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Dissertation Director: Stephen J. Zaccaro 

 

 

 

The cognitive process of forecasting is important for decision making, problem solving, 

and planning, but has been under researched in psychology. The present research looked 

at the relationship between the amount and detail of forecasts and the accuracy of 

predictions in a driving time prediction context. In addition, individual differences in 

working memory capacity and visual/ spatial information processing were examined for 

their impact on forecasting activity. The results indicated that forecasting detail, but not 

forecasting amount, was related to prediction accuracy; however, both were moderated 

by participants’ task experience. Furthermore, working memory capacity interacted with 

object imagery usage to predict the amount of detail in participants’ forecasts; however, 

the impact of working memory and object imagery was not transmitted to prediction 

accuracy. Overall, the findings from this study contribute to the literature on forecasting 

by highlighting important factors in the forecasting process. 
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Introduction 

 

 

Future oriented thinking is ubiquitous in everyday life, and one such process in 

particular – forecasting – is receiving increasing attention from researchers in many areas 

of psychology. Within industrial/ organizational psychology, forecasting has been cited 

as a critical variable in areas such as leader vision formation (Shipman et al., 2010), 

evaluation of ethical considerations (Stenmark, Antes, Thiel, Caughron, Wang, & 

Mumford, 2011; Stenmark, Antes, Wang, Caughron, Thiel, & Mumford, 2010), creative 

idea evaluation (Dailey & Mumford, 2006; Mumford, Lonergan, & Scott, 2002), and 

creative problem-solving (Byrne, Shipman, & Mumford, 2010). Similarly, forecasting 

plays numerous roles in complex cognitive processes such as planning (Hayes-Roth & 

Hayes-Roth, 1979; Mumford, Shultz, & Osburn, 2002). For example, forecasting is used 

to envision future and goal states (Haith, 1997), to predict the affordances that will come 

into or leave from the environment, and to predict the effectiveness of an initial plan, 

make modifications as necessary, and test a final plan for validity and feasibility 

(Mumford et al., 2001; Mumford, Shultz, & Osburn, 2002). In addition, forecasting is 

used to make estimates of resource requirements, such as the amount of time needed to 

complete a project or to complete a task (Dailey & Mumford, 2006).  

Despite the importance of forecasting, little is known about what leads to 

successful and decisionally beneficial forecasts, and very little is known about how 



2 
 

forecasts are formed. In order to begin to address these gaps, the present work will 

examine mental simulation as a contributing mechanism for forecasting. Mental 

simulation, in a forecasting context, can be seen as the process of manipulating mental 

representations of current situations, based on one’s understanding of causal factors, to 

extrapolate conditions likely to unfold in future situations. Mental simulation has also 

played a significant role in many other psychological theories and been identified as a 

mechanism in many important processes. For instance, Klein and Crandall (1995) 

proposed that mental simulation is the mechanism by which experts generate, test, and 

make decisions in the real world (see also, Kahneman & Tversky, 1982). Mental 

simulations have also been hypothesized as mechanisms for reasoning and problem 

solving (Einhorn & Hogarth, 1986; Hegarty, 2004; Trickett & Trafton, 2007), and for 

solution evaluation (Christensen & Schunn, 2009).  

Based on forecasting and mental simulation literatures, I will identify potential 

individual differences that may play a role in the forecasting activities an individual 

engages in and the functional outcomes of forecasting activities. In particular, I will 

explore the role of knowledge and experience in making forecasts more accurate, and the 

role of working memory capacity and visual/ spatial imagery usage in producing more 

forecasting activity. Determining the relative importance of these factors should 

contribute to an understanding of how the process of forecasting is conducted and when it 

is likely to be beneficial.   

Forecasting and Mental Simulation 

Forecasting 
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Forecasting is the process of mentally simulating imagined future scenarios or 

events. It is used by decision makers to anticipate potential obstacles and hindrances, or 

to play out a course of action and evaluate its potential for success. In Mumford, 

Lonergan, and Scott’s (2002) model, forecasting is used when evaluating creative 

solutions as a means of examining potential outcomes and necessary resources. These 

forecasts are then appraised and used to inform subsequent decisions. Similarly, in 

creative problem solving, forecasting is used as a form of complex prediction and should 

lead to better evaluations of idea quality, originality, and elegance; and to higher quality, 

more original, and more elegant plans for idea implementation (Byrne et al., 2010). 

Byrne and colleagues tested this hypothesis and found that the extensiveness of forecasts 

was positively related to ratings of solution quality, originality, and elegance; and 

positively related to ratings of implementation plan quality, originality, and elegance.  

 In a similar study, Dailey and Mumford (2006) examined factors influencing 

evaluations of creative ideas and identified forecasting as a critical component in the 

evaluation process. According to Dailey and Mumford, forecasting allows the creative 

problem solver to increase the quality of a creative solution by identifying the most viable 

ideas to spend time and resources pursuing, providing an examination of ideas in the light 

of the present context, and simulating revisions needed to enhance the impact of 

solutions. Though these researchers did not measure forecasting activities directly, they 

asked participants to use their forecasts to make ratings of resource requirements and 

social outcomes of a solution to a problem. Dailey and Mumford found that people show 

some accuracy in their predictions of resource requirements and outcomes (in contrast to 
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previous research; e.g., Dörner & Schaub, 1994; Langholtz, Gettys, & Foote, 1995). One 

factor contributing to the accuracy of forecasts was the expertise of the forecaster. When 

participants in Daily and Mumford’s study were more familiar with a domain, they 

tended to be more accurate in their forecasts of the impact of ideas and the difficulties 

likely to be encountered in implementing ideas. Interestingly, though familiarity was 

associated with more accuracy, the participants also tended to overestimate the positive 

outcomes and underestimate the time and money required for the solution.  

Shipman, Byrne, and Mumford (2010) examined how forecasting may be 

involved in the vision setting functions of leaders. In this context, forecasting is used to 

anticipate an organization’s future environment and to generate a general strategy for 

reaching organizational goals in that environment. Shipman et al. modified a research 

paradigm used by Mumford and Strange (2005) to incorporate written statements of 

predictions for the future. This required that participants make their forecasts explicit so 

they could later be evaluated by raters. The researchers found that extensiveness of 

forecasts predicted the quality of the vision statements that participants produced. 

Moreover, vision quality was higher when forecasting activity considered time and 

resource requirements. As noted by Shipman et al. (2010), given this positive 

relationship, leader forecasting activity has been under examined by the research 

community. 

 Stenmark and colleagues (Stenmark, Antes, Thiel, Caughron, Wang, & Mumford, 

2011; Stenmark, Antes, Wang, Caughron, Thiel, & Mumford, 2010) highlighted the 

importance of forecasting in ethical decision making. These authors point out that ethical 
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decisions tend to be complex and have significant consequences, and therefore, 

forecasting activity is critical to the ethical decision making process. Stenmark et al., 

(2010) collected evidence that suggests that forecasting quality relates to more ethical 

decisions. They also found that higher quality forecasts were produced when the most 

critical causes were analyzed, but high quality forecasts did not necessarily result from 

the number of causes that were analyzed.  

 As the above literature illustrates, many industrial/ organizational psychologists 

have studied forecasting for its impact on many different outcomes. One area in particular 

that should receive more research is the use of forecasting to predict resource 

requirements. This form of prediction is important because predicting time requirements 

is necessary scheduling work and coordinating smaller tasks for the successful 

completion of larger projects (Halkjelsvik & Jorgensen, 2012). Moreover, these 

predictions are often biased downward, at least within the context of predicting how long 

it will take to complete a project (for review, see Buehler, Griffin, & Peetz, 2010). As the 

above research demonstrates, forecasting has an important role in complex cognitions 

such as problem solving and decision making. To begin to examine what individual 

differences are most important for forecasting activities, it would be helpful to examine 

the underlying process of mental simulation in more detail.  

Mental Simulation 

Mental simulation is a widely used term in psychology, though it is also variably 

defined. As it will be used here, the cognitive act of mental simulation is the “running” of 

a mental model (Hegarty, 2004; Trickett, 2004; Trickett & Trafton, 2007). Mental models 



6 
 

are the “knowledge and cognitive processes that allow humans to understand, reason 

about, and predict the behavior of complex physical systems” (Hegarty, 2004, p 280). In 

this sense, a mental model is a knowledge structure that can be recalled from memory in 

order to answer questions one might have. Mental modeling of hypothetical or real 

phenomena appears to be a fundamental process used in support of human reasoning 

(Gentner & Stevens; 1983; Johnson-Laird, 1983).    

The above definition of mental simulation is similar to the definition offered by 

Moulton and Kosslyn (2011). They define mental simulation as “an epistemic device that 

operates by sequential analogy” (Moulton & Kosslyn, 2011, p. 99). As an “epistemic 

device,” mental simulation is used to access stored knowledge or generate knowledge 

(see Fisher, 2006). By “sequential analogy” Moulton and Kosslyn mean that a mental 

simulation has an analogous temporal structure as the event that is simulated. In other 

words, the steps in a mental simulation correspond to the steps in the actual event, though 

often steps are omitted in mental simulation and simulations are almost always 

condensed.  

Both of these definitions imply that mental simulation is the dynamic use of 

mental models. Gilhooly (1987) describes mental modeling as an information processing 

function designed to represent the external world. Mental modeling and mental 

simulation are largely analogous. Through information gathering processes, the mind 

collects perceptual inputs and constructs a general model of how the world works, along 

with expectancies for how it might work in any given situation. This information allows 

prediction of future situations through mental simulation of constructed models of the 
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world. Mentally simulating the model of a system can be used to infer future states of the 

system, allowing an individual to form a plan of action.  

Unfortunately, very little is known about how one mentally simulates. 

Researchers often invoke the term “mental simulation” to explain cognitive processes, 

though they rarely describe the explanatory mechanisms behind mental simulation. To 

say that planning, forecasting, reasoning, problem solving, and naturalistic decision-

making all require mental simulation, and in some cases, are mental simulation, is not a 

meaningful way to describe these cognitive functions. Without a deeper understanding of 

what mental simulation entails, it is impossible to determine whether the mental 

simulation explanation is feasible or whether mental simulation performance can be 

predicted by situational or individual factors. The next section provides a theoretical 

framework underlying the proposed model for a cognitive process of mental simulation. 

This framework will provide support for the individual differences that are hypothesized 

to contribute to forecasting and prediction accuracy.  

If forecasting is done through the cognitive process of mental simulation, one 

question then becomes, what leads an individual to make accurate and useful simulated 

forecasts? It is assumed that everyone engages in forecasting, however, some individuals 

should be expected to forecast better than others. There has been little research that 

connects mental simulation abilities and predictions mechanisms with individual 

differences. When used in planning, mental simulations of forecasted futures must be 

commanded and controlled in order to produce integrated simulations necessary for 

creating viable plans (cf Klein & Crandall, 1995). The present work examines three 
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classes of individual differences that may play a role in the forecasting process: 

knowledge, information processing preferences (i.e., visual/spatial/verbal preferences), 

and information processing capacities (i.e., working memory capacity).  

Present Research 

The underlying conceptual model of the present research is this: during mental 

simulation, association networks of long-term memory are continuously activated and 

used as a resource to frame mental imagery. Subjectively, this produces a stream of 

imagery and internal representations which allow an individual to project him or herself 

mentally into another place, time, or person (see Buckner & Carroll, 2007). During 

planning, the simulation of imagery allows an individual to construct internal 

representations of a predicted (though hypothetical) future. This enables the individual to 

evaluate and select options for navigating toward the most optimal future. The success of 

activities such as strategizing or planning depends heavily on the accuracy of these 

simulated representations.  

Forecasting allows decision makers to manipulate mental models of the present 

situations and extrapolate about the future. Forecasting plays an important role in 

planning by allowing one to anticipate future situations and the outcomes of proposed 

actions. Decisions are made based on the anticipation of outcomes. Therefore, the extent, 

quality, and character of forecasting activities should be an important antecedent to the 

quality of decisions. In planning, these decisions pertain to the feasibility, required 

resources, or outcomes of a course of action. The present research will explore the role of 

forecasting in predicting required resources, namely, time requirements. Beginning with 
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the right combination of knowledge and individual differences, forecasting activities can 

yield accurate predictions. Therefore, a key relationship to be tested is that forecasting 

activities are positively related to prediction accuracy. 

 More specifically, this research will examine forecasting amount and detailedness 

because these  basic facets of forecasting have been linked to decision quality in previous 

research (e.g., Byrne et al., 2010;  Stenmark et al., 2010, 2011). While related, these two 

forecasting activity variables are expected to be distinct and to capture unique variance in 

prediction accuracy. Forecasting amount is simply the amount of time that an individual 

spends during forecasting. Forecasting detail is the thoroughness of the forecasting 

activities, or the extent to which a forecaster considers a range of possibilities in causes 

and outcomes. These two forecasting activity variables are both expected to relate to 

prediction accuracy in a positive manner. 

  H1a: Forecasting amount predicts accuracy of predictions. 

  H1b: Forecasting detail predicts accuracy of predictions. 

The human tendency to forecast and make predictions is strong despite the fact 

that many complex systems can be extremely difficult to predict. There are a number of 

computational factors that impact prediction success, such as how strongly events are 

related or how frequently they occur. One of the prerequisites for successful forecasting 

is that events must be nonrandom. If there are no causal relationships between cues in the 

present environment and occasions in the future environment, then there is no way, 

outside of luck, to predict what will transpire. The brain, however, will still attempt to 

generate a probabilistic expectation from this random input (Schubotz & von Cramon, 
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2002). That is, even random input can sometimes generate an illusion of a pattern 

(Chapman, 1967; Kahneman & Tversky, 1971) and lead to false confidence in 

predictions. 

Given these difficulties, it is unsurprising that the predictions that people make 

are often inaccurate (Dörner & Schaub, 1994, Pant & Starbuck, 1990). However, perhaps 

with the right model, we may identify individual characteristics that facilitate prediction 

accuracy. In the next section, I outline a model that suggests moderators of the 

relationship between forecasting activities and prediction accuracy. In addition, I examine 

antecedent variables that encourage individuals to engage in forecasting.  

Knowledge, Forecasting, and Prediction Accuracy 

The role of knowledge in forecasting is critically important. Those with the more 

accurate knowledge structures should be better at making predictions than those with less 

accurate knowledge structures, at least in noncomplex domains. Gilhooly (1987) claimed 

that mental simulation is primarily driven by memory resources: both long-term memory 

and working memory. Long-term memory holds general schemas and domain specific 

knowledge, and working memory operates on that information to use it in situ. The focus 

of this section is long-term memory – knowledge in perceptual and abstract forms. 

Working memory will be addressed in the next section.  

The present research assumes a baseline level of domain familiarity. Using this 

knowledge, participants are expected to actively generate forecasts; however, the utility 

of those forecasts in producing accurate predictions will depend on a specific set of 

knowledge. In other words, while knowledge itself is an antecedent of forecasting, large 
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amounts of accurate, domain specific knowledge is what converts forecasting activity 

into accurate predictions.   

The imagery that results from mental simulations is used to examine stored 

knowledge and make it accessible for reasoning and prediction (Fisher, 2006; Moulton & 

Kosslyn, 2011; Trickett & Trafton, 2007). Domain specific knowledge of the most 

important causal variables is essential to ensuring that forecasts are appropriately targeted 

(Dailey & Mumford, 2006; O’Connor, 1998). Since so much reasoning and prediction 

depend on the knowledge made accessible through mental simulation, an expectation for 

the current research is that:  

H2a: Domain specific knowledge moderates the relationship between 

forecasting amount and prediction accuracy, such that more knowledge 

and more forecasting lead to more accurate predictions. 

H2b: Domain specific knowledge moderates the relationship between 

forecasting detail and prediction accuracy, such that more knowledge and 

more detailed forecasting lead to more accurate predictions. 

As Glass and Holyoak (1986) have pointed out, knowledge has aspects pertaining 

to what is represented and how it is processed. In their words, “knowledge must be 

stored, or represented, in memory, and it must be used, or processed, to perform cognitive 

tasks” (Glass & Holyoak, 1986, p. 5). To Glass and Holyoak, representation and 

processing are related in such a way that how information is represented determines how 

it can be used. This account of knowledge mirrors findings in the planning literature that 

demonstrate that much of the knowledge that is used in the early planning phases comes 
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from past experience (Berger & Jordan, 1992; Hershey, Walsh, Read, & Chulef, 1990; 

Mumford et al., 2001; Mumford, Shultz, & Osburn, 2002). The role of past experience in 

contributing key knowledge cannot be overlooked. Using past experience to generate 

future plans is a process of manipulating schemata “to construct them afresh” (Bartlett, 

1932, p. 206). Past experience is a critical factor for forecasting, as shown in research 

into episodic future thought (Szpunar, 2010; Szpunar, Chan, & McDermott, 2009) and 

the constructive episodic simulation hypothesis (Schacter & Addis, 2007a, 2007b). Past 

experience is important because of the type of knowledge it provides and its application 

to future situations.  

 Berger and Carol (1992) compared different sources of knowledge that were used 

in plans by having participants think aloud as they generated action plans for social 

interactions and hypothetical goals (e.g., becoming a millionaire, requesting a date, 

ingratiating oneself with a roommate, and persuading another person). The sources of 

knowledge Berger and Carol identified included individual past episodes, sets of past 

episodes, or hypothetical episodes. They found that each of these sources were used to 

form action plans for various hypothetical goals, though for each goal, specific past 

episodes and sets of past episodes were used more often than hypothetical episodes. The 

only exception was that when planning to request a date, past episodes and hypothetical 

episodes were equally frequent. When participants formed plans for becoming a 

millionaire, they used episodes (both past memories and hypothetical episodes) relatively 

infrequently. Instead, participant used exemplar role models as the basis of their plans, 

since they had little of their own experience in such situations. Based on this research, it 
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is expected that experience strengthens the relationship between forecasting activities and 

prediction accuracy.    

H3a: Task experience moderates the relationship between forecasting 

amount and prediction accuracy, such that task experience strengthens the 

relationship between forecasting and prediction accuracy. 

H3b: Task experience moderates the relationship between forecasting 

activities and prediction accuracy, such that task experience strengthens 

the relationship between forecasting and prediction accuracy. 

Working Memory Capacity and Forecasting   

  Working memory is not often studied in conjunction with forecasting, but it is 

examined in connection with planning. Planning is inherently an error prone process 

since it relies on human information processing (Dörner & Schaub, 1994). Even experts 

are often inaccurate in their forecasts (Pant & Starbuck, 1990) and predictions (Tetlock, 

2005). The implication is that knowledge may be necessary, but not sufficient for 

producing accurate forecasts and predictions. Knowledge forms the schemas from which 

plans are constructed or interpreted and provides the parameters for the interacting 

components within a forecast. However, constructing and activating these knowledge 

structures through mental simulation takes effort and sustained attention. This capacity 

comes through working memory- the component of memory that holds currently 

important information active for manipulation and calculations.   

The use of imagination to represent future worlds or mental simulation to test 

actions in a problem space requires cognitive resources (Mumford et al., 2001; Reuland, 
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2010). Moreover, when there is a large distance between a current state and a desired 

future state, or when the path between the two is dynamic and complex, cognitive 

resource demands are greatly increased (Dörner, 1996; Dörner & Schaub, 1994; 

Mumford et al., 2001). The cognitive resources required for successful planning come 

from the ability to focus attention on the problem, the ability to hold the required 

information in mind, and the ability to transform that information through mental 

simulation. These abilities are derived from working memory capacity.   

  Working memory is important because it grants the planner more resources for 

mental simulation and more flexibility and freedom in the mental simulations he or she 

creates. For example, greater working memory capacity would help the planner to more 

fully mentally manipulate the component stages of a plan. Pulos and Denzine (2005) 

argued that planning ahead requires working memory because action steps must be 

sequenced into a course of action. Pulos and Denzine predicted that online planning – 

planning that is updated as actions are taken – would require fewer cognitive resources 

because information is apparent in the situations and does not need to be stored in 

memory. These authors found that working memory was related to solution time. They 

reasoned that this result was due to the length of action sequences, or partial plans, that 

were formed. Individuals with larger working memory capacities formed longer partial 

plans before executing those plans. Individuals with shorter working memory capacities 

formed relatively short partial plans.  

 There have been a few investigations of the relationship between working 

memory and planning through tasks such as the Tower of Hanoi (Emick & Welsh, 2005), 
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the Tower of London (Gilhooly, Wynn, Logie, & Della Sala, 2002; Newman, Carpenter, 

Varma, & Just, 2003; Phillips, Gilhooly, Logie, Della Sala, & Wynn, 2003; Pulos & 

Denzine, 2005; Unterrainer & Owen, 2004), or Luchin’s (1942) water jug problem 

(Delaney, 2001). This research generally shows a strong relationship between planning 

and working memory capacity. However, these studies operationalized planning as short-

range solutions to immediate problems. These tasks require visualizing how physical 

objects might be manipulated to reach solutions. Therefore, the working memory needed 

for performance on these planning tasks is mainly visual or spatial. For example, 

Gilhooly et al. (2002) examined performance on 20 Tower of London tasks of varying 

difficulty and found that performance on these tasks loaded on visio-spatial working 

memory, rather than processing speed or verbal working memory.  

  Few researchers have empirically investigated the relationship between working 

memory and mental simulation. In one case, researchers examined the effort required to 

form mental models of complex equations (i.e., those produced by Einstein’s (1905) 

theory of special relativity; Qin & Simon, 1992). In this study, Qin and Simon had 

participants read sections from the 1905 paper, and create mental images to represent the 

equations presented. The authors reported that participants could create images and 

simulate those images mentally in order to watch the evolution of processes and draw 

conclusions. However, Qin and Simon also reported that when the mental image was 

used to problem solve (i.e., to derive Einstein’s equations) the participants exerted great 

short-term memory load.  Individuals with greater working memory capacity may be 

more inclined or more able to forecast more fully. Therefore,  
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H4a: Working memory capacity predicts forecasting activity, such that 

greater working memory capacity leads to more forecasting. 

H4b: Working memory capacity predicts prediction accuracy, such that 

greater working memory leads to more accurate predictions. 

  Since Hypotheses H1a and H1b predicted a positive relationship between 

forecasting activities and prediction accuracy, it is likely that some of the effect of 

working memory on prediction accuracy is transmitted through forecasting activities. 

Therefore,  

H4c: Forecasting activity partially mediates the relationship between working 

memory capacity and prediction accuracy. 

Information code use 

In order for information to be stored, it must be coded into some representation – 

an internal depiction for external content. As discussed above, representations can be 

analog or symbolic, and the way information is stored determines how it can be used 

(Glass & Holyoak, 1986). Code usage is a term used to describe the information 

processing preferences and abilities of individuals along the dimensions of visual and 

verbal/symbolic orientations. 

According to Mayer and Massa (2003), there are stable individual differences in 

both the form of representation used in thinking and the form of representation preferred 

in learning. Based on these individual differences, researchers in educational psychology 

have been classifying people as visualizers or verbalizers depending on which 

representation they tend to use more in learning and problem solving. However, 
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researchers have also treated these dimensions as independent of one another such that 

individuals possess the capacity to process information in both forms. For example, 

Blazhevkova and Kozhevnikov (2009; see also Clark & Paivio, 1991; Paivio, 1986) argue 

that imagery is a unitary construct. People are high or low in imagery use, and they have 

different modalities for using imagery (visual, verbal, as well as others). This means that 

someone can be high in the use of visual imagery as well as high in verbal imagery, or 

low in both, or any other combination.   

Visual information procession. As a species, we are heavily dependent on vision 

in daily life and over half of the human brain is devoted to processing visual information 

(Anderson, 2010). As such, memories of past episodes tend to be highly visual. Since 

individuals store past experiences in visual code, and use past experiences to predict 

future experiences, a preference and facility for visual code should provide clear and 

convincing simulation of the future.  

Visual abilities are often examined in conjunction with spatial abilities and the 

two are often grouped together in research as visuo-spatial abilities. Carroll (1993) 

proposed that visual ability is a subfactor of spatial intelligence. He called visual ability 

the “ability in forming internal mental representations of visual patterns and in using such 

representations in solving spatial problems” (Carroll, 1993, p. 363). However, the 

tendency to group visual and spatial abilities together may obscure important differences 

between two codes and there is some evidence that they should be treated separately to 

more effectively predict the uses of these codes (Blazhenkova & Kozhevnikov, 2009). 



18 
 

Visual information is processed in two ways in the brain. There is a pathway that 

processes what the object of vision is, and there is a pathway that processes where the 

object of vision is. Based on this understanding of the cognitive neuroscience of vision, 

Kozhevnikov and colleagues (Kozhevnikov, Kosslyn, & Shephard, 2005; Blazhenkova & 

Kozhevnikov, 2009) argued for the inclusion of an object subscale (for processing what) 

and a spatial subscale (for processing where) in measurement approaches to visual 

imagery preferences and abilities. Blazhenkova and Kozhevnikov (2009) created a 

measure of imagery usage that demonstrated better fit to a three factor structure (object, 

spatial, and verbal) than a two factor structure (visual and verbal). On the criterion side, 

they also found that scores on the object subscale correlated with performance in visual 

art classes. Scores on the spatial subscale correlated with performance in physics classes. 

Finally, scores on the verbal subscale correlated with performance in writing classes. This 

suggests that a tendency to use a specific type of information conveys a benefit for tasks 

that are heavily reliant on that information type.  

Individual differences in object imagery use. Object imagery – pertaining to the 

appearance, shape, color, or texture of visual imagery – may be marginally related to 

forecasting activities, though it is not expected to be related to prediction accuracy.  

Much of the experimental evidence for the functionality of visual imagery that exists has 

been generated in domains of simple, short-term, or concrete problems. There is less 

evidence that visual imagery is used in complex problem solving such as that required for 

long-range planning. D’Argembeau and Van der Linden (2006) examined the role of 

object imagery in participants’ forecasts of their future. They found that individuals that 
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use highly vivid visual imagery tend to simulate more details in their forecasts, and they 

forecast more important and emotionally-laden events. D’Argembeau and Van der 

Linden suggested that the same characteristics that enable highly visual people to 

remember information from the past enable them to create predictions of the future. This 

argument parallels the connection between remembering the past and predicting the 

future that has been suggested by many other researchers (e.g., Atance & O’Neill, 2001; 

Schacter & Addis, 2007, 2008; Suddendorf & Corballis, 1997; Tulving, 1985).  

Based on theory grounded in information processing, Kosslyn (1980) proposed 

that visual imagery is made up of components such as image generation, image 

maintenance, and image transformation. Poltrock and Brown (1984) measured 

performance on visual imagery and spatial ability tasks that correspond to the cognitive 

components outlined by Kosslyn’s (1980) mental imagery model. They found that these 

cognitive components were unrelated to one another, suggesting separate stages in 

cognition that contribute to performance on visual/ spatial tasks. Having separate stages 

for generating, maintaining, and transforming imagery implies that imagery creates 

numerous demands on cognitive resources. Therefore, the benefits of visual information 

processing are likely to be enhanced in the presence of sufficient working memory.  

Just as working memory may facilitate visualization processes, working memory 

capacity limitations may be partially remediated by visualization. Since a picture is 

sometimes worth ten thousand words in problem solving (Larkin & Simon, 1987), 

visualization may produce a reduction in cognitive load by chunking multiple items into 

one coherent picture. The ability of visual information processing to compensate for low 
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working memory capacity is suggestive of an interaction between visual information use 

and working memory capacity. The ability to maintain and manipulate clear visual 

images in working memory may contribute to the extent of forecasting activities. 

Therefore, 

H5a: Object imagery use and working memory capacity have an interactive 

effect on forecasting amount such that the relationship between working 

memory and forecasting amount becomes more positive as object imagery use 

increases.  

H5b: Object imagery use and working memory capacity have an interactive 

effect on forecasting detail such that the relationship between working 

memory and forecasting detail becomes more positive as object imagery use 

increases. 

Individual differences in spatial imagery use. If an individual is using mental 

simulation to mentally travel through time and think out a plan, then there will be a time 

component of the imagery that is used for the simulation. Forecasting future events 

through mental simulation is a means of mentally moving through time and playing out a 

temporal unfolding of events. Planning requires ordering actions in time. We use a spatial 

metaphor for describing time, possibly because we use a spatial metaphor to think about 

time. For example, we think of moving through time in a similar way as we think of 

moving through space (e.g., as moving “forward” or “back”). Individuals that construct 

an accurate mental model, and are able to simulate the model’s dynamics through time, 

may be better at forecasting future outcomes based on that model.  
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Moreover, there is some evidence that spatial ability is related to the ability to 

estimate quantities and approximate accurately (Dehaene, 1997; Hogan & Brezinski, 

2003). Some of the greatest challenges in planning is the estimation of how long things 

will take (Buehler & Griffin, 1994; Buehler & Griffin, 2003; Buehler, Griffin, & Peetz, 

2010) or how many resources will be necessary. For example, estimating how long a 

process will take is so often inaccurate, that the consistent underestimation in this regard 

is known as the planning fallacy (Kahneman & Tversky, 1979). If spatial abilities 

translate into temporal abilities as has been suggested, then we would expect spatial 

abilities to contribute to the temporal structure of forecasting abilities. 

H6a: Spatial imagery use predicts forecasting activities.  

H6b: Spatial imagery use predicts the accuracy of predictions.  

H6c: Spatial imagery use and working memory capacity interact such that the 

relationship between working memory capacity and forecasting activities 

becomes more positive as spatial imagery use increases.  

Individual differences in verbal code use. Walsh (2003) proposed that doing 

exact calculations requires access to language. He suggested that a system for 

determining the magnitude of something (e.g., its quantity, size, or timespan) is localized 

in a region of the brain implicated in word associations – the left inferior prefrontal lobe. 

Dehaene, Spelke, Pinel, Stanescu, and Tsivkin (1999) demonstrated that language is 

necessary for exact calculations, but people can approximate without language. Exact 

calculations are probably not made during mental simulations, but rather are made 

outside and imported in. Therefore, verbal code use may have an impact on predictions, 
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though this expectation is weaker. In fact, there is little theory or evidence describing the 

role of verbal code in forecasting and prediction. Since the present research will measure 

forecasting with a verbal protocol, it is likely that verbal code use will be related to 

forecasting activities. However, this relationship is driven by methodological factors and 

not theoretical factors. Because of these factors, no hypotheses will be formed around the 

role of verbal code use. 
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Method 

 

Study Overview 

 The present research investigates individual differences that contribute to 

forecasting activities and prediction accuracy in estimating time requirements. A 

laboratory setting was used to test the above hypotheses. Participants were presented with 

three driving scenarios and for each, asked to imagine making a trip by car from one 

location (between 17 and 28 miles away) to the parking lot of their university campus. A 

driving scenario was chosen because it was believed that there would be adequate 

variation in required knowledge in a college student population. In addition, a driving 

scenario affords the opportunity to create a time requirement estimation task that can be 

objectively verified with web-based estimates of travel times factoring in traffic delays.   

Participants  

This study included 103 undergraduate students from the psychology subject pool 

who had enrolled in research to partially fulfill course requirements. Due to a lost audio 

recording, one person was dropped from the dataset, for a final sample of 102. The 

average age of participants was 20.7, with a standard deviation of 4.42 years. Ages 

ranged from 18 to 47. Most participants were female (68.9%) reflecting the broader 

subject pool. The ethnicity of the sample was 13.6 percent African American, 10.7 

percent Asian, 50.5 percent Caucasian, 5.8 percent Hispanic, 1.0 percent Native 
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American, 4.9 percent Middle Eastern, and 13.6 percent reported mixed parentage. Many 

participants were in their freshman year at the University (41.7%), while sophomores 

made up 14.6 percent, juniors made up 23.3 percent, seniors made up 18.4 percent. Two 

participants were completing post-graduate course work (about 2%). More than half of 

the participants were working at least part-time (41.7 % reported working part-time, 

11.7% reported working full time). The other 46.6 percent reported not currently 

working. Fifty-four participants (52.4%) said they grew up in the local area. Sixty-nine 

(67%) reported having a car in the area. 

Experimental tasks 

The experimental task consisted of three forecasting opportunities where 

participants are presented with a driving situation and asked to describe the route they 

would take. Participants were asked to imaging they were at a location (between 17 and 

28 miles away) and they had to drive to campus on a Friday at 4:00PM. They were then 

asked to respond verbally (i.e., “think aloud”) to three prompts. First, they were asked to 

describe the way they would go in order to get to campus. Then, they were asked to think 

about the factors that would impact their ability to get to campus as quickly as possible. 

Finally, participants were asked to think about how their travel time from one location to 

campus would be affected if the situation was not Friday at 4:00PM. After each response 

from the participant, a follow up question was asked (i.e., “are there any other details to 

include?,” “are there any other factors or obstacles?,” or “are there any other differences 

based on day of the week or time of day?” for the three questions, respectively).These 

were the only questions asked during the exercise to standardize the amount of prompting 
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participants received. Verbal responses to these prompts were audio recorded, 

transcribed, and subsequently coded. The “think aloud” protocol script is presented in 

Appendix B.   

After participants completed the “think aloud” portion of the scenario, they were 

asked to make estimates of time requirements for the travel required of the situation. 

They were asked to predict how long it would take to reach a well-known meeting spot 

on campus and to provide their degree of confidence in their prediction, from 0 percent to 

100 percent. They were also asked to give a range of how long it might take, and to 

estimate how long the drive would take in the rain.  

Measures  

Demographics. All demographic information was self-reported. The 

demographic questions that were asked can be found in Appendix A: Measures. 

Information collected included age, sex, year in school, college major, overall GPA, 

native language, English proficiency, and work experience.  

Information code use. Individuals’usage of different information modalities will 

be measured using the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ; 

Blazhenkova & Kozhevnikov, 2009). This 45 item scale has object, spatial, and verbal 

subscales, each with 15 items. The OSIVQ is a self-report measure in which participants 

rate the extent to which the items describe their preferences. Blazhenkova and 

Kozhevnikov (2009) found an internal consistency of (object α = .85, spatial α = .79, and 

verbal α = .74) and test-retest reliability (object r = .75, spatial r = .84, and verbal r = .73) 

of these subscales. They also provided evidence for the predictive and discriminant 
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validity through confirmatory factor analysis (study 2) and the ecological validity by 

relating OSIVQ scores to performance in different academic classes such as physics, 

visual arts, and writing (study 3). The present study used only spatial and object visual 

subscales, which had 14 and 15 items, respectively. The spatial subscale only had 14 

items due to an error in the survey administered to participants. The coefficient alpha for 

the object imagery subscale was .85; coefficient alpha for the spatial imagery subscale 

was .81.  

Working memory capacity. Working memory capacity was measured using two 

computer-based complex span tasks; the automated operational span and the automated 

reading span tasks (Unsworth, Heitz, Schrock, & Engle, 2005); available from Engle and 

colleagues’ Attention and Working Memory Lab at Georgia Institute of Technology). In 

these tasks, participants are required to store strings of letters in short term memory while 

engaging in some other task, such as reading or doing math. In the operational span task, 

participants must solve an addition or subtraction problem, and remember a letter that 

follows the problem. They follow this with another addition or subtraction problem and 

another letter. This is repeated a number of times and at the end of the trial, participants 

must recall the string of letters they were presented with. Similarly, in the reading span 

task, participants must read a sentence and remember a letter presented at the end. 

Internal consistency evidenced in Kane et al. (2004; see also Conway et al., 2005) and 

test-retest reliability is evidenced in Conway et al. (2005). More detailed information 

about these measures is available from Unsworth, Heitz, Schrock, and Engle (2005).  
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What Unsworth and colleagues (2005) describes as the absolute score was used 

for this variable. The absolute score is the total number of letters correctly recalled within 

completely recalled sets of letters. For example, if the participant recalled four out of four 

(4/4), four out of five (4/5), three out of four (3/4), and three out of three (3/3), their score 

would be seven: (4 + 0 + 0 + 3 = 7).  

Knowledge. Knowledge was measured with a single self-report item that asked 

participants to rate his or her confidence in his/her ability to locate [start location] on a 

map in under 20 seconds (0% confident, 25% confident, 50% confident, 75% confident, 

or 100% confident). Participants answered other knowledge items, however, these were 

not easily combined into a composite score due to scale differences and the formative 

nature of the items. For example another question asked participants to list as many 

driving instructions as they could for the scenario and they were given a score based on 

how many steps in the route they were able to recall. This item yielded a count variable, 

which cannot be averaged with the Likert scale above. However, there were strong 

correlations among these knowledge items indicating that these items were measuring 

different components of participants’ knowledge. The knowledge questions were 

administered after the forecasting session to avoid cueing the participant into what to 

think about during forecasting.  

Experience. Experience was examined with a unique set of self-report questions. 

These questions pertained to specific experiences with the problems at hand. For each 

scenario, participants responded to four questions about their past experiences on a 4-

point Likert scale. The items include: How many times have you been to the [start 
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location] area? (0=never, 1=only a few times, 2=often, 3=very often); How often have 

you driven yourself between the [start location] area and Fairfax campus? (0=never, 

1=only a few times, 2=often, 3=very often); How often have you been driven by someone 

else between the [start location] area and Fairfax campus? (0=never, 1=only a few times, 

2=often, 3=very often); In addition, the item, “how familiar are you with the roads 

between [start location] and here?” was rated on a 4-point Likert scale (0=not at all 

familiar, 1=a little familiar, 2=familiar, 3=very familiar). Experience items were given 

after the forecasting session to avoid cueing the participants. For the first scenario, 

internal consistency reliability was α = .78. For Scenarios 2 and 3, internal consistency 

reliability coefficients were both α = .87.    

Dependent variables 

Forecasting amount. A “think aloud” protocol was used in the present research 

to elicit forecasts so that their extent and quality could be examined. The forecasting 

portion of the study was audio recorded with time-stamps at the beginning and end of 

each prompt question. For each prompt in the think aloud, the amount of forecasting 

activities was measured by the amount that the participant said in response to the prompts 

(in terms of the number of words) and the amount of time the participant spent 

responding to the scenario. The standardized values were computed for amount of time 

and amount of words forecasted, before these two values were averaged to create the 

“forecasting amount” variable.  

Forecasting detail. In addition, transcripts of the first and second prompts were 

coded for the amount of detail in forecasting activity by two coders very familiar with the 
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roads used in the scenarios. Amount of detail was evaluated in the beginning and end of 

the forecasted route because it is common for forecasters to quit forecasting prematurely 

(Dörner & Schaub, 1994). A two way, mixed effects model was used to compute 

interrater reliability for each scenario. In the first scenario, the intraclass correlation 

(ICC) across ratings from the first and second halves of the forecasts was .933. In the 

second scenario, the average ICC was .954. For the third scenario, the average ICC was 

.907. Overall, these ICCs indicate high internal consistency between raters.  

Prediction accuracy. After forecasting, participants were asked to make final 

estimates about the time they would need for each trip. Prediction accuracy was measured 

through a comparison of these estimates and the estimates provided by Google Maps™. 

Each prediction opportunity asked about travel times on a Friday afternoon at 4:00pm. 

Prior to the initiation of this study, the travel times, including traffic delays, were 

recorded every Friday at 4:00PM for 43 weeks. It was raining on five of these 43 Fridays. 

Incidentally, it did not snow on any of these days. The average travel times, including and 

excluding rain, respectively, were: Scenario 1, 59 and 73 minutes; Scenario 2, 51 and 53 

minutes; and Scenario 3, 61 and 66 minutes. Prediction accuracy was determined by 

taking the absolute value of the difference between these actual travel times and the 

participants’ predicted travel times. Prediction accuracy scores were multiplied by 

negative one (-1) so that larger scores reflected more accurate predictions.  

Then, prediction scores were weighted by confidence, which participants rated 

after each prediction on a scale from 0 to 100 percent. Calculating a confidence weighted 

prediction accuracy
2
 score helps control for guessing. Since the participants in this study 
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were verbally asked to make estimates of the travel time required for each scenario, they 

may have felt compelled to provide an answer, even when they were unsure of their 

response. 
1
 

Confidence weighted prediction accuracy was calculated by subtracting 100 plus 

confidence scores to prediction accuracy difference scores. As an example, consider two 

participants whose estimates deviated from the true travel time by 5 minutes. The first 

was 100 percent confident and therefore received a weighted prediction accuracy score of 

-5 (5 minute difference - 100 + 100% confident). The second participant was 75 percent 

confident and therefore received a weighted prediction accuracy score of -30 (5 minute 

difference - 100 + 75% confident).  

  

                                                           
1
 The only difference in the results between weighted and unweighted accuracy emerged in H3b. The 

moderating effect of task experience on the forecasting detail – unweighted prediction accuracy 

relationship was not significant.  
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Results 

 

 Means, standard deviations, and zero order correlations are presented in Table 1. 

Hypotheses were evaluated using hierarchical linear modeling with HLM 7 software, 

available from Scientific Software International, Inc. (Raudenbush, Bryk, Cheong, 

Congdon, & de Toit, 2011). Accuracy, knowledge, experience, forecasting detail, and 

forecasting amount were level 1 (within person) variables, working memory capacity, 

object imagery usage, and spatial imagery usage were level 2 (between persons) 

variables. Full maximum likelihood estimation was used, and all variables were group 

mean centered when entered in the regression, except where specified.   

Hypothesis 1  

Hypothesis 1 pertained to the relationship between forecasting activities and 

prediction accuracy. Specifically, H1a said that forecasting amount is positively related to 

prediction accuracy; H1b said that forecasting detail is positively related to prediction 

accuracy. Just under thirty-six percent (35.6%) of the total variance in accuracy was 

between persons. Therefore, 64.4 percent of the variance in accuracy was within persons. 

Hypothesis 1 (like Hypotheses 2 and 3 below) examines within person variance in 

accuracy with level 1 variables. To test H1a, prediction accuracy was regressed on 

forecasting amount with no level 2 variables specified. Using this model, forecasting 

amount was not a significant predictor of accuracy (B = 2.85, t(203) = 1.37, p > .05). 
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Therefore, H1a was not supported. However, when prediction accuracy was regressed on 

forecasting detail, forecasting detail was a significant predictor (B = 9.38, t(203) = 3.90, p 

< .05). Forecasting detail was significantly positively related to prediction accuracy. 

Therefore, H1b was supported.  

Hypothesis 2 

 Hypothesis 2 stated that domain specific knowledge moderates the relationship 

between forecasting activities and prediction accuracy, such that prediction accuracy is 

increased with more knowledge and more forecasting. This hypothesis was tested 

separately for forecasting amount (H2a) and forecasting detail (H2b). For both 

hypotheses, prediction accuracy was regressed on knowledge and forecasting in one 

model, and the improvement in the model when the product of knowledge and 

forecasting activity was entered was evaluated using a chi square difference test. When 

comparing nested models, this test provides information on whether the more complex 

model shows improved fit to the data above the simpler model.  

 The chi square difference test for the models that included knowledge and 

forecasting amount on the one hand, and knowledge, forecasting amount, and the 

interaction term on the other, resulted in a chi square of 2.81, which was not significant 

on one degree of freedom. Therefore, the inclusion of the interaction term did not aid in 

prediction – knowledge does not moderate the relationship between forecasting amount 

and prediction accuracy. H2a was not supported. As would be expected, knowledge was a 

significant predictor of accuracy (B = 9.56, t(201) = 4.17, p < .05). 
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 The chi square difference test for the models that included knowledge and 

forecasting detail on the one hand, and knowledge, forecasting detail, and the interaction 

term on the other, resulted in a chi square of 0.38, which was not significant on one 

degree of freedom. Again, the inclusion of the interaction term did not improve 

prediction and knowledge does not moderate the relationship between forecasting detail 

and prediction accuracy. Therefore, H2b was not supported.  

Hypothesis 3 

 Hypothesis 3 stated that task experience moderates the relationship between 

forecasting activities and prediction accuracy, such that task experience strengthens the 

relationship between forecasting and prediction accuracy. H3a looks at the moderating 

effect of experience on the relationship between forecasting amount and prediction 

accuracy. H3b looks at the moderating effect of experience on the relationship between 

forecasting detail and prediction accuracy. The same approach that was used  to analyze 

the proposed interaction effect in Hypothesis 2 will be used for Hypothesis 3.  

 When examining the moderating effect of experience on the relationship between 

forecasting amount and prediction accuracy (H3a), the chi square difference test was 

significant (χ
2
(1) = 4.24, p < .05). Adding the interaction term improved the fit between 

the model and the data and the interaction term was a significant predictor of prediction 

accuracy (B(201) = -4.24, p < .05). This two-way interaction was examined more closely 

using a simple slopes analysis (Cohen, Cohen, Aiken & West, 2003). Slopes were 

computed for the relationship between forecasting amount and prediction accuracy at one 
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standard deviation above the mean on task experience and one standard deviation below 

the mean on task experience.  

At one standard deviation above the mean on experience, the relationship between 

forecasting amount and prediction accuracy was not significant (B = .45, t(302) = .151, p 

> .05). At one standard deviation below the mean on experience, the relationship between 

forecasting amount and prediction accuracy was significant (B = 7.61, t(302) = 4.23, p < 

.05). A graph of this interaction is depicted in Figure 1. This pattern does not support 

H3a.  

The chi square difference test comparing the models examining experience and 

forecasting detail versus the model examining experience, forecasting detail, and the 

interaction term was also significant (χ
2
(1) = 21.794, p < .05), indicating that including 

the interaction term improves model fit. The interaction term was a significant predictor 

of accuracy (B = -4.56, t(201) = -2.263, p < .05). A simple slopes analysis showed that 

the relationship between forecasting detail and prediction accuracy was significant for 

individuals with low task experience (B = 12.22, t(302) = 4.02, p < .05). For those with 

high task experience, the relationship between forecasting detail and prediction accuracy 

was not significant (B = 3.92, t(302) = 1.86, p > .05; see Figure 2). This pattern does not 

support H3b. 

Hypothesis 4 

 Hypothesis 4 pertained to the effects of working memory capacity. Specifically, 

H4a stated that working memory capacity predicts forecasting activity; H4b stated that 

working memory capacity predicts prediction accuracy; and H4c stated that forecasting 
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activity partially mediates the relationship between working memory capacity and 

prediction accuracy. For H4a, forecasting amount and forecasting detail were each 

regressed onto working memory capacity in two HLM analyses.  

In the intercept only model, about 60.7 percent of the variance in forecasting 

amount is between persons. About 49.1 percent of the variance in forecasting detail is 

between persons. In both cases, there is sufficient between persons variance to be 

predicted by level 2 predictors. Despite the presence of adequate between person 

variance, working memory capacity was not a significant predictor of forecasting amount 

(B = .000, t(100) = 0.03, p > .05) or forecasting detail (B = .003, t(100) = 0.44, p > .05). 

Therefore, H4a was not supported.  

For H4b, prediction accuracy was regressed onto working memory. Working 

memory was not a significant predictor of prediction accuracy (B = -.04, t(100) = -0.24, p 

> .05). Therefore, H4b was not supported. Since these two direct paths were not 

significant in H4a and H4b, the indirect path from working memory capacity to 

prediction accuracy, as mediated through forecasting activity cannot be significant. 

Therefore, H4c was not supported. 

Hypothesis 5 

Hypothesis 5 stated that object imagery and working memory capacity have an 

interactive effect on forecasting activities such that the relationship between working 

memory and forecasting becomes more positive as object imagery use increases. H5a 

examines the interaction between working memory and object imagery on forecasting 

amount, while H5b examines the interaction between working memory and object 
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imagery on forecasting detail. These hypotheses were tested in the same manner as 

Hypotheses 2 and 3, namely, by conducting two HLM analyses and then comparing 

improvement in model fit (using the chi square difference test) resulting from adding the 

interaction term.  

When object imagery and working memory capacity are used as predictors of 

forecasting amount, neither is a significant predictor (for object imagery, B = 0.19, t(99) 

= 1.05, p > .05; for working memory capacity, B = -0.002, t(99) = -.26, p > .05). The 

interaction terms was not significant either, but it was approaching significance (B = 

0.02, t(98) = 1.72, p = .089). The chi square difference test was not significant (χ
2
(1) = 

2.91, p > .05), but the observed probability of the obtained chi square was below p = .10.   

With forecasting detail as the dependent variable, working memory (B = 0.000, 

t(99) = 0.057, p > .05) and object imagery (B = 0.275, t(99) = 1.73, p > .05) were not 

significant predictors (though object imagery had a regression coefficient that was 

approaching significance, p = .087). The interaction term was a significant predictor of 

forecasting detail (B = 0.03, t(98) = 2.70, p < .05), and the chi square difference test was 

significant as well (χ
2
(1) = 7.06, p < .05). 

A simple slope analysis was conducted at one standard deviation above and one 

standard deviation below the mean of object imagery. The slopes of both lines showed a 

significant relationship between working memory capacity and forecasting detail. At one 

standard deviation above the mean in object imagery, working memory had a positive 

relationship with forecasting detail (B = .099, t(98) = 8.60, p < .05. At one standard 

deviation below the mean on object imagery, working memory had a negative 



37 
 

relationship with forecasting detail (B = -.015, t(98) = -2.34, p < .05). Therefore, H5b 

was supported. This interaction is depicted in Figure 3.  

Hypothesis 6 

 Hypothesis 6 dealt with the use of spatial imagery. H6a stated that spatial imagery 

use predicts forecasting activities. This was tested with two HLM analyses. With 

forecasting amount as the dependent variable, spatial imagery was not a significant 

predictor (B = -0.03, t(100) = -0.21, p > .05). With forecasting detail as the dependent 

variable, again, spatial imagery use was not a significant predictor (B = .14, t(100) = 

0.92, p > .05). Therefore, H6a was not supported. 

H6b stated that spatial imagery use predicts prediction accuracy. Like forecasting 

activities, this was tested an HLM analysis with prediction accuracy regressed on spatial 

imagery use. Spatial imagery did not account for prediction accuracy (B = 6.91, t(100) = 

1.40, p > .05). Therefore, H6b was not supported.  

H6c stated that spatial imagery use and working memory capacity interact such 

that the relationship between working memory capacity and forecasting activities 

becomes stronger as spatial imagery use increases. This was tested by comparing two 

HLM analyses, with and without the inclusion of the product term like the other 

hypotheses that predicted interactions (H2, H3, and H5). With forecasting amount as the 

dependent variable, neither working memory capacity nor spatial imagery use were 

significant predictors (B = 0.000, t(99) = 0.040, p > .05 and B = -0.028, t(99) = -0.202, p 

> .05, respectively). The interaction term was not a significant predictor (B = -0.009, 

t(98) = -1.12, p > .05) and the chi square difference test was not significant (χ
2
(1) = .989, 
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p > .05). With forecasting detail as the dependent variable, working memory and spatial 

imagery were again, not significant predictors (B = 0.003, t(99) = 0.410, p > .05 and B = 

0.135, t(99) = 0.910, p > .05, respectively). The interaction term was not a significant 

predictor (B = 0.009, t(98) = 0.975, p > .05), and the chi square difference test was not 

significant (χ
2
(1) = .745, p > .05). Therefore, H6c was not supported.  
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Discussion 

 

 

 

Forecasting – the mental simulation of potential future consequences or events – 

has been identified as an important cognitive process by previous research domains such 

as problem solving (Byrne et al., 2010; Einhorn & Hogarth, 1986; Hegarty, 2004; 

Trickett & Trafton, 2007), vision formation (Shipman et al., 2010), ethical decision 

making (Stenmark et al., 2010; 2011), and planning (Hayes-Roth & Hayes-Roth, 1979; 

Mumford et al., 2001). In these domains (and in many others) the forecasting process is 

used as an explanatory mechanism underlying how people reason and make decisions 

about the future. The present study sought to contribute to these literatures in two ways: 

by establishing a connection between forecasting and an objective criterion (i.e., accuracy 

in predicting amount of time required), and by examining individual differences that may 

contribute to forecasting. The results of this study provide insights into the process of 

forecasting, which in turn informs the growing literature that cites forecasting as a 

mechanism for prediction, planning, and other forms of problems solving. The results 

also suggest theoretical and methodological lessons for future research in this domain. 

Unlike previous research which obtained ratings from subject matter experts (e.g., 

Byrne et al., 2010; Dailey & Mumford, 2006), the present study linked forecasting to an 

index of prediction accuracy that was based on deviations of predictions from an 

objective estimate. This approach enabled this study to test the link between one’s 
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forecasting activities and his or her accuracy in predicting the amount of time required to 

meet an objective. This is important because it allows the researcher to establish the 

correctness of predictions as opposed to more subjective metrics such as the quality or 

elegance of predictions.   

The present research showed that forecasting detail was related to accuracy; 

however, forecasting amount was not related to accuracy. These results suggest that the 

conceptual distinction between the forecasting amount and forecasting detail is important 

to consider when designing research. Whereas previous studies have shown the 

forecasting amount can have a positive impact on outcomes, the present research suggests 

that more forecasting is not always better. For example, in the ethical decision making 

context (Stenmark et al., 2010), it may be beneficial to forecast a variety of factors and 

numerous perspectives, however, in the present context where the outcomes was 

evaluated in terms of accuracy, the amount of factors forecasted was less important in 

predicting estimates.  

Task knowledge did not a moderate of the forecasting-prediction accuracy 

relationship, though it was by itself related to prediction accuracy. When task knowledge 

was evaluated alongside of forecasting detail, both predictors were related to the accuracy 

of predictions. The fact that task knowledge was not a moderator suggests that knowledge 

was important for planning and making accurate predictions, but the forecasting 

component was important as well. Perhaps the participants forecasted more general 

traffic considerations and obstacles to adjust their estimates. For example, they may have 

used what they knew about the scenario (time of day, day of week) to adjust their 
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predictions. The lack of a relationship could also have been a methodological factor 

caused but the collinearity between forecasting and task knowledge. The process of 

forecasting uses knowledge in the form of mental models, so it is difficult to extricate the 

two variables. Therefore, it is not surprising that a strong correlation between the two was 

found.  

Unlike task knowledge, task experience did moderate the relationship between 

forecasting and prediction accuracy, but not in the hypothesized direction. For both 

forecasting amount and forecasting detail, the pattern of interaction showed a stronger 

effect for low experience individuals than high experience individuals. Though high 

experience individuals were more accurate on average, low experience individuals 

boosted their performance through more forecasting. For high experience individuals, 

there was no relationship between forecasting amount and prediction accuracy. Similarly, 

even though high experience individuals were more accurate overall, low experience 

individuals became much more accurate through forecasting in rich detail versus high 

experience individual who forecasted in rich detail. One interpretation of this is that, in 

the context of the present research, not all forecasting is equal – some forecasting activity 

may be wasted effort or even negatively biasing, while other forecasting activity is 

beneficial for planning and decision making. The high experience individuals may have 

seen more obstacles in the past, and may have thought of those obstacles during 

forecasting. These high experience individuals may have been overly inclusive of 

obstacles in their thinking, or overly focused on the most memorable obstacles, which led 

them to provide overly pessimistic predictions.  
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 The major finding of this research was that forecasting detail was predicted by 

the combination of working memory and object imagery. Individuals high in both object 

imagery usage and working memory capacity provided the most detailed forecasts. 

Individuals low in object imagery produced less richly detailed forecasts, even when they 

also had the information processing requirements to handle complex and elaborate 

forecasts. This supports the assertion that forecasting is a resource intensive, visual 

thinking process. It requires both the information processing resources and the visual 

information processing resources to be effective. 

This interaction has implications for research on the impact of visual skills. Some 

past studies have failed to demonstrate an effect of object imagery (or visual/spatial skills 

more broadly) on decision making or problem solving outcomes. This may be the result 

of omitting working memory from the model. The same would apply for working 

memory research. In many contexts, visual imagery is a necessary ingredient in assessing 

the impact of working memory on performance. However, there are probably domains 

are not aided by visualization, and in such contexts, working memory may work alone or 

with unidentified constructs. Future research will need to address the boundary conditions 

that make visual skills important or not.   

Of ultimate interest is the mediated effect of object imagery by working memory 

on prediction accuracy through forecasting. Such a relationship would indicate that 

individuals who are high in working memory capacity and object imagery usage are also 

more accurate in their predictions. This pattern would have far reaching implications for 
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the functional value of visual imagery; however, subsequent analyses did not find a 

relationship between the interaction of object imagery use and working memory on the 

one hand and prediction accuracy on the other. In other words, the predictor is related to 

the proposed mediator, but not to the ultimate criterion, despite the relationship between 

the mediator and that criterion. We cannot definitively conclude that the component of 

forecasting detail that contributes to prediction accuracy originated from the interactive 

effects of object imagery and working memory capacity.  

While a mediated relationship would be interesting, it is not surprising that one 

did not emerge. In fact, this mediation was not predicted because object imagery was 

hypothesized to enhance any forecast, not just accurate forecasts. However, spatial 

imagery was hypothesized to predict accuracy, so it was surprising that this relationship 

was not significant. Spatial imagery usage did have a significant zero-order correlation 

with prediction accuracy, but it was a small effect (i.e., r = .113). There were no 

significant relationships between spatial imagery and forecasting amount or forecasting 

detail, and there was no moderation effect when working memory capacity was 

introduced. There are likely other important factors that were not included in the model, 

and this may be to blame for the lack of a relationship. These factors are either 

unidentified or the result of interactions between factors already in the model. Some 

possible unidentified factors are described in the next section.  

 The present research began to identify predictors and moderators of forecasting, 

however, the results indicate that the model is far from complete. For example, 

motivation is a key part of the model that was not examined in the present study. 
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Motivation is important because forecasting requires mental effort. To be thorough, the 

forecaster must put effort into a complete mentally simulation. The assumption was that 

participants would be motivated to perform the task and would put effort into their 

performance. This assumption is not always upheld in practice. In addition, numerous 

other individual differences would have been interesting to examine, but were beyond the 

scope of the present research. For example, personality may be interesting to measure in 

future research in order to examine the effects of personality on characteristics of 

forecasts. 

The present study also reveals many areas for development for future research in 

terms of measurement of constructs. In particular, knowledge could be measured in a 

number of different ways to facilitate the exploration of different aspects of forecasting. 

In the present study, knowledge was conceptualized as the degree of task specific 

knowledge completeness. However, knowledge could also be measured through more 

open-ended mental model elicitation techniques and connected to forecasting in other 

ways. In addition, studies conducted in other contexts might treat knowledge differently, 

such as examining the effects of knowledge from multiple domains.   

Finally, this approach to studying forecasting may be greatly augmented by 

incorporating more direct (physiological, neurological) measurement approaches. As 

discussed above, many researchers have described the brain as a prediction-oriented 

machine (e.g., Bar, 2007; Buckner, 2010; Schacter, Addis, & Buckner, 2007; Szpunar 

2010; Szpunar, Chan, & McDermott, 2009). Some researchers have even connected 

specific brain networks to this type of cognitive functioning (e.g., Buckner, 2010; 
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Buckner et al., 2008; Schacter et al., 2007, 2008). Through the use of fMRI and insights 

from the present research, brain regions of interest can be examined for their role in 

forecasting and prediction accuracy. The results of this study would suggest rich and 

detailed forecasts are produced through an interaction of dorsolateral prefrontal cortex 

mediating working memory capacity (e.g., Owen, 1997 ) and fusiform gyrus (Kraemer, 

Rosenberg, Thompson-Schill, 2009) or ventral visual stream through the occipital and 

inferior temporal lobes (Cabeza & Nyberg, 2000) for mediating object imagery use. In 

practice, the brain areas involved in this type of processing are likely to be dispersed and 

many (Smith & Jonides, 1999), but an fMRI approach may lead to additional insights into 

the differentiation of functional and dysfunctional forecasting. Similarly, EEG 

researchers are discovering and classifying the cortical dynamics of episodic memory 

formation (e.g., Hanslmayr, Spitzer, & Bäuml, 2009; Zion-Golumbic, Kutas, & Bentin, 

2010) which may open the door to future investigations of episodic memory retrieval. 

Such research, though still in the early phases, may have implications for measuring 

forecasting activity using EEG. 

In summary, forecasting is increasingly recognized as an important process in I/O 

psychology. As a form of mental simulation, forecasting is invoked in many diverse 

domains such as planning, reasoning, problem solving, and naturalistic decision-making 

contexts. This study was a first attempt at forming a deeper understanding of what 

forecasting entails, whether it can be predicted by individual factors, and whether it is 

related to real functional outcomes. Forecasting activity was related to prediction 

accuracy, but the detail in forecasts was more important than the sheer amount of 
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forecasting that occurred. In addition, the results were consistent with the hypothesis that, 

in forecasting, working memory capacity supplies the information processing resources 

to coordinate visual imagery in mental simulations. It was discussed how subsequent 

research can probe deeper into forecasting and further our understanding of this 

potentially valuable process.  



 

 

 

 

Table 1. Means, standard deviations, and zero-order correlations  

 
M SD 

Task 

Knowledge 

Task 

Experience 

Forecasting 

Detail 

Forecasting 

Amount 

Working 

Memory  

Object 

Use 

Spatial 

Use 

Prediction 

Accuracy 57.62 33.73 .41** .40** .39** .12 .00 .05 .11 

Task 

Knowledge .31 .41 

 

.62** .51** .19
+
 .03 .07 .29* 

Task 

Experience 1.67 .69 

  

.54** .12 .19
+
 .11 

.14
 

Forecasting 

Detail .96 1.12 

  

  .25* .04 .14 .07 

Forecasting 

Amount 0.00 .98 

    

.00 .11 -.02 

Working 

Memory 
44.16 13.77 

     

.23* .07 

Object Use 3.55 .57 

      

.00 

Spatial Use 2.72 .55        

n=102. With two tailed probabilities: 
+ 

= p < 0.10; * = p < 0.05; ** = p < 0.01 

4
7
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Table 2. The effects of forecasting on prediction accuracy 

H1a 

 

Coefficient  SE  t-ratio df 

 p-

value 

Intercept, ß00 -57.62 2.48 -23.25 101 <0.01 

Forecast 

Amount, ß10 2.85 2.14 1.33 203  0.18 

      H1b      

Intercept, ß00 -57.62 2.52 -22.91 101 <0.01 

Forecast 

Detail, ß10 9.38 2.30 4.08 203 <0.01 

 

 

 

 

Table 3. Interaction between forecasting amount and knowledge on prediction accuracy 

H2a Coefficient SE t-ratio df p-value 

Intercept, β00 -57.62 2.52 -22.91 101 <0.01 

Forecast 

Amount, β10 -0.61 2.97 -0.20 202 0.84 

Knowledge, β20 9.78 2.35 4.16 202 <0.01 

Intercept, β00 -57.20 2.55 -22.43 101 <0.01 

Forecast 

Amount, β10 -0.66 2.96 -0.22 201 0.82 

Knowledge, β20 9.56 2.35 4.07 201 <0.01 

Interaction, β30 -1.67 1.50 -1.11 201 0.27 

 

 

 

 

Table 4. Interaction between forecasting detail and knowledge on prediction accuracy 

H2b Coefficient SE t-ratio df p-value 

Intercept, β00 -57.62 2.52 -22.91 101 <0.01 

Forecast Detail, 

β10 7.47 2.43 3.07 202 <0.01 

Knowledge, β20 7.03 2.37 2.96 202 <0.01 

Intercept, β00 -58.05 2.68 -21.68 101 <0.01 

Forecast Detail, 

β10 6.77 2.44 2.77 201 0.01 

Knowledge, β20 7.45 2.44 3.06 201 <0.01 

Interaction, β30 0.57 1.25 0.46 201 0.65 
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Table 5. Interaction between forecasting amount and experience on prediction accuracy 

H3a Coefficient SE t-ratio df p-value 

Intercept, β00 -57.62 2.48 -23.26 101 <0.001 

Forecast 

Amount, β10 3.03 2.10 1.45 202 0.15 

Experience, β20 14.39 3.19 4.51 202 <0.001 

Intercept, β00 -57.25 2.44 -23.50 101 <0.001 

Forecast 

Amount, β10 3.39 2.16 1.57 201 0.12 

Experience, β20 14.47 3.17 4.56 201 <0.001 

Interaction, β30 -4.25 1.97 -2.15 201 0.03 

 

 

 

 

 

 

Table 6. Interaction between forecasting detail and experience on prediction accuracy 

H3b Coefficient SE t-ratio df p-value 

Intercept, β00 -57.62 2.52 -22.91 101 <0.001 

Forecast Detail, 

β10 6.40 2.44 2.62 202 0.01 

Experience, β20 10.70 3.44 3.11 202 0.01 

Intercept, β00 -57.62 2.10 -27.39 101 <0.001 

Forecast Detail, 

β10 8.07 1.90 4.24 201 <0.001 

Experience, β20 14.72 3.10 4.75 201 <0.001 

Interaction, β30 -4.56 2.12 -2.15 201 0.03 
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Table 7. The effects of working memory capacity on forecasting activities and prediction 

accuracy 

Forecasting 

Amount (H4a i) 

 

Coefficient      SE  t-ratio df 

 p-

value 

Intercept, ß00 0.00 0.08 0.00 100 0.99 

Working Memory, 

ß01 0.00 0.01 0.03 100 0.97 

 

Forecasting Detail 

(H4a ii) 

 

Coefficient      SE  t-ratio df 

 p-

value 

Intercept, ß00 0.00 0.09 0.00 100 0.99 

Working Memory, 

ß01 0.00 0.01 0.45 100 0.65 

 

Prediction 

Accuracy (H4b) 

 

Coefficient  SE  t-ratio df 

 p-

value 

Intercept, ß00 -57.62 2.51 -22.91 100 <0.001 

Working Memory, 

ß01 -0.04 0.18 -0.20 100 0.84 

 

 

  



 

51 
 

Table 8. Interaction between object imagery and working memory capacity on 

forecasting amount 

H5a Coefficient SE t-ratio df p-value 

Intercept, β00 0.00 0.08 0.00 99 0.99 

Working 

Memory, β01 0.00 0.01 -0.25 99 0.80 

Object Imagery, 

β02 0.19 0.15 1.27 99 0.21 

Intercept, β00 0.00 0.08 0.00 98 0.99 

Working 

Memory, β01 0.00 0.01 -0.55 98 0.58 

Object Imagery, 

β02 0.20 0.15 1.38 98 0.17 

Interaction, β03 0.02 0.01 1.72 98 0.09 

 

 

 

 

 

Table 9. Interaction between object imagery and working memory capacity on 

forecasting detail 

H5b Coefficient SE t-ratio df p-value 

Intercept, β00 0.00 0.09 0.00 99 0.99 

Working 

Memory, β01 0.00 0.01 0.06 99 0.96 

Object Imagery, 

β02 0.27 0.16 1.73 99 0.09 

Intercept, β00 0.00 0.09 0.00 98 0.99 

Working 

Memory, β01 0.00 0.01 -0.42 98 0.68 

Object Imagery, 

β02 0.30 0.15 1.93 98 0.06 

Interaction, β03 0.03 0.01 2.70 98 0.01 
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Table 10. The effects of spatial imagery on forecasting activities and prediction accuracy 

Forecasting 

Amount (H6a i) 

 

Coefficient      SE  t-ratio df  p-value 

Intercept, ß00 0.00 0.08 0.00 100 0.99 

Spatial Imagery, 

ß01 -0.03 0.15 -0.19 100 0.85 

 

Forecasting Detail 

(H6a ii) 

 

Coefficient      SE  t-ratio df  p-value 

Intercept, ß00 0.00 0.09 0.00 100 0.99 

Spatial Imagery, 

ß01 0.14 0.16 0.85 100 0.40 

 

Prediction 

Accuracy (H6b) 

 

Coefficient  SE  t-ratio df  p-value 

Intercept, ß00 -57.62 2.49 -23.17 100 <0.001 

Spatial Imagery, 

ß01 6.91 4.53 1.53 100 0.13 
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Table 11. Interaction between spatial imagery and working memory capacity on 

forecasting amount 

H6c i Coefficient SE t-ratio df p-value 

Intercept, β00 0.00 0.08 0.00 99 0.99 

Working 

Memory, β01 0.00 0.01 0.04 99 0.97 

Spatial Imagery, 

β02 -0.03 0.15 -0.19 99 0.85 

Intercept, β00 0.00 0.08 0.00 98 0.99 

Working 

Memory, β01 0.00 0.01 0.09 98 0.93 

Spatial Imagery, 

β02 -0.05 0.15 -0.30 98 0.76 

Interaction, β03 -0.01 0.01 -1.00 98 0.32 

 

 

 

 

 

Table 12. Interaction between spatial imagery and working memory capacity on 

forecasting detail 

H6c ii Coefficient SE t-ratio df p-value 

Intercept, β00 0.00 0.09 0.00 99 0.99 

Working 

Memory, β01 0.00 0.01 0.41 99 0.68 

Spatial Imagery, 

β02 0.13 0.16 0.83 99 0.41 

Intercept, β00 0.00 0.09 0.00 98 0.99 

Working 

Memory, β01 0.00 0.01 0.37 98 0.71 

Spatial Imagery, 

β02 0.15 0.16 0.93 98 0.36 

Interaction, β03 0.01 0.01 0.87 98 0.39 
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Figure 1. The interaction effect of forecasting amount and experience on prediction 

accuracy 
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Figure 2. The interaction effect of forecasting detail and experience on prediction 

accuracy 
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Figure 3. The interaction effect of object imagery use and working memory capacity on 

forecasting detail  
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Appendix A: Measures 

 

 

 

Demographics: 

 

What is your age? ____ 

What is your gender?  M___  F___ 

What is your current year in school?__________   

 

What is your major (e.g., psychology, nursing, undecided, etc.)?_________________ 

What is your current overall GPA? ________ 

What was your overall SAT score? ________ 

 

Please indicate you ethnicity. 

African-American/Black  

Asian, Asian American/Pacific Islander 

Caucasian/ White American, European, not Hispanic 

Chicano(a)/ Mexican American 

Latino(a)/ Hispanic American 

Native American/American Indian 

Mixed; parents are from two different groups 

Other (please specify):________________________ 

 

 

What language do you primarily speak at home? _____ 

How proficient are you in English?  

Poor _____  Fair____  Average____ Excellent____ Native/Fluent_____ 

 

Please indicate your work status:  

____not currently working 

____work part-time 

____work full-time 
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Knowledge: 

1. How confident are you that you could find Georgetown on a map in less than 20 

seconds?  

0% _______ 25% _______ 50% _______ 75%_______ 100%_______ 

 

2. How confident are you that you could find the Alexandria Waterfront on a map in 

less than 20 seconds?  

0% _______ 25% _______ 50% _______ 75%_______ 100%_______ 

 

3. How confident are you that you could find Leesburg on a map in less than 20 

seconds?  

0% _______ 25% _______ 50% _______ 75%_______ 100%_______ 

 

 

Experience Questionnaire: 

4. How many times have you been to the Georgetown area?  

Never___; Only a few times___; Often___; Very often___ 

5. How often have you driven yourself between the Georgetown area and Fairfax 

campus? 

Never___; Only a few times___; Often___; Very often___ 

6. How often have you been driven by someone else between the Georgetown area 

and Fairfax campus?  

Never___; Only a few times___; Often___; Very often___ 

7. How familiar are you with the roads between Georgetown and here?  

Not at all familiar___; Somewhat familiar___; Familiar___; Very familiar___ 

 

8. How many times have you been to the Alexandria Waterfront area?  

Never___; Only a few times___; Often___; Very often___ 

9. How often have you driven yourself between the Alexandria Waterfront area and 

Fairfax campus? 

Never___; Only a few times___; Often___; Very often___ 

10. How often have you been driven by someone else between the Alexandria 

Waterfront area and Fairfax campus?  

Never___; Only a few times___; Often___; Very often___ 

11. How familiar are you with the roads between the Alexandria Waterfront and 

here?  

Not at all familiar___; Somewhat familiar___; Familiar___; Very familiar___ 

 

12. How many times have you been to the Leesburg area?  

Never___; Only a few times___; Often___; Very often___ 

13. How often have you driven yourself between the Leesburg area and Fairfax 

campus? 

Never___; Only a few times___; Often___; Very often___ 
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14. How often have you been driven by someone else between the Leesburg area and 

Fairfax campus?  

Never___; Only a few times___; Often___; Very often___ 

15. How familiar are you with the roads between Leesburg and here?  

Not at all familiar___; Somewhat familiar___; Familiar___; Very familiar___ 

 

16. Did you grow up in Northern Virginia? Y___ N___ 

17. Do you keep a car in the area? Y___ N___ 
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Object-Spatial Imagery and Verbal Questionnaire (OSIVQ; Blazhenkova & 

Kozhevnikov, 2009). 

 

Instructions: “This is a questionnaire about the way you think. Please read the following 

statements and rate each of them on a 5-point scale. Circle 5 to indicate that you 

absolutely agree that the statement describes you, and circle 1 to indicate that you totally 

disagree with the statement. Circle 3 if you are not sure, but try to make a choice. It is 

very important that you answer all the items in the questionnaire.” 

 

1 I was very good in 3D geometry as a student  

2 I have difficulty expressing myself in writing 

3 If I were asked to choose between engineering professions and visual arts, I would 

prefer engineering 

4 My verbal abilities would make a career in language arts relatively easy for me 

5 Architecture interests me more than painting  

6 My images are very colorful and bright  

7 I prefer schematic diagrams and sketches when reading a textbook instead of colorful 

and pictorial illustrations 

8 I tell jokes and stories better than most people  

9 Essay writing is difficult for me and I do not enjoy doing it at all 

10 My images are more like schematic representations of things and events rather than 

like detailed pictures 

11 When reading fiction, I usually form a clear and detailed mental picture of a scene or 

room that has been described 

12 If I were asked to choose among engineering professions, or visual arts, I would 

choose visual arts 

13 I have a photographic memory  

14 I can easily imagine and mentally rotate three-dimensional geometric figures 

15 I enjoy pictures with bright colors and unusual shapes like the ones in modern art 

16 My verbal skills are excellent 

17 When thinking about an abstract concept (or building), I imagine an abstract 

schematic building in my mind or its blueprint rather than a specific concrete building 

18 When entering a familiar store to get a specific item, I can easily picture the exact 

location of the target item, the shelf it stands on, how it is arranged and the 

surrounding articles 

19 Putting together furniture kits (e.g. a TV stand or a chair) is much easier for me when I 

have detailed verbal instructions than when I only have a diagram or picture 

20 My images are very vivid and photographic  

21 When explaining something, I would rather give verbal explanations than make 

drawings or sketches 

22 If someone were to give me two-digit numbers to add (e.g. 43 and 32) I would simply 

do the adding without visualizing the numbers 
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23 My mental images of different objects very much resemble the size, shape and color 

of actual objects that I have seen 

24 I usually do not try to visualize or sketch diagrams when reading a textbook 

25 I normally do not experience many spontaneous vivid images; I use my mental 

imagery mostly when attempting to solve some problems like the ones in mathematics 

26 When I imagine the face of a friend, I have a perfectly clear and bright image 

27 I have excellent abilities in technical graphics  

28 When remembering a scene, I use verbal descriptions rather than mental pictures 

29 I can easily remember a great deal of visual details that someone else might never 

notice. For example, I would just automatically take some things in, like what color is 

a shirt someone wears or what color are his/her shoes 

30 I can easily sketch a blueprint for a building I am familiar with 

31 In school, I had no problems with geometry 

32 I am good in playing spatial games involving constructing from blocks and paper (e.g. 

Lego, Tetris, Origami) 

33 Sometimes my images are so vivid and persistent that it is difficult to ignore them 

34 I can close my eyes and easily picture a scene that I have experienced 

35 I have better than average fluency in using words  

36 I would rather have a verbal description of an object or person than a picture 

37 I am always aware of sentence structure 

38 My images are more schematic than colorful and pictorial 

39 I enjoy being able to rephrase my thoughts in many ways for variety’s sake in both 

writing and speaking 

40 I remember everything visually. I can recount what people wore to a dinner and I can 

talk about the way they sat and the way they looked probably in more detail than I 

could discuss what they said 

41 I sometimes have a problem expressing exactly what I want to say 

42 I find it difficult to imagine how a three-dimensional geometric figure would exactly 

look like when rotated 

43 My visual images are in my head all the time. They are just right there 

44 My graphic abilities would make a career in architecture relatively easy for me 

45 When I hear a radio announcer or a DJ I’ve never actually seen, I usually find myself 

picturing what he or she might look like 
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Forecasting Activity Coding Criteria (partially adapted from Stenmark, Antes, Wang, 

Caughron, Thiel, & Mumford, 2010). Example think aloud statements are in italics.  

 

Participant ID:___________ 

Scenario: _____ 

Forecast word count:_____ 

Number of obstacles considered: ______ 

Which obstacles were 

considered?_________________________________________________________ 

________________________________________________________________________ 

 

Detail of Route descriptions:  

Is the response very detailed? 

Is the response focused on specific issues? 

 

1- Low rating 

I would take 66 all the way. 

 

2 – Medium /Low rating 

Take 66 westbound until the GMU exit. They take the road off the exit through Fairfax 

until you reach campus on your left.  

 

3 – Medium Rating 

Key Bridge into Virginia, right onto route 50/Lee highway. Take the ramp for 66 west 

and 66 to the exit at route 123. Then 123 until you reach University boulevard and 

campus on the left. 

 

4 – Medium/High rating 

I would take the Key Bridge into Virginia and after a few lights, turn right onto route 

50/Lee highway. Take that until you reach the ramp for 66 west. Take 66 west to the exit 

at route 123. Then go south on 123 through Fairfax until you reach University boulevard 

and campus on the left.  

 

5 – High rating 

I would take the Key Bridge into Virginia and after two lights – maybe 50 feet – turn 

right onto route 50/Lee highway. Take that uphill a mile or so until you reach the ramp 

for 66 west. Take 66 west for about 10 miles to the exit at route 123. Then go south on 

123 through Fairfax – probably four or so lights – until you reach University boulevard 

and campus on the left.  

 

Detail of forecast (beginning):___ 

Detail of forecast (end):___ 

  



 

63 
 

 

 

 

 

Appendix B. Think Aloud Protocol 

 

 

 

Instructions: You are going to be presented with a series of scenarios that involve you 

traveling from one location in the area to here: campus. The purpose of this exercise is 

for you to explain your thought process as you think about the scenario. You will be 

asked a series of questions (such as which route would you take? How long will it take? 

Et cetera) You will be given ample time to work out your solution, however, we want you 

to come up with your answers without looking them up on the computer or your phone.  

 

We are interested in your thinking as you come up with answers, so we would like you to 

think out loud – to describe whatever comes to mind as you come up with your solution. 

Please be as descriptive as possible. Let’s practice the think aloud procedure: 

 

Imagine you are planning a camping trip and you need to pack a car full of 

equipment/supplies. Think about the activities that will occur during the trip as you make 

a list of things to bring. Please describe your thought process as you think ahead to what 

you will need. Be as detailed as possible. 

[provide two minutes for participant to think aloud] 

 

 Now that you have had an opportunity to practice verbalizing your thought 

process, we will begin with the scenarios. Please read Scenario __ while I read it out 

loud… [read scenario]…Now think through your answer to Scenario __ and describe 

verbally what you are thinking about. Describe whatever is in your head as you come up 

with the answer. Be as detailed as possible-- even when you think you are giving too 

much detail, give more. Try to keep talking for as long as you can about each question I 

ask you. 

 

Scenario 1 Scenario 2 Scenario 3 

Imagine you are in 

Georgetown and want to get 

to Fairfax campus to meet 

with a professor at the 

Johnson Center. It is 4:00 

on a Friday afternoon. You 

are traveling by car and 

your goal is to get to 

campus as quickly as you 

Imagine you are in Old 

Town Alexandria, at the 

Waterfront, and want to get 

to Fairfax campus to meet 

with a professor at the 

Johnson Center. It is 

4:00pm on a Friday 

afternoon and you are 

traveling by car. Your goal 

Imagine you are at the 

Outlet Stores in Leesburg, 

VA and you want to get to 

Fairfax campus to meet 

with a professor at the 

Johnson Center. It is 

4:00pm on a Friday 

afternoon and you are 

traveling by car. Your goal 
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can to meet this professor as 

soon as possible. Assume 

that it takes you practically 

no time to find a parking 

space, and that it takes 

about ten minutes to get 

from your car to the 

Johnson Center. Take a few 

minutes to map out the way 

you would go in your head. 

is to get to campus as 

quickly as you can to meet 

this professor as soon as 

possible. Assume that it 

takes you practically no 

time to find a parking space, 

and that it takes about ten 

minutes to get from your 

car to the Johnson Center. 

Take a few minutes to map 

out the way you would go 

in your head. 

 

is to get to campus as 

quickly as you can to meet 

this professor as soon as 

possible. Assume that it 

takes you practically no 

time to find a parking 

space, and that it takes 

about ten minutes to get 

from your car to the 

Johnson Center. Take a few 

minutes to map out the way 

you would go in your head. 

 

Think aloud protocol questions and prompts 

What is the preferred way of going from [Georgetown] to Fairfax campus in order to get 

there as quickly as possible? Please describe the route with a lot of detail. 

 

 Are there any other details to include? 

 

What factors or obstacles are the most important to consider, given that you want to get 

to campus as quickly as possible?  

  

 Are there any other factors or obstacles? 

 

Imagine you were making the trip to campus on a different day or a different time of day. 

How might your travel time change at a different point in time? 

 

Is there any other differences you might expect based on day of the week or time 

of day? 
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