considered here. Intuitively,

a smaller convex hull area means the net has a tighter representation which reduces the

fabrication time; it also indicates the net has fewer long branches that are harder to fold.

Since all cut edges need to be glue together when folded, shorter total cut length also makes

folding more easier and makes the foldable object mechanically more stable. In Fig. 5.14,

we show an example of net optimization, from which we can see that, initially, the net

(Fig. 5.14(b)) contains a lot of skinny triangles like spines. After optimization, we get more

desirable nets (Fig. 5.14(c) and Fig. 5.14(d)) whose convex hull area or total cut length

reduced by more than 40%.

5.6 Experimental Results

We implemented the proposed DC-shell methods in C++, which will be released to the

public domain. All data reported here were collected on a 2015 MacBook Pro with a 2.5

GHz Intel Core i7 CPU and 16 GB Memory.

75

Model Triangles LSF SVM Exact

Bowser 999 4.153 18.708 16.391

Brain 1209 2.553 8.811 9.018

Bulbasaur 4971 5.440 10.673 11.705

Bull 105988 17.584 28.386 27.127

Chicken 5000 5.070 12.087 12.479

Cow 5804 7.575 14.257 14.888

Crocodile 5250 6.065 9.922 9.770

Dancing Children 3000 8.898 10.665 11.451

Donkey Kong 900 2.428 18.224 19.557

Frog 53006 8.841 12.091 13.734

Haechi 5001 4.878 12.034 11.940

Hover bike 9331 4.290 45.018 52.604

Mother 996 4.006 8.002 8.306

Pikachu 4368 5.504 7.866 8.017

Rabbit 61026 15.658 23.398 23.221

Rocket 254541 55.131 61.148 59.383

Squirtle 1718 3.401 6.051 6.307

Ultraman 4999 8.140 10.300 11.012

Vulpix 1934 4.932 6.409 7.125

Yoshi 677 3.609 11.730 12.583

union 1525 0.039 0.039 0.038

Table 5.1: Running Time (seconds)

5.6.1 Running Time

Table 5.1 reports the running times of our implementation of all three methods discussed in

Section 5.3, namely LSF (least-squares fit) heuristic method, SVM and exact volume opti-

mization methods. In our experiments, we simplify and regularize the meshes 10 iterations

with maximum volume increase ratio less than 5% of the original volume using the method

discussed in Section 5.4. According to Table 5.1, LSF is fastest (including simplification

and regularization time) but the proposed optimization methods using either SVM or exact

volume computation are only 2 to 10 seconds slower, except for the “Hover bike” model.

SVM and exact methods are much slower in this example because Hover bike contains 49

components and many of them are small and deeply embedded in some larger convex parts.

76

5.6.2 Quality Comparison

The quality of DC-shell is measured by volume loss from trimming the input convex shapes.

That is to say, a DC-shell has higher quality if it removes less material from input to provide

disjointness. More specifically, volume loss is defined as

volorig − volshell
volorig

, (5.8)

where volorig is the volume of the union of the original convex shapes and volshell is the sum

of the volume of all disjoint convex shells.

Case study. We start by measuring the volume loss of the proposed methods with

models obtained from various sources. Table 5.2 reports the volume loss in percentage of all

DC-shells generated from least-squares fit, SVM, and the exact methods. As the original

convex objects are not disjoint, to obtain the original volume, we need to perform boolean

union. CGAL is used to perform this operation. In the case that CGAL failed to create a

2-manifold mesh, a volumetric method is used to provide a tight upper bound of the union.

The least-squares fit (LSF) method performs quite well on some models such as Squirtle

but extremely poor on the others such as Bull model with over 24% volume loss. The SVM

method has smaller volume loss than LSF in most cases but performed worse than LSF on

Bowser, Spaceship, and Squirtle models and still has over 10% volume loss on the Bull and

Hover bike models. Finally, the exact method consistently provides the highest quality DC-

shell in all models experimented. Even fro the cases that LSF and SVM methods perform

well, the exact method can always reduce volume loss even further.

Controlled study. In this experiment, two intersecting convex shapes have various

degree of overlapping. Fig. 5.15 shows the DC-shells generated. LSF method consistently

generates low quality results with large volume loss (11.43% on average) due to none-planar

local intersection. The optimization methods using SVM and exact volume computation,

on the overhand have only 2.1% and 0.9% volume loss, respectively. In general, SVM and

77

Orignal LSF SVM Exact
volume

Bowser 1112400 0.37% 0.59% 0.29%

Brain 508.462 2.69% 1.32% 1.17%

Bulbasaur 883179 0.15% 0.18% 0.14%

Bull 1.91992 24.67% 10.76% 2.12%

Chicken 142277 0.10% 0.18% 0.10%

Cow 110099 11.93% 1.32% 1.03%

Crocodile 27460.2 33.09% 4.46% 4.40%

Dancing Children 4739.83 3.00% 1.62% 0.86%

Donkey Kong 332858 22.48% 1.90% 1.73%

Frog 93009.3 1.83% 0.24% 0.24%

Haechi 291371 0.73% 0.64% 0.62%

Hover bike 159621 6.70% 10.62% 5.79%

Mother 295009 0.74% 0.49% 0.31%

Pikachu 80684.7 0.181% 0.102% 0.096%

Rabbit 366139 1.36% 0.84% 0.67%

Rocket 3684920 0.84% 4.2% 0.40%

Squirtle 98.6569 0.25% 0.45% 0.22%

Ultraman 297887 11.24% 1.13% 1.07%

Vulpix 247.295 0.64% 0.65% 0.42%

Yoshi 576266 0.56% 0.69% 0.47%

Table 5.2: Quality of DC-shells produced using least squares fit (LSF), SVM and exact
methods is measured by volume loss defined in Eq. 5.8. The penalty parameter C is 100
for all examples. The method with the largest volume loss for each model is shown in bold.

exact methods produce similar results, except the last example where two bars overlapping

vertically. The exact method produces more natural DC-shells with smaller volume loss.

5.6.3 Results from Convex Remeshing

The quality of regularization is measured by the weighted average fatness of the mesh facets.

Fatness of a given triangle f is defined as cos∠a+ cos∠b+ cos∠c−1, where ∠a, ∠b, ∠c are

internal angles of f . The optimal fatness is 0.5. Then weighted average fatness of a given

polyhedron P is
∑
f∈P Af fatness(f)∑

f∈P Af
, where Af is the area of f .

Fig. 5.16 shows weighted average fatness from 1 to 100 iterations of remeshing at four

different levels of maximum volume increase percentages: 1%, 10%, 100%, and 1000%.

78

Larger maximum volume increase percentages allows more room for optimization, thus

should provide better regularization. From the plots, we can see that, with 1% maximum

volume increase, the facet fatness increases gradually. At 10% to 1000% maximum volume

increase, the fatness increases drastically and barely change after it reaches a certain fatness.

The weighted average fatness increase by approximately 25% at least after regularization.

The plots in Fig. 5.16 also shows the fatness of the convex hulls of remeshed convex objects

using isotropic remeshing implemented in CGAL, i.e., Fig. 5.13(c) and (d). The fatness of

convex shapes obtained through this approach are consistently lower than ours.

5.7 Fabricating Physical Models

This section details the application of DC-shell in making paper craft. Composite shapes

used in the experiment are shown in Fig. 5.17. Although not demonstrated here, we believe

DC-shell can also facilitate other manufacturing process, including traditional subtractive

manufacturing (e.g., wood carving) and modern additive manufacturing methods (e.g., 3d

printing).

Generating Foldable Nets. We first unfold the original composite shape and its DC-

shells into nets. For fair comparison, we simplify the original model such that the number

of triangles equals to total number of triangles of all DC-shells. Once we obtained the

optimized nets, motion planning technique [11] is adopted to find a folding motion that

continuously transform the net from the flat state to the folded state. Continuous motion is

critical which ensures the model is physically realizable, besides, it can also act as a folding

guide for human folders. The computation time of unfolding and folding all components

is reported in Table 5.3, from which we can see that DC-shells significantly reduce the

unfolding and path planning time by several orders of magnitude. It is important to note

that some parts of the composite shapes cannot be unfolded.

Fabrication and Comparison. We compare the folding times required to fold the

original shape and DC-shells using three models from Fig. 5.17 whose original mesh can

be unfolded successfully. Recall that the the original shape and DC-shell have the same

79

Bulbasaur Chicken Bull Crocodile Haechi Rabbit Frog Squirtle
Number of triangles 1138 1028 1038 1570 608 936 610 542
Number of parts 12 12 12 17 6 10 6 7

Patch Unfolding Time (s) 112.384 469.288∗ 462.868∗ 684.161∗ 174.831∗ 95.717∗ 36.122 15.179
Patch Folding Time (s) 72.468 541.273∗ 201.821∗ 89.394∗ 4.442∗ 63.931∗ 294.184 9.584

DC-shell Unfolding Time (s) 0.065 0.068 0.074 0.124 0.032 0.059 0.045 0.034
DC-shell Folding Time (s) 1.255 1.382 1.478 2.031 0.843 0.985 0.732 0.426

Table 5.3: Folding and unfolding time in seconds of segmented parts and their DC-shells.
Running times marked with ∗ indicate certain parts of the original models have no valid
nets.

number of facets. Details on the tools and fabrication steps can be found in Supplementary

materials. Fabricated results are shown in Table 5.4 and Fig. 5.18. The subjects both

commented that nets of DC-shell are easier to fold comparing to that of original mesh

patches, and DC-shells are easier to assemble since they share cutting planes while nearly

convex patches only share cutting edges.

Bulbasaur Frog Squirtle

Original mesh 118 mins 104 mins 90 mins

DC-shells 80 mins 59 mins 60 mins

Table 5.4: Fabrication time by two adult subjects

User study. We conducted a user study with 102 children at an elementary school

whose ages are 9 and 12 years old during class hours. They worked together in groups of

three or four. Depending on their lessons, students fold a subset of models from Fig. 5.17.

Upon completion, students then decorated their finished craft for a puppet show.

To ensure that the students can complete their folding on time, we enlarged some small

parts (e.g., horn, ear, beak). We also added square marks and short strokes on to the nets

that represent which vertex is a starting point to fold nets and which edges are assembled,

respectively. These two types of marks help students fold without detailed instructions. We

taught students the meaning of these marks and ask them to fold each net into a convex

shape.

80

The folded models are shown in Fig. 5.19. The study didn’t show significant differences

in fabricating time between 9-year-old and 12-year-old students in Table 5.5. The younger

students did the paper craft as well as the older students did, although Bulbasaur, chicken

and bull models have more than 1000 triangles. This indicates that DC-shell eases the

fabrication process. In addition, the crocodile model has 2.9 times and 1.7 times more

triangles that those of Squirtle and Rabbit, nonetheless, the difference in fabricating time

between the crocodile model and the others is only 1.1%.

Model Bulbasaur Chicken Bull Crocodile Haechi Rabbit Frog Squirtle
Number of triangles 1138 1028 1038 1570 608 936 610 542

Fabricating time

(number of students)

47 (3) 35 (3) 50 (3) 65 (4) 63 (3) 48 (3) 50 (3) 49 (3)
65 (3) 50 (3) 43 (3) 60 (3) 41 (3) 62 (3) 20 (3) 60 (3)
65 (3) 55 (3) 40 (3) 55 (3) 50 (3) 57 (3) 60 (3)
75 (3) 45 (3) 48 (3) 33 (3∗) 74 (3) 50 (3)
40 (3∗) 45 (3∗) 60 (3∗) 35 (3∗) 55 (3∗)

Average time 58.4 46 48.2 60 46.75 55.2 35 54.8

Table 5.5: Fabricating time in minutes. Data collected from groups of three or four 9 and
12-year-old students at an elementary school. ∗ test conducted by 12-year-old students.

5.8 Conclusion

In this chapter, we presented an optimization method that creates pairwise disjoint convex

sets from a composite shape. We showed that this seemingly simple problem is in fact

computational expensive and simple solutions do not work. Our methods combined SVM

and exact volume computation to find cut planes that minimize volume loss from trimming

the overlap. The quality of the proposed methods was shown experimentally better than

heuristic methods using composite shapes from various sources. Mesh unfolding was used

to further demonstrate the benefits provided by DC-shells via virtual (algorithm) folders

and human folders. Our user studies showed that DC-shells made paper craft creation and

design more accessible to school-age children and provides chances to enrich their education

experiences. One major limitation of our approach is its dependency on composite shapes.

81

Future work will investigate generation of DC-shells without segmentation. In addition, as

indicated at the end of Section 5.3.2, volume loss may be further reduced without SVM.

82

(a) µ = 0.01 (b) µ = 0.1 (c) µ = 1.0 (d) µ = 10

(e) µ = 0.01 (f) µ = 0.1 (g) µ = 1.0 (h) µ = 10

(i) µ = 100 (j) µ = 1K (k) µ = 10K

Figure 5.9: top: Changing penalty parameter µ from 0.01 to 10 affects SVM cuts. bottom:
Gaps shown in red below the spikes narrow at different rates as µ increases from 0.1 to 10,000
because the spike on the left is buried deeper than the one on the right.

83

Figure 5.10: Left: DC-shells created using SVM. The red regions are volumes trimmed
from the original input to create disjoint convex objects. The volume loss 1.62% of the
volume of the union of the input convex hulls. Right: DC-shells created using exact
volume computation. The volume loss is at 0.86%.

Ci

Cj Ck

Ci

Cj Ck

before trimming

after trimming

Ci

Cj Ck

Ci

Cj Ck

Figure 5.11: The cut between Ci and Cj on the left interferes with Ci and Cj . The cut on
the right does not.

84

Figure 5.12: Cuts between the tails and the torso of a Vulpix model interference and make
some tails completed separated from the torso.

85

(a) original hull (b) our remesh

(c) isotropic remesh of (a) (d) convex hulls of (c)

Figure 5.13: Remeshing results using the proposed method (b) and using isotropic remesh
(c) and then reenforce convexity using convex hulls (d). Notice the skinny triangles on
Pikachu’s belly in (d).

86

(a) Model (b) Before optimization.

(c) Minimal convex hull area. (d) Minimal total cut length.

Figure 5.14: Optimized nets of a Bulbasaur’s seed model. Convex hull area is reduced by
41.42% and total cut length is reduced by 50.41%.

87

Figure 5.15: A controlled study with two intersecting bars. From top to bottom: input over-
lapping bars, and DC-shells created by least-squares fit heuristic, SVM and exact methods.

88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

Maximum volume increase percentage
1%
10%

100%
1000%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

CGAL remeshed model

(a) Mother

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

Maximum volume increase percentage
1%
10%

100%
1000%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

CGAL remeshed model

(b) Rocket

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

Maximum volume increase percentage
1%
10%

100%
1000%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

CGAL remeshed model

(c) Ultraman

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

Maximum volume increase percentage
1%
10%

100%
1000%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

CGAL remeshed model

(d) Bulbasaur

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

Maximum volume increase percentage
1%
10%

100%
1000%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

CGAL remeshed model

(e) Bull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

Maximum volume increase percentage
1%
10%

100%
1000%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

W
ei
gh
te
d
av
er
ag
e
fa
tn
es
s

Number of iterations

CGAL remeshed model

(f) Crocodile

Figure 5.16: Weighted average fatness with respect to number of iterations at four different
percentages of maximum volume increase: 1%, 10%. 100%. and 1000%.

89

(a) Bulbasaur (b) Bull (c) Chicken (d) Crocodile

(e) Frog (f) Haechi (g) Rabbit (h) Squirtle

Figure 5.17: Models used in our fabrication experiments in Section 5.7.

90

Figure 5.18: Models built from the composite shape and DC shells.

91

Figure 5.19: Paper crafts created by 9-year-old school children.

92

Chapter 6: Compact Folding

6.1 Introduction

Methods has been developed for simulating the folding process of a given crease pattern

[9, 67] and for generating crease patterns from 3D shapes [18]. Most existing methods

assume zero thickness material, a few new methods has been proposed in the literature to

accommodate the thickness of the material with their own merits and demerits [68, 69, 70,

71].

Figure 6.1: Comparison of the actual size of the folded, unfolded and stacked states of a
cube model. The thickness of the panel is 5% of its size.

Assembling a polyhedron from one or multiple flat yet foldable/developable components

is known as paper crafting which is another practical approach to fabricate complex 3D

93

(a) Original mesh (b) Voxelized

(c) Stripified (d) Thickened (e) Stacked

Figure 6.2: Pipeline of our approach.

shapes from flat materials [2, 12, 17, 19]. By cutting along a carefully selected subset

of edges of the polyhedron, we could unfold the polyhedron into a planer shape on 2D

space without overlapping which is called a net of the polyhedron. Both heuristic methods

(mostly only work on convex shapes) and evolutionary algorithms are proposed Also, the

huge dimension of the nets makes it hard to fabricate in practice.

One main advantage of foldable shapes is the compactness of their folded state as show

in Fig. 6.1. This makes carrying of large objects, from maps, umbrellas, chairs, etc., used

94

in our daily life to the solar panels on the satellite, possible and much easier. [70] propose

a method for designing origami-based deployable arrays with a high deployed-to-stowed

ratio which can be used to design solar cells in the spacecraft. [72] present a method of

transforming a 3D shape into a box.

In this disseration, we propose a new approach to fabricate foldable 3D shapes with

limited working space by finding most compact folded states of the model. Unlike traditional

methods that start from unfolded flat sheets and take the original model as the folded state,

our method finds a Hamiltonian path in the mesh such that we can fold/stack all faces into

one or multiple connected piles, the original model then can be obtained by unfold the piles.

Experimental results show that our method can significantly reduce the workspace required

to fabricate the models.

6.2 Related Works

6.2.1 Fold Thick Origamis

Mathematical models for folding rigid origami has been developed [67], however, assuming

zero thickness material makes it hard to use in practice. Methods for accommodating

thick material then were proposed in the literature, including: Axis-shift method [68], this

method shifts the rotation axes to either top or bottom of the thick panel depends on the

crease type (e.g. mountain or valley); Volume Trimming method [68], this method trims

the edge of material to maintain the kinematics to a limited folding angle range; Offset

Panel method [69], this method offsets the panels while maintain the rotation axes which

can accommodate the full range of motion. Offset Crease method [70], this method widens

creases with flexible material and add gaps for folds to accommodate thickness. A detailed

comparison of these methods can be found in [71].

95

6.2.2 Mesh Stripification

The Hamiltonian path/cycle problems are to determine whether there exists a Hamiltonian

path/cycle (a path/cycle in the graph that each vertex is visited exactly once) in the given

graph which are both NP-complete. Finding a Hamiltonian path/cycle is as hard as deter-

mining its existence. The best algorithm so far finds a Hamiltonian cycle in O(1.657n) for

a n-vertex graph and O(1.251n) for sparse graphs in which every node has a max degree

of 3 [73]. Mesh stripification is a special case of the Hamiltonian path problem which has

applications in computer graphics for fast rendering, mesh simplification and compression

[74].

[75] finds a Hamiltonian triangulation of a quadrilateral mesh in linear time. It first finds

cycles in the dual graph of the mesh and then merge the cycles by flipping the diagonal edges.

Although this method is efficient, there is no direct extension to find a single quadrilateral

strip. [76] uses the 2-factor partitioning of the dual graph of the quadrilateral mesh to find

disjoint cycles and merge those cycles into one. However, this mesh requires a nontrivial

refinement of the mesh to form the Hamiltonian cycle makes it not applicable to stacking

problems.

6.3 Our Approach

We show the pipeline of our approach in Fig. 6.2. There are 4 main steps: mesh voxelization,

mesh stripification, thickness accommodation and stacking. The main idea of our approach

is to approximate the input mesh with equal size square panels. By finding a Hamiltonian

path of the In Fig. 6.2(c), the faces are color-coded to represent the Hamiltonian path. The

starting point is shown in purple, the middle point is shown in green and the end point is

shown in yellow.

96

(a) t = 0 (b) t = 0.01l (c) t = 0.05l (d) t = 0.1l (e) t = 0.2l

Figure 6.3: The folded state of a cube model and its corresponding stacked state under
different thicknesses. l is the original panel size and t is the panel thickness.

6.3.1 Mesh Voxelization

Voxelization [77] is widely used in compute graphics with applications in visualization, fluid

simulation, particle collision, etc. There exists two type of mesh voxelizations: surface

voxelization and volume voxelization. In surface voexlization, only the surface region of

model will be filled with the voxels while in volume voxelizaiton, voxels are also filled in the

inner side of the mesh. We extract the out-most faces from the surface voxelization of the

mesh which gives us a perfect mesh for stacking: all faces are identical squares. And each

face can fold onto or under any one of its 4 neighboring faces.

6.3.2 Stripification of Quadrilateral Meshes

After voxelization, each face becomes a square and has exact 4 neighbor faces. We are

guaranteed to find Hamiltonian paths in the dual graph of the voxelized mesh as a 4-regular

graph such that we can cut the mesh and make it stackable.

Traveling Salesman Problem The exponential running time for finding Hamiltonian

cycles prohibits its practical usage on quadrilateral meshes of thousands of faces. We convert

97

the Hamiltonian path problem (HPP) into the well known Traveling salesman problem

(TSP) which finds a Hamiltonian cycle with minimum cost (the sum of crossed dual edge

weights). We set the weight of a pair of nodes to 1 if there is an edge connects them and

+∞ otherwise, then we know the optimal solution is n if there are n faces in the original

mesh.

There are several reasons for us consider switching to TSP: 1) The solution of TSP can

be converted to a set of solutions of HPP. 2) TSP is a well studied problem comparing to

HPP, thus many solvers available in the public domain. 3) The pre-known upper bound n

helps the solver to cut unnecessary branches thus find solutions more efficiently. We use

public available yet state-of-art TSP solver Concorde [78] to find Hamiltonian paths in the

dual graph of the mesh.

6.3.3 Thickness Accommodation

All previous methods for accommodating thickness have only one target state, the folded

state. And a panel only folds in one direction, e.g. it is either a mountain fold or a valley

fold. In this dissertation, we propose a new thickness accommodation method based on the

Offset Crease method [70] which enables us fold the panels into two target states, the folded

state and the stacked state. We will show that the proposed method guarantees that both

target states are self-intersection free. We illustrate our proposed method in Fig. 6.4.

Panels Assuming the original (zero thickness) panel size is l × l, panels of thickness t

are trimmed to (l− 2t)× (l− 2t)× t to accommodate thickness while enabling them to fold

to both directions. Thus the maximum thickness that can be accommodated in our system

is t = 0.5l.

Hinges The sliding hinge needs to have a variable length from
√

2
2 t to t during the

entire folding process. We categorize the entire folding motion of a hinge into two stages:

1) folding stage. As shown in Fig. 6.5(a), |θi| ≤ π
2 , we would like to preserve the kinematics

as of folding zero thickness material such that we can ensure the final folded state is globally

intersection free. 2) stacking state. As shown in Fig. 6.5(b), |θi| > π
2 , the goal is to smoothly

98

w

t
t/2

l

t/2

t

(a) flat

(b) folded

(c) stacked

Figure 6.4: The proposed method to fold thick panels.

extend the hinge from
√

2
2 t to t to accommodate the thickness when stacked.

The length of the i-th hinge is derived in Eq. 6.1,

hi =


cos(|θi|2) · t, |θi| ≤ π

2

√
2

2 · sin(
|θi|−π2

2) · t, |θi| > π
2

(6.1)

where θi is the folding angle of the ideal crease, t is the thickness of the material. When

θi = 0, the flat state, hi = t; θi = ±π
2 , the maximum folded state, hi =

√
2

2 t; θi = ±π, the

stacked state, hi = t. During the entire folding range, we have
√

2
2 t ≤ hi ≤ t.

99

t/2
𝜃i

t/2hi

(a) folding stage: |θi| ≤ π
2

hi

t

𝜃i/2

(b) stacking stage: |θi| > π
2

Figure 6.5: Hinge length constraints during folding.

Connection We assume panels and hinges are connected by rigid thin material (shown

as magenta panels in Fig. 6.3) whose size is (l − t) × (l − t) × tc, tc � t. The center of

connection part is aligned with the center of the panel.

We simulate the folded and stacked states of a cube model with different thicknesses,

the results are shown in Fig. 6.3.

6.3.4 Stacking

Once we find a Hamiltonian cycle for a mesh, we can break the cycle at arbitrary position

to get a strip. For a non-zero thickness panel in the strip, assuming only its neighboring

panels can stack with it, one folded onto it and one folded under it. By assigning the folding

angles of the panels properly along the path, we can stack all panels of the mesh into one

or two piles.

Theorem 6.1. A single strip can be stacked into one or two piles.

Proof. Picking either end of the strip as the base face, a single pile stacking can be achieved

by fold each child panel onto its parent panel along the strip. Unfolding the stacking at

arbitrary position yields two piles.

100

Type of Panels and Piles We say a pile is a uphill pile if the heights of its panels

along the strip are increasing, otherwise it is a downhill pile. The base panel of a pile is the

panel with height of 0. A penal is the roof panel of the pile if it is the highest one in that

pile. The roof panel Rup of a uphill pile Pup can connect with the roof panel Rdown of a

downhill pile Pdown, while the base panel Bdown of a downhill pile Pdown can connect with

the base panel B′up of another uphill pile P ′up. Pup and Pdown must have the same heights

in order to connect at the roof, while Pdown and P ′up can have different heights since they

connect at the base. The remaining questions is how to determine the heights for each pile.

We discuss two assigning strategies, uniform stacking and non-uniform stacking as shown

in Fig. 6.6, to stack the mesh into multiple piles (e.g. 2x2, 3x3), a more compact state, in

details in the following.

(a) Uniform stacking

(b) Non-uniform stacking

Figure 6.6: Front view of two stacking strategies.

Uniform Stacking In uniform stacking, as shown in Fig. 6.6(a), all the piles have

the same number of panels. Assuming we always start stacking with a uphill pile then an

exception can be made for the last pile if it is a uphill pile. The last uphill pile can have

different height, either higher or lower than the rest of the piles. Given a mesh with n

101

panels and the number of piles k, the height h of each pile can be d∗en/k.

Fold to Stacked State The folding angle of an edge that connects two faces is π− ρi,

while ρi is the dihedral angle between two faces. Let θi and θ′i denote the folding angle of

edge ei in the original mesh and in the stacked state respectively. Let Pi be the child panel

of ei, that is when ei rotated, Pi will rotate with ei.

θ′i =


0, Pi is a base or roof panel

−π, Height of Pi is odd

π, Height of Pi is even

(6.2)

In order to fold the mesh into the stacked state, the angle needed to fold for edge ei is

θ′i − θi. By assigning the folding angle for each edge based on the type of its child panel,

we can fold the mesh into the stacked status in O(n). However, not all stacked states are

feasible since some piles might collide with others. By breaking the Hamiltonian cycle at

different locations, we have up to n− 1 different strips and stacked states. For each stacked

state, we can check the coordinates of each pile in O(k) to filter out invalid stackings. We

show a mountain model and its stackings of different number of piles in Fig. 6.7.

Non-uniform Stacking We can relax the same height constraint when there is not

enough variation to find a valid folded state via uniform stacking. Each pair of uphill and

downhill piles still need to have the same height, while the downhill to uphill pair of piles

can have different heights. For simplicity, the height of the later uphill pile is chosen from

{h, h± l}, where l can be 1, 2, · · · ,m, m < h. This gives us m · (3b∗ck/2−1) different stacked

states for each strip.

Most Compact Stacking For a given voxelized mesh m, its most compact stacking s

can be computed based on the size and the thickness of the panel. The compactness C is

measured as:

C =
|Ws|+ |Ds|+ |Hs|
|Wm|+ |Dm|+ |Hm|

, (6.3)

102

where W,D,H represents the width, depth and height.

Hs = t d∗e |F |
WsDs

, Let Ws = Ds, then the optimal compactness C =
3 3
√
t|F |

|Wm|+|Dm|+|Hm| can

be obtained when Ws = 3
√
t|F |, where |F | is the number of faces in m and t is the thickness

of the panel which has a dimension of 1× 1.

We can also use the volume ratio to measure the compactness:

Volume Ratio =
Vbbox
Vmesh

, (6.4)

which is simply the volume of bounding box of the stacking divided by the volume of the

original mesh.

6.4 Experimental Results

6.4.1 Experimental Setup

We implemented the proposed method in C++. All data are collected on a Macbook Pro

with a 2.5 GHz Intel Core i7 CPU with 16GB Memory running macOS 10.12. We show the

models used in the experiments in Fig. 6.8.

6.4.2 Finding Hamiltonian Paths

We use Concorde TSP solver to find Hamilton paths in the dual graph of the mesh. The

running time for finding a Hamilton path on different models in Table 6.1 from which we

can see that the running times grow almost linearly to the number of quads in the mesh.

6.4.3 Most Compact Stacking

We show the most compact stackings of the Bunny model shown in Fig. 6.8(d) under

different thickness in Fig. 6.9. The compactness and volume ratio of the optimal stackings

of the Bunny model is listed in Table 6.2.

103

6.4.4 Finding Continous Folding Motions

We use motion planning technique to find continuous folding motion between the stacked

state the target state. A discrete domain sampling based planner [11] is employed to find

such motion to ensure it is physically realizable. We show the folding motion of the Mountain

model (shown in Fig. 6.7) from 1-pile stacking to unfolded shape in Fig. 6.10. It takes,

average of 30 trails, 79.09 seconds for the planner to find a continuous folding path for the

chain.

6.4.5 Physical Models

We show physical realization of the cube model using Lego to illustrate the proposed idea

of two foldable target shapes. The panel size is 3.2in × 3.2in × 1.0in, the size of ideal zero

thickness panel will be 3.6in × 3.6in. The net, the folded state and the stacked state of the

cube model are shown in Fig. 6.11. We also show two others shapes that can foldable from

the cube chain.

6.5 Conclusion

In this disseration, we propose a novel approach to fold a voxelized mesh into a much more

compact form called stacking which enable us to fabricate (e.g. 3D-printing and unfolding)

a large 3D model from a much smaller workspace. We show a technique to accommodate

the thickness of the material which also enables the folding motion in both directions.

Limitations and Future Works In this disseration, we did not plan the folding motion

for those complex thick chains by assuming there always exists a collision folding path due

to its huge degree of freedom (DOF). Meanwhile, the high degree of freedom (DOF) makes

the thick chains hard to fold for both humans and themselves as self-folding machines. We

are seeking other representations instead of voxelization to obtain a better yet stackable

approximation of the original model.

104

(a) The mountain model (b) 1-pile stacking.

(c) Stackings of 4 piles.

(d) Stackings of 6 piles.

Figure 6.7: A mountain model and its representative stackings of different number of piles.

Model # of Quads Time (s)

Donut 32 0.01

Tower 462 0.59

Table 1964 3.68

Bunny 2206 2.50

Fish 4396 5.41

Table 6.1: Running time of finding a Hamiltonian path.

105

(a) Donut (b) Tower (c) Table

(d) Bunny (e) Fish

Figure 6.8: The color coded Hamiltonian paths of the models.

(a) 1× 1, t = 5× 10−4 (b) 2× 2, t = 4× 10−3 (c) 3× 3, t = 1.35× 10−2

Figure 6.9: The compactest stacked states of the Bunny model (Fig. 6.8(d)) under different
thicknesses.

106

t Base Size Compactness Volume Ratio

0.0001× l 1× 1 0.0305 5.7776× 10−5

0.001× l 2× 2 0.0632 5.7776× 10−4

0.01× l 4× 4 0.1173 5.7776× 10−3

0.1× l 8× 8 0.3024 5.7776× 10−2

0.2× l 10× 10 0.3780 1.1284× 10−1

Table 6.2: The optimal compactness and volume ratio of the stacked Bunny model under
different thicknesses.

Figure 6.10: The continuous unfolding motion of the Mountain model from its stacked shape
to target shape. The folding motion can be best visualized using our web-based interactive
folder at https://goo.gl/BDSWbd.

107

(a) Net (b) Folded

(c) Stacked (d) Stacked (2 piles)

(e) Plane (f) House

Figure 6.11: A Lego realization of the cube model and two other shapes folded from the
thick panel chain.

108

Chapter 7: Conclusions

The main thread of this dissertation was to make shapes foldable. We discussed the mod-

eling two types of foldable objects: rigid origami and unfoldings of polyhedra. For edge

unfoldings, a genetic algorithm was proposed to find non-overlapping unfoldings for non-

convex shapes. Based on that, we propose a learning-based approach to simultaneously

segment and unfold a complex non-convex shape. We also present a novel approach to fold

complex 3D shapes into its compactest states via stacking. For both types of foldable ob-

jects, motion planning technique was used to find a feasible continuous folding path which

is key step towards building self-folding machines. We present a new sampling strategy

to sample in the discrete domain which significantly increase the probability of generating

valid samples thus finds feasible path more efficiently.

7.1 Future Researches

Although our preliminary results are promising, the work in this dissertation still has many

concerns and several problems remain open. The shape and topology of nets play a very

important role in planning continuous folding motion, e.g., for a given shape, some nets of it

are easier to fold than others in terms of path planning time. We would like to find/generate

optimal nets for a given mesh. More specifically, we are looking for nets that are (nearly)

linearly foldable. We say a net is linearly foldable if it has a straight line path in Cfree, whose

path planning time is negligible comparing to non-linearly foldable nets. Most importantly,

linearly foldable nets are more suitable for self-folding robots whose actuation is hard or

impossible to control (e.g. via uniform heating) since folding all the creases at the same

speed transforms the net to the target shape continuously without self-intersection.

109

Bibliography

[1] L. Glover, “KitRex,” 2014. [Online]. Available: http://www.kit-rex.com/

[2] S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin, and H.-C. Yen, “Optimized topological

surgery for unfolding 3d meshes,” in Computer Graphics Forum, vol. 30, no. 7. Wiley

Online Library, 2011, pp. 2077–2086.

[3] W. Schlickenrieder, “Nets of polyhedra,” Master’s thesis, Technische Universität Berlin,

1997.

[4] S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood, “A method for building

self-folding machines,” Science, vol. 345, no. 6197, pp. 644–646, 2014.

[5] B. An, N. Benbernou, E. D. Demaine, and D. Rus, “Planning to fold multiple objects

from a single self-folding sheet,” Robotica, vol. 29, no. 1, pp. 87–102, 2011.

[6] L. Swanstrom, M. Whiteford, and Y. Khajanchee, “Developing essential tools to enable

transgastric surgery,” Surgical endoscopy, vol. 22, no. 3, pp. 600–604, 2008.

[7] T. Tachi, “Designing freeform origami tessellations by generalizing resch’s patterns,”

Journal of Mechanical Design, vol. 135, no. 11, p. 111006, 2013.

[8] G. Song and N. M. Amato, “A motion-planning approach to folding: From paper craft

to protein folding,” Robotics and Automation, IEEE Transactions on, vol. 20, no. 1,

pp. 60–71, 2004.

[9] Z. Xi and J.-M. Lien, “Folding rigid origami with closure constraints,” in Interna-

tional Design and Engineering Technical Conferences & Computers and Information

in Engineering Conference (IDETC/CIE). Buffalo, NY: ASME, Aug. 2014.

110

http://www.kit-rex.com/

[10] D. Dougherty, “The maker movement,” innovations, vol. 7, no. 3, pp. 11–14, 2012.

[11] Z. Xi and J.-M. Lien, “Continuous unfolding of polyhedra - a motion planning ap-

proach,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), Hamburg, Germany, Sep. 2015, pp. 3249 – 3254.

[12] I. Shatz, A. Tal, and G. Leifman, “Paper craft models from meshes,” The Visual

Computer, vol. 22, no. 9-11, pp. 825–834, 2006.

[13] F. Massarwi, C. Gotsman, and G. Elber, “Papercraft models using generalized cylin-

ders,” in Computer Graphics and Applications, 2007. PG’07. 15th Pacific Conference

on. IEEE, 2007, pp. 148–157.

[14] D. Julius, V. Kraevoy, and A. Sheffer, “D-charts: Quasi-developable mesh segmenta-

tion,” in Computer Graphics Forum, vol. 24, no. 3. Wiley Online Library, 2005, pp.

581–590.

[15] S. Katz and A. Tal, “Hierarchical mesh decomposition using fuzzy clustering and cuts,”

ACM Trans. Graph., vol. 22, no. 3, pp. 954–961, 2003.

[16] R. Straub and H. Prautzsch, “Creating optimized cut-out sheets for paper models from

meshes,” Karlsruhe Institute of Technology, Tech. Rep., 2011.

[17] J. Mitani and H. Suzuki, “Making papercraft toys from meshes using strip-based ap-

proximate unfolding,” in ACM Transactions on Graphics (TOG), vol. 23, no. 3. ACM,

2004, pp. 259–263.

[18] T. Tachi, “Origamizing polyhedral surfaces,” Visualization and Computer Graphics,

IEEE Transactions on, vol. 16, no. 2, pp. 298–311, 2010.

[19] Z. Xi, Y. hyeong Kim, Y. J. Kim, and J.-M. Lien, “Learning to segment and unfold

polyhedral mesh from failures,” in Shape Modeling International (SMI); also appears

in Journal of Computers & Graphics, Berlin, Germany, Jun. 2016.

111

[20] S. Ahmed, C. Lauff, A. Crivaro, K. McGough, R. Sheridan, M. Frecker, P. von Lockette,

Z. Ounaies, T. Simpson, J.-M. Lien, and R. Strzelec, “Multi-field responsive origami

structures: Preliminary modeling and experiments,” in Proceedings of the ASME 2013

International Design Engineering Technical Conferences & Computers and Information

in Engineering Conference, August 2013.

[21] S.-M. Belcastro and T. Hull, “A mathematical model for non-flat origami,” in

Origami3: Proc. the 3rd International Meeting of Origami Mathematics, Science, and

Education, 2002, pp. 39–51.

[22] S. Miyazaki, T. Yasuda, S. Yokoi, and J.-i. Toriwaki, “An origami playing simulator

in the virtual space,” Journal of Visualization and Computer Animation, vol. 7, no. 1,

pp. 25–42, 1996.

[23] D. J. Balkcom and M. T. Mason, “Robotic origami folding,” The International Journal

of Robotics Research, vol. 27, no. 5, pp. 613–627, 2008.

[24] T. Tachi, “Simulation of rigid origami,” in Origami4: Proceedings of The Fourth In-

ternational Conference on Origami in Science, Mathematics, and Education, 2009.

[25] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path planning for linkages

with closed kinematic chains,” IEEE Transactions on Robotics and Automation, vol. 17,

no. 6, pp. 951–958, 2001.

[26] J. Cortes, T. Simeon, and J. P. Laumond, “A random loop generator for planning the

motions of closed kinematic chains using PRM methods,” in Proc. of IEEE Int. Conf.

on Robotics and Automation, 2002, pp. 2141–2146.

[27] L. Han and N. M. Amato, “A kinematics-based probabilistic roadmap method for

closed chain systems,” in Robotics:New Directions. Natick, MA: A K Peters, 2000,

pp. 233–246, book containts the proceedings of the International Workshop on the

Algorithmic Foundations of Robotics (WAFR), Dartmouth, March 2000.

112

[28] J. Cortes and T. Simeon, “Sampling-based motion planning under kinematic loop-

closure constraints,” in Proc. Int. Workshop Alg. Found. Robot.(WAFR), 2004, to ap-

pear.

[29] D. Xie and N. M. Amato, “A kinematics-based probabilistic roadmap method for high

dof closed chain systems,” in Robotics and Automation, 2004. Proceedings. ICRA’04.

2004 IEEE International Conference on, vol. 1. IEEE, 2004, pp. 473–478.

[30] X. Tang, S. Thomas, P. Coleman, and N. M. Amato, “Reachable distance space: Ef-

ficient sampling-based planning for spatially constrained systems,” The international

journal of robotics research, vol. 29, no. 7, pp. 916–934, 2010.

[31] J. O’Rourke, “Unfolding polyhedra,” 2008.

[32] J.-M. Lien and N. M. Amato, “Approximate convex decomposition of polyhedra,”

in SPM ’07: Proceedings of the 2007 ACM symposium on Solid and physical

modeling. New York, NY, USA: ACM Press, 2007, pp. 121–131. [Online]. Available:

http://doi.acm.org/10.1145/1236246.1236265

[33] S. Asafi, A. Goren, and D. Cohen-Or, “Weak convex decomposition by lines-of-sight,”

in Computer Graphics Forum, vol. 32, no. 5. Wiley Online Library, 2013, pp. 23–31.

[34] G. Liu, Z. Xi, and J.-M. Lien, “Nearly convex segmentation of polyhedra through

convex ridge separation,” in Symposium on Solid & Physical Modeling (SPM); also

appears in Journal of Computer-Aided Design, Berlin, Germany, Jun. 2016.

[35] K. MIURA, “Proposition of pseudo-cylindrical concave polyhedral shells,” ISAS report,

vol. 34, no. 9, pp. 141–163, 1969.

[36] Z. Xi and J.-M. Lien, “Folding and unfolding origami tessellation by reusing folding

path,” in 2015 IEEE International Conference on Robotics and Automation (ICRA),

Seattle, WA, May. 2015.

113

http://doi.acm.org/10.1145/1236246.1236265

[37] R. Bohlin and E. Kavraki, “Path planning using lazy prm,” in Robotics and Automa-

tion, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 1. IEEE,

2000, pp. 521–528.

[38] J.-M. Lien and Y. Lu, “Planning motion in similar environments,” in Proceedings of

the Robotics: Science and Systems Conference (RSS), Seattle, Washington, Jun 2009.

[39] B. An, S. Miyashita, M. T. Tolley, D. M. Aukes, L. Meeker, E. D. Demaine, M. L.

Demaine, R. J. Wood, and D. Rus, “An end-to-end approach to making self-folded

3d surface shapes by uniform heating,” in 2014 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2014, pp. 1466–1473.

[40] Y. Liu, J. K. Boyles, J. Genzer, and M. D. Dickey, “Self-folding of polymer sheets using

local light absorption,” Soft Matter, vol. 8, no. 6, pp. 1764–1769, 2012.

[41] G. Liu, Y. Gingold, and J.-M. Lien, “Continuous visibility feature,” in 28th IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA:

IEEE, Jun. 2015, pp. 1182 – 1190.

[42] E. D. Demaine, M. L. Demaine, V. Hart, J. Iacono, S. Langerman, and J. O’Rourke,

“Continuous blooming of convex polyhedra,” Graphs and Combinatorics, vol. 27, no. 3,

pp. 363–376, 2011.

[43] B. Chazelle, “Convex decompositions of polyhedra,” in Proc. 13th Annu. ACM Sympos.

Theory Comput., 1981, pp. 70–79.

[44] M. Ghomi, “Affine unfoldings of convex polyhedra,” Geometry & Topology, vol. 18,

no. 5, pp. 3055–3090, 2014.

[45] H. Edelsbrunner, A. D. Robison, and X. Shen, “Covering convex sets with non-

overlapping polygons,” Discrete Math., vol. 81, pp. 153–164, 1990.

[46] C. Bajaj and T. K. Dey, “Convex decomposition of polyhedra and robustness,” SIAM

J. Comput., vol. 21, pp. 339–364, 1992.

114

[47] B. Chazelle, D. Dobkin, N. Shouraboura, and A. Tal, “Strategies for polyhedral surface

decomposition: An experimental study,” Comput. Geom. Theory Appl., vol. 7, pp. 327–

342, 1997.

[48] K. Mamou and F. Ghorbel, “A simple and efficient approach for 3d mesh approximate

convex decomposition,” in Image Processing (ICIP), 2009 16th IEEE International

Conference on. IEEE, 2009, pp. 3501–3504.

[49] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate convex decompo-

sition using relative concavity,” Computer-Aided Design, vol. 45, no. 2, pp. 494–504,

2013.

[50] O. van Kaick, N. Fish, Y. Kleiman, S. Asafi, and D. Cohen-Or, “Shape segmentation

by approximate convexity analysis,” ACM Trans. on Graphics, vol. to appear, 2014.

[51] Z. Xi and J.-M. Lien, “Plan folding motion for rigid origami via discrete domain sam-

pling,” in 2015 IEEE International Conference on Robotics and Automation (ICRA),

Seattle, WA, May. 2015.

[52] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning and skeleton-

isation using the shape diameter function,” The Visual Computer, vol. 24, no. 4, pp.

249–259, 2008.

[53] J. Lawrence, “Polytope volume computation,” Math. Comput., vol. 57, no. 195, pp.

259–271, 1991.

[54] B. Büeler, A. Enge, K. Fukuda, and H.-J. Lüthi, “Exact volume computations for

polytopes: a practical study,” in Abstracts 12th European Workshop Comput. Geom.

Universität Münster, 1996, pp. 57–64.

[55] L. Khachiyan, “Complexity of polytope volume computation,” in New Trends in Dis-

crete and Computational Geometry, ser. Algorithms and Combinatorics, J. Pach, Ed.

Springer-Verlag, 1993, vol. 10, pp. 91–101.

115

[56] I. Z. Emiris and V. Fisikopoulos, “Efficient random-walk methods for approximating

polytope volume,” in Proceedings of the thirtieth annual symposium on Computational

geometry. ACM, 2014, p. 318.

[57] R. L. Smith, “Efficient monte carlo procedures for generating points uniformly dis-

tributed over bounded regions,” Operations Research, vol. 32, no. 6, pp. 1296–1308,

1984.

[58] H. Edelsbrunner and R. Waupotitsch, “Computing a ham-sandwich cut in two dimen-

sions,” J. Symbolic Comput., vol. 2, pp. 171–178, 1986.

[59] C.-Y. Lo and W. Steiger, “An optimal-time algorithm for ham-sandwich cuts in the

plane,” in Proc. 2nd Canad. Conf. Comput. Geom., 1990, pp. 5–9.

[60] S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, “Generalizing ham sandwich cuts

to equitable subdivisions,” Discrete Comput. Geom., vol. 24, no. 4, pp. 605–622, 2000.

[61] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,

pp. 273–297, 1995.

[62] M. Botsch, Polygon mesh processing. Natick, Mass: A K Peters, 2010.

[63] P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe, and J. Snyder, “Silhouette clipping,”

in Proceedings of the 27th annual conference on Computer graphics and interactive

techniques. ACM Press/Addison-Wesley Publishing Co., 2000, pp. 327–334.

[64] P. Alliez, E. De Verdire, O. Devillers, and M. Isenburg, “Isotropic surface remeshing,”

in Shape Modeling International, 2003. IEEE, 2003, pp. 49–58.

[65] S. Fuhrmann, J. Ackermann, T. Kalbe, and M. Goesele, “Direct resampling for isotropic

surface remeshing.” in VMV. Citeseer, 2010, pp. 9–16.

[66] D. A. Field, “Laplacian smoothing and delaunay triangulations,” International Journal

for Numerical Methods in Biomedical Engineering, vol. 4, no. 6, pp. 709–712, 1988.

116

[67] T. Tachi, “Simulation of rigid origami,” Origami, vol. 4, pp. 175–187, 2009.

[68] ——, “Rigid-foldable thick origami,” 2011.

[69] B. J. Edmondson, R. J. Lang, S. P. Magleby, and L. L. Howell, “An offset panel

technique for thick rigidily foldable origami,” in ASME 2014 International Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference. American Society of Mechanical Engineers, 2014.

[70] S. A. Zirbel, R. J. Lang, M. W. Thomson, D. A. Sigel, P. E. Walkemeyer, B. P.

Trease, S. P. Magleby, and L. L. Howell, “Accommodating thickness in origami-based

deployable arrays,” Journal of Mechanical Design, vol. 135, no. 11, p. 111005, 2013.

[71] M. R. Morgan, R. J. Lang, S. P. Magleby, and L. L. Howell, “Towards developing

product applications of thick origami using the offset panel technique,” Mechanical

Sciences, vol. 7, no. 1, p. 69, 2016.

[72] Y. Zhou, S. Sueda, W. Matusik, and A. Shamir, “Boxelization: Folding 3d objects into

boxes,” ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 71, 2014.

[73] K. Iwama and T. Nakashima, “An improved exact algorithm for cubic graph tsp,” in

International Computing and Combinatorics Conference. Springer, 2007, pp. 108–117.

[74] P. Vaněček and I. Kolingerová, “Comparison of triangle strips algorithms,” Computers

& Graphics, vol. 31, no. 1, pp. 100–118, 2007.

[75] G. Taubin, “Constructing hamiltonian triangle strips on quadrilateral meshes,” in Vi-

sualization and Mathematics III. Springer, 2003, pp. 69–91.

[76] P. Diaz-Gutierrez and M. Gopi, “Quadrilateral and tetrahedral mesh stripification

using 2-factor partitioning of the dual graph,” The Visual Computer, vol. 21, no. 8-10,

pp. 689–697, 2005.

[77] D. Cohen-Or and A. Kaufman, “Fundamentals of surface voxelization,” Graphical mod-

els and image processing, vol. 57, no. 6, pp. 453–461, 1995.

117

[78] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Concorde tsp solver,” 2006.

[Online]. Available: http://www.math.uwaterloo.ca/tsp/concorde/index.html

118

http://www.math.uwaterloo.ca/tsp/concorde/index.html

Curriculum Vitae

Zhonghua Xi received his Bachelor of Engineering from Shanghai Jiao Tong University in
2009. He received his M.S. degree in Computer Science from George Mason University in
2015. His academic research is in the area of computational origami, computer graphics,
motion planning and computer vision.

List of Peer-Reviewed Publications

1. Zhonghua Xi, and Jyh-Ming Lien. “Polyhedra Fabrication Through Mesh Convexi-
fication: A Study of Foldability of Nearly Convex Shapes,” In: International Design
and Engineering Technical Conferences & Computers and Information in Engineering
Conference (IDETC/CIE) Columbus, OH, ASME, Aug. 2017.

2. Yanyan Lu, Zhonghua Xi, and Jyh-Ming Lien. “Online Collision Prediction Among 2D
Polygonal and Articulated Obstacles,” In: International Journal of Robotics Research
(IJRR) 35.5 (Apr. 2016), pp. 476−500.

3. Guilin Liu, Zhonghua Xi, and Jyh-Ming Lien. “Nearly Convex Segmentation of Poly-
hedra Through Convex Ridge Separation,” In: Symposium on Solid & Physical Mod-
eling (SPM); also appears in Journal of Computer-Aided Design. Berlin, Germany,
June 2016.

4. Huangxin Wang, Zhonghua Xi, Fei Li, and Songqing Chen. “Abusing Public Third-
Party Services for EDoS Attacks,” In: 10th USENIX Workshop on Offensive Tech-
nologies (WOOT). Austin, Texas, Aug. 2016.

5. Zhonghua Xi, Yun-hyeong Kim, Young J. Kim, and Jyh-Ming Lien. “Learning to
Segment and Unfold Polyhedral Mesh from Failures,” In: Shape Modeling Interna-
tional (SMI); also appears in Journal of Computers & Graphics. Berlin, Germany,
June 2016.

6. Zhonghua Xi and Jyh-Ming Lien. “Continuous Unfolding of Polyhedra - a Motion
Planning Approach,” In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Hamburg, Germany, Sept. 2015, pp. 32493254.

7. Zhonghua Xi and Jyh-Ming Lien. “Folding and Unfolding Origami Tessellation by
Reusing Folding Path,” In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). Seattle, WA, May 2015.

119

8. Zhonghua Xi and Jyh-Ming Lien. “Plan Folding Motion for Rigid Origami via Dis-
crete Domain Sampling,” In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). Seattle, WA, May 2015.

9. Guilin Liu, Zhonghua Xi, and Jyh-Ming Lien. “Dual-Space Decomposition of 2D Com-
plex Shapes,” In: 27th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Columbus, OH: IEEE, June 2014.

10. Yanyan Lu, Zhonghua Xi, and Jyh-Ming Lien. “Collision Prediction Among Polygons
with Arbitrary Shape and Unknown Motion,” In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Chicago, IL, Sept. 2014.

11. Yanyan Lu, Zhonghua Xi, and Jyh-Ming Lien. “Collision Prediction: Conservative
Advancement Among Obstacles With Unknown Motion,” In: International Design
and Engineering Technical Conferences & Computers and Information in Engineering
Conference (IDETC/CIE). Buffalo, NY: ASME, Aug. 2014.

12. Yanyan Lu, Zhonghua Xi, and Jyh-Ming Lien. “Predict Collision Among Rigid and
Articulated Obstacles with Unknown Motion,” In: The Eleventh International Work-
shop on the Algorithmic Foundations of Robotics (WAFR). Istanbul, Turkey, Aug.
2014.

13. Zhonghua Xi and Jyh-Ming Lien. “Determine Distinct Shapes of Rigid Origami,” In:
The 6th International Meeting on Origami in Science, Mathematics and Education
(6OSME). Tokyo, Japan, Aug. 2014.

14. Zhonghua Xi and Jyh-Ming Lien. “Folding Rigid Origami with Closure Constraints,”
In: International Design and Engineering Technical Conferences & Computers and
Information in Engineering Conference (IDETC/CIE). Buffalo, NY: ASME, Aug.
2014.

15. Zhonghua Xi, Jyh-Ming Lien, Yi-Chang Chiu, and C. Y. David Yang. “Identify and
Visualize Differences in Vehicle Trajectory Data,” In: 7th International Visualization
in Transportation Symposium. Irvine, CA: TRB, Oct. 2013.

120

	List of Tables
	List of Figures
	Abstract
	 Introduction
	From Paper Folding to Self-Folding Machines
	Foldable Objects
	Rigid Origami
	Nets of Polyhedra

	The Unfolding Problem
	The Folding Problem
	Making Shapes Foldable
	Fold as Compact as Possible
	Organization

	 Background
	Rigid Origami
	Preliminary
	Planning and Simulating Origami Motion
	Planning under Closure Constraints

	Polyhedra Unfolding
	Preliminary
	Edge Unfolding
	Paper Crafting via Shape Segmentation

	 Rigid Origami
	FROG: A Randomized Path Planner for Rigid Origami
	Finding Foldable Configuration
	Detecting Invalid Configuration
	Experimental Results

	MD-FROG: A Path Planner for Multi-DOF Rigid Origami
	Sampling In Discrete Domain
	Connecting Two Valid Configurations
	Path Planning
	Experimental Results
	Continuous V.S. Discrete Sampling Strategy

	Reusing Folding Path
	Crease Group and Essential Vertex
	Reusing Folding Path

	 Polyhedra Unfolding
	EU: A Genetic Algorithm for Unfolding
	Genetic Representation
	Fitness Evaluation
	Population Generation
	Selection, Mutation and Crossover
	Experimental Results

	Simultaneously Segment and Unfold
	Learn from Failed Unfoldings
	Unfold the Mesh Multiple Times
	Analyze an Unfolding
	Segment
	Results

	Continuous Unfolding of Polyhedra
	Polyhedra Fabrication via Mesh Convexification
	Reduce Local Concavity via Mesh Inflation
	Reduce Concavity via Decomposition

	 Disjoint Convex Shell
	Introduction
	Related Works
	Convex Decomposition and Approximation
	Polyhedra Unfolding

	Building Disjoint Convex Shell (DC-shell)
	A Heuristic using Least Squares Fitting
	Disjoint Convex Shells

	Convex Shell Simplification and Regularization
	Unfolding and Folding DC-shells
	Experimental Results
	Running Time
	Quality Comparison
	Results from Convex Remeshing

	Fabricating Physical Models
	Conclusion

	 Compact Folding
	Introduction
	Related Works
	Fold Thick Origamis
	Mesh Stripification

	Our Approach
	Mesh Voxelization
	Stripification of Quadrilateral Meshes
	Thickness Accommodation
	Stacking

	Experimental Results
	Experimental Setup
	Finding Hamiltonian Paths
	Most Compact Stacking
	Finding Continous Folding Motions
	Physical Models

	Conclusion

	 Conclusions
	Future Researches

	Bibliography

