A THEORY AND METHODOLOGY OF INDUCTIVE
LEARNING (MODIFIED VERSION OF 1983-3)

R. 5. Michalski

Report No. UTUCDCS-R-83-1122, Department of Computer Science, Umversity of
Iilinois, Urbana, January 1983.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

Report No. UIUCDCS-R-83-1122

A THEORY AND METHODOLOGY OF
INDUCTIVE LEARNING

BY

Ryszard S. Michalski

Department of Computer Science
University of Illinois
Urbana, Illinois

January 1983

Accepted for publication
in Artificial Intelligence
Journal, 1983.

A THEORY AND METHODOLOGY OF

INDUCTIVE LEARNING

Ryszard S. Michalski

Department of Computer Science
University of Illinois

Urbana, Illinoils 61801-2987

ABSTRACT

A theory of inductive learning is presented that characterizes it as a
heuristic search through a space of symbolic descriptions, generated by an
application of certain inference rules to the initial observational
statements (the teacher-provided examples of some concepts, or facts about a

class of objects or a phenomenon). The inference rules include
generalization rules, which perform generalizing transformations on
descriptions, and conventlonal truth-preserving deductive rules

(specialization and reformulation rules). The application of the inference
rules to descriptions is constrained by problem background knowledge, and
gulided by criteria evaluating the "quality" of generated inductive

assertions.

Based on this theory, a general methodology for learning structural
descriptions from examples, called STAR, is described and illustrated by a
problem from the area of conceptual data analysis.

Key words: Inductive Inference, Machine Learning, Knowledge Acquisition,
Plausible Inference

A THEORY AND METHODOLOGY OF
INDUCTIVE LEARNING
"e.o.scientific knowledge through
demonstration* is impossible unless a
man knows the primary Iimmediate
premises...,”" "...we must get to Kknow
the primary premises by Induction; for
the method by which even sBense~
perception implants the universal is
inductive...” (circa 330 B.C.)
ARISTOTLE
Posterior Analytics
Bock II, Ch. 19

1, INTROGDUCTION

The ability of people t6 make accurate generalizations from few
scattered facts or to discover patterns 1n seemingly chaotic collections of
observations is a fascinating research toplc of long-standing Interest. The
understanding of this ability is now also of growing practical importance,
as it holds tﬁe key to an iﬁprovement of methods By which computers can
‘acquire knowledge. A need for such an improﬁement is evidenced by the fact
that knowledge acquisition is presently the most limiting "bottleneck'!" in

the development of modern knowledge-intensive artificial intelligence

systems.

The above ability is achieved by a process called inductive learning,

i.e., inductive 1nference from facts provided by a teacher or the
environment. The study and modeling of this form of learning is one of the

central topics of machine Ilearning. This paper outlines a theory of

*T.e., what we now call "deduction.”

inductive learning and then presents a methodology for acquiring general

concepts from examples.

Before going further into this topiec, let wus first discuss the
potential for applications of i1nductive learning systems. One such
application is an automated construction of knowledge bases for expert
systems. The present appreoach to constructing knowledge bases involves a
tedious process of formalizing experts’ knowledge and encoding it in some
knowledge representation system, such as production rules (Shortliffe, 1979;
Davis & Lenat, 1982) or a semantic network (Brachman, 1978; Gaschnig, 1980).
Inductive learning programs could provide both an improvement of the current

techniques and a basls for developing alternative knowledge acquisition

methods.

In appropriately selected small domains, inductive programs are already
able to determine decision rules by induction from examples of expert
declisions. Thils process greatly simplifies the transfer of knowledge from
an expert into a machine. The feasibility of such inductive knowledge
acquisition has been demonstrated in the expert system PLANT/ds, for the
diagnosis of soybean diseases. In this systam,-the diagnostic rules were
developed in two ways: by formalizing experts’ diagnostic processes and by
induction from examples. In an experiment where both types of diagnostic
rules were tested on a few hundred disease cases, the inductively derived
rules outperformed the expert-derived ones (Michalski & Chilausky, 1980).
Another example is an 1nductive acquisition of decision rules for a chess
end-game (Michalski and Negri, 1976; Quinlan, 1979; Niblett & Shapiro, 1981;

O0‘Rorke, 1981).

A less direct, but potentially promising use of inductive learning 1is
for the refinement of knowledge bases initially developed by human experts.
Here, inductive learning programs could be used to detect and rectify
inconsistenclies, to remove redundancles, to cover gaps, aand to simplify
expert-derived decision rules. By applying an inductive inference program
to the data consisting of original rules and examples of correct and
incorrect results of these rules application to new situations, the rules

could be incrementally lmproved with little or no human assistance.

Another important application of inductive programs i1is i1in wvarious
experimental sciences, such as biology, chemistry, psychology, medicine, and
genetics. Here they could assist a user in detecting interesting conceptual
patterns or in revealing structure in collections of observations. The
widely wused traditional mathematical and statistical data analysis
techniques, such as regression analysis, numerical taxonomy, or factor
analysis, are not sufficlently powerful for this task. Methods for

"conceptual data analysis are needed, whose results are not merely

mathematical formulas but logic-style descriptions, characterizing data in
terms of high-level, human-oriented concepts and relationships. An early
example of such an application is the Meta—Dendral program (Buchanan &
Feigenbaum, 1978), which infers cleavage rules for wmass-spectrometer

simulation (see its analysis in Dietterich & Michalski, 1981).

There are two basic modes in which inductive programs can be utilized:

as 1interactive tools for acquisition of knowledge from specific facts or

examples, or as parts of machine-learning systems. In the first mode, a

user supplies learning examples and exercises strong control over the way

the program is used (e.g., Michalski & Chilausky, 1980; Quinlan, 1979).

In the second mode, an 1nductive program 1s a component of an
integrated learning system whose other components generate the needed
learning examples (Buchanan et al., 1979). Such examples——positiﬁe and
negative-—constitute the feedback from the system’s attempts to perform a
desired task. An example of the second mode 1s the learning system LEX for
symbolic integration (Mitchell et al., 1982), where a ''generalizer" module

performs inductive inference on instances provided by a "critic'" module.

From the viewpoint of applications, such as aiding the construction of
expert systems or conceptual analysis of experimental data, the most

relevant is conceptual inductive learning. We use this term to designate a

type of 1inductive learning whose final products are symbolic descriptions

expressed Iin high-level, human-oriented terms and forms {(more details are
given 1in Sec. 3.1). The descriptions typically apply to real world objects
or phenomena, rather than abstract mathematical concepts or computations.

This paper is concerned specifically with conceptual inductive learning.

The most frequently studied type of such learning is concept learning

from examples (called also concept acquisition), whose task is to induce

general descriptions of concepts from specific instances of these concepts.
The early studies of this subject go back to the fifties, e.g., those by
Hovland (1952), Bruner, Goodnow, & Austin (1956), Newell, Shaw, & Simon
(1959), Amarel (1960), Feigenbaum (1961}, FKochen (1961), Banerji (1962),

Hunt (1962), Simon & Kotovsky (1963), Hunt, Marin, & Stone (1966), Hijek,

Havel, & Chytil (1966), and Bongard (1967). Among more recent contributions
there are those, for 1nstance, by Winston (1970), Waterman (1970),
Michalski (1972), Hayes-Roth (1973), Simon & Lea (1974), Stoffel (1974),

Vere (1975), Larson & Michalskl (1977), Mitchell (1978), Quinlan (1979),
and Hbraga (1981). An important variant of concept learning from examples

is the incremental concept refinement, where the input information includes,

in addition to the training examples, prevlously learned hypotheses, or
human—provided initial hypotheses that may be partially incorrect or
incomplete (e.g., Michalski & Larson, 1978). The paper by Dietterich &
Michalski (1981) discusses various evaluation criteria and several methods

for concept learning from examples.

Another type of conceptual inductive learning is concept learning from

observation (or descriptive generalization), concerned with establishing new

concepts or theories characterlizing given facts. This area includes such
toplcs as automated theory formation (e.g., Buchanan & Feigenbaum, 1978;
Lénat, 1976, 1978), discovery of relationships in data (e.g., Hijek &
Havranek, 1978; Pokorny, 1980, Langley, 1980), or an automatic construction
of taxonomies (e.g., Michalskil, Stepp, & Diday, 198l). Differences between
concept learning from examples and concept learning from observation are

discussed in more detail in the next section.

Conceptual inductive learning has a strong cognltive science flavor.
Its emphasis on inducing humamoriented, rather than machine-oriented
descriptions, and its primary 1nterest in nonmathematical domains
distinguishes it from other types of inductive learning, such as grammatical

inference and program synthesis. In grammatical inference, the task 1is to

determine a formal grammar that can generate a given set of symbol strings
(e.g., Solomonoff, 1964; Bierman & Feldman, 1972; Yau & Fu, 1978; Gaines,
1979). In program synthesis the objective 1is to construct a computer
program from I/0 pairs or computational traces, or to transform a program
from one form to another by applying correctness-preserving transformation
rules {e.g., Shaw, Swartout, & Green, 1975; Burstall & Darlington, 1977;
Bierman, 1978; Case & C. Smith, 1979; Jouannaud & Kodratoff, 1980; D. Smith,
1980; Pettorossi, 1980). The final result of such learning is a computer
program, 1In an assumed programming language, destined for machine rather
than human "cousumption." For example, the method of "model inference" by -
Shapiro (198l) constructs a PROLOG program characterizing a given set of

mathematical facts.

Recent years have witnessed the development of a number of task-
oriented 1inductive learning systems that have demonstrated an impressive
performance in their specific domain of application. Major weaknesses,
however, persist in much of the research in this area. Most systems lack
generality and extensibility. The theoretical principles upon which they
are built are rarely well explained. Lack of common terminology and an
adequate formal theory makes it difficult to compare different learning

methods.,

In the following sections we formulate logical foundations of inductive
learning, define various types of such learning, present inference rules for
generalizing concept descriptions, and finally describe a general
methodology, called STAR, for 1learning structural descriptions from

examples. To improve the readability of this chapter, below is presented a

table of wused symbols. The Appendix gives the details of the description

language used (the annotated predicate calculus).

LEF

DOM(p)

negation
conjunction (logical product)
disjunction (logical sum)
implication
logical equivalence
term rewriting
exception (symmetric difference)
a set of facts (formally, a predicate that is true for all the facts)
a hypothesis (an inductive assertion)
speciaiization
generalization
reformulation
existential quantifier over vy
numerical quantifier over vy (I is a set of integers)
universal quantifier over vy
a concept description
a predicate asserting a concept name (a class) of objects
the implication linking a concept description with a concept name
an event {(a description of an object)
a predicate that is true only for the training events of the
concept
an attribute (zero or one argument descriptor)
a lexicographic evaluation functional

the domain of descriptor p

A TABLE OF SYMBOLS AND NOTATION

- 10 ~

2. TYPES OF INDUCTIVE LEARNING

2.1 Inductive Paradigm

As mentioned before, inductive learning is a process of acquiring
knowledge by drawing inductive 1inferences from teacher- or environment-
provided facts. Such a process involves operations of generalizing,
transforming, correcting and refining knowledge representations. Although
it 1s one of the most common forms of learning, it has one fundamental
weaknesgs: except for special cases, the acquired knowledge cannot, in
principle, be completely validated. This predicament, observed early on by
Scottish philosopher David Hume (18th century), is due to the fact that
inductively acquired assertions are hypotheses with a potentially infinite

number of consequences, while only a finite number of confirming tests can

be performed.

Traditional inquiries into inductive inference have therefore dealt
with questions of what are the best criterla for guiding the selection of
Inductive assertions, and how can these assertions be confirmed. These are
difficult problems, permeating all scilentific activities. The éearch for
answers has turned inductive inference into a battlefield of philosophers
and logicians., There was even doubt whether 1t would ever be possible to
formalize inductive inference and perform 1t on a machine, For example,
philosopher Karl Popper (1959) believed that inductive inference requires an
irrational element. Bertrand Russell in "History of Western Philosophy"

(1946) stated: "eee80 far no method has been found which would make it

possible to invent hypotheses by rule." George Polya (1954) in his

- P] =

ploneering and now classic treatise on plausible inference (of which
1nductive iInference i1is a speclal case) observed: "A person has a
background, a machine has not; indeed, you can build a machine to draw

demonstrative conclusions for you, but I think you can never build a machine

that will draw plausible inferences."

The abova pessimistic prospects are now bheing revised. With the
development of modern computers and subsequent advances in artificial
intelligence research, it is now possible to provide a machine with a
significant amount of Dbackground Iinformation. Also, the problem of
automating inductive inference can be simplified by concentrating on the
subject of hypothesis generation, while ascribing to humans the questlon of
how to adequately wvalidate them, Some successful inductive inference
systems have already been bullt and a body of knowledge is emerging about
the nature of this inference. The rest of this section will analyze the
logical basis for inductive inference, and then Sec. 5 will present various

generallzation rules, which can be viewed as Inductive inference rules.

In contrast to deduction, the starting premises of induction are
specific facts rather than general axioms. The goal of inference 1s to
formulate plausible general assertions that explain the gilven facts and are
able tb predict new facts. 1In other words, inductive inference attempts to
derive a complete and correct description of a given phenomenon from
specific observations of that phenomenon or of parts of it., As we méntioned
earlier, of the two aspects of dinductive inference-—the generation of
plausible hypotheses and thelr validation (the establishment of their truth

status)--only the first 1s of primary Interest to 1inductive learning

= 1P

research. The problem of hypothesis wvalidation, a subject of various
philosophical inquiries (e.g., Carnap, 1962) is considered to be of lesser

importance, because it is assumed that the generated hypotheses are judged

by human experts, and tested by known methods of deductive inference and

sktatlistics.

To understand the role of 1inductive inference in learning, let us
consider several different ways in which a system can acquire knowledge of a

class of objects (situations, decisions, etc.):

| By receiving knowledge from a teacher and incorperating it within the
system s existing knowledge structures (e.g., Haas & Hendrix, 1980).

This way is called "learning by being told."

2. By inferring knowledge from characteristics of a superset of the object

class. This way is called "learning by deductive inference."

3. By reinterpreting knowledge already possessed about a similar class of
objects (e.g., 'Winston, 1981). This way 1s called '"learning by

analogy."

4 By generalizing teacher-provided examples and cDunter—examples of

objects from this class. This way is called "learning from examples."

5. By experimenting, discovering regularities, formulating useful concepts
and structuring observations about the objects. This way is called

"learning from observation" (or "learning by discovery').

Although all of these ways except the first one involve some amount of

- 13 ~

inductive inference, in the last two, i.e., in learning from examples and in

learning from observation, this inference is the central operation. These
two forms are therefore considered to be the major forms of inductive
learning. In order to explain them, let us formulate a general paradigm for

inductive Iinference:

Given:

(a) Observational statements (facts), F, that represent specific knowledge

about some objects, situations, processes, etc.,

(b) A tentative inductive assertion (which may be null),

(¢) Background knowledge that defines the assumptions and constraints

imposed on the observational statements and generated candidate
inductive assertions, and any relevant problem domaln knowledge. The

last 1includes the preference criterion characterizing the desirable

properties of the sought inductive assertion.

Find:

An inductive assertion (hypothesis), H, that tautologically or weakly

implies the observational statements, and satisfies the background

knowledge.

A hypothesis H tautologically implies facts F if F is a logical
consequence of H, 1i.e., 1f the expression H =F 1is true under all

interpretations (" =" denotes logical implication). This is expressed as

follows:

= Tk =

H F'F (read:. H specializes to F) (1)

or

F k H (read: ¥ generalizes to H) (2)

Symbols P and k are called the specialization and generalization

symbols, respectively. If H= F iIs valid, and H is true, then by the law of
detachment (modus ponens) F must be true, Deriving F from H (deductive
inference), is, therefore, truth-preserving. In contrast, deriving H from F
(inductive inference) is not truth-preserving, but falsity-preserving, i.e.,

if some facts falsify F then they also must falsify H. (More explanation on

this topic 1s given in Sec. 5.)

The condition that H weakly implies F means that fzcts F are not

certain but only plausible or partial consequences of H. By allowing weak
implication, this paradigm includes methods for generating "soft"
hypotheses, which hold only probabilistically, and partial hypotheses, which
account for some but ﬁot all of the facts {(e.g., hypotheses representing
"dominant patterng" or characterizing inconsistent data). In the following

we will limit our attention to hypotheses that tautologically imply facts.

For any given set of facts, a potentially infinite number of hypotheses
can be generated that imply these facts. Background knowledge is therefore
necessary to provide the constraints and a preference criterion for reducing

the infinite choice to one hypothesis or a few most preferable ones.

A typical way of defining such a criterion is to specify the preferable

properties of the hypothesis—-—for example, to require that the hypothesis is

- 15

the shortest or the most economical description consistent with all the
facts f{as, e.g., in Michalski, 1973). Such a "biased choice'" criterion 1s
necessary when the description language is complete, 1.e., able to express
any possible hypothesis, An alternative 1is to use a "biased language"
criterion (Mitchell, 1978), restricting the descriptipn language 1n which
hypotheses are expressed (i.e., using an incomplete description language).
Although in many methods the background knowledge 1s not éxplicitly stated,
the authors make implicit assumptions serving the same purpose. More

details on the criteria for selecting hypotheses are given in Sec. 4.7.

2.2 Concept Acquisition vs. Descriptive Generalization

As mentioned in the Introduction, one can distinguish between two major

types of dinductive learning: learning from examples (concept acquisition)

and learning from observation (descriptive generalization). In concept

acquisition, the observational statements are characterizations of some
objects {situations, processes, etc.) preclassified by a teacher into one or
more classes {concepts). The induced hypothesis can be viewed as a concept
recognition rule, such that if an object satisfies this rule, then it
represents the given concept. For example, a recognition rule for the
concept "philosopher'" might be:

"A person who pursues wisdom and gains the knowledge

of underlying reality by Intellectual means and

moral self-discipline 1s a philosopher.”

In descriptive generalization the goal 1is to determine a general

description {(a law, a theory) characterizing a collection of observations,

- 16 -

For example, observing that philosophers Aristotle, Plato, and Socrates were
Greek, but that Spencer was British, one might conclude:

'""Most philosophers were Greek,"

Thus, in contrast to concept acquisition that produces descriptions for
classifying objects 1nto classes on the basis of the objects properties,
descriptive generalization produces descriptions specifying properties of
objects belonglng to a certain class. tHere are some example problems

belonging to the above two categories:

Concept Acquisition:

(a) Learning characteristic descriptions of a class of objects, which

specify one or more common properties of all known objects in the
class. A logical product of all such properties defines the class in
the context of an unlimited number of other object classes (e.g.,
Bongard, 1967; Winston, 1970; Stoffel, 1974: Vere, 1975; Cohen, 1977;

Hayes—Roth & McDermott, 1978; Mitchell, 1978; Stepp, 1978; Michalski,

1980a).

(b) Learning discriminant descriptions of a class of objects that singly

distinguish the given class from a limited number of other classes

(e.g., Michalski, 1973, 1982; Quinlan, 1979).

(c) Inferring sequence extrapolation rules (e.g., Simon & Kotovsky, 1963;

Dietterich, 1980) able to predict the next element (a symbol, a nunber,

an object, etc.) in a given sequence.

- 17

Descriptive Generalization:

(a) Formulating a theory characterizing a collection of entities [e.g.,

chemical compounds, as in Buchanan & Felgenbaum (1978), or numbers, as

in Lenat (1976, 1978)].

(b) Discovering patterns in observational data (e.g., Soloway & Riseman,

1977, Hajek & Havranek, 1978; Langley et al., 1980; Pokorny, 1980;

Zagoruiko, 1981).

{(c) Determining a taxonomic description (a classification) of a collection

of objects (e.g., Michalski, 1980a; Michalski, Stepp & Diday, 1981).

This paper is concerned primarily with problems of concept acquisition,
In this case, the set of observational statements F can be viewed as a

collection of implications:
F o {eik.:r>Ki}’ i & Iy (3)

where ik (a training event) denotes a description of the kth example of

concept (class) asserted by predicate Ky (for short, class Ki) and I is a

set indexing classes Ki' It is assumed here that any given event represents

only one concept. §Symbol ::> is used here, and will be used henceforth, to

denote the implication linking a concept description with a predicate

asserting the concept name {in order to distinguish this implication from

the implication between arbitrary descriptions}. The inductive assertion,

H, can be characterized as a set of concept recognition riles:

H: {D ::>Ki}, iel, (4)

i

- 18 =

where Di 1s a concept description of class Ki’ i.e., an expression of
conditions such that when they are satisfied by an object, then this object

is considered an instance of class Ki'

According to the definition of inductive assertion, we must have

H bF. (5
By substituting (3) and (4) for F and H, respectively, in (5), and making
appropriate transformations, one can derive the following conditlons to bhe

satlsfied in order that (5) holds:

V iel (E, = D,) (6)

i

and

Vi,jel (D, = ~E.), 1f j#i1, (7)

3

where Ei’ i €I, is a description satisfied by all training events of class

Ki, and only by such events (the logical disjunction of training events)}.

Expression (6) is called the completeness condition, and (7) the

consistency condition. These two conditions are the requirements that must

be satisfied for an inductive assertion to be acceptable as a concept
recognition rule. The completeness condition states that every training
event of some class must satisfy the description Di of the same class (since
the opposite does not have to hold, I)i is equivalent to or more general than
Ei)' The consistency condition states that 1if an event satisfies a

description of sgome class, then it cannot be a member of a training set of

any other class. In learning a concept from examples and counterexamples,

- 19 -

the latter constitute the '"other'" class.

The completeness and consistency conditions provide the logical

foundation of algorithms for concept learning from examples. We will see in

Sec., 4 that to derive D, satisfying the completeness condition one can adopt

L

some Inference rules of formal logic.

2.3 Characteristic vs. Discriminant Descriptions

The completeness and consistency conditions allow us to clearly explain
the distinction Dbetween the previously mentioned characteristic and
discriminant descriptions. A characteristic description of a class of

objects (also known as conjunctive generalization) is an expression that

satisfies the completeness condition or is the 1logical product of such
expressions. It is typically a conjunction of some simple properties common

to all objects in the class. From the applications viewpoint, the most

interesting are maximal characteristic descriptions (maximal conjunctive

generalizations or MCG) that are the most specific (i.e., longest) logical
products characterizing all objects in the given class, using terms of the
given language. Such descriptions are intended to discriminate the given

class from all other possible classes (for i1llustration see Sec. 7).

A discriminant description is an expression that satisfies the
completeness and consistency condition, or is the logical disjunction of
such expressions. It specifies a single way or various alternative ways to
distinguish the given class from a fixed number of other classes. The most

interesting are minimal discriminant descriptions that are the shortest

(i.e., with the minimum number of descriptors) expressions distinguishing

- 20 -

all objects in the given class from objects of the other classes. Such
descriptions are 1intended to specify the minimum Information sufficient to
identify the given class among a fixed number of other classes (for

illustration see Sec. 7).

2.4 Sing1e~ vs. Multiple-Concept Learning

It 1is instructive to distingulsh between learning a single concept, and

learning a collection of concepts, In single-concept learning, one can

distinguish two cases: (1) when observational statements are just examples
of the concept to be learned (learning from "positive" instances only), and

(2) when they are examples and counter-examples of the concept {learning

from "positive" and 'megative" instances).

In the first case, because of the lack of counter-examples, the
consistency condition (7) is not applicable, and there is no natural limit
to which description Qi (here, i=1) can be generalized. One way to impose
such a 1limit 1is to specify restrictions on the form and properties of the
sought description. TFor exaﬁple, one may require that 1t be the longest
(most specific) conjunctive statement satisfying the completeness condition
(e.g., Vere, 1975; Hayes-Roth & McDermott, 1978). Another way is to require
that the description not exceed a given degree of generality, measured, for
example, by the ratio of the number of all distinct events which could

potentially satisfy the description to the number of training lustances

(Stepp, 1978).

In the second case, when the teacher also provides counter-examples of

the given concept, the learning process is considerably simplified. These

- 21 =

counter—examples can be viewed as representing a "different class," and the
consistency condition (7) provides an obvious limit on the extent to which
the hypothesis can ﬁe generalized. The most useful counter-examples are the
so-called "near misses" that only slightly differ from positive examples
(Winston, 1970, 1977). Such examples place stronger constraints on the

generalization process than randomly generated examples.

In multiple-concept learning one can also distinguish two cases: (1)

when descriptions Di of different c¢lasses are vrequired to be mutually
disjoint, i.e., no event can satisfy more than one description, and (2) when
they are overlapping. 1In an overlapping generalization an event may satisfy
more than one description. In some situations this 1s desirable. For

example, if a patient has two diseases, his symptoms should satisfy the

desriptions of both diseases, and in this case the consistency condition 1is

not applicable.

An overlaﬁping ganeralization can be interpreted in such a way that it
always indicates only one decision class. 1In this special case, the concept
recognition rules, Di::>Ki, are applied in a linear order, and thg first
rule satisfied generates the decision. Iﬁ this case, 1f a concept
description Di for class Ki contains a conjunctively linked condition A, and
precedes the rule for class Kj that contains condition ~A, then the
condition ~A is superflous and can be removed. As a result, the linearly
ordered recognition rules can be significantly simplified. For example, the
set of linearly ordered rules

D, #>K

D, #>K

i Y

133:::51{.3
is loglically equivalent to the set of (unordered) rules

D, n>K

1 1
~Dl & D2 3>K2
nDl & ~Dz & D3 5>K3

There are also other ways for deriving a single decision from overlapping
rules (e.g., Davis & ILenat, 1981), The above forms of multiple—-concept
learning have been implemented in inductive programs AQVAL/1 (Michalski,

1973) and AQll (Michalski & Larson, 1978).

ze: 9 =

3. DESCRIPTION LANGUAGE

3.1 Bias Toward Comprehensibility

In concept acquisition, the main interest is in derivation of symbolic
descriptions that are human-oriented, i.e., that are easy to understand and
easy to use for creating mental models of the information they convey. A
tentative criterion for judging inductive assertions from such a viewpolnt

is provided by the following comprehensibility postulate:

The results of computer induction should be symbolic
descriptions of given entities, semantically and structurally
similar toc those a human expert might produce observing the
gsame entities. Components of these descriptions should be
comprehensible as single 'chunks" of information, directly
interpretable in natural language, and should relate
quantitative and gqualitative concepts in an integrated
fashion.

As a practical guide, one can assume that the components of
descriptions (single sentences, rules, labels on nodes in a hierarchy, etc.)
should be expressions that contain only a few (say, less than five)
conditions in a conjunction, few single conditions in a disjunction, at most
one level of bracketing, at most one implication, ﬁo. more than two
quantifiers, and no recursion (the exact numbers may be disputed,®* but the
principle is clear). Sentences are kept within such limits by substituting
names for appropriate subcomponents. Any operators used 1In descriptions
should have a simple intuitive Interpretation. Conceptually related
sentences are organized into a simple data structure, preferably a shallow
hierarchy or a linear list, such as a frame (Minsky, 1974; Lenat, 1982--this

book).

*¥The numbers mentioned seem to apply to the majority of human descrip-
tive sentences.

- 24 -

The rationale behind this postulate 1is to ensure that descriptions
generated by 1inductive inference bear siﬁilarity to human knowledge
representations (Hintzman, 1978), and therefore, are easy to comprehend.
This requirement 1s very lmportant for many applications. TFor example, in
developing knowledge bases for expert systems, it is Important that human
experts can easily and reliably verify the inductive assertions and relate
them to their own domain knowledge. Satisfying the conprehensibility
postulate will also facilitate debugging or improving the inductive programs
themselves. When the complexity of problems undertaken by computer
induction becomes very great, the comprehensibility of the generated
descriptions will'likely be a crucial eriterion. This research orientatioﬂ
fits well within the role of artificial intelligence envisaged by Michle

(1977) to study and develop methods for man-machine conceptual interface and

knowledge refinement.

3.2 Language of Assertions

One of the difficulties with inductive inference is its open~endedness.
This means that when one makes an inductive assertion about some aspect of
reality there is no natural limit to the level of detail in which this
reality may be described, or to the richness of forms in which this
assertion can be expressed. Consequently, when conducting research in this
area, it 18 nmnecessary to circumscribe very carefully the goals and the
problem to be solved. This includes defining the language and the scope of
allowed forms in which assertions will be expressed, as well as the modes of

inference which will be used. The description language should be chosen so

- 25 -

An instructive criterion for classifying inductive learning methods 1is
therefore the tjpe of language used to express inductive assertions. Many
authors use a restricted form of predicate calculus or closely related
notation (e.g., Plotkin, 1971; TFikes, Hart & Nilsson, 1972; Morgan, 1975;
Vere, 1975: Banerji, 1980; Michalski, 1980b; Zagruiko, 1981, Sammut, 1981).
Some other formalisms include decision trees (Hunt, Marin & Stone, 1966;
Quinlan, 1979), production rules (e.g., Waterman, 1970; Hedrick, 1974),
semantic nets (e.g., Haas & Hendrix, 1980), and frames (Lenat, 1976). In
earlier work (e.g., Michalski, 1972, 1975a,b) this author used a multiple-
valued logic propositional calculus with typed variables, called VLl {the
variable-valued logic system one). Later on an extension of the predicate

calculus, called VL was developed that was especially oriented to

2’
facilitate inductive inference (Michalski, 1980).

Here we will use a somewhat modified and extended version of the latter

language, to be called the annotated predicate calculus (APC). The APC adds

to predicate calculus additional forms and new concepts that increase its
expressive power and facilitate inductive Inference. The major differences
between the annotated predicate calculus and the conventional predicate

calculus can be summarized as follows:

1. Each predicate, variable, and function (referred to collectively as a

descriptor) 1s assigned an annotatlion that contains relevant problem—

oriented information. The annotation may contain the definition of
the concept represented by a descriptor, a characterization of its

relationship to other concepts, a specification of the set over which

2,

3.

b

= DG -

the concept represented by a descriptor, a characterization of its
relationship to other concepts, a specification of the set over which
the descriptor ranges (when 1t 1is a variable or a function), and a

characterization of the structure of this set, etc. (see Sec. 4).

In addition to predicates, the APC also includes compound predicates.

Arguments of such predicates can be compound terms, composed of two or

more ordinary terms.

Predicates that express relations =, #, 2y 2y £ and < between terms

or between compound terms are expressed explicitly as relational

statements, also called selectors.

In addition to the universal and existential quantifiers, there is also

a numerical quantitifer that expresses quantitative information about

the objects satisfying an expression.

The concept of annotation is explained more fully in the next section.

Other aspects of the language are described in the Appendix. (The reader

interested in a thorough understanding of this work is encouraged to read

the Appendix at this point,)

- 27 -

4. PROBLEM BACKGROUND KNOWLEDGE

4.1 Basic Components

As mentioned earlier, given a set of observational statements, one may
construct a potentlially infinite number of inductive assertions that imply
these statements. It 1s therefore mnecessary to use some additional

information, problem background knowledge, to constrain the space of

possible inductive assertions and locate the most desirable one{s). In this
section we shall look at various components of the problem background

knowledge employed in the inductive learning methodology called STAR,

described in Sec. 6. These components include:

> Information about descriptors (i.e., predicates, variables, and
functions) wused 1in observational statements. This 1nformation is

‘provided by an annotation assigned to each descriptor (Sec. 4.3).

® Assumptions about the form of observational and inductive assertions.

. A preference criterion that specifies the desirable properties of

inductive assertions sought.

© A variety of inference rules, heuristics, and specialized procedures,
general and problem~dependent, that allow a learning system to

generate logical consequences of given assertlons and new descriptors.

Before we examine these components in greater detail, let us first
consider the problem of how the choice of descriptors in the observational

statements affects the generated inductive asgertions.

~ 28 -

4.2 Relevance of the Initial Descriptors

A fundamental problem underlying any machine inductive learning task is
that of what information is provided to the machine and what information the
machine is expected to produce or learn. As specified 1in the inductive
paradigm, the major component of the input to a learning system is a set of
observational statements. The descriptors wused 1in those statements are
observable characteristics and available measurements of objetts under

consideration. These descriptors are selected as relevant to the learning

task by a teacher specifying the problen.

Determining these descriptors is a major part of any inductive learning
problem., If they capture the essential properties of the objects, the role
of the learning process is simply to arrange these descriptors into an
expression constituting an appropriate inductive assertion, If the selected
descriptors are completely irrelevant to the learning task (as the color,
weight, or shape of men in chess is irrelevant to deciding the right move),

no learning system will be able to construct 4 meaningful inductive

assertion.

There is a range of intermediate possibilities between the above two
extremes. Consequently, learning methods can be characterized on the basis

of the degree to which the initial descriptors are relevant to the learning

problem,

29

Three cases can be distinguished:

1) Complete relevance

In this case all descriptors 1n the observational statements are
assumed to be directly relevant to the learning task. The task of the
learning system 1s to formulate an 1Inductive assertion that is a
mathematical or loglcal expression of some assumed general form that

properly relates these descriptors (e.g., a regression polynomial).

2) Partial relevance

Observational statements may contaln a large number of irrelevant or
redundant descriptors. Some of the descriptors, however, are relevant. The

task of the learning system 1is to select the most relevant ones and

construct from them an appropriate inductive assertion.

3) Indirect relevance

Observational statements may contain no directly relevant descriptors.
However, among the iInitial descriptors there are some that can be used to
construct derived descriptors that are directly relevant. The task of the
learning system 1s to construct those derived descriptors and formulate an
appropriate inductive assertion. A simple form of this case occurs, e.g.,
when a relevant descriptor is the volume of an object, but the observational
statements contain only the iInformation about the object’s dimensions (and

various irrelevant facts).

The above three cases represent problem statements that put

- 30 -

progressively less demand on the relevance of the imitial descriptors (i.e.,

that require less work from the person defining the problem) and more demand
on the learning system. Early work on adaptive control systems and concept
formation represents case 1. More recent research has dealt with case 2,

which 1s addressed 1in selective inductive learning. A method of such

learning must possess efficient mechanisms for determining combinations of
descriptors that are relevant and sufficieant for the learning task. Formal
loglc provides such mechanisms, and therefore 1t has become the major

underlying formalism for selective methods.,

An example of a selective learning method is the one Implemented in
program AQll (Michalski & Larson, 1978) that inductively determined soybean
disease diagnostic rules for the system PLANT/ds, mentioned in the
Introduction. A different type of selective method was Implemented 1in
program ID3 (Quinlan, 1979) that determines a decision tree for classifying
a large number of events. A comparison between these two programs is

described by 0'Rorke (1982).

Case 3 represents the task of constructive inductive learning. Here, a

method must be capable of formulating new descriptors (i.e., new concepts,
new variabies, etc.), of evaluating their relevance to the learning task,
and of using them to construct iInductive assertions. There has been
relatively little done in this area. The "automated mathematician" program
AM (Lenat, 1976) can be classified as a domain-specific system of this
category. Some constructive learning capabilities have been incorporated in
system BACON that automatically formulates mathematical expressions

encapsulating chemical and other laws (Langley et al., 1980). The general-

...31_

purpose INDUCE program for 1earning structural descriptions from examples
has implemented several general purpose constructive generalization

techniques (Larson, 1977; Michalski, 1980a). Secs. 5 and 6 give more

details on this subject.

4.3 Annotation of Descriptors

An annotation of a descriptor (i.e., of a predicate, a variable or a

function) 1is a store of background information about this descriptor

tailored to the learning problem under consilderation. It may include:

o A specification of the domain and the type of the descriptor (see below).

e A specification of operators applicable to it.

e A specification of the counstraints and the relationships between the
descriptor and other descriptors.

e For numerical descriptors, the mean, the variance, or the complete
probability distribution of wvalues for the problem under consideration.

® A_charécterization of objects to which the descriptor is applicable (i.e.,
a characterization of 1its possible arguments).

© A specification of a descriptor class containing the given descriptor that
is the parent node 1in a generalization hierarchy of descriptors (for
example, for descriptors "length," '"width," and "height,” the parent node
would be the "dimensions').

¢ Synonyms that can be used to denote the descriptor.

© A definition of a descriptor (when it is derived from some other

descriptors),

¢ If a descriptor denotes a class of objects, typical examples of this class

can be specified.

= 8. =

Let us consider some of the above components of the annotation 1in

greater detail.

4.4 The Domain and Type of a Descriptor

Given a specific problem, it is usually possible to specify the set of
values each descriptor could potentially adopt in characterizing any object
in the population under consideration. BSuch a set is called the domain (or

the value set) of the descriptor. The domain is used to constrain the

extent to which a descriptor can be generalized. For example, the

information that the temperature of a living human being may vary, say, only

between 34°C and 44°C prevents the system from considering inductive

assertions in which the descriptor "body temperature” would assume values

beyond these limits.

Other important information for conducting the generalization process
18 concerned with the structure of the domain, that 1is, with the
relationship existing émong the elements of the domain. For numerical
descriptoré, such relationships are specified by the measurement scale.
Depending on the structure of the descriptor domaln, we distinguish among

three basic types of descriptors:

o Nominal (categorical) descriptors

The value set of such descriptors consists of independent symbols or
names, i.e., no structure 1s assumed to relate the values in the domain.
For example, "blood-type(person)” and 'name(person)”" are unary nominal

descriptors. Predicates, 1i.e., descriptors with the wvalue set {True,

- 33 -

False}, and n-ary functions whose ranges are unordered sets, are also
nominal descriptors. An example of two-argument nominal descriptor is
"license~plate-number(car, owner)," which denotes a function assigning to a

gpecific car of the given owner a license plate number.

@ Linear descriptors

The value set of linear descriptors is a totally ordered set. For
example, a person’s military rank or the temperature, weight, or number of
items in a set is such a descriptor. Variables measured on ordinal,

Interval, ratio, and absolute scales are speclial cases of a linear
descriptor. Functions that map a set into a totally ordered set are also

linear descriptors, e.g., "distance(Pl,Pz}."

® Structured descriptors

The value set of such descriptors has a tree or oriented graph
gstructure that reflects the generalization relation between the values,
i.e., 18 a generalization hierarchy. A parent node in such a structure
represents a more general concept than the concepts represented by its
children nodes. For example, in the value set of descriptor '"place,"
"U.S5.A." would be a parent node of the nodes "Indiana," "Illinois," "Yowa,"
etc, The domain of structured descriptors is defined by a set of inference
rules specified in the problem background knowledge [see, e.g., descriptor

"shape(Bi)" in Sec. 6].

Structured descriptors can be further subdivided into ordered and

unordered structured descriptors. Sometimes descriptors themselves can also

= Y

be organized into a generalization hierarchy. For example, descriptors’
length, width, and depth belong to a class of "dimensions." Information

about the type of a descriptor is useful, as it determines the operations

applicable to a descriptor.

4.5 Constraints on the Description Space

For a given induction problem there may exist a variety of constraints
on the space of the acceptable concept descriptions, due to the specific

properties and relationships among descriptors. Here are a few examples of

such relationships.
® Interdependence among values

In many practical problems some variables specify a state of an
object, and some other variables characterize the state. Depending on
the values of the state-specifying variables, the variables characterizing a
state may be needed or not.l For example, if a descriptor "state(plant’s
leaf)" takes on value ﬁdiseased," then a descriptor "leaf discoloration”
will be used to characterize the change of the leaf’s color. When the
descriptor "state(plant’s leaf)" takes on value "normal,” then obviously the

"leaf discoloration" descriptor 1is irrelevant, Such information can be

represented by an implication:
[state(plant’s leaf) = normal] = [discoloration(plant’s leaf) =.NA] .
where NA is a speclal value meaning 'not applicable.”

e Properties of descriptors

~ 35 —

Descriptors that are relations between cbjects may have certain general
properties——they can be reflexive, symmetric, transitive, etc. All such

properties are defined as assertions in the annotated predicate calculus

(see Appendix). TFor example, the transitivity of relation "above(Pl,Pz)"

can be defined as

VPI,PZ,P3, (above(Pl,Pz)) & above(Pz,PB) = above(Pl,PS)
¢ [nterrelationships among descriptors

In some problems there may exist relationships between descriptors that
constrain their wvalues. For example, the length of an object is assumed

always to be greater than or equal to its width:

¥YP, length(P) > width(Pp)
Also, descriptors may be related by known equations. TFor example, the area

of a rectangle is the arithmetic product of its length and width:
VP, ([shape(P) = rectangle] = [area(P) = length{P) * width(P))])

(The 4infix operator "*" is wused to simplify notation of the term

multiply(length(P), width(P).)

4.6 The Form of Observational and Inductive Assertions

The basic form of assertions in the STAR methodology is a c—expression,

defined as a conjunctive statement:

<quantifier form><conjunction of relational statements) , (8)

- 316 -

where <quantifier form> stands for zero or more quantifiers, and <{relational
statements) are predicates in a special form, as defined in the Appendix.
The following is an example of a c—expression:
B'PO’Pl’PZ’PB(
[weight{Pl)>weight(P2)][color(P1)=red Y blue][shape(Pl&P2&P3)=box]

[contains{PD,Pl,Pz,P3)][ontop(Pl&Pz,P3)][length(Pl)=3..5]

that can be paraphrased in English:

An object P, contalns parts Pl’ P, and P, and only these.
parts. Pargs‘ P, & P, are on top of part 3 , length of P, is
between 3 and 8, the color of P, is red or alue, the weight
of P, is greater than that of %2, and the shape of all three

parts 1s box.

An important special case of a cr-expression 1is an a-expression (an

atomic expression), in which there 1s no "internal disjunction'" (see

Appendix).

Note that due to the use of internal disjunction a c-expression

represents a more general concept than a universally quantified conjunction

of predicates, used in typical production rules.
Progressively more complex forms of expressions are daescribed below:

® A case expression

A case expresslon is a loglcal product of implications:

[L = ai] = Expi, 1 =1,2,00e
where a, are single elements or disjoint subsets of elements from the domaln

of descriptor L, and Expi are c-expressions.

A case expression describes a class of objects by splitting it into

- 17 -

separate cases, each represented by a different value of a certain

descriptor.

® An implicative expression (i-expression):

C & (C1 =>Cz) , (9)

where C, Cl and 02 are c-expressions.

This form of description is very useful when the occurrence of some
properties (defined 1in 02) depends on the occurrence of some other
properties {defined in Cl)' Typical production rules used in expert systems
are a special case of (9), where C 1is omitted and no internal logical

operators are used. When (Cl = CZ) is omitted, then the conditional

expression becomes a c-expression.,

@ A disjunctive expression (d~expression) defined as a disjunction of

implicative expressions.

® An exception-based expression (e~expression)

In some situations it Is simpler to formulate a somewhat
overgeneralized statement and indicate exceptions than to formulate a

precise statement, The following form is used for such purposes:

where Dl and D2 are d-expressions. This expression is equivalent to

Observational assertions are formulated as a set of rulaes:

- Y

{a—expression ::> Ki} . (10)
Inductive assertions are expressed as a set of rules:

{EXP ::> c—expression} , (11)
where EXP is a c-expression or any of the mere complex expresslons described
above, It 1s also assumed that the left side and the right side of (11)

satisfy the principle of comprehensibility described in Sec. 2.

4.7 The Preference Criterion

In spite of the constraints imposed by the above components of the
background knowledge, the number of inductive assertions consistent with
observational statements may still be unlimited. The problem then arises of
choosing the most desirable inductive assettion(s). In making such a choice
one must take into consideration the aspects of the particular inductive
learning problem, and therefore the definition of a '"preference criterion"
for selecting a hypothesis is a part of ;he problem background knowledge.
Typically, the inductive assertions are chosen on the basis of some

simplicity criterion {e.g., Kemeni, 1953; Post, 1960).

In the context of sclentific discovery, philosopher Karl Popper (1959)
has advocated coastructing hypotheses that are both simple and easy to
refute., By geuerating such hypotheses and conducting'experiments aimed at
refuting them, he argues, one has the best chance of ultimately formulating
the true hypothesis. In order to use this criterion for automated inductive
inference it 1s necessary to define it formally. This, however, is not easy

because there does not seem to exist any universal measure of hypothesis

- 39 -

simplicity and refutability,

Among more specific measures for evaluating the "quality" of inductive

assertions one may list:

® An overall simplicity for human comprehension, measured, for example,
by the number of descriptors and number of operators used in an
inductive assertion.

. The degree of "fit" between the inductive and observational assertions
[measured, for example, by the degree of generalization, defined as the
amount of wuncertainty that any given description satisfying the
inductive assertion corresponds to some observational statement
(Michalski, 1980a)].

@ The cost of measuring values of descriptors used in the inductive
assertion.

® The computational cost of evaluating the inductive aséertion.

® The memory required for storing the inductive assertion.

o The amount of information needed for encoding the assertion using a

priori defined operators (Coulon & Kayser, 1978).

The importance given to each such measure depends on the ultimate
purpose of constructing the inductive assertions. For that reason, the STAR
methodology allows a user to build a global préference criterion as a
function of such measures, tailored to a specific Inductive problem. Since
some of the above measures are computationally costly, simpler measures are

used, called elementary criteria. Among such criteria are the number of c¢-

expressions in the assertipn, the total number of relational statements, the
ratio of possible but unseen events implied by an assertion to the total
number of training events (a simple measure of generalization), and the
total number of different descriptors. The global preference criterion is

formulated by selecting from the above list those elementary criteria that

- 40 -

are most relevant to the problem, and then arranging them into a

lexicographic evaluation functional (LEF). A LEF is defined as a sequence

of criterion~tolerance pairs:
LEF: (CI,TI),(CZ,TZ)t--, (12)

where ¢, 1s an elementary criterion selected from the available '"menu,"

i
and 7, is a tolerance threshold for criterion ¢y (11 £ [0..100%]).

Given a set of 1nductive assertions, the LEF determines the most

preferable one(s) in the following way:

In the first step, all assertions are evaluated from the viewpoint of
criterion ¢y and those which score best, or within the rauge defined by the
threshold T from the best, are retained. WNext, the retained assertions are
evaluated from the viewpoint of criterion Cy and reduced similarly as above,
using tolerance Toe This process continues until either the subset_ of
retained assertions contains only one assertion (the "best" one) or the
sequence of criteriomtolerance pairs is exhausted. 1In the latter case, the
retained set contains assertions that are equivalent from the viewpoint of

the LEF.

An important and somewhat surprising property of such an approach 1is
that by properly defining the preference criterion, the same learning system

can generate either characteristic or discriminant descriptions of object

classes {'see Sec. 7).

a Bl

b« GENERALIZATION RULES

5.1 Definitions and an Overview

Constructing an inductive assertion from observational statements can

be conceptually characterized as a heuristic state-space search (Nilsson,

1980), where:

o states are symbolic descriptions. The initial state 1is the geot of

observational statements,

L operators are inference rules, specifically, generalization,

specialization and reformulation rules, as defined below.

® the goal state is an inductive assertion that implies the observational
statements, satisfies the problem background knowledge and maximizes

the given preference criterion.

A generalization rule is a transformation of a description into a more
general description, one that tautologically implies the initial
description. A specialization rule makes an opposite transformation: given
a description, it generates a logical consequence of it. A reformulation
rule transforms a description into another, llagically equivalent
description. A reformulation rule can be viewed as a special case of a

generalization and a specialization rule.

Specialization and reformulation rules are the conventicnal truth-
preserving 1inference rules wused in deductive logic. In contrast to them,
the generalization rules are not truth-preserving but falsity preserving.

This means that if an event falsifies some description, then it also

i P =

falsifies a more general description. This is immediately seen by observing
that H = F 1is equivalent to ~F = ~H (the law of contraposition). To
11lustrate this point, suppose that a statement "some water birds in this
lake are swans" has been generalized to "all water birds in this lake are
swans.” If there are no water birds in the lake that are swans, then this
fact falsifies not only the first statement but alsc the second. Falsifying

the second statement, however, does not 1imply the falsification of the

first.

In concept acquisition, as explained in Sec. 2, transforming a rule
E ::> K into a more general rule D ::> K means that description E must inply

description D:

E= D (13)

[recall expression (6)]. Thus, to obtain a generalization rule for concept
acquisition, one may use a tautological implication of formal logic. The
premise and consequence of such an implication must, however, be
interpretable as a description of a class of objects. For example, the

known law of simplification
P&Q=P (14)
can be turned into a generalization rule:
P&Q:>K K Pi>K. (15)

If P stands for "round objects," Q for 'brown objects" and K for

"balls," then rule (15) states that the expression "round and brown objects

- 43 -

are balls" can be generalized ro "round objects are balls." Thus, in concept
acquisition, the generalization operation has a simple. set-theoretical
interpretation: a description 1s more general if it 1s satisfied by a
larger number of objects. (Such an interpretation does not apply, however,

to descriptive generalization, as shown below.)

In order to obtain a rule for descriptive generalization, implication
(14) 1is reversed, and P and Q are interpreted as properties of objects of

some class K:
P(K) K P(K) & Q(K) (16)

If P(K) stands for "balls are round" and Q(K) for "balls are brown,"
then according to rule (16), the statement "balls are round and brown" is a
generalization of the statement "balls are round" (because from the former
one can deduce the latter). We can see that the notion "the number of
objects satisfying a description" is not applicable here. Generalizing

means here adding (hypothesizing) properties that are ascribed to a class of

objects.

After this informal introduction we shall now present various types of
generalization rules, concentrating primarily on the rules for concept
acquisition. These rules will be expressed using the notation of the
annotated predicate calculus (see Appendix). The reverse of these rules are
specialization rules or reformualtion rules in special cases. With regard
to other specialization and reformulatlon rules we shall refer the reader to
a standard book on predicate calculus (e.g., Suppes, 1957). Some

reformulation rules of the annotated predicate calculus that do not occur in

- 44 -

ordinary predicate calculus are given in the Appendix.

We will restrict our attention to generalization rules that transform

one or more statements into a single more general statement:

D, ::> ¥} [(D ::> K. (17)

i iel

Such a rule states that 1f an event {a symbolic description of an
object or sltuation) satisfies any description Di’ i ¢ I, then it also
gatigfies description D (the reverse may not be true). A basic property of
the generalization transformation 1is that the resulting description has
"unknown" truth-status, i.e., is a hypothesis that must be tested on new

data. A generalization rule does not guarantee that the obtained

description is useful or plausible.

We distinguish between two types of generalization rules: selective

and constructive. If every descriptor used in the generated concept
description, D is among descriptors occurring in the initial concept

descriptions Di’ 1=1,2,«4., then the rule is selective, otherwise 1t is

constructive,

5.2 Selective Generalization Rules

In the rules presented below CTX, C‘I‘x1 and CTX2 stand for some
arbitrary expressions (context descriptions) that are augmented by

additional components to formulate a concept description.

- 45 -

¢ The dropping condition rule

This rule is a generalized version of the previously described rule

(15):

CIL & § ::> K K CIX ::> K , (18)

where S is an arbitrary predicate or logical expression.

This rule states that a concept description can be generalized by
simply removiug a conjunctively linked expression. This 1is one of the most

commonly used rules for generalizing information.

® The adding alternative rule

i
CTX, 12> K K CTX, V CTX, 1> K . (19)

A concept description can be generalized by adding, through the use of
logical disjunction, an alternative to it. An especially useful form of
this rule i1s when the alternative 1s added by extending the scope of
permissible values of one specific descriptor. Such an operation can be
expressed very simply by using the internal disjunction operator of the
annotated predicate calculus. For example, suppose that a concept
description is generalized by allowing objects to be not only red but also

blue. This can be expressed as follows:

CTX & [color=red] ::> K k CTX & [color=red V blue] ::> K (203

, r

[forms in brackets are selectors; the expressions on the right of = are

called references (see Appendix)]

- 46 -

Because of the importance of this special case, it will be presented as

a separate general rule,

o The extending reference rule

CTX & [L=R,] ::> K l< CIX & [L=R,] ::> K , (21)

C R, C DOM(L) and DOM(L) denotes the domain of L.

where Rl-

In this rule, L is a term, and Rl and R2 (references) are internal
disjunctions of wvalues of L. References Rl and R2 can be interpreted as

sets of values that descriptor L can take in order to satisfy the concept

description.

The rule states that a concept description can be generalized by
enlarging the reference of a descriptor (R2 ElRl)' The elements added to R2

must, however, be from the domain of L.

If R2 is extended to be the whole domain, 1.e., R2 = DOM(L), then the
selector [L = DOM(L)] is always true, and therefore can be removed. In this
case, the extending reference rule becomes the dropping condition rule.
There are two other speclal cases of the extending reference rule. They

take into conslderation the type of the descriptor L [defined by the

structure of DOM(L)]. They are presented as separate rules below.

® The closing interval rule

CTX & [L=a] ::> K
F CTX & [L=a..b] :1:> K, (22)
CIX & [L=b] ::> K |

where L is a linear descriptor, and a and b are some specific values of

- 47 -

descriptor L. The two premises are assumed to be connected by the logical

conjunction (this convention holds for the remaining rules, as well).

The rule states that 1f two descriptions of the same class (the
premises of the rule) differ in the values of only one linear descriptor,
then the descriptions can be replaced by a single description in which the

reference of the descriptor is the interval linking these two values.

To illustrate this rule, consider as objects two states of a machine,
| and K as a class of normal states. The rule says that if a machine is in
the normal state for two different temperatures, say, a and b, then a
hypothesis 1s made that all states in which the temperature falls into the
interval [a,b] are also normal. Thus, this rule is not only a logically

valid generalization rule, but expresses also some aspect of plausibility.

e The climbing generalization tree rule

CTX & [L=a] ::> K

CTX & [L=b] ::> K
(one or . : K CTX & [L=s] ::> K, {(23)
more - . .
statements) . ;

CTX & [L=1i] ::> K

where L is a structured descriptor, and s represents the lowest parent node
whose descendants include nodes a, b, ... and 1 in the generalization tree

domain of L.

The rule 1is applicable only to descriptions involving structured
descriptors, and is used in various forms by, e.g., Winston (1977), Hedrick
(1974), Lenat (1976), Michalski (1980}, Michalski, Stepp, & Diday (1981),

Mitchell (1978, 1982). The following example illustrates the rule:

-~ L8 -

dp, CTX & [shape(P)=triangle] ::> K
dp, CTX & [shape(P)=polygon] ::> K.
3p, CTX & [shape(P)=rectangle] ::> K

Paraphrasing this rule in English: if an object of class k 1s triangular
and another object of this class 1s rectangular, then the rule generates a

statement that objects of class k are polygonal.

o The turning constants into variables rule

This rule is best known for the case of descriptive generalization:

Fla]
(one or Fb]
more . K yv, Flv], (24)
statements) .

Pli)

where F[v] stands for some description (formula) dependent on variable v,

and a, b, ... are constants.

If some description F[v] holds for v's being a constant a or constant
b, etc., then the rule generalizes these observations into a statement that

F[v] holds for every value of v. This is the most often wused rule in

methods of inductive inference employing predicate calculus.
A corresponding rule for concept acquisition is
Fla] & F[b] & +». ::> K 3v, Flvl ::> K . (25)

To illustrate this version, assume that a, b, etc. are parts of an
object of class K that have a property F. Rule (25) generalizes these facts

into an assertion that if any part of an object has property F, then the

- 49 -

object belongs to class K.

® The turning conjunction into disjunction rule

s 11> K K F/ VF, ::> K, (26)

where F1 and F2 are arbitrary descriptions.

A concept description can be generalized by replacing the conjunction

operator by the disjunction operator.

® The extending the quantification domain rule

In the simplest case, the rule changes the universal quantifier into

the existential quantifier:

Yv, F[x] 11> K }(Jv, Fiv] 2> K . (27)

This rule can be viewed as a generalization of the previous rule, (26).

Using the concept of numerical quantifier (see Appendix) this rule can be

expressed in an even more general way:

H(Il)v, Flv] ::> K '(H(Iz}v, Flv] ::> K , (28)

where I 12 are the quantification domains (sets of integers) satisfying

relation Il_g 12.

For example, the statement "if an object has two parts (Il={2}) with
property F, then it belongs to class K" can be generalized by rule (28) to a

statement "if an object has two or more parts (12={2’3""}) with property

F, then it belongs to class K."

- 50 -

® The inductive resolution rule

(a) As applied to concept acquisition

- The deductive inference rule, called the resolution principle, widely
used in automatic theorem proving, can be adopted as a rule of
generalization for concept acquisition. In propositicnal form, the

resolution principle can be expressed as
(P =F) & (P=F) b FVF,, (29)

where P 1is a predicate and Fl and F2 are arbitrary formulas. By

interpreting both sides of (29) as concept descriptions, and making

appropriate transformations, we obtain

P & F1 ::> K
F| VF, 11> K, (30)

~P & F, 2> K

2 |
To illustrate this rule, assume that K is the set of situations when

John goes to a movie. Suppose that 1£ has been observed that he goes to a
movie whén he has company (P) and the movie has high rating (FI)’ or when he
does not have company (~P), .but has plenty of time (FZ)' Rule (30)
generalizes these two observatlons to a statement '"John goes to a movie

either when the movie has high rating or he has plenty of time."
(b) As applied to descriptive generalization

By applying the logical equivalence (Q P P) = (~P P ~(Q) {(the law of
contraposition) to expression (29), then reversing the obtained rule and

substituting the negative literals by the positive, we obtain

- 5] -

P&F V. ~P&F, K F &F,. (31)

This version has been formulated by Morgan (1975).

Both versions, (a) and (b}, can be generalized by applying the full-

fledged resolution principle that uses predicates with arguments, and the

unification algorithm to unify these arguments (e.g., Chang & Lee, 1973),

o The extension against rule

CTX, & [L=R1] i T ¢

: '< [L#R,] :1> K, (2)

CTX, & [L=R2] 11> ~K

2

where sets R1 and Rz are assumed to be disjoint.

Given a description of an object belonging to class X (a positive
example), and a description of an object not belonging to this class (a
negative example), the rule produces the most general statement consistent
with these two descriptions. It is an assertion that classifies an object
as belonging to cléss K 1if descriptor L. does not take any wvalue from the
set RZ’ thus ignoring context descriptions CTX1 and CTXE. This rule is the
basic rule for learning discriminant descriptions from examples used in the
previously mentioned inductive program AQll (Michalski & Larson, 1978).
Various modifications of this rule can be obtained by replacing reference R2

in the output assertion by some superset of it (that does not intersect with

Rl).

5.3 Constructive Generalization Rules

Constructive generalization rules generate 1nductive assertions that

- 52 -

use descriptors not present in the original observational statements. This
means that the rules perform a transformation of the original representation
space. The following 1s a general constructive rule that makes such a
transformation by applying the knowledge of a relationship between different
concepts. It is assumed that this relationship is known to the learning
system as background knowledge, as a previously learned concept, or that it
is computed according to user—defined procedures.

CTX & F, ::> K

1

—]
F1 Fy

{ CTX & F2 11> K (33>

The rule states that if a concept description contains a part F1 (a
concept, a subdescription, etc.) that is known to imply some other concept
FZ’ then a more general description is obtailned by replacing F1 by Fz. For
example, suppose a learning system is told that if an object is black, wide,
and long, then it belongs to class K (e.g., is a blackboard). This can be

expressed in the annotated predicate calculus:

3P, [color(P) = black][width(P) & length(P) = large] ::> K.

Suppose the learner already knows that

¥P, ([width(P) & length(P) = large] = [area(P) = large]).

Then rule (33) produces a generalization:

3P, [color(P) = black][area(P) = large] ::> XK.

As another example, suppose the system is given a description of an
object classified as an arch. This description states that a horizountal bar
is on top of two equal objects placed apart, Bl and B2, having certain

color, weight, shape, etc. Suppose now that characterizations of El and Bz

53

in this description satisfy a previously learned concept of a block. Then
rule (33) generates an assertion that an arch is a bar on top of two
placed—apart blocks. This rule is the basis for an Interactive concept

learning system deveioPed by Sammut (1981).

Specific constructive generalization rules can be obtained from (55) by
evoking procedures computing new descriptors in expression F2 as functions

of initial or previocusly derived descriptors {contalned in Fl). Here are

some examples of rules for generating new descriptors.

¢ Counting arguments rules

(a) The CQ rule (count quantified variables)

If a concept description is in the form
E AR ST RTINS F[vl’VZ""’vk] .
then the rule generates descriptors "#v COND" representing the number of
vi’s that satisfy some condition COND. This condition expresses selected
properties of vi's specified in the concept description. Since many such

CONDs can wusually be formulated, the rule allows the system to generate a

large number of such descriptors.

For example, if the COND is "[attributel(vi) = R]," then the generated
descriptor will be "#vi_attributel_ﬁ" counting the number of vi's that
satisfy this condition. If the attribute1 1s, for Iinstance, length, and R
is [2..4], then the derived descriptor is “#vimlengthhz..d" (i.e., it

measures the number of v,=s whose length is between 2 and 4, inclusively).

- 54 -

(b) The CA-rule (count arguments of a predicate)

If a descriptor in a description 1s a relation with several arguments,
REL(vl,vz,...), the rule generates descriptors "#v—COND,'" measuring the
number of arguments in REL that satisfy some conditiomn COND, Similar to the

above, many such descriptors can be generated, each with different COND.

The annotation of a descriptor provides I1nformation about its
properties. Such a property may be that a descriptor 1s, for example, a
transitive relation, such as relations "above," "inside," "left~of," and

I

"pefore." For example, 1f the relation is "contains(A,Bl,Bz,...), stating
that object A contains objects 31*32*"'* and COND is "large and red,” then

the derived descriptor "#B large red A contains" measures the number of B, s

contained in A that are large and red.

o The generating chain properties rule

If the arguments of different occurrences of a transitive relation in a
concept desc:iption form a chain, that is, form a sequence of consecutive
objects ordered by this relation, the rule generates descriptors
characterizing some specific objects in the chain. Such objects may be

LST~object - the "least object," i.e., the object at the beginning of

the chain {e.g., the bottom object in the case of the
relation "above")

MST-object — the object at the end of the chain (e.g., the top object)

MID-object — the objects in the middle of the chain

Nth-object ~ the object at the Nth position in the chain (starting from

- 55 -

After identifying these objects, the rule investigates all known properties
of them (as specified in the observational statements) in order to determine
potentially relevant new descriptors. The rule also generates a descriptor
characterizing the chain itself, namely,

REL-chain—~length--the length of the chain defined by relation REL.

For example, i1f the REL 1s ON~-TOP, then descriptor ON~-TOP-chaln-length would
specify the height of a stack of objects. When a new description 1s
generated and adopted, an annotation for it is also generated and filled
out, as in Lenat (1976). This rule can be extended to a partial order
relation. 1In such a case it becomes the "find extrema of a partial order"

rule.

© The detecting descriptor interdependence rule

Suppose that given is a set of objects exemplifying some concept, and
that attribute descriptions are used to characterize these objects. Such
descriptions specify only attribute values of the objects; they do not
characterize the objects” structure. Suppose that the values a linear
descriptor x takes on in all descriptions (events) are ordered in increasing
order, If the corresponding values of another linear descriptor y exhibit
an Increasing or decreasing order, then a two-place descriptor

M(x,y)

is created, signifylng that x and y have a monotonic relationship. This

descriptor has value + when y values are increasing and value ¥ when they

are decreasing.

The idea of the above M~descriptor can be extended in two ditrections.

56

The filrst 1s to create M-descriptors dependent on some condition COND that
must be satisfied by the events under consideration:
M(x,y) COND .
For example, descriptor
M(length,welght) red

states that length and welght have a monotoniec relationship for red objects.

The second direction of exteanslion is to relax the requirement for Ethe
monotonic relationship, 1.e., not to require that the order of y values 1s
strictly increasing (or decreasing), but only approximately increasing (or
decreasing). For example, the coefficient of statistical correlation
between x and y can be measured, and when its absolute value 1s above a
certain threshold, a descriptor R(x,y) iIs created. The domain of this R~
descriptor can also be {%,+}, dindicating the positive or negative
correlation, respectively, or it can have values representing several
subranges of the correlation coefficient. Similarly, as in the case of M-

descriptors, R-descriptors can be extended to R-COND descriptors.

The M~ or R-descriptors can be used to generate new descriptors. For
example, 1f |[M{x,y) = 4], then a new descriptor z = x/y can be generated.
If z assumes a constant or a nearly constant value, then an important
relationship has been discovered. Similarly, if [M(x,y) = 4], then a new
descriptor z = x*y can be generated. These ﬁwo techniques for generating
new descriptors have been successfully used in the BACON system for

discovering mathematical expressions representing physical or chemical laws

(Langley, 1980).

= 5

The above ideas can be extended to structural descriptions. Such
descriptions i1nvolve not only global properties of objects, but also
properties of objects’ parts and the relationships among the parts. Suppose
that 1in a structural description of an object, existentially quantified
variables Pl’PZ""’Pm denote its parts, If x(Pi) and y(Pi) are linear
descriptors of P (eeg., numerical attributes characterizing parts

i
P, i=1,2,...), the above described techniques for generating M- and R-

descriptors can be applied.

- 5w

6. THE STAR METHODOLOGY

6.1 The Concept of a Star

The methodology presented here for learning structural descriptions

from examples receives its name from the major concept employed in 1t, that

of a star. In the most general sense, a star of an event e (a description

of a single object or situation) under constraints F, is a set of all

possible alternative nonredundant descriptions of event e that do not
violate constraints F. A somewhat more restrictive definition of a star
will be used here. Let e be an example of a concept to be learned and F be

a set of some counterexamples of this concept. A star of the event e

against the event set F, denoted G(e|F), 1s defined as the set of all

maximally general c-expressions that cover (i.e., are satisfied by) event e

and that do not cover any of the negative events in T.

The c—expressions in a star may contain derived descriptors, 1i.e.,

descriptors not present in the observational statements. In such a case,
testing whether event e satisfles a given description requires that
appropriate transformations be applied to the event. Such a process can be

viewed as proving that the event implies the description, and therefore

methods of automatic theorem proving could be used.

In practical problems, a star of an event may contain a very large
number of deseriptions. Consequently, such a theoretical star is replaced

by a reduced star RG(e|F,m) that contains no more than a fixed number, m,

of descriptions. These m descriptions are selected as the m most preferable

descriptions among the remalning ones according to the preference criterion

- 59 -

defined in the problem background knowledge. Variable m is a parameter of
the learning program, defined either by the user or by the program itself,

as a function of the available computational resources.

The paper by Michalski & Stepp (1982) gives an 1llustration and an
algorithm for generating a reduced star with c-expressions restricted to
attribute expressions (i.e.,expressions involving only object attributes).
Sec. 6.3 presents an algorithm for generating a reduced star consisting of
regular c-expressions. The concept of a star is useful because it reduces
the problem of finding a complete description of a concept to subproblems of

finding consistent descriptions of single positive examples of the concept.

Since any single example of a concept can always be characterized by a
conjunctive expression (a logical product of some predicates), elements of a
star can always be represented by conjunctive descriptions. One should also
notice that 1f the concept to be learned is describable by a c-expressiocn,
then this description clearly will be among the elements of a (nonreduced)
star of any single positive example of the concept. Consequently, if there
exists a positive example not covered by any description of such a star,
then the complete concept description must be disjunctive, i.e., must

include more than one c-expression.

6.2 Outline of the General Algorithm

It is assumed that every observabtional statement is in the form

a-expression ::> K , (34)

where a—expression is an atomic expression describing an object (recall Sec.

- 60 =

4.,6) and K 1s the concept exemplified by this object.

It is also assumed that inductive assertions are 1in the form of a
single c-expression or the disjunction of c-expressions. For simplicity we
will restrict our attention to only slngle-concept learning. TIn the case of
multiple-concept learning, the algorithm is repeated for each concept with

modifications depending on the assumed 1interdependence among the concept

descriptions (Sec. 2.3).

Let POS and NEG denote sets of events representing positive and
negative examples of a concept, respectively. A generai and simplified

varsion of the STAR algorithm can be described as follows:

i. Select randomly an event e from POS.

2., Generate a reduced star, RG(e[NEG,m), of the event e against the set of
negative examples NEG, with no more than m elements. TIn the process of
star generation -apply genefalization rules (both selective and
constructive), task-specific rules, and heuristics for gemerating new
descriptors supplied by problem background knowledge, and definitions

of previously learned concepts.

3. In the obtained star, find a description D with the highest preference

according to the assumed preference criterion LEF,

4, If description D covers set POS completely, then go to step 6.

5. Otherwise, reduce the set POS to contain only events not covered by D,

and repeat the whole process from step l.

- 6] =

6. The disjunction of all generated descriptions D 1is a complete and
consistent concept description. As a final step, apply various
reformulation rules (defined in the problem background knowledge) and
"econtracting" rules [Appendix, Eqs.' (8) & (9)] in order to obtain a

possibly simpler expression.

This algorithm is a simplified version of the general covering
algorithm Al (Michalski, 1975a and 1975b). The main difference 1s that
algorithm Aq selects the initial events (if possible) from events not
covered by any of the descriptions of generated stars, rather than not
covered by only the selected descriptions D. This way the algorithm is able
to determine a bound on the maximum number of separate descriptions in a
disjunction needed to define the concept. Such a process may, however, be

computationally very costly.

The aﬁove algorithm describes only single-step learning. If after
generating a concept description, a newly presented training event
contradicts 1t, specialization or generalization rules are applied to
generate a new, consistent concept description. A method for such

incremental learning is described by Michalski & Larson (1978).

The central step in the above algorithm is the generation of a reduced
star. This can be done using a variety of methods. Thus, the above STAR
algorithm can be viewed as a general schema for implementing varlous
learning methods and strategies. The next section describes one specific

nmethod of star generation.

- 62 -

6.3 Star Generation: The SINDUCE Method

This method generates a reduced star RG(e|NEG,m) by starting with a set
of single selectors, which are either extracted from the event for which the
star is generated or 1inferred from the event by applying constructive

generalization rules or inference rules provided by background knowledge.

These selectors are then speclalized by adding other selectors until
consistency is achieved (i.e., until each expression does not intersect with
set NEG). Next, the obtained consistent expressions are generalized so that
each achleves the nmaximum covérage of the remalning positive training
examples. The best m so-obtained consistent and generalized c~expressions
(1f some are also complete, then they are alternative solutions) constitute
the sought reduced star RG(e|NEG,m). Specifically, the steps of the

procedure are

l. In the first step individual selectors of event e are put on the 1list

called PS. This 1list 1s called a partial star, because its elements

may cover some events Iin NEG. These Iinitial elements of PS (single
selectors from e) can be viewed as generalizations of event e obtalned
by appiying-in all possible ways the dropping condition generalization
rule {(each application drops all selectors except one). Elements of
the partial star PS are then ordered Ffrom the most to the least

preferred according to a preference criterion:

LEF, = <(-negcov,11), (poscnv,12)>, (35)
where negcov and poscov are numbers of positive and negative examples,

respectively, coveéred by an expression in the star, and Ty, T, are

w B

tolerances (recall Sec. 4.7).

The LEF, minimizes the negcov (by maximizing the —negcov) and maximizes

1

poscov.

2. The list PS is then expanded by adding new selectors obtained by
applying the following inference rules to the event e:

{a) the constructive generalization rules (Sec. 5.3),

(b) the problem—specific heuristics defined in the background
knowledge,

{(c) the definitions of the previously learned concepts (to determine
whether parts of e satisfy some already known concepts).

3. Fach new selector is inserted in the appropriate place in 1list PS,
according to preference criterion LEF,. The size of PS is kept within
the limit defined by parameter m by removing from PS all but the m most
preferred selectors,

4. Descriptions in PS5 are tested for consistency and completeness. A

description 1Is consistent if negcov = 0 (i.e., if it covers no events
in NEG), and is complete if poscov is equal to the total number of
positive exanmples. Consistent and complete descriptlons are removed
from PS5 and put on the list called SOLUTIONS. 1If the slze of the list
SOLUTIONS 1is greater than a parameter #SOL, then the algorithm stops.
Parameter #SOL determines the number of desired alternative concept

descriptions, Incomplete but consistent descriptions are removed from

3.

gy

the 1list PS and put on the list called CONSISTENT. If the size of the
CONSISTENT 1list 1s greater than a parameter #CONS, then contrel is

transferred to step b.

Each expression in PS is specialized in various ways by appending to it
a single selector from the original list PS. Appended selectors must
be of lower preference than the last sgelector in the conjunctive
expression (initially, the expression has only one selector).
Parameter ZBRANCH specifies the percentage of the selectors ranked
lower (by the preference criterion) than the last selector in the
current conjunction. If ZBRANCH = 100%, all lower preference selectors
are singly appended--that is, the number of new expressions generated
from this conjunction will EE equal to the total number of selectors
having lower preference than the last selector in the conjunction. All
new obtained expressions are ranked by LEFl and only the. m best are

retained. This "expression growing" process is illustrated in Fig. 1.

Steps 4 and 5 are'repeated until the CONSISTENT 1list contains the

number of expressions specified by parameter #CONS, or until the time

allocated for this process is exhausted.

b

Each expression on the CONSISTENT list is generalized by applying the

extension against, closing the interval, and climbing generalization
tree generalization rules, An efficient way to Implement such a
process 1s to transform the original structural description space into
an attribute description space. Attributes (i.e., descriptions with

zero arguments) defining this space are created from the descriptors in

- 65 ~

SR

- a disregarded rule
— an active rule

a terminal node denoting a consistent c-expression

Omox
|

- a terminal node denoting a comsistent and complete
c-expression (a solution)

The nodes in the first column are selectors extracted from the
event e or derived from e by applying inference rules. Each
arc represents an operation of adding a new selector to the
current c-expression.

Figure 1. Tllustration of the process of generating a reduced
star RG(e/NEG,m).

7e

the

- 66 —

the given expression on the CONSISTENT list in a manner such as that
described in Sec. 2.3.2 of the chapter by Dietterich & Michalskl

(1982--this book). The generalization of the obtained attribute
descriptions 1is accomplished by the attribute star generation
procedure, analogous to the one described by Michalski, Stepp & Diday
{1981). Details of this process of traansforming structural
descriptions into attribute descriptions are -described by TLarson
(1977). The reason for such a transformation 1s that structural
descriptions are vrepresented as labeled graphs, while attribute
descriptions are represented as binary strings. It is computationally

much more eceonomical to handle binary strings than labeled graphs.

The obtained pgeneralizations are ranked according to the global
preference ctiterion LEF defined in the background knowledge. A

typlical LEF 1s to maximize the number of events covered in P0OS set and

to minimize the complexity of the expression (measured, for example, by

the number of selectors it contains). The m best expressions so

determined constitute the reduced star RG(e|NEG,m).

A somewhat restricted version of the above~described INDUCE method and

STAR algorithm has been implemented in various versions of the INDUCE

learning program (Larson, 1977; Dietterich, 1978; Michalski, 1980).

= 67 =
7. AN EXAMPLE

To illustrate the inductive learning methodology just presented, let us
consider a simple problem in the area of conceptual data analysis. Suppose
"normal™ cells, denoted DNC and

we are given examples of "cancerous" and

DNN, respectively, in Fig. 2, and the task of the analysis is

» to determine properties differentiating the two classes of cells (i.e.,

to find discriminant descriptions of each class),

® to determine important common properties of the cancerous and the

normal cells (i.e., to find a characteristic description of each

class).

An assumption is made that the properties to be discovered may involve
both quantitative information about the <c¢ells and their components, and
qualitative information, which includes nominal variables and relationships

existing among the components.

The solution to the problem posed (or similar problems) can be obtained
by a successive repetition of the "focus attention~>hypothesize->test" cycle

described below.

The "focus attention"” phase is concerned with defining the scope of the
problem under consideration. This includes selecting descriptors appearing
to be relevant, specifying underlying assumptions, and formulating the
relevant problem knowledge. This first phase is performed by a researcher;
it involves his/her technical knowledge and informal intuitions. The third,

the "test" phase, examines the hypotheses and tests them on new data. This

- 69 -

phase may require collecting new samples, performing laboratory experiments,
and/or critically analyzing the hypotheses. This phase 1s likely to involve

knowledge and abilities that go beyond currently feasible computer systems.

It is the second, the "hypothesize" phase, in which an inductive
learning system may play a useful role: the role of an assistant for
conducting a search for the most plausible and/or most interesting
hypotheses. This search may be a formidable combinatorial task for a
researcher, 1f the data sample is large and if each item of ﬁhe data (in

this case, a cell) is described by many variables and/or relations.

Individual steps are as follows:

1. The user determines the set of initial descriptors and provides an
annotation for each descriptor,. We will assume that the annotation
specifies the type, the domain, and any special properties of each
descriptor (e.g., the transitivity of a relation). In the case of
structured descriptors, the annotation also specifies the structure of the
domain. The specification of the annotation constitutes the first part of

the problem background knowledge.

Suppose that for our simple example problem, the following descriptors
are selected:
I. Global descriptors (descriptors characterizing a whole cell)
o circ — the number of segments in the circumference of the cell

Type: linear Domain: {1..10}

- 70 -

°© pplasm - the type of protoplasm in the cell (marked by encircled

capital letters in Fig. 2)
Type: nominal Domain: {A,B,C,D}
II. Local descriptﬁrs {those characterizing cell bodies and their
relationships)
e shape (Bi) ~ the shape of body Bi
Type: structured
Domain: a tree structure with a set of leaves {triangle, circle, ellipse,
heptagon, square, boat, spring}
Nonleaf nodes are defined by rules:

circle V ellipse] = [shape = aval]

[shape
[shape = triangle V square V heptagon] = {shape = polygon]
[shape = oval V polygon] = [shape = regular]

spring V boat] = [shape = irregular]

it

[shape
® texture (Bi) -~ the texture of body Bi
Type: nominal Domain: {blank, shaded, crossed, wavy,
solid-black, solid-grey, stripes}
& weight (Bi) -~ the weight of body B,
Type: linear Domain: {1,2,«¢.,5}
® orient (Bi) - the orientation of Bi
Type: linear—-cyclic (the last element is followed by the Ffirst)
Domain: {N, NE, E, SE, S, SW, W, NW}
Condition of applicability: if [shape (Bi) = boat]
e contains (C’El’BZ"") - C contains BI’BZ""

Type: mnominal Domain: {True,False}

Properties: transitive relation

...?1_

e hastails (B’LI’LE"") -~ a body B has taills Ll’LZ""

Type: nominal Domain: {True,False}

Condition of applicability: 1if [shape (B) = boat]
Note that the descriptors "contains" and "hastails" are predicates with
variable number of arguments. Descriptor "contains" is characterized as a
transitive relation. Descriptors '‘hastails" and "orient" are applicable

only under a certain coadition.

2. The user formulates observational statements, which describe cells
in terms of selected descriptors and specify the class to which each cell

belongs. For example, the following is an observational statement for the

DNC cell 1:

d-CELL B;»Bys«+s,B, [contalns(CELL,,B Bz,...,Bﬁ)]

1? 1*71?
[circ(CELLl)=8][pplasm(CELLl)=A][shape(B1)=ellipse] &
[texture(Bl)=stripes][weight(Bl)=4][orient(Bl)=NW][shape(B2)=circle] &
[contains(Bz,B3)][texture(32)=blank][weight(B2)=3]... &
[shape(36)=circ1e][texture(B6)=shaded][Weight(36)=5]

:2> [elass=DNC].

3. To specify the second part of the problem background knowledge the
user indicates which general rules of constructive induction (Sec. 5.3) are

applicable, and also formulates any problem-specific rules.

The constructive rules will generate various new derived descriptors.
For example, the counting rule CQ will generate, among others, a descriptor:
o #B-black-boat — the number of bodies whose shape i1s '"boat" and

texture is "solid-black" (i.e., assuming COND

...7'2_

[shape(B)=boat][texture(B)=solid-black])
(For simplicity of notation, the name of thils descriptor, as well as other
descriptors below, has been abbreviated, so it does not follow strictly the
naming convention described in section 5.3.) The counting rule CA will
generate such descriptors as
® total-B ~the total number of bodies in a cell (no COND 1s used)
e indep-B ~the number of independent bodies In a cell (assuming the
COND "bodies not contalned in another body")
o #contained-1in-B -the number of smaller bodies contained in the body B

o #tails-boat-B —the number of tails in & body B, whose shape is "boat."

As advice to the system, the user may formulate arbitrary arithmetic

expressions for generating possibly relevant descriptors. For example, the
user may suggest a descriptor:

welght(CELL) = X Weight(Bi),
i

where B 1 = 1,2,+.s denote bodies in a cell.

i’
The background knowledge may also contain special concepts——even or odd

number, the definitions of the area and perimeter of a circle or rectangle,

etc.

4. Finally, as the last part of the background knowledge, the user
specifies the type of description sought and the hypothesis.préference
criterion. Let us assume that both maximal characteristic descriptions and
minimal discriminant descriptions are sought. We therefore choose as the

preference criterion for constructing characteristic descriptions:

<t TF

"maximize the length of generated complete c-expressions," and for

counstructing discriminant descriptions: "minimize the length of consistent

and complete c-expresslons.”

For {illustration, we shall preseant here samples of discriminant
descriptions and selected components of a characteristic description of the

DNC "cells," obtained by the INDUCE program.

Discriminant descriptions of DNC cells

Each of these descriptions is sufficient to discriminate all DNC cells
from DNN cells. A concept description for class DNC can thus be any one of
these descriptions or the disjunction of two or more of these descriptions.
P (L)B [texture(B)=shaded] [weight(B) » 3]

Paraphrasing in English: "Every DNC cell, as opposed ‘to DNN, has

exactly one body with ‘shaded” texture and weight at least 3."

o J[circ=even]

"The number of segments in the circumference of every DNC cell is
even," (The concept of "even'" was determined by "climbing the generalization
tfee" rule.)

o Jd(> 1)B [shape(B)=boat] [orient{B)=N V NE]
"Every DNC cell has at least one “boat’ shape body with orientation N or NE."

e J(» 1)B [#talls-boat-B=1]

"Every DNC cell has at least one body with number of tails equal to 1."

® J{1)B [shape(B)=circle] [#contains~B=1]

"Every DNC cell has a circle containing a single object."

(A related and somewhat redundant description is that every cell

—~ T4 -

contains a circle that has another solid black circle inside it).

Underscored descriptors are derived descriptors obtained through

constructive generalization rules.

Characteristic descriptions of DNC cells

Every description below is a characterization of some pattern common to
all DNC cells. Some of these patterns taken separately may cover one or
more DNN cells (unlike the discriminant descriptions). In contrast to
discriminant descriptions, the length of each description has been maximized
rather than minimized.

o J(1)B [welght(B)=5]

Paraphrasing in English: "In every DNC cell there 1s one and only one
body with weight 5.," |
@ H.(Z)BI,B2 [cﬁntains (Bl,Bz)][shape (Bl)shape(32)=circle]

[texture(Bl}=biank][weight(Bl)=Gdd]
[texture(Bz)=soiiq;black]{weight(B2)=even]

[#containeq_iq;B1=l]

"In every cell there are two bodies of circle shape, one contained in
another, of which the outside circle is blank, and has "odd" weight,
the inside circle is solid black and has "even" weight. The number of

bodies in the outside circle is only one." {This is also a discriminant

description but is not minimal.)
e 1 (1)B [shape(B)=circle] [texture(B)=shaded] [weight{(B) > 3]
"Every cell contains a circle with “shaded’ texture, whose weight is at

least 3." (This 1is also a nonmminimal discriminant description.)

= 75w

o 3J(> 1)B [shape(B)=boat] [orient(B) = N V NE][#tails-boat(B)=1]

"Every cell has at least one body of ‘boat’ shape with N or NE
orientation, which has one tail." (This 1is also a nonminimal
discriminant description.)

e J(2)B [shape(B)=circle] [texture(B)=solid black] or alternatively

[#B_clrcle solid black=2]

"Each cell has exactly two bodies that are solid black clrcles,"

o [pplasm=A V D]

"The protoplasm of every cell is of type A or D."

The above example is too simple for really unexpected patterns to be
discovered. But it illustrates well the.potential of the learning program
as a tool for searching for patterns in complex data, especially when the
relevant properties involve both numerical and structural information about
the objects under consideration. An application of this program to a more

complex problem (Michalski, 1980a) did generate unexpected patterns.

- 76 -

8., CONCLUSION

A theory of inductive learning has been presented that views such
learning as a heuristic search through a space of symbolic descriptions,
generated by an application of certain inference rules to the initial
observational statements (teacher—-generated examples of some concepts or
environment-provided facts). The process of generating the goal
description--the most preferred inductive assertion—--relles ‘on the
universally intertwined and complementary operations of specializing or
generalizing the currently held assertion in order to accommodate new facts.
The domain background knowledge has been shown to be a necessary component
of 1inductive learning,lwhich provides constraints, guidance and a criterion

for selecting the most preferred inductive assertion.

Such characterization of inductive learning is conceptually simple, and
constitutes a theoretical framework for describing and comparing learning
methods, as well as developing new methods. The STAR methodology for
learning structural descriptions from examples, described in the second part
of the chapter, represents a general approach to concept acquisition which

can be implemented in a variety of ways and applied to different problem

domains.

There are many important topics of inductive learning that have not
been covered here, Among them are learning from incomplete or uncertain

information, learning from descriptions containing errors, learning with a

multitude of forms of given observational statements, as well as

multimodel-based inductive assertions, and learning general rules with

- 77 -

exceptions. The problem of discovering new concepts, descriptors and,
generally, various many-level transformations of the initial description
space (the problem of constructive inductive learning) has been covered only

very superficially.

These and related topics have been given little attention so far in
the field of machine 1learning. There is no doubt, however, that as the
understanding of the fundamental problems In the field matures, these

challenging topics will be given increasing attention.

PG -

ACKNOWLEDGMENTS

In the development of the ldeas presented here the author benefited
from discussions with Tom Dietterich and Robert Stepp. Proofreading and

comments of Jaime Catbonell, Bill Hoff, and Tom Mitchell were helpful' in

shaping up the final version of the paper.

The author gratefully ackanowledges the partial support of the research
by the National Science Foundation under grants MCS 79-06614 and MCS 87—

05166 and the Office of Naval Research under grant N0O0014~82-K-0186.

- 79 -

REFERENCES

Amarel, F., "An approach to automatic theory formation,” H. von Foerster,
Ed., Tllinois Symposium on Principles of Self-Organization, 1960.

Banerji, R. B., "The description 1list of concepts,” Comm. Assoc., for
Computing Machinery, No. 5, pp. 426-431, 1962.

Banerji, R. B., Artificial Intelligence: A Theoretical Perspective,
Elsevier North-Holland, New York, 1980,

Bierman, A. W. and Feldman, J., "Survey of results in grammatical
inference," 1in Frontiers of Pattern Recognition, Academic Press, New
York, pp. -32-54, 1972,

Bierman, A. W., "The inference of regular LISP programs from examples,'" IEEE
Trans. on Systems, Man, and Cyberneties, Vol. SMC-8(8), pp. 585-600,
August 1978.

Bongard, M. M., Probliema wuznavania, Izdatielstwo NAUKA, Moskva, 1967.
(English translation: Pattern Recognition, Spartan Books, 1970.)

Brachman, R. T., "On the epistomological status of semantic networks,"
Report No. 3807, AI Department, Bolt, Beranek and Newman, April 1978.

Bruner, J. S., Goodnow, J. and Austin, G., A Study of Thinking, Wiley, New
York, 1956,

Buchanan, G. B. and Feigenbaum, E. A., "Dendral and meta-dendral, their
applications dimension," Artificial Intelligence, 11:5-24, 1978.

Buchanan, B. G., Mitchell, T. M., Smith, R. G., and Johnson, C. R., Jr.,
"Models of learning systems," Tech. Rept. STAN-CS-79-692, Computer
Science Department, Stanford University, January 1979,

Burstall, R. M. and Darlington, J., "A transformation system for developing
recursive programs,” JACM, Vol. 24, No. 1, 44~67, 1977.

Carnap, R., "The aim of inductive logic,” in E. Nagel, P. Suppes, and A.
Tarski, FEds., Logic, Methodology and Philosophy of Science, Stanford
University Press, Stanford, pp. 303-318, 1962,

Case, J. and Smith, C., "Comparison of i1dentification criteria for
mechanized inductive Iinference," Tech. Report No. 154, State University
of New York at Buffalo, April 1979,

Chang, C. and Lee, R. C., Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York, 1973,

- 80 -

Cohen, B, L., "A powerful and efficient structural pattern recognition
system,”" Artificial Intelligence, Vol. 9, No. 3, December 1977.

Coulon, D. and Kayser, D., "Learning criterion and inductive behavior,"
Pattern Recognition, Vol. 10, No. I, pp. 19-25, 1978,

Davis, R. and Lenat, D., Knowledge~Based Systems in Artificial Intelligence,
McGraw-Hill, New York, 1982,

Dietterich, T., "Description of inductive progran "INDUCE 1.1," Internal
Report, Department of Computer Science, University of Illinois at
Urbana~Champaign, October 1978.

Dietterich, T. G., "A methodology of knowledge layers Ffor inducing
descriptions of sequentially ordered events," Report No. 80-1024,
Department of Computer Science, University of Tllinois at Urbana-

Champaign, May 1980.

Dietterich, T. and Michalski, R. §., '"Inductive 1learning of structural
descriptions: evaluation criteria and comparative review of selected
methods,"” Artificial Intelligence Journal, Vol., 16, No. 3, pp. 257-294,

July 1981.

Feigenbaum, E. A., "The simulation of verbal learning behavior, Proe.

—

Western Joint Conf., pp. 121-132, 1961 (also in Computers and Thought,
Ed. E. A. Feigenbaum and J. Feldman, McGraw-Hill, New York, 1963).

Fikes, R. E., Hart, R. E. and Nilsson, N. J., "Learning and executing
generallzation robot plans,” Artificial Intelligence, 3, 1972,

Gaines, B. R., "Maryanski’s grammatical inferences," IEEE Trans. on
Computers, Vol. C-28, pp. 62-64, 1979,

Gaschnig, J., "Development of wuranium exploration models for prospector
consultant system,” Artificial Intelligence Center, SRI Intern., March

1980,

Haas, N. and Hendrix, G. G., "An approach to applying and acquiring
knowledge," Proceedings of the lst American Assoc. for Al Conference,

pp. 235-239, August 1980.

H4 jek, P., Havel, I., and Chytil, M., "The GUHA method of automatic
hypothesis determination,” Computing 1, pp. 293-308, 1966.

Hajek, P. and Havranek, T., Mechanizing Hypothesis Formation, Mathematical
Foundations for a General Theory, Springer-Verlag, New York, 1978.

Hayes-Roth, F., "A structural approach to pattern learning and the
acquisition of classificatory power,” Proceedings of the First Intern.
Joint Conference on Pattern Recognition, Washington, D.C., Oct. 30-Nov.
l, pp. 343-355, 1973,

- G -

Hayes-Roth, F. and McDermott, J., "An interference matching technique for
inducing abstractions, Communications of the ACM, No. 5, Vol. 21, pp.
401-411, May 1978.

Hedrick, C. L., "A computer program to learn production systems using a
semantic net,” Ph.D. Thesis, Department of Computer Science, Carnegle-

Mellon University, Plittsburgh, July 1974.

Hintzman, D. L., The Psychology of Learning and Memory, W. H. Freeman and
Company, 1978.

Hoff, B., Michalski, R. 5. and Stepp, R., "INDUCE 2 - a program for learning
structural descriptions from examples," 1Intelligent Systems Group
Report No. 82-7, Department of Computer Science, University of Illinois
at Urbana-Champaign, 1982.

Hovland, C. I., "A ’communication analysis’ of concept learning,"
Psychological Review, pp. 461-472, November, 1952.

Hunt, E. B., Concept Learning: An Information Processing Problem, Wiley,
New York, 1962.

Hunt, E. B., Marin, J. and Stone, P. T., Experiments in Induction, Academic
Press, New York, 1966.

Jouannaud, J. P. and Kodratoff, Y., "An automatic construction of LISP
programs by transformations of functions synthesized from their input-
output behavior,”" Intern. J. of Policy Analysis and Information
Systems, Vol. 4, No. 4, pp. 331-358, December, 1980,

Kemeni, T. G., "The use of simplicity in induction," Psychological Review,
VO].Q 62, NO. 3, 391"408, 1953.

Kochen, M., "Experimental study of hypothesis-formation by computer," in
Information Theory, 4th London Symposium (C. Cherry, Ed.), Butterworth,
London and Washington, D.C., 1961,

Langley, P., Neches, R., Neves, D., and Anzai, Y., "A domain-independent
framework for learning procedures,”" Intern. J. of Policy Analysis and
Information Systems, Vol. 4, Wo. 2, pp. 163-198, June, 1980,

Larson, J., "Inductive Inference in the variable-valued predicate 1logic
system VL2 : methodology and computer {mplementation,™ Ph.D. Thesis,
Report No. é69, Department of Computer Science, University of I1linois,
Urbana, Tllinois, May, 1977,

Larson, J. and Michalski, R. S., "Inductive Inference of VL decision rules,"
Proc. of the Workshop on Pattern-Directed Inference Systems, Honolulu,
Hawaii, May 23-27, 1977, SIGART Newsletter, No. 63, June 1977.

- 89 -

Lenat, D., "AM: an artificial intelligence approach to discovery in
mathematics as heuristic search,”" Computer Science Department, Report
STAN-CS-76-570, Stanford University, July 1976,

Lenat, D. and Harrls, G., '"Designing a rule system that searches for
scientific discovery,”" In Pattern~Directed Inference Systems, Waterman,
D. A. and Hayes-Roth, F., Eds., Academic Press, New York, pp. 25-31,

1978.

Michie, D., "New face of artificial intelligence, Informatics 3, pp. 5-11,
1977,

Michalski, R. S., "A variable-valued logic system as applied to plcture
description and recognition," Graphic Languages, T. Nake and A.
Rosenfeld, Eds., North~-Holland Publishing Co., pp. 20-47, 1972.

Michalski, R. S., "AQVAL/l~-computer implementation of a wvarlable-valued
logic system and its application to pattern recogunltion," Proc. of the
First Intern. Joint Conf. on Pattern Recognition, Washington, D.C.,

October 30-November 1, 1973.

Michalski, R. 8., "Variable-valued logic and 1its applications to pattern
recognition and machine learning," 1in Multiple-Valued Logic and
Computer Science, Rine, D. (Ed.), North~Holland, 1975a.

Michalski, R. S., "'Synthesis of optimal and quasi-optimal wvariable-valued
logic formulas, Proc. of the 1975 Intern. Symposium on Multiple-Valued
Logic, Bloomington, Indiana, May 13-16, pp. 76-87, 1975b.

Michalski, R. 5., "Pattern recognition as rule-gulded inductive inference,"
IEEE Trans. on Pattern Analysis and Machine Intelligence, July 1980a.

Michalski, R. 5., "Knowledge acquisition through conceptual clustering: a
theoretical framework and an algorithm for partitioning data into
conjunctive concepts," Special Tssue on Knowledge Acquisition and
Induction, Interntional J. of Policy Analysis and Information Systems,
Vol. 4, No. 3, pp. 219-244, September, 1980b.

Michalski, R. S. and Chilausky, R. L., "Learning by being told and learning
from examples," Policy Analysis and Information Systems, Special Issue
on Knowledge Acquisition and Induction, No. 2, pp. 125~160, 1980,

Michalski, R. §. and larson, J. B., "Selection of most representative
training examples and 1incremental generation of VL, hypotheses: the
underlying methodology and the description of programs ESEL and AQl11,"
Report No. 78-~867, Department of Computer Scilence, University of
Illinois at Urbana-Champaign, May 1978.

- 83 —

Michalski, R. S. and P. Negri, "An Experiment on inductive learning in chess
end games," Machine Representation of Knowledge, MACHINE INTELLIGENCE
8, E. W. Elcock and D. Michie, Eds, Ellis Horwood, pp. 175-192, 1977.

Michalski, R. 8., Stepp, R., and Diday, E., "A recent advance in data
analysis: clustering objects into classes characterized by conjunctive
concepts,”" Invited chapter in Progress in Pattern Recognition, Vol. 1,
L. Kanal and A. Rosenfeld, Eds., North~Holland, Amsterdam, 1981.

Minsky, M., "A framework for representing knowledge,'" MIT AL Memo 306, June
1974,

Mitchell, T. M., '"Version spaces: an approach to concept learailng," Ph.D.
Thesis, Stanford University, December, 1978.

Mitchell, T. M., '"Generalization as search, Artificial Intelligence, No. 2,
pp. 203~226, 1982. -

Moraga, C., "A didactic experiment in pattern recognition,” Report AIUD-PR-
8101, Department of Informatics, Dartmund University, 1981.

Morgan, C. G., "Automated hypothesis generation using extended inductive
resolution," Advance Papers of the 4th I. J. Conf. on Artificial
Intelligence, Vol. I, Tbilisi, Georgla, pp. 352-356, September 1973,

Newell, A., Shaw, J. C. and Simon, H. A., "A variety of intelligent learning
in the general problem solver," Rand Corp. Tech. Rept., p. 1791, 1959,

Niblett, T. and Shapiro, A., "Automatic induction of classification rules
for a chess endgame," MIP-R-129, Machine Intelligence Research Unit,
University of Edinburgh, March, 1981.

Nilsson, N. T., Principles of Artificial Intelligence, Tioga Publishing
Company, 1980. |

0’Rorke, P., "A comparative study of inductive learning systems AQll and
ID3," Intelligent Systems Group Report No. 8l-14, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1981.

Pettorossi, A., "An algorithm for reducing memory requirements in recursive
programs using annotations," Inter. Workshop on Program Construction,
Bonas, September 8-12, 1980.

Plotkin, G. D., "A further note on inductive generalization," Machine
Intelligence 6, B. Beltzer and D. Michie, Eds., Elsevier, New York,
1971.

Pokorny, D., "Knowledge acquisition by the GUHA wmethod,” Intern. J. of
Policy Analysis and Information Systems, Vol. 4, No. 4, pp. 379-~399,
1980. |

- 84 -

Polya, G., '"Mathematics and plausible reasoning, vol. I: induction and
analogy 1Iin mathematics, wvol., TI: patterns of plausible inference,"
Princeton University Press, 1954 (second edition, 1968).

Popper, K. R., The Logic of Scientific Discovery, Basic Books, New York,
1959,

Post, H. R., "Simplicity of scientific theories," The British J. for the
Philosophy of Science, Vol., 11, No. 41, 1960.

Quinlan, J. R., '"Discovering rules by induction from 1large collections of
examples,” in Expert Systems in the Microelectronic Age, D. Michie Ed.,
Edinburgh University Press, 1979,

Russell, B., History of Western Philosophy, George Allen and mwin, London,
p. 566, 1946.

Sammut, C., '"Learning concepts by performing experiments," Ph.D, Thesis,
Dapartment of Computer Science, University of South Wales, Australia,
November, 1981. |

Shapiro, E. Y., "Inductive inferences of theories from Facts,” Research
Report 192, Department of Computer Science, Yale University, February
1981,

Shaw, D. E., Swértout, W. R, and Green, C., C., "Inferring Lisp programs from
examples,”" Proc. of the 4th Inter., Joint Conf. on Artificial
Intelligence, Vol. I, pp. 331-356, Tbilisi, September 1975,

Shortliffe, E. H., Computer—-based Medical Consultations: MYCIN, American
Elsevier, New York, 1979,

Simon, H. A, and Kotowsky, "Human acquisition for sequential patterns,”
Psychological Review, Vol. =10, No. 6, 534-546, 1963.

Simon, H. A. and Iea, G., "Problem solving and rule induction: a unified
view," Knowledge and Cognition, L. W. Gregg, Ed., Lawrence Erlbaum
Assoc,, Potomac, Maryland, 1974,

Simon, H. A., Models of Discovery, Reidel, Dordrecht, 1977,

Smith, D. R., "A survey of the synthesis of LISP programs from examples,"
Inter. Workshop on Program Construction, Bonas, September 8-12, 1980,

SolomonofE, R, J., "A formal theory of inductive inference,” Information and
Control, 7, pp. 1-22, 224-254, 1964,

Soloway, E. M, and Riseman, E. M,, "Levels of pattern description in
learning,” Papers of the 5th Inter, Joint Conf. on Artificial

Intelligence, Cambridge, Massachusetts, pp. 801-811, 1977.

- 85 -

Stepp, R., "The investigation of the UNICLASS inductive program AQ7UNI and
user’s guide," Report WNo. 949, Department of Computer Science,
University of Illinois at Urbana—-Champaign, November, 1978.

Stoffel, J. C., "The theory of prime events: data analysis for sample
vectors with Inherently discrete varliables," Information Processing 74,
North-Holland, Amsterdam, pp. 702~706, 1974,

Suppes, P., Introduction to Logic, Van Nostrand Inc., Princeton, 1957.

Vere, S, A., "Induction of concepts 1in the predicate calculus," Advance
Papers of the 4th Inter. Joint Conf. on Artificial Intelligence, Vol.
I, pp. 351-356, Thilisi, Georgla, September 1975.

Waterman, D. A., "Generalization learning technlques for automating the
learning of heuristics,” Artificial Intelligence, 1:1/2, 121~170, 1970.

Winston, P. H., "Learning structural descriptions from examples,”" Technical
Report AT TR-231, MIT AI Lab, Cambridge, Massachusetts, 1970,

Winston, P. H., Artificial Intelligence, Addison~Wesley, Reading, 1977.

Yau, K. C. and Fu, K. S., "Syntactic shape recognition wusing attributed
grammars,'" Proceedings of the 8th Annual EIA Symposium on Automatic
Imagery Pattern Recognition, 1978.

Zagoruilko, N. G., Mietody obnaruzhenia zakonomiernostiej (Methods for
revealing regularities in data), Izd. Nauka, Moskow, 1981,

- 86 -

APPENDIX

ANNOTATED PREDICATE CALCULUS (APC)

This appendix presents definitions of the basic components of the
annotated predicate calculus and some rules for equivalence-preserving

transformations of APC expressions (rules that are nonexistent 1in the

ordinary calculus) follow.

l. Elementary and Compound Terms

Terms can be elementary or compound. An elementary term (an e-term) is

the same as a term in predicate calculus, l.e., a constant, a variable, or a

function symbol followed by a 1list of arguments that are e—terms. A

compound term (Efterm} is a composite of elementary terms or 1s an e—-term in

which one or more arguments are such composites. The composite of e-terms

ts defined as the internmal conjunction (&) or internal disjunction (V) of

e-terms. (The meaning of these operators is explained later.) The following

are examples of compound terms:

RED V BLUE (1)

height{BOX, & BOX,) , (2)

1
where RED, BLUE, BDxl? BOX2 are constants. Expression (1) and the form in
parentheses in (2) are composites. Note that expressions (1) and (2) are
not logical expressions that have a truth status {(i.e., that can be true or
false); they are to be used only as arguments of predicates. A compound
term in which arguments are composites can be transformed (expanded) into a

composite of elementary terms. Let f be an n—argument function whose n-1

arguments are represented by list A, and let t1 and t, be elementary terms.

- 87 -

The rules for performing such a transformatlion are

f(t, V tz,A) pave f(tl,A) v f(tz,A) (3)

1

f(e, & tz,A) ‘> f(tl,A) & f(tz,A) ; (4)

1

If list A itself contains composites, then it 1s assumed that the
internal disjunction is expanded first, followed by the internal conjunction
(i.e., the conjunction binds stronger than the disjuanctlon). Thus, term (2)

can be transformed into a composite:
haight(BDXl) & height(EOXz) . (5)

2. Elementary and Compound Predicates

Predicates also can be elementary or compound. An elementary predicate

is the same as a predicate in the predicate calculus, i.e., a predicte

symbol followed by a list of arguments that are e-terms. In a compound

predicate one or more arguments 1s a compound term. For example, the

following are compound predicates:

Went(Mary & Mother(Stan),Movie V Theatre) (6)

Inside(Key, Dnawer(Deskl Vv Deskz)) " (7)

The meaning of a compound predicate 1is defined by rules for
transforming it dinto an expression made of elementary predicates and
ordinary "external" logic operators of conjunction (&) and disjunction (V).
We denote the internal and external operators identically, because they can
be easily distinguished by the context (note that there 1s no distinction

between them in natural language). If an operator connects predicates, then

- 88 =~

it is an external operator; 1f it connects terms, then it 1is an internal

operator.

Let t, and t, be e-terms and P an n-ary predicate whose last n-1}

arguments are represented by a list A. We have the following reformulation

rules (li.e., equivalence preserving transformations of descriptions):

P(t, V tz,A) F P(tl,A) Y P(tz,A) | (8)

1

P(t; & ty),A) F P(t,,A) & P(t,,A) . (9)

I

If an argument of a predicate 1s a compound term that is not a
composite of elementary terms, ;hen it is transformed first into é composite
by rules (3) and (4). If A contains a composite of terms, then the
disjunction 1s expanded first before conjunction (similarly as in expanding

compound terms).

Rules (3), (4), (8), and (9) can be used as bidirectional
transformation rules. By applying them forward (from left to right), a
compound predicate can be expanded into an expression containing only
elementary predicates, and by applying them backward, an expression with

elementary predicates can be contracted into a compound predicate.

For example, by applying forward rule (8) and then (9), one can expand
the compound predicate (6) into
Went{Mary,movie) & Went(Mother(Stan),movie) V
Wént(Mary,theatre) & Went{Mother(Stan),theatre) . Ho

Comparing logically equivalent expressions (6) and {(10), one can notice

that expression (6} 1s considerably shorter than (10), and in contrast to

- 89 -

(10), represents explicitly the fact that Mary & Mother(Stan) went to the
same place. Also, the structure of {(6) is more similar to the structure of

the corresponding natural language expression.

3. Relational Statements

A simple and often used way of describing objects or situations 1is to
state the values of selected attributes applied to these objects or
slituations., Although such information can be represented by predicates,

this is not the most readable or natural way. The APC uses for this purpose

a statement

eterm, = a , (11)

stating that e-—termi evaluates to a constant a. Such a statement is called

an atomic relational statement (or an atomic selector). Expression (11) is

a special case of a relational statement (also called selector), defined as

Term1 rel Term2 5 (12)
where Term1 and Term2 are elementary or compound terms, and rel stands for

one of the relational symbols: = > > < <.

— [ra—

IE Term1 and Term2 are both elementary, then expression (12) states
that the value of the function represented by Term1 is in relation rel to

the value of function represented by Termz. For example, the expression

distance(Boston, Tampa) = distance(Washington,Dallas) {(13)
states that the distance between Boston and Tampa 1s the same - as the
distance between Washington and Dallas. If Term2 is a constant, then it

evaluates to itself.

- 90 -

Expression (12) can be represented by a predicate

rel(Term&, Termz) g (14)

If Term, or Termz is compound, or if both are, then the meaning of

1
expression (12) 1is defined by expanding it into a form containing only
relational statements with elementary terms. The expansion is performed by
transforming expression {(12) into (14), applying transformation rules (3),

(4), (8), and (9), and then converting the elementary predicates into

relational statements.
For example, a relational statement

color(Pl v Pz) = Red V Blue (15)
can be expanded into an expression

(color(Pl) = Red V Blue) V

(16)
(cnlor(Pz) = Red V Blue)
and finally to an expression consisting of only atomic selectors:
(color(P.) = Red V color(P,) = Blue) V
1 1 (17)

(cnlor(Pz) = Red V colcr(Pz) = Blue)

The two selectors in the disjunction (16) are examples of a referential

selector, defined as a form

Term1 rel Term2 : (18)

where Term, (called referee) is a nonconstant elementary term and Term,

(called reference) is a counstant or the disjunction of constants from the

L4 ,

domain of Terml. If relation rel is "=" and Te.rm2 is the disjunction of

= 0] =

gsome constants, then the referential selector (18) states that the function

represented by 'I'ermI evaluates to one of the constants in Term,. The

referential selector is very useful for representing concept descriptilons.

If the reference of a referential selector contains a sequence of
consecutive constants from the domain of a linear descriptor, then the range
operator ".." is used to simplify the expression. For example,

size (P) =2V 3V 4

can be written

size (P) = 2..4 .
The negation of a selector,

~(Term1 = Termz) s (19)

can be equivalently written

Term1 # Term, . (20)
An arbitrary predicate P(tl,tz,...) can be written 1in the form of a

referential selector

P(cl,tz,...) = True .
Therefore, for the uniformity of terminclogy, a predicate will be considered

a speclal form of a selector.

To facilitate the interpretation and readability of individual
selectors 1in expressions, they are usually surrounded with square brackets
and their conjunction is expressed'by concatenating the bracketed forms (see

Sece 7)o

- 99 =

APC expressions are created from selectors (relational statements) in
the same way as predicte calculus expressions are created fron predicates,
l.e., by using logic connectives (~, &, v, =, <) and quantifiers. One

additional useful connective is the exception operation ("\"'), defined as

s,V 8, E (~8, = 5) & (5, = ~5)) , (21)

where $, and 8, are APC expressions. (Sl\F S, reads: S, except when §,).

It is easy to see that the exception operator is equivalent to the
symmetrical difference. In addition to ordinary quantifiers there is also a

numerical quantifier, expressed in the form

d(I) v, Slvl , (22)

where I, the iIindex set, denotes a set of integers, and S[v] is an APC

expression having v as a free variable.

Sentence (22) evaluates as true if the number of values of v for which

expression S[v] is true is an element of the set I. For example, formula
d(2..8) v, s[v] (23)

states that there are two to eight values of v for which the expression S[v]
is true. The following equivalences hold:

dv, S[v] is equivalent to (1) v, S{v]
and

vv, S[v] is equivalent to 3J(k) v, S[v] ,

where k 1s the number of possible values of variable v.

To state that there are k and only k distinct values for variables

- 03 -

VisVosenesVy for which expression S(vl,vz,...,vk) is true we write:

H.vl,vz,...,vk, S(vl...,vk) . (24)
For example, the expression

3.P PI,PZ,[contains(PO,PlﬁPz)] & [color(PI&Pz) = red] = [twqﬁreq_parts(Po)]

O!

states that predicate twq_redﬂparts(?o) holds if Py has two and only two

distinct parts in it that are red.

Sec. 7 presents an example of the usage of the APC for formulating

observational statements and concept descriptions.

BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient’s Accession No.

SHEET | UIUCDCS-R-83-1122

4. Title and Subtitle 5. Report Date
A Theory and Methodology of Inductive Learning January 1983

. -

7. Author(s) ' : B. Performing Organization Rept.
R. S. Michalski No-

9. Performing Qeganization Mame and Address _ 10. Project/Task/Work Unit No.
Department of Computer Science |
University of Illinois 1. Contract/Grant No.
Urbana, IL MCS 79-06614 MCS 82-05146

| NO0O014-82-K-0186

12. Sponsoring Organization Name and Address _ 13. Type of Report & Pericd
National Science Foundation Office of Naval Research Covered
Washington, DC | -Washington, DC

14.

15. Supplementary Notes

16. Abstracts

A theory of inductive learning is presented that characterizes it as a
heuristic search through a space of symbolic descriptions, generated by an
application of certain inference rules to the initial obserwvational statements
(the teacher-provided examples of some concepts, or facts about a class of
objects or a phenomenon). The inference rules include generalization rules,
which perform generalizing transformations on descriptions, and conventional
truth-preserving deductive rules (specialization and reformulation rules).
The application of the Inference rules to descriptions is constrained by
problem background knowledge, and guided by criteria evaluating the "quality"
of generated inductive assertioms,.

Based on this theory, a general methodology for learning structural

descriptions from examples, called STAR, is described and illustrated by a

of conceptual data anaglygis,
17. Key Words and Document Analysis. 17a. Descriptors

Inductive Inference
Machine Learning
Knowledge Acquisition
Plausible Inference

17b. Identifiers /Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement 19.. Security Class (This 21. No. of Pages
Report) 96
UNCLASSIFIED
[20. Security Class (This 22, Price
Page '
UNCLASSIFIED i

FORM NTI15+38 {10-70) USCOMM-DC 40320-F7 1

