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ABSTRACT 

ENERGY BALANCE MODELS WITH REALISTIC ALBEDO, MONTHLY 

INSOLATION, MILANKOVITCH CYCLES, AND SIMPLIFIED EARTH-LIKE 

PLANETARY MODELING 

Christian Johann Taubenberger, M.S. 

George Mason University, 2020 

Thesis Director: Dr. Linda A. Hinnov 

 

Energy balance modeling with simple flows is largely overlooked today in favor 

of the realism of sophisticated Earth system models. However, much can be learned from 

simple energy balance models (EBM’s), especially for paleoclimate modeling and for 

exoplanets. In fact, with some modest adjustments, EBM’s allow for a comparable output 

model to some general circulation models. Here, the classic Budyko-Sellers one-

dimensional energy balance model is revitalized in MATLAB to include zero-

dimensional (0D), multiple one-dimensional (1D), and multiple two-dimensional (2D) 

versions with realistic monthly albedo, monthly insolation, and an algorithm for mean 

annual insolation for any star-orbiting planet with non-zero obliquity and orbital 

eccentricity, and a rotation rate that is significantly faster than that of its orbit. The 

revitalized EBMs are applied to characterize the energy balance of Earth, while also 

showcasing their applicability for a range of realistic obliquities and orbital eccentricities. 

The significance of specific variables was tested, such as changes to insolation, latitudinal 

heat transport, outgoing longwave radiation, initial surface and cloud albedos, initial 

temperatures, and astronomical parameters. Model results were found to rely most 



xv 

 

heavily on initial albedo of Earth’s surface and clouds, as well as orbitally forced 

monthly insolation changes. The goal is to accurately model the energy balance of any 

planet with simplistic, limited data. In this study, the groundwork is laid for more specific 

questions to be answered with this catalog of models.
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CHAPTER 1: INTRODUCTION 

This study focuses on modernizing the computation of a basic energy balance 

model (EBM) for the Earth, and developing enhancements for applications to planets 

other than Earth, including exoplanets. After their initial conception, EBM’s with orbital 

and insolation forcing have been chronically underutilized, as general circulation models 

overtook the defining role of planetary modeling, with their capacity for finer tuning and 

detailed scenarios. In this thesis, energy balance modeling is revitalized in recognition of 

the merits of less computationally intensive, simplistic modeling, especially for use with 

limited parameter inputs for modeling systems outside of Earth.  

Limiting variables helps determine which parameters are needed to simulate 

planets with many unknowns (North, 1975). This thesis discusses the history of energy 

balance modeling, its uses for modeling Earth compared to more advanced models, and 

potential uses for planetary modeling of non-Earth climates using Mars, and beginning 

the foundations for using Pluto, as prototypes for exoplanetary modeling.  

Questions and problems that can be pursued with the EBM tool developed in this 

thesis include: 

 



2 

 

• How does the EBM respond to changes in incoming shortwave (solar) 

radiation? This is a fundamental question that originally motivated the 

development of the EBM. 

• How does the EBM respond to surface (latitudinal) heat transport? 

This can provide insights into feedbacks from different planetary 

modes of circulation. 

• How does the EBM respond to changes in outgoing longwave infrared 

radiation? This can provide insights into feedbacks from greenhouse 

gas concentrations. 

• How does the EBM simulate monthly and seasonal changes? 

• How does initial input albedo effect the EBM? 

• How does the EBM respond to different insolation forcing due to 

variable astronomical parameters (Milankovitch cycles)? The 

application of Milankovitch-forced insolation averaged per month over 

the year, for three time slices, the present day (0 ka), the Last Glacial 

Maximum (24 ka), and the Eemian Interglacial (128 Ka) provides new 

insights into Earth’s basic surface climate responses to Milankovitch 

cycles. 

• Determine how planetary obliquity and orbital eccentricity are affected 

with the application of sixth degree Legendre expansions for the zonal 

(latitudinal) distribution of mean annual insolation.  
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The classic Budyko-Sellers EBM by McGuffie and Henderson-Sellers 

(2005) is converted from BASIC programming language into MATLAB, and 

enhanced with the inclusion of Milankovitch forcing, realistic Clouds and the 

Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) 

surface albedo data product as input albedo, monthly insolation, and Legendre 

series expansion of the mean annual insolation, together with other changes 

described above. Simplistic approaches are created for modeling exoplanet 

climates. A catalog is designed with three collections of scripts: 0D, 1D, and 

quasi-2D EBMs, which will be used according to available input information and 

question(s) to be addressed. 

Initial parameters for input surface albedo and temperature were tested for their 

influence on outputs, input surface albedo was determined to significantly impact model 

outputs, which, along with the albedo of ice (αice) and the albedo of clouds along the 

cloud fraction profile provided insight into how significant the inclusion of realistic 

albedo is to model accuracy. Initial temperatures were found to have a far less significant 

impact on model output values, and did not drastically change outputs from expected 

values until an extreme departure from global averages were used. This provides critical 

insight into how, while realistic albedo is required for true simulation, highly accurate 

starting temperatures are not. The critical temperature (Tc), where ice starts to form on 

both land and ocean surface is shown to have more impactful changes with variations to 

the Tc of the ocean, rather than land.  
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Changes to the heat transport coefficient, C, influences global stability through 

the increase or decrease of heat transport from one zone to another. Changes to insolation 

through Milankovitch cycles produces a discernable impact on the ice-albedo feedback; 

and the influence of the history of the climate system is observed in tests of a climate 

hysteresis effect. The results of these tests allowed for an initial look at how the different 

versions of the model could be used for systems other than Earth, such as Mars, and the 

preliminary collection of data needed for Pluto was also started. 
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CHAPTER 2: LITERATURE REVIEW  

The energy balance in the Earth climate system can be described by the equation 

(Budyko, 1969): 

 

Equation 1: 𝑬𝑰𝒏 =  𝑬𝑶𝒖𝒕 +  𝑬𝑻𝒓𝒂𝒏 

 

 

which relates incoming shortwave radiation from the Sun 𝐸𝐼𝑛 to outgoing longwave 

radiation (OLR) from the Earth 𝐸𝑂𝑢𝑡 plus the energy flux transferred out of a latitude 

zone to its colder adjacent latitude zone 𝐸𝑇𝑟𝑎𝑛.   

 𝐸𝑖𝑛 is the quantity, in W/m2, of solar radiation as it reaches Earth’s atmosphere. 

This quantity is often referred to as insolation (see Glossary). The most recent measured 

value for Earth is 1361 W/m2 (Kopp and Lean, 2011). 

 𝐸𝑂𝑢𝑡 is modeled empirically as follows: 

 

Equation 2: 𝑬𝑶𝒖𝒕 = A + BT 

 

 

where parameters A (204 W/m2) and B (2.17 Wm-2ºC-1) are empirically determined 

constants that account for the effects of greenhouse gases and in some cases longwave 

cloud forcings, while T refers to the mean annual surface temperature of a specific 

latitude in °C (Graves et al., 1993; McGuffie and Henderson-Sellers, 1988, 1997, 2005, 

2014). A and B are used to characterize the relationship between OLR and surface 

temperature (Figure 1). The parameters have been computed from real atmospheric 
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conditions or estimated from satellite data (Figure 1; Graves et al., 1993; North and Kim, 

2017). Parameter B is inversely proportional to temperature anomalies by radiative 

cooling, in other words, a larger B value will result in the faster radiative dampening of 

temperature anomalies (Graves et al., 1993). B varies over latitude and longitude (in the 

tropics), and is higher at higher latitudes (Graves et al., 1993). A and B can also change 

due to the chemical composition of the atmosphere (Warren and Schneider, 1979). 

Budyko (1969) used the values of A = 202 W/m2 and B = 1.45W/m2°C, and Sellers 

(1969) equates A = 211 W/m2 and B = 1.68W/m2°C. In Figure 1, 90°N can be roughly 

correlated to the far left of the temperature axis, and 30°N, the right, where more OLR 

can be attributed to warmer regions. 

 

 

Figure 1: Outgoing longwave radiation (OLR) as a function of temperature T, 

different values taken between 30°N and 90°N, and the 202.1+1.90T fit (solid line). a. 

is the derived from data without accounting for the presence or absence of clouds. b. 

represents the clear sky values where cloudy pixels have been removed pre-

averaging. Darker values indicate higher occurrence frequency. Dashed line 

represents the blackbody curve (Graves et al., 1993). 
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 𝐸𝑇𝑟𝑎𝑛  accounts for zonal heat transport or “latitudinal heat flux” which is the 

loss of energy by a zone of latitude to its colder neighbors: 

Equation 3:  𝑬𝑻𝒓𝒂𝒏= C(T-𝑻̅) 

 

where C represents the heat transport coefficient and 𝑇̅ is the mean annual global surface 

temperature (McGuffie and Henderson-Sellers, 2005; Walsh and Rackauckas, 2015). C 

has had a variety of assumed values, originally 3.79 Wm-2/°C (Budyko, 1969), this was 

argued to be lower (3.74 Wm-2/°C) in a later study based on Ellis and Vonder Haar 

(1976) observations simulate a smoother ice-line which better agreed with the most up to 

date global average albedo at the time, 0.303 (Warren and Schneider, 1979). C (i.e. k1) 

was set to 3.81 Wm-2/°C in McGuffie and Henderson-Seller’s model (1986). 

In order to determine how dependent T is on solar radiation with other factors 

influencing outgoing longwave radiation the following equations were derived (Eqs. 1 

and 2 in Budyko, 1969):  

Equation 4: 𝑰 = 𝒂 + 𝑩𝑻 − (𝒂𝟏 + 𝑩𝟏𝑻)𝒏 

 

Equation 5: 𝑰 = 𝑸(𝟏 − 𝜶) − 𝑨 

I is the outgoing longwave radiation (OLR) per unit area (kcal/cm²/month), and a, B, a1, 

and B1, are dimensional coefficients equal to 14.0, 0.14, 3.0, and 0.10, respectively, α is 

albedo, and A is the change in heat as a result of circulation, including heat redistribution, 

and water phase transformation. A should not be confused with (unitalicized) A and B in 

Equation 2. Linear functions of the surface temperature for non-cloud covered sky are 

represented by 𝒂 + 𝑩𝑻, and functions for cloud covered sky are represented by 

(𝒂𝟏 + 𝑩𝟏𝑻)𝒏. Finally, n is the fraction of cloudiness for Earth, equal to 0.5 (Budyko, 
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1969). Q, or “solar radiation coming to the outer boundary of the atmosphere” (Budyko, 

1969) averages 340.25 W/m2 per day for solar radiation arriving at the “top of the 

atmosphere” (ToA) for Earth, which depends on the eccentricity of Earth’s orbit 

(Budyko, 1969; McGehee and Lehman, 2012). Q is the solar constant, 1361 W/m2 (Kopp 

and Lean, 2011), divided by 4 to account for incident area of a disk of radius r divided by 

the area of a sphere 4πr2, where r is the radius of the Earth. The variable α corresponds to 

the planetary albedo, 0.33, and A (Equation 5) is the gain or loss in heat as a result of 

atmospheric and hydrospheric circulation, equal to 0 for Earth as a whole (Budyko, 

1969).   

In their one-dimensional EBMs, Budyko (1969) and Sellers (1969) were 

interested in the latitudinal distribution of energy at the Earth’s surface (Figures 2 and 3). 

Budyko’s (1969) figure shows the relationship of temperature, both observed and the 

average latitudinal distribution, to degrees of latitude for the Northern Hemisphere. 

Sellers’ (1969) figure shows the same relationship of observed temperature to latitude, 

with the additions of wind speed (v) and planetary albedo (αs). Sellers models these 

values across both hemispheres, and the effect of more ice and higher albedo in the 

Southern Hemisphere compared to the Northern Hemisphere is shown by the cooler 

observed temperatures (Sellers, 1969). Budyko’s latitudinal ice line equilibrium position 

() is shown according to the albedo function, α (y,) as it changes with solar constant 

Δ𝑄/𝑄, where y is there sine of latitude (θ). It is assumed that there is ice above a specific 

latitude y =  and no ice below y =  Setting T*() equal to Tc produces the relationship 

between equilibrium ice-line position and Q (Figure 4) (Walsh and Rackaukas, 2015).  
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Figure 2: Budyko (1969): Degrees of Northern latitude (ζ°), T (observed 

temperature) and To (average latitudinal distribution of temperature) in °C 

 

 
Figure 3: Sellers (1969): Mean annual sea level temperature (T°C), wind speed (v), 

and planetary albedo (αs) 
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Figure 4: Walsh & Rackaukas (2015): Ice line equilibrium position (sine of latitude) 

with respect to Budyko modeling and albedo function (α (y,)) as a function of 

changes in Q as defined by the solar constant. 

 

Tc is the critical temperature at which ice covers the Earth’s surface, when α 

increases from 0.32, the albedo for land, to 0.62, the albedo for ice. Tc differs according 

to land surface (Tc = 0°C) or ocean surface (Tc = -1.8°C), the latter due to salinity. 

Critical temperature for the ocean surface was set equal to -13°C in McGuffie and 

Henderson-Sellers (2005) in a crude attempt to indirectly account for heat capacity and 

the requirement of the top 100-150 meters of water to be cooled to -1.8°C temperature for 

ice to start forming at the surface (National Snow and Ice Data Center, 2020). In Figure 

4, Tc = -10°C, representing the average critical temperature for freezing on Earth 

(McGuffie and Henderson-Sellers, 2005; Walsh and Rackaukas, 2015). The ice line is 

defined as follows: for T>-10°C, there is no ice cover, and for T<-10°C, there is ice cover 

(Budyko, 1969; North, 1975). 
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2.1 The Evolution of Energy Balance Models 

Gerald R. North has been instrumental in popularizing the use of energy balance 

models (EBMs) since the 1970’s. His work has provided a practical framework for 

incorporating new empirically collected data into modeling efforts (North, 1975). Model 

parameterization sensitivities were solved for seasonal models in order to study the 

effects of orbital and stochastic forcing elements on temperature (North et al., 1981). 

North has also discussed the limitations of energy balance models: simple models best 

model space and time scales of climate of the near-surface environment; going beyond 

the surface becomes too complex due to temperature sensitivity to atmospheric 

circulation, and for the same reason, most EBM’s do not account for precipitation (North 

and Kim, 2017; although see Siler et al., 2018). EBM’s are well suited for rapid modeling 

of paleoclimates, as they are computationally economical for successive runs with 

differing parameters, and work well when averaged over longer time scales, as the 

potential for errors is reduced. 

North’s comments also touch on another motivation for this thesis, in that an 

exoplanet’s habitable zone, as well as its atmospheric, chemical, oceanic dynamical, and 

orbital parameters may fit well within the capabilities of EBMs (North and Kim, 2017). 

North (1975) emphasizes that models need to provide reliable results; once that is 

established, the models can provide useful means for deciding which parameters are 

needed to simulate planets with many unknowns. EBM’s prove potent here by already 

limiting the complexity of variable interactions.  
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By classical definitions, zero-dimensional (0D) EBMs, focused on changes 

affecting radiative transfer properties of the atmosphere, refer to the entire planet as a 

single body which has an effective temperature (Te). One-dimensional EBMs divide the 

planet into latitudinal zones, with albedo and surface temperature modeled for each zone. 

One-dimensional EBMs provide for meridional (poleward) heat transfer and an 

adjustable ice line for the planet. Ice-albedo feedback is a critical feature, accounting for 

significant differences between the albedo for ice and ice-free planetary surfaces 

(Budyko, 1969; North, 1975).  

The sequence of approximations in which each successive calculation introduces 

smaller space and time scales proposed by North (1981) removed the issues of 

discontinuity of meridional temperature distribution at the ice line in Budyko’s (1969) 

model due to the inherent discontinuity of the albedo function (η). Sellers similarly 

assumed an albedo function across the ice line using a continuous transition (Walsh and 

Rackaukas, 2015). 

 The heat transport coefficient C (Equation 3), when determined from present-day 

temperature distributions, accurately predicts the total annual heat transport across all 

latitude zones when compared to observations of transport. However, in tropical zones, 

Budyko parameterization of heat transport struggles to accurately model seasonal 

deviations from the mean annual value compared to observed Ellis and Vonder Haar net 

heat transports (Warren and Schneider, 1979).  
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2.2 Mean Annual Insolation by Latitude 

Latitudinally zoned mean annual insolation can be approximated using sixth order 

Legendre series expansion for any star-orbiting planet with non-zero obliquity and orbital 

eccentricity (Nadeau and McGehee, 2017). Without using Legendre series expansion, one 

could alternatively calculate orbital parameters, such as distance to the Sun, or solar 

declination angles over the course of a year, given that models include latitude-longitude 

grids. However, insolation and latitude relationships may become complicated over long 

time-scales (Nadeau and McGehee, 2017). Nadeau and McGehee (2017) define mean 

annual insolation (𝐼)̅ as a function of sine of latitude (y) using the orbital parameters of 

obliquity (β) and eccentricity (e) with a Legendre series expansion:   

 

Equation 6: 𝝈𝟔(𝒚, 𝜷) = 𝟏 −  
𝟓

𝟖
𝒑𝟐(𝒄𝒐𝒔𝜷)𝒑𝟐(𝒚) − (

𝟗

𝟔𝟒
) 𝒑𝟒(𝒄𝒐𝒔𝜷)𝒑𝟒(𝒚) −

𝟔𝟓

𝟏𝟎𝟐𝟒
𝒑𝟔(𝒄𝒐𝒔𝜷)𝒑𝟔(𝒚) 

 

𝑝𝑘′𝑠 refer to the Legendre polynomials of order k: 

𝑝2(𝑦) = (3𝑦2 − 1)/2 

𝑝4(𝑦) = (35𝑦4 − 30𝑦2 + 3)/8 

𝑝6(𝑦) = (231𝑦6 − 315𝑦4 + 105𝑦2 − 5)/16 

Insolation is integrated over one annual orbit, then across all longitudes to find the 

average annual insolation for any latitude on Earth’s surface. The algorithm is general 

enough to work for any star-orbiting planet with enough given physical knowns, as long 

as its rotation rate is significantly shorter than its orbital period (Nadeau and McGehee, 

2017). Sixth-degree approximations (σ6) most accurately represent more complicated 

insolation distributions, such as for Pluto (Figure 5). σ6 works well for representing 
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insolation that were covered by previous degrees of approximation as well, and as such is 

used for all insolation as function of latitude.  

Figure 5 displays the insolation distributions for both Earth and Pluto, with 

increase in approximation from 2nd degree, to 4th degree, to 6th degree, the fit improves. 

More complex orbits, as seen in Pluto, require higher degrees of approximation. Planets 

with simple orbits, such as Earth, can be accurately represented by just a 2nd degree 

approximation (Eq 2. in North, 1975).  
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Figure 5: Insolation distributions for Earth and Pluto based on 2nd (a), 4th (b), and 

6th (c) order Legendre polynomial approximations (Fig. 1 of Nadeau and McGehee, 

2017). 

 

 

 

2.3 Total Solar Irradiance 

The accepted value of the total solar irradiance (TSI), also known as the solar constant at 

the “top of the atmosphere” (ToA), has been a long-standing problem. Budyko (1969) 

referred to total solar irradiance as 1.92 cal/(cm2minute), i.e., 1339 W/m2. In the late 

1990’s and early 2000’s, with the advent of satellites, TSI was estimated as 1365.4 ± 1.3 

W/m2 (Passos et al., 2007; Lean, 2009). Climate models and empirical calculations for 
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energy balance used numbers close to this value for more than a decade; McGuffie and 

Henderson-Sellers (2005) assumed 1370 W/m2. Eventually it was discovered that 

scattered light, undetected by older solar radiometers, produced erroneously high 

irradiance measurements; NASA’s Total Irradiance Monitor on board the Solar Radiation 

and Climate Experiment determined a more accurate value of 1360.8 ± 0.5 W/m2 (Kopp 

and Lean, 2011). This value is the currently accepted TSI for the Earth, and is adopted in 

this study.  

 

2.4 Astronomically forced Insolation: Milankovitch cycles 

Variations in Earth’s orbital characteristics can have large-scale impacts on the 

climate system. Astronomical parameters, such as precession, obliquity, and eccentricity, 

fluctuate cyclically due to gravitational interactions with other bodies in the Solar System 

(Milankovitch, 1941; Berger, 1978; Berger et al., 2010). Changes in the parameters alters 

the Earth’s position relative to the Sun, inducing variations in the solar irradiance that 

reaches Earth. Milankovitch demonstrated that these fluctuations have specific cycles and 

impact the Earth to different degrees depending on geographic location and time of year.  

The retrograde precession of Earth’s rotational axis in relation to the fixed stars 

has a periodicity of approximately 25,771.5 years (Eq. 39 in Capitaine et al., 2003). This 

motion, in combination with the slower prograde apsidal precession of the Earth’s orbit 

with a periodicity of approximately 113,187.8 years (Table 4.1 in Fitzpatrick, 2012), 

shortens the effective precession of Earth’s longitude of perihelion to a periodicity of 

approximately 21,000 years. Milankovitch originally hypothesized that Earth obliquity, 

or axial tilt, which varies between 22.1° and 24.5° from the Earth’s orbital plane, at a 
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41,000- year periodicity, was the largest contributor to climate variations. This is due to 

the significant effect that obliquity contributes toward the amount of solar radiation 

received in the polar regions. Higher obliquity results in more solar radiation intercepted 

at the poles during summer months. Currently, Earth’s obliquity equals 23.44° and is 

decreasing (NASA, 2016). Figure 6 indicates that the precession, modulated by the 

orbital eccentricity, dominates insolation near the equator, and obliquity assumes a 

greater role for insolation at middle and higher latitudes (Berger, 1978). 

 

 

Figure 6: Long term variations of Earth’s orbital parameters. Top: orbital 

eccentricity (dashed line), precession index (dash-dotted line), obliquity (solid line). 

Bottom: Caloric summer Northern Hemisphere solar radiation. 80°N (solid), 65°N 

(dashed), 10°N (dash- dotted). (From Berger, 1978.) 

 



18 

 

While climate cycles with periodicities matching those of the astronomical 

parameters have been found throughout the geological record, the relative influence of 

the orbital eccentricity, obliquity and precession index on climate change as a general 

rule does not match the influence predicted by the Milankovitch cycles. For example, 

over the last 458,000 years, 100,000-year orbital eccentricity accounted for 50% of 

climatic variance related to the glaciations, obliquity accounted for 25%, and the 

precession index only 10% (Hays et al., 1976). Further back in time however, i.e., from 

2.6 Ma to 1.6 Ma, obliquity’s influence on glaciations surpassed that of orbital 

eccentricity. There have been many studies devoted to investigating this change (e.g., 

Huybers, 2006; Raymo et al., 2006; Raymo and Huybers, 2008); one explanation is that it 

is due to the complexity of the ice-albedo feedback (McGehee and Lehman, 2012). 

Periods of orbital eccentricity overwhelmingly associate with periods of glaciation, rather 

than the phasing of obliquity or precession (Hays et al., 1976).  

Earth’s orbital eccentricity, or the degree to which Earth’s orbit stretches from 

circularity to an ellipse due to the gravitational influence of other planets, ranges from 

near zero at its minimum, to near 0.07 at its maximum over an approximately 100,000-

year cycle, together with an even higher-magnitude 405,000-year cycle (Laskar et al., 

2004a). Earth’s current orbital eccentricity is reported as 0.01671022 (NASA, 2016) (and 

estimated as 0.016702361 by Laskar et al., 2004a). 

The evolution of Earth’s precession index (top), obliquity (middle), and orbital 

eccentricity (bottom) is shown in Figure 18 over the period of -150kyr to present, 

showing clear cycles. This astronomical solution allows for the modeling of Earth’s 
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climate over long timescales, to account for changes to astronomical parameters, and 

allow for the impact of solar irradiance and ice-albedo feedback to be investigated. 

2.5 BASIC Energy Balance Modeling  

The Budyko (1969) and Sellers (1969) models were formulated as a BASIC 

computer model by Henderson-Sellers and McGuffie (1986), with the simple goal to 

model input and output radiation fluxes, equator-to-pole transport of energy, and ice-

albedo feedback. This showcased the balance of the planetary radiation budget and the 

approximate global climate in simplistic terms. Future editions would provide for 

increasing model capabilities, while retaining the original goal of simplicity. In 2005, A 

Climate Modeling Primer, Third Edition, evolved the model from equator-to-pole to a 

full pole-to-pole model. The Fourth Edition, released in 2014, returned to an equator-to-

pole format, providing an Excel module. The primary source of the models developed in 

this study originated from the Third Edition version.  

In zero-dimensional models, incoming shortwave radiation and outgoing 

longwave radiation are balanced through the surface temperature variable, T (Figure 7). 

In other words, T is the critical dependent variable used to solve the climate equations 

(McGuffie and Henderson-Sellers, 2014). The change in temperature over time is based 

upon the differing rate of incoming and outgoing radiation over the area of the planet. In 

the case of Earth, this is chiefly resolved by the oceans (McGuffie and Henderson-Sellers 

(2005). 
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Figure 7: Energy fluxes in a zero-dimensional EBM, from Fig. 3.1 in McGuffie and 

Henderson-Sellers (2014). 

 

Incoming shortwave radiation is a function of solar flux at the TOA (S) and the 

planetary albedo (α): 

Equation 7: 𝑬𝒊𝒏 =
(𝟏−𝒂)𝑺

𝟒
 

 

McGuffie and Henderson-Sellers used S = 1370 Wm-2, and α = 0.3, as close 

approximations of the exact Earth values. Outgoing longwave radiation can be estimated 

using the Stefan equation and T, accounting for the transmissivity of the atmosphere 𝜀𝜏𝑎: 

 

Equation 8: 𝑬𝒐𝒖𝒕 =  𝜺𝝈𝑻𝟒𝝉𝒂 

 

For a zero-dimensional model, this allows for the balance of incoming and 

outgoing radiation for a single point by combining the two, where 𝜀𝜏𝑎 = 0.62, the albedo 

of ice, and 𝜎 the Stefan-Boltzmann constant, 5.67x10-8Wm-2K-4. Applying these values to 

Equations 7 and 8, results in a temperature of T = 287K, the globally averaged surface 
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temperature of Earth (McGuffie and Henderson-Sellers, 2005). Equation 9 indicates that 

incoming shortwave radiation equals outgoing longwave radiation: 

 

Equation 9: 
(𝟏−𝜶)𝑺

𝟒
=  𝜺𝝉𝒂𝝈𝑻𝟒 

 

For one-dimensional modeling, where each zone of latitude (i) is individually 

considered, Equation 10 was formulated. 

Equation 10: 𝑺𝒊(𝟏 − 𝜶(𝑻𝒊)) = 𝑬𝒐𝒖𝒕(𝑻𝒊) + 𝑭(𝑻𝒊) 

 

𝐹(𝑇𝑖), from in Equation 3, refers to the loss of energy by a zone of latitude to 

colder neighboring zones, and serves as the origin term for C, the transport coefficient. 

 

Figure 8: Budyko-Sellers type model for zonal transport of radiation based on 

Shodor Foundation, 1998. 
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Figure 8 illustrates the 1D energy balance model, showing incoming shortwave 

radiation, outgoing longwave radiation, and the F transport of energy between zones 

parameter. This energy balance system was parameterized for the model using Budyko’s 

and Sellers’ concepts of shortwave in is equal to longwave out plus transport out, as 

described in Equation 1 and input into Equation 11. 

Equation 11: 𝑺(𝜽){𝟏 − 𝜶(𝜽)} = 𝑪{𝑻(𝜽) − 𝑻̅} +  {𝐀 + 𝐁𝐓(𝛉)} 

 

Many of these terms are most likely familiar at this point, having been described 

by Budyko-Sellers inspired variables. C is the transport coefficient. A and B being the 

satellite data constants representing the effects greenhouse gases described in Equation 

2, and θ is latitude (McGuffie and Henderson-Sellers, 2005). 

Equation 12: 𝑻(𝜽) =  {𝑺(𝜽)[𝟏 − 𝜶(𝜽)] −  𝑨 + 𝑪𝑻̅} / (𝑪 + 𝑩) 

The model isolates T(𝜃) in order to solve for temperature at each latitude zone, and 

depends on just the temperature at which ice covers the surface (Tc), the albedo of ice 

(αice), the albedo of the surface (α), cloud amounts, and cloud albedo (CALB). There are 

also initial starting constants that are not initially prompted for one to change, but that can 

be easily altered. These were added as input values in the online Shodor Foundation 

version of the original model 

(http://www.shodor.org/master/environmental/general/energy/energy.html) that only 

represented equator to pole, and kept as front-facing editable variables in all versions of 

this EBM. Those starting constants were: initial temperature of zones (Tstart), longwave 

radiation loss constants A and B, the transport coefficient C, the solar constant (S), the 
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fraction of the solar constant used (Sx), and the number of iterations to run in order to 

reach equilibrium (McGuffie and Henderson-Sellers, 2005; Shodor Foundation, 1998). 

 Iterations were initially set to 50 through the variable H. As the model would run 

through its functions 50 times towards equilibrium of the poleward transfer of heat. With 

all of the initial parameters accounted for, quick calculations before the main function 

loop of the script were added, such as determining Q, or “SOLCON” from the solar 

constant. 

Equation 13: 𝑺𝑶𝑳𝑪𝑶𝑵 = 𝑺𝑿 ∗
𝑺

𝟒
 

S was originally set to 1370 Wm-2. Used alongside monthly insolation, the inclusion of 

this function results in a better fit to observed temperatures, and allows for the fraction of 

the solar constant, used to adjust for historical solar radiation and model paleoclimates, to 

be correlated with the spread of the solar flux over the top of the atmosphere as the Earth 

rotates throughout the day. From there, the temperature, albedo, and radiation fluxes for 

each zone can be determined as outputs to the model.  

Although originally it was included simply to demonstrate what fraction of the 

solar constant was required to obtain Snowball Earth, solar fraction is included for its 

demonstration of hysteresis (see Section 5.1), produced in the results of the one-

dimensional EBM. It is also included for its purpose in paleoclimate modeling, where 

solar radiation can be scaled back to better represent the Faint Young Sun hypothesis. 

This idea, that the Sun’s output would be a fraction of its current intensity as stellar 

evolution is rewound, and would be offset by other increased climate parameters such as 

a stronger greenhouse effect, are important to include in a model (Feulner, 2012). 
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The Henderson-Sellers (2005) model was set to a 10°x10° resolution, with each 

zone of latitude occupying 10° on Earth. Increasing this resolution was one of the 

primary motivations for recreating the model in MATLAB, and is discussed next. 
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CHAPTER 3: MATERIALS AND METHODS 

Given the outdated nature and other limitations of BASIC programming, the 

initial phase of this project involved updating the EBM from BASIC to MATLAB. Once 

MATLAB successfully replicated the original BASIC outputs, additions and replacement 

of parameters with more accurate input data were instituted. The BASIC program did not 

have the capacity to model non-Earth systems, and parameters were updated to represent 

better realistic starting albedo, mean annual insolation, monthly insolation, etc. This was 

all utilized to improve upon the model during the update into MATLAB.  

Extending the model from equator-to-pole heat transfer to pole-to-pole modeling 

allows for a better global simulation and a full one-dimensional model experience. The 

next objective was to allow for a more accurate representation of Earth, with a binary 

representation of Earth’s land and oceans in a 2D map provided by the land-or-ocean.m 

script by Chavas (2020) through the variable Zres. This script takes an input matrix of 

points, representing latitude and longitude, and a coastal model provided by MATLAB 

(“coast.mat”), and returns with points assigned with 1 for land and 0 for ocean. This 

permits the definition of high-resolution latitudinal zones, so that albedo can be simulated 

more authentically. However, the significant impact of starting albedo was revealed using 

this method, and in order to achieve a more accurate Earth, a more advanced version of 

the model (TwoD_CERES) retains the binary representation only for its continent and 

ocean “flagging” purpose when applying critical temperatures. Instead TwoD_CERES 

incorporates NASA’s Clouds and the Earth’s Radiant Energy System (CERES) Energy 
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Balanced and Filled (EBAF) data product for surface albedo. Nadeau mean annual 

insolation is used to compute a global temperature.  

In order to accommodate the varying computational needs or known input data 

about the planet to be modeled, zero-dimensional (0D), one-dimensional (1D), and quasi-

two-dimensional (q2D) versions of the EBM have been separately created.  

The 0D version treats the entire globe as a single body. This is useful as a 

simplistic general model for planets with limited known data for the required input 

values. It also allows for quick comparisons among planets.  

The 1D version allows for more specific control over planetary surfaces utilizing 

an input vector map from pole to pole over one line of longitude. It allows one to create 

their own landscape or to customize it for a given planet, and it incorporates latitudinal 

transport and approximations of ice-lines using albedo.  

The q2D version outputs the globe as a 2D map, however, it is not a true 2D 

model, such as a GCM, with no heat transport defined from East to West, i.e., it depicts a 

non-rotating Earth. 

 The nominal model, working with a 10ºx10º resolution for latitude and longitude 

resulted in a single output for each of these 10ºx10º large zones, poorly defining these 

zones, especially for smaller landmasses with significant coast to land ratios. Increasing 

the resolution to 1ºx1º accurately defines land and ocean surfaces. Albedo input maps for 

Zres and CERES are shown in Figure 9 and Figure 10, respectively. Temperature and 

albedo model outputs can be incorporated into the global map, producing visual 

portrayals of the q2D EBM’s outputs such as those discussed in Chapter 4 and 5. 
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Figure 9: Input binary 1ºx1º resolution Zres ‘Land vs Ocean’ map 

 

 

Figure 10: Input realistic 1ºx1º resolution annually averaged CERES albedo map 
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A graphical user interface (GUI) was created using MATLAB’s GUIDE system, 

allowing for straightforward and rapid altering of input values. Values for the solar 

constant, solar fraction, chosen month, time slice Laskar insolation, A, B, C, Tc of land, 

Tc of ocean, αice, CALB, β, e, and selection of a single longitude value vs. a global output 

are among those available for out-of-script editing. Other less commonly swapped 

parameters have also been incorporated early into the model to remain clear and 

accessible. Each EBM version maintains a unique GUI adapted to fit the parameters used 

in the version, example for TwoD_CERES in Figure 11. 

 

 

Figure 11: Sample GUI inputs with default values for CERES-Monthly Insolation 

driven Earth. 
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3.1 Model Versions 

Within this thesis study, several energy balance model versions have been created 

to varying degrees of complexity. Each contains different model parameters that can be 

used based on the number of known variables one is attempting to work with, as well as 

the type of system desired. The models range from zero-dimensional, meaning a single 

entity represents the whole system; one-dimensional, representing single longitude 

outputs, to two-dimensional, which incorporates computationally created maps displaying 

outputs for all longitudes across the globe. 

Figure 12 shows a flowchart of the various versions available to be used, and 

summarizes their parameterizations. There are two 0D, four 1D, and three 2D models. 

Each “step” forward in the model versions incorporates the features of the previous most 

advanced version, to the degree that is applicable. This means that the 1D models include 

every function of the most advanced 0D models, and the 2D models include all functions 

from 1D and 0D models. Versions that originate from previous models include 

everything in the previous model, except where specifically contradictory, i.e. for 2D 

Mars, the initial albedo comes from MGS TES surface albedo data rather than the binary 

land and ocean data. 
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Figure 12: All EBM versions presented in this model cluster, containing brief 

descriptions of what they entail. 

 

3.2 Zero-Dimensional EBMs 

 The zero-dimensional models differ only in their complexity of parameters, with 

ZeroD_EBM_V2 accommodating for the influence of αice from the planetary average α, 
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the heat capacity of the oceans, and mixing of the ocean layers. Critical temperature for 

ice has also been introduced so that more accurate global temperatures can be modeled 

between planetary systems. 

 

3.3 One-Dimensional EBMs  

 

The single hemisphere one-dimensional models that are distinguished primarily 

by their ten-degree zones vs. one-degree zones were both kept as individual versions due 

to an interesting scenario: one-degree zones glaciate significantly “earlier” as solar 

fraction is reduced, compared to the same ten-degree zone model parameters. Figure 13 

shows the ten-degree model on the left, and the one-degree model on the right for the 

same solar fraction of 0.825, which at present day insolation values should be low enough 

to cause the runaway glaciation effect observed at under ~0.83 Sx. It is not until the solar 

fraction reaches 0.800 that the Earth becomes completely glaciated in the ten-degree 

model.  
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Figure 13: Differences between OneD_EBM 10-degree (left) and 1-degree (right) 

resolution model outputs for Sx set to 0.825 and 0.800. 

 

 

Initial input albedo (AL) was interpolated from the Henderson-Sellers and McGuffie 

(2005) ten-degree zones for the one-dimensional two-hemisphere model. This allowed 

for the first step towards a global two-dimensional model in its original annual average 

form.  
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Figure 14: Annual averaged starting albedo for a two-hemisphere one-dimensional 

EBM at one-degree resolution across all latitudes (Henderson-Sellers and McGuffie, 

2005). 

 

 

 

3.4 Two-Dimensional CERES Realistic Albedo 

Like the one-dimensional EBMs, input albedo is required for each zone of 

latitude, for Earth this is based on two variations, “Zres” binary land (1) vs. ocean (0) 

averaged over all longitudes, or realistic CERES EBAF surface albedo. For Mars, Mars 

Global Surveyor Thermal Emission Spectrometer (MGS TES) could be used. To replace 

the binary land (1) and ocean (0) “Zres” map as the initial surface albedo map for 

TwoD_CERES.m, realistic surface albedo maps were created using Clouds and the 

Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data 

products. 
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CERES EBAF Level 3b provides a global record of monthly averages of 

shortwave and longwave fluxes separated into upward and downward traveling fluxes 

(Loeb et al., 2018). Clear-sky fluxes that do not include interference from clouds of 1°x1° 

regions, allows the preparation of detailed albedo maps, by calculating the ratio of 

upward traveling shortwave radiation (Sup) to downward traveling shortwave radiation 

(SDown), and averaging over 15 years of data from 2000-2014 using NcreadCERES.m. 

Data outliers near the poles occur during winter months where SDown = 0 due to 24 

hours of perpetual night due to the 23.5-degree tilt (obliquity) of the Earth rotational axis. 

To remove these outliers, the latitudinal line of zero insolation per month was tracked; all 

latitudes above the line for that month were set to an albedo of 1.0. 

 

 

Table 1: Monthly latitudinal extent of the polar zone of perpetual night. 

 

Month Extent Latitude of 

Perpetual 

Night 

South Pole 

March 90°-0° 90 °S 

April 90°-8° 82 °S 

May 90°-16° 74 °S 

June 90°-24° 66 °S 

North Pole 

September 90°-0° 90 °N 

October 90°-8° 82 °N 

November 90°-16° 74 °N 

December 90°-24° 66 °N 

 

 

 

Figure 15 shows the estimated CERES surface albedo maps for the equinoctial 

months of March (a) and September (c), averaged from 2000-2014, where perpetual night 
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is not a factor at either pole.  In comparison, the CERES surface albedo map for June (b) 

shows how southern Winter Solstice involves the maximum areal extent delineated at 

66.5°S for perpetual night in the Southern Hemisphere. Similarly, (d) shows Northern 

Hemisphere Winter Solstice extent for December. Supplementary material, Appendix A - 

Input Albedo Maps for TwoD EBM, contains all remaining months used for albedo input 

that could not fit within the main body of this thesis. 

The CERES surface albedo maps provide detailed albedo information for land 

and oceans. Non-ice land albedo ranges from approximately 0.1 - 0.53, compared to 

ocean albedo which is lower, ranging from 0.027 – 0.14 based on the annual CERES 

input albedo map, or more conservatively 0.05 - 0.1 (Seitz, 2011). Ocean surface albedo 

is the reflectivity of the ocean surface to incoming shortwave radiation. It is a major 

factor in shaping the flow of energy atmospheric and ocean exchanges, and is vital for 

accurately measuring the surface radiation budget (Li et al., 2006). Ocean surface albedo 

has been the product of several schemes, which incorporate numerous variables. Solar 

zenith angle is common among all schemes; other parameters such as wind speed, which 

becomes more important for larger solar zenith angles, but less important as cloud optical 

depth increases, are also considered in differing schemes (Li et al., 2006). The CERES 

data product, using a top-of-atmosphere (TOA) upward clear-sky flux, is insensitive to 

these different formulations of ocean surface albedo. Cloud forcing is thus more 

important in comparison with clear-sky forcing with regard to global energy balance of 

the model (Li et al., 2006). This implication holds true for the 2D EBM, as changes to 
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cloud albedo (CALB) result in significant output differences. All twelve processed 

monthly CERES input maps are in the Supplementary Materials (Appendix A). 

a.

 
b. 
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c.

 
d.

 
Figure 15: CERES Surface Albedo Maps for the equinoctial (March (a) and September (c)) 

and solstitial (June (b) and December (d)) months averaged from 2000-2014. 
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3.5 Monthly Insolation Forcing 

To replicate planets other than Earth, and to improve the annual output for Earth, 

a sixth order Legendre series expansion for mean annual insolation (S) was instituted, 

along with input variables for obliquity (β) and orbital eccentricity (e). Sixth order 

Legendre polynomial expansion for Earth, Mars, and Pluto for minimum, current, and 

maximum obliquity and orbital eccentricity (Laskar et al., 2004a), reveals the importance 

of accounting for the astronomical parameters (Figure 16). 

This method, while effective for annual scale model scenarios where the mean 

value is preferred, such as in TwoD_Zres, is ultimately an additional input used to 

calculate for global temperature. With the use of realistic monthly CERES input albedos, 

monthly insolation inputs are introduced for Earth from Kostadinov and Gilb’s script 

“Earth_Orbit_V2.m”. Insolation was computed for three time slices in the glacial-

interglacial cycle: present-day (0 ka), the Last Glacial Maximum (LGM, 24 ka), and the 

Last Interglacial (Eemian, 128 ka) (Fig. 18, Tab. 2). 
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Figure 16: Mean annual insolation S(θ) based on 

order 6 Legendre polynomial expansion, for Earth 

(A), Mars (B), and Pluto (C), for different 

obliquities (colors) and orbital eccentricities (line 

types). 
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Earth’s climate, forced through Milankovitch parameters acting on insolation, 

undergoes glacial-interglacial cycles which can be tracked throughout time. The changes 

in these parameters, which include the Earth’s orbital eccentricity, and obliquity, affect 

the insolation, and the duration and timing of the seasons. Kostadinov and Gilb (2014) 

calculate insolation using the equation (Berger et al., 2010): 

Equation 14: 𝑾 = 𝑺𝟎 (
𝒂

𝒓
)

𝟐

𝐜𝐨𝐬 𝒛 

 

where 𝑆0 is the solar constant, a is the length of the semi-major axis of the Earth’s orbit, 

and r is the Earth-Sun distance: 

Equation 15: 𝒓 = (𝟏 − 𝒆𝟐) / (𝟏 + 𝒆 ∗ 𝒄𝒐𝒔(𝝊)) 

 

where 𝑒 is the Earth’s orbital eccentricity, true anomaly 𝜐 = 𝜆 − 𝜔, with 𝜔 the longitude 

of perihelion relative to moving spring equinox and 𝜆 the true longitude of the Sun 

(Figure 17a).  

The angle z is the zenith angle of the Sun relative to the zenith (overhead) point Z 

in the local sky, and:  

Equation 16: 𝐜𝐨𝐬 𝒛 = 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝜹 + 𝐜𝐨𝐬 𝜽 𝐜𝐨𝐬 𝜹 𝐜𝐨𝐬 𝑯 

 

𝜃 is geographical latitude, H is the hour angle of the Sun (H=0 is 12 noon); and the Sun’s 

declination 𝛿, varies over the year according to the true longitude of the Sun, 𝜆, and 

Earth’s obliquity 𝜀: 

Equation 17: 𝐬𝐢𝐧 𝜹 = 𝒔𝒊𝒏𝝀 𝐬𝐢𝐧 𝜺 
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The relevant variables for the annual orbit of the Earth around the Sun and for the 

local horizon are shown in Figure 17b.   

 

a. 

 
b. 

 
Figure 17: Earth’s astronomical parameters. a. The orbital elements, from Figure 3 

of Hinnov (2013). b. The celestial sphere with local horizon at geographical latitude 

𝜽; “X” marks the location of the Sun at a time prior to meridian transit (noon), 

from Figure 6 of Hinnov (2013). 
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a. 

 
b. 

 

Figure 18: Kostadinov and Gilb’s Earth_orbit-V2.m calculation of June 21 insolation 

at 65º North, 0-150 ka. Time slices 0 ka, 24 ka and 128 ka are indicated by vertical 

lines. a. Orbital parameters (time slice values in Table 2); b. daily insolation for 

June 21 (blue) and annual mean daily insolation (red) in Wm-2. 
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Table 2: Earth’s astronomical parameters according to the solution of Laskar et al. 

(2004a) for three time slices at 0 ka, 24 ka, and 128 ka. 

 

 0 ka 24 ka 128 ka 

Orbital 

Eccentricity e 
0.0167024 0.0180950 0.0404890 

Obliquity of 

the Ecliptic 𝜀 

23.4393 

deg 

22.5230 

deg 

24.1743 

deg 

Precession/Longitude of 

Perihelion 𝜛 

102.9179 

deg. 

66.1956 

deg 

256.9384 

deg 

 

Earth_orbit_v2_1.m was modified to an increased resolution of one degree across all 

latitudes and every day (Fig. 19). From this, the average monthly insolation was 

computed from the daily insolation for the three time slices (Fig. 20).   

 

 

Figure 19: Present-day (0 ka) daily insolation for 365 days; color scale in W/m2. 
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a. 

 
b. 
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c. 

 
 

Figure 20: Monthly insolation for 0ka (a), 24ka (b), and 128ka (c) based on output 

from Earth_orbit_v2_1.m (Kostadinov and Gilb, 2014). 

 

Summer insolation differs for the three time slices in both hemispheres. The 

asymmetric curves between the two warmest months, June in the Northern Hemisphere, 

and December in the Southern Hemisphere, do not balance one another. During the 

Eemian (128 ka), northern June insolation far exceeds southern December insolation, 

while during both the LGM and present day, southern December insolation exceeds 

northern June insolation. This imbalance occurs because, for example, for the present day 

at Southern Summer (Northern Winter), Earth is very close to perihelion, the shortest 

distance to the Sun, and thus receives the most insolation, while present-day Northern 



46 

 

Summer, at aphelion, receives comparatively less. The values are different in the Eemian 

because perihelion has shifted from 𝜔=103º to 256º (Table 2).  Another feature that 

stands out in the peak solstice months (June and December) are small local decreases in 

insolation at the Arctic and Antarctic circles. This is due to the competing effects of hours 

of daylight vs. intensity of the radiation received at 66º North (and South) at the solstices.   

If all of these months are averaged together to obtain annual insolation, it compares 

closely with Hartmann’s “Annual-mean, solstice and equinox insolation as functions of 

latitude” curve (Hartmann, 2016, Figure 2.7, reproduced here in Figure 21). This is also 

equivalent to the global annual insolation of Nadeau and McGehee (2017). 

 

 
 

Figure 21: Average daily insolation (W/m2) over all latitudes for the winter solstice 

(blue), summer solstice (red), and annual average (green). From Hartmann (2016). 
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Insolation drops to zero past the point of perpetual night. Equinox months, March and 

September, remain the only two months with insolation received across every latitude, 

and as such produce maps such as Figure 30a and 30e. 

As time proceeds into the past the zone of perpetual night changes by a few degrees 

due to the change in obliquity. In the present day, with an obliquity of 23.5°, the largest 

zone of perpetual night will be from 66.5° to 90º at Winter Solstice. That value, when 

changed to 68° for June during the LGM (given obliquity of 22.52º, see Table 2), for a 1-

degree resolution does not record a significant difference. Therefore, 66.5° was kept for 

all three time slices.  
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CHAPTER 4: RESULTS  

4.1: Zero-Dimensional Model Outputs 

Using minimal variables to model a single body system, Zero_D_EBM allows for the 

basic blackbody and greenhouse temperatures in °C for a planet to be modeled. Using 

only the solar constant, solar fraction (Sx), planetary albedo (α), and the greenhouse 

longwave coefficients A and B, global temperature can be procured.  

 

 
 

Figure 22: The GUI for Zero_D_EBM showing the default parameters and their 

results. 

 

 

 

Zero_D_EBM produces a blackbody temperature of -20.4°C, and a greenhouse 

temperature of 12.6°C, which is close to the accepted observed global surface 
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temperature of 14°C by Jones et al. (1999). Changing A to 201.0 W/m2 results in 14°C 

exactly. Using an S of 1370, with original A and B values results in a greenhouse 

temperature of 13.3°C. 

4.2: One-Dimensional Model Outputs 

One-dimensional EBM’s require starting input zonal temperatures (TSTART). 

From these starting points, the 1D-EBM runs towards equilibrium for 250 iterations as 

heat is transferred poleward from the equator. One-dimensional EBM’s also require a 

starting input zonal surface albedo (AL). Other key inputs are daily average solar 

radiation, A, B, and mean annual insolation, which is constrained by obliquity and orbital 

eccentricity.  

 Here, the 1D 2 hemisphere EBM’s outputs (Table 4, Figure 24) are matched 

against the outputs of The Shodor Education Foundation’s 1 hemisphere energy balance 

model (Found at: 

http://www.shodor.org/master/environmental/general/energy/energy.html), using 

identical inputs to achieve similar results. The Shodor model uses information garnered 

from McGuffie and Henderson-Sellers original 1997 model, and thus only displays the 

outputs for a single hemisphere. Both models were set with input information of: A = 204 

W/m2, B = 2.17 W/m2ºC, C = 3.87 Wm-2/°C, Tc = -10°C, CALB = 0.3, Sx = 1.0, 

SOLCON = 1370 W/m2, and αice = 0.62. Initial temperatures, and S (annual radiation) are 

shown in Table 3 and Figure 23, along with the outputs for the Shodor model.  
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Table 3: Inputs and outputs of Shodor energy balance model (Shodor, 1998) 

 

  
 

Figure 23: Initial and final temperature across the Northern hemisphere (Shodor, 

1998) 
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Table 4: Outputs from the 1D 2 hemisphere EBM, parameters set identically to 

Shodor. 

 
 

 
Figure 24: Outputs from the 1D 2 hemisphere EBM, parameters set identically to 

Shodor. Red lines are inputs, and outgoing longwave radiation. Blue lines are 

outputs, and incoming shortwave radiation. Cloudiness (blue) is input. 
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The One-D 2 hemisphere model reproduces Shodor’s values closely (compare 

with Table 3). Zonal temperatures agree to within 1-2°C across all latitudinal zones. 

Based on 1370 W/m2 input, global mean temperatures indicate 15.84°C (1D 2 

hemisphere EBM) versus 14.77°C (Shodor), potentially due to differences in S, given the 

One-D model uses sixth-degree Nadeau mean annual insolation. 

Equation 13 allows for a simple simulation of the effect that solar radiation has 

on the ice-line and temperature. Solar fraction and surface temperature retain a fairly 

linear relationship up until the solar fraction values of 0.8307093-0.8307094 of S, where 

the entire globe begins to reach glaciation temperatures, and the temperatures take on a 

runaway effect (Figure 25). The 1D 2 hemisphere EBM reproduces a similar 
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Figure 25: The relationship of temperature (°C) and the fraction of solar 

flux. Modeled using data from the Shodor Foundation’s version of the 

model. 
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relationship, using Shodor input values, Sx 0.84 = -9.69°C, Sx 0.83 = -14.98°C, and Sx 

0.82 = -38.63°C. 

At this critical tipping point with solar fractions of 0.8307093-0.8307094, the 

linear relationship breaks down. Even minute reductions in the solar fraction past that 

point have a much more significant effect on the surface temperature across all zones. 

Figure 26 takes a closer look at the solar fraction at which all latitudes start to glaciate. 

 

 

All modeled solar fractions share similar trends across varying latitudes. Figure 

27 shows that the temperatures all seem to decrease linearly as they move up the 

latitudinal zones from equator to the North Pole. However, regardless of the current solar 

fraction used, all temperatures values significantly decrease between the latitudes of 65 

and 75 degrees. Similar to Figures 25 and 26, there is a significant change in temperature 

that accompanies minute changes in the solar fraction.  
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4.3: Two-Dimensional Model Outputs 

Figure 28  shows the output temperature and albedo maps using the binary land-

ocean (Zres) map as the input albedo map and Figure 29 shows annual averaged CERES 

input albedo using the same mean annual insolation. Immediate differences will be seen 

on land, where, in the Zres version, the EBM maintains near-global land glaciation, even 

in the tropics. One will note that the strange “boxes” seen in the high latitudes are not 

errors, but instead a result of the continents in those lines of longitude decreasing the 

temperature of those zones. 

The TwoD_CERES.m assumes no Earth rotation, no ocean-atmosphere circulation, 

no ocean heat capacity, and assumes a static present-day cloud fraction profile. Despite 

the absence of these fundamental dynamics, the model capably produces significant 
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differences in temperature and albedo when forced by LGM, Eemian, and present-day 

insolation.  This allows for opportunities such as this for evaluating the significance of a 

specific parameter. Present day global temperatures have a baseline estimate of 14°C 

(Jones et al., 1999). TwoD_CERES.m produces similar, but slightly colder temperatures 

when cloud albedo (CALB) is set to 0.5, and slightly warmer temperatures when CALB 

is set to 0.3.  

Without Earth rotation, atmospheric or oceanic circulation, and no cross-longitudinal 

movement of heat, preventing mixing between lines of longitude, TwoD_CERES is not a 

true representation the planet. In light of these results, future additions to the model 

should be considered. Specifically, looking at Figure 30g, areas of colder temperature 

contours in the northern high latitudes on lines of longitude corresponding to the North 

America and Eurasia. This colder region extends further in longitudes with more 

landmass, corresponding to Africa and the North American longitudes with more 

landmass. In some areas, this drag or cinching effect continues down to the Equator, 

where the contour lines show this extremely well around longitude -100. Both CERES 

and binary land-ocean Zres maps display this effect, and would likely be ameliorated 

with the introduction of circulation in a more complex model.  
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a.

 
b.

 
Figure 28: Outputs for the 2D EBM using binary land-ocean albedo input map 

(Zres) and Nadeau-forced mean annual insolation. Temperature (a) and Albedo (b). 

Default input values: S = 1361 W/m2, A = 204 W/m2, B = 2.17 W/m2°C, C = 3.81 

Wm-2/°C, Tcrit = -10°C (global average), αice = 0.62, CALB = 0.5. 
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a. 

 
b. 

 
Figure 29: CERES albedo outputs using outputs for the 2D EBM using Nadeau-

forced mean annual insolation. Temperature (a) and Albedo (b). Default input 

values: S = 1361 W/m2, A = 204 W/m2, B = 2.17 W/m2°C, C = 3.81 Wm-2/°C, Tcrit = 

-10°C (global average), αice = 0.62, CALB = 0.5. 
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Comparing CERES to the binary land-ocean data shows a significant change, not 

only as small changes to the 1°x1° zones, but to the global climate outputs as well. The 

differences confirm the importance of starting albedo in a system, producing two vastly 

different global scenarios.  

Figure 30a-h display the temperature and albedo output maps for CERES across the 

two equinoxes and two solstices, the middle points of each season, March (a, b), June (c, 

d), September (e,f), and December (g,h) at present day (0 ka) insolation values, showing 

strong seasonal differences in global temperature and albedo. 
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a.

 
b.
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c.

 
d.

 



61 

 

e.

 
f.

 



62 

 

g.

h.

 
Figure 30: TwoD_CERES global temperature and albedo outputs for March (a, b), 

June (c, d), September (e,f), and December (g,h). Initial variables of αice = 0.62, 

CALB = 0.5, A = 204 W/m2, B = 2.17 W/m2°C, C = 3.81 Wm-2/°C, Tcrit Land = 0°C, 

and Tcrit Ocean = -13°C 



63 

 

CHAPTER 5: DISCUSSION 

The EBM provides the basic framework for introducing, for example, dynamical 

insolation changes. The next step would to use the output albedos and temperatures, such 

as those displayed in Figure 30, as the inputs for successive time steps. This revived 

method of modeling the energy balance of Earth allows for instructive steps into more 

specific questions about complex systems which, due to excessive computational 

demands, cannot realistically be carried out with complicated global circulation models. 

For example, one might start with a March input albedo map, and produce a first output 

with March insolation; then use that output as the input albedo for April, etc. for all 

twelve months would produce an informative time-variable insolation case study to 

compare with current month by month results. A second twelve-month case study, 

beginning with September could test for the importance of a climate’s history and model 

replication of seasonal cycles. 

This EBM can also be adapted for use in modeling exoplanets, and other Earth-

like planets in our Solar System. The inclusion of time-variable insolation throughout 

repeating model runs, using previous outputs as input values, would allow for a unique 

look at the change in climates based on continuous insolation values over time. Would 

this do something unexpected to the EBM? 

It will be instructive to use the EBM in this way for paleoclimate modeling. It has 

been designed primarily for use with Earth, but assuming that it functions well, changes 

in orbital forcing for example, could be applied the same way to examine a warm and wet 
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paleo-Mars. The large changes to orbital parameters in a complex orbit such as Pluto over 

time could also lead to interesting results in a time-variable insolation run.  

These tests also help determine the functionality of sixth degree Legendre 

approximations over various orbital situations. Modeling Mars’ chaotic obliquity shifts 

over automatic successive runs could produce unique results. At a minimum, designing 

choices to move forward with 0D, 1D, and q2D EBM’s based on available input data 

would significantly improve accessibility of the model for use on planets with less known 

parameter information. As such, it could prove to be an invaluable tool for adaptive and 

dynamic modeling of exoplanet climates as information improves. North and Kim (2017) 

believe that energy balance modeling could experience a resurgence of sorts for use with 

exoplanets. 0D models would be especially useful, as most exoplanetary data is limited to 

a single-body format. 

 

5.1: Hysteresis response 

Corroboration of the relationship between temperature and the fraction of solar 

flux is produced in Figure 31, showing the sharp decline in global temperatures at ~0.83 

Sx (S/So in Figure 31) due to the runaway feedback glaciation from point A to point B as 

discussed in Section 4.2 (Figs 25-27). Temperatures remain on this colder path even 

when Sx is increased again, until reaching point C, which is far above the present solar 

constant value (McGuffie and Henderson-Sellers, 2014).  
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Figure 31: Global mean temperature as a function of solar fraction (Figure 3.7 from 

McGuffie and Henderson-Sellers, 2014) 

 

This is because Earth’s global temperature exhibits a hysteresis response for 

increasing versus decreasing solar radiation forcing that is dependent on the history of the 

climate system, not simply the governing parameters. The basic 1D-EBM shows that as 

solar radiation is decreased from 1.5 times present-day value, temperature decreases 

linearly and then at 0.83 times present-day value suddenly drops to “snowball earth” 

conditions (Figure 32a). As solar radiation is increased from 0.5 times present-day value, 

for which the system represents a “snowball earth”, it will remain ice covered until solar 

radiation reaches 1.2 times present-day value, at which time global temperatures increase 

sufficiently to cause ice to melt (Figure 32b). Depending on where the system has been, 

i.e. past history, it follows different evolutionary paths, in a pattern known as a hysteresis 

loop.  
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For present-day TOA insolation of 1361 W/m2, there can be two very different 

temperature values depending on which side of the hysteresis loop the system is on, i.e., 

it does not represent a unique temperature value of expected present-day temperature 

(~14°C).  If the system is emerging from a global glaciation, present-day insolation 

would heat the Earth up only to approximately -30°C; insolation would need to be 1.2 

times present-day value to initiate ice melt. This is due to the global presence of ice and 

its albedo, which reflects a majority of the insolation, preventing the Earth from heating 

up until the fraction of insolation that is not reflected (i.e., is absorbed) equals or exceeds 

the amount needed to increase temperature from its previous value to exceed Tcrit. On 

the other hand, starting in a global system without polar icecaps, it is more difficult to 

glaciate the Earth. With steady cooling, temperature maintains a steady decrease, but the 

ice line does not advance correspondingly. Albedo only becomes a powerful enough 

factor once it reaches a critical point at 0.83 times present day insolation and enough ice 

can form to counteract melting. 
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a. 

 
b. 

 

Figure 32: Climate hysteresis demonstrated in a basic 1D-EBM that incorporates 

the original basic parameters only: incoming solar radiation, albedo, latitudinal 
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heat transport and outgoing longwave radiation. a. decreasing solar fraction. b. 

increasing solar fraction. For both a. and b., upper left represents the model’s 

output temperature, upper right the output albedo, lower left the longwave 

radiation, and lower right the global temperature versus the solar fraction. The red 

arrows point to times of abrupt shift. 

 

The discovery of the Earth’s hysteresis response can be traced to Budyko (1969). 

He argued that for the existing distribution of continental land masses, two climatic 

regimes could result, one in which polar ice contrasts greatly with a much warmer 

equator, and another where no glaciation and low meridional temperature gradients 

prevail. Small changes in incoming solar radiation would be enough to tip these unstable 

regimes towards freezing ice-free poles, or conversely, melting polar ice. He does not 

directly imply the importance of the history of the system, but does indicate that this 

effect could have major implications for the glacial-interglacial cycles of the Quaternary 

Period. 

 

5.2: Present-day global temperature (Jones) vs. 2D-EBM temperature 

 

Figure 33 shows average mid-season temperatures (Jones et al., 1999, Plate 4) that 

can be compared to the model outputs. 
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Figure 33: Average air temperature for midseason months of January, April, July, 

and October from 1961-1990 between 60°S - 60°N (Jones et al, 1999, Plate 4). 
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The months in Figure 33 are offset forward by one compared to the chosen 

midseason months discussed in this thesis. TwoD_CERES model outputs are slightly 

cooler, but comparable to the annual global average of 14°C (July maximum of 15.9°C 

and January minimum of 12.2°C.). These observational data are consistent with a global 

climate model by Hansen et al. (2010) that was also used for evaluation of TwoD model 

outputs. Comparing to Figure 33’s January, TwoD_CERES December has the ITCZ 

properly situated at 23°S, moved northward in Figure 33, so a direct comparison cannot 

be made. However, using the maximum value of 30°C, both Jones et al. (1999) and 

TwoD_CERES, the model produces near consistent temperatures with the Jones 

observations.  

 

5.3: Comparison of 0 ka, 24 ka and 128 ka time slices 2D EBM results 

Changes in insolation between LGM and Eemian data reveals a difference of more 

than 7°C in the warmest locations for each hemisphere’s summer (Fig. 34). Significant to 

note, is that for all three time slices, present day albedo and geography are used as the 

initial conditions of the EBM. 
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a. 

 
b.
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c. 

 
Figure 34: TwoD_CERES.m output temperature maps for June at 0ka (a), 24ka (b), 

and 128ka (c) insolation profiles. Initial variables of αice = 0.62, CALB = 0.5, A = 204 

W/m2, B = 2.17 W/m2°C, C = 3.81 Wm-2/°C, Tcrit Land = 0°C, and  

Tcrit Ocean = -13°C 

 

The LGM produces warmer temperatures in December (Figure 35) than in the Eemian 

interglacial. One possible cause is the absence of circulation from the TwoD_CERES 

EBM. Circulation could divert the poleward transfer of heat, and thereby produce colder 

temperatures in Antarctica. The shifting zone of perpetual night, due to obliquity, and/or 

the “midnight sun” may also contribute to the differences. We see this inconsistency with 

the Eemian being colder in more southern regions than the LGM at winter solstice, but 

warmer overall, specifically in the summer, as Earth’s tilt is pointed more directly 

towards the Sun (obliquity at 128ka = 24.17°, and 24ka = 22.52°, see Table 2). Another 

interesting output occurs in the December Eemian temperature map (Figure 35c). In the 
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temperature map, odd patterns of circular isoclines in the Indian Ocean, and deep 

southerly invasions of cold temperatures appear to originate from effects of land albedo 

in the Northern Hemisphere. 

a. 

 
b.
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c. 

 
Figure 35: TwoD_CERES.m output temperature maps for December at 0ka (a), 

24ka (b), and 128ka (c) insolation profiles. Initial variables of αice = 0.62, CALB = 

0.5, A = 204, B = 2.17, C = 3.81, Tcrit Land = 0°C, and Tcrit Ocean = -13°C 

 

Figure 36 shows temperature difference plots for LGM to present, and Eemian to 

present for both June and December outputs using the TwoD_CERES script. The 

sharpest differences such as those seen in 36a occur at the ice line, where a large change 

in temperature occurs at the latitudes where the ice line is located in one time slice, but 

not in the other. 
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a

 
b
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c 

 
d 

 
Figure 36: Difference plots between LGM and present day for June (a) and 

December (c), and Eemian and present day for June (b) and December (d) 

temperatures using the TwoD_CERES EBM. The color scale indicates difference in 

°C. The range is individualized for each month. 
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5.4: EBM parameter sensitivity 

5.4.1: Starting temperatures 

With limited parameterizations, simple experimentation to portray the effect that 

changing a specific parameter has on the Earth system can be carried out readily. Figure 

37 is one such example, where the impact of initial temperatures (TSTART) on climate 

outputs are examined.  

Initial albedo plays a significant role in determining output temperatures, so a 

change in initial temperature was expected to be similarly impactful. However, when 

comparing realistic zonal temperatures to an initial temperature of 0°C across all 

latitudes, differences in output temperatures and albedos were minimal, resulting in only 

a ±0.3°C change across global mean temperature. Testing with initial temperatures set to 

14°C across all latitudes produces nearly identical values to 0°C (12.130°C, Figure 37b), 

with global mean temperature reading 12.133°C. Setting initial temperatures to an 

extreme value, such as -100°C, will of course result in a larger impact, with the global 

mean temperature reaching -43.9°C, but this remains a small change comparatively to if 

initial surface or cloud albedo were changed to this extreme.  

These tests indicate that using a simple near average global temperature across all 

latitudes rather than a hyper-realistic temperature for each zone of latitude results in 

comparable model outputs. Therefore, while a more realistic albedo may still be required, 

the model can simulate other planetary bodies without highly accurate zonal starting 

temperatures. 
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a. 

 
b. 

 
Figure 37: Global temperature maps for annual averaged CERES albedo using 

mean annual insolation for both a. realistic starting temperatures and b. 0°C 

starting temperatures for all zones of latitude. 
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5.4.2: Heat transport coefficient 

Heat transport coefficient, C, influences the shape of the curve for the latitude of 

the ice-line as a function of input shortwave radiation, and global stability improves with 

a reduced meridional heat transport efficiency (Warren and Schneider, 1979). Global 

stability is defined by what fraction the solar constant must decrease in order to produce a 

snowball Earth (Lindzen and Farrell, 1977). It depends primarily on the values of B, C, 

and an albedo-temperature feedback coefficient (0.009 K-1) (Sellers, 1969; Warren and 

Schneider, 1979). Global stability increases with reduced C because with less transport 

between neighboring zones, temperature (and affected, albedo) changes in one zone have 

less of an effect on others. In the case of zero heat transport, the albedo-temperature 

feedback would only occur withing that singular zone of latitude, and not impact the 

energy balance of other zones (Warren and Schneider, 1979). 

5.4.3: Ice-albedo feedback 

A Milankovitch-forced reduction in insolation triggers glacial advance, which 

then experiences ice-albedo feedback, enhancing the advance. As more ice covers the 

Earth, planetary albedo increases, reflecting more shortwave radiation out of the system, 

reducing heat in the Earth system. By contrast, when less ice covers the surface, Earth 

absorbs more solar energy, increasing temperatures. In both cases, this is a positive 

feedback, with more ice, Earth cools, and allows for the further advance of ice; with less 

ice, Earth heats up, causing ice to recede.  
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5.4.4: Milankovitch cycles 

Milankovitch cycles can be used to gauge the global mean surface temperature 

(GMST) as a function of latitude and time, and the position of the ice line, in order to 

ascertain the inputs for an ice-albedo feedback model (McGehee and Lehman, 2012). 

GMST and the ice line location are more dependent on obliquity than eccentricity, and 

have no significant dependence on precession. Orbital eccentricity did have a substantial 

effect on GMST compared to ice volume, despite contributing less than obliquity. 

McGehee and Lehman’s model, while accurately predicting the impact of Milankovitch 

cycles on the climate, otherwise shows a significant departure from observed climate, 

confirming that additional parameters beyond orbital parameters alone are needed to 

accurately model climate, but their inclusion improves the accuracy of said factors 

(McGehee and Lehman, 2012).  

It should also be noted that the McGehee and Lehman model was able to more 

accurately represent climate for the early Pliocene, than for the late Pleistocene, where it 

had substantial difficulty due to factors other than ice-albedo feedback from 

Milankovitch cycles being more significant. Their model could not replicate the large 

100,000 year glacial-interglacial cycles present during the time of the late Pleistocene. 

Ice-albedo feedback, while present, was not a dominant factor during near global glacial 

cycles of the Pleistocene. Yet, it was much more dominant during the early Pliocene 

when ice was predominantly in the Antarctic (McGehee and Lehman, 2012). The EBM 

models provided by this thesis replicate the influence of these orbital parameters, using 
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the input variables of obliquity and orbital eccentricity at the three time slices and 

through the editable input boxes in the GUI’s.  

5.4.5: Cloud albedo, critical temperature, and albedo of ice. 

As with initial surface albedo, cloud albedo (CALB) significantly impacts the 

model output temperatures and albedo. Lowering CALB to 0.3, from 0.5, and changing 

no other parameters results in unrealistic warming (Figure 38) in comparison to Figure 

34a (June, 0ka) which indicates a global temperature of 13.21°C and has an ice-line 

latitude in the Southern Hemisphere that extends much further northward. 

 

 

Figure 38: TwoD CERES temperature output map for present-day June, CALB = 

0.3 instead of the default 0.5. 

 

Changing other parameters, such as Tcrit results in significantly smaller variations. For 

example, setting Tcrit of land to -10°C (default = 0°C) outputs a global temperature of 
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13.81°C, a difference of only 0.5°C from default present day June output (Figure 34a). 

Setting Tcrit of the ocean to 0°C results in a global temperature of 9.278°C with 

Antarctic ice expanding to 30°S. Finally, a small change to αice from 0.62 to 0.7 results in 

Figure 39, global temperature drops to 7.483°C, and both ice sheets expand significantly. 

 

 

Figure 39: TwoD CERES temperature output map for present-day June, αice = 0.7 

instead of the 0.62 default. 

 

 

 

5.5: Mars  

Here, preliminary discussion for Mars inputs is presented, confirming the critical 

importance of an accurate input albedo and OLR parameters A and B. While starting 

temperature (TStart) is not as critical as albedo, it is set to the Martian global surface 

average temperature of -63°C. 
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With a significantly lower S of 586.2 W/m2 (Q=S/4=146.55 W/m2), surface 

temperatures on Mars are drastically lower than on Earth, to the point that both the 

critical temperatures of CO2-ice and water-ice need to be accounted for. The critical 

freezing temperature of CO2 at 6 mbar of pressure (the surface atmospheric pressure of 

Mars) is -123°C (Longhi, 2006), which is much lower than for water ice at -3°C. Mars 

surface pressure (Pair) fluctuates between 4.0 and 8.7 mbar, and is currently 6.36 mbar 

(NASA, 2016). The average surface temperature on Mars is -63°C (210 K), but winter 

temperatures at the South Pole can reach <134 K, or -139°C (Longhi, 2006). The 

southern ice cap is the only location where solid CO2 ice (dry ice) can form, however, 

mixtures of CO2 and H2O, CO2 clathrate (hydrate), and other eutectic mixtures between 

H2O and CO2 can form at higher temperatures and latitudes (Longhi, 2006). The 

differences of albedo of ice for water (αice = 0.62) and CO2 (αice = 0.64) (Hoffert et al., 

1981) in the visible band of the spectrum should not be significant, although further 

testing will have to be done for differences, for example, in the infrared. There is also not 

enough water-ice to cause significant melting or recharge of the Martian ice caps 

(Longhi, 2006). Figure 40 shows the phase diagram of the CO2-H2O system in the 

Martian ice caps.  

As illustrated by the differences between Earth’s ‘Zres’ and ‘CERES’ initial 

albedo maps, to accurately model a planet in TwoD, a high-resolution albedo input map 

is required. For Mars, this was accomplished using the Mars Global Surveyor Thermal 

Emission Spectrometer (MGS TES) Global Bolometric Albedo Map which resolves 

Lambert albedo values at 7410m/pixel, or 8 pixels/degree (Christensen et al., 2001). This 
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map was downscaled to 1° x 1° resolution in order to achieve the same resolution used 

for Earth modeling (Figure 41). 

 

 

Figure 40: Mars’ pressure-temperature phase profiles of H2O (dash-dotted) and 

CO2 (dashed) for Mars’ current atmosphere, surface, and regolith (Fig. 1 of Longhi, 

2006). 
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Figure 41: Input realistic downscaled 1º x 1º resolution MGS TES Mars albedo map 

 

 

Table 5: A and B values for Mars (Nakamura and Tajika, 2001) 

 

 

On Mars, outgoing longwave radiation coefficient values A and B depend on the 

atmospheric pressure of CO2 (Nakamura and Tajika, 2001). These coefficients were 

determined from radiative-convective calculations of Pollack et al. (1987), which include 

the greenhouse effects of CO2 and H2O. A and B are parameterized as a function of ρ: 
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Equation 18: 𝛒 =  𝐥𝐨𝐠 𝑷𝒂𝒊𝒓 

 

Where the surface pressure of CO2, Pair, is in bars, and A1/B1 and A2/B2 are interchanged 

for T > T0 (A1/B1) and T < T0 (A2/B2) as used in Equation 19, which is reminiscent of 

Equation 2. T0 is set equal to 230.1 K: 

 

Equation 19: 𝑰(𝐬𝐢𝐧 𝜽) = 𝑨 + 𝑩𝑻(𝐬𝐢𝐧 𝜽) 

 

𝐴 =  𝑎1ρ4 +  𝑎2ρ3 +  𝑎3ρ2 + 𝑎4ρ + 𝑎5 (W/m2) 

𝐵 =  𝑏1ρ4 +  𝑏2ρ3 +  𝑏3ρ2 + 𝑏4ρ + 𝑏5 (W/m2K) 

Where 𝜽 is latitude. 

Mars’s obliquity ranges from approximately 15° to 47.5° (Laskar et al., 2004b), 

and is currently 25.19° (NASA, 2016). Mars’s orbital eccentricity is currently 

0.09341233 (NASA, 2016), with a minimum of 0.00113993 and maximum of 0.1230998. 

Mars’s obliquity and orbital eccentricity variations for 0-10 Ma are displayed in Figure 

42. The large shift in obliquity at 5 Ma is due to Mars’s chaotic obliquity and its modeled 

passage through a secular spin-orbit resonance (Touma and Wisdom, 1993). 
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Figure 42: Mars' astronomical parameters according to the La2004 astronomical 

solution (Laskar et al., 2004b).  Precession index (top), axial obliquity (middle), and 

orbital eccentricity (bottom), from -10 myr to present. 
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Using MGS TES albedo as an input, and Nadeau mean annual insolation for Mars 

at present day obliquity and orbital eccentricity produces the output global temperature 

and albedo displayed in Figure 44. Using the A and B values of Nakamura and Tajika  

(2001) with this first attempt at transitioning the Earth EBM results in temperatures that 

are far too warm for Mars. In Figure 44, parameters A, B, and C were therefore cherry-

picked through model run testing to resemble observed Martian temperatures (Figure 

43). More accurate outputs using the A and B values of Nakamura and Tajika (2001) 

would likely result if other parameterizations, such as the ability to swap A1/B1 with 

A2/B2 values at T0 were introduced. Changes to CALB, C, cross-longitudinal heat 

transport, as well as latitudinal cloud fraction would also improve polar region outputs to 

be cold enough to produce CO2 ice using Table 5’s parameterizations, while keeping 

equatorial regions warmer.  
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Figure 43: Observed pole to pole Martian surface temperatures from TES data. 

 

Reducing heat transport, C, to sequester heat in the equatorial regions and glaciate 

polar regions results in model breakdown at C < 1.74 as specific lines of longitude 

glaciate completely compared to a cold but near uniform surface for other longitudes 

(Figure 45). Further changes to the 2D model are necessary before it can be used to 

reliably model Mars. 



90 

 

a.  

b.  

Figure 44: Example output temperature and albedo maps using TES initial albedo, 

and globally averaged starting temperature of -63°C. 

S = 586.2 W/m2, αice = 0.64, Tcrit = -123°C, β = 25.19°, e = 0.0935 

Test parameters: CALB = 0.5, A = 120, B = 0.250732, and C = 1.80. 
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Figure 45: Mars EBM temperature output map using reduced latitudinal heat 

transport (C) = 1.70 

 

 

 

5.6: Pluto 

Pluto’s atmosphere is dominated by nitrogen, which freezes at -210°C at Pluto’s 

atmospheric pressure, 10 μbar (NASA, 2016). Thus, TCRIT was determined to be -210°C 

for purposes of modeling ice on Pluto. H2O and CO2 will always present as solid ice at 

these temperatures and pressures. This far from the Sun, Pluto only receives an S of 0.873 

W/m2. 

NASA’s New Horizons mission in 2015 revealed important information about 

Pluto, first, that its surface pressure has changed dramatically recently, as nearly half of 

its atmosphere has frozen onto the planet’s surface giving us this new lower value of 10 

μbar compared to much higher measurements from Earth previously (NASA, 2015). New 

Horizons also revealed detailed surface geology and volatile distribution maps (Grundy et 
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al., 2016). This is useful for defining an input albedo, which varies drastically across the 

planet. The equatorial region displays both light and darker regions (Figure 49), differing 

in temperature and volatile deposition (Earle et al., 2017). Pluto’s nitrogen ice albedo 

(αice) has a reflectivity similar to Earth’s water ice, at 0.62 (Lewis et al., 2020).  

Pluto’s obliquity is defined relative to the standard orbital plane orientation of the 

Solar System, although its positive (North) pole is opposite to that of all of the other 

planets. Currently, the obliquity is 119.59° and varies between 103° at a minimum and 

128° at a maximum (NASA, 2016; Earle et al., 2017). 

 

 

Figure 46: Variations in Pluto's obliquity over the last 3 myr (Earle et al., 2017). 

 

Pluto’s orbital eccentricity varies between 0.21 and 0.27 (Ito and Tanikawa, 

2002), with a current value of 0.24880766 (NASA, 2016). As with the gravitational 

impact of Jupiter on Earth’s and Mars’s eccentricities, Pluto experiences orbital 

eccentricity variations primarily due to resonance with its nearest neighbor, Neptune (Ito 

and Tanikawa, 2002). 
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Figure 47: Pluto's orbital eccentricity for two 30 myr-long models (Ito and 

Tanikawa, 2002). 

 

 Initial albedo values for Pluto were derived from zonal averages in Figure 48 

(Buie et al., 1992). Updated albedo data from New Horizons would need to be among the 

objectives for future use of the model in order to improve outputs, and as such the 

imprecise model results are not presented here. 

 

 

Figure 48: Albedo map of Pluto, used as input values based on a latitudinally zoned 

average (Buie et al., 1992). 
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Using a map of albedo, nitrogen ice can also be used to determine a higher resolution 

input albedo (Buratti et al., 2017, Lewis et al., 2020). 

 

 

Figure 49: Bolometric albedo from Buratti et al. (2017) modeling deposits of 

nitrogen ice across Pluto’s surface. 
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CHAPTER 6: CONCLUSIONS 

Using a modernized energy balance model to simulate Earth and other planetary 

bodies in several model variations of increasing complexity, this study incorporated novel 

solutions to determine the significance of multiple orbital and climate related parameters. 

Enhancements to previous energy balance models using a conglomerate of 

interdisciplinary studies and unique solutions allowed for several accomplishments. 

• A catalog of easy-to-use zero-dimensional, one-dimensional, and 

two-dimensional EBMs.  

• Budyko-Sellers style energy balance modeling, examining the 

influence of solar flux on temperature and ice-line location with ice-

albedo feedback is revitalized in the MATLAB environment with a 

Graphic User Interface (GUI). 

• Milankovitch cycles are added to energy balance modeling for the 

first time. 

• Orbitally forced mean annual insolation using sixth order Legendre 

series expansion is added to allow for basic modeling for any star-

orbiting planet with non-zero obliquity and orbital eccentricity, and a 

rotation rate that is significantly faster than that of its orbit. 

• Monthly insolation solutions are provided as inputs for three time 

slices, present-day (0ka), LGM (24ka) and Eemian Interglacial (128ka); 
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and the influence of obliquity in the absence of global circulation is 

highlighted. 

• The inclusion and comparison of binary annual land and ocean 

albedo and realistic monthly albedo as inputs, where realistic albedo was 

shown to drastically improve Earth outputs. 

• EBM iterations were increased to ensure that equilibrium is 

achieved. 

• Many research questions can be pursued using the revamped, 

simple energy balance models provided, and preliminary discussion for 

use in non-Earth systems was introduced. 

• Varied tests of input variable significance on climate results were 

conducted. 

Initial albedo including surface, cloud, and ice, as well as changes to insolation-

forced parameters such as coefficients A and B were revealed to result in the most 

significant changes to a system. Meanwhile, variations in initial temperatures were 

among the least significant to the outputs of the model.  

The different models allowed for a more in depth look at the importance of 

specific model parameters, as limitations were placed to allow for a more generalized and 

accessible model. Both in-depth Earth studies and cursory exoplanetary research benefit 

from the simplistic modeling approach. The less computationally intensive modeling 

approach facilitates faster results about more specific inquiries.  
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Previous energy balance modeling was reviewed, and the tools for realistic simple 

modeling were created to assist in climate modeling of Earth, and the first steps are taken 

to introduce a comprehensive model to single-model multi-planetary research. Future 

work will entail the inclusion of more in-depth cloud and atmospheric forcing in the 

model. Cloud fraction profiles would need to be made time variable, and sensitivity tests 

should be run to determine the impact of what cloud forcing would accomplish. The 

addition of cross-longitudinal circulation, atmospheric diffusion, and a more complex 

heat capacity parameter that changes between land and ocean would improve zonal heat 

transfer. Model ability to work with non-Earth systems would need to be refined through 

the inclusion of updated OLR and heat transport classifications. 

Another advancement would be to provide an outer loop to take output albedo and 

temperature maps and input them into a new run with a change in insolation. This can 

take place at multiple levels, such as: month-to-month, year-to-year for a single month, 

and year-to-year for annual average. 
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