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Abstract

LEARNING ON LARGE-SCALE DATA WITH SECURITY AND PRIVACY

Sahar Sadat Seyed Mazloom, PhD

George Mason University, 2020

Dissertation Director: Dr. S. Dov Gordon

Recent advancements in machine learning domain have been enabled by the ability

to analyze massive volumes of data, and to extract and learn patterns within that data.

However, large-scale data collection raises privacy concerns, as it can expose individual’s

sensitive data to actors with malicious intent. This lack of privacy can lead to potential

data breaches, and consequently, can compromise the successful development of machine

learning techniques. Secure Computation is a branch of modern cryptography that intro-

duces promising solutions for processing data in a privacy-preserving manner. It enables

computing any functionality on data while the data is "encrypted". This field has been the

topic of extensive research in recent years and made remarkable progress. However, most

results remained impractical for real applications and its deployment remained limited due

to e�ciency and scalability constraints.

The goal of this dissertation is to present novel protocol designs and development tech-

niques to overcome these e�ciency and scalability limitations. We demonstrate how to

construct secure and privacy-preserving machine learning schemes that are practical for

real-world applications, while dealing with large-scale data, and guaranteeing security

against di�erent types of adversaries. In the first part of this dissertation, we design and



develop privacy-preserving machine learning frameworks using secure computation tech-

niques and explore the trade-o� between security and e�ciency on these frameworks. In

order to improve the e�ciency, we relax the security notion by allowing the adversary to

learn some small information during the computation. Then, we use Di�erential Privacy

mechanisms to provide a formal bound on the amount of leakage, and prove that what is

learned by the adversary is deferentially private. We also leverage Parallel Computation

techniques to improve the performance and running time of these novel algorithms. These

frameworks follow a centralized computation architecture in which users send their private

data to untrusted computation servers in order to perform some computations on them. In

the second part, we design and develop secure and privacy-preserving machine learning

algorithms in the distributed setting known as Federated Learning. In federated learning,

users do not share their sensitive data with the computation severs, but instead they train

a local model on their private data and only send their model parameters to the computa-

tion servers, which then aggregate those local parameters and construct a global model on

all participants’ data. Our secure and privacy-preserving federated learning protocols are

designed to have low communication cost, as well as being robust to the users dropping

out of the protocol at any point. We leverage secure computation and di�erential privacy

techniques to preserve the privacy of user’s data, as well as the trained model’s parame-

ters. All of our secure and privacy-preserving frameworks presented in this dissertation

are designed to support two adversarial models, passive and active adversaries.



Chapter 1: Introduction

Everyday, users generate huge amount of data, which are mostly sensitive, such as med-

ical or financial records. Large organizations and enterprises such as Apple and Google,

look at this data in the clear to run some machine learning algorithms, in order to improve

their user experience and provide some services for users, such as movie recommendations

implemented by Netflix or targeted advertisements deployed by Amazon and Facebook.

However, these services come at the cost of user privacy, and exposing their sensitive data

to the risk of data breach. One of the promising solutions to protect this data, which has

been around since world war II, is using cryptography. There exist many cryptographic

solutions to protect our data while it is in transit, for example secure communication chan-

nels implemented by SSL or TLS protocols that we use for our banking transactions. Also

there are many cryptographic techniques available to protect data while it is at rest, such as

encrypting the sensitive files before storing them on the hard drive. But how do we protect

the data at the time that it is being used? Can we keep our data encrypted during its whole

life cycle and still be able to use it and compute on it?

Secure multi-party computation is a branch of cryptography, with the goal of creating

methods for parties to jointly compute a function over their sensitive inputs, while keep-

ing those inputs private. That function can be a machine learning algorithm that multiple

parties are interested to compute on their encrypted data. The theory of secure computa-

tion has been the topic of extensive research since the 1980’s [1], and there is an immense

line of work in the literature trying to improve the e�ciency of these solutions, reducing

the costs introduced by providing security. However, most of these results have remained

impractical for real applications that deal with large-scale data.

The main goal in secure computation is to guarantee that nothing about individual’s

1



private input should be learned during the computation by other parties, except the out-

put. However, there is another line of research that aims to preserver the privacy of the

output of computation, which is called Di�erential Privacy and was introduced by [2] in

2006. Di�erential privacy is a separate orthogonal question from secure computation, since

they are traditionally two di�erent areas and are concerned with two di�erent problems.

Di�erential privacy is concerned with what is learned from the output of the computation, while

what we care about in secure computation is what is learned from the process of the computation

itself.

In this dissertation, we aimed to study the interplay between secure computation and

di�erential privacy in order to build e�cient privacy-aware machine learning techniques.

Part of this research focused on leveraging di�erential privacy to provide an e�ciency ver-

sus privacy tradeo� in secure computation. We identified a class of highly parallelizable

computations that could benefit from this privacy/e�ciency tradeo� we propose. In the

second part, we focused on constructing secure solutions in the setting of federated learn-

ing, in which secure computation is being used to protect the privacy of data during com-

putation by an untrusted server, while di�erential privacy is used to protect the privacy of

individual’s after the global model is released.

1.1 Research Objectives

The main, broad objective of this dissertation is to tackle this primary question: "Can we

design and develop privacy-preserving machine learning techniques that can compute on

encrypted data at large scale? And while they preserve the privacy of user’s private data,

can they be e�cient enough to be deployed in real world applications?" Our attempt to ad-

dress this goal and answer the entailed research questions, resulted into several theoretical

and technical contributions, as follows:

1. We explore the trade-o� between security and e�ciency in secure computation tech-

niques in order to design more e�cient secure machine learning algorithms. We introduce
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the idea of using di�erential privacy to relax the security notion in secure computation,

and define a new security model in which the adversary is provided some leakage that is

proven to preserve di�erential privacy.

2. We show that this leakage allows us to construct a more e�cient protocol for a broad

class of computations. We identify a class of parallel computation schemes that could ben-

efit from this relaxation, and build a privacy-preserving machine learning framework that

works in two-party setting and is secure against semi-honest adversary.

3. We demonstrate that by increasing the number of computation servers from two to

four, and changing the computation design from Boolean circuit to arithmetic circuits, we

can build a secure parallel computation technique that is much faster in running time as

compare to the previous scheme, and is also secure against stronger adversary who tries to

deviate from the protocol.

4. We also explore cryptographic solutions to introduce security for another class of

machine learning techniques that work in the distributed fashion, called Federated Lean-

ing. We design and develop secure federated learning frameworks, in which secure com-

putation is used to protect the learning parameters shared by users with the computation

servers, and di�erential privacy is used to preserve the privacy of the global model against

potential model-inversion or membership-inference attacks. Since the computation servers

are not trusted, the DP noise sampling is handled by MPC solutions. Secret sharing and

fully-homomorphic encryption schemes are the cryptographic primitives that are utilized

to design and develop these frameworks. They are designed to be secure against semi-

honest as well as malicious adversaries.

1.2 Thesis Outline

In Chapter 2, we define some of the fundamental concepts that build the foundation of

the designed solutions during this research, such as secure computation, di�erential pri-

vacy, parallel computation, and federate learning. This chapter also provides a literature
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review on these concepts. Chapter 3 presents our secure parallel-computation framework

that is secure against honest-but-curious adversary. In Chapter 4, we design a parallel-

computation framework that has stronger security assumption and can tolerate an actively

malicious adversary. Both of these frameworks are designed for centralized machine learn-

ing setting. Chapter 5 introduces two secure frameworks that are designed in Federated

Learning setting. One of them is secure against semi-honest adversaries while the other

one can tolerate arbitrary number of malicious adversaries up to a threshold value. Chap-

ter 6 summarizes the results achieved while conducting this research. In chapter 7, few

suggestions are made to carry out further research on design and development of other se-

cure machine learning algorithms that are popular and wildly used in the ML community

such as Deep Learning.
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Chapter 2: Background

This chapter reviews concepts and tools that will be used throughout this dissertation, and

provides a literature review on each topic.

2.1 Definitions and Preliminaries

We start by outlining some fundamental concepts such as secure computation, di�erential

privacy, graph parallel computation, and federated learning. We also introduce two main

adversarial models and their di�erences.

2.1.1 Secure Computation

Secure multiparty computation protocols (MPC) is a branch of cryptography that makes

it possible for a set of participants (parties) to compute a function over their sensitive in-

puts without revealing anything about those inputs to other parties, except the output of

the computation. MPC has received significant research attention since the 1980’s, when

[1, 3] tried to establish the feasibility of generic MPC protocols. In recent years, there have

been great e�orts on realizing these theoretical results and researcher aimed to build MPC

protocols that are practical and applicable for real applications Researchers have also in-

troduced tailored MPC protocols for specific computations. Some researchers developed

frameworks that are more generic by allowing functionalities to be expressed in a high-

level language [4]. [5] conducted a comprehensive survey on compilers and frameworks

developed for both customized and generic MPC.
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2.1.2 Adversarial Model in MPC

The security of an MPC protocol can be measured by the number of corrupted parties that

it can tolerate, and how strong are the corrupted parties considering their behavior. There

is a threshold parameter that can determine the maximum number of corrupted parties

that it can tolerate and still stay secure. How the corrupted party behave in the protocol

can be modeled as a passive or active adversary. Passive adversary that is also known

as semi-honest or honest-but-curious, is an adversary that follows the protocol honestly,

however it tries to learn about honest parties private input by analyzing the transcript of

the protocol and communicated messages. Active or malicious adversaries are considered

to be stronger and more realistic. They usually do not follow the protocol exactly and even

try to deviate from the protocol instruction by sending or behaving arbitrarily. Malicious

secure protocols are usually less e�cient as compared to semi-honest ones, and sometimes

they need to have a mechanism to protect the privacy of honest users from corrupted ones.

2.1.3 Di�erential Privacy

Di�erential privacy provides a strong mathematical guarantees user’s privacy for algo-

rithms processing user’s data. The main idea is that any statistical functions running on

the database, should not overly depend on the data of any one individual. We say a com-

putation is di�erentially private if the probability of producing a given output does not

depend very much on whether a particular data point is included in the input dataset or

not. Di�erential privacy was initially introduced in the ground-breaking work by Dwork

et al. [6] and it’s formal definition is as follows:

Definition 1. ((✏, �)-di�erential privacy [6]) A randomized mechanism M satisfies (✏, �) - dif-

ferential privacy if for any pair of neighboring datasets D1, D2 2 D s.t. |D1�D2|  1, and for any

subset of outputs T ✓ Range(M):

Pr[M(D1) 2 T ]  e✏ · Pr[M(D2) 2 T ] + �
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where the probability is taken over the coin tosses of M.

The trade-o� between the utility and privacy leakage of the mechanism M is controlled

by adjusting the privacy budget parameter ✏. A smaller the privacy budget represents a less

privacy leakage and a stronger privacy level. The additional variant �, allows for the pos-

sibility that ✏-di�erential privacy is broken with probability �, which is preferably smaller

than 1/|d|. If � is 0, we say the mechanism M is ✏-di�erentially private.

2.1.4 Graph-parallel computation

The Graph-parallel abstraction as it is used in several frameworks such as MapReduce [7],

GraphLab [8] and PowerGraph [9], consists of a sparse graph that encodes computation as

vertex-programs that run in parallel, and interact along edges in the graph. These frame-

works all follow the same computational model, called the GAS model, which includes

three conceptual phases: Gather, Apply, and Scatter. The framework is quite general, and

captures computations such as gradient descent, which is used in matrix factorization for

recommendation systems, as well as histograms or counting operation, and many other

computations. In Matrix Factorization, as an example, an edge (u, v, data) indicates that

user u reviewed item v, and the data stored on the edge contains the value of the user’s

review. The computation proceeds in iterations, and in each iteration, every node gathers

(copy) data from their incoming edges, applies some computation to the data, and then scat-

ters (copy) the result to their outgoing edges. Viewing each vertex as a CPU or by assigning

multiple vertices to each CPU, the apply phase which computes the main functionality, is

easily parallelized. [10, 11] constructed frameworks for securely computing graph-parallel

algorithms. They did this by designing a nicely parallelizable circuit for the gather and

scatter phases.
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Figure 2.1: Centralized Machine Learning vs. Federated (Distributed) Learning

2.1.5 Federated (Collaborative) Learning

Federated Learning has recently emerged as an alternative to centralized ML algorithms.

The concept of federated machine learning received significant attention after it first was

coined by Google [12, 13]. It is a learning techniques that allows the training of a high

quality centralized model over decentralized data which can be scattered across multiple

edge devices. The procedure is that, each party trains a local model on its sensitive data

and only shares the parameter updates with the server (curator). In the centralized setting,

the model takes advantage of having higher accuracy by collecting a large amount of data

at one point for training. However, it also brings high storage and computation load to the

centralized server, and once any attacks happens on the server, or if it behaves dishonestly,

all individual data will be at risk. Moreover, the privacy of the ML model and data are

dependent of how the ML model is used, and also the extent of the adversary’s access to the

system hosting the model and data. In the collaborative setting, however, the input data is

still in the possession of the individuals, but the adversary can observe the communication

between the users and the curator who is only receiving the learning weights.
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2.2 Related Works

Hiding access pattern in secure computation. One of the key challenges in secure computation

is to prevent any leakage in the form of memory access pattern during the computation.

Although the circuit model of computation can handle this problem, as they are data obliv-

ious solutions, there are more promising ways to circumvent this issue when computing on

large-scale data. Oblivious RAMs or so called ORAM provides more e�cient solutions to

hide access pattern during computation, and has its own extensive line of research [14–19].

However, in applications that deal with large-scale data, in most of the cases, both circuits

and ORAM-based solutions are too slow for practical requirements, and creates a great

demand to find better alternatives.

Allowing di�erentially private leakage. Wagh et al. [20] define and construct di�erentially pri-

vate ORAM in which the server’s views are ’similar’ on two neighboring access patterns.

They consider the client/server model, and don’t consider using their construction in a

secure computation. Recently, researchers have explored the idea of relaxing security to

allow leakage in secure computation, coupled with a bound demonstrating that the leak-

age preserves di�erential privacy [21, 22]. Chan et al. study di�erential obliviousness in

the client/server model [21]. They also show asymptotic improvement for several com-

putations, together with lower bounds for fully secure variants of the same algorithms,

demonstrating that this relaxation allows us to bypass impossibility results. Their results

are purely theoretical, but raise the very interesting question of whether we can lower-

bound the number of AND gates needed in fully secure graph parallel computation.

Parallelizing secure computation. One of the most relevant work to our research in this di-

rection, is that by Nayak et al. [11], which generalizes the work of Nikolaenko et al. [10],

computing graph parallel computations with full security in a circuit model of computa-

tion. Papadimitriou et al. [23] also build a system for the secure computation of graph-

structured data, and ensure di�erential privacy of the output. They do not consider dif-

ferentially private leakage in the access patterns. While our proposed security relaxation
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using di�erential privacy is appealing, it is not immediately clear that it provides a nat-

ural way to improve e�ciency. When computing on plaintext data, frameworks such as

MapReduce, Pregel, GraphLab and PowerGraph have very successfully enabled develop-

ers to leverage large networks of parallelized CPUs [7–9, 24]. The latter three mentioned

systems are specifically designed to support computations on data that resides in a graph,

either at the nodes or edges. The computation proceeds by iteratively gathering data from

incoming edges to the nodes, performing some simple computation at the node, and push-

ing the data back to the outgoing edges. This simple iterative procedure captures many

important computational tasks, including histogram, gradient descent and page-rank, as

well as Markov random field parameter learning, parallelized Gibbs samplers, and name

entity resolution, to name a few more.

When federated learning meets secure computation and di�erential privacy. Federated Learning

has recently emerged as an alternative to centralized ML algorithms. Google has conducted

a comprehensive survey study on Federate Learning, its challenges and its open problems

[25]. It allows multiple participants to jointly build a model on their own local training set.

Each participant trains a local model on its own data and exchange these parameters with

other participants (sometimes through a server or curator) to train a global model. Several

architectures have been proposed for federated learning [26–30] with and without a central

server. One of the main goals in developing these frameworks, is protecting the privacy of

participants in the training process [13,31]. Because the training data never leave the partic-

ipants’ local device, federated learning can be a good candidate for the scenarios where the

data is highly sensitive and cannot be shared with untrusted parties, for example foe some

of the GDPR-aware applications. Even-though these parameter updates are ephemeral and

very small as compared to the user’s high-dimensional private data vectors, observing these

parameters by the untrusted server or any other entity, or even in some scenarios the model

itself may still leak important information about user input, hence they can lead to poten-

tial adversarial attacks such as the model inversion attacks [32] or membership inference
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attacks [33].

One of the ways to mitigate these attacks, is to use cryptography techniques to securely

share these updates with the server, and then using secure computation techniques to ag-

gregate those parameters in order to update the global model. Secure aggregation protocols

presented by [34–36] allow the untrusted central server to only learn the summation of the

input vectors of many clients securely. Their protocol is robust against a fraction of users

dropping out. [36] improved the e�ciency of the previous secure aggregation protocols

and constructs secure aggregation protocols that achieve polylogarithmic communication

and computation per client. Their semi-honest construction handles billions of clients and

semi-malicious construction supports tens of thousands of clients for the same per client

cost. Their solutions have low-communication cost, but do not handle aggregating noisy

learning parameters. Handling noise aggregation is trivial if we know how many people

participate from the beginning, but much more subtle if clients frequently join and dropout

during the protocol.

One of the recent works on the idea of collaborative learning with privacy protection

is proposed by Shokri and Shmatikov [31]. In every iteration of training, each participant

downloads the global model from the parameter server, locally computes gradient updates

based on one batch of her training data, and sends the updates to the server. As a result,

they can benefit from other participants who are concurrently learning similar models. The

server waits for the gradient updates from all participants and then applies the aggregated

updates to the global model, using stochastic gradient descent (SGD). But still this scheme

does not protect the training parameters using cryptographic primitives, from the adver-

saries that are monitoring the communication channel and are observing the noisy values

of the user’s local parameters.
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Chapter 3: Privacy-Preserving Parallel Machine Learning

Computation in Semi-Honest Settings [37]

In this chapter, we present our secure and privacy-preserving machine learning framework

based on secure computation techniques in semi-honest adversarial model. We explore a

new security model for secure computation on large datasets. We assume that two servers

have been employed to compute on private data that was collected from many users, and,

in order to improve the e�ciency of their computation, we establish a new trade-o� with

privacy. Specifically, instead of claiming that the servers learn nothing about the input

values, we claim that what they do learn from the computation preserves the di�erential

privacy of the input. Leveraging this relaxation of the security model allows us to build

a protocol that leaks some information in the form of access patterns to memory, while

also providing a formal bound on what is learned from the leakage. We then demonstrate

that this leakage is useful in a broad class of computations. We show that computations

such as histograms, PageRank and matrix factorization, which can be performed in com-

mon graph-parallel frameworks such as MapReduce or Pregel, benefit from our relaxation.

We implement a protocol for securely executing graph-parallel computations, and evalu-

ate the performance on the three examples just mentioned above. We demonstrate marked

improvement over prior implementations for these computations.

3.1 Our Main Framework Intuition

To illustrate our main idea, we describe an algorithm that computes the data histogram

(i.e. counting, or data frequency) with di�erentially private access patterns. Although this

computation can be formalized in the context of our general framework, it is instructive to
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demonstrate some of the main technical ideas with this simple example before considering

how they generalize (which we do in Section 3.3.2). We defer a discussion about security

until we present the more general protocol.

3.1.1 A Di�erentially Private Protocol for Computing Histograms

To illustrate our main idea, we describe an algorithm that computes the data histogram

(i.e. counting, or data frequency) with di�erentially private access patterns. Although this

computation can be formalized in the context of our general framework, it is instructive to

demonstrate some of the main technical ideas with this simple example before considering

how they generalize (which we do in Section 3.3.2). We defer a discussion about security

until we present the more general protocol.

In this computation, we assume that each user in the system contributes a single input

value, xi 2 S, where we call the set S the set of types. The computation servers (parties)

each begin the computation with secret shares of the input array, denoted by hreali. The

output is a secret share of |S| counters, where the counter for each type contains the exact

number of inputs of that type. The full protocol specification appears in Figure 3.1.

The protocol is in a hybrid model, where the parties have access to three ideal func-

tionalities: DumGenp,↵,Fshu✏e,Fadd. The two parties begin by calling DumGenp,↵, which

generates some number of dummy inputs. The ideal functionality for this is described in

the left of Figure 3.2, and it is realized using a generic secure two-party computation. As

part of this computation, the parties have to securely sample from the distribution Dp,↵. In

the next section, we define this distribution and describe our method for sampling it. We

simply remark now that it has integer support, and is negative with only negligible proba-

bility (in �). The output of DumGenp,↵ is a secret sharing of values in S[{?}: the size of the

output is 2↵|S|, where ↵ is determined by the desired privacy values ✏ and � (see Section

3.3.2). The number of dummy items of each type is random, and neither party should learn

this value; shares of ? are used to pad the number of dummy items of each type until they
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total 2↵.

Each party locally concatenates their share of the real input array with their share of

the dummy values. They also initialize shares of an array of flags, denoted as isReal, which

will be used to keep track of which item is real and which is dummy. They then shu�e the

real and dummy items together using an oblivious shu�e. This is presented as an ideal

functionality, but in practice we implement this using two sequential, generic secure com-

putations of the Waksman permutation network [38], where each party randomly choose

one of the two permutations. The same permutations are used to shu�e the array isReal

flags, ensuring that these flags are “moved around with” the items. We note that all secret

shares are updated during the process of shu�ing, so while the parties knew which items

and flags were real and which were not before the shu�e, they have no way of knowing

this after they receive fresh shares of the shu�ed items and isReal flags.

The parties now open their shares of the data types, while leaving the flag values un-

known. This is where our protocol leaks some information: revealing the data types allows

the parties to see a noisy sum of the number inputs of each type. On the other hand, this is

also where we gain in e�ciency: the remainder of the protocol requires only a linear scan

over the data array, with a small secure computation for each element in order to update the

appropriate counter value. More specifically, the parties iterate through the shu�ed array,

opening each type. On data type i, they fetch their shares of the counter for type i from

memory, and call the Fadd functionality. This functionality adds the (reconstructed) flag

value to the (reconstructed) counter; if the item was a real item, the counter is incremented,

while if it was a dummy item, the counter remains the same. The functionality returns fresh

shares of the counter value. Neither party ever learns whether the counter was updated.

In particular, they cannot know whether they fetched that counter from memory because

of a real input value, or because of a dummy value. In our implementation, we instantiate

Fadd with a garbled circuit.

Simple extensions: In Section 3.3.2 we show how to generalize this protocol to the wider
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Di�erentially Private Histogram Protocol

Input: Each party, P1 and P2, receives a secret-share of real items denoted as hreali
(r stands for number of real items, and d for number of dummy ones)

Output: Secret share of counter values denoted as hCounteri, where the counter
for each type contains the exact number of inputs of that type (S is the number of
counter types)

Preprocessing:
hCounteri1:|S|  0

Computation:
hdummyi1:d  DumGenp,↵
hdatai1:(r+d) = hreali1:r||hdummyi1:d
hisReali1:r  1 , hisReali(r+1):(r+d)  0

hddatai  Fshu✏e(hdatai, h⇢i)
h\isReali  Fshu✏e(hisReali, h⇢i)
ddata Open(hddatai)
for i = 1 . . . (n + d)

Fadd(hisRealii, hCounterit) where t = ddatai

Figure 3.1: A protocol for two parties to compute a histogram on secret-shared data with
an access pattern that preserves di�erential privacy.

function class. However, we note that in this specific case, if we did want to add noise to

the output, we could simply instruct the servers to count the number of times each counter

is accessed. They would no longer have to update the counter values through a secure

computation, so this would be a (slightly) faster protocol. The output would contain the

one-sided noise, but they could simply subtract o� ↵ from each counter to get a more accu-

rate estimate of the counts. We stress that in this modified protocol, the dummy items are

still shu�ed in with the real items, so the access pattern still preserves di�erential privacy

for each user. The modification ensures that the (reconstructed) output preserves di�eren-

tial privacy as well.
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We also note that the protocol in Figure 3.1 can be applied to other similar compu-

tations, such as taking averages or sums over r values of |S| types (though, now again

without adding noise to the output). For example, if each user contributed a salary value

and a zip-code, we could use the above method for computing the average salary in each

zip-code, while ensuring that the access patterns preserve user privacy. We simply need to

modify the Fadd functionality: instead of incrementing the secret-shared counter by 1 when

the input is a real item, the functionality would increment the counter by the value of the

secret-shared salary. In this case, though, the noisy access pattern alone does not su�ce

for creating noisy output: the use of Fadd is essential. If we want to ensure that the recon-

structed output preserves privacy, the noise would have to be generated independently,

through a secure computation, and then added obliviously to the output.

3.2 Notations and Definitions

Secret-Shares: We let hxi denote a variable which is XOR secret-shared between parties.

Arrays have a public length and are accessed via public indices; we use hxii to specify ele-

ment i within a shared array, and hxii:j to indicate a specific portion of the array containing

elements i through j, inclusive. When we write hxi  c, we mean that both users should

fix their shares of x (using some agreed upon manner) to ensure that x = c. For example,

one party might set his share to be c while the other sets his share to 0.

Multi-Sets: We represent multi-sets over a set V by a |V | dimensional vector of natural

numbers: D 2 N|V |. We refer to the ith element of this vector by D(i). We use |D| in the

natural way to mean
P|V |

i=1D(i). We use DBi to denote the set of all multi-sets over V of size

i, and DB =
S

iDBi. We define a metric on these multi-sets in the natural way: |D1�D2| =

P|V |
i=1 |D1(i) � D2(i)|. We say two multi-sets are neighboring if they have distance at most

1: |D1 �D2|  1.

Neighboring Graphs: In our main protocol of Section 3.3.2, the input is a data-augmented
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directed graph, denoted by G = (V,E), with user-defined data on each edge. We need to

define a metric on these input graphs, in order to claim security for graphs of bounded dis-

tance. In section 3.1.1, the input to the computation is a multi-set of elements drawn from

some set S, rather than a graph, so we use the simple distance metric described above to

define the distance between inputs. For each v 2 V , we let in-deg(v) and out-deg(v) denote

the in-degree and out-degree of node v. We define the in-degree profile of a graph G as the

multi-set Din(G) = {in-deg(v1), . . . , in-deg(vn)}. Intuitively, this is a multi-set over the node

identifiers from the input graph, with vertex identifier v appearing k times if in-deg(v) = k.

We define the full-degree profile of G as the pair of multi-sets: {Din(G),Dout(G)}, where

Dout(G) = {out-deg(v1), . . . , out-deg(vn)}. We now define two di�erent metrics on graphs,

using these degree profiles. Later in this section, we provide two di�erent security def-

initions: we rely on the first distance metric below when claiming security as defined in

Definition 9, and rely on the second metric below when claiming security as defined in

Definition 7.

Definition 2. We say two graphs G and G0 have distance at most d if they have in-degree profiles

of distance at most d: |Din(G)�Din(G0)|  d. We say that G and G0 are neighboring if they have

distance 1.

Definition 3. We say two graphs G and G0 have full-degree profiles of distance d if the sum of the

distances in their in-degree profiles and their out-degree profiles is at most d: |Din(G)�Din(G0)| +

|Dout(G) � Dout(G0)|  d. We say that G and G0 have neighboring full-degree profiles if they

have full-degree profiles of distance 2.

Di�erential Privacy definition for Graph datasets: We use the definition that appears in

[6], to define di�erential privacy for neighboring datasets in graphs and in multi-set.

Definition 4. A randomized algorithm L : DB ! RL, with an input domain DB that is the set of

all multi-sets over some fixed set V , and output RL ⇢ {0, 1}⇤, is (✏, �)-di�erentially private if for
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all T ✓ RL and 8D1, D2 2 DB such that |D1 �D2|  1:

Pr[L(D1) 2 T ]  e✏ Pr[L(D2) 2 T ] + �

where the probability space is over the coin flips of the mechanism L.

The above definition describes di�erential privacy for neighboring multi-sets. Letting

G denote the set of all graphs, we define it for neighboring graphs as well:

Definition 5. A randomized algorithm L : G ! RL is (✏, �)-edge private if for all neighboring

graphs, G1, G2 2 G, we have:

Pr[L(G1) 2 T ]  e✏ Pr[L(G2) 2 T ] + �

Input model: We try to keep the definitions general, as we expect they will find application

beyond the space of graph-structured data. However, we use notation that is suggestive of

computation on graphs, in order to keep our notation consistent with the later sections.

We assume that two computation servers have been entrusted to compute on behalf of a

large set of users, V , with |V| = n, and having sequential identifiers, 1, . . . , n. Each user

i contributes data vi. They might each entrust their data to one of the two servers (we

call this the disjoint collection setting), or they might each secret-share their input with the

two-servers (joint collection setting). In the latter case, we note that both servers learn the

size of each vi but neither learns the input values; in the former case, each server learns

a subset of the input values, but learns nothing about the remaining input values (other

than the sum of their sizes). We note that the disjoint collection setting corresponds to the

“standard” setting for secure computation where each computing party contributes one set

of inputs. Just as in that setting, each of the two computing parties could pad their inputs

to some maximum size, hiding even the sum of the user input sizes. In fact, we could have

them pad their inputs using a randomized mechanism that preserves di�erential privacy,

possibly leading to smaller padding sizes, depending on what the maximum and average
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input sizes are. We don’t explore this option further in this work. Below we will define two

variant security notions that capture these two scenarios.

In all computations that we consider in our constructions, the input is represented by a

graph. In every case, each user is represented as a node in this graph, and each user input

is a set of weighted, directed edges that originate at their node. In some applications, the

graph is bipartite, with user nodes on the left, and some distinct set of item nodes on the

right: in this case, all edges go from user nodes to item nodes. In other applications, there

are only user nodes, and every edge is from one user to another. In the joint collection

setting, we can leak the out-degree of each node, which is the same as the user input size,

but must hide (among other things) the in-degree of each node. In the disjoint collection

setting, the protocol must hide both the in-degree and out-degree of each node. We note

that in some applications, such as when we perform gradient descent, the graph is bipartite,

and it is publicly known that the in-degree of every user is 0 (i.e. the movies don’t review

the viewers). In the joint collection setting, this knowledge allows for some improvement

in e�ciency that we will leverage in Section 4.8.

Defining secure computation with leakage: For simplicity, we start with a standard defini-

tion of semi-honest security, but make two important changes. We stress that our allowance

of di�erentially private leakage brings gains in the circuit construction, so we could use any

generic secure computation of Boolean circuits, including those that are maliciously secure,

and benefit from the same gains. The first change is that we allow certain leakage in the

ideal world, in order to reflect what is learned by the adversary in the real world through

the observed access pattern on memory. The leakage function is a randomized function

of the inputs. The second change is an additional requirement that this leakage function

be proven to preserve the di�erential privacy for the users that contribute data. Our ideal

world experiment is as follows. There are two parties, P1 and P2, and an adversary S that

corrupts one of them. The parties are given input, as described above; we use V1 and V2 to
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denote the inputs of the computing parties, regardless of whether we are in the joint col-

lection setting or the disjoint collection setting, and we let V = {v1, . . . , vn} denote the user

input. Technically, in the joint collection setting, V = V1�V2, while in the disjoint collection

setting, V = V1 [ V2. Each computing party submits their input to the ideal functionality,

unchanged. The ideal functionality reconstructs the n user inputs, v1, . . . , vn, either by tak-

ing the union of the inputs submitted by the computation servers in the disjoint collection

setting, or by reconstructing the input set from the provided secret shares in the joint collec-

tion setting. The ideal functionality then outputs f1(v1, . . . , vn) to P1 and f2(v1, . . . , vn) to

P2. These outputs might be correlated, and, in particular, in our own use-cases, each party

receives a secret share of a single function evaluation: hf(v1, . . . , vn)i1, hf(v1, . . . , vn)i2. The

ideal functionality also applies some leakage function to the data, L(V ), and provides the

output of L(V ), along with
P

i2V |vi| to S . In the joint collection setting, the simulator can

infer this value from the size of the input that was submitted to the ideal functionality. But

it simplifies things to give it to him explicitly. Additionally, depending on the choice of

security definition, the ideal functionality might or might not give the simulator, 8i 2 V ,

|vi|.

Our protocols are described in a hybrid world, in which the parties are given access

to several secure, ideal functionalities. In our implementation, these are replaced using

generic constructions of secure computation (i.e. garbled circuits). Relying on a classic re-

sult of Canetti [39], when proving security, it su�ces to treat these as calls to a trusted

functionality. In the definitions that follow, we let G denote an appropriate collection of

ideal functionalities. As is conventionally done in the literature on secure computation,

we let ������G
⇡,A(z) (V1, V2,) denote a joint distribution over the output of the honest party

and, the view of the adversary A with auxiliary input z 2 {0, 1}⇤, when the parties interact

in the hybrid protocol ⇡G on inputs V1 and V2, each held by one of the two parties, and com-

putational security parameter . We let �����F ,S(z,L(V ),8i2V :|vi|)(V1, V2,) denote the joint

distribution over the output of the honest party, and the view output by the simulator S
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with auxiliary input z 2 {0, 1}⇤, when the parties interact with an ideal functionality F on

inputs V1 and V2, each submitted by one of the two parties, and security parameters . Let-

ting v =
P

i2V |vi|), we define the joint distribution �����F ,S(z,L(V ),v)(V1, V2,) in a similar

way, the only di�erence being that the simulator is given the sum of the input sizes and not

the value of each input size.

Definition 6. Let F be some functionality, and let ⇡ be a two-party protocol for computing F ,

while making calls to an ideal functionality G. ⇡ is said to securely compute F in the G-hybrid

model with L leakage, known input sizes, and (, ✏, �)-security if L is (✏, �)-di�erentially

private, and, for every PPT, semi-honest, non-uniform adversary A corrupting a party in the G-

hybrid model, there exists a PPT, non-uniform adversary S corrupting the same party in the ideal

model, such that, on any valid inputs V1 and V2

n
������G

⇡,A(z) (V1, V2,)
o

z2{0,1}⇤,2N

c⌘

n
�����(1)F ,S(z,L(V ),8i2V :|vi|)(V1, V2,)

o

z2{0,1}⇤,2N
(3.1)

The above definition is the one that we use in our implementations. However, in Section

3.3.2 we also describe a modified protocol that achieves the stronger security definition that

follows, where the adversary does not learn the sizes of individual inputs. This property

might be desirable (or maybe even essential) in the disjoint collection model, where users

have not entrusted one of the two computing parties with their inputs, or even the sizes of

their inputs. On the other hand, the previous definition is, in some sense, more “typical”

of definitions in cryptography, where we assume that inputs sizes are leaked. It is only in

this model where data is outsourced that we can hope to hide each individual input size

among the other inputs.

Definition 7. Let F be some functionality, and let ⇡ be a two-party protocol for computing F ,

while making calls to an ideal functionality G. ⇡ is said to securely compute F in the G-hybrid
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model with L leakage, and (, ✏, �)-security if L is (✏, �)-di�erentially private, and, for every

PPT, semi-honest, non-uniform adversary A corrupting a party in the G-hybrid model, there exists

a PPT, non-uniform adversary S corrupting the same party in the ideal model, such that, on any

valid inputs V1 and V2

n
������G

⇡,A(z) (V1, V2,)
o

z2{0,1}⇤,2N

c⌘

n
�����(2)F ,S(z,L(V ),

P
i2V |vi|)(V1, V2,)

o

z2{0,1}⇤,2N
(3.2)

Di�erentially Private Output: As is typical in secure computation, we are concerned here

with how to securely compute some agreed upon function, rather than what function ought

to be computed. In other words, we view the question of what the output itself might reveal

about the input to be beyond scope of our work. Our concern is only that the process of

computing the output should not reveal too much. Nevertheless, one could ask that the

output of all computations also be made to preserve di�erential privacy. Interestingly, for

the specific case of histograms, which we present as an example in Section 3.1.1, adding

di�erentially private noise to the output is substantially more e�cient than preserving an

exact count. This is not true for the general protocol, but the cost of adding noise for these

cases has been studied elsewhere [23], and it would be minor compared to the rest of the

protocol.

Nevertheless, we take a di�erent approach. In all of our computations, the output of

each server is a secret share of the desired output, and thus it is unconditionally secure. The

question of where to deliver these shares is left to the user, though we can imagine several

useful choices. Perhaps most obvious, the shares might never be reconstructed, but rather

used later inside another secure computation that makes decisions driven by the output.

Or, as Nikolaenko et al. suggest [10], when computing gradient descent to provide users

with recommendations, the recommendation vectors can be sent to the user to store for
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themselves. Regardless, since the aim of our work is to study the utility of our relaxation,

this concern is orthogonal, and we mainly leave it alone.

Privacy versus e�ciency: In the "standard" settings where di�erential privacy is employed,

additional noise a�ects the accuracy of the result. Here, added noise has no impact on the

output, which is always correct, and is protected by the secure computation. Instead, the

tradeo� is with e�ciency: using more noise helps to further hide the true memory accesses

among the fake ones, but requires additional, costly oblivious computation.

Malicious security and multi-party computation: Extending these definitions to model

malicious adversaries and/or multi-party computation is straightforward, so we omit re-

dundant detail. Similarly, we stress that by leveraging the security relaxation defined above,

we gain improvement at the circuit level, so we can easily extend our protocols to either (or

both) of these two settings in a generic way. To make our protocol from Section 3.3.2 secure

against a malicious adversary, the only subtlety to address is that our protocols make itera-

tive use of multiple secure computations (i.e. the functionality we realize is reactive), so we

would need to authenticate outputs and verify inputs in each of these computations. While

this can be done generically, such authentication comes “for free” in many common proto-

cols for secure computation (e.g. [40, 41]). To extend our protocols to a multiparty setting,

the only subtlety is in constructing a multiparty oblivious shu�e. With a small number of

parties, c, it is very e�cient to implement c iterations of a permutation network, where in

each iteration, a di�erent party chooses the control bits that determine the permutation. As

c grows, it becomes less clear what the best method is for implementing an oblivious shuf-

fle. Interestingly, we note that there has been some recent work on parallelizing multi-party

oblivious shu�e [42]. We do not explore this direction in our work; presenting our proto-

cols in the two-party, semi-honest setting greatly simplifies the exposition, and su�ces to

demonstrate the advantages of our security relaxation. In our performance analysis, we

primarily focus on counting the number of AND gates in our construction, which makes

the analysis more general and allows for more accurate comparison with prior work (than,
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say, comparing the timed performance of systems that use di�erent frameworks for imple-

menting secure computation).

3.3 Our Main Framework Construction

In this section, we describe our protocol for graph structured data, and the graph-parallel

frameworks that support highly parallelized computation.

When considering how the protocol from the previous section might be generalized, it

is helpful to recognize the essential property of the computation’s access pattern that we

were leveraging. When computing a histogram, the access pattern to memory exactly leaks

a histogram of the input! This might sound like a trivial observation, but it is in fact fairly

important, as histograms are the canonical example in the field of di�erential privacy, and

finding other computations where the access pattern reveals a histogram of the input will

allow us to broadly apply our techniques.

With that in mind, we extend our techniques to graph structured data, and the graph-

parallel frameworks that support highly parallelized computation.

There are several frameworks of this type, including MapReduce, Pregel, GraphLab and

others [7,8,24]. We describe the framework by Gonzalez et al. [9] called PowerGraph since it

combines the best features from both Pregel and GraphLab. PowerGraph is a graph-parallel

abstraction, consisting of a sparse graph that encodes computation as vertex-programs that

run in parallel and interact along edges in the graph. While the implementation of vertex-

programs in Pregel and GraphLab di�er in how they collect and disseminate information,

they share a common structure called the GAS model of graph computation. The GAS

model represents three conceptual phases of a vertex-program: Gather, Apply, and Scatter.

The computation proceeds in iterations, and in each iteration, every node gathers (copy)

data from their incoming edges, applies some simple computation to the data, and then

scatters (copy) the result to their outgoing edges. Viewing each node as a CPU (or by as-

signing multiple nodes to each CPU), the apply step, which constitutes the bulk of the
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computational work, is easily parallelized.

3.3.1 A Connection to Di�erential Privacy

The memory access pattern induced by this computation is easily described: during the

gather stage, each edge is touched when fetching the data, and the adjacent node is touched

when copying the data. A similar pattern is revealed during the scatter phase. (The com-

putation performed during the apply phase is typically very simple, and can be executed in

a circuit, which is memory oblivious.) Let’s consider what might be revealed by this access

pattern in some concrete application. In our framework, each user is represented by a node

in the graph, and provides the data on the edges adjacent to that node. For example, in

a recommendation system, the graph is bipartite, each node on the left represents a user,

each node on the right represents an item that users might review, and the edges are la-

beled with scores indicating the user’s review of an item. The access pattern just described

would reveal exactly which items every user reviewed!

Our first observation is that if we use a secure computation to obliviously shu�e all

of the edges in between the gather and scatter phases, we break the correlation between

the nodes. Now the only thing revealed to the computing parties is a histogram of how

many times each node is accessed – i.e. a count of each node’s in-degree and out-degree.

When building a recommendation system, this would reveal how many items each user

reviewed, as well as how many times each item was reviewed. Fortunately, histograms

are the canonical problem for di�erential privacy. Our second observation is that we can

shu�e in dummy edges to help obscure this information, and, by sampling the dummy

edges from an appropriate distribution (which has to be done within a secure computation),

we can claim that the degrees of each node remain di�erentially private.
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DumGenp,↵

Input: None.

Computation:
d = 2↵|S|
dummy1:d  ?
for i = 0 . . . |S|� 1

j = 2↵i
�i  Dp,↵

k = �i + j
dummyj:k = i

Output: hdummyi

DumGenp,↵

Input: None.

Computation:
d = 2↵|V |
DummyEdges1:d  ?
for i = 0 . . . |V |� 1

j = 2↵i
�i  Dp,↵

k = �i + j
DummyEdgesj:k.v = i

Output: hDummyEdgesi

DumGenp,↵

Input: None.

Computation:
d = 2↵|V |
DummyEdges1:d  ?
for i = 0 . . . |V |� 1

j = 2↵i
�i  Dp,↵

�i  Dp,↵

k = �i + j
` = �i + j
DummyEdgesj:k.v =

i
DummyEdgesj:`.u =

i

Output: hDummyEdgesi

Figure 3.2: Three variations on the Ideal functionality,DumGenp,↵. Each is parameterized by
↵, p. The leftmost functionality is used in the histogram protocol described in Section 3.1.1.
The middle definition is the one used in our implementation, and su�ces for satisfying
security according to Definition 9. The right-most adds di�erential privacy to out-degrees,
which is needed in the disjoint collection model (i.e. when hiding the input sizes for all
users, in Definition 7).

3.3.2 The OblivGraph Protocol

When performing such computations securely, the data is secret-shared between the com-

puting servers as it moves from edge to node and back, as well as during the Apply phase.

The Apply phase is performed on these secret shares using any protocol for secure compu-

tation as a black-box. The main challenge is to hide the movement of the data during the

Gather and Scatter phases, as these memory accesses reveal substantial information about

the user data.

Take matrix factorization as an example: an edge (u, v,Data) indicates that user u re-

viewed item v, and the data stored on the edge indicates the value of the user’s review.
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Because the data is secret shared, the value of the review is never revealed. During the

Gather phase, the right vertex of every edge is opened, and the data is moved to the cor-

responding vertex. After the Apply phase, the left vertex of every edge is open, and data

is pulled back to the edge. If this data movement were performed in the clear, the mem-

ory access pattern would reveal the edges between nodes, exactly revealing which users

reviewed which items. Our first observation is that, because we touch only the right node

of every edge during the gather, and only the left node of every edge during the scatter, by

adding an oblivious shu�e of the edges between these two phases, we can hide the con-

nection between neighboring nodes. The leakage of the computation is then reduced to

two histograms: the in-degrees of each node, and, after the shu�e, the out-degrees of each

node!

Histograms are the canonical problem in di�erential privacy; we preserve privacy by

adding noise to these two histograms, just as we do in Section 3.1.1. Details follow below,

the formal protocol specification appears in Figure 3.4, and the ideal functionality for the

PowerGraph framework appears in Figure 3.3.

We denote the data graph by G = (V,E). The structure of each edge is comprised of

(u, v, uData, vData, isReal), where isReal indicates if an edge is “real” or “dummy”. Each

vertex is represented as (x, xData). The xData field is large enough to hold edge data from

multiple adjacent edges. As in Section 3.1.1, our protocol is in a hybrid model where we

assume we have access to three ideal functionalities:DumGenp,↵,Fshu✏e,Ffunc. As compared

to Section 3.1.1, here we have dropped an explicit specification of the permutation used in

Fshu✏e.

During the initialization phase, the DumGenp,↵ functionality is used to generate secret-

shares of the dummy edges. These are placed alongside the real edges, and are then repeat-

edly shu�ed in with the real edges during the iterative phases. We describe DumGenp,↵ in

detail later in this section. Every call to Fshu✏e uses a new random permutation. (Since the

dummy flags are now included inside the edge structure, we no longer need to specify that
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Fgas

GAS Model Operations

Inputs: Secret share of edges denoted as hEdgesi, each edge is
edge : (u, v, uData, vData, isReal). Secret share of vertices denoted as hVerticesi,
each vertex contains vertex : (x, xData)

Outputs: Updated hVerticesi

Gather(Edges)
for each edge 2 Edges
for each vertex 2 Vertices
if edge.v == vertex.x
vertex.xData copy(edge.uData)

Applyf (Vertices)
for each vertex 2 Vertices
vertex f(vertex)

Scatter (Edges)
for each edge 2 Edges
for each vertex 2 Vertices
if edge.u == vertex.x
edge.uData copy(vertex.xData)

Figure 3.3: Ideal functionality for a single iteration of the GAS model operations

they are shu�ed using the same permutation as the data elements.)

Both the Gather and Scatter phases begin with calls to Fshu✏e, which takes secret shares

of the edge data from each party, and outputs fresh shares of the randomly permuted data.

In practice we implement this using two sequential, generic secure computations of the

Waksman permutation network [38], where each party randomly chooses one of the two

permutations. Then, the parties iterate through the shu�ed edge set, opening one side of

each edge to reveal the neighboring vertex. Opening these vertices in the clear is where we

leak information, and gain in e�ciency. As we mentioned previously, this reveals a noisy

histogram of the node degrees. In doing so, the parties can fetch the appropriate vertex

from memory, without performing expensive oblivious sort operations, as in GraphSC,
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⇡gas
Secure Graph-Parallel Computation with Di�erentially Private Access Patterns

Inputs: Secret share of edges denoted as hRealEdgesi, each edge is
edge : (u, v, uData, vData, isReal). Secret share of vertices denoted as hVerticesi,
each vertex contains vertex : (x, xData). (r stands for number of real items, and d for
number of dummy ones)
Output: hEdgesi, hVerticesi

Initialization:
hDummyEdgesi1:d  DumGenp,↵
hEdgesi1:r  hRealEdgesi1:r
hEdgesir+1:r+d  hDummyEdgesi1:d
hEdges.isReali1:r  h1i
hEdges.isRealir+1:r+d  h0i

Gather(hEdgesi)
hEdgesi  Fshu✏e(hEdgesi)
for each hedgei 2 hEdgesi
edge.v Open(hedge.vi)
for hvertexi 2 hVerticesi

if edge.v == vertex.x
hvertex.xDatai  copy(hedge.uDatai)

Apply(hVerticesi)
for hvertexi 2 hVerticesi
hvertex.xDatai  Ffunc(hvertex.xDatai)

Scatter(hEdgesi)
hEdgesi  Fshu✏e(hEdgesi)
for each hedgei 2 hEdgesi
edge.u Open(hedge.ui)
for hvertexi 2 hVerticesi

if edge.u == vertex.x
hedge.uDatai  copy(hvertex.xDatai)

Figure 3.4: A protocol for two parties to compute a single iteration of the GAS model
operation on secret-shared data. This protocol realizes the ideal functionality described in
Figure 3.3.

and without resorting to ORAM. After fetching the appropriate node, the secret shared

data is copied to/from the adjacent edge.

During Apply, the parties make a call to an ideal functionality, Ffunc. This functionality
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takes secret shares of all vertices, reconstructs the data from the shares, applies the speci-

fied function to the real data at each vertex (while ignoring data from dummy edges), and

returns fresh secret shares of the aggregated vertex data. In our implementation, we realize

this ideal functionality using garbled circuits. We don’t focus on the details here, as they

have been described elsewhere (e.g. [10, 11]).

DumGenp,↵ in detail: The ideal functionality for DumGenp,↵ appears in Figure 3.2. The

role of DumGenp,↵ is to generate the dummy elements that create a “noisy” degree profile,

bD. Starting with in-degree profile D = Din(G), for each i 2 V , bD(i) = D(i) + �i, where

each �i is drawn independently from a shifted geometric distribution, parameterized by a

“stopping” probability p, and “shift” of ↵: we denote the distribution by Dp,↵, and define it

more precisely below. The shift ensures that negative values are negligible likely to occur.

This is necessary because the noisy set determines our access pattern to memory, and we

cannot accommodate a negative number of accesses (or, more accurately, we do not want to

omit any accesses needed for the real data). More specifically, we will define below a “shift

function” ↵ : R⇥R! N that maps every (✏, �) pair to a natural number. (When ✏ and � are

fixed, we will simply use ↵ to denote ↵(✏, �).)

The functionality iterates through each vertex identifier i 2 V , sampling a random num-

ber �i  Dp,↵, and creating �i edges of the form (?, i). The remainder of the array contains

“blank” edges, (?,?), which can be tossed away as they are discovered later in the proto-

col, after the dummy edges have all been shu�ed 1 DumGenp,↵ returns secret shares of the

dummy edges, hDummyEdgesi. The only di�erence between the functionality described in

the middle column, and the one in the left portion of the figure (which was used in Section

3.1.1), is that our “types” are now node identifiers, and they are stored within edge struc-

tures. However, the reader should note that only the right node in each edge is assigned a

dummy value, while the left nodes all remain ?. This design choice is for e�ciency, and

1Revealing these blank edges before shu�ing would reveal how many dummy edges there are of the form
(⇤, i), which would break privacy. After all the edges are shu�ed, revealing the number of blank edges only
reveals the total number of dummy edges, which is fine.
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comes at the cost of leaking the exact histogram defined by the out-degrees of the graph

nodes when executing Open(Edgesi.u) in the Scatter operation. As an example of how this

impacts privacy, when computing gradient descent for matrix factorization, this reveals

the number of reviews written by each user, while ensuring that the number of reviews

received by each item remains di�erentially private. This hides whether any given user

reviewed any specific item, which su�ces for achieving security with known input sizes,

as defined in Definition 9. This is the protocol that we use in our implementation, but we

briefly discuss what is needed to achieve Definition 7 below.

In some computations, the graph is known to be bipartite, with all edges starting in

the left vertex set and ending in the right vertex set (again, recommendation systems are

a natural example). In this case, since it is known that all nodes in the left vertex set have

in-degree 0, we do not need to add dummy edges containing these nodes. This cuts down

on the number of dummies required, and we take advantage of this when implementing

matrix factorization.

Implementing DumGenp,↵: Intuitively, we sample �i by flipping a biased coin p until it

comes up heads. We flip one more unbiased coin to determine the sign of the noise, and

then add the result to ↵. We will determine p based on ✏ and �. Formally, �i is sampled as

follows:

Pr[�i = ↵] =
p

2

8k 2 N, k 6= 0 : Pr[�i = ↵+ k] =
1

2
(1� p

2
)p(1� p)|k|�1.

As just previously described, we view p as the stopping probability. However, in the first

coin flip, we stop with probability p/2. We note that this is a slight modification to the

normalized 2-sided geometric distribution, which would typically be written as Pr[�i = ↵+

k] = 1
2�pp(1� p)|k|. The advantage of the distribution as it is written above is that it is very

easy to sample in a garbled circuit, so long as p is an inverse power of 2; normalizing by 1
2�p
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introduces problems of finite precision and greatly complicates the sampling circuit. We

note that Dwork et al. [43] suggest using the geometric distribution with p = 2`, precisely

because it is easy to sample in a garbled circuit. However, they describe a 1-sided geometric

distribution, which is not immediately useful for preserving di�erential privacy, and did

not seem to consider that, after normalizing, the 2-sided distribution cannot be sampled as

cleanly.

We note that with some probability that is dependent on the choice of↵, 9i 2 V s.t. bD(i) <

0, which leaves us with a bad representation of a multiset. We therefore modify the defi-

nition of F to output ; whenever this occurs, and we always choose ↵ so that this occurs

with probability bound by �. In our implementation, we set � = 2�40.

To securely sample Dp,↵, each party inputs a random string, and we let the XOR of these

strings define the random tape for flipping the biased coins. If the first ` bits of the random

tape are 1, the first coin is set to heads, and otherwise it set to tails: this is computed with a

single `-input AND gate. We iterate through the random tape, ` bits at a time, determining

the value of each coin, and setting the dummy elements appropriately. We use one bit

from the random tape to determine the sign of our coin flips, and we add ↵ dummies to

the result. Recall that the output length is fixed, regardless of this random tape, so after we

set the appropriate number of dummy items based on our coin flips, the remaining output

values are set to ?.

The cost of this implementation of DumGenp,↵ is O(V ), though this hides a dependence

on ✏ and �: an exact accounting for various values can be found in Section 4.8. This cost is

small relative to the cost of the oblivious shu�e, but we did first consider a much simpler

protocol for DumGenp,↵ that is worth describing. Instead of performing a coin flip inside

a secure computation, by choosing a di�erent distribution, we can implement DumGenp,↵

without any interaction at all! To do this, we have each party choose d random values from

{1, . . . , |V |}, and view them as additive shares (modulo |V |) of each dummy item. Note
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that this distribution is already one-sided, so we do not need to worry about ↵, and it al-

ready has fixed length output, so we do not need to worry about padding the dummy array

with ? values. Intuitively, this can be viewed as |V | correlated samples from the binomial

distribution, where the bias of the coin is 1/|V |. Unfortunately, the binomial distribution

performs far worse than the geometric distribution, and in concrete terms, for the same val-

ues of ✏ and �, this protocol resulted in 250X more dummy items. The savings from avoiding

the secure computation of DumGenp,↵ were easily washed away by the cost of shu�ing so

many additional items.

3.4 Security Analysis

We begin by describing the leakage function L(G). Intuitively, we leak a noisy degree

profile. As we mentioned previously, we analyze the simpler DumGenp,↵ algorithm, and

prove that the mechanism provides di�erential privacy for graphs that have neighboring

in-degree profiles. Then, we proceed afterwards to show that this leakage function su�ces

for simulating the protocol, achieving security in the joint-collection model, corresponding

to Definition 9. (Extending the proof to meet Definition 7 is not much harder to do: we

would use the DumGenp,↵ algorithm defined for the disjoint collection model, and prove

that di�erential privacy holds for graphs that have neighboring full-degree profiles.)

We remind the reader that we use the following distribution, Dp,↵ for sampling noise:

Pr[�i = ↵] =
p

2

8k 2 N, k 6= 0 : Pr[�i = ↵+ k] =
1

2
(1� p

2
)p(1� p)|k|�1.

We define a randomized algorithm, F✏,� : D ! bD, whose input and output are multi-

sets over V : 8i 2 {1, . . . , |V |}, bD(i) = D(i) + �i, where �i  Dp,↵.
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Definition 8. The leakage function is

L(G) = (F✏,�(Din(G)),DoutG) where Din(G) denotes the in-degree profile of graph G, and Dout(G)

denotes the out-degree profile.

Theorem 1. The randomized algorithm L is (✏, �)-approximate di�erentially private, as defined in

Definition 5.

We note that Dout(G) can be modeled as auxiliary information about Din(G), so the

proof that L preserves di�erential privacy follows from the fact that the algorithm F✏,� is

di�erentially private for graphs with neighboring in-degree profiles. It is well known that

similar noise mechanisms preserve di�erential privacy, but, for completeness, we prove it

below for our modified distribution, which is much simpler to execute in a garbled circuit.

Proof: To simplify notation, we use F to denote F✏,�. Consider any two neighboring

graphs, and letD1, D2 denote their neighboring in-degree profiles. LetFR denote the range

of F , and let bD be a multi-set in FR. We say that bD 2 Bad if 9i 2 {1, . . . , V }, bD(i) < 0, and

assume for now that bD /2 Bad. Let bD1 = F(D1), let bD2 = F(D2), and (without loss of

generality) let i be the value for which D1(i) = D2(i) + 1. By the definition of F , for j 6= i,

Pr[ bD1(j) = bD(j)] = Pr[ bD2(j) = bD(j)]. Furthermore, for k 6= j, k 6= i, b 2 {1, 2}, bDb(k) and

bDb(j) are sampled independently. Therefore,

Pr[ bD1 = bD]

Pr[ bD2 = bD]
=

Pr[ bD1(i) = bD(i)]

Pr[ bD2(i) = bD(i)]
 1

(1� p)

(Note that the case | bD(i)| = | bD1(i)| – i.e. where there is no noise of type i added to the

first dataset – Pr[ bD1= bD]

Pr[ bD2= bD]
 1

1�p/2 < 1
1�p .) By choosing 1 � p = e�✏, we achieve the desired
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bound. Then, for any Tg ✓ FR \ Bad,

Pr[F(D1) 2 Tg] =
X

D2Tg

Pr[F(D1) = D]


X

D2Tg

e✏ Pr[F(D2) = D]

= e✏ Pr[F(D2) 2 Tg]

We now consider the probability that F(D) 2 Bad. Recall, this is exactly the probability

that for some i 2 V , �i < 0, which grows as a negligible function in ↵. We choose ↵ such

that this probability is �. (We will derive the exact function below, and demonstrate some

sample parameters.) Then, for any T ✓ FR, letting Tg = T \ Bad,

Pr[F(D1) 2 T ] = Pr[F(D1) 2 Tg] + Pr[F(D1) 2 Bad]

 e✏ Pr[F(D2) 2 Tg] + �

 e✏ Pr[F(D2) 2 T ] + �

Setting the parameters Note that the sensitivity of the distance metric defined in Definition

2 is 1. Although our proof here is for neighboring graphs, we can use standard composition

theorems to claim di�erential privacy for graphs of distance d, at the cost of scaling ✏ by a

factor of d. We also note that e✏ = 1/(1� p), where p is the stopping probability defined in

our noise distribution.

We set � = 2�40, and show how to calculate ↵; this allows us to give the expected size

of bD as a function of ✏ and �. We first fix some i 2 V and calculate Pr[�i < 0], and then we
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take a union bound over |V |.

Pr[�i < 0] =
1X

k=↵+1

1

2
(1� p

2
)p(1� p)k�1

=
p

2
(1� p

2
)

1X

k=0

(1� p)↵(1� p)k

=
p

2
(1� p

2
)(1� p)↵

1

1� (1� p)

=
1

2
(1� p

2
)(1� p)↵

After taking a union bound over |V |, we have Pr[F(D) 2 Bad]  2�40 when ↵

>
�40�log( 12�

p
4 )�log(|V |)

log(1�p) . Recall that (1 � p) = e�✏. So, as an example, setting ✏ = .3 and

|V | = 212, we have ↵ = 118, and E(|F(D)|) = 118|V | + |D|. That is, for these privacy

parameters, we expect to add 118 dummy edges for each node in the graph.

Theorem 2. The protocol ⇡gas defined in Figure 3.4 securely computes Fgas with L leakage in the

(Ffunc,Fshu✏e,DumGenp,↵)-hybrid model according to Definition 9 (respectively Definition 7) when

using the second (resp. third) variant of DumGenp,↵.

Proof: (sketch.) We only prove the first Theorem statement, and omit the proof that we

can meet the stronger security definition. At the end of this section, we give some intuition

for what would change in such a proof.

Recall that the leakage functionality contains

(F(DBR), out-deg(V )). In particular, then, we assume that out-deg(V ) is public knowledge

and given to the simulator, which holds in the joint collection model of Definition 9. Note

that |V | and |E| are both determined by out-deg(V ), and these values will be used by the

simulator as well.

We construct a simulator for a semi-honest P1. For all three ideal functionalities, the
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output is simply an XOR secret sharing of some computed value. The output of all calls

to these functionalities can be perfectly simulated using random binary strings of the ap-

propriate length. Let simEdges1 denote the random string used to simulate the output of

Fshu✏e the first time the functionality is called, and let simEdges2 denote the random string

used to simulate the output on the second call. Let simEdges1.u denote the restriction of

simEdges1 to the bits that make up the sharings of Edges.u, and let simEdges2.v be defined

similarly.

There are only two remaining messages to simulate:

Open(edge.u), and Open(edge.v). Recall that there are |E| + 2↵|V | edges in the Edges ar-

ray: the original |E| real edges, and the 2↵|V | dummy edges generated in DumGenp,↵. To

simulate the message sent when opening Edges.u, the simulator uses the values |V | and

out-deg(V ) to create a bit string representing a random shu�ing of the following array of

size |E| + 2↵|V |. For each u 2 V , the array contains the identifier of u exactly out-deg(u)

times. This accounts for |E| =
P

u out-deg(u) positions of the array; the remaining 2↵|V |

positions are set to?, consistent with the left nodes output by DumGenp,↵. Letting r denote

the resulting bit-string, the simulator sends r � simEdges1.u to the adversary.

To simulate simEdges2.v, the simulator creates another bit-string representing a random

shu�ing of the following array, again of size |E|+ 2↵|V |. Letting bD = F(DBR) denote the

first element output by the leakage L, the simulator adds the node identifiers in bD to the

array. In the remaining |E|+2↵|V |� | bD| positions of the array, he adds?. Letting r denote

the resulting bit-string, the simulator sends r � simEdges2.v to the adversary.

So far, this results in a perfect simulation of the adversary’s view. However, note that the

outputs of the two parties should be correlated. To ensure that the joint distribution over

the adversary’s view and the honest party’s output is correct, the simulator has to submit

the adversary’s input, hVerticesi, to the trusted party. He receives back a new sharing of

Vertices, and has to “plant” this value in his simulation. Specifically, in the final iteration

of the protocol, when simulating the output of Ffunc for the last time, the simulator uses
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hVerticesi, as received from the trusted party, as the simulated output of this function call.

Hiding the out-degree of each node. We include another variant ofDumGenp,↵ on the right

side of Figure 3.2. In that variant, separate noise is added to the left node of each edge as

well as to the right, which provides security according to Definition 7. We do not implement

or analyze the security of this variant. Intuitively, though, for a graph G = (E, V ), it is

helpful to think of the edge set as defining two databases of elements over V : for each

(directed) edge (u, v), we will view u as an element in database EL and v as an element in

database ER. Because the oblivious shu�e hides the edges between these two databases,

the access pattern can be fully simulated from two noisy histograms (one for each database).

This doubles the “sensitivity” of the “query”, and, because di�erential privacy composes,

the added noisy information has the a�ect of cutting ✏ in half. Since our analysis includes

multiple values of ✏, the reader can easily extrapolate to get a sense of how we perform

under our stronger security notion.

Hiding a user’s full edge set. The leakage function described above provide edge privacy

to each contributing party. That is, we have defined two databases to be neighboring when

they di�er in a single edge. To understand the distinction, consider the application of build-

ing a movie recommendation system through matrix factorization. If we guarantee edge

privacy, then nobody can learn whether a particular user reviewed a particular movie, but

we cannot rule out the possibility that an adversary could learn something about the set

of movies they have reviewed, perhaps, say, the genre that they enjoy. We could also de-

fine two neighboring databases as di�ering in a single node. Using the same example, this

would guarantee that nothing can be learned about any individual user’s reviews, at all. It

would require more noise: if the maximum degree of any node is d, ensuring node privacy

would have the a�ect of scaling ✏ by d. In our experiments, we have included some smaller

values of ✏ to help the reader evaluate how this additional noise would impact performance.

However, we note that if the maximum degree in the graph is large, achieving node privacy
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might be di�cult. We defer investigating other possible notions of neighboring graphs to

future work.

Sequential composition. The standard security definition for secure computation com-

poses sequentially, allowing the servers to perform repeated computations on the same

data without impacting security. With our relaxation, if we later use the same user data

in a new computation, the leakage does compound. The standard composition theorems

from the literature on di�erential privacy do apply, and we do not address here how pri-

vacy ought to be budgeted across multiple computations. The reader should note that in

our iterative protocol, there is no additional leakage beyond the first iteration, because we

do not regenerate the dummy items: the leakage in each iteration is the exactly the same

noisy degree profile that was leaked in all prior iterations.

3.5 Di�erentially Private Graph Computation with O(|E|) com-

plexity

The construction in Section 3.3.2 requiresO((|E|+↵|V |) log(|E|+↵|V |)) garbled AND gates.

In comparison, the implementation of Nayak et al. [11] uses O(|E|+ |V |) log2(|E|+ |V |) gar-

bled gates. As we found in the previous section, ↵ = O( log ��log |V |
✏ ). When |E| = O(↵|V |),

this amounts to an asymptotic improvement of O(log(|E|)). This improvement stems from

our ability to replace several oblivious sorting circuits with oblivious shu�e circuits, which

we are able to do only because of our security relaxation. However, while less practical,

Nayak et al. could instead rely on an asymptotically better algorithm for oblivious sort, re-

ducing their runtime to O((|E|+ |V |) log(|E|+ |V |)). We therefore find it interesting to ask

whether our security relaxation admits asymptotic improvement for this class of computa-

tions, in addition to the practical improvements described in the previous section. Indeed,

we show that we can remove the need for an oblivious shu�e altogether by allowing one

party to shu�e the data locally. As long as the party that knows the shu�ing permutation

39



does not see the access pattern to V during the Scatter and Gather phases, the protocol re-

mains secure. The reason this protocol is less practical then the protocol of Section 3.3.2 is

because Ffunc now has to perform decryption and encryption, which would require large

garbled circuits.

The construction we present here requires O(|E| + ↵|V |) garbled AND gates, demon-

strating asymptotic improvement over the best known construction for this class of compu-

tations, whenever |E| = O(↵|V |).

We assume that the two computation servers hold key pairs, (skAlice, pkAlice) and (skBob,

pkBob). When data owners upload their data, they encrypt the data under Alice’s key, en-

crypt the resulting ciphertext under Bob’s key, and send the result to Bob (obviously this

second encryption is unnecessary, but it simplifies the exposition to assume Bob receives

the input in this form).2 Recall that edge data contains (u, v, uData, vData, isReal), and vertex

data contains (x, xData). We assume each of these elements are encrypted independently,

so that we can decrypt portions of edges when needed. We also assume that these encryp-

tion schemes are publicly re- randomizable: anyone can take an encryption of x under pk,

and re-randomize the ciphertext to give an encryption of x, with fresh randomness, under

the same pk. We assume that re-randomized ciphertexts and “fresh” ciphertexts are equiv-

alently distributed. Throughout this protocol, we use JxKy to denote the encryption of x

using y’s public key.

The protocol follows the same outline as the one in Section 3.3.2, but here we separate

the tasks of shu�ing and data copying. Bob locally shu�es the edges, JJEdgesKAliceKBob ac-

cording to a permutation of his choice. He sends the encrypted, shu�ed arrays to Alice.

For each edge, he also partially decrypts the node identifier for the right node, recovering

JEdges.vKAlice. He re-randomizes the resulting ciphertext, and sends it to Alice. Alice can

2The data could instead be uploaded as in the previous section, and the servers could perform a linear scan
on the data to encrypt it as described here. This wouldn’t impact the asymptotic claim; we chose the simpler
presentation.
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now find the right vertex of every edge. She executes the Gather operation locally by per-

forming a linear scan over the edge data, opening the right vertex of edge, and copying

data from edge to vertex.

The two parties then execute the Apply operation together, performing a linear scan

over the vertices, and calling a two-party functionality at vertex.3 Alice supplies the func-

tionality, Ffunc, with the encrypted data at each vertex, and both parties provide their de-

cryption key. The functionality decrypts, performs the Apply function to all real data, and

re-encrypts. The updated, encrypted vertex data is output to Alice.

Bob now reshu�es all the edges and dummy flags, just as before, re-randomizing Al-

ice’s ciphertexts. He sends JJEdgesKAliceKBob to Alice, who now performs the Scatter oper-

ation, as with Gather. That is, for each edge, she receives the re-randomized encryption

of the left vertex id, JEdges.uKAlice, recovers the vertex identifier, and copies the vertex data

from u back to the appropriate edge. She re-randomizes all ciphertexts, and sends the edge

data back to Bob.

The proof of security is not substantially di�erent than in the previous section, so we

only give an intuition here. Instead of using random strings to simulate secret shares, we

now rely on the semantic security of the encryption scheme. When simulating Alice’s view,

for each u 2 Vertices, the leakage function is used to determine how many times the identi-

fier for u should be encrypted. The rest of the ciphertexts can be simulated with encryptions

of 0 strings. The rest of the simulation is straightforward.

When simulating Bob’s view, an interesting subtlety arises. Even though Bob does not get

to see the access pattern to the vertices during the Gather and Scatter operations, he does in

fact still learn F(DBR). This is because the instantiation of Ffunc with a secure computation

will leak the input size of Alice (assuming we use a generic two-party computation for

realizing the functionality). This reveals the number of data items that were moved to

that vertex during Gather.4 These input sizes can be exactly simulated using the leakage
3As before, we can replace this functionality with a two-party computation.
4If Bob knew how many dummy edges have the form (⇤, v), he could immediately deduce in-deg(v); this
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function.

3.6 Implementation and Evaluation

In this section, we describe and evaluate the implementation of our proposed framework.

We implement OblivGraph using FlexSC, a Java-based garbled circuit framework. We mea-

sure the performance of our framework on a set of benchmark algorithms in order to eval-

uate our design. These benchmarks consist of histogram, PageRank and matrix factoriza-

tion problems which are commonly used for evaluating highly-parallelizable frameworks.

In all scenarios, we assume that the data is secret-shared across two non-colluding cloud

providers, as motivated in Section 1. For comparison, we compare our results with the

closest large-scale secure parallel graph computation, called GraphSC [11].

3.6.1 Implementation

Using the OblivGraph framework, the histogram and matrix factorization problems can be

represented as directed bipartite graphs, and PageRank as a directed non-bipartite graph.

When we are computing on bipartite graphs, if we consider Definition 9 where we aim to

hide the in-degree of the nodes (nodes on the left have in-degree 0), the growth rate of

dummy edges is linear in the number of nodes on the right and it is independent of the real

edges or users. If we consider the stronger Definition 7, the growth rate of dummy edges

is linear with max(users, items).

Histogram: In histogram, left vertices represent data elements, right vertices are the

counters for each type of data element, and existence of an edge indicates that the data

element on the left has the type on the right.

Matrix Factorization: In matrix factorization, left vertices represent the users, right ver-

tices are items (e.g. movies in movie recommendation systems), an edge indicates that a

user ranked an item, and the weight of the edge represents the rating value.

is why DumGenp,↵ is still executed by an ideal functionality, and not entrusted to Bob.
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PageRank: In PageRank, each vertex corresponds to a webpage and each edge is a link

between two webpages. The vertex data comprises of two real values, one for the PageRank

of the vertex and the other for the number of its outgoing edges. Edge data is a real value

corresponding to the weighted contribution of the source vertex to the PageRank of the

sink vertex.

Vertex and Edge representation: In all scenarios, vertices are identified using 16-bit inte-

gers and 1 bit is used to indicate if the edge is real or dummy. For Histograms, we use an

additional 20 bits to represent the counter values. In PageRank, we represent the PageR-

ank value using a 40-bit fixed-point representation, with 20-bits for the fractional part. In

our matrix factorization experiments, we factorized the matrix to user and movie feature

vectors; each vector has dimension 10, and each value is represented as 40-bit fixed-point

number, with 20-bits for the fractional part. We chose these values to be consistent with

GraphSC representation.

System setting: We conduct experiments on both a lab testbed, and on a real-world scale

Amazon AWS deployment. Our lab testbed comprises 8 virtual machines each with ded-

icated (reserved) hardware of 4 CPU cores (2.4 GHz) and 16 GB RAM. These VMs were

deployed on a vSphere Cluster of 3 physical servers and they were interconnected with

1Gbps virtual interfaces. We run our experiments on p 2 {1, 2, 4, 8, 16, 32} pairs of these

processors, where in each pair, one processor works as the garbler, and the other as the

evaluator. Each processor can be implemented by a core in a multi-core VM, or can be a

VM in our compute cluster.

3.6.2 Evaluation

We use two metrics in evaluating the impact of our security relaxation: circuit complex-

ity (e.g. # of AND gates), and runtime. Counting AND gates provides a “normalized”

comparison with other frameworks, since circuit size is independent of the hardware con-

figuration and of the chosen secure computation implementation. However, it is also nice
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to have a sense of concrete runtime, so we provide this evaluation as well. Of course, run-

time is highly a�ected by the choice of hardware, and ours can be improved by using more

processors or dedicated hardware (e.g. AES-NI).

Evaluation setting: For the LAN setup, we use synthesized data and run all the bench-

marks with the similar set of parameters that have been used in the GraphSC framework.

In our histogram and matrix factorization experiments, we run the experiments for 2048

users and 128 items. The number of nodes in our PageRank experiment is set to be 2048.

For real world experiment using AWS, we run matrix factorization using gradient de-

scent on the real-world MovieLens dataset that contains 1 million ratings provided by 6040

users to 3883 movies [44] on 2 m4.16xlarge AWS instances on the Northern Virginia Data-

center.

Circuit Complexity: The results presented in Figures 3.5, 3.6 and 3.7 are for execution on

a single processor, to show the performance of our design without leveraging the desired

e�ect of parallelization.

Histogram: Figure 3.5 demonstrates the number of AND gates for computing histogram

in both the GraphSC and OblivGraph frameworks. With 2048 data elements and 128 data

types, we always do better than GraphSC when ✏ >= 0.3. When ✏ = 0.1, we start outper-

forming GraphSC when there are at least 3400 edges.

Matrix Factorization: In Figure 3.6, we use the (batch) gradient decent method for gen-

erating the recommendation model, as in [10, 11]. With 2048 users, 128 items, and ✏ = 0.3,

we outperform GraphSC once there are at least 15000 edges. When ✏ = 0.1, we start out-

performing them on 54000 edges. We always do better than GraphSC when the ✏ = 1 or

higher.

PageRank: Figure 3.7 provides the result of running PageRank in our framework with

2048 nodes and di�erent values of ✏. With ✏ = 0.3, we outperform GraphSC when the num-

ber of edges are about 400000, and with ✏ = 1 we outperform them on just 130000 edges.

In both cases, the graph is quite sparse, compared to a complete graph of 2 million edges.
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Figure 3.5: Histogram with 2048 users, 128 counters, and varying ✏

Note, though, that our comparison is slightly less favorable for this computation. Recall,

the number of dummy edges grow with the number of nodes in the graph, and, when hid-

ing only in-degree in a bipartite graph, this amounts to growing only with the number of

nodes on the right. In contrast, the runtime of GraphSC grows equivalently with any in-

crease in users, items, or edges, because their protocol hides any distinction between these

data types. We therefore compare best with them when there are more users than items.

When looking at a non-bipartite graph, such as PageRank, our protocol grows with any in-

crease in the size of the singular set of nodes, just as theirs does. If we increase the number

of items in matrix factorization to 2048, or decrease the number of nodes in PageRank to

128, the comparison to GraphSC in the resulting experiments would look similar. We let

the reader extrapolate, and avoid the redundancy of adding such experiments.

Large scale experiments on Amazon AWS: OblivGraph factorizes the MovieLens recom-

mendation matrix consist of 1 million ratings provided by 6040 users to 3883 movies, in

almost 2 hours while GraphSC does it in 13 hours. We provide results of computing matrix

factorization problem for di�erent values of ✏ and di�erent numbers of ratings in Table 3.2.
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Figure 3.6: Matrix Factorization with 2048 users, 128 movies, and varying ✏

Figure 3.7: PageRank with 2048 webpages, and varying ✏
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Figure 3.8: E�ect of parallelization on Matrix Factorization computation time

We outperform the best result achieved by GraphSC, using 128 processors and 1M ratings.

E�ect of Parallelization: Figure 3.8 illustrates that the execution time can be significantly

reduced through parallelization. We achieve nearly a linear speedup in the computation

time. The lines corresponds to two di�erent numbers of edges for 2048 users and 128

movies. Since in our these problems, the computation is the bottleneck, parallelization

can significantly speed up the computation process. Table 3.1 shows the e�ect of paral-

lelization in our framework as compared to GraphSC in terms of number of AND gates.

As shown in the Table 3.1, adding more processors in the GraphSC framework increases

the total number of AND Gates by some small amount. In contrast, the size of the circuit

generated in our framework is constant in the number of processors: parallelization does

not a�ect total number of AND gates in the OblivGraph GAS operations, or in DumGen.

Optimization using Compaction: It is important to note that the measured circuit sizes in

our OblivGraph experiments correspond to the worst-case scenario in which the number

of dummy edges are equal to d = 2↵|V |, which is the maximum number of dummies per
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Table 3.1: Cost of Parallelization on OblivGraph vs. GraphSC in computing Matrix Factor-
ization

Processors GraphSC [11] OblivGraph

|E| = 8192 |E| = 24576 |E| = 8192 |E| = 24576
1 4.047E + 09 1.035E + 10 2.018E + 09 4.480E + 09
2 4.055E + 09 1.039E + 10 2.018E + 09 4.480E + 09
4 4.070E + 09 1.046E + 10 2.018E + 09 4.480E + 09
8 4.092E + 09 1.057E + 10 2.018E + 09 4.480E + 09

type. Consequently the time for OblivShu�e is its maximum value. However, looking at

the geometric distribution used in the DumGen procedure, the expected number of dummy

edges is ↵|V |, so half of the dummy items are unnecessary. Removing these extra dummy

items during DumGen is non-trivial, because, while it is safe to reveal the total number of

dummy items in the system, revealing the number of dummy items of each type would

violate di�erential privacy. After the first iteration of the computation, once the dummy

items are shu�ed in with the real items, an extra flag marking the excessive dummy items

can be used to safely remove them from the system; this optimization can significantly

reduce the shu�ing time (roughly by half) in the following iterations. However, our graphs

are showing only the first iteration of the algorithm and they do not reflect this simple

optimization.

Comparison with a Cleartext Baseline GraphSC [11] compared their execution time with

GraphLab [8], a state-of-the-art framework for running graph-parallel algorithms on clear

text. They ran Matrix Factorization using gradient descent with input length of 32K in

both frameworks and demonstrated that GraphSC is about 200K - 500K times slower than

GraphLab when run on 2 to 16 processors. Considering our improvements over GraphSC,

we estimate our secure computation to be about 16K-32K times slower than insecure base-

line computation (GraphLab), running the same experiments.

Oblivious Shu�e: We use an Oblivious Shu�e in our OblivGraph framework, which has
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a factor of log(n) less overhead than the Bitonic sort used in GraphSC. We designed the

Oblivious Shu�e operation based on the Waksman network [45]. The cost of shu�ing is

approximately BW (n) using a Waksman network, where W (n) = n log n � n + 1 is the

number of oblivious swaps required to permute n input elements, and B indicates the

size of the elements being shu�ed. In the original Waksman switching network, the size

of the input, n, is assumed to be a power of two. However, in order to have an Oblivious

Shu�e for arbitrary sized input, we must use an improved version of the Waksman network

proposed in [38] which is called AS-Waksman (Arbitrary-Sized Waksman). In our current

set of experiments, we have only implemented the original version of the Waksman network

and have not implemented AS-Waksman. We interpolate precisely to determine the size of

arbitrary AS-Waksman when using arbitrary sized input.

Cost of each operation in OblivGraph framework: In order to understand how expensive

the DumGen and OblivShu�e procedures are, as compared to other GAS model opera-

tions, we show the number of AND gates for each of these procedures in Figure 3.9. The

figure corresponds to Matrix Factorization problem, with 2048 users, 128 movies and 20K

ratings, with epsilon 0.5. The cost of a single iteration in the OblivGraph framework is

first dominated by the Apply operation which computes the gradient descent and second

by Oblivious Shu�e. Figure shows the e�ect of parallelization on decreasing the circuit

size of each operation. See the full version to compare the cost of DumGen procedure in

di�erent protocols.
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Figure 3.9: Cost of each operation in OblivGraph for Matrix Factorization

Table 3.2: Runtime of a single iteration of OblivGraph vs. GraphSC to solve matrix factor-
ization problem in scale, with real-world dataset, MovieLens with 6040 users ranked 3883
movies

OblivGraph GraphSC[11]

✏=0.3 ✏=0.5 ✏=1

# Real Edges 1.2M 1.5M 1.8M 1M
Time(hours) 2.2 2.3 2.4 13
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Chapter 4: Privacy-Preserving Parallel Machine Learning

Computation in Malicious Settings [46]

In this chapter, we revisit secure computation of graph parallel algorithms, simultaneously

leveraging all three of the advances just described: we assume four computation servers

(with an honest majority, and one malicious corruption), allow di�erentially private leakage

during computation, and, exploiting the parallelism that this a�ords, we construct an MPC

protocol that can perform at national scales. Concretely, we compute histograms on 300

million inputs in 4.18 minutes, and we perform sparse matrix factorization, which is used

in recommendation systems, on 20 million inputs in under 6 minutes. These problems have

broad, real-world applications, and, at this scale, we could imagine supporting the Census

Bureau, or a large company such as Amazon. For comparison, the largest experiments in

GraphSC [11] and OblivGraph [47] had 1M inputs, and required 13 hours and 2 hours of

runtime, respectively, while using 4 times the number of processors that we employ. End-

to-end, our construction is 320X faster than OblivGraph.

Technical contributions. Merging the four-party protocol of Gordon et al. [48] with the

construction of Mazloom and Gordon [47] raises several challenges and opportunities.

4.1 Background

4.1.1 MPC with di�erentially private leakage

The security definition for secure computation is built around the notion of protocol sim-

ulation in an ideal world execution [49]. In the ideal world, a trusted functionality takes the

inputs, performs the agreed upon computation, and returns the result. We say the protocol
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is secure if a simulator can simulate the adversary’s protocol view in this ideal world, draw-

ing from a distribution that is indistinguishable from the adversary’s view in the real world

execution. The simulator can interact with the adversary, but is otherwise given nothing

but the output computed by the ideal functionality.1

In prior work, Mazloom and Gordon [47] proposed a relaxation to this definition in

which the simulator is additionally given the output of some leakage function, L, applied to

all inputs, but L is proven to preserve di�erential privacy of the input. They define several

varying security models. Here we focus on one variant, which supports more e�cient

protocol design. We assume that thousands of clients have secret shared their inputs with

4 computation servers, and we use E to denote the full set of inputs. We denote the set of

secret shares received by server i as Ei. We denote the input of party j as ej . Note that the

servers learn the input size of each client. Formally, the security definition is as follows.

Definition 9. [47] LetF be some functionality, and let ⇡ be an interactive protocol for computingF ,

while making calls to an ideal functionality G. ⇡ is said to securely compute F in the G-hybrid

model with L leakage, known input sizes, and (, ✏, �)-security if L is (✏, �)-di�erentially

private, and, for every PPT, malicious, non-uniform adversary A corrupting a party in the G-hybrid

model, there exists a PPT, non-uniform adversary S corrupting the same party in the ideal model,

such that, on any valid input shares, E1, E2, E3, E4

n
������G

⇡,A(z) (E1, E2, E3, E4,)
o

z2{0,1}⇤,2N

c⌘

n
�����F ,S(z,L(V ),8j:|ej |)(E1, E2, E3, E4,)

o

z2{0,1}⇤,2N
(4.1)

Mazloom and Gordon construct a protocol for securely performing graph-parallel com-

putations with di�erentially private leakage. In their protocol, the data is secret shared

1This brushes over some of the important technical details, but we refer the reader to a formal treatment
of security in Goldreich’s book [49].

52



throughout each iteration: when the Apply phase is executed at each graph node, it is com-

puted securely on secret shared data, with both input and output in the form of secret

shares. The leakage is purely in the form of access patterns to memory: as data moves from

edge to neighboring node and back again, during the Gather and Scatter phases, the pro-

tocol allows some information to leak about the structure of the graph. To minimize and

bound this leakage, two additional actions are taken: 1) The edges are obliviously shuf-

fled in between when the data is gathered at the left vertex, and when it is gathered at the

right vertex. This breaks the connections between the left and right neighboring nodes, and

reduces the graph structure leakage to a simple degree count of each node. 2) "Dummy"

edges are created at the beginning of the protocol, and shu�ed in with the real edges. These

dummy edges ensure that the degree counts are noisy. When the dummy edges are sam-

pled from an appropriate distribution, the leakage can be shown to preserve di�erential

privacy. Note that when the input size of each party is known, the degree count of certain

nodes may not need to be hidden, allowing for better performance. For example, if the data

elements owned by user u are weighted edges of the form (u, v, data), it is essential that the

degree of node v remain private, as its degree leaks the edge structure of the graph, but

the degree of node u is implied by the input size of user u. The implications of this are

discussed more fully in their work.

4.1.2 Securely outsourcing computation.

These advances have introduced an opportunity for several applications of secure compu-

tation in which user data from thousands of parties are secret shared among a few servers

(usually three) to perform a secure computation on their behalf. Multiple variants of this

application have now been deployed. In some cases, users have already entrusted their

data, in the clear, to a single entity, which then wishes to safeguard against data breach; se-

cret sharing the data among several servers, each with a unique software stack, helps diver-

sify the risk of exposure. In other cases, users were unwilling, or were even forbidden by
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law, to entrust their data to any single entity, and the use of secure computation was essen-

tial to gaining their participation in the computation. In many of these cases, the servers

executing the secure computation are owned and operated by a single entity that is trusted

for the time being, but may be corrupted by an outside party. In other cases, some data

were entrusted to one entity, while other data, from another set of users, were entrusted to

a second entity, and these two distrusting parties wish to join in a shared computation.

The common denominator in all of these variants is that the computation servers are

distinct from the data owners. In this context, the relaxation allowing these servers to learn

some small, statistical information about the data may be quite reasonable, as long as the

impact to any individual data contributor can be bounded. For example, when computing

a histogram of the populations in each U.S. zip code, the servers see only a noisy count

for each zip code, gaining little information about the place of residence of any individual

data contributor. In the context of securely performing matrix factorization for use in a

recommendation system, we allow the servers to learn a noisy count of the number of items

that each contributing user has reviewed. Even when combined with arbitrary external

data, this limits the servers from gaining any certainty about the existence of a link between

any given user and any given item in the system.

Our reliance on a fourth server in the computation introduces a tradeo� between secu-

rity and e�ciency, when compared with the more common reliance on three servers.2 It

is almost certainly easier for an adversary to corrupt two out of four servers than it is to

corrupt two out of three. However, as our results demonstrate, the use of a fourth server

enables far faster computation, which, for large-scale applications, might make the use of

secure computation far more feasible than it was previously.

2From a purely logistical standpoint, we do not envision that this requirement will add much complexity.
The additional server(s) can simply be run in one or more public clouds. In some cases, as already mentioned,
all servers are anyway run by a single entity, so adding a fourth server may be trivial.

54



4.1.3 Fixed point arithmetic.

There are few results in the MPC literature that support fixed point computation with ma-

licious security. In part, this is because most malicious secure MPC relies on authentication

of field elements, but field elements are not easily “truncated” to handle the rounding of

fixed-point values. The most e�cient that we know of is the work by Mohassel and Rindal,

which uses replicated sharing in the three party, honest majority setting [50], modifying

the protocol of Furakawa et al. [51]. Their construction requires each party to send 11 ring

elements for each multiplication (it is possible that this can be improved to 8 ring elements,

using the more recent result of Araki et al.[52]).

With a bit of care, we show that we can extend the four-party protocol of Gordon et al.

[48] to handle fixed point arithmetic, without any additional overhead, requiring each party

to send just 1.5 ring elements for each multiplication. This provides about a 5X improve-

ment in communication over Mohassel and Rindal. The protocol of Gordon et al. proceeds

through a duel execution of masked circuit evaluation: for circuit wire i carrying value wi,

one pair of parties holdswi+�i, while the other holdswi+�0i, where �i,�0i are random mask

values known to the opposite pair. To ensure that nobody has cheated in the execution, the

two pairs of parties compute and compare wi +�i +�0i. This already supports computation

over an arbitrary ring, with malicious security. However, if wi is a fractional value, the two

random masks may result in di�erent rounded values, causing the comparisons to fail. We

show how to handle rounding errors securely, allowing us to leverage the e�ciency of this

protocol for fixed point computation.

4.1.4 Four party, linear-time, oblivious shu�e.

The experimental results of Mazloom and Gordon have complexityO(V ↵+E) log(V ↵+E),

where ↵ = ↵(✏, �) is a function of the desired privacy parameters, E is the number of edges

in the graph, and V is the number of nodes. The authors also show how to improve the
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asymptotic complexity to O(V ↵+E), removing the log factor by replacing a circuit for per-

forming an oblivious shu�e of the data with a linear-time oblivious shu�e. They don’t

leverage this improvement in their experimental results, because it seems to require en-

crypting and decrypting the data inside a secure computation. (Additionally, for malicious

security, it would require expensive zero-knowledge proofs.) When comparing our four-

party oblivious shu�ing protocol with their semi-honest construction, they require 540X

more AES calls and 140X communication.

Operating in the 4-party setting allows us to construct a highly e�cient, linear-time pro-

tocol for oblivious shu�e. One of the challenges we face in constructing this shu�e pro-

tocol is that we have to authenticate the values before shu�ing, and verify correctness of

the values after shu�ing, and because we are committed to computing over elements from

Z2k , we need to authenticate ring values. Recently, Cramer et al. [53] proposed a mecha-

nism for supporting arithmetic circuits over finite rings by constructing authentication in

an “extension ring”: to compute in Z2k , they sample ↵  Z2s , and use a secret-sharing of

↵x 2 Z2k+s for authentication. We adopt their construction in our shu�e protocol to ensure

the integrity of the data during shu�ing.

4.1.5 Computation over a ring.

Both the work of Nayak et al. [11] and Mazloom and Gordon [47] use Boolean circuits

throughout the computation. Boolean circuits are a sensible choice when using sorting and

shu�ing circuits, which require bit comparisons. Additionally, as just discussed, Boolean

circuits provide immediate support for fixed point computation, removing one further bar-

rier. However, for the apply phase, where, for example, we compute vector gradients, com-

putation in a ring (or field) is far more e�cient. With the introduction of our four-party

shu�e, which is not circuit-based, and after modifying Gordon et al. [48] to support fixed-

point computation, there is no longer any reason to support computation on Boolean val-

ues. We construct a method for securely converting the shared, and authenticated values
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used in our shu�e protocol into the "masked" ring values required for our four-party com-

putation of the Apply phase. For the problem of Matrix Factorization on dataset of 1 million

ratings, the Apply phase of Mazloom and Gordon [47] requires 550X more AES calls and

370X more bandwidth than ours.

4.2 Our Main Framework Intuition

We use the secure computation protocol by Gordon et al. for four parties, tolerating one

malicious corruption [48]. We provide an overview of the construction here. The four

parties are split into two groups, and each group will perform an evaluation of the circuit

to be computed. The invariant throughout each evaluation is that both evaluating parties

hold x+�x and y+�y, where x and y are inputs to a circuit gate, and �x,�y are random mask

values from the ring. After communicating, both parties hold z + �z , where z is the result

of evaluating the gate on x and y, and �z is another uniformly chosen mask. To maintain

this invariant, the evaluating parties need secret shares of �x,�y,�x�y and �z . Securely

generating these shares in the face of malicious behavior is typically quite expensive, but,

relying on the assumption that only one party is corrupt, it becomes quite simple. Each pair

of parties generates the shares for the other pair, and, to ensure that the shares are correctly

formed, the pair sends duplicates to each recipient: if any party does not receive identical

copies of their shares, they simply abort the protocol.

During the evaluation of the circuit, it is possible for a cheating party to perform an

incorrect multiplication, violating the invariant. To prevent this, the two pairs securely

compare their evaluations against one another. For wire value z, one pair should hold

z + �z , and the other should hold z + �0z . Since the first pair knows �0z and the second

pair knows �z , each pair can compute z + �z + �0z . They compare these values with the

other pair, verifying equality. Some subtleties arise in reducing the communication in this

comparison; we allow the interested reader to read the original result.
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4.3 Notations

XOR Shares: We let [X] denote a variable which is XOR secret-shared between parties. Ar-

rays have a public length and are accessed via public indices; we use [X]i to specify element

i within a shared array, and [X]i:j to indicate a specific portion of the array containing ele-

ments i through j, inclusive. When we write [x]  c, we mean that both users should fix

their shares of x (using some agreed upon manner) to ensure that x = c. For example, one

party might set his share to be c while the other sets his share to 0.

Additive Shares: We denote the 2-out-of-2 additive shares of a value x between two parties

P1 and P2 to be [x]1 and [x]2, and between two parties P3 and P4 to be [x]3 and [x]4 (x =

[x]1 + [x]2 = [x]3 + [x]4). When it is clear, we use [x] instead of [x]i to denote the share of x

held by the ith party. Additive secret shares are used in all steps of the graph computation

model except for the Apply phase. In Apply phase, data is converted from additive secret

shares to masked value and back.

Masked Values For a value x 2 Z2k , its masked value is defined as mx ⌘ x + �x, where

�x 2 Z2k+s is sampled uniformly at random. In our four party computation model, for a

value x, P1 and P2 hold the same masked value x+�x and P3 and P4 hold the same x+�0x.

�x is provided by P3 and P4 while P1 and P2 hold shares of �x. Similarly, �0x is provided by

P1 and P2 while P3 and P4 hold shares of �0x

Doubly Masked Values Four players can locally compute the same doubly masked value

for x from their shares as dx ⌘ x + �x + �0x = mx + �0x = m0
x + �x.

Share or Masked Value of a Vector When X is a vector of data, i.e, X = {x1, ..., xn}, we de-

fine [X] ⌘ {[x1], ..., [xn]}, �X ⌘ {�x1 , ...,�xn}, mX ⌘ {mx1 , ...,mxn} and dX ⌘ {dx1 , ..., dxn}.

Fixed Point Representation All inputs, intermediate values, and outputs are k-bit fixed-

point numbers, in which the least d significant bits are used for the fraction part. We repre-

sent a fixed-point number x by using a ring element in Z2k+s , where s denotes our statistical

security parameter.

MAC Representation We adapt the technique used in SPDZ2k [53] for our MAC over rings
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scheme. For a value x 2 Z2k and for a MAC key ↵, ↵ 2 Z2s . The MAC value of x is defined

as MAC↵(x) ⌘ ↵x 2 Z2k+s . In our framework, MAC↵(x) always exist in the form of additive

secret shares.

We denote that in our four-party framework, presented in section 4, all the values, or the

additive shares, or masked values (data, MAC key, MAC↵(x)) are represented as elements

in the ring Z2k+s . However, the range of the data is in Z2k , and the MAC key is in Z2s .

Multi-Sets: We represent multi-sets over a set V by a |V | dimensional vector of natural

numbers: D 2 N|V |. We refer to the ith element of this vector by D(i). We use |D| in the

natural way to mean
P|V |

i=1D(i). We use DBi to denote the set of all multi-sets over V of size

i, and DB =
S

iDBi. We define a metric on these multi-sets in the natural way: |D1�D2| =

P|V |
i=1 |D1(i) � D2(i)|. We say two multi-sets are neighboring if they have distance at most

1: |D1 �D2|  1.

Neighboring Graphs: In our main protocol of Section 3.3.2, the input is a data-augmented

directed graph, denoted by G = (V,E), with user-defined data on each edge. We need

to define a metric on these input graphs, in order to claim security for graphs of bounded

distance.3 For each v 2 V , we let in-deg(v) and out-deg(v) denote the in-degree and out-

degree of node v. We define the in-degree profile of a graph G as the multi-set Din(G) =

{in-deg(v1), . . . , in-deg(vn)}. Intuitively, this is a multi-set over the node identifiers from

the input graph, with vertex identifier v appearing k times if in-deg(v) = k. We define the

full-degree profile of G as the pair of multi-sets: {Din(G),Dout(G)}, where

Dout(G) = {out-deg(v1), . . . , out-deg(vn)}. We now define two di�erent metrics on graphs,

using these degree profiles. Later in this section, we provide two di�erent security def-

initions: we rely on the first distance metric below when claiming security as defined in

Definition 9, and rely on the second metric below when claiming security as defined in

Definition 7.

3In Section 3.1.1, the input to the computation is a multi-set of elements drawn from some set S, rather
than a graph, so we use the simple distance metric described above to define the distance between inputs.
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4.4 Overview of Our Main Framework

Our construction follows the graph-parallel computation model in which the computation

is done in parallel using three main operations; Gather, Apply and Scatter. We partition the

players into 2 groups, and in each group, there are two players. For ease of explanation, we

name the parties in the first group, Alice and Bob (P1, P2), and parties in the second group,

Charlie and David (P3, P4). These parties collaboratively compute a functionality, Matrix

Factorization as an example, and each group is responsible for performing an operation

that will then be verified by the other group. For example, one group securely shu�es the

data, and the other group verifies that the data was unmodified, then the latter group per-

forms the operation that accesses the data (e.g., gather), and the former group verifies the

correctness of that operation. As described previously, each data access operation, Gather

or Scatter, is always followed by a Shu✏e operation in order to hide the graph edge struc-

ture. As long as the group that accesses the data does not know the permutation of the

shu�e, our scheme remains secure. In our explanation of the construction, we assume Al-

ice and Bob are responsible to access the data, and Charlie and David handle the shu�ing.

Before each group (operation group) does their operation, 4 parties securely compute the

MAC, then the verification group verifies the MAC after the operation in order to prevent

the malicious adversary from modifying the data.

4.5 Construction

The overview of the framework is shown in Figure 4.1. For illustration purposes, the steps

1-4 are only conducted on the left vertex of each edge. In order to perform a complete

iteration of the Matrix Factorization, which is handled by a bipartite graph, these steps

should be done twice, once on the left vertices, followed by the right vertices.

Data Structure: In our framework, the data is represented in a graph structure G = (V,E),

in which vertices contain user and item profiles, and edges represent the relation between
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Four-Party Secure Graph Parallel Computation Framework

Input: User input is a directed graph, G(E,V), secret shared between the parties:
Alice,Bob hold a secret share of E, such that [E]A + [E]B = E mod 2k+s.
Charlie,David hold a secret share of E, such that [E]C + [E]D = E mod 2k+s.
([E]A, [E]B , [E]C , [E]D 2 Z2k+s , and E 2 Z2k ).

Protocol:
Note: The following steps are conducted on the left vertex of each edge (for example
in computing Histogram). In order to perform one single iteration of Matrix Factor-
ization, these steps should be done twice, once on the left vertices, then on the right
vertices.

1. Oblivious Shu�e Four players make a call to Fshu✏e([E]) to shu�e their
shares. They receive shares of shu�ed edges, [E(1)] [⇡(E)].

2. Oblivious Gather Four players make a call to Fgather([E(1)]) to aggre-
gate edge data into vertices. Alice,Bob receive [{V11 ..V1i}, ..., {Vn1 ..Vnj}],
[{W11 ..W1i}, ..., {Wn1 ..Wnj}], [�], where V is the vector of gathered vertices,
and W ⌘ �V is V’s MAC. Charlie and David receive MAC key �
Note: Gather leaks the noisy degree of the vertices, however, this leakage pre-
serves di�erential privacy.

3. Oblivious Apply Four players make a call to Fapply [{V11 ..V1i}, ..., {Vn1 ..Vnj}],
[{W11 ..W1i}, ..., {Wn1 ..Wnj}], [�]) to compute the function of interest on the
vertex data. Four players receive updated values of shares of vertices
[{V (1)

11
..V (1)

1i
}, ..., {V (1)

n1 ..V (1)
nj }].

4. Oblivious Scatter Four players call Fscatter ([{V (1)
11

..V (1)
1i

}, ..., {V (1)
n1 ..V (1)

nj }]) to
update the edges and receive [E(2)].
Each group re-randomizes the edges before enter the next round of computa-
tion (Step 1).

Output: Trained model parameters (user and items profiles)

Figure 4.1: Four parties collaborate to securely compute a functionality on their private
data in parallel fashion, using graph model of computation.

connected vertices. Each edge, represented as E, has five main elements, (E.lid, E.rid, E.ldata,

E.rdata, E.isReal), where isReal indicates if an edge is "real" or "dummy". Each vertex, V,

contains two main elements, (Vid,Vdata). The Vdata storage is large enough to hold edge

data from multiple adjacent edges during the gather operation.
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Dummy Generation: Before the main protocol begins, a number of dummy edges will

be generated according to an appropriate distribution, and concatenated to the list of real

edges, in order to provide (✏, �)-Di�erential Privacy. Therefore, the input to the framework

is a concatenated list of real and dummy edges, and list of vertices. The circuit for generat-

ing these dummies, together with the noise distribution, is taken directly from the work of

Mazloom and Gordon, so we do not describe it again here. The cost of this execution is very

small relative to the rest of the protocol. And it is only done once at the beginning of the

any computation, regardless of how many iterations the computation has (both histogram

and matrix factorization computation have only one dummy generation operation). These

dummy edges are marked with a (secret shared) flag isReal, indicating that they should not

influence the computation during the Apply phase, but they still contain node identifiers,

so they contribute to the number of memory accesses to these nodes during the Gather and

Scatter phases.

Step 0. Input preparation: We assume the input data is additive secret-shared between

the parties in each group, so that parties in each group together can reconstruct the data.

For example, Alice and Bob receive 2-out-of-2 secret shares of E, such that [E]A + [E]B =

E mod 2k+s, as shown in Figure 4.2.

Step 1. Oblivious Shu�e: In this step, Charlie and David shu�e the edges. Shu�ing

edges between the gathering of data at the left nodes and the gathering of data at the right

nodes ensures that the graph edge structure remains hidden. Alice and Bob are responsible

to verify that the shu�e operation has been done correctly. To facilitate that, before the

shu�e begins, they need to compute a MAC tag for each edge. To compute the MACs,

first Alice and Bob agree on a random value ↵, then all parties call a functionality, FMAC,

to securely compute shares of MAC tags, which we call ↵-MACs. To perform the shu�e,

as described in Figure 4.3 Charlie and David agree on a random permutation ⇡, then each

locally shu�es its shares of the edges E along with its shares of the corresponding MAC

tags, according to permutation ⇡. At the the end of this step, Alice and Bob receive the
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Figure 4.2: Input preparation phase: input data is secret-shared between both groups of
parties

shu�ed edges from the other group, and call the verification function, FCheckZero. If the

verification fails, it means one of the parties in the shu�ing group, either Charlie or David,

has cheated and modified the edge data, and the protocol aborts; otherwise they continue

to the next phase.

Step 2. Oblivious Gather: The next operation after Shu✏e is the Gather operation, which

requires access to the node identifiers, and will be handled by Alice and Bob. In turn, Char-

lie and David should be able to verify the correctness of the Gather operation. Therefore,

before the Gather operation, Charlie and David agree on a random value �, and all parties

make a sequence of calls to the FMAC functionality, generating a new MAC tag for each data

element of each edge. That is, they construct three tags per edge: one tag for each of the two

vertex ids, and one tag for the edge data. The Gather operation is performed on only one

side of each edge at a time; in one iteration of the protocol, data is gathered at all of the left

vertices, and in the next iteration, it is gathered at all of the right vertices. Gather for the left

vertices is described in Figure 4.21: for each edge, Alice and Bob first reconstruct the id of

the left vertex E.lid, locate the corresponding vertex, and then append the data of the other
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Figure 4.3: Oblivious Shu�e operation with MAC computation and verification

end of the edge, i.e. the data of the right vertex, [E.rdata] with its MAC tags, to the left vertex

data storage. They do the same for all the incoming edges to that vertex. Note that in the

next iteration of the algorithm they follow the same procedure for the right vertex, if appli-

cable. When Alice and Bob access one side of each edge, left vertex for example, they learn

the number of times each vertex is being accessed which leaks the degree of each vertex in

the graph, however, due to dummy edges we shu�ed with real ones, what they learn is the

noisy degree of each vertex which preserve deferential privacy. At the end of this phase,

Charlie and David verify the correctness of Gather operation by calling FverifyMAC, verify-

ing that vertex ID’s were opened correctly, and that the data shares were copied correctly.

They abort if the verification fails. We note that, in addition to modifying data, a malicious
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adversary might try to move data to the wrong vertex. From a security standpoint, this is

equivalent to the case that the adversary moves data to the correct vertex during Gather,

but modifies the shares of the authenticated identifier. To simplify the analysis, we assume

that the adversary moves data to the correct vertex.

Step 3. Oblivious Apply: This operation consists of three sub operations, first, secret shares

of data should be converted to masked values, then the main functionality (e.g. gradient

descent) is applied on the masked values, and finally the masked values are converted back

to secret shared data to be used in the other steps of the framework.

Step 3.1. Secure Share-Mask Conversion: All the parties participate in the Apply phase,

providing their shares as input to the Arithmetic Circuit that computes the intended func-

tionality. However, in order to prepare the private data for the Apply operation, the secret-

share values need to be transformed into Mask values. Then they call the FShareConv func-

tionality and collaboratively transform the share values [V ] to masked values V + �.

Step 3.2. Computing the function of interest on input data: The Apply operation compute

the function of interest on the input data: for example it could performing addition for

Histogram problem, or computing gradient descent for Matrix Factorization. The parties

execute the four-party protocol described in Figure 4.11 to evaluate the relevant circuit.

Step 3.3. Secure Mask-Share Conversion: After the Apply phase, we need to convert the

data back the additive secret sharing. This step can be done locally without any interaction

between the players, as in Figure 4.9.

Step 4. Oblivious Scatter: Now the result of each computation resides inside the corre-

sponding vertex. We need to update the data on the edges with the freshly computed data.

In this step, all players copy the updated data from the vertex to the incoming (or outgoing)

edges. The players refer to the list of opened ID’s obtained during Gather to decide how to

update each edge. Recall, edges are held as additive secret shares. The update of the edge

data can be done locally. Finally, they re-randomize all the shares.

This explanation and accompanying diagrams only show the graph operations applied on
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the outgoing edges. To complete one round of the graph computation, we need to repeat

the steps 1-6 for incoming edges as well.

4.6 Building Blocks

In this section, we explain the details of each small component and building block in graph

operations, present their real vs. ideal world functionalities, and provide the security proofs

for each of them, under a single malicious corruption. We partition the 4 partied into 2

groups, first group consist of P1 and P2, we also call them Alice and Bob, and the second

group is P3, P4 that are named Charlie and David, respectively. For ease of explanation, we

name the parties in the first group, Alice and Bob, and parties in the second group, Charlie

and David.

4.6.1 MAC Computation and Verification: Authentication For Additive Shares

Over A Ring

One of the main challenges we face in constructing malicious secure version of the Graph

operations is that we have to authenticate the values before each operation, and then verify

correctness of the values after the operation is done. We adapt the MAC computation and

Verification technique proposed in SPDZ2k [53]. In this part, we describe the ideal func-

tionality and the real world protocol to generate MAC values for additive secret shares over

a ring and we provide the security proof with simulation.

Theorem 3. The MAC computation protocol ⇧MAC (Figure 4.5) securely realizes the ideal func-

tionality FMAC (Figure 4.4) with abort, under a single malicious corruption.

We provide a simulation for P1 and P3. The simulation for P2 and P4 is identical to that

of P1 and P3 respectively.

First, a simulation for P1:
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FUNCTIONALITY FMAC

Inputs: P1, P2 provide shares [X] = {[x1], . . . , [xn]} and MAC key ↵. P3, P4 only
provide shares [X].
Functionality:

• Verify that X = [X]1 + [X]2 = [X]3 + [X]4. If the check does not pass, send
abort to all parties.

• If P1 and P2 submit di�erent values of ↵, send abort to all parties.

• Compute Y = ↵X .

Output: P3 and P4 receive [Y ].

Figure 4.4: MAC computation ideal functionality

PROTOCOL ⇧MAC

Inputs: P1, P2 have shares [X] and MAC key ↵. P3, P4 only have shares [X]. F is a
PRF.
Protocol:

1. P1 and P2 sample a random PRF key k, by making a call to Fcoin.

2. P1 sends [Y ] = {↵[Xi] + Fk(i)|i = 1, ..., n} to P3.

3. P2 sends [Y ] = {↵[Xi]� Fk(i)|i = 1, ..., n} to P4.

4. Four parties make a call to Fmult(↵,↵, [X]3, [X]4). P3 and P4 receive shares
[Y (1)] [↵X]

5. P3 and P4 compute [Z] = [Y � Y (1)] and verify Z = 0 by making a call to
FcheckZero([Z]). If the functionality returns false, they send abort to P1 and P2

and terminate.

Output: P3 and P4 output [Y (1)].

Figure 4.5: MAC computation protocol

• ek: S samples a random PRF key ek and hands it toP1 to simulate the outputP1 receives

from Fcoin. S receives P1’s input [X]1 and ↵ from the distinguisher and places it in

the input tape of P1. S computes the message [Y ] locally and observes the message
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that P1 sends to P3. If P1 sends [Y 0] in Step 2 such that [Y 0�Y ] 6= 0 mod 2k, S aborts

and outputs the partial view.

• S observes the message that P1 sends to Fmult: if P1 modifies ↵ before sending it to

the functionality, S aborts and outputs the partial view. Else, S submits P1’s inputs

(↵, [X]) to the functionality FMAC and outputs whatever P1 outputs.

Claim 1. For the simulator S corrupting party P1 as described above and interacting with the

functionality FMAC,

�
������⇡MAC,A(z) (X,Y,)

 
z2{0,1}⇤,2N

c⌘
�

�����FMAC,S(z)(X,Y,)
 
z2{0,1}⇤,2N

Case 0: If P1 follow the protocol honestly,
�

������⇡MAC,A(z) (X,Y,)
 
z2{0,1}⇤,2N = {k, o1, o2, o3, o4}

�
�����FMAC,S(z)(X,Y,)

 
z2{0,1}⇤,2N = {ek, eo1, eo2, eo3, eo4}

The joint distributions are identical in both worlds as all the messages k,ek are dis-

tributed uniformly at random, and the outputs are identically distributed.

Case 1: If P1 cheats by sending the wrong shares for [Y ] as in Step 2, or sending a

di�erent ↵ to Fmult in Step 4, S will abort in the ideal world and the joint distribution is

{ek,?}. In the hybrid world, this is equivalent to P1 sending the wrong ↵ or sending shares

[Y + D] (D 6= 0 mod 2k is the vector of additive terms) instead of [Y ], P3 and P4 will send

[Y + D � ↵X] = [D] to FcheckZero, which will output abort and the joint distribution in

the hybrid world is {k,?}. Similar to case 0, the joint distributions in both worlds are also

identical.

In conclusion, the joint distributions in both worlds are identical.

Now, we provide a simulation for P3:

• S receives P3’s input [X] from the distinguisher and puts it in the input tape of P3.
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• [eY ]: S samples a random number as shares [eY ], then it hands [eY ] to P3 to simulate the

message [Y ] P3 receives from P1 in Step 2.

• [eY (1)]: S observes the message that P3 sends to Fmult, if it is not [X], S sets abort0 = 1

and handsP3 random numbers as shares [eY 0(1)]. Else, S queries the ideal functionality

with input [X] and receives [eY (1)]. S hands [eY (1)] to P3 as the output of Fmult.

• eb: S observes the messages thatP3 sends toFcheckZero. IfP3 does not send the intended

messages (P3 sends [Z 0] such that [Z 0] � [Z] 6= 0 mod 2k), S sets abort1 = 1 (S can

compute the messages that P3 has to send to FCheckZero). If abort0 = 1 or abort1 = 1,

S hands eb = false to P3 and aborts. Else, S hands eb = true and outputs whatever P3

outputs

Claim 2. For the simulator S corrupting party P3 as described above, and interacting with the

functionality FMAC,

�
������⇡MAC,A(z) (X,Y,)

 
z2{0,1}⇤,2N

c⌘
�

�����FMAC,S(z)(X,Y,)
 
z2{0,1}⇤,2N

Case 0: If P3 follows the protocol honestly,

�
������⇡MAC,A(z) (X,Y,)

 
z2{0,1}⇤,2N = {[Y ], [Y (1)], b, o1, o2, o3, o4}

�
�����FMAC,S(z)(X,Y,)

 
z2{0,1}⇤,2N = {[eY ], [eY (1)],eb, eo1, eo2, eo3, eo4}

The joint distributions are identical in both worlds as [Y ], [eY ] are distributed uniformly

at random, [Y (1)] and [eY (1)] are identical, eb = b = true.

Case 1: IfP3 submits the vector of additive termsD such thatD 6= 0 mod 2k toFmult. In
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the ideal world, S handsP3 random values [eY 0(1)] as outputs ofFmult, andeb = false as output

toFCheckZero and aborts. The joint distribution in the ideal world is {[eY ], [eY 0(1)],eb = false,?}.

In the hybrid world, P3 receives [Y 0(1)] from Fmult. When submit shares [Z] to FCheckZero,

P3 can also cheat by providing additive vector E such that E 2 Z2k+s : [Z 0] = [Z + E] =

[Y 0(1) � Y + E] = [↵(X + D) � ↵X + E] = [↵D + E]. FCheckZero will output true if P3

happens to choose D,E such that D 6= 0 mod 2k, E 2 Z2k+s and ↵D + E = 0 mod 2k+s.

We claim that the chance for this to happen is at most 2�s. As D 6= 0 mod 2k, there

exists at least one di 2 D such that di 6= 0 mod 2k. Let di = 2tu where t < k and u is odd.

Pr[↵di + ei = 0 mod 2k+s] = Pr[ei = �↵di mod 2k+s] = Pr[ ei2t = �↵u mod 2k+s�t] =

2�s as ↵ is distributed uniformly at random. So, Pr[↵D + E = 0 mod 2k+s]  2�s.

The joint distribution in the hybrid world is {[Y ], [Y 0(1)], b = true, o1, o2, o3, o4} with

probability at most 2�s and {[Y ], [Y 0(1)], b = false, ?} with probability at least 1� 2�s. The

later and the joint distribution in the ideal world are identically distributed. So, the joint

distributions in both worlds are statistically close.

Case 2: If P3 only cheats at Step 5, abort happens in both worlds, and the joint distri-

butions between both worlds are identical. In conclusion, the joint distributions in both

worlds are statistically close.

4.6.2 Share-Mask Conversion

We construct a method for securely converting the shared, and authenticated values used in

our Shu✏e and Gather into the "masked" ring values required for our four-party computa-

tion of the Apply phase. At the end of the Apply phase, the result of the 4-party computation

from masked values will be converted back into secret shares, because the following steps

such as Scatter performs on secret shares.

Theorem 4. The share-mask conversion protocol ⇧[x]!mx
(Figure 4.7) securely realizes the ideal

functionality F[x]!mx
(Figure 4.6) with abort, under a single malicious corruption.
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FUNCTIONALITY F[x]!mx

Inputs: P1 and P2 provide shares [�], [X] and [Y ](Y ⌘ �X). P3 and P4 provide �.
Functionality:

• Wait for inputs from P1 and P2 and reconstruct �, X, and Y. Wait for inputs
from P3 and P4. Verify that P3 and P4 send the same �.

• Verify that Y = �X . If the check fails, send abort to all parties.

• Sample shares [�X ]1, [�X ]2, [�0X ]1, [�0X ]2 uniformly at random, then reconstruct
�X and �0X .

• Compute mX = X + �X and m0
X = X + �0X .

Output: Send (mX ,�0X , [�X ]1) to P1, (mX ,�0X , [�X ]2) to P2, (m0
X ,�X , [�0X ]1) to P3

and (m0
X ,�X , [�0X ]2) to P4.

Figure 4.6: Ideal Functionality to convert additive shares to masked values

We provide a simulation for P1 and P3. The simulation for P2 and P4 is similar to that

of P1 and P3 respectively.

First, a simulation for P1:

• S receives P1’s inputs from the distinguisher and puts them in the input tape of P1.

S submits the inputs to the ideal functionality and receives (emX , e�0X , [f�X ]1).

• [e�0X ]1: S hands P1 random ring elements as shares [f�0X ]1 to simulate the messages P1

receives from Fcoin in the hybrid world in Step 1.

• [e�0X ]2: S computes shares [f�0X ]2 from �0X and the previous message, and sends [f�0X ]2

to P1 to simulate the messages P1 receives from Fcoin in the hybrid world in Step 2.

• [e�X ]1: S hands P1 [f�X ]1, which was obtained from the functionality, to simulate the

messages P1 receives from Fcoin in the hybrid world in Step 3.

• [emX ]2: S computes [mX ]1, [m0
X ]1, and [Y 0]1 to mirror P1’s actions in Step 5. S sends

P1 the message [mX ]2 = mX � [mX ]1 to P1 to simulate the message P1 receives from
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PROTOCOL ⇧[x]!mx

Inputs: P1 and P2 have shares [�], [X] and [Y ⌘ �X] P3 and P4 have �.
Functionality:

1. P1, P2, and P3 make calls to Fcoin to sample [�0X ]1

2. P1, P2, and P4 make calls to Fcoin to sample [�0X ]2

3. P1, P3, and P4 make calls to Fcoin to sample [�X ]1

4. P2, P3, and P4 make calls to Fcoin to sample [�X ]2

5. P1 and P2 compute [mX ] = [X] + [�X ], [m0
X ] = [X] + [�0X ], [Y 0] [Y ] + [�]�0X

(where �0X = [�0X ]1 + [�0X ]2).

6. P1 and P2 reconstruct mX  open([mX ]).

7. P1 sends his shares [m0
X ], [Y 0] to P3. P2 sends his shares [m0

X ], [Y 0] to P4.

8. P3 and P4 computes [Z] = �[m0
X ] � [Y 0] and make a call to FCheckZero([Z]). If

the functionality outputs b = false, they call abort. Else, if b = true, they open
m0

X  open([m0
X ]).

9. All parties compute dX = mX + �X = m0
X + �0X , P1 and P3 compare h1 =

H(dX) with each other, while P2 and P4 compare h2 = H(dX) with each other.
If any group sees a mismatch, they call abort.

Output: P1 and P2 output mX , �0X , [�X ]. P3 and P4 output m0
X , �X , [�0X ].

Figure 4.7: Real-world protocol to convert additive shares to masked values

P2 in Step 6. S also observes the message P1 send to P2, if P1 sends [mX ]1 +D where

D 6= 0 mod 2k, S sets abort1 = 1.

• In Step 7, if P1 sends [m0
X ]1 + D0, [Y 0]1 + E, where either D0 6= 0 mod 2k or E 6= 0

mod 2k+s, S aborts and outputs the partial view.

• eh1: S computes dX = mX + �0X and sends eh1 = H(dX) to P1 to simulate the message

P1 receives from P3 in Step 9. If abort1 = 1, S aborts and outputs the partial view. If

abort1 = 0, S observes the message ĥ1 that P1 sends to P3. If ĥ1 6= eh1, S also aborts

and outputs the partial view. Else, S outputs whatever P1 outputs.
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Claim 3. For the simulator S corrupting party P1 as described above, and interacting with the

functionality F[x]!mx
,

n
������⇡[x]!mx ,A(z) (X,Y,)

o

z2{0,1}⇤,2N

c⌘
n

�����F[x]!mx ,S(z)
(X,Y,)

o

z2{0,1}⇤,2N

Proof:

Case 0: First, we consider the case where P1 follows the protocol honestly. In this case,

the joint distribution of the view of P1 and the output in the hybrid and ideal execution is:

n
������⇡[x]!mx ,A(z) (X,Y,)

o

z2{0,1}⇤,2N
= {[�0X ]1, [�

0
X ]2, [�X ]1, [mX ]2, h1, o1, o2, o3, o4}

n
�����F[x]!mx ,S(z)

(X,Y,)
o

z2{0,1}⇤,2N
= {[f�0X ]1, [f�0X ]2, [f�X ]1, [gmX ]2,eh1, eo1, eo2, eo3, eo4}

According to the simulation, [mX ]2 and [gmX ]2 are identical as S can compute the mes-

sage exactly from the output received from the ideal functionality and P1’s input. h1 and eh1

are also identical as dX is uniquely determined from the received output. [�0X ]i and [f�0X ]i

are all distributed uniformly at random, and satisfy the condition that [�0X ]1 + [�0X ]2 =

[e�0X ]1 + [e�0X ]2. Thus, the joint distributions in both worlds are identical.

Case 1: Let D 6= 0 mod 2k be the additive terms that P1 use to modified the opened

value ofmX . No matter what the value ofD is, ifP1 cheats in Step 7 by sendingP3 [m0
X+D0]

and [Y 0+E] where D0 6= 0 mod 2k and E 6= 0 mod 2k+s: in the ideal world, S aborts with

the joint distribution {[f�0X ]1, [f�0X ]2, [f�X ]1, [gmX ]2 + D,?}. In the hybrid world, the cheating

in Step 7 may go undetected ifP1 choosesD0 andE such thatZ 0 = �(m0
X+D0)�(Y 0+E) = 0

mod 2k+s or �D0 �E = 0 mod 2k+s. With the same analysis in Section 4.6.1, this happens

with probability of at most 1�2�s. In case FCheckZero outputs b = false, the joint distribution
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in the hybrid world is {[�0X ]1, [�0X ]2, [�X ]1, [mX ]2 + D,?}, which is identical to that in the

ideal world. So, the joint distributions in both worlds are statistically close.

Case 2: If P1 does not cheat in Step 7, but he cheats in Step 6 by opening mX + D with

D 6= 0 mod 2k in stead of mX . In Step 9, P2 and P4 will complain when they compare

the hashes and call abort. Thus, in both worlds, the executions end up in abort. The joint

distributions in the ideal and hybrid world are {[f�0X ]1, [f�0X ]2, [f�X ]1, [gmX ]2 + D,eh1,?} and

{[�0X ]1, [�0X ]2, [�X ]1, [mX ]2 + D, h1, ?} respectively. The joints distributions are identical.

Case 3: P1 is honest up to Step 9. The only way that P1 deviates from the protocol is to

send the wrong h1 to P3, causing all parties to abort. In this case, the joint distributions in

both worlds are also identical.

In conclusion, the joint distributions in both worlds are statistically close.

Now, a simulation for P3:

• S receives P3’s inputs from the distinguisher and puts them in the input tape of P3.

S submits the inputs to the ideal functionality and receives (em0
X , e�X , [f�0X ]1).

• [e�0X ]1: S hands P3 [f�0X ]1, which was obtained from the functionality, to simulate the

messages P3 receives from Fcoin in the hybrid world in Step 1.

• [e�X ]1: S hands P3 random ring elements as shares [f�X ]1 to simulate the messages P3

receives from Fcoin in the hybrid world in Step 3.

• [e�X ]2: S computes shares [f�X ]2 from �X and the previous message, and sends [f�X ]2

to P3 to simulate the messages P3 receives from Fcoin in the hybrid world in Step 4.

• [em0
X ]1, [fY 0]1: S samples random ring elements in Z2k+s as shares [em0

X ]1, [fY 0]1 and

hands them to P3 to simulate the messages P3 receives from P1 in Step 7.

• eb: S computes [Z] itself to mirror P3’s action. S then observes the shares that P3 sends

toFCheckZero. IfP3 sends [Z]+E forE 6= 0 mod 2k+s, S handseb = false toP3 as output
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of FCheckZero, aborts, and outputs the partial view.

• [em0
X ]2: S computes [m0

X ]2 = m0
X � [m0

X ]1 and sends it to P3 to simulate the message

P1 receives from P4 in Step 8 when they open m0
X . S also observes the message P3

send to P4, if P3 sends [m0
X ]1 + D where D 6= 0 mod 2k, S sets abort1 = 1.

• eh1: S computes dX = m0
X + �X and sends eh1 = H(dX) to P3 to simulate the message

P3 receives from P1 in Step 9. If abort1 = 1, S aborts and outputs the partial view. If

abort1 = 0, S observes the message ĥ1 that P1 sends to P3. If ĥ1 6= eh1, S also aborts

and outputs the partial view. Else, S outputs whatever P3 outputs.

Claim 4. For the simulator S corrupting party P3 as described above, and interacting with the

functionality F[x]!mx
,

n
������⇡[x]!mx ,A(z) (X,Y,)

o

z2{0,1}⇤,2N

c⌘
n

�����F[x]!mx ,S(z)
(X,Y,)

o

z2{0,1}⇤,2N

Proof:

Case 0: First, we consider the case where P3 follows the protocol honestly. In this case,

the joint distribution of the view of P1 and the output in the hybrid and ideal execution is:

n
������⇡[x]!mx ,A(z) (X,Y,)

o

z2{0,1}⇤,2N
=

{[�0X ]1, [�X ]1, [�X ]2, [m
0
X ]1, [Y

0]1, b, [m
0
X ]2, h1, o1, o2, o3, o4}

n
�����F[x]!mx ,S(z)

(X,Y,)
o
�z2{0,1}⇤,2N =

{[f�0X ]1, [f�X ]1, [f�X ]2, [gm0
X ]1, [eY 0]1,eb, [em0

X ]2,eh1, eo1, eo2, eo3, eo4}

According to the simulation, b = eb = true and h1 = eh1 as dX is uniquely determined
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from the received output. [�0X ]1 and [e�0X ]1 are identical as both are provided by the ideal

functionality. [�X ]i and [f�X ]i are all distributed uniformly at random, and satisfy the con-

dition that [�X ]1 + [�X ]2 = [e�X ]1 + [e�X ]2. The same applies for shares of m0
X . Thus, the

joint distributions in both worlds are identical.

Case 1: If P3 sends [Z]+E for E 6= 0 mod 2k+s to FCheckZero in Step 8, in the ideal world,

S hands P3
eb = false, aborts, and output the partial view. In the hybrid world, execution

also ends in abort with FCheckZero outputs b = 0. Clearly, the joint distributions in both

worlds are identical.

Case 2: If P3 cheats in Step 8 by opening m0
X + D with D 6= 0 mod 2k in stead of m0

X .

In Step 9, P2 and P4 will complain when they compare the hashes and call abort. Thus, in

both worlds, the executions end up in abort. The joint distributions in the ideal and hybrid

world are also identical.

Case 3: P3 is honest up to Step 9. The only way that P3 deviates from the protocol is to

send the wrong h1 to P1, causing all parties to abort. In this case, the joint distributions in

both worlds are also identical.

In conclusion, the joint distributions in both worlds are statistically close.

4.6.3 Mask-Share Conversion

Mask-Share conversion is needed after the four-party mask evaluation step. The output of

the mask evaluation is masked values and needs to be converted to additive shares again

before updating the edges. This conversion step is very simple, and is done without any

interaction. To make everything modular, we also provide the ideal functionality and the

protocol box for it in Figure 4.8 and 4.9.
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FUNCTIONALITY Fmx![x]

Inputs: P1 and P2 provide X + �X and [�X ].
Functionality:

• Wait for input from P1 and P2. Reconstruct � and compute X.

Output: Send [X] to P1 and P2.

Figure 4.8: Ideal Functionality to convert Masked Values To Additive Shares

PROTOCOL ⇧mx![x]

Inputs: P1 and P2 have X + �X and [�X ].
Protocol:

• P1 and P2 computes [X] (X + �X)� [�X ]

Output: P1 and P2 output [X]

Figure 4.9: Real-world protocol to convert Masked Values To Additive Shares

4.6.4 Four-Party Mask Evaluation With Truncation

This section presents the small sub-components that are utilized in the Apply operation.

Fixed point arithmetic: A fixed point number is represented by an element of the ring Z2k .

The d least significant bits are used for fractional part of the number. We provide a way to

perform multiplication with masked value on fixed point numbers.

Masked value: In our protocol, we use masked values for the computation. Instead of

holding shares [x], one group has (mx = x + �x, �0x, [�x]) and the other has (m0
x = x + �0x,

�x, [�0x]).

Addition: Addition is performed locally by adding the masked values together.

For P1 and P2: (mx,�0x, [�x]) + (my,�0y, [�y]) = (mx + my,�0x + �0y, [�x] + [�y]).
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For P3 and P4: (m0
x,�x, [�

0
x]) + (m0

y,�y, [�
0
y]) = (m0

x + m0
y,�x + �y, [�0x] + [�0y]).

Multiplication Without Truncation: Assume that P1 and P2 want to perform a secure

multiplication on the mask values (x + �x) and (y + �y), and the desired output is (xy +

�z,�0z, [�z]). P1 and P2 hold secret shares [�x], [�y], and [�x�y + �z]. These shares are pro-

vided by P3 and P4.

Locally P1 and P2 compute

P1: [mz]1 = mxmy � [�x]my � [�y]mx + [�z + �x�y].

P2: [mz]2 = �[�x]my � [�y]mx + [�z + �x�y].

and exchange the shares to reconstruct mz = xy + �z . They output (mz,�0z, [�z]).

Similarly, P3 and P4 output (m0
z,�z, [�

0
z]).

Multiplication With Truncation: In our setting, x and y are fixed-point numbers with

d bits for the fraction. The result of the multiplication is a number that has its least 2d

significant bits in the fractional portion. A truncation is needed to throw away the d least

significant bits: the output of the multiplication is the masked value of bxy
2d
c in stead of that

of xy. We provide a method to handle the truncation for our four party mask evaluation.

First, we have a simple observation:

bxy+�z+�0
z

2d
c = bxy+�z

2d
c + b�

0
z

2d
c + ✏1

= bxy
2d
c + b�z

2d
c + b�

0
z

2d
c + ✏1 + ✏2, where ✏i 2 {0, 1}.

We denote:

mz = bxy+�z+�0
z

2d
c � b�

0
z

2d
c = (bxy

2d
c+ ✏1 + ✏2) + b�z

2d
c

m0
z = bxy+�z+�0

z
2d

c � b�z
2d
c = (bxy

2d
c+ ✏1 + ✏2) + b�

0
z

2d
c

where ✏i 2 {0, 1}. The error due to the truncation is ✏ = ✏1 + ✏2 2 {0, 1, 2}.

P1 and P2 can compute mz and b�
0
z

2d
c themselves without any interaction as they know

xy + �z and �0z . P3 and P4 can provide P1 and P2 with shares [b�z
2d
c]. At the end, P1 and P2

obtain the output of the truncated mask evaluation: (mz,b�
0
z

2d
c, [b�z

2d
c]). Similarly, P3 and P4
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obtain (m0
z,b�z

2d
c, [b�

0
z

2d
c]). The error of the truncated multiplication is at most 1

2d�1 .

Vectorization for dot products: A naive way to perform a dot product between two vectors

u = {u1, ..., un},v = {v1, ..., vn} is to perform n multiplications then add the shares up. We

use the vectorization technique to bring this down to the cost of one multiplication. The

details are shown in Figure 4.11.

FUNCTIONALITY Feval

Inputs: For each input wire w: P1, P2 provide mw = xw + �w, [�w], and �0w; P3, P4

hold m0
w = xw + �0w, [�0w], and �w.

Functionality:

• Wait for inputs from all parties. Reconstruct � received from P1, P2, and ver-
ifies if it is equal to � received from P3, P4. Do the same verification for �. If
any of the verification fails, send abort to all parties.

• Compute

– (m(1)
w , �0(1)w , [�(1)

w ]) func (mw,�0w, [�w])

– (m0(1)
w , �(1)

w , [�0(1)w ]) func (m0
w,�w, [�0w])

Output: P1, P2 receive (m(1)
w , �0(1)w , [�(1)

w ]). P3, P4 receive (m0(1)
w , �(1)

w , [�0(1)w ]).

Figure 4.10: Ideal Functionality to handle Masked Evaluation With Truncation

Theorem 5. The protocol ⇧eval (Figure 4.11) securely realizes the ideal functionality Feval (Figure

4.10) with abort, under a single malicious corruption.

4.6.5 Assumed Ideal Functionalities

We assume that we have access to the following oracles: Fcoin (Figure 4.12), FcheckZero (Fig-

ure 4.13), FTriple (Figure 4.15).

Theorem 6. The protocol ⇧Mult (Figure 4.17) securely realizes the ideal functionality FMult (Figure

4.16) with abort, under a single malicious corruption.
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The simulation for P1 and P2 is identical, and is straight forward as they only make calls

to Fcoin to sample random Beaver triplets and send the shares of the triplets to P3 and P4. If

any of them deviate from the protocol, P3 and P4 will catch it by comparing the messages

sent from P1 and those from P2.

For P3 and P4, once they receive the shares of the Beaver triplets, they follow the same

known procedure to perform the multiplication. A corrupted party can cheat by adding

additive terms u when they open (x � �x), causing them to compute shares of ↵(x + u)

instead of those of ↵x.

4.7 Secure GAS Model of Computation and its Oblivious Graph

Operations

In this section, we explain the details of each graph operation, present their real vs. ideal

world functionalities, and provide the security proofs for each of them, under a single ma-

licious corruption.

4.7.1 Four-Party Oblivious Shu✏e

Shu✏e is one of the main operations in our framework that helps to hide the edge struc-

ture of the graph. During the Gather and Scatter operations, the data on each side of the

edge is being accessed, therefore by shu�ing the edges between these two phases, we can

hide the connection between neighboring nodes. Another benefit of the Shu✏e operation

is obscuring the dummy edges into the real ones.

Theorem 7. The oblivious Shu✏e protocol ⇧shu✏e (Figure 4.19) securely realizes the ideal func-

tionality Fshu✏e (Figure 4.18) with abort, under a single malicious corruption.

To prove the security of our Oblivious Shu✏e, we provide a simulation for P1 and P3.

The simulations for other parties are identical.

First, a simulation for P1:
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• e↵: S samples a random e↵ and hands it to P1 to simulate the output P1 receives from

Fcoin. S receives P1’s input [E]1 from the distinguisher and places it in the input tape

of P1. S observes the message that P1 sends to FMAC: if P1 does not send the intended

messages (e↵, [E]1), S submits abort to Fshu✏e, and outputs the partial transcript. Else,

S submits P1’s input [E] to the ideal functionality Fshu✏e and receives [E(1)].

• [ eE(1)], [fM (1)]: S samples random ring elements as shares [fM (1)], hands [ eE(1)] (where

[ eE(1)] ⌘ [E1]) and [fM (1)] to P1 to simulate the messages [E(1)], [M (1)] P1 receives from

FMAC. S computes [Z] himself to mirror P1’s action.

• eb: S observes the messages that P1 sends to FcheckZero. If P1 modifies his shares [Z],

S hands eb = false to P1 as the output of FCheckZero, output the partial view, and abort.

Else, S hands eb = true to P1 and output whatever P1 outputs.

Claim 5. For the simulator S corrupting party P1 as described above, and interacting with the

functionality Fshu✏e,

�
������⇡shu✏e,A(z) (E,M,)

 
z2{0,1}⇤,2N

c⌘
�

�����Fshu✏e,S(z)(E,M,)
 
z2{0,1}⇤,2N

Proof: Case 0: If P1 follows the protocol honestly, the joint distributions in the hybrid and

ideal execution is:

�
������⇡shu✏e,A(z) (E,M,)

 
z2{0,1}⇤,2N = {↵, [E(1)], [M (1)], b = true, o1, o2, o3, o4}

�
�����Fshu✏e,S(z)(E,M,)

 
z2{0,1}⇤,2N = {e↵, [ eE(1)], [fM (1)],eb = true, eo1, eo2, eo3, eo4}

The messages [↵], [e↵], [M (1)] and [fM (1)] are all uniformly distributed, [E(1)] and [ eE(1)]
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are identical, thus, the joint distributions between both worlds are identical.

Case 1: IfP1 deviates from the protocol in Step 2 by providing the incorrect↵ or incorrect

shares [E] to FMAC, abort happens in both worlds, and the joint distributions in both worlds

are {↵,?} and {e↵,?} respectively, and they are identically distributed.

Case 2: If P1 deviates from the protocol in Step 4 by providing the wrong shares [Z]

to FcheckZero, S hands eb = false to P1 in the ideal world and aborts. In the hybrid world,

FCheckZero outputs b = false and all parties abort. It is clear that the joint distributions in

both worlds are identical.

In conclusion, the joint distributions between the two worlds are identical.

Now, a simulation for P3:

• [eY ]: S receives [E] and places it in the input tape of P3. S observes the message that

P3 sends to FMAC: if P3 modifies [E] before sending it to the functionality, S aborts

and outputs the partial view. Else, S samples random ring elements as shares [fM ]

and hands them to P3 to simulate the message P3 receives from FMAC in the hybrid

world.

• e⇡: S queries the ideal functionality with P3’s input, [E], and obtains the output [E(1)].

S computes e⇡ such that ⇡([E]) = [E(1)], then agrees on the permutation e⇡ with P3 in

Step 3. S computes [m(1)] [e⇡(em)] to mirror P3’s action.

• eb: S observes the messages thatP3 sends toP1 in Step 3. IfP3 sends [E0(1)] = [E(1)+D]

or [m0(1)] = [m(1) +E] where D 6= 0 mod 2k, E 6= 0 mod 2k+s, S aborts and outputs

the partial view. Else, S outputs whatever P3 outputs.

Claim 6. For the simulator S corrupting party P3 as described above, and interacting with the

functionality Fshu✏e,

�
������⇡shu✏e,A(z) (E,M,)

 
z2{0,1}⇤,2N

c⌘
�

�����Fshu✏e,S(z)(E,M,)
 
z2{0,1}⇤,2N
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Proof: Case 0: If P3 follows the protocol honestly, the joint distributions in the hybrid and

ideal execution is:

�
������⇡shu✏e,A(z) (E,M,)

 
z2{0,1}⇤,2N = {[M ],⇡, b, o1, o2, o3, o4}

�
�����Fshu✏e,S(z)(E,M,)

 
z2{0,1}⇤,2N = {[fM ], e⇡,eb, eo1, eo2, eo3, eo4}

The messages [M ], [fM ] are distributed uniformly at random and independent from one

another. ⇡ and e⇡ are identical. Thus, the joint distributions between both worlds are iden-

tical.

Case 1: If P3 deviates from the protocol in Step 2 by sending the wrong shares [E],

abort happens in both worlds, and the joint distributions in both worlds are both {?} and

identical.

Case 2: S observes what P3 sends to P1 in Step 3. If he does not send the intended

messages: P3 sends [E0(1)] = [E(1)+D] or [M 0(1)] = [M (1)+D0] where D 6= 0 mod 2k, D0 6=

0 mod 2k+s, S abort in the ideal execution. The joint distribution in the ideal world is

{[fM ], e⇡,eb = false,?}. In the hybrid world, there is a small chance that P1 and P2 do not

abort. This happens if P3 chooses the additive terms D and E such that ↵D + D0 = 0

mod 2k+s. The probability that this happen is at most 2�s as shown in Section 4.6.1. So,

with probability 1�2�s, the joint distribution in the hybrid world is {[M ], [⇡], b = false,?}.

Thus, the joint distributions in both worlds are statistically close.

In conclusion, the joint distributions in both worlds are statistically close.
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4.7.2 Four-Party Oblivious Gather

Theorem 8. The oblivious Gather protocol (Figure 4.21) securely realizes the ideal functionality

Fgather (Figure 4.20) with abort, under a single malicious corruption.

We provide a simulation for P1 and P3. The simulations for others are almost identical.

First, a simulation for P1:

1. S obtains P1’s input from the distinguisher and puts it in the input tape of P1. S

submits the input, [E], to the ideal functionality and obtains the output [eV ] and [fW ].

2. [ eJ ] (where eJ ⌘ �E.lid): S hands P1 random ring elements to simulate the output of

FMAC on [E.lid].

3. [ eR] ⌘ [�E.rdata], eI ⌘ {ee1.lid, ..., ee|E|.lid}: S samples a random permutation ⇡ and

compute eI  ⇡({id1, ..., id1, ..., idn, ..., idn}), [{id11 ..id1i}, ..., {idn1 ..idnj}] in which the

number of idi’s is the in-degree of the vertex that has the left id to be idi. S uses eI

and fW to generate [ eR], the MAC of the right data, in correct order. S hands [ eR] to

P1 to simulate the corresponding message that P1 receives from FMAC. To simulate

the opening of an edge, S uses eI and the input [E] to compute the share it needs to

send to P1, opening the edge to the correct value. S also observes the shares that P1

sends to P2. If P2 cheats by not sending the intended shares, S sets abort1 = 1. Also,

to simulate the movement of the data, if the right of an edge e is to be moved to the

vertex v, and it’s the jth one to be moved to v, S sends the jth shares of [eV ] and [fW ]

to P1.

4. S observes the messages that P1 sends to P3, I and [ eJ ]. If P1 modifies any of these

messages, or if abort1 = 1, S aborts and outputs the partial view.

Proof: We give a proof sketch here.
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First, S can perfectly simulate the output ofFMAC as the shares of [J ] in the hybrid world

are also uniformly distributed. FromP1’s input, [E] and the output of the ideal functionality

[eV ], [fW ], S can perfectly simulate the opening of the indices and moving of the data. The

sequence of opened indices in the ideal world and that in the hybrid world is identically

distributed as [E] has been randomly shu�ed prior to this step, so any sequence happens

with equal probability.

Second, if P1 deviates from the protocol at any step, the executions in both worlds end

up in abort, the the partial views are identically distributed.

In conclusion, the joint distributions in both worlds are identical.

Now we provide a simulation for P3:

1. eI, [ eJ ]: S samples a random permutation ⇡ and compute eI  ⇡({id1, ..., id1, ..., idn, ...,

idn}), in which the number of idi’s is the in degree of the vertex that has the left id to

be idi. S hands eI and random values as shares [ eJ ] to P3 to simulate the messages that

P3 receives from P1.

2. eb: S observes the messages thatP3 sends toFverifyMAC. IfP3 does not send the intended

messages, S hands P3
eb = false, aborts and outputs the partial view. Else, S hands P3

eb = true, and output whatever P3 outputs.

Proof: We give a proof sketch here.

Similar to the argument in the previous proof, any sequence of open indices are equally

likely to happen, thus, a random sequence in the ideal world and the actually sequence in

the hybrid world is identically likely to happen. Also, the shares [ eJ ] and [J ] are uniformly

distributed. Thus, if P3 honest in the MAC verification step, the joint distributions in both

worlds are identical. If P3 cheats, the executions in both worlds end up in abort, and the

joint distributions are also identical.

In conclusion, the joint distributions in both worlds are identical.

85



4.7.3 Four-Party Oblivious Apply

Apply computes the main functionality of the framework on the input data. During the

Gather the data is aggregated into vertices, therefore Apply runs the computation on the

vertices data.

Theorem 9. The oblivious Apply protocol ⇧apply (Figure 4.23) securely realizes the ideal function-

ality Fapply (Figure 4.22) with abort, under a single malicious corruption.

To prove the security of our Oblivious Apply, we provide a simulation for P1. The sim-

ulations for other parties are identical.

Simulation for P1:

• (emV , e�0V , [e�V ]): S receives P1’s inputs [�], [{V11 ..V1i}, ..., {Vn1 ..Vnj}], [{W11 ..W1i}, ...

, {Wn1 ..Wnj}], and places them in the input tape of P1. S observes the messages that

P1 sends to Fsharemask: if P1 does not send the intended messages ([V ], [W ], [�]), S

submits abort to Fapply, and outputs the partial transcript. Else, S samples random

ring elements as shares (emV , e�V , [e�V ]) and hands them to P1 to simulate the message

P1 receives from Fsharemask in the hybrid world.

• (em(1)
V , e�0(1)V , [e�(1)V ]): S observes the messages that P1 sends to Feval: if P1 does not send

the intended messages (mV , �0V , [�V ]), S submits abort to Fapply, and outputs the

partial transcript. Else, S samples random ring elements as shares (em(1)
V , e�0(1)V , [e�(1)V ])

and hands them to P1 to simulate the messages P1 receives from Fapply in the hybrid

world.

• [{eV (1)
11 ..eV (1)

1i
}, ..., {eV (1)

n1 ..eV (1)
nj }]: S observes the messages that P1 sends to Fmaskshare: if

P1 does not send the intended messages (m(1)
V , �0(1)V , [�(1)V ]), S submits abort to Fapply,

and outputs the partial transcript. Else, S submits P1’s input [V ], [W ], [�] to the ideal
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functionality and receives [{V (1)
11 ..V

(1)
1i}, ..., {V (1)

n1 ..V
(1)

nj}], and hands them to

P1 to simulate the messages P1 receives from Fmaskshare in the hybrid world.

Claim 7. For the simulator S corrupting party P1 as described above, and interacting with the

functionality Fapply,

n
������⇡apply,A(z) (X,Y,)

o

z2{0,1}⇤,2N

c⌘
n

�����Fapply,S(z)(X,Y,)
o

z2{0,1}⇤,2N

Proof:

Case 0: If P1 follows the protocol honestly, the joint distributions in the hybrid and ideal

execution is:

n
������⇡apply,A(z) (X,Y,)

o

z2{0,1}⇤,2N
= {mV ,�

0
V , [�V ],m(1)

V ,�0(1)V , [�(1)V ], [V (1)], o1, o2, o3, o4}

n
�����Fapply,S(z)(X,Y,)

o

z2{0,1}⇤,2N
= {emV , e�0V , [e�V ], em(1)

V , e�0
(1)
V , [e�(1)V ], [eV (1)], eo1, eo2, eo3, eo4}

The messagesmV and emV , �0V and e�0V , [�V ] and [e�V ],m(1)
V and em(1)

V , �0(1)V and e�0
(1)
V are all

uniformly distributed, [V (1)] and [eV (1)] are identical, thus, the joint distributions between

both worlds are identical.

Case 1: If P1 deviates from the protocol in any step, abort happens in both worlds, and

partial view of P1 up to that point in both worlds are identically distributed.

In conclusion, the joint distributions between the two worlds are identical.

4.7.4 Four-Party Oblivious Scatter

During the Oblivious Scatter, the updated data in the vertices pushed back to their corre-

sponding edges in the graph, and replace the old profile values in the edges. This step is
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done locally by each party, P1 and P2, with no interaction between them. Therefore, this

step is secure. If any of the parties cheats and modifies the data before scattering to the

edges, it will be detected in the following phase, which is Shu�e operation in the next

round.

4.7.5 Four-Party Secure GAS model of computation (the overall protocol)

In this section, we prove the security of the overall framework, where we refer to it as sgas

framework. But before them main proof, first we provide a description of the leakage func-

tion L(G) in the following theorem:

Theorem 10. The randomized algorithm L is (✏, �)-approximate di�erentially private, defined as

following:

A randomized algorithm L : G ! RL is (✏, �)-edge private if for all neighboring graphs,

G1, G2 2 G, we have:

Pr[L(G1) 2 T ]  e✏ Pr[L(G2) 2 T ] + �

Theorem 11. The protocol ⇧sgas (Figure 4.1) securely computes the ideal functionality Fsgas with

L leakage in the

(Fshu✏e,Fgather,Fapply,Fscatter)-hybrid model with abort, under a single malicious corruption.

To prove the security of our overall framework sgas, we provide a simulation for P1 and

P3. The simulations for other parties are identical.

Simulation for P1:

• S receives P1’s input [E] from the distinguisher and places it on the input tape of

P1. S submits P1’s input [E] to the ideal functionality Fsgas and receives [E(2)], L(G),

where L(G) (Theorem 10) is the leakage function that indicates the noisy degree of

each vertex in the graph.

• [ eE(1)]: S observes the message thatP1 sends toFshu✏e: ifP1 does not send the intended

messages [E], S submits abort to Fsgas, and outputs the partial transcript. Else, S
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simulates the output of Fshu✏e by sampling random ring elements as shares of [ eE(1)],

and handing them to P1 to simulate the output of Fshu✏e.

• [{eV11 ..eV1i}, ..., {eVn1 ..eVnj}], [{fW11 ..fW1i}, ..., {fWn1 ..fWnj}], [e�]: S observes the message

that P1 sends to Fgather: if P1 does not send the intended messages [E(1)], S sub-

mits abort to Fsgas, and outputs the partial transcript. Else, S uses the leakage func-

tion L(G) to sample random ring elements as shares [{eV11 ..eV1i}, ..., {eVn1 ..eVnj}] and

[{fW11 ..fW1i}, ..., {fWn1 ..fWnj}], and also sample a random share of [e�], and hands them

to P1 to simulate the output P1 receives from Fgather in the hybrid world.

• [{eV (1)
11 ..eV (1)

1i
}, ... , {eV (1)

n1 ..eV (1)
nj }]: S observes the message that P1 sends to Fapply: if P1

does not send the intended messages [�], [{V11 ..V1i}, ..., {Vn1 ..Vnj}], [{W11 ..W1i}, ...

, {Wn1 ..Wnj}], S submits abort toFsgas, and outputs the partial transcript. Else, S sam-

ples random ring elements as shares [{eV (1)
11 ..eV (1)

1i
}, ..., {eV (1)

n1 ..eV (1)
nj }], and hands them

to P1 to simulate the output P1 receives from Fapply in the hybrid world.

• [ eE(2)]: S observes the message that P1 sends to Fscatter: if P1 does not send the in-

tended messages [{V (1)
11 ..V (1)

1i
}, ..., {V (1)

n1 ..V (1)
nj }], S submits abort to Fsgas, and outputs

the partial transcript. Else, S hands [ eE(2)] (where [ eE(2)] ⌘ [E2]) to P1 to simulate the

output P1 receives from Fscatter in the hybrid world and then outputs whatever P1

outputs.

Claim 8. For the simulator S corrupting party P1 as described above, and interacting with the

functionality Fsgas,

n
������⇡sgas,A(z) (X,Y,)

o

z2{0,1}⇤,2N

c⌘
n

�����Fsgas,S(z)(X,Y,)
o

z2{0,1}⇤,2N

Proof: Case 0: If P1 follows the protocol honestly, the joint distributions in the hybrid and
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ideal execution is:
�

������⇡sgas,A(z) (X,Y,)
 
z2{0,1}⇤,2N = {[E(1)], [�], [V ], [W ], [V (1)], [E(2)], o1, o2, o3, o4}

�
�����Fsgas,S(z)(X,Y,)

 
z2{0,1}⇤,2N = { eE(1)], [e�], [eV ], [fW ], {eV (1)], [ eE(2)], eo1, eo2, eo3, eo4}

The messages {[E(1)], [ eE(1)], [�], [e�], [V ], [eV ], [W ], [fW ], {[V (1)], [eV (1)] are distributed uni-

formly at random and independent from one another. {[E(2)], [ eE(2)] are identical. Thus,

the joint distributions between both worlds are identical.

Case 1: As soon as P1 deviates in any step of the protocol, abort happens in both worlds,

and partial view of P1 up to that point in both worlds are identically distributed.

4.8 Implementation and Evaluation

We implemented our four-party secure computation framework in C++. We measure the

performance of our framework on a set of benchmark algorithms in order to evaluate our

design. These benchmarks consist of histogram and matrix factorization problems which

are commonly used for evaluating highly-parallelizable frameworks. In all scenarios, we

assume that the data is secret-shared across four non-colluding cloud providers, as mo-

tivated in Section 1. For comparison, we compare our results with the closest large-scale

secure parallel graph computation schemes, such as GraphSC [11] and OblivGraph [47].

4.8.1 Implementation

Using our four-party framework, the histogram and matrix factorization problems can be

represented as directed bipartite graphs.

Histogram: In the histogram computation, which, for example, might be used to count the

number of people in each zip code, left vertices represent data elements (people), right

vertices are the counters for each type of data element (the zip code), and existence of an

edge indicates that data element on the left has the data type of the right node (e.g. the user

on the left belong to the zip code on the right).
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Matrix Factorization: In matrix factorization, left vertices represent users, right vertices

are items (e.g. movies in movie recommendation systems or a product in targeted adver-

tising systems), an edge indicates that a user ranked that item, and the weight of the edge

represents the rating value.

Vertex and Edge representation: In all scenarios, our statistical security parameter s = 40. We

chose k = 40 to represent k-bit fixed-point numbers, in which the least d significant bits

are used for the fractional part. For histogram d = 0 and for matrix factorization d = 20.

This requires data and MACs to be secret share in the Z280 ring. In our matrix factoriza-

tion experiments, we factorized the ratings matrix into two matrices, represented by feature

vectors that each has dimension 10. We chose these parameters as to be compatible with

the GraphSC and OblivGraph representations.

4.8.2 Evaluation

We run the Histogram experiments on graphs with sizes ranging from 1 million to more

than 300 million edges, which can simulate the counting operation in census data gathering.

For example, if each user contributed a salary value and a zip-code, using our framework

we can compute the average salary in each zip-code, while ensuring that the access patterns

preserve user privacy. We run matrix factorization with gradient descent on the real-world

MovieLens datasets[44] that contains di�erent numbers of ratings provided by di�erent

numbers of users on the movies. We report the result for one complete iteration of the

protocol, performing GAS operations one time on both the left and right nodes. The results

are the average of five executions of the experiments.

Experiment settings: We run all the experiments on AWS (Amazon Web Services) using

four r4.8xlarge instances spread across Northern Virginia and Oregon data centers. Each

machine has 32 processors and 244 GiB RAM, with 10 Gbps network connectivity. In our

four party protocol, each pair (P1, P4) or (P2, P3) communicates O(1) ring elements to verify

the execution across the groups, thus, it is not necessary for P1 and P4 to locate in the same
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data center (and similarly for P2 and P3).

We use three metrics in evaluating the performance of our framework: running time

in seconds, communication cost in number of bits transferred between parties, and circuit

size in number of AND Gates/AES operations.

Table 4.1 gives the input parameters used in the experiments. In Table 4.7, we explore the

performance impact of using di�erent ✏ and � privacy parameters.

Table 4.1: The details of input size and privacy parameters for all the di�erent experiment
conducted on Histogram and Matrix Factorization

Edges Users Items ✏ �

1M 6K 4K 0.3 2�40

10M 72K 10K 0.3 2�40

20M 138K 27K 0.3 2�40

300M 300M 42K 0.3 2�40

Run time and Communication Cost: Figure 4.24 demonstrates that the run time required

to perform Histogram (counting) operation on a graph of size 1 million to 300 millions can

be less than 3.3 mins, by using our framework running on multiprocessor machines. The

values on the graph are also represented in Table 4.2. Figure 4.25 shows the amount of data

in MB, transferred between the parties during the Histogram protocol. Communication

cost shows linear decrease with increasing the number of processors. Both graphs are in

log-log scale.

Similarly, Figure 4.26 shows that computing Matrix Factorization on large scale graph

data sets takes less than 5 minutes, using our four-party framework, on AWS multiproces-

sor machines. The running time is expected to decrease linearly as we increase the number

of processors, however due to some small overhead to parallelization, the run time im-

provement is slightly sub-linear. Table 4.3 shows the results in details. Figure 4.27 shows

the communication cost during Matrix Factorization on large data sets. Both graphs are in
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Table 4.2: Details of running time (sec) for computing Histogram problem on di�erent input
sizes

Processors / Edges 1M 10M 20M 300M

1 13.8 85.0 207.7 2149.4
2 7.5 46.5 98.1 1136.5
4 4.3 28.0 57.78 643.2
8 2.7 16.2 34.39 382.5
16 1.8 11.2 23.3 279.2
32 1.5 10.1 21.67 250.4

log-log scale.

Table 4.3: Details of running time (sec) for computing Matrix Factorization problem on
di�erent input sizes

Processors / Edges 1M 10M 20M

1 258.3 1639.7 3401.8
2 132.9 834.7 1913.7
4 80.4 455.57 1055.95
8 44.6 292.2 613.1
16 28.2 190.6 423.7
32 25.1 163.4 357.2

We measured the running time for each of the graph oblivious operation in our frame-

work, to understand the e�ect of each step in the performance of the framework as a whole.

Figure 4.28 and 4.29 demonstrates the run time break-down of each oblivious operation in

Histogram and Matrix Factorization problem, on the input graph with only 1 million edges.

The oblivious shu�e operation has the highest cost in calculating the Histogram, while Ap-

ply phase is taking the most time in Matrix Factorization, due to the calculation of gradient

descent values, which are more expensive than counting.

Comparison with previous work: We compare our results with OblivGraph which is the
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closest large-scale secure parallel graph computation. OblivGraph used garbled circuits

for all the phases of the graph computation, while we use arithmetic circuits. In both ap-

proaches, the amount of time needed to send and receive data, and the time spent com-

puting AES, are the dominant costs. We compare the two protocols by the communication

cost and the number of AES calls in each of them. In Table 4.4 and 4.5, we demonstrated

both the gain in our four party oblivious shu�e against the two party shu�e [45] used in

OblivGraph and the gain in the Apply phase with the use of arithmetic circuit in four party

setting.

Table 4.4: Estimated AES operations per party for 1 complete matrix factorization iteration:
|E|, |E0|, |V | are the number of real edges, number of real and dummy edges, and number
of vertices respectively

OblivGraph This work
Oblivious Shu�e 7128(|E| log |E|� |E| + 1) 132|E0|
Oblivious Gather 0 72|E0|
Share Conversion - 72|E0| + 30|V |
Oblivious Apply 279048|E| + 4440|V | 252|E0| + 4|V |
Oblivious Scatter 0 20|E0|

Total 7128|E| log |E| + 271920|E|+ 548|E0| + 34|V |
4440|V | + 7128

Table 4.6, compares the running time of this work with previous works, GraphSC [11]

and OblivGraph [47], to solve matrix factorization problem in scale, with real-world dataset,

MovieLens with 6040 users ranked 3883 movies and 1M ratings, and 128 processors.

E�ect of di�erential privacy parameters on the run time: We study the e�ect of di�er-

ential privacy parameters on the performance of our framework in Figure 4.30. We also

provide the number of dummy edges required for di�erent value of ✏ and � in Table 4.7.

Note that these number of dummy edges are per each right node in the graph, which means

an item in Histogram computation, or a movie in Matrix Factorization problem. For exam-

ple in a movie recommendation system based on our framework, we require 118 dummy
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Table 4.5: Estimated total communication cost for all parties in bits for 1 complete matrix
factorization iteration:  is the number of bits per ciphertext, s = 40, |E|, |E0|, |V | are the
number of real edges, number of real and dummy edges, and number of vertices respec-
tively. The length of the fixed point numbers used is k = 40 bits

OblivGraph This work
Oblivious Shu�e 4752(|E| log |E|� |E| + 1) 336(k + s)|E0|
Oblivious Gather 32|E| 142(k + s)|E0|
Share Conversion - 192(k + s)|E0| + 120(k + s)|V |
Oblivious Apply 186032|E| + 2960|V | 252(k + s)|E0| + 16(k + s)|V |
Oblivious Scatter 0 0

Total 4752|E| log |E| + 181312|E|+ 922(k + s)|E0| + 126(k + s)|V |
2960|V | + 4752

Table 4.6: Running time of a single iteration of this work vs. OblivGraph and GraphSC to
solve matrix factorization problem in scale, with real-world dataset, MovieLens with 6040
users ranked 3883 movies and 1M ratings

GraphSC[11] OblivGraph[47] This work

Time 13 hrs 2 hrs 25 s

edges per movie, to achieve (0.3, 2�40)-Di�erential Privacy.

Table 4.7: Number of dummy elements required for each type depending on di�erent pri-
vacy parameters

✏=0.05 ✏=0.3 ✏=1 ✏=5
� = 2�40 707 118 35 7
� = 2�16 374 62 19 4

LAN vs. WAN runtime All of our experiments so far are conducted on AWS and all four

of the computation parties are deployed in the same data center, in Northern Virginia. To

demonstrate the e�ect of network latency on our performance, we deploy two of the com-

putation parties, one from each group, in a data center located in East coast, and the other
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two in a data center located in West coast: Alice and David are located in Northern Virginia

data center, while Bob and Charlie are deployed in Oregon data center. Figure 4.31 shows

a dramatic slowdown in the run time when we deployed the server across data centers as

opposed to having them in the same geographic region.
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⇡eval

Inputs:

1. For each input wire w: P1, P2 hold mw(= xw + �w), [�w], and �0w; P3, P4 hold
m0

w(= xw + �0w), [�0w], and �w.

2. For each multiplication gate (a, b, c,⇥) or dot product gate
((a1, ..., an), (b1, ..., bn), c, ·) (c =

Pn
i=1 aibi).

Evaluation: For each gate (a, b, c, T ) following topological order:
Evaluation Group 1 (P1 and P2)

1. if T = + : mc  ma + mb; [�c] [�a] + [�b]; �0c  �0a + �0b

2. if T = · (Dot Product/Multiplication Gate)

(a) ([
Pn

i=1 �ai�bi + �c] ,
⇥
b�c/2dc

⇤
) FTriplet(a, b, c);

(b) [mc] 
Pn

i=1(mai ·mbi �mai · [�bi ]�mbi · [�ai ]) + [
Pn

i=1 �ai · �bi + �c]

(c) mc  open([mc]); mc  b(mc + �0c)/2
dc � b�0c/2dc;

(d) �0c  b�0c/2dc; [�c] 
⇥
b�c/2dc

⇤

Note: for the case of n = 1, the dot product gate is a multiplication gate.
Evaluation Group 2 (P3 and P4)

1. if T = + : m0
c  m0

a + m0
b; [�0c] [�0a] + [�0b]; �c  �a + �b

2. if T = · (Dot Product)

(a) (
⇥Pn

i=1 �
0
ai
�0bi + �0c

⇤
,
⇥
b�0c/2dc

⇤
) FTriplet(a, b, c);

(b) [m0
c] 

Pn
i=1(m

0
ai

·m0
bi
�m0

ai
· [�0bi ]�m0

bi
· [�0ai

]) +
⇥Pn

i=1 �
0
ai

· �0bi + �0c
⇤

(c) m0
c  open([m0

c]); m0
c  b(m0

c + �c)/2dc � b�c/2dc;

(d) �c  b�c/2dc; [�0c] 
⇥
b�0c/2dc

⇤

Cross Check

1. All parties make a call to Fcoin to sample the same random nonce r.

2. All parties compute the double masked value for each wire dw = mw + �0w =
m0

w + �w. They each computes hi  hash(d1||...||dn||r).

3. P1 and P3 swap h1, h3 and verify that they are equal. Otherwise, they call
abort.

4. P2 and P4 swap h2, h4 and verify that they are equal. Otherwise, they call
abort.

Output: All parties output masked values of the output wires. P1, P2 output (m(1)
V ,

�0(1)V , [�(1)
V ]). P3, P4 output (m0(1)

V , �(1)
V , [�0(1)V ]).

Figure 4.11: Protocol to handle Masked Evaluation With Truncation
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FUNCTIONALITY Fcoin - Generating Random Value

The ideal functionality Fcoin chooses a random r 2 Z2k+s then gives r to all the par-
ties.

Figure 4.12: Sample a random ring element

FUNCTIONALITY FcheckZero

Input Two parties (P1, P2 or P3, P4) hold shares of [Z]. Functionality

• The ideal functionality waits for shares [Z] from the parties, reconstruct Z.

Output If zi = 0 mod 2k+s 8i 2 {1, ..., n}, output True. Else, send False to all par-
ties.

Figure 4.13: Ideal Functionality to verify if [Z] is a share of 0.

PROTOCOL ⇧checkZero

Input P1 and P2 provide shares [Z] where Z = {z1, ..., zn}.
Protocol

1. P1 and P2 make a call to Fcoin to sample a random nonce r.

2. P1 and P2 set [Z] [Z] mod 2k.

3. P1 computes h1  hash([z1]1||...||[zn]1||r). P2 computes h2  
hash([z1]2||...||[zn]2||r)

4. P1 sends h1 to P2. P2 sends h2 to P1.

5. P1 verifies that h2 ⌘ hash((�[z1]1||...||� [zn]1||r), otherwise, he aborts.

6. P2 verifies that h1 ⌘ hash(�[z1]2||...||� [zn]2||r), otherwise, he aborts.

Output If the check pass, output True. Else, output False.

Figure 4.14: Real-world Protocol to verify if [Z] is a share of 0.
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FTriple

Inputs: All parties have input (A,B, c), where A,B are input wires, and c is output
wire. A = {a1, ..., an}, B = {b1, ..., bn}, c =

Pn
i=1 aibi.

P1 and P2 both provide �0A,�0B . P3 and P4 both provide �A,�B .
Functionality:

• If either pair sends mismatched messages, send abort to all parties.

• Sample �0c,�c uniformly at random.

• Compute
Pn

i=1 �
0
ai
�0bi ,

Pn
i=1 �ai�bi , b�0c/2dc, and b�c/2dc.

Output: P1 and P2 receive [
Pn

i=1 �ai�bi + �c], and [b�c/2dc].
P3 and P4 receive [

Pn
i=1 �

0
ai
�0bi + �0c], and [b�0c/2dc].

Figure 4.15: Triple Generation

FMult Ideal Functionality to perform multiplication up to an additive attack

Inputs: P1 and P2 have inputs ↵. P3 and P4 have inputs [X] (X = {x1, ..., xn}).
Functionality:

• Verify that P1 and P2 send the same ↵. If not, send abort to all parties.

• If the corrupted party is P3 or P4: wait for the attack terms U = {u1, ..., un}
from that party, compute Z = ↵(X + U) mod 2k+s.

• Send P3 and P4 shares [↵] and [Z].

Output: P3 and P4 output [↵] and [Z]. P1 and P2 output nothing.

Figure 4.16: Multiplication up to an attack
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⇧Mult Real-world protocol to perform multiplication up to an additive Attack

Inputs: P1 and P2 have inputs ↵. P3 and P4 have inputs [X]. F is a PRF.
Protocol:

1. P1 and P2 make two calls to Fcoin to sample two random numbers �↵, r. They
both send r to P3 and �↵ � r to P4. Then they compute (↵ � �↵). They both
send (↵��↵) to P3 and P4. P3 and P4 verify that they receive the same values,
otherwise, they abort.

2. P1 and P2 agree on a random key k1, k2. They both send k1 to P3, then k2 to
P4. P3 and P4 verify that they receive the same values, otherwise, they abort.

3. P1, P2, and P3 compute [�xi ]1 = Fk1(i), [�zi ]1 = Fk1(i + n)

4. P1, P2, and P4 compute [�xi ]2 = Fk2(i).

5. P1 and P2 reconstruct �xi and compute [�zi ]2 = �↵�xi � [�zi ]1. P1 sends [�zi ]2
to P4 while P2 send hash([�zi ]2) to P4. P4 verifies that they receive the correct
messages from P1 and P2. If not, he calls abort.

6. P3 and P4 compute [xi � �xi ] [xi]� [�xi ]. They open (xi � �xi).

7. P3 andP4 compute [zi] (↵��↵)(xi��xi)+[�↵](xi��xi)+[�xi ](↵��↵)+[�zi ]

Output: P3 and P4 output [↵] and [Z] = {[z1], ..., [zn]}. P1 and P2 output nothing.

Figure 4.17: Multiplication up to an attack

Fshu✏e

Inputs: P1 and P2 provide shares of X (E = [E]1 + [E]2).
P3 and P4 provide shares of X (E = [E]3 + [E]4).
Functionality:

• Verify that [E]1 +[E]2 = [E]3 +[E]4. If the check fails, send abort to all parties.

• Sample a random permutation ⇡. Shu�e and re-randomize the shares [E]3
and [E]4 according to ⇡: [E(1)]3  ⇡([E]3), [E(1)]4  ⇡([E]4)

• Send [E(1)]3 to P1 and P3. Send [E(1)]4 to P2 and P4.

Output: All parties receive [E(1)].

Figure 4.18: Oblivious Shu✏e Ideal Functionality
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⇧shu✏e

Inputs: P1 and P2 have shares of E (E = [E]1 + [E]2). P3 and P4 have shares of E
(E = [E]3 + [E]4).
Protocol:

1. P1 and P2 make a call to Fcoin to sample a random MAC key ↵ 2 Z2s .

2. Four parties make a call to FMAC((↵, [E]1), (↵, [E]2), [E]3, [E]4). P3 and P4

receive [M ] ⌘ [↵E].

3. P3 andP4 make a call toFcoin to sample a random value to fix the permutation ⇡
and shu�e their shares ([E] and [M ]) according to ⇡: [E(1)] ⇡([E]), [M (1)] 
⇡([M ]). They send their shares of [E(1)], [M (1)] to P1 and P2 respectively.

4. P1 and P2 compute [Z] = ↵[E(1)]� [M (1)] and call FcheckZero([Z]). If the func-
tionality returns false, they all abort.

Output: The parties output [E(1)]

Figure 4.19: Oblivious Shu✏e Real-World Protocol

Fgather

Inputs: P1, P2 provide their shares of edges [E]1,2, and P3, P4 provide their shares
[E]3,4.
Functionality:

• Sample a random MAC key �.

• Wait for shares [E] from all parties. Verify that [E]1 + [E]2 = [E]3 + [E]4. If the
verification fails, send abort to all parties. Else, reconstruct E.

• For all vertices v 2 V , set v  ;.

• For each edge e 2 E do:
For v 2 V s.t. v.id = lid: v.Append(e.rdata)

• Compute W  �V .

Output: Send additive shares [{V11 ..V1i}, ..., {Vn1 ..Vnj}] ,
[{W11 ..W1i}, ..., {Wn1 ..Wnj}] and [�] to P1, P2. P3, P4 receive MAC key �.

Figure 4.20: Oblivious Gather Ideal Functionality

101



2

GaWKeU�MAC�
CRPSXWaWLRQ

BRbAOLcH

GaWKeU�EdgeV

DaYLd

GaWKeU�MAC�
VeULfLcaWLRQ

DaYLd

ObOLYLRXV�GaWKeU

CKaUOLH

ApproYed/AborW ApproYed/AborW

BRbAOLcH

CKaUOLH

AOLcH BRb

Figure 4.21: Oblivious Gather Real-World Protocol
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Fapply

Inputs: P1, P2 provide their shares of vertices [{V11 ..V1i}, ..., {Vn1 ..Vnj}]1,2, their cor-
responding MAC values [{W11 ..W1i}, ..., {Wn1 ..Wnj}]1,2 and [�]1,2. P3, P4 provide
�.
Functionality:

• Verify that �[V ] = [W ]. If the verification fails, send abort to all parties. Else,
reconstruct V.

• For v 2 [{V11 ..V1i}, ..., {Vn1 ..Vnj}]:
Compute v(1)  func(v).

note: func is the computation applied on the data, e.g. computing Gradient
Decent for Matrix Factorization or Addition in Histogram algorithm.

Output: Send additive shares [{V (1)
11

..V (1)
1i

}, ..., {V (1)
n1 ..V (1)

nj }] to all parties.

Figure 4.22: Oblivious Apply ideal functionality
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⇧apply

Inputs: P1, P2 have shares [{V11 ..V1i}, ..., {Vn1 ..Vnj}], [{W11 ..W1i}, ..., {Wn1 ..Wnj}],
[�]. P3, P4 have only �.
Protocol:

1. Setting up the circuit Four parties agree on a circuit, Cv , for each vertex they
want to compute based on the structure of the vertices in V. P1, P2 initialize
the input wires with shares [{V11 ..V1i}, ..., {Vn1 ..Vnj}].

2. Secure Share-Mask Conversion Four parties call F[x]!mx
, converting the in-

put wires’ additive shares to masked values. P1, P2 receive (mV ,�0V , [�V ]). P3,
P4 receive (m0

V ,�V , [�
0
V ]). e.g. V11 ! (mV11,�

0
V11, [�V11]).

3. Apply Functionality

• For v 2 [{V11 ..V1i}, ..., {Vn1 ..Vnj}]:
Four parties execute Feval (Figure 4.10), to obtain the masked values of

the updated vertex data.

4. Secure Mask-Share Conversion Four parties call Fmx![x] to convert-
ing the masked values at the output wires to additive shares. e.g.
(mV11,�

0
V11, [�V11])! V (1)

11
.

Output: The parties output [{V (1)
11

..V (1)
1i

}, ..., {V (1)
n1 ..V (1)

nj }]

Figure 4.23: Oblivious Apply real-world Protocol
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Figure 4.24: Run time (sec) for Histogram protocol with 1M, 10M, 20M and 300M edges
using four-party secure computation framework with one malicious party

Figure 4.25: Communication cost (in MB) for Histogram protocol with 1M, 10M, 20M and
300M edges using four-party secure computation framework with one malicious party
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Figure 4.26: Run time (sec) for Matrix Factorization protocol with 1M, 10M and 20M edges
using four-party secure computation framework with one malicious party

Figure 4.27: Communication cost (in MB) for Matrix Factorization protocol with 1M, 10M
and 20M edges using four-party secure computation framework with one malicious party
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Figure 4.28: Run time for each single oblivious operation in Histogram, on input graph
with 1M edges
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Figure 4.29: Run time for each single oblivious operation in Matrix Factorization, on input
graph with 1M edges
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Figure 4.30: E�ect of privacy parameters, ✏ and � on running time in Matrix Factorization
problem, with 6016 users and 4000 types and 1M edges

1

Figure 4.31: Run time for Matrix Factorization on input graphs with 1M edges, when all
the parties are in the same data center versus when they are in di�erent data centers to
demonstrate the e�ect of network delay.
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Chapter 5: Privacy-Preserving Federated Learning [54]

In this chapter, we present our secure and privacy-preserving machine learning solutions

that are focused on distributed architecture introduced in Collaborative Learning tech-

niques a.k.a Federated Learning. In this architecture, the sensitive data never leaves the

user’s system, such that, users train a local model on their private data and only share their

learning parameters with the computation servers to aggregate and train a global model on

all participants data. We designed and developed secure and privacy-preserving federated

learning frameworks that are secure against semi-honest and malicious-secure corruption,

with low communication overhead and robust against users dropouts. We leverage secure

computation and di�erential privacy techniques to preserve the privacy of user’s data as

well as the trained model.

5.1 Secure and Privacy-Preserving Federate Learning

Federated Learning has recently emerged as an alternative to centralized ML algorithms.

Google has conducted a comprehensive survey study on Federate Learning, its challenges

and its open problems [25]. It allows multiple participants to jointly build a model on their

own local training set. Each participant trains a local model on its own data and exchange

these parameters with other participants (sometimes through a server or curator) to train

a global model. Several architectures have been proposed for federated learning [26–30]

with and without a central server. One of the main goals in developing these frameworks,

is protecting the privacy of participants in the training process [13,31]. Because the training

data never leave the participants’ local device, federated learning can be a good candidate

for the scenarios where the data is highly sensitive and cannot be shared with untrusted
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parties, for example foe some of the GDPR-aware applications. Even-though these param-

eter updates are ephemeral and very small as compared to the user’s high-dimensional

private data vectors, observing these parameters by the untrusted server or any other en-

tity, or even in some scenarios the model itself may still leak important information about

user input, hence they can lead to potential adversarial attacks such as the model inversion

attacks [32] or membership inference attacks [33].

One of the ways to mitigate these attacks, is to use cryptography techniques to securely

share these updates with the server, and then using secure computation techniques to ag-

gregate those parameters in order to update the global model. Secure aggregation protocols

presented by [34–36] allow the untrusted central server to only learn the summation of the

input vectors of many clients securely. Their protocol is robust against a fraction of users

dropping out. [36] improved the e�ciency of the previous secure aggregation protocols

and constructs secure aggregation protocols that achieve polylogarithmic communication

and computation per client. Their semi-honest construction handles billions of clients and

semi-malicious construction supports tens of thousands of clients for the same per client

cost. Their solutions have low-communication cost, but do not handle aggregating noisy

learning parameters. Handling noise aggregation is trivial if we know how many people

participate from the beginning, but much more subtle if clients frequently join and dropout

during the protocol.

5.2 Our Main Framework Intuition

In our client-server scenario, a single server is interacting with n users (clients) denoted as

U . We assume each user u 2 U holds a private vector xu 2 ZR, with length m. Our goal is

to compute the noisy sum of users input:

z :=
X

u2U
xu + ⌘ (5.1)
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where z 2 ZR, and ⌘ is a random noise sampled from a DP distribution D. It is guaranteed

that the server only learns the noisy sum of non-aborting users’ input, and users learns

nothing.

5.3 Definitions

5.3.1 Di�erential Privacy Mechanisms

Definition 10. (Sensitivity of a function) The sensitivity of a query function f : D ! Rd,

denoted �f , is defined by:

�f = max
D1,D2

|f(D1)� f(D2)|

where the maximum is over all pairs of neighboring inputs D1, D2, di�ering in at most one element.

For functions with higher dimensions where d � 2, the sensitivity is measured under `1 or `2 norms.

�2f = max
D1,D2

kf(D1)� f(D2)k2

Definition 11. (Laplace Mechanism) The Laplace mechanism [6] adds noise drawn from a Laplace

distribution:

MLap(D, f, ✏) , f(D) + ⌘

where ⌘ ⇠ Lap(µ = 0, b = �f
✏ )

Definition 12. (Gaussian Mechanism) The Gaussian mechanism [6] adds noise drawn from a

Gaussian distribution, and satisfies (✏, �)-di�erential privacy according to Definition 1:

MGauss(D, f, ✏, �) , f(D) + ⌘

where ⌘ ⇠ N (µ = 0,�2 = 2 ln(1.25/�)·(�f)2

✏2 )

111



Definition 13. (Distributed Gaussian Noise Sampling) Since the infinite divisibility of the

Gaussian (Normal) distribution is stable, drawing a single random variable can be simulated by the

sum of Gaussian random variables (independent and identically distributed). We define our noise

distribution as sum of Gaussian random variables, where the number of these random variables

depends on the number of corrupted users C, (C ✓ U ), as follows:

Nb,T (�2) =
X

u

N (
�2

|T |) (5.2)

where
8
>><

>>:

u 2 T if b = 0 (honest server)

u 2 T \ C if b = 1 (corrupted server)
(5.3)

5.4 MPC protocol in Semi-Honest setting

We define the ideal functionality FPP-FL to compute noisy aggregation on clients’ inputs

during Federated Learning in Functionality 5.1, which is secure against semi-honest adver-

saries. The protocol ⇡PP-FL that realizes this functionality appears in Protocol 5.2.

The main idea is that, users compute the masked value of their input and send it to

the server. Each user generates a self-mask, and each pair of users agrees on a pairwise

mask. They all send the server their data vectors, summed with each of their self-mask

and the pairwise masks. They also locally samples some DP noise according to a specific

distribution, and send a secret share of their masked noise to the server. Server aggregates

all the noisy double-masked inputs from the users. In order to unmask the aggregated

result, server needs to receive the masking values. However, due to dropout users, some

of the masks will be removed in the recovery step. To handle dropout users, server notifies

the surviving users of the dropout users, and have them each reply with the pairwise seed

they computed with the dropout user. Pairwise seeds can be recovered even if additional
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parties drop out during the recovery, as long as some minimum number of parties equal

to the threshold remain alive and respond with the shares of the dropout users’ pairwise

seed. The server subtracts these recovery values from the masked vectors received from

non-dropout users, and correctly learns the sum of the non-dropout users’ data.

FPP-FL

Parameters: Let t be the dropout threshold parameter, and m 2 N be the size of the
committee.
Inputs: Each user u 2 U holds as input a private vector xu 2 ZR, with length µ. The
server does not provide any input.
Functionality:

1. The functionality receives (xu, i) from each user, where i 2 {1, . . . , 5} indicates
that u 2 Ui \ Ui+1. We let U 0 = U4 denote the set of users for which xu is
included in the aggregation. (See Figure ??.)

2. If |U5|  t, output ?.

3. Select a random subset T ✓ U 0 with size m.

4. Let b 2 {0, 1} indicate whether the server is corrupted or not. Sample ⌘u  D,
and set ⌘ = ⌘u(|T \ C| + (1� b)|T \ C|), where C is the set of corrupt parties.

5. Compute z :=
P

u2U 0 xu + ⌘.

Output: Send (z, {Ui}i2[5]) to the server.

Figure 5.1: Ideal Functionality for Privacy Preserving Federate Learning against semi-
honest adversary

5.5 MPC protocol in Malicious Adversary setting

We define the ideal functionality F⇤
PP-FL to compute noisy aggregation on clients’ inputs

during Federated Learning in Functionality 5.5, which is secure against malicious adver-

saries. The protocol ⇡⇤PP-FL that realizes this functionality appears in Protocol 5.6.
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5.5.1 Secure Noise Sampling

In this section, we define the ideal functionality F⇤
NoiseSample to sample DP noise in Figure

5.9. The protocol described in Figure 5.10 is using TFHE to securely sample di�erential

privacy noise.

In order to generate noise for di�erential privacy, random variables can be sampled

from a particular distribution, such as Laplace or Gaussian. One of the ways to sample

the noise is using the inverse transform sampling method, which is useful to design and

implement these sampling mechanisms inside secure computation.

[55, 56] provide constructions to sample noise from di�erent distributions in MPC, us-

ing their inverted Cumulative Distribution Function (CDF) and inverse transform sampling

method.

Here we describe how to sample DP noise from Laplace distribution in secure compu-

tation. Other DP distributions such as Gaussian can be securely approximated in similar

way.

In order to generate a random variable  in Laplace distribution with parameter �, at

first, a uniformly random variable r 2 {0, 1} is generated. Then the inverse transform

sampling method is used to determine

F�1(r) = �
⇣
ln(r)� b

�
ln(r) + ln(1� r)

�⌘

which they optimized it further into:

  b�
�
ln(r)

�
(5.4)

Secure Evaluation of ln(r)

To implement formula 5.4, we need to perform a secure evaluation of ln(r), based on ap-

proximation [55, 56]. The input r has to be scaled down to a number in interval [1/2, 1].
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Suppose there is a k such that r
2k
2 [12 , 1], then it holds:

ln(r) = ln
� r

2k
· 2k

�
= ln

� r

2k
�

+ k · ln(2)

Here, ln
�

r
2k

�
is approximated with the following approximation method given by Hart [57].

The polynomials are given in the form

p(r) =
nX

i=0

pi · ri =
nX

i=0

(b · 10c)i · ri

where pi is the i-th coe�cient given in the form b · 10c. Following table 5.12, provides

parameters c, b corresponding to the coe�cients of the polynomial. The polynomial that is

being used to approximate ln(x) is referenced as p2607 in the book [57].

5.6 Security Analysis

In this section, we will prove the security of our protocol, assuming honest majority of

parties. We consider the following two scenarios – in the first scenario the server is honest,

and in the second one the server colludes with some corrupted users.

5.6.1 Semi-Honest Adversary

In this section, we will prove the security of our protocol against semi-honest adversary.

Theorem 12. The protocol ⇡PP-FL (Figure 5.2) securely realizes the ideal functionality FPP-FL (Fig-

ure 5.1) with abort, under honest majority.

Proof: To prove the theorem, we consider the following two cases: honest server (b = 0),

and corrupted server (b = 1) that is colluding with some corrupted users.

Let C be the set of corrupted users and U 0 be the parties that are alive in the last round

of the protocol, whom their inputs will be used for the aggregation. To prove security, we
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construct a simulator S that interacts with the honest parties and the ideal functionality

FPP-FL, and simulates the view of the corrupted parties. We first describe our simulator S

as follow:

Simulator in the case of Honest Server: we describe the simulator as follows.

Key Distribution- For every honest party h 2 U \ C, S simulates h by following the KeyGen

honestly and sends the public key pkh to all the corrupted users.

Sharing Mask Seeds- S simulates each honest party h by following the KeyAgree honestly

to obtain pairwise mask seed ph,c between honest user h and corrupted user c 2 C. To

simulate Shamir-shares of mask values of honest users, S sends uniformly random values

to corrupted parties.

Sharing Noise Seeds- S simulates the Shamir-shares of the two seeds (from each honest user)

by random values, and sends them to the corrupted parties.

Finally, S calls the ideal functionality and learns (z, {Ui}i2[5]). S then discard, according

to the drop out pattern in {Ui}i2[5]), the prior simulated messages of the honest parties, i.e.,

excluding the simulated messages for a party after the round it drops out. We notice that

this simulation strategy is independent of the semi-honest adversary’s behavior. Therefore,

we can first simulate all the messages of the honest parties, and discard some of them after

learning who dropped out in which round. As there is no further message sent to the

corrupted users, S simply output this view.

Next, we are going to prove that the ideal experiment interacting with the simulator is

indistinguishable from the real experiment interacting with the adversary.

Lemma 1. For any polynomial-time semi-honest adversary A that corrupts at most n/2 users (but

not the server), the random variable ����⇡,A is identical to that of �����FPP-FL,S .

Proof: [Sketch.] The only di�erence between the real and the ideal experiments is the gen-

eration of the Shamir secret shares (in the steps Sharing masked seeds and sharing noise

seeds). Since the semi-honest adversary only corrupts a minority of the users, by the secu-

rity property of Shamir Secret Sharing Scheme, the distribution of the shares received by
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the adversary is identical to the random distribution. Thus, the simulation is perfect.

Simulator in case of corrupted server: The simulator begins by submitting input 0 to the

functionality on behalf of all malicious parties. The simulator learns (z, {Ui}i2[5]), where

z is a noisy sum of the honest inputs. The simulator simulates the first three steps of the

protocol – key distribution, the sharing of mask seeds, and the sharing of noise seeds – by

executing the protocol honestly on behalf of the live sub-set (Ui at protocol step i) of honest

users.

Computing Double-masked Input: S simulates random {yu}u2U 0\C under the constraint:

X

u2U 0\C

yu = z +
X

u2U 0\C,v2U\U 0

G(pv,u) +
X

u2U 0\C

G(qu)

+
X

u2U 0\(T [C)

G(s(1)u )�
X

u2T \C

⇣
G(s(2)u ) + ( ~⌘u

`µ � �u)
⌘
.

Input Aggregation and Unmasking: The simulator generates the honest messages as the pro-

tocol, using the seeds that were previously generated.

Lemma 2. (Semi-Honest server)

For any polynomial-time semi-honest adversary A that corrupts at most n/2 users and the server,

the random variable ����⇡,A is identical to that of �����FPP-FL,S .

Proof: We prove the above theorem by a hybrid argument. We define a simulator S

through a series of subsequent modifications to the random variable ����, so that any two

subsequent random variables are computationally indistinguishable.

������0 This random variable is distributed exactly as ����, the joint view of the parties

P in a real execution of the protocol.

������1: Generate {yu}u2U 0\C randomly, and later on program the random oracle to
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make the outcome consistent.

������2: the ideal experiment.

5.6.2 Malicious Adversary

In this section, we will prove the security of our protocol against malicious adversary,

assuming honest majority of parties, considering both scenarios; in the first scenario the

server is honest, and in the second one it colludes with corrupted users.

Theorem 13. The protocol ⇡⇤PP-FL (Figure 5.6) securely realizes the ideal functionality F⇤
PP-FL (Fig-

ure 5.5), under honest majority.

Proof: We prove the theorem for the two cases, honest server (b = 0), and corrupted

server (b = 1) that is colluding with corrupted users.

Let C be the set of corrupted users and U 0 be the parties that are alive in the last round

of the protocol, whom their input will be used for the aggregation. To prove security, we

need to construct a simulator S that interacts with honest parties and the ideal functionality

FPP-FL, and simulates the view of corrupted parties. We first describe our simulator S as

follow:

Simulator in the case of Honest Server: we describe the simulator as follows.

Key Distribution- For every honest party h 2 U \ C, S simulates h by following the KeyGen

honestly and sends the public key pkh to all the corrupted users.

Sharing Mask Seeds- S simulates each honest party h by following the KeyAgree honestly

to obtain pairwise mask seed ph,c between honest user h and corrupted user c 2 C. To

simulate Shamir-shares of mask values of honest users, S sends uniformly random values

to corrupted parties.

Committee Assignment- S simulates the Functionality FCommitteeAssign to form the committee

T .

Noise Sampling- S simulates the Functionality FNoiseSample honestly, and obtains shares of

sampled noise. Each committee member gets its own share of noise.
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⇡PP-FL

Parameters: Let t be the dropout threshold parameter, and m 2 N be the size of the
committee.
Inputs: Each user u 2 U holds as input a private vector xu 2 ZR, with length µ. The
server has no input and can communicate with the users through secure channels.
Protocol:

• Key Distribution:

– User u calls (sku, pku) KeyGen(pp) to obtain its public and private key
pair.

– User u sends its public key pku to the server.
– Server broadcast the list of public keys to all users.

• Sharing Mask Seeds:

– User u generates ’self’ mask seed qu.
– User u computes the t-out-of-n Shamir-secret shares of self mask seed
hquiv and secret key hskuiv for v 2 U , and sends them to the server.

– Server broadcasts each share of mask seed and that of secret key to the
corresponding user.

• Sharing Noise Seeds:

– Useru samples a noise vector from a DP distribution for each of theµ slots
in user input ~⌘u`µ  D, where ` is the bit-length of each noise value.

– User u chooses two random seeds s(1)
u , s(2)

u , computes t-out-of-n Shamir-
secret shares of them hs(1)

u iv , hs(2)
u iv , and sends the shares to the server.

Server broadcasts them as shares of noise seeds to all users.
– User u computes 3-out-of-3 sharing of 0`µ using a PRG G, such that:

G(s(1)
u )�G(s(2)

u )� �u  0`µ

– User u uses �u to mask noise vector ~⌘u`m by computing ~⌘u
`µ � �u, sends

the masked noise to the server.

• Computing Double-Masked Input:

– User u calls pu,v  KeyAgree(sku, pkv) to obtain a ’pairwise’ mask seed
between u and v.

– User u computes yu and sends it to the server.

yu := xu +
X

v2U
G(pu,v) + G(qu) + G(s(1)

u )

Figure 5.2: Protocol for Privacy-Preserving Federated Learning against semi-honest adver-
sary
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⇡PP-FL

• Input Aggregation and Unmasking:

– Server receives yu from all u 2 U 0 ✓ U . (Parties in U \ U 0 are assumed to
have aborted.)

– Each user u sends a list of masking shares of other users to the server,
hqviu for all v 2 U 0, and hpv,uiu for all v 2 U \ U 0.

– Server randomly chooses a committee T ⇢ U 0 of size m, asks users in
T to send their mask seed s(2)

u , and asks other users U 0 \ T to send their
mask seed s(1)

u .
– Server aggregates yu values received from users, and unmask the result

after collecting at least t shares of each masking value.

z :=
X

u2U 0

yu �
X

u2U 0,v2U\U 0

G(pv,u)�
X

u2U 0

G(qu)

�
X

u2U 0\T

G(s(1)
u ) +

X

u2T

⇣
G(s(2)

u ) + ( ~⌘u
`µ � �u)

⌘

Output: z (noisy aggregated sum of users inputs).

Figure 5.3: Rest of the Protocol for Privacy-Preserving Federated Learning against semi-
honest adversary
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User�u Server

¬Send SXblic ke\V GeQeUaWe Ne\ SaLUV 
WaLW fRU eQRXgh XVeUV¬

GeQeUaWe VeOf PaVN VeedV 
SecUeW VhaUe ¬

¬BURadcaVW liVW Rf UeceiYed SXblic ke\V WR all XVeUV in 

¬Send VhaUeV Rf Velf maVk 
¬and VhaUeV Rf VecUeW ke\ WaLW fRU eQRXgh XVeUV¬

¬BURadcaVW¬UeceiYed VhaUeV WR all XVeUV in 

CRPSXWe SaLUZLVe PaVN 
CRPSXWe dRXbOe PaVNed LQSXW 

¬Send maVked inSXW WaLW fRU eQRXgh XVeUV¬

¬Send liVW Rf XVeUV in cRmmiWWee 

¬Send  fRU all , and  fRU all 

¬if  VendV¬¬  RWheUZLVe,¬ ¬
¬

RecRQVWUXcWV VecUeWV
CRPSXWe aggUegaWed YaOXe 

SaPSOe QRLVe YecWRU 
GeQeUaWe QRLVe PaVN VeedV

SecUeW VhaUe ¬¬
MaVN QRLVe YecWRU ZLWh ¬

¬Send VhaUeV Rf nRiVe maVk 

¬and maVked nRiVe WaLW fRU eQRXgh XVeUV¬

¬BURadcaVW¬UeceiYed VhaUeV WR all XVeUV in 

ChRRVe cRPPLWWee¬

Figure 5.4: Diagram of the protocol for Privacy-Preserving Federated Learning in Semi-
honest setting
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F⇤
PP-FL

Parameters: Let t be the dropout threshold parameter.
Inputs: Each user u 2 U holds as input a private vector xu 2 ZR, with length µ. The
server does not provide any input.
Functionality:

1. The functionality receives (xu, i) from each user, where i 2 {1, . . . , 5} indicates
that u 2 Ui \ Ui+1. We let U 0 = U4 denote the set of users for which xu is
included in the aggregation. (See Figure 5.8.)

2. If |U5|  t, output ?.

3. Sample noise value ⌘  D.

4. Compute z :=
P

u2U 0 xu + ⌘.

Output: Send (z, {Ui}i2[5]) to the server.

Figure 5.5: Ideal Functionality for Privacy-Preserving Federate Learning against malicious
adversary
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⇡⇤
PP-FL

Parameters: Let t be the dropout threshold parameter, and m 2 N be the size of the
committee T .
Inputs: Each user u 2 U holds as input a private vector xu 2 ZR, with length µ. The
server has no input and can communicate with the users through secure channels.
Protocol:

• Key Distribution:

– User u calls (sku, pku) KeyGen(pp) to obtain its public and private key
pair.

– User u sends its public key pku to the server.
– Server broadcast the list of public keys to all the users in U .

• Sharing Mask Seeds:

– User u generates ’self’ mask seed qu.
– User u computes the t-out-of-n Shamir-secret shares of self mask seed
hquiv and secret key hskuiv for v 2 U , and sends them to the server.

– Server broadcasts shares of mask seed and shares of secret key to all
users.

• Committee Assignment:

– Parties in U participate in committee assignment by calling T  
FCommitteeAssign(m).

• Noise Sampling:

– Parties in committee T call ([⌘]u, h[⌘]1iu, . . . , h[⌘]miu)  FNoiseSample, to
obtain shares of sampled noise.

• Computing Noisy Double-Masked Input:

– User u calls pu,v  KeyAgree(sku, pkv) to obtain a ’pairwise’ mask seed
between u and v.

– Let G be a PRG. If user u 2 T , it computes yu := xu + ⌃v2U 0G(pu,v) +
G(qu)+ [⌘]u, and if u 2 U \T computes yu := xu +⌃v2U 0G(pu,v)+G(qu).
It sends the value yu to the server.

• Input Aggregation and Unmasking:

– Server receives yu from all u 2 U 0 ✓ U .
– Each user u sends a list of masking shares of other users to the server, hqvi

for all live users v 2 U 0, and hpv,ui for all dropout users v 2 U \U 0. u also
sends its shares of noise value h[⌘]viu for all dropout users v 2 T \ U 0.

Figure 5.6: Protocol for Privacy-Preserving Federated Learning against malicious adver-
sary
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⇡⇤
PP-FL

– Server attempt to open pu,v ; if fails, it drops yu.
– Server attempt to open qu; if fails, request to receive pu,v ; if v is alive and

honest, it uses pu,v for unmasking; if v is alive and malicious, it drops
both yu and yv .

– Server aggregates the yu values received from users and unmask the re-
sult after collecting at least t shares of each masking value.

z :=
X

u2U 0

yu �
X

u2U 0,v2U\U 0

G(pv,u)�
X

u2U 0

G(qu)�
X

u2U 0,v2T \U 0

h[⌘]viu

Output: z (noisy aggregated sum of users inputs).

Figure 5.7: Rest of the Protocol for Privacy-Preserving Federated Learning against mali-
cious adversary

User�u Server

¬Send SXblic ke\V Generate key pairs 
Wait for enough users¬

Generate self mask seeds 
Secret share ¬

¬BURadcaVW liVW Rf UeceiYed SXblic ke\V WR all XVeUV in 

¬Send VhaUeV Rf Velf maVk 
¬and VhaUeV Rf VecUeW ke\ Wait for enough users¬

¬BURadcaVW¬UeceiYed VhaUeV WR all XVeUV in 

¬Send maVked inSXW 

¬Send  fRU all , and  fRU all 

¬  fRU all ¬ Reconstructs secrets
Compute aggregated value 

Compute pairwise mask 
Participate in Committee Assignment

to form committee 
If , sample noise

Compute noisy double masked input 

Figure 5.8: Diagram of the protocol for Privacy-Preserving Federated Learning in Malicious
setting
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FNoiseSample

Parameters:
Let T be the committee of size m, and t be the dropout threshold parameter.
Inputs: None.
Functionality:

1. Sample noise value ⌘  D.

2. Compute (m,m)-Additive shares of the noise value, ⌃u2m[⌘]u  ⌘.

3. Compute (t,m)-Shamir shares of each [⌘]u, h[⌘]ui1, . . . , h[⌘]uim  [⌘]u.

Output: Party u receives [⌘]u, h[⌘]1iu, . . . , h[⌘]miu.

Figure 5.9: Ideal Functionality for Malicious-Secure Noise Sampling

⇡NoiseSample

Parameters: Let T be the committee of size m, and t be the dropout threshold pa-
rameter.
Inputs: None.
Protocol:

• Party u in committee T executes (sku, pk, evk)  TFHE.KeyGen(pp) to obtain
its secret key sku, the common public key pk, and the evaluation key evk.

• Party u Shamir-secret shares their secret key hskuii to other parties for i 2 U .

• Party u chooses a random string ↵u as an initial randomness to generate DP
noise, encrypts it �u  TFHE.Encpk(↵u), and broadcasts �u to other parties in
T .

• Parties in T call � TFHE.Evalevk(�1, . . . ,�m, CDP) and sample DP noise.

• Party u receives its own additive share of noise by locally decrypting DP noise
� with their own secret key, [⌘]u  TFHE.Decsku(�).

• Party u obtains threshold shares of dropout users’ noise, by locally decrypting
DP noise � with their threshold shares of dropout user’s secret key, h[⌘]iiu for
i 2 T  TFHE.Dechskiiu(�).

Output: Party u receives [⌘]u, h[⌘]1iu, . . . , h[⌘]miu.

Figure 5.10: Protocol for Malicious Secure Noise sampling using TFHE
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CDP

Inputs: random strings au.
Protocol:

• Reconstruct initial randomness from users’ additive shares required to gener-
ate DP noise a 

Pm
u=1[a]u

• Sample DP noise ⌘  D(a)

Output: ⌘.

Figure 5.11: Circuit for Noise Sampling

Figure 5.12: Approximation of ln(r) ⇡ p2607(r) with r 2 [1/2, 1] p(r) =
Pn

i=0(b · 10c)i · ri
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Chapter 6: Conclusion

In this dissertation, we demonstrated how to design and develop secure and privacy-preserving

machine learning frameworks based on secure computation techniques in two di�erent ad-

versarial models, semi-honest and malicious-secure settings, in which some small informa-

tion is leaked to the computation servers, but this leakage is proven to preserve di�erential

privacy for the users that have contributed data. More technically, the leakage is a ran-

dom function of the input, revealed in the form of access patterns to memory. In these

frameworks, we leverage the Graph-Parallel Computation techniques to reduce the overall

running time. These frameworks follow a centralized architecture in which computation

servers collects users private data in order to compute on them.

We also presented our secure and privacy-preserving machine learning solutions based

on Federated Learning architecture, in which the sensitive data never leaves the user’s sys-

tem, such that, users train a local model on their private data and only share their learn-

ing parameters with the computation servers to aggregate and train a global model on all

participants data. We designed and developed secure and privacy-preserving federated

learning frameworks that are secure against semi-honest and malicious-secure corruption,

with low communication overhead and robust against users dropouts. We leverage secure

computation and di�erential privacy techniques to preserve the privacy of user’s data as

well as trained model.
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Chapter 7: Future Work

We finish this dissertation by highlighting some open research problems for future work.

7.1 Deferentially Private Leakage in Secure Computation

In Chapter 3 and Chapter 4 we designed privacy-reserving solutions for a special class of

machine learning algorithms that can be modeled in a graph parallel computation frame-

work, such as matrix factorization and pagerank. Our work demonstrates that di�erentially

private leakage is useful, in that it provides opportunity for more e�cient protocols, and the

protocol we present has broad applicability. But we leave open the very interesting question

of determining, more precisely, for which class of computations this leakage might be help.

Graph-parallel algorithms have the property that the access pattern to memory can be eas-

ily reduced to revealing only a histogram of the memory that is accessed, and histograms

are the canonical example in the di�erential privacy literature. Looking at other algorithms

will likely introduce very interesting leakage functions that are new to the di�erential pri-

vacy literature, and security might not naturally follow from known mechanisms in that

space.

7.2 Security and Privacy in Deep Learning

The concept of Federate Machine Learning presented in Chapter 5, can be used with any of

these learning mechanisms as the underlying learning scheme that user’s use to train their

local model, and send their learning parameters to the server to aggregate. Deep Learning

algorithms are a class of popular and powerful techniques in machine learning for extract-

ing complex models from data and are a great candidate to build their secure version that
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could train well on encrypted data. Protecting privacy of deep learning model requires

both preventing leakage of the training data during the learning process, and ensuring

that the final model does not reveal unintended private information. There are many at-

tack methods that target deep learning models, such as record or participant membership

inference attacks [33, 58] or model inversion attacks [32]. For future research direction,

we can focus on several di�erentially private deep learning schemes. Di�erential privacy

guarantees that the output of deep learning model does not show significant statistical

di�erences when the model was trained on adjacent datasets. The goal of the DP mecha-

nism is to provide privacy protection for the training dataset, preventing privacy leakage in

white-box or black-box scenarios. There are two main architectures to deploy deep neural

networks, centralized and federated settings, and we propose several research questions

for each scenario.

(A) Security and Privacy in Centralized Deep Learning

In an interesting attempt to train privacy-aware deep learning models with a centralized

server (curator), [59–61] used di�erential privacy to protect the privacy of training data by

adding noise to the learning parameters that result during the training process, aka. gradi-

ent descent values. One of the main limitations of this framework is that it assume there is

always a trusted server (curator) that can access sensitive data and add DP noise to them,

only protecting the final model from external adversaries. In most real world applications

there is no trusted server. We can easily replace the server with a generic, fully oblivious

MPC solution, however it would require high overhead since it has to touch every training

sample in each iteration to hide the access pattern. Usually in most training mechanisms,

only a very small fraction of samples is used in each iteration. Therefore, a good research

question could be to investigate if we replace the curator with a MPC protocol, since we

are revealing a subset of training samples in each iteration, are we ruining the e�ect of our

deployed di�erential privacy mechanism and consequently the privacy of the final model?
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Do we need full memory obliviousness to restore privacy?

(B) Security and Privacy in Federated Deep Learning

Training a deep neural network on a large dataset can be time- and resource-consuming.

A recent approach is to partition the training dataset, concurrently training separate mod-

els on each subset, and exchanging parameters via a parameter server. During training,

each local model pulls the parameters from this server, calculates the updates based on its

current batch of training data, then pushes these updates back to the server, which again

updates the global parameters. One of the recent works on the idea of collaborative learn-

ing with privacy protection is proposed by Shokri and Shmatikov [31]. The critical problem

in such a scheme is that increment of training iterations and the addition of noise in each

iteration, has a high negative e�ect on model utility. [62]. An interesting research question

here is that can we use secure computation to replace the di�erential privacy mechanism

that adds noise to parameter selection step, and how much would this improve in terms of

utility?
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