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The troposphere and stratosphere are the two closest atmospheric layers to the Earth’s 

surface. These two layers are separated by the so-called tropopause. On one hand, these 

two layers are largely distinguished, on the other hand, lots of evidences proved that 

connections are also existed between these two layers via various dynamical and 

chemical feedbacks. Both tropospheric and stratospheric waves can propagate through 

the tropopause and affect the down streams, despite the fact that this propagation of 

waves is relatively weaker than the internal interactions in both atmospheric layers. 

Major improvements have been made in numerical weather predictions (NWP) via data 

assimilation (DA) in the past 30 years. From optimal interpolation to variational methods 

and Kalman Filter, great improvements are also made in the development of DA 

technology. The availability of assimilating satellite radiance observation and the 
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increasing amount of satellite measurements enabled the generation of better atmospheric 

initials for both global and regional NWP systems.  

The selection of DA schemes is critical for regional NWP systems. The performance of 

three major data assimilation (3D-Var, Hybrid, and EnKF) schemes on regional weather 

forecasts over the continental United States during winter and summer is investigated. 

Convergence rate in the variational methods can be slightly accelerated especially in 

summer by the inclusion of ensembles. When the regional model lid is set at 50-mb, 

larger improvements (10~20%) in the initials are obtained over the tropopause and lower 

troposphere. Better forecast skills (~10%) are obtained in all three DA schemes in 

summer. Among these three DA schemes, slightly better (~1%) forecast skills are 

obtained in Hybrid configuration than 3D-Var. Overall better forecast skills are obtained 

in summer via EnKF scheme. An extra 22% skill in predicting summer surface pressure 

but 10% less skills in winter are given by EnKF when compared to 3D-Var. The different 

forecast skills obtained between variational methods and EnKF are mainly due to the 

opposite incremental features over ocean and mountainous regions and the inclusion of 

ensembles. Diurnal variations are observed in predictions. Variations in temperature and 

humidity are mainly produced by the one-time assimilation in a day and the variations in 

wind predictions are mainly come from model systematic errors.  

The assimilation of microwave and infrared satellite measurements alone is compared. 

Compared to microwave measurements, less than 1% extra performance skill is obtained 

over the tropopause when infrared measurements are assimilated alone. Large differences 

are observed in winter analysis when Hybrid scheme is applied. Compared to infrared 
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measurements, an averaged extra 5% performance skill is obtained when microwave 

measurements are assimilated alone. Predictions made by microwave configuration 

(MW) shows an extra 3% forecast skill than infrared configuration (IR) at early forecasts. 

Major differences between MW and IR are located over the tropopause and lower 

troposphere. Extra 3% and 15% forecast skills for the tropopause wind and temperature 

are obtained by assimilating microwave measurements alone, respectively. Infrared 

measurements show slightly better forecast skills at lower troposphere at later forecast 

lead times.  

The impacts of the extended stratospheric layers by raising regional model lid from 50-

mb to 10-mb and then to 1-mb and the assimilated stratospheric satellite measurements 

on tropospheric weather predictions are explored in the last section. An extra 10% 

performance skill over the initial tropopause is obtained by extending the model top to 1-

mb. Significant improvements (15~50%) in initials are obtained over tropopause and 

lower troposphere by assimilating stratospheric measurements. In the predictions, the 

stratospheric information can propagate through the tropopause layers and affect the 

lower troposphere after 2-3 days’ propagation. The major improvements made by the 

extended stratospheric layers and measurements are located in the tropopause. An 

averaged extra 5% forecast skill is obtained by raising the model lid from 10-mb to 1-mb.  

An extra 7% forecast skill is obtained in the tropospheric humidity by assimilating 

stratospheric measurements.  

Significant improvements in the tropopause and tropospheric predictions are observed 

when multi-satellite stratospheric measurements extended to 1-mb are assimilated in 
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regional NWP system. Major positive impacts on the tropospheric weather predictions 

are observed in the first 72-h forecast lead times due to the downward propagation of the 

microwave stratospheric measurements. A two-season comparison study shows that the 

assimilation of microwave stratospheric measurements extended to 1-mb will lead to an 

adjusted stratospheric temperature distribution which may related to an adjusted BDC. 

Small impacts on the tropospheric general circulations are also found. The tropospheric 

forecast skills are slightly improved in response to the stratospheric initial conditions and 

adjusted tropospheric general circulations. For the prediction of heavy precipitation 

events, an extra 14% forecast skill is obtained when the microwave stratospheric 

measurements extend to 1-mb are assimilated. The results obtained in this thesis indicate 

that the assimilation of satellite microwave measurements has the advantages for short-

term regional weather forecast using ensemble related data assimilation scheme. Also, 

this thesis proposed that the assimilation of microwave stratospheric measurements 

extended to 1-mb can slightly improve the tropospheric weather forecast skills as a result 

of the tropospheric general circulations responded to the adjusted stratospheric initials. 
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CHAPTER ONE INTRODUCTION 

Downward propagation of stratospheric waves is relatively weaker the internal 

interactions in the troposphere. However, perturbations existed in both troposphere and 

stratosphere can strongly affect the circulations in both atmospheric layers (Garcia, and 

Randel, 2008; Calvo, et al., 2010; Kolstad, et al., 2010). The propagation of stratospheric 

perturbations may have significant impacts on the tropospheric weather forecasts.  

In the fact that most of the major weather phenomena are occurred in the 

troposphere, weather forecasts are mainly based on tropospheric atmospheric states. In 

this study, the impacts of the stratospheric information on the tropospheric weather 

forecasts are investigated by assimilating remote sensed stratospheric observations.  

1.1 Brief Introduction of Numerical Weather Prediction 
For a considerable period of time, weather forecasting is mainly relied on the 

subjective intuition of weather forecasters until the illumination of numerical weather 

prediction (NWP) systems in 1950s (Bergovind and Döös, 1955; John, and Peter, 2006, 

Chapter 7). Different from other fields of natural sciences, controlled experiments are 

hard to perform in meteorology. As a result, numerical experimentation becomes more 

and more important. NWP systems view the weather as a dynamical system which is 

strongly related to physics, fluid dynamics, and meteorology and governed by a set of 

hydrodynamic partial differential equations (PDEs) which governs the motions of 

atmosphere. Multiple range of weather forecast products are carried out by national 
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meteorological centers all over the world using state-of-the-art supercomputers. As the 

dramatic development of computing power, the magnitude of modern NWP system has 

reached ~109 dimensional space with over 60 vertical layers and as fine as 12 km 

horizontal grid resolution (e.g., the Global Forecast System (GFS) initially developed by 

J. Sela (1980, 1982)). Some of the world leading NWP centers are operationally 

providing global products with considerable quality to give a better description of the 

atmospheric dynamics and even atmosphere chemistry. These products such as GFS 

atmospheric predictions, European Center for Medium-Range Weather Forecasts 

(ECMWF) products (Gibson, 1997; Gregory, et al., 2000), Japanese Meteorological 

Agency Global Spectral Model (JMAGSM) (Saito, et al., 2006; Rajendran, et al., 2007), 

etc. again can be downscaled to regional applications as initial conditions (IC) and 

boundary conditions (BC) with even higher temporal (~1 hour) and spatial (~3 km) 

resolutions (Schwartz, et al., 2009) for a better understanding of the regional coupling 

impacts between atmosphere, chemistry, topography, etc. 

1.2 Data Assimilation in Numerical Weather Prediction 
As the developing of atmospheric physics, fluid dynamics, the use of governing 

equations with fewer and fewer approximations and significant improvements in 

parameterization application for some physics processes (e.g., cumulative physics, 

(Wootten, et al., 2016)), the NWP is becoming more and more accurate and also harder to 

make any further progresses. Hence, the accuracy of initial conditions became 

increasingly important. In another word, how could we get the right results if the inputs 

are wrong? The demand for the generation of initial conditions with better qualities has 

developed to a new branch of data analysis science: Data Assimilation. The development 
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of DA experienced the steps of simple spatial polynomial interpolation of observations, 

then to more sophisticated statistical methods namely variational methods and Kalman 

Filter (KF), etc. (Anderson, et al., 1998; Courtier, et al., 1998; Houtekamer P. L., and H. 

L. Mitchell, 1998; Rabier, et al., 1998; Klinker, et al., 2000; Mahfouf, et al., 2000; 

Rabier, et al., 2000; Anderson, 2001). Researchers also found that the information 

assimilated in the upstream regions can propagate down toward the downstream regions 

(Bergthorsson and Döös, 1955). Associated with the techniques of data thinning, nudging 

(Storch, et al., 2000), etc., the problem of non-uniformly geographic distributed 

observations (e.g., there are relatively dense observations over the densely-populated 

regions such as North America while fewer or non-existent at all over less-populated 

regions such as oceans, mountainous regions, polar regions, etc.) can be adjusted. The 

objective analysis produced by the data assimilation process greatly helped the 

forecasters to notify the detailed information within a limited region. With the steady 

increase of computing power, today’s operational NWP system can assimilate ~106 

observations four times per day in order to lead to an optimal analysis of the atmospheric 

state. The rapid growth of numerous observations especially the radiance/brightness 

temperature remote sensed from satellite instruments has driven the question of how to 

effectively assimilate new types of observations. The involve of the technology of 

innovation (as Kalman gain in Kalman Filter) (Migliorini, et al., 2008) calculations which 

lead to the direct assimilation of satellite radiances rather than indirect assimilation 

(direct and indirect assimilation will be introduced in section 4) of the retrievals (which 
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brings more uncertainties into the systems) have significantly improved the NWP 

forecasts. 

Dramatic improvements have been made in NWP forecasts since the use of the 

advancements described above. Figure 1 from the ECMWF center showed the 

improvements of 500 hPa geopotential height anomaly correlation coefficients when 

using data assimilation in global NWP forecast. The blue, red, greed, and yellow 

represent the forecast lead times of 3, 5, 7, and 10 days, respectively. The thick lines 

represent the northern hemisphere (NH) score, and the thin lines represent the southern 

hemisphere (SH). Larger improvements are made over the southern hemisphere (SH) 

with 2011 7-day forecast reaching the skill of 1980 3-day forecast. For the northern 

hemisphere (NH), significant improvements are also made such as 2011 5-day forecast 

can reach the skill of 1980 3-day forecast, and the 10-day forecast can reach the level of 

0.4. The improvements of forecast skills in southern hemisphere relative to the northern 

hemisphere (Fig. 1) is believed to be attributed to the large contributions of satellite 

observations over the southern hemisphere rather than conventional observations – for 

the truth that there are fewer conventional observations over the southern hemisphere 

(Simmons and Hollingsworth, 2002; Rabier, 2005). An overview of the DA algorithms 

will be described in chapter 2. 
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Figure 1 Improvements made at the 500 hPa geopotential height by assimilating satellite measurements starting 
from 1980s in global NWP forecast in the ECMWF center. (Collard et al., 2011). 

 

1.3 Regional Weather Predictability 
As defined by Delsole (2004), the predictability is the study of the extent to which 

events can be predicted. A so-called saturation value is defined as the mean square error 

increases with lead time and asymptotically approaches a finite value. When the errors 

are comparable to the saturation value, it is said that all the predictability is lost. The lack 

of atmospheric predictability is mainly due to the non-linear amplification (Garcia-Moya, 

et al., 2011). Also, a system becomes unpredictable when the climatological and forecast 

distributions are identical in every way. The degree of predictability depends on the 

degree to which the prior and posterior distributions differ. In modern NWP systems, the 

predictability is a problem of two dominant source of errors in the initial and boundary 
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conditions, which these uncertainties may amplify and spoil the forecast at a given lead 

time (Collins, and Allen, 2002).  

Many measurements have been developed to measure the predictability of 

weather forecasts. The most utilized measure of predictability is the mean square error or 

the root-mean square deviation (RMSD) of a forecast model. Other measurements such 

as relative operating characteristics (ROC) (Kharin, and Zwiers, 2003), Brier skill score 

and ranked probability skill score (Andreas, et al., 2007) also can give out the quantized 

values representing the predictability of weather forecasts. Delsole (2004 & 2005) 

discussed the usage of some of the popular measurements and pointed out the 

connections between these metrics. 

Data assimilation has significant impacts on the predictability of weather forecasts 

due to its contribution to the smaller errors in the initial and boundary conditions. Gelaro 

et al. (2000) showed that by assimilating geostationary satellite winds, the 48-h forecast 

skill in a downstream area can be improved due to the large positive impacts on the 

reduction of analysis errors. Hu et al. (2007) investigated that the assimilation of radar 

observations can improve the predictability of thunderstorms. And some recent 

researches showed that by using ensemble forecasting or involving in ensembles via data 

assimilation, the predictability can be improved due to a probabilistic representation of 

the atmospheric forecasts (Garcia-Moya, et al., 2011; Reinecke, and Durran, 2009). 

1.4 Distinct and Coupled Stratosphere and Troposphere 
One of the satellite observation advantages is the better representing of 

atmospheric profiles exceeding into high altitudes. This means the use of satellite 
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observations involves the connections between different atmospheric layers. Here we first 

introduce the differences and connections between the troposphere and stratosphere. 

1.4.1 The Distinctions between Stratosphere and Troposphere 
As we know that the troposphere and the stratosphere are the two closest 

atmospheric layers to the Earth’s surface. Until the found of the so-called tropopause by 

Léon Teisserenc de Bort and Richard Assmann in 1902 (Hoinka, 1997), the stratosphere 

is departed from the troposphere. These two layers are greatly distinguished by their 

thermal dynamics, chemistry compositions, and aerodynamics characteristics. For the 

differences of thermal dynamics, troposphere is usually known with a negative lapse rate 

(decrease of temperature with height) while stratosphere is known with a positive lapse 

rate (increase of temperature with height) mainly due to the strong absorption of the Ultra 

Violet (UV) bands of radiation by stratospheric ozone layer (Stocker, et al., 2001; Liao, 

2002). Due to the decreasing of temperature structure in troposphere, the large potential 

for atmospheric instability associated with convection lead to the happening of most of 

the synoptic phenomena or as known as weather systems (e.g., front systems, storms, 

hurricanes/typhoons). Because of the totally inverse temperature lapse rate, the 

stratosphere is thermally stable with significantly stronger horizontal motion than the 

vertical motion. 

Also, the troposphere and stratosphere are significantly difference in chemical 

composition mainly due to the gravity of the Earth (John, and Peter, 2006). Over 80% of 

the total air mass constructed the troposphere layer including the most important 

chemical species for us human beings. It is worth noting that almost all the greenhouse 
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gases (GHG) which contributed a lot to the global climate effect (e.g., carbon dioxide, 

water vapor, methane, etc.) have much higher concentration in the troposphere than that 

in the stratosphere except ozone which is primarily generated by the photochemical 

processes in the stratosphere (Chapman, 1930).   

On the aerodynamic aspect, different atmospheric circulations are the main reason 

for the distinguishing of the troposphere and the stratosphere. Atmospheric waves which 

spread on a broad range of scales play the main rolls in influencing the atmospheric 

circulations via the wave-mean flow interaction (Andrews, et al., 1987). Researches 

showed that most of the waves including the planetary waves resulted by the large scale 

topography and land-sea contrast, the gravity waves due to orographic perturbations, and 

the synoptic waves caused by regional baroclinic instability are generated in the lower 

troposphere because of the relatively unstable conditions in the troposphere favors the 

propagation of the waves throughout the vertical column at most scales (Dickinson, 1968; 

Sato, and Nomoto, 2015). While in the stratosphere, most of the waves are suppressed by 

the generally stable conditions and only some of the synoptic waves are active in the 

lowermost stratosphere (Justus, and Woodrum, 1973).  

1.4.2  The Connections between Stratosphere and Troposphere 
In addition to the differences between the troposphere and stratosphere, these two 

layers are also coupled through various dynamic and chemical interactions with 

increasing evidence even though this kind of coupling is much weaker than the inner 

actions among these two layers (Stohl, et al., 2003; Black, et al., 2006; Grise, et al., 

2009). The connection between these two layers are mainly controlled by the dynamic 

propagating of waves which across the tropopause into another layer, or the overshoots 
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pumping of momentum and energy from the troposphere into the stratosphere via diabatic 

processes (Matsuno, 1971; Xu, and Powell, 2015). The major atmospheric circulations 

and jet streams in the troposphere and lower stratosphere are concluded in Fig. 2 (Yang, 

2015). These meridional circulations and jet streams are strongly related to those major 

climate variabilities (e.g., volcanic eruption caused global cooling, etc.) and large scale 

synoptic events due to the significant transport of air mass and chemical components 

between different latitudes and longitudes. The primary circles in troposphere are the 

Hadley Cell (HC) in the lower latitudes, the Ferrel Cell (FC) in the mid-latitudes, and the 

Polar Cell (PC) in the high latitudes which are formed due to the unbalance of the 

radiation absorption in different latitudes and the Coriolis effect (John, and Peter, 2006). 

The subtropical jet (SJ) and the polar front jet (PFJ) are formed at the poleward edge of 

the Hadley Cell and roughly at the boundary between the Ferrel Cell and the Polar Cell, 

respectively. These two tropospheric jets (TJ) merge at some locations and times, while 

at other times they are well separated (Reiter, and Whitney, 1969). In the stratosphere, the 

major circulation is the Brewer-Dobson circulation (BDC) discovered by Brewer (1949) 

and Dobson (1956). At the lowermost stratosphere, the BDC is observed as 

hemispherically one cell with upwelling in tropics related to the tropical convections 

(TC) and downwelling in mid/high altitudes as showed in Fig. 2. While in the upper 

stratosphere, the BDC is usually observed as one cell over the globe with slightly 

upwelling towards the summer hemisphere and downwelling in the extratropical winter 

hemisphere. These circulations in both troposphere and stratosphere are influencing each 

other through different scales of perturbations (Cohen, et al., 2014). 
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Figure 2 General atmospheric circulations, jet streams, and synoptic phenomena in troposphere and lower 
stratosphere during North Hemisphere winter. (Yang, 2015). 

 

Firstly, as most of the waves are generated in the troposphere and some of them 

can propagate into the stratosphere, the stratosphere circulations are strongly influenced 

by the perturbations originated within these tropospheric waves. As Haynes, et al. (1991) 

investigated that a “downward control” principle can express the critical part of the 

dynamical transportations of ozone and water vapor between troposphere and 

stratosphere, and the extratropical pump of planetary eddies in tropospheric baroclinic 

zones (Holton et al. 1995) and the tropical pump of planetary and gravity eddies 

associated with tropospheric deep convection (Norton, 2006) are the main factors for the 
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driven of stratospheric BDC. And recently, the discovery of the acceleration of BDC 

caused by the anomalies resulted from large-scale climate events such as GHGs related 

Global warming, and the El Niño and Southern Oscillation (ENSO) highlighted the 

impacts from troposphere on stratosphere circulations (Garcia, and Randel, 2008; Calvo, 

et al., 2010). Also, Sjoberg and Birner (2012) found that the sudden stratospheric 

warming (SSW) events are normally generated by strong heat flux anomalies in the 

troposphere, and this SSW information also has impacts on later tropospheric weather 

predictions (Hamilton, 1993; Charlton, et al., 2004).  

Similarly, stratospheric perturbations also have significant impacts on some 

tropospheric events. The stratospheric perturbations are usually connected with the 

Northern Annular Mode (NAM) such as sudden stratospheric warming can interact with 

the tropospheric circulation by weakening the NAM which leads to the deceleration and 

equator shifts of the tropospheric jets (Lee, and Feldstein, 2013), and weak polar vortex 

in the stratosphere also can interact with the NAM and the Northern Atlantic Oscillation 

(NAO) in the troposphere which can lead to extremely cold winters (Kolstad, et al., 

2010).  

1.4.3 Assimilation of the  Stratospheric Observations 
The troposphere and stratosphere are highly isolated from each other with a so-

called tropopause between these two layers while at the same time these two layers are 

also connected with a lot of interactions happening between them such as some of the 

planetary waves can propagate through the tropopause into the other layer. As the 

valuable information obtained in the stratosphere and the impact on the weather forecasts, 

and because of the abundance satellite observations in the early 2000s, most of the NWP 
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models have raised their model lids for a better assimilation of the stratospheric 

radiance/brightness temperature and ozone data sets (Swinbank, and O’Neill, 1994).  

In the 1990s, some meteorological centers began to assimilate the stratospheric 

constituents. Strong attentions have been paid to the assimilation of ozone in order to 

develop the ozone and UV-forecasting capabilities, to monitor stratospheric ozone to 

track the evolution of the stratospheric composition, and to improve the skills of 

stratospheric and tropospheric forecasts by a better representation of stratospheric 

temperature and winds (Kalnay, 2003; Lahoz, et al., 2007). 

The stratosphere meteorological data is also assimilated by some meteorological 

centers. It has been evaluated that the assimilation of stratospheric information has a 

positive impact on the tropospheric weather forecasts by generating a better initial 

condition including valuable stratospheric information. In 1990, beside the beginning of 

assimilation of stratospheric constituents, Boville and Baumhefner found that both Root 

Mean Square (RMS) and systematic errors can develop rapidly in the lower stratosphere 

with some propagation into the troposphere for mid-range forecasts (10-30 days) while 

the errors will be relatively small during the first 10 days using the general circulation 

models (GCM) with both 15 vertical levels below and above 10-mb (Boville, and 

Baumhefner, 1990), and when the model is set up with a lower upper boundary, the error 

growth in the troposphere is slightly greater than the model with higher lids.  

1.5 Satellite Measurements 
With the rapid development of technology, a group of satellites including polar 

satellites and geostationary satellites are observing the entire globe continuously. Remote 
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sensing technology is now capable of observing land surface parameters, such as surface 

reflectance, soil moisture, as well as estimating atmospheric products such as wind, 

precipitable water, etc. (Smith, et al., 2015).  

In the latest NWP systems, most of the observations used for global data 

assimilation are remote sensed via satellite sensors (Thépaut, 2003; Migliorini, et al., 

2008). With the help of over 35 geostationary and polar satellites including the newly 

launched Suomi National Polar-Orbiting Partnership (Suomi-NPP) carrying Advanced 

Technology Microwave Sounder (ATMS) and Cross-track Infrared Sounder (CrIS), NWP 

centers can continuously receive key Earth system parameters for a better generation of 

forecasting products. (Smith, et al., 2015). As shown in Fig. 1.1, the dramatic 

improvements have been made in the global NWP system with the help of satellite data 

assimilation especially over the southern hemisphere. Also, some researches showed that 

satellite radiance data assimilation has the potential advantages in improving the forecast 

of weather systems in regional models (Wan, et al., 2009; Xu, et al., 2009; Wan, and Xu, 

2011; Xu, and Powell, 2012; Bao, et al., 2015). 

1.6 Objectives and Outlines 
As shown in Fig. 3, we will achieve three objectives by rising the model lid step-

by-step to 1-mb with the help of data assimilation. The first goal of this study is to 

evaluate the performance of three major DA schemes namely the 3D-Var, Hybrid, and 

EnKF on regional weather forecast system. To reach this goal, we perform DA 

experiments on a U. S. continental domain configuration with a general model lid at 50-
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mb during both winter and summer. The statistics results will be analyzed to evaluate the 

predictabilities of these three major DA schemes. 

The second goal is to investigate the impacts of infrared and microwave satellite 

measurements on regional NWP system when assimilated alone. The satellite instruments 

will be classified into infrared and microwave classes and then be brought into the 

weather forecast system separately via DA system. The model lid firstly be raised here 

from 50-mb to 10-mb to include more satellite stratospheric observations.  

The third goal, also the major goal of this study is to elucidate the quantified 

impacts of assimilated microwave stratospheric measurements on regional NWP systems. 

To reach this goal, part of the results from the first two goals will be involved here. The 

regional model lid is raised again from 10-mb to 1-mb. The microwave satellite channels 

are classified into stratospheric and tropospheric channels. The results are brought out via 

a comparison of the stratospheric channels and tropospheric channels when assimilated 

alone. 
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Figure 3 Flow chart of this thesis. 
 

Chapter 2 reviews the development of some major data assimilation algorithms, 

satellite observations, and the assimilation of satellite radiance/brightness temperature in 

NWP system. Chapter 3 introduces the regional weather model, the data assimilation 

system, data and experimental set-up. Then the main subject of this thesis, to investigate 

the impacts of extra stratospheric microwave satellite observations on regional NWP 

system, is described in Chapter 4 to 6. Chapter 4 examines the performance of applying 

different DA algorithms on regional short-range weather forecasts in two seasons (winter 

and summer), and a selection of DA algorithms on specified conditions will be 

summarized in the end of Chapter 4. In Chapter 5, the model lid will be first raised from 

50-mb to 10-mb, and the performance of infrared and microwave observations when 

assimilated alone will be examined. In chapter 6, the model lid will be raised again to 1-

mb and the impacts of extra stratospheric information on regional NWP system will 

investigated. Extra experiments involving a selection of tropospheric and stratospheric 
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microwave channels will be taken out to investigate the impacts of extra stratospheric 

microwave information on tropospheric weather forecasts. At last, a diagnostic method 

called forecast sensitive to observations (FSO) technique is applied on the regional scale 

aiming at bringing out an optimal selection of microwave channels. A conclusion of the 

major findings of this thesis is given in Chapter 7.
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CHAPTER TWO LITERATURE REVIEW OF DATA ASSIMILATION AND 
SATELLITE OBSERVATIONS 

Data assimilation technology has been developed for years since its large 

contributions to NWP systems. In this chapter, some major DA algorithms are firstly 

reviewed. The theoretically advantages and disadvantages of each DA algorithm are 

compared. A set of satellite observations and the assimilation of these satellite 

observations are also reviewed in this chapter.  

2.1 Review of the Data Assimilation Algorithms 
With the less approximations and more sophisticated physical and dynamical 

processes, and the dramatic increased computational resources, NWP systems became 

more and more accurate and now is usually described as an initial value problem 

(Epstein, 1968; Berri, and Paegle, 1990; Badger, and Hoskns, 2001): do bad initial 

conditions lead to good forecasts? The answer is absolute no, the accuracy of the forecast 

is largely dependent on the quality of the initial atmospheric state because the forecast is 

produced by propagating forwards the estimated state of the atmosphere using physical 

and dynamical equations. So, a new branch of atmospheric science was born in the 1950s 

– Data Assimilation. DA can be described as the science of combining geo-physically 

measured observations and prior information to produce a statistically optimal estimate of 

the true state. The DA methods started from simple interpolation, to Optimal 

Interpolation (OI), then to more comprehensive Variational Data Assimilation, and 
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Kalman Filter, and now the involve of ensembles enabled the inclusion of flow-

dependent information. In this section, we will review the optimal interpolation, some 

variational data assimilation algorithms, and Kalman Filter and Ensemble Kalman Filter. 

2.1.1 Optimal Interpolation 
The Optimal Interpolation (OI) equations are original developed by Eliassen 

(1954), and Gandin (1963) derived the multivariate OI equations and applied them to 

objective analysis in the former Soviet Union. It can be shown later that the three-

dimensional variational is equivalent to the OI problem, except that the method to solve 

the problem is quite different and advantageous for operational systems. 

Consider the complete NWP problem of finding an optimum analysis of a field of 

model variables 𝒙𝒙𝑎𝑎 by giving a background field variable 𝒙𝒙𝑏𝑏 at grid points and a set of p 

observations 𝒚𝒚𝑜𝑜 available at irregularly spaced points 𝒓𝒓𝑖𝑖 in which 𝒙𝒙𝑎𝑎 and 𝒙𝒙𝑏𝑏 are vectors 

of length n, the product of number of points times the number of variables, and the 

observational field 𝒚𝒚𝑜𝑜 is a vector of p, the number of observations. The unknown analysis 

and the known background can be both 2-dimensional fields of a single variable and 3-

dimensional fields of the initial conditions of all the model prognostic variables. And the 

observations 𝒚𝒚𝑜𝑜 is different from the model variable by: 

1) Being located at different points, and 

2) By possibly being indirect measures of the model variables, such as radar reflectivity 

and Doppler radar radial velocity, satellite radiances, and Global Positioning System 

(GPS) atmospheric refractivity. 



 

19 
 

 

Then the OI equation (Eq. 1) is described as the background plus the innovation 

weighted by optimal weights which are determined to minimize the analysis error 

variance:  

 

Equation 1 OI algorithm 
𝒙𝒙𝑎𝑎 =  𝒙𝒙𝑏𝑏 + 𝑾𝑾�𝒚𝒚𝟎𝟎 − 𝐻𝐻(𝑥𝑥𝒃𝒃)� =  𝒙𝒙𝑏𝑏 + 𝑾𝑾𝑾𝑾  

 

The weights 𝑾𝑾 are given by a matrix of dimension (𝑛𝑛 × 𝑝𝑝). 𝐻𝐻 is the forward 

observational operator which can be nonlinear, converts the background field which is 

the model space into the observed first guesses which can be understood as the 

measurement space. The vector 𝒅𝒅 with length p, is called the “innovation” or 

“observational increments” vector which is defined as the differences between the 

observation and the background mapped to the observational point via forward operator 

𝐻𝐻. It is worth noting that in Kalman Filter process, the weight matrix 𝑾𝑾 is also called the 

gain matrix 𝑲𝑲, and the innovation is also called the Kalman gain matrix.  

In this approach, the background errors (Eq. 2), analysis errors (Eq. 3) and 

observational errors (Eq. 4) can be defined as follows: 

 

Equation 2 Background errors 
𝜀𝜀𝑏𝑏(𝑥𝑥, 𝑦𝑦) = 𝒙𝒙𝑏𝑏(𝑥𝑥,𝑦𝑦) − 𝒙𝒙𝑡𝑡(𝑥𝑥, 𝑦𝑦)                          

 

Equation 3 Analysis errors 
𝜀𝜀𝑎𝑎(𝑥𝑥,𝑦𝑦) = 𝒙𝒙𝑎𝑎(𝑥𝑥, 𝑦𝑦) − 𝒙𝒙𝑡𝑡(𝑥𝑥,𝑦𝑦)                          
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Equation 4 Observational errors 
𝜀𝜀𝑜𝑜𝑜𝑜 = 𝒚𝒚𝑜𝑜(𝒓𝒓𝑖𝑖) − 𝒚𝒚𝑡𝑡(𝒓𝒓𝑖𝑖) = 𝒚𝒚𝑜𝑜(𝒓𝒓𝑖𝑖) −𝐻𝐻(𝒙𝒙𝑡𝑡)         

 

As the truth is remained unknown, and thus we can’t get the background errors, 

analysis errors, and observational errors directly but through a number of assumptions 

about their statistical properties: 

1) The background and observations are assumed to be unbiased, 

2) The background is a good approximation of the truth, so the analysis and the 

observations are equal to the background values plus small increments, 

3) The background error covariance 𝑩𝑩 (a matrix of size n × n) and the observation error 

covariance 𝑹𝑹 (a matrix of size p × p) are assumed to be known in IO analysis, and  

4) The observation and background errors are uncorrelated. 

These four assumptions are the major assumptions in DA processes, and after 

these assumptions, the analysis error covariance 𝑷𝑷𝑎𝑎 can be minimized through the 

optimal choice of weights.2 

2.1.2 Three-Dimensional Variational Assimilation (3D-Var) 
In OI analysis, it is the optimal weight matrix 𝑾𝑾 that minimize the total analysis 

error variance 𝑷𝑷𝑎𝑎. In 1986, Lorenc found that this analysis is equivalent to a specified 

variational assimilation problem which can be described as find the optimal analysis 𝒙𝒙𝑎𝑎 

field that minimizes a (scalar) cost function (Eq. 5). As shown in Eq. 5, the cost function 

is defined as the distance between the analysis variable 𝒙𝒙 and the background 𝒙𝒙𝑏𝑏, 
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weighted by the inverse of the background error covariance, plus the distance to the 

observations 𝒚𝒚𝑜𝑜, weighted by the inverse of the observation error covariance (Courtier, et 

al., 1998): 

 

Equation 5 3D-Var cost function 

𝐽𝐽(𝒙𝒙) = 1
2

(𝒙𝒙 − 𝒙𝒙𝒃𝒃)𝑇𝑇𝑩𝑩−1(𝒙𝒙 − 𝒙𝒙𝒃𝒃) + 1
2
�𝒚𝒚𝑜𝑜 − 𝐻𝐻(𝒙𝒙)�𝑇𝑇𝑹𝑹−1(𝒚𝒚𝑜𝑜 − 𝐻𝐻(𝒙𝒙))     

 

Where: 𝑩𝑩 is the background error covariance matrix, and 𝑹𝑹 is the observational error 

covariance. The first term in the right-hand side of Eq. 5 denotes the background term, 

and the second term in the right-hand side of Eq. 5 denotes the observational term. In 

Lorenc (1986), to derive the idealized equations for finding the best analysis for NWP, 

the Bayesian probabilistic arguments are used. In practice, the solution for Eq. 5 is 

obtained by using iterative methods for minimization such as conjugate gradient or quasi-

Newton. For non-linearity models, the uniqueness of the minimization is usually not 

guaranteed, and because the minimization process is an iterative process, it can be very 

costly.  

In real operational systems, the use of 3D-Var involves a lot of advantages 

compared to OI method. For OI analysis, a number of approximations are required before 

the analysis processes, and analysis problem is solved locally, grid point by grid point, or 

small volume by small volume (Lorenc, 1981). This means a “radius of influence” is 

required and only the stations closest to the grid point or volume are selected to be 

analyzed. The background error covariance matrix has to be also locally approximated. 
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While for 3D-Var, due to the use of global minimization algorithms for minimization of 

the cost function (Lorenc, 1981), many simplifying approximations required by OI 

method are no longer necessary. The advantages of 3D-Var comparing to OI can be 

concluded as (more detailed are concluded in Dr. Xue’s lecture: 

http://twister.caps.ou.edu/OBAN2016/): 

1) No need for data selection and background error localization for 3D-Var 

The background error covariance matrix for 3D-Var, can be defined with a more 

general, global approach with fewer assumptions, rather than the local 

approximations used in OI analysis. While in 3D-Var, there is no data selection, all 

available data in the set-up time window are used simultaneously. This avoids 

jumpiness in the boundaries between regions that have selected different 

observations. 

2) Easy incorporation of balance constraints 

In 3D-Var, add constraints to the cost function without increasing the cost of the 

minimization becomes available. NCEP global model spin up time has been reduced 

by more than an order of magnitude dur to the use of the global balance equation 

(Parish and Derber, 1992). With 3D-Var it became unnecessary for the first time to 

perform a separate initialization step in the analysis cycle. 

3) Non-linear observation operators are available 

Nonlinear relationships between observed variables and model variables in the 𝐻𝐻 

operator in the minimization of the cost function are becoming available by 

performing the so-called "inner" and “outer” iterations, in which the “inner” iterations 
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with the linearized 𝐻𝐻 observation operator kept constant and the "outer" iterations is 

updated. 

The assimilation of radiances is now available using 3D-Var (Derber and Wu, 

1998). Also, quality control of the observations becomes possible which can improve the 

preconditioning of the problem in an iterative solution. 

2.1.3 Four-Dimensional Variational Assimilation (4D-Var) 
4D-Var is the direct generalization of 3D-Var to handle observations that are 

distributed in time dimension. The cost function is similar to 3D-Var (Eq. 6) (Rabier, et 

al., 2000), in which a forecast model is included in the observation operators which 

allows the comparison between the model state and the observations at the appropriate 

time. In order to seek the initial condition which best fit the observations, 4D-Var tries to 

use all available observations in the assimilation time interval. 

 

Equation 6 4D-Var cost function 

𝐽𝐽�𝒙𝒙(𝑡𝑡0)� = 1
2
�𝒙𝒙(𝑡𝑡0) − 𝒙𝒙𝑏𝑏(𝑡𝑡0)�

𝑇𝑇
𝑩𝑩0
−1�𝒙𝒙(𝑡𝑡0) − 𝒙𝒙𝑏𝑏(𝑡𝑡0)� + 1

2
∑ (𝐻𝐻(𝒙𝒙𝑖𝑖) −𝑁𝑁
𝑖𝑖=0

𝒚𝒚𝑖𝑖𝑜𝑜)𝑇𝑇𝑹𝑹𝑖𝑖−1(𝐻𝐻(𝒙𝒙𝑖𝑖) − 𝒚𝒚𝑖𝑖𝑜𝑜)  
 

Where observations are assumed to be distributed within a time interval (𝑡𝑡0, 𝑡𝑡𝑛𝑛), and the 

N indicates the number of observations distributed over the time interval. 

In 4D-Var, the assumption that the model is perfect is used and this assumption is 

a disadvantage of this algorithm which 4D-Var tends to give the same to older 
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observations at the beginning of the interval as to newer observations at the end of the 

interval.  

When compared to 3D-Var data assimilation systems, 4D-Var is a very suitable 

system for numerical forecasting as the forecast will be completely consistent with the 

model equations and the 4-dimensional of observations allowed the assimilate of 

observations at their correct time. However, because of the assumption of perfect model, 

4D-Var may experience big problems if the model errors are large. Also, the tangent 

linear and adjoint models are required in 4D-Var processes. This can be a lot of work if 

the forecast model is complex (with more complete physical parameterizations). And 

because it tends to use all the observations in the 4-dimensional space, 4D-Var requires 

the assimilation to wait for the observations over the whole 4D-Var time interval to be 

available before the analysis procedure can begin, whereas sequential systems can 

process observations shortly after they are available. This can delay the availability of 

analysis. 

2.1.4 Kalman Filter and Ensemble Kalman Filter (EnKF) 
In the formal methods, OI minimizes the expected analysis error covariance, 3D-

Var and 4D-Var solve essentially the same problem but minimizing a cost function. In all 

these methods, the forecast (or background) error covariance matrix is estimated once for 

all, as if the forecast errors were statistically stationary. However, there exists day-to-day 

variability dominated by baroclinic instabilities of synoptic time scales in the model 

forecast error (with a time scale of a few days) and the variability is about as large as the 

average error, this error is ignored in variational methods. Kalman Filter (KF) is an 
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advanced scheme which can deal with the evolution of the forecast error covariance and 

solve the errors caused by the day-to day variability (Kalman, 1960). 

The major differences between KF and 3D-Var is that the background/forecast 

error covariance in KF is advanced using the model itself, rather than estimating it as a 

constant covariance matrix. The original KF equations are (subscripts denote the time 

steps) (Evensen, 2003): 

 

Equation 7 Kalman Filter algorithms 
𝑥𝑥𝑛𝑛
𝑓𝑓 = 𝑴𝑴𝑛𝑛−1𝑥𝑥𝑛𝑛−1𝑎𝑎                                      (1) 
𝑷𝑷𝑛𝑛
𝑓𝑓 = 𝑴𝑴𝑛𝑛−1𝑷𝑷𝑛𝑛−1𝑎𝑎 𝑴𝑴𝑛𝑛−1

𝑇𝑇 + 𝑸𝑸𝑛𝑛−1          (2) 
𝑲𝑲𝑛𝑛 = 𝑷𝑷𝑛𝑛

𝑓𝑓𝑯𝑯𝑛𝑛
𝑇𝑇[𝑹𝑹𝑛𝑛 + 𝑯𝑯𝑛𝑛𝑷𝑷𝑛𝑛

𝑓𝑓𝑯𝑯𝑛𝑛
𝑇𝑇]−1         (3) 

𝑥𝑥𝑛𝑛𝑎𝑎 = 𝑥𝑥𝑛𝑛
𝑓𝑓 + 𝑲𝑲𝑛𝑛[𝑦𝑦𝑛𝑛 − 𝑯𝑯𝑛𝑛𝑥𝑥𝑛𝑛

𝑓𝑓]                 (4) 
𝑷𝑷𝑛𝑛𝑎𝑎 = [𝑰𝑰 − 𝑲𝑲𝑛𝑛𝑯𝑯𝑛𝑛]𝑷𝑷𝑛𝑛

𝑓𝑓                             (5) 
 

Where, 𝑥𝑥𝑛𝑛
𝑓𝑓 denotes the forecast, 𝑥𝑥𝑛𝑛𝑎𝑎 denotes the analysis, 𝑷𝑷𝑛𝑛

𝑓𝑓 and 𝑷𝑷𝑛𝑛𝑎𝑎 represent the forecast 

error covariance and analysis error covariance, respectively, 𝑸𝑸𝑛𝑛 is the model error 

covariance, 𝑲𝑲𝑛𝑛 is the Kalman gain which is defined in Eq. 7 (3) and is obtained by 

minimizing the analysis error covariance with the same formula derived for OI except 

that the static background error covariance is replaced by the forecast error covariance 

generated by model itself. Eq. 7 (1) represents the forecast of the model fields from time 

step 𝑛𝑛 − 1 to time step 𝑛𝑛, while Eq. 7 (2) calculates the forecast error covariance from the 

analysis error covariance 𝑷𝑷𝑛𝑛𝑎𝑎 and the model error covariance 𝑸𝑸𝑛𝑛. As the Kalman gain is 

defined in Eq. 7 (3), Eq. 7 (4) and Eq. 7 (5) are the analysis steps using the Kalman gain. 

For optimality, all errors such as analysis and model errors should be assumed 
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uncorrelated (Bouttier and Courtier, 1999). The original KF was developed for linear 

prediction model (Kalman, 1960), when a nonlinear model is used for the state variable 

prediction step, the filter is called Extended Kalman Filter (EKF) (Uhlmann, 1992). As 

theoretically proved, the EKF is the “gold standard” of data assimilation. It can provide 

the best linear unbiased estimate and its error covariance by going through an initial 

transient period of one week or two even when the system starts with a poor initial guess. 

The updating of the forecast error covariance matrix also ensures that the analysis takes 

into the flow-dependent errors. Nonetheless, if the system is very unstable or the 

observations are not frequent enough, it is possible for the linearization to become 

inaccurate, and the EKF may drift away from the true solution. And similarly, EKF is 

exceedingly expensive in computing resources. 

In order to reduce the expensive of computing resources, a simplified version of 

KF is derived known as the Ensemble Kalman Filter (EnKF) (Evensen, 1994; Anderson, 

2001). The basic idea of EnKF is using the mean of a set of ensembles as the best 

estimate, and the sample of covariance as a good estimate of the forecast error covariance 

of this best estimate. The estimate of the forecast error covariance from a set of 

ensembles is defined in Eq. 8 (Evensen, 2003): 

 

Equation 8 Estimation of forecast error covariance for EnKF 

𝑷𝑷𝑓𝑓 ≈ 1
𝑁𝑁−1

∑ (𝒙𝒙𝑘𝑘
𝑓𝑓 − 𝒙𝒙�𝑓𝑓)(𝒙𝒙𝑘𝑘

𝑓𝑓 − 𝒙𝒙�𝑓𝑓)𝑇𝑇𝐾𝐾
𝑘𝑘=1                                                
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It is worth noting that by using the mean of a set of ensembles as the best 

estimate, the Eq. 8 tends to underestimate the variance of the forecast errors because 

every forecast is used to compute of its own error covariance. The solution for this kind 

of underestimate of the analysis error covariance is to add random perturbations into the 

observations that are assimilated in each member of the ensemble, and this solution is 

usually called the stochastic EnKF. The advantages of using EnKF have been proved 

since the operational implantation in the Community Gridpoint Statistical Interpolation 

(GSI) system. The application of EnKF not only can save a lot of computational resource 

than Kalman Filter, but also make the tangent linear and adjoint model and the linearizing 

the evolution of the forecast error covariance unnecessary. Without the tangent linear and 

adjoint model, it may still provide excellent initial perturbations for ensemble forecasting.  

2.1.5 Ensemble-Variational Hybrid Data Assimilation 
EnKF only uses a set of limited ensembles (typically 40-120 members) to provide 

the best estimate (Ott, et al., 2004; Torn, 2010; Hamrud, et al., 2015). However, when 

compared to the much larger number of depth of field of the model, the limited sample of 

ensemble may come with the problem called rank deficient (Solonen, et al., 2014). One 

way to solve this problem is the combination of ensembles or the sequential EnKF and 

Variational DA methods by cooperating with the estimate calculated from many 

estimated forecast errors. It uses the background error covariance matrix which is 

completely static or only weakly coupled to the dynamics of the forecast, and at the same 

time involves in the fully flow-dependent background error covariance estimated from a 
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set of ensembles of short-range forecasts with the full nonlinear model (Wang, et al., 

2013). 

The cost function for this hybrid data assimilation can be described in the form of 

Eq. 9: 

 

Equation 9 Hybrid cost function 

𝐽𝐽(𝑥𝑥) = 1
2
𝛽𝛽1(𝒙𝒙 − 𝒙𝒙𝑏𝑏)𝑇𝑇𝑩𝑩𝑓𝑓−1(𝒙𝒙 − 𝒙𝒙𝑏𝑏) + 1

2
𝛽𝛽2(𝒙𝒙 − 𝒙𝒙𝑏𝑏)𝑇𝑇𝑩𝑩𝑒𝑒𝑒𝑒𝑒𝑒

−1 (𝒙𝒙 − 𝒙𝒙𝑏𝑏) + 1
2

[𝒚𝒚𝑜𝑜 −
𝐻𝐻(𝒙𝒙)]𝑇𝑇𝑹𝑹−1[𝒚𝒚𝑜𝑜 − 𝐻𝐻(𝒙𝒙)]  

 

Where 𝑩𝑩𝑓𝑓 and 𝑩𝑩𝑒𝑒𝑒𝑒𝑒𝑒 are the model static background error covariance and background 

error covariance estimated from a set of ensemble forecasts, respectively. And 𝛽𝛽1 and 𝛽𝛽2 

are two factors whose inverse define the weights placed on the static covariance and the 

ensemble covariance, and these two factors satisfy the relation: 1
𝛽𝛽1

+ 1
𝛽𝛽2

= 1. 

In the hybrid method, flow-dependent ensemble error covariance estimated from a 

set of ensembles was taken into account with the variational minimization which makes 

the model background error covariance more reliable. However, more tests are needed for 

the choosing of number of ensembles and the factors for both weights of static and 

ensemble background error covariance.  

In simple words, data assimilation is a method which uses the observations to 

adjust the model’s initial guess in order to get an initial condition with better accuracy for 

further forecasting by physical and dynamical equations. From the OI method, to 

variational method and further to ensemble Kalman filter, data assimilation associated 
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with significantly improved computing resources have greatly helped in improving the 

NWP systems. Nowadays, DA systems can not only assimilate the physical-state variable 

such as temperature, pressure, humidity, etc., but also assimilate radiance observed by 

satellites, and chemical components such as ozone, aerosols, etc. These additional forcing 

can be brought into the model and propagating along with the forecast and which may 

significantly affect the downstream events (Rood, 2005).  

2.2 Assimilation of Satellite Radiance/Brightness Temperature 
Satellite instruments provide a large amount of observations varying from land 

surface parameters, vegetation coverages, atmospheric profiles, etc. Despite the fact that 

satellites can provide lots of products to enhance our scientific researches, the 

radiance/brightness temperature products are usually used in the NWP DA systems. 

2.2.1 The Development of Satellite Observations 
It has been over 50 years using instruments on weather satellite, in both polar 

orbit and geostationary orbit measuring key Earth system parameters (Smith, et al., 

2015). By keep tracking the records of satellite remote sensing data, the field of satellite 

climatology has received considerable attention in recent years owing to the long term 

global coverage data sets. 

Acting as the predecessor to today’s hyperspectral sounders, the High Resolution 

Infrared Radiometer (HIRS) has provided more than two decades’ worth of infrared 

observations with a global coverage since 1979 (Smith, et al., 2015) 

(https://poes.gsfc.nasa.gov/hirs4.html). And for today, there are four operational 

hyperspectral sounders observing the Earth and increased the frequency of space-based 
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hyperspectral soundings to at least 8 measurements (4 daytime and 4 nighttime) per day 

with an order of magnitude more in the polar zones. They are listed as below: 1), the 

Atmospheric Infrared Sounder (AIRS) launched in 2002 on Aqua 

(http://disc.sci.gsfc.nasa.gov/AIRS/documentation/airs_instrument_guide.shtml); 2), the 

Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 on the first 

satellite in the series of three of the Meteorological Operational satellite programme 

(MetOp-A), 3), another IASI launched in 2012 on MetOp-B 

(https://wdc.dlr.de/sensors/iasi/), and 4) the Cross-track Infrared Sounder (CrIS) launched 

in 2011 on the Suomi National Polar-Orbiting Partnership (S-NPP) satellite  

(https://jointmission.gsfc.nasa.gov/cris.html). These four very high spectral resolution 

infrared sensors significantly improved the vertical resolution and hence the accuracy of 

the atmospheric information by measuring the retrieved radiance from their top-of-

atmosphere (TOA) compared the prior-generation multispectral sounders such as HIRS 

(Schwaerz and Kirchengast, 2003; Smith, et al., 2015). Despite their own high accuracy, 

their very high spectral resolution also has the advantages helping other instruments in 

both radiometric and spectral calibration (Tobin, et al., 2006; Wang and Cao, 2008; 

Wang, et al., 2009). 

The AIRS instrument is a grating spectrometer with 2378 (independently 

calibrated) channels in the thermal bands and 4 bands in the visible (0.4 – 1.0 μm), and 

IASI and CrIS are interferometers with 8461 and 1305 channels, respectively. Their local 

sampling time (LST) is based on their satellite platforms. The detailed information of 

these three kinds of sensors are summarized in Table 1. As shown in Table 1, AIRS and 
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CrIS are in the same orbital planes (ascending) with a same 13:30 LST but operate at 

different altitudes. However, their instruments are totally different, a grating spectrometer 

and a Fourier transform infrared spectrometer (or interferometer) for AIRS and CrIS, 

respectively. While IASI and CrIS are both interferometer instruments and both operate 

at a similar orbital altitude but in the opposite orbital planes (descending for IASI) with 

an ~09:30 LST in the early morning for IASI. The spectral bands covered by these three 

instruments are slightly different in which IASI has the highest spectral resolution and the 

most channels without spectral gap. AIRS has 2378 infrared channels over three 

wavelength ranges, and it also has four visible bands. CrIS has 1305 infrared channels 

also over three wavelength ranges similar to AIRS, and here we call them LWIR (Long 

wavelength InfraRed: 9.13-15.5 μm), MWIR (Mid Wavelength InfraRed: 5.71-8.26 μm), 

and SWIR (Short Wavelength InfraRed: 3.92-4.64 μm). These three hyperspectral 

sensors are all capable for the detecting of lower troposphere temperature and humidity 

with considerable accuracy in which CrIS has the best accuracy in lower troposphere. 
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Table 1 Measurement characteristics of AIRS, IASI, and CrIS 

 
 

In recent years, microwave data retrieved from microwave sensors have received 

considerable attention owing to the valuable information content contained in the 

microwave bands due to its ability to provide more accurate information under cloudy 

conditions. One typical application is that the retrieved global microwave radiance 

observations have been used to enhance the operational NWP via DA (English et al. 

2000; Mahfouf et al. 2005; Kelly et al. 2008; Kulie, et al., 2010; Prigent, et al., 2006; 
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Weng, et al., 2012). Among lots of the microwave instruments will be talked later, we are 

highlighting here that the first application of microwave techniques for monitor the 

atmospheric temperature and water vapor was built by the Nimbus 5 (Nimbus E) 

Microwave Spectrometer (NEMS) experiment in 11 December 1982. The NEMS is the 

milestone of the applying microwave technologies in meteorological researches (Waters, 

1975; Staelin, et al., 1976). 

The pioneer microwave sounding instrument was the Microwave Sounding Unit 

(MSU), a cross-track scanner, flown on the National Oceanic and Atmospheric 

Administration (NOAA) polar-orbiting satellite platform named the Television and 

Infrared Observations Satellite (TIROS-N) in late 1978. During that time, MSU measures 

atmospheric temperature profiles using only four channels ranging from 50.3 to 57.95 

GHz using the thermal emission from the atmospheric oxygen constitutes near 60 GHz 

(Mears and Wentz, 2008; Zou, et al., 2014). These four channels are sensitivity to the 

near surface, middle troposphere, near the tropopause, and the lower stratosphere, 

respectively. And within these four channels, only channel 2 and 4 have continuous data 

over the entire period of observation. These limitations caused large calibration issues 

and time-varying biases for the construction of MSU data sets. 

The follow-on series of instruments for MSU is the AMSUs began operation in 

mid-1998 (Diak, 1995), in which the AMSU-A, is a cross-track, stepped-line scanning, 

and total power microwave radiometer with 15 channels ranging from 23-89 GHz 

providing a nominal spatial resolution at the nadir of 48 km 

(http://mirs.nesdis.noaa.gov/amsua.php). While AMSU-B (recently replaced by the 
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Microwave Humidity Sounder (MHS)) is a cross-track, continuous line scanning, total 

power radiometer with 5 channels ranging from 89-183.31 GHz where the frequencies 

are sensitive to atmospheric water vapor (http://mirs.nesdis.noaa.gov/mhs.php). The 

instantaneous field of view (FOW) is one third of the AMSU-A which is 1.1°and the 

spatial resolution at nadir is nominally 16 km (Also one third of the AMSU-A spatial 

resolution at nadir). The AMSU instruments have significantly higher spatial resolution 

comparing to MSU instruments such as the scan time reduced to 8 s instead of 25.6 s 

used by MSU instruments, and the nadir spot size has been reduced from 110×110 km to 

48×48 km and for the near-limb view, the size has been reduced from 178×322 km to 80

×150 km (the coarser spatial resolution at near-limb view is due both to the increased 

distance and to the oblique earth incidence angle). In 2011, a more advanced microwave 

radiometer the Advanced Technology Microwave Sounder (ATMS) is launched on S-

NPP platform along with the hyperspectral infrared radiometer CrIS 

(https://jointmission.gsfc.nasa.gov/atms.html). ATMS is also a cross-track scanner and 

combined all the channels of AMSU-A and AMSU-B/MHS into a single package with 

considerable savings in mass (1/2 of AMSUs), power (1/2 of AMSUs), and volume (1/4 

of AMSUs). ATMS has 22 channels ranging from 23-183 GHz, in which the first 16 

channels are primarily for temperature soundings from the surface to about 1-mb (~50 

km), and the remaining channels are associated with atmospheric humidity soundings in 

the troposphere from the surface to about 200-mb (10 km). The ATMS channels 4, 19 

and 21 are new for better atmospheric temperature and moisture profiling and better data 

sets for NWP. Also, the ATMS noise equivalent differential temperature for temperature 
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sounding channels is higher than the AMSUs mainly because the ATMS sampling time is 

much shorter than that of AMSUs (the integration time for all ATMS channels is reduced 

to 18 ms), spatial coverage is also improved in ATMS which has no gaps between swaths 

now, and it was initially the intention to use the 118 GHz oxygen line for temperature 

sounding instead of 50-60 GHz used by AMSUs. Another microwave instrument, the 

Special Sensor Microwave Imager/Sounder (SSMI/S) carried onboard the Defense, is a 

24-channel passive microwave radiometer which can detect radiative frequencies range 

from 19-183 GHz correspond to four main categories: Lower Atmospheric Sounding, 

Upper Atmospheric Sounding, Environmental and Imaging. The detailed channel 

information of SSMI/S can be found at the website: 

https://nsidc.org/data/docs/daac/ssmis_instrument/#bell_2006. A summary of the channel 

frequencies of the major microwave satellite sensors is shown in Table 2. 

https://nsidc.org/data/docs/daac/ssmis_instrument/#bell_2006
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Table 2 Channel frequencies of AMUS-A, MHS, ATMS, and SSIMS 
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2.2.2 Compared to In-situ Observations 
Satellite observations have many advantages compared to the in-situ observations: 

1) better representative of an area (satellite observations usually provide a regional view 

instead of a point of view in in-situ observations); 2) larger spatial coverage (e.g., polar 

satellites can cover most of the Earth and the recently launched sensor ATMS has the 

advantage that it no longer has gaps between swaths. For geostationary satellite sensors, 

they usually have a continent scale coverage); 3) provide more information where there 

are few in-situ observations, such as plateaus, mountainous areas, oceans, polar regions 

(with the developing of polar satellites such as Aqua/Terra, we can get as many as 8 

times of observations per day over the polar regions and 2 times per day over the 

equators), etc.; 4) by using the reflected radiance from the Earth and the atmosphere, 

satellite observations are some way cheaper and easier installation and maintenance 

comparing to the tower observations, and at the same time, satellite can detect multi-

spectral radiance include Visible bands, Infrared bands and Microwave bands which 

located in a wide range of radiances sensitive to most of the key Earth system parameters; 

5) satellite sensors also have multiple weighting features representing the vertical profile 

of the atmosphere which extending into higher altitudes such as 1-mb, and the abundance 

of observations located in the stratosphere is part of the reasons for the raising of NWP 

models lids. As a consequence of these satellite observations advantages, the accuracy of 

NWP systems has gone through dramatic improvements. However, when it is hard to 

significantly improve the skills of NWP forecasts, how to deal with the uncertainties 

became particularly important. On one hand, the advantages of satellite observations 

compared to in-situ observations can largely benefit the NWP systems via DA, on the 
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other hand, uncertainties of these observations will also be brought into the NWP systems 

simultaneously and sometimes may cause the misleading of atmospheric state.  For 

example, Zou et al. (2011) found that degradation in quantitative precipitation forecasts 

skill in an all-data assimilation experiment (including the Geostationary Operational 

Environmental Satellite-11 and -12 (GOES-11/12), the Advanced Microwave Sounding 

Unit-A (AMSU-A), the Microwave Humidity Sounder (MHS), the Atmospheric Infrared 

Sounder (AIRS), and the High Resolution Infrared Sounder (HIRS)) was mainly caused 

by the using of MHS data. And therefore, it is necessary to investigate the uncertainties in 

NWP systems such as using different satellite spectral bands at different altitudes. It is 

also important to find out how much can be approved by using the stratospheric 

microwave data sets in NWP systems. 

2.2.3 Direct Assimilation of Satellite Radiance/Brightness Temperature 
Using the Community Radiative Transfer Model (CTRM) 

Unlike in-situ observations, no direct measurements of the atmospheric states can 

be provided by satellite observations. Instead of direct measuring of the atmospheric 

states, satellite observations are more sensitive to radiation emitted and reflected by the 

earth’s atmosphere, surface, ocean, cloud, etc. So, two ways of assimilating satellite data 

are usually used in NWP systems namely direct assimilating and indirect assimilating 

satellite observations (Sasaki, and Goerss, 1982; Scott, et al., 2012). The indirect way 

uses the retrieved satellite products (including land surface/soil products and atmospheric 

state variables, e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS) 

products) as the observations and then be assimilated in the DA systems with same 

processing as the assimilating of conventional observations.  
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Direct assimilating of satellite observations involves a radiative transfer forward 

model as the observation operator for radiance observations. The Community Radiative 

Transfer Model (CTRM) developed by Joint Center for Satellite Data Assimilation 

(JCSDA) is employed in the DA system to transfer control variables into simulated 

radiance/brightness temperature. The CRTM model calculates the absorption of 

atmospheric gases, scattering and absorption by both clouds and aerosols, and surface 

emissivity and reflectivity, and then solves the radiative transfer problem. In other words, 

the CRTM is used as the observation operator and when the uncertainties of the 

formation of radiative transfer equation or the unknown parameters in the radiative 

transfer equation, observed radiance data must be removed due to the low reliability. 

Typical examples include when clouds, trace gases, or aerosols exist in the observed 

column, and such radiance will be removed through the quality control (QC) steps 

(Anderson and Jarvinen, 1998). 

The first QC step is the processing of radiance thinning which select the best 

quality observations. Then, the major QC steps are mainly focused on the capture of 

problematic satellite data. The main sources for the problematic satellite data are: 1) 

instrument problems, 2) clouds and precipitation simulation errors, 3) surface emissivity 

simulation errors, and 4) processing errors such as wrong height assignment, etc. It is 

believed that using the direct way of assimilating satellite radiance can bring less 

uncertainties into the NWP systems than using the indirect way which needs more 

complex steps associated with more uncertainties. Theoretically saying, direct radiance 
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assimilation is superior to indirect assimilation due to the more justified observational 

error statistics (Xu, J., et al., 2009).
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CHAPTER THREE EXPERIMENTAL CONFIGURATION 

A number of numerical experiments are designed to investigate the major 

purposes of this thesis. The advanced research core in weather research and forecasting 

(WRF-ARW) system is used as the regional weather forecasting system and the 

community gridpoint statistical interpolation (GSI) system is used as the data assimilation 

system. Three set of experiments with different DA configurations are designed with 

model lids at 50-mb, 10-mb, and 1-mb, respectively. This chapter mainly introduce the 

models used in this thesis, the data used for data assimilation over the U. S. continental, 

and the detailed experimental set-ups.  

3.1 Advanced Weather Research and Forecasting System 
The WRF-ARW is used for the regional study (Skamarock et al. 2008; Wang, et 

al., 2016). The WRF-ARW system is a non-hydrostatic, fully compressible, primitive 

equation model. Lead institutions involved in the WRF-ARW effort include the National 

Center for Atmospheric Research (NCAR), Air Force Weather Agency (AFWA), 

National Oceanic and Atmospheric Administration (NOAA), and other governmental 

agencies and universities. WRF is built around a software architectural framework in 

which different dynamical cores and model physics packages are accessible within the 

same code. Within the WRF framework, it is possible to mix the dynamical cores with 

differing physics packages to optimize performance since each core has strengths and 
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weaknesses in different areas. WRF-ARW uses a terrain-following pressure coordinate 

and the Arakawa C grid staggering approach. And the time integration schemes be used 

in WRF-ARW is the Runge-Kutta 2nd and 3rd order, and for both the horizontal and 

vertical, the 2nd to 6th order advection schemes are used (Wang, et al., 2016). The 

vertical levels in WRF model is set as eta levels. By using the eta coordinates system, we 

don’t need to calculate the pressure gradient force in sigma coordinate system which can 

reduce the error in pressure gradient force calculation and improve the forecast of wind, 

temperature, and moisture in steeply sloping terrain due to its relatively horizontal 

surfaces at all times. A flow chart of WRF (Wang, et al., 2016) is shown in Fig. 4. 

 

 

Figure 4 The WRF-ARW Modeling System Flow Chart (Wang, et al., 2016). 
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The major part of WRF-ARW including the WRF Preprocessing System (WPS) 

and the ARW solver. The simulation domain is defined in the WPS step. The domain 

design in this thesis is shown in Fig. 5 (shading indicates land (grey) and ocean (white)), 

and the domain configurations including map projection, central point, etc. are shown in 

Table 3. The model lid (top of the model) is raised step by step from 50-mb to 1-mb to 

involve more stratospheric information, and the number of vertical layers are increasing 

as the model lid increased. With the domain defined, WPS then interpolate terrestrial data 

and meteorological fields (usually comes from other regional or global models) to the 

designed domain to generate the meteorological field for further processes. The U. S. 

Geological Survey (USGS) 24 category is used for the land use option. Two tables 

describe the land use options and the detailed categories can be found in the Wang, et. al. 

(2016, Chapter 3). 

 

 

Figure 5 Study domain over the U. S. continental.  
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Table 3 Domain Configurations for WRF simulations 
Central Point (37°N，90°W) 

Projection Lat-Lon 
Domain Layer Resolution (degree) Grid (Lon*Lat) 

1 0.25 240*128 
Experiment set 1 
Vertical Layers 
(Eta levels with 
model top at 50-

mb) 

30 levels 
1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, 

0.8317505, 0.7835011, 0.7352517, 0.6870022, 0.6035514, 
0.5279136, 0.4594781, 0.397675, 0.3419721, 0.2918729, 
0.2469149, 0.2066672, 0.1707291, 0.1387277, 0.1103166, 
0.08602321, 0.06535161, 0.04776186, 0.03279452, 0.02005862, 
0.009221466, 0 

Experiment set 2 
Vertical Layers 
(Eta levels with 
model top at 10-

mb) 

51 levels 
1.000, 0.994, 0.986, 0.978, 0.968, 0.957,0.945, 0.931, 0.915, 
0.897, 0.876, 0.854,0.829, 0.802, 0.772, 0.740, 0.705, 
0.668,0.629, 0.588, 0.550, 0.513, 0.478, 0.445,0.413, 0.383, 
0.355, 0.328, 0.303, 0.279,0.256, 0.234, 0.214, 0.195, 0.177, 
0.160,0.144, 0.128, 0.114, 0.101, 0.088, 0.076,0.065, 0.055, 
0.045, 0.036, 0.028, 0.020,0.012, 0.0056, 0.000 

Experiment set 3 
Vertical Layers 
(Eta levels with 

model top at 1-mb) 

63 levels 
1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, 0.8413662, 
0.8027326, 0.7640989, 0.7254651, 0.6569721, 0.5938299, 
0.5356899, 0.4822229, 0.4331176, 0.3880801, 0.3468334, 
0.309116, 0.2746814, 0.2432974, 0.2147456, 0.18882, 
0.1653272, 0.1443878, 0.1260844, 0.1100854, 0.09610046, 
0.08387615, 0.07319078, 0.06385061, 0.0556863, 0.04854981, 
0.04231175, 0.03685901, 0.03209274, 0.02792649, 0.02428475, 
0.02110147, 0.01831895, 0.01588672, 0.01376069, 0.01190231, 
0.01027789, 0.008857966, 0.007616803, 0.006531891, 
0.005583562, 0.004754621, 0.004030036, 0.003396671, 
0.002843042, 0.002359111, 0.001936102, 0.001566348, 
0.001243142, 0.0009606255, 0.0007136756, 0.0004978148, 
0.0003091293, 0.0001441978, 0 

 

The regional initial and boundary conditions are generated using the key 

component of WRF-ARW – the ARW solver with the meteorological field generated in 

WPS. The physics schemes used in the WRF-ARW model are as follows: the WRF 
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Single-Moment 3-class scheme for the microphysics; the RRTM scheme for longwave 

radiation and the Goddard shortwave scheme for shortwave radiation; the Noah Land 

Surface Model for the land surface; the Yonsei University scheme for the planetary 

boundary layer; and the Grell-Devenyi (GD) ensemble scheme for the cumulus 

parameterization. The configurations of physics in WRF-ARW are the same for all the 

experiments in this thesis. More detailed descriptions of the physics schemes can be 

found at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf. 

3.2 Community Gridpoint Statistical Interpolation (GSI) system 
GSI is the DA system developed by the NCEP Environmental Modeling Center 

(EMC) as the next generation analysis system based on the Spectral Statistical 

Interpolation (SSI) analysis system and now serves as the currently operational DA 

system in NCEP (Kleist, et al., 2009b; Hu, et al., 2015). In SSI system, the system is 

constructed in the spectral space, while in the next generation, the GSI, the system is 

constructed in the physical space and is designed to be a flexible, state-of-art system that 

is efficient on available parallel computing platforms. In recent GSI version, the 

application of surface analysis, the basic 3D-Var, EnKF, ensemble-variational hybrid, 

and 4D-Var if coupled with an adjoint model of GSI supported forecast system (Kleist, 

2012; Wang, et al., 2013; Hu, et al., 2015). 

GSI can assimilate both conventional and satellite radiance data sets (with the 

help of Community Radiative Transfer Model (CRTM)). The detailed information can be 

found at the Developmental Testbed Center (DTC) website: http://www.dtcenter.org/. For 

http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
http://www.dtcenter.org/
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variational experiments in this thesis, two loops were used and the maximum iteration 

steps for both loops were set to 50.  

3.3 Data 
Three sets of data are used in this thesis: 1) the initial meteorological field and 

lateral boundary conditions for regional model WRF-ARW, 2) observations used in GSI 

DA system, and 3) observations used for verification. 

3.3.1 Initial Meteorological Field and Lateral Boundary Conditions 
The 3-hour interval products from the global forecast system (GFS) (the weather 

forecast model component of the NCEP’s operational NWP system) are used as the initial 

meteorological and lateral boundary conditions for the regional weather forecasting 

system. The operational GFS covers the entire globe at a base horizontal resolution of 

T574 (a total wavenumber of 574 of the spherical harmonics which are triangularly 

truncated, or grid-spacing of ~28 km in the mid-latitude), and 64 vertical levels with 

model top at 0.3-mb. In our experiments, the GFS products with a horizontal resolution 

of 0.5°×0.5° and 26 unevenly distributed vertical levels (Table 3) with a top at 10-mb are 

used for the WRF-ARW experiments with model top under 10-mb, and the GFS whole 

atmospheric data with the same horizontal resolution but 47 unevenly distributed vertical 

levels (Table 4) with a top at 1-mb are used for the WRF-ARW experiments with model 

top at 1-mb. Detailed information can be obtained through the website below: 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-

system-gfs  

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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Table 4 Vertical levels (mb) of GFS products 
GFS products with 10-mb lid Whole Atmospheric data with 1-mb lid 

1000, 975, 950, 925, 900, 850, 800, 750, 
700, 650, 500, 450, 400, 350, 300, 250, 

200, 150, 100, 70, 50, 30, 20, 10 

1000, 975, 950, 925, 900, 875, 850, 825, 
800, 775, 750, 725, 700, 675, 650, 625, 
600, 575, 550, 525, 500, 475, 450, 425, 
400, 375, 350, 325, 300, 275, 250, 225, 
200, 175, 150, 125, 100, 70, 50, 30, 20, 

10, 7, 5, 3, 2, 1 
 

3.3.2 Observations Used for Data Assimilation and Verification 
The operationally available observations including conventional and satellite data 

were used for the research in this thesis. The observations are constructed in the Binary 

Universal Form for the Representation of meteorological data (BUFR) format and can be 

downloaded from the NCEP products website: 

http://www.nco.ncep.noaa.gov/pmb/products/gfs/. The conventional observations vary 

from in-situ observations cover both land and ocean, radiosondes, aircraft reports, to 

satellite retrievals, chemical compositions, etc. Typical coverages of the conventional 

observations including humidity, surface pressure, temperature and wind are shown in 

Fig. 6. Also, the conventional observations will be used to evaluate the model forecasts. 

The distribution of satellite observations depends on the time which DA is applied. 

 

http://www.nco.ncep.noaa.gov/pmb/products/gfs/
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Figure 6 Typical conventional observation coverage over the U. S. at 00:00 UTC, January, 2015. 
 

The satellite radiance/brightness temperature observations (level 1b) used in this 

thesis include both infrared and microwave satellite instruments. The microwave 

instruments used here include the AMSU-A (onboard NOAA-15, NOAA-18, NOAA-19, 

Meteorological Operational (MetOp)-A, MetOp-B, and Aqua), the MHS (onboard 

NOAA-18, NOAA-19, MetOp-A, and MetOp-B), the SSMI/S carried onboard the 

Defense Meteorological Satellite Program (DMSP-f16, -f17, -f18, -f19, and -f20), and the 

ATMS flown onboard the S-NPP satellite. The detailed microwave channel information 

is summarized in Table 2. 

The infrared satellite instruments include the HIRS/4 (onboard NOAA-19, 

MetOp-A, and MetOp-B) (https://poes.gsfc.nasa.gov/hirs4.html), the AIRS (launched in 

2002 on Aqua) 

(http://disc.sci.gsfc.nasa.gov/AIRS/documentation/airs_instrument_guide.shtml), the 
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IASI (onboard MetOp-A, and MetOp-B) (https://wdc.dlr.de/sensors/iasi/), and the CrIS 

launch along with the ATMS on S-NPP (https://jointmission.gsfc.nasa.gov/cris.html). A 

brief summary of the infrared instruments is concluded in Table 1. More detailed 

information can be found at the websites: https://www.nasa.gov/. 

The data used for the verification of individual case studies includes the products 

from the Global Land Data Assimilation System (GLDAS) with a horizontal resolution of 

0.125 degree and in-situ observations from individual stations. The GLDAS is generating 

a series of optimal land surface forcing (e.g, precipitation, surface meteorology and 

radiation), state (e.g., soil moisture and temperature, and snow), and flux (e.g., 

evaporation and sensible heat flux) data by integrating satellite- and ground-based 

observational data products, using advanced land surface modeling and data assimilation 

techniques (Rodell et al., 2004). The data set has been popularly used in many model 

simulations (Goncalves et al., 2006; Mueller et al., 2011; Wang et al., 2011). 

3.4 Experimental Set-up 
As shown in the flow chart (Fig. 3), three sets of experiments pointing to three 

objectives are designed to retrieve the goals of this thesis. The regional model lid is raised 

step by step from 50-mb to 1-mb. All three sets of experiments use the same observation 

forward operators and satellite bias correction algorithms as in the operational 3D-Var 

system (Wu, et al., 2002; Kleist, et al., 2009b). Also, the same quality control decisions 

are used for all experiments. The time window used in variational DA is set to 1.5-h 

before and after the assimilation time. All the computations are performed on the 

https://www.nasa.gov/
http://disc.sci.gsfc.nasa.gov/hydrology/overview/GLDAS_summary.shtml#Rodell2004
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Supercomputer for Satellite Simulations and Data Assimilation Studies (the “S4 

supercomputer”) of the JCSDA. 

The first set of experiments contains three configurations of GSI involving the 

basic 3D-Var, 3D-Var based Ensemble-Variational Hybrid (short for Hybrid) with a 

weight of 20% on the static background covariance and 80% on the ensemble covariance, 

and EnKF. The flow chart of the first set of experiments is shown in Fig. 7. For the first 

set of experiments, the regional model top is set at 50-mb. The regional ensembles for the 

Hybrid and EnKF configurations are prepared by adding random perturbations to the ICs 

using WRF-DA system at 18:00 UTC and propagating 6 hours forward with WRF-ARW 

thus the ensembles are flow dependent (Caya, et al., 2005; Meng, and Zhang, 2011). The 

data assimilation experiments are conducted during January, and February, 2015, and 

July, and August, 2015, representing winter and summer, respectively. A 6-h spin up is 

firstly made using WRF-ARW starting at 18:00 UTC, and then all operationally available 

observations including both conventional and satellite data are assimilated at 00:00 UTC. 

A 72-h forecast is applied using the newly generated ICs from DA system. A restart is 

applied every 24 hours and thus, over 50 samples were obtained each season. The 

forecasts verified against conventional observations at different forecast lead times with a 

12-h increment to study the differences of predictabilities between three major DA 

configurations. Based on the evaluation results, the DA configuration which fit best for 

certain conditions is used for later studies. 
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Figure 7 Flow Chart of the first part of experiment design. 
 

The second set of experiments is designed to compare the impact of infrared and 

microwave satellite observations on regional NWP system. The flow chart of the second 

set of experiments is similar to the first set of experiments but with different data 

selection in DA system. The experiment period is the same as the in the first set of 

experiments.  Also a 6-h spin up starting at 18:00 UTC is firstly made, DA is applied at 

00:00 UTC with restarts being made every 24 hours and then a 72-h forecast is obtained 

using WRF-ARW. The model top of the second set of experiments is raised from 50-mb 

to 10-mb. The DA scheme selection is based on the results of the first set of experiments. 

Three configurations involving different observation sets are designed (similar to the 

traditional Observing System Experiments (OSE) method): the control experiment 

(CTRL) includes all operationally available observations, the infrared experiment (IR) 

includes all operationally available conventional observations and infrared satellite 

observations, and the microwave experiment (MW) includes all operationally available 



 

52 
 

 

conventional observations and microwave satellite observations. Also, the forecasts are 

verified against conventional observations at different forecast lead times with a 12-h 

increment.  

The third set of experiments is designed to investigate the impacts of extra 

stratospheric information on regional NWP system. The regional model top is further 

raised to 1-mb associated with more model levels in the stratosphere. A selection of the 

stratospheric and tropospheric microwave channels is designed based on the vertical 

weighting functions for further studies. The experiment period is conducted during 

January, 2015. Also, a 6-h spin up is made first, and then a one-week forecast is made 

using WRF-ARW. Restarts are applied every 6 hours and thus over 120 samples. Three 

experiments without DA are designed first with model lids at 50-mb (WRF-50), 10-mb 

(WRF-10), and 1-mb (WRF-1), respectively. The systematic differences are studied 

through these three experiments. CTRL experiments with the selected DA configuration 

are also setup with all operational available observations with different model lids. The 

impacts of extra stratospheric information included via DA system can be obtained then. 

Another two configurations involving operationally available conventional observations 

and microwave observations are designed: the experiment with a selection of microwave 

channels at all levels (Whole), and a troposphere experiment (TRO) with a selection of 

only tropospheric microwave channels. The forecast results are also verified against 

conventional observations at different forecast lead times. After comparison of the 

inclusion of more stratospheric information in DA system, a forecast sensitive to 

observations (FSO) technique is applied on the regional model to give out a final 



 

53 
 

 

selection of the microwave channels which have positive impacts on regional NWP. A 

list of all the major experiment configurations is shown in Table 5. 

 

Table 3 A list of major Experiment configurations 
 Expt. Description 
 

The first set of 
experiments 

(Model top at 
50-mb) 

3D-Var GSI 3D-Var configuration with all operationally 
available observations 

 
 

Hybrid 

GSI 3D-Var based Ensemble-Variational Hybrid 
configuration using 40 ensemble members with all 

operationally available observations (20% weight on 
the static covariance and 80% weight on the 

ensemble covariance) 
EnKF GSI Ensemble Kalman Filter configuration using 40 

ensemble members with all operationally available 
observations 

 
The second set 

of 
experiments 

(Model top at 
10-mb) 

CTRL Experiment with the selected GSI DA configuration 
with all operationally available observations 

 
IR 

Experiment with the selected GSI DA configuration 
with all operationally available conventional 

observations and infrared satellite observations only 
 

MW 
Experiment with the selected GSI DA configuration 

with all operationally available conventional 
observations and microwave satellite observations 

only 
 
 
 

The third set 
of 

experiments 
(Model 

top at 1-mb) 

WRF-50, 
WRF-10, 
WRF-1 

Experiments with different model lids at 50-mb, 10-
mb, and 1-mb, respectively. No DA is applied. 

CTRL Experiment with the selected GSI DA configuration 
with all operationally available observations 

 
Whole 

Experiment with the selected GSI DA configuration 
with all operationally available conventional 
observations and a selection of all microwave 

satellite channels 
 

TROPO 
Experiment with the selected GSI DA configuration 

with all operationally available conventional 
observations and a selection of tropospheric satellite 

channels only 
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For further evaluation of the results obtained in each set of experiments, two 

individual heavy precipitation events occurred in July, 2012 and Jan., 2015 are used. A 

list of the experiments configuration used for individual case studies are listed in Table 6. 

 

Table 4 A list of Experiment configurations for individual case studies 
 Expt. Description 
 

For the 
evaluation of 
the first set of 
experiments 

(Model 
top at 50-mb) 

CTRL WRF predictions without DA system 
3D-Var GSI 3D-Var configuration with all operationally 

available observations 
 
 

Hybrid 

GSI 3D-Var based Ensemble-Variational Hybrid 
configuration using 40 ensemble members with all 

operationally available observations (20% weight on 
the static covariance and 80% weight on the 

ensemble covariance) 
EnKF GSI Ensemble Kalman Filter configuration using 40 

ensemble members with all operationally available 
observations 

 
For the 

evaluation of 
the second set 

of 
experiments 

(Model top at 
10-mb) 

CTRL WRF predictions without DA system 
 

IR 
GSI Hybrid configuration with all operationally 
available conventional observations and infrared 

satellite observations only 
 

MW 
GSI Hybrid configuration with all operationally 

available conventional observations and microwave 
satellite observations only 

CON GSI Hybrid configuration with conventional 
observations only 

 
For the 

evaluation of 
the third set of 
experiments 

(Model 
top at 1-mb) 

CTRL WRF predictions without DA 

CTRL-DA GSI Hybrid configuration with the same 
observations input in previous experiment 

 
Whole 

GSI Hybrid configuration with all operationally 
available conventional observations and a selection 

of all microwave satellite channels 
 

TROPO 
GSI Hybrid configuration with all operationally 

available conventional observations and a selection 
of tropospheric satellite channels only 

SELECTED GSI Hybrid configuration with all operationally 
available conventional observations and the selected 

channels based on FSO results 
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CHAPTER FOUR EVALUTING THE PERFORMANCE OF DIFFERENT DA 
CONFIGURATIONS 

The major goal of this chapter is to investigate the differences between three GSI 

DA configurations namely the 3D-Var, Hybrid, and EnKF which lead to an optimized 

selection of the DA algorithms under certain conditions.  

4.1 Introduction 
As DA algorithms developed, large improvements have been obtained in many 

global NWP systems (such as in Fig. 1). The differences between each DA algorithm are 

complex due to different ways of the observations assimilated into the system, the source 

of background error covariance, model forecast errors, the calculation of innovations, the 

processes of non-linear problems, the inclusion of ensembles, computational resources, 

etc. As described in chapter 2, EKF is theoretically proved the “gold standard” of DA. 

However, the large requirements of computational resources made the EKF not that 

“efficient” in data assimilation system. Thus, a simplified form of KF namely the EnKF 

and hybrid of ensemble-variational methods have been designed, tested and compared in 

many global NWP systems (Caya, et al., 2005; Wang, et al., 2013; Lorenc, et al., 2015). 

These comparisons show that the EnKF with proper pre-process (e.g., multi carefully 

selected schemes ensembles and covariance inflation in ensembles) usually have better 

performances in later DA cycles compared to variational methods, and the hybrid of 

ensemble-variational methods have the potential skills in improving NWP systems. Some 
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comparisons were also taken out in individual case studies (Meng, and Zhang, 2008; 

Schwartz, et al., 2013). The comparisons of applying DA algorithms on regional NWP 

systems are even more complex. Different DA algorithms have different impacts on 

regional scale, mesoscale, and convective scale systems. How the DA systems were 

configured also have large impacts on the results. Meng and Zhang found that significant 

improvements were obtained if three outer loops were used instead of one outer loop in 

3D-Var. In this chapter, more detailed impacts of DA algorithms on regional NWP 

system such as the performance in different seasons, different layers, and different 

variables are investigated. The first set of experiments described in chapter 3 is used to 

test the performance of three major DA configurations namely 3D-Var, 3D-Var based 

ensemble-variational hybrid (Hybrid), and EnKF on regional weather predictions. 

4.2 Statistical Results 

4.2.1 Comparing the Convergence Rate during Variational Minimization 
To investigate the impacts of the regional ensembles generated from WRF-ARW 

on the variational minimization, the convergence rate measured by the ratio of the 

gradient norm relative to the initial gradient norm averaged over winter and summer are 

compared. In Fig. 8, the convergence rate of the first outer loop during winter (Fig. 8a) is 

similar to what Wang et al. (2013) obtained. Hybrid shows slightly slower convergence 

rate at first few iterations and slightly faster convergence rate at later iterations than 3D-

Var. For the second outer loop in winter (Fig. 8c), the result is similar to the first outer 

loop. In contrast, Dr. Wang (2013) found that the Hybrid scheme shows overall faster 

convergence rate in the second outer loop in his global experiment. For the convergence 
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rate obtained in summer (Fig. 8b, d), the Hybrid shows overall faster rates in both first 

and second outer loops than 3D-Var. The inclusion of ensembles showed better 

performance during summer. 

 

 

Figure 8 Variational DA convergence rate at different outer loops. 
 

4.2.2 Fits of Analysis to Observations 
Averaged bias and root mean square deviation (RMSD) over the study periods are 

calculated to investigate the performance of three tested DA configurations on WRF-

ARW initial conditions. The absolute value of bias and RMSD of analyzed surface 
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pressure, all-level mean temperature, all-level mean wind, all-level mean relative 

humidity (RH), and precipitable water fit to conventional observations averaged over two 

seasons are shown in Table 7. 

 

Table 5 Impacts of DA on WRF-ARW initial conditions 
DA 

Algorithms 
Surface Pressure 

(Pa) 
Winter Summer 

Before DA After DA Before DA After DA 

3D-Var 
Bias 0.1288 0.0143 0.0813 0.0376 

RMSD 1.3544 1.2926 (5%) 0.9054 0.8554 (6%) 

Hybrid 
Bias 0.1288 0.0222 0.0813 0.0104 

RMSD 1.3544 1.2190 (10%) 0.9054 0.7624 (16%) 

EnKF 
Bias 0.1288 0.0910 0.0813 0.1681 

RMSD 1.3544 1.3124 (3%) 0.9054 1.0204 
 All-level mean 

Wind (m s-1) Before DA After DA Before DA After DA 

3D-Var 
Bias 0.3898 0.3789 0.9212 0.4730 

RMSD 3.6031 3.1920 (11%) 3.0588 2.6428 (14%) 

Hybrid 
Bias 0.3898 0.3989 0.9212 0.5493 

RMSD 3.6031 3.3356 (7%) 3.0588 2.7618 (10%) 

EnKF 
Bias 0.3898 0.2240 0.9212 0.4719 

RMSD 3.6031 3.2775 (9%) 3.0588 2.6435 (14%) 
 All-level mean T 

(K) Before DA After DA Before DA After DA 

3D-Var 
Bias 0.6769 0.2474 0.9351 0.3518 

RMSD 1.9924 1.7081 (14%) 2.2060 1.8142 (18%) 

Hybrid 
Bias 0.6769 0.2394 0.9351 0.3749 

RMSD 1.9924 1.6376 (18%) 2.2060 1.7360 (21%) 

EnKF 
Bias 0.6769 0.1933 0.9351 0.1609 

RMSD 1.9924 1.8332 (8%) 2.2060 1.8139 (18%) 
 All-level mean 

RH (%) Before DA After DA Before DA After DA 

3D-Var 
Bias 1.9233 0.9917 3.0161 1.6242 

RMSD 12.4896 9.8259 (21%) 10.1325 9.0011 (11%) 
 All-level mean 

RH (%) Before DA After DA Before DA After DA 

Hybrid 
Bias 1.9233 1.1822 3.0161 2.7696 

RMSD 12.4896 10.285 (18%) 10.1325 8.8991 (12%) 

EnKF 
Bias 1.9233 1.8117 3.0161 3.3640 

RMSD 12.4896 12.0191 (4%) 10.1325 10.3190 
 Precipitable 

Water (mm) Before DA After DA Before DA After DA 
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3D-Var 
Bias 0.2876 0.7819 0.6652 0.9288 

RMSD 2.1697 2.4708 3.5967 3.9327 

Hybrid 
Bias 0.2876 0.3527 0.6652 0.5283 

RMSD 2.1697 2.2059 3.5967 3.5850 

EnKF 
Bias 0.2876 0.3348 0.6652 0.6894 

RMSD 2.1697 2.1942 3.5967 3.5310 
 

Overall better performance is obtained in summer. Hybrid shows similar impacts 

on regional initials to those of 3D-Var. Both Hybrid and 3D-Var show better performance 

(3%) than winter. EnKF configuration shows some advantages in adjusting wind, 

summer temperature and precipitable water in the initial conditions.  

The absolute value of analyzed wind, temperature, and RH profiles fit to 

conventional observations averaged over the two experimental periods (black solid lines 

for winter and red dashed lines for summer) are shown in Fig. 9. Solid square, solid 

circle, solid triangle, and × are for initial conditions, 3D-Var analysis, Hybrid analysis, 

and EnKF analysis, respectively. For different seasons, summer results show smaller 

RMSDs and larger improvements. For vertical variations, larger improvements are 

obtained over the lower boundary layers and the tropopause layers (150-250 hPa for 

winter, and 50-150 hPa for summer). For initial wind profiles, comparable biases are 

obtained for most of the layers except EnKF shows larger biases in the troposphere. In 

winter, 13%, 8%, and 11% improvements are obtained over the lower troposphere for 

3D-Var, Hybrid, and EnKF, respectively. 22%, 9%, and 7% improvements are obtained 

over the tropopause layers for three DA schemes, respectively. An average extra 4% 

improvement is obtained in summer compared to winter results. 3D-Var shows larger 

improvements than Hybrid and EnKF. For initial temperature profiles, larger biases are 
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found in summer over lower troposphere and tropopause. Improvements made in 

temperature profiles are similar to wind profiles. 21%, 22%, and 5% improvements are 

obtained over lower troposphere for three DA schemes, respectively. 14%, 22%, and 23% 

improvements are obtained over tropopause layers, respectively. Greater improvements 

are also obtained during summer with extra 10% skills. For the initial RH profiles, only 

Hybrid shows overall improvements and better performance than 3D-Var. EnKF enlarges 

both bias and RMSDs in the initial RH profiles.  
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Figure 9 Averaged bias and RMSD of the analyzed wind, temperature, and RH profiles as a function of 
pressure.   

 

The results of analyses show that Hybrid shows overall better performance than 

3D-Var during both seasons especially in adjusting RH profiles in upper layers. EnKF 

performs better in adjusting lower level winds during winter and lower level temperature 

during summer. EnKF also gives out better precipitable water results despite the bad 

performances in adjusting RH profiles.  
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4.2.3 Verification of Tropospheric Forecasts 
The absolute values of biases and RMSDs of predicted surface pressure, wind, 

temperature, and RH verified against the conventional observations at different forecast 

lead times over the continental U. S. are averaged during winter and summer.  

4.2.3.1 Forecasts of Surface Pressure 
The averaged bias and RMSD of the predicted surface pressure fit to conventional 

observations at different forecast lead times (12-, 24-, 36-, 48-, 60-, 72-h) are plotted in 

Fig. 10(a, b), respectively. Black lines indicate winter predictions and red lines indicate 

summer predictions. Solid, dashed, and dotted lines for predictions of 3D-Var 

experiment, Hybrid experiment, and EnKF experiment, respectively. As shown in Fig. 

10, the Hybrid configuration performs similar forecast results to 3D-Var with extra 3% 

skill. In winter, 10% less skills in predicting surface pressure is observed in EnKF 

scheme. However, an averaged extra 22% skills is obtained in EnKF in summer 

compared to 3D-Var.  

Generally, the predicting skills will fall as the lead time increases. For bias, 3D-

Var and Hybrid perform very small increase of surface pressure biases during both 

seasons (both with slopes of ~0.03). In contrast, EnKF shows faster increase rate (with a 

larger slope of 0.11) during winter. For RMSDs, all three DA configurations show similar 

decrease rate of predicting skills during summer (with slopes of ~0.10). For winter 

surface pressure predictions, EnKF shows faster decrease rate (with a slope of 0.17) than 

3D-Var and Hybrid (with slopes of ~0.14). 

Diurnal bias variations are observed in all three experiments especially during 

summer. 3D-Var and Hybrid have better predictions at lead times of 24-h, 48-h and 72-h 
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during winter, but opposite results during summer. EnKF shows more stable prediction 

skills for daily variations in which the predictions at lead times of 12-h, 36-h, and 60-h are 

slightly better than the others.  

 

 

Figure 10 Averaged bias and RMSD of the predicted surface pressure.   
 

For surface pressure predictions, Hybrid shows overall advantages in winter and 

EnKF shows better skills in summer. Also, the diurnal variations show that Hybrid 

predictions have better performance during the late afternoon (17:00-19:00 LST) in winter 

and better performance during the early morning (5:00-7:00 LST) in summer. In contrast, 

EnKF shows better skills in predicting surface pressure during the early morning (5:00-

7:00 LST) without season variabilities.  

4.2.3.2 Forecasts of Wind 
The averaged biases and RMSDs of all-level mean wind and wind profile 

predictions during both seasons are plotted in Fig. 11(a, b), respectively. As shown in Fig. 

11, summer has overall lower RMSDs but close values of biases than winter. EnKF shows 
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much lower biases (Fig. 11a) during the early forecast lead hours (12-, 24-, 36-h) in winter 

and then reaches equivalent levels to 3D-Var and Hybrid. However, EnKF has higher 

RMSDs (Fig. 11b) compared to 3D-Var and Hybrid. In summer, 3D-Var and Hybrid give 

close values of biases in the early forecast lead hours (12-, 24-, 36-h) and then Hybrid has 

a slightly increase of biases in the later forecasts. Hybrid and EnKF have very close RMSDs 

during the summer which are slightly smaller than 3D-Var. Hybrid showed better skills in 

predicting wind during summer and relatively longer predictions of wind during winter. 

EnKF has some advantages in 1-day wind prediction in winter, but higher RMSDs.  

 

 

Figure 11 Averaged bias and RMSD of the predicted all-level mean wind. 
 

Diurnal variations especially in summer are also observed when predicting wind. 

All three DA configurations show better skills in predicting wind in the early morning 

(5:00-7:00 LST) in winter while both biases and RMSDs are lower in the late afternoon 

(17:00-19:00 LST) in summer.  
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The averaged biases and RMSDs of wind profiles are plotted in Fig. 12(a, b), 

respectively. The wind predictions in summer have overall better skills (~10%) then the 

predictions in winter. All three DA configurations show the largest RMSDs in the 

tropopause layers (150-250 hPa for winter, and 50-150 hPa for summer). Compared to the 

6-week global experiments starting in December 2010 did by Dr. Wang (2013), the results 

show that both global and regional models can’t properly simulate the atmospheric state in 

the tropopause layers (150-250 hPa), and the regional predictions show larger RMSDs. 

Less than 2% differences are observed in 3D-Var and Hybrid in both seasons. EnKF shows 

slighter larger RMSDs than the other two DA configurations in winter. Larger increasing 

rate of RMSDs over the tropopause layers (150-250 hPa) are observed in EnKF. But these 

differences are getting smaller as lead time increases. EnKF and Hybrid have comparable 

RMSDs in summer and both RMSDs are slightly smaller than 3D-Var over all levels. 

 



 

66 
 

 
 

Figure 12 Continued 
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Figure 12 Averaged bias and RMSD of the predicted wind profiles.  
 

The biases of wind profiles in three predictions are not decreasing as the increase 

of lead time. All three DA configurations show bimodal patterns in winter and tri-modal 
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patterns in summer. In winter, all three DA configurations show close values of biases in 

the near surface layers. As the height increases, EnKF shows a faster increase rate of bias 

especially at 800 hPa in the early morning and 600 hPa in the late afternoon. This feature 

is also obtained in the summer wind bias profiles with a faster increase rate of bias in the 

higher troposphere layers in the late afternoon. This feature indicates that when deeper 

convections exist, more uncertainties are brought into the system via ensembles used in 

EnKF. Also, the tropopause has the largest biases in all three DA configurations in both 

seasons. EnKF and Hybrid show better skills than 3D-Var at the model top in both 

seasons. In summer, one more bias peak is found at the middle layers of the troposphere 

(400-800 hPa) which means all three DA configurations lack the skills of predicting wind 

when deep convections exist compared to a more stable atmosphere in winter. 

4.2.3.3 Forecasts of Temperature 
The averaged biases and RMSDs of all-level mean temperature and temperature 

profile predictions at different forecast lead times during both seasons are plotted in Fig13 

and Fig. 14. As shown in Fig. 13, again better predicting skills (~20%) are obtained in all 

three DA configurations in summer. In winter, 3D-Var and Hybrid show close results of 

both biases and RMSDs in which Hybrid shows slightly extra 1% skill. EnKF has faster 

growth of bias and larger RMSD in winter compared to 3D-Var and Hybrid. In summer, 

all three DA configurations show close skills (close values of RMSDs) in the 

predictabilities of temperature in which EnKF has better skills in the 12-h lead time 

predictions and the other two DA configurations have better skills in longer forecast lead 

time predictions. Diurnal variations are also observed in summer temperature predictions. 
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3D-Var and Hybrid show similar diurnal variations to those in surface pressure predictions, 

while EnKF shows the opposite features. Also, 3D-Var has larger amplitude of diurnal 

variations while EnKF has smaller ones.  

 

 

Figure 13 Averaged bias and RMSD of the predicted all-level mean temperature. 
 

The predicted temperature profiles fit to conventional observations are plotted in 

Fig. 14. For different seasons, smaller biases are obtained in the troposphere and 

comparable values of biases are obtained in the tropopause layers. Similar structures are 

found in RMSD profiles. The predictabilities of winter tropospheric temperature drop 

faster than those in summer. About an extra 25% skill is found at 12- and 24-h forecast 

lead times and reaches 34% at 60- and 72-h forecast lead times. 3D-Var and Hybrid show 

close predictabilities in which Hybrid shows an extra 1% skill. EnKF shows less 

predictabilities (~7%) in lower troposphere in winter. In contrast, an extra 10% skill is 

obtained over the tropopause layers during both seasons in EnKF configuration. 
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Both biases and RMSDs of temperature profiles show a bimodal structure in both 

seasons. The first peak values of biases and RMSDs are obtained in the lower boundary 

layers (below 900 hPa), and the second peak is again obtained over the tropopause layers. 

The obtained RMSDs of temperature profile predictions at longer forecast lead times in 

winter show similar structure to the results obtained by Dr. Wang (2013) with the lowest 

predict skills in the lower boundary layers and then in the tropopause layers. The RMSDs 

in summer show that the predict skills at lower boundary layers and the tropopause layers 

are comparable. The bias profiles show that larger biases are occurred in the tropopause 

layers. The bias peaks in the tropopause layers are much larger than those in the lower level 

during summer.  
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Figure 14 Continued 
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Figure 14 Averaged bias and RMSD of the predicted temperature profiles.  
 



 

73 
 

 

Above all, EnKF shows better predictabilities in predicting temperature. Smaller 

biases are obtained using EnKF at tropopause layers. While at lower troposphere, similar 

results are obtained in which Hybrid shows slightly better skills and lower biases. 

4.2.3.4 Forecasts of Relative Humidity 
Compared to the predictions of surface pressure, all-level mean wind and all-level 

mean temperature, the predicted RH have much larger biases and RMSDs (Fig. 15). 

Again, all three DA configurations have better performance during summer with much 

smaller bias growing rate (~0.64) than winter (~1.39) (Fig. 15a). 3D-Var and Hybrid 

show comparable results in which an extra 1% skill is obtained in Hybrid experiment. 

EnKF shows much larger biases and RMSDs than the other two DA configurations in 

winter. A drop of 10% skill is observed in EnKF scheme in winter. In summer, EnKF 

shows similar results to variational schemes with an extra 2% skill obtained during the 

12- to 36-h forecast lead times compared to 3D-Var and then reaches a comparable level. 

 

 

Figure 15 Averaged bias and RMSD of the predicted all-level mean RH. 
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Figure 16 Continued 
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Figure 16 Averaged bias and RMSD of the predicted RH profiles. 
 

The RH bias and RMSD profiles are plotted in Fig. 16. Generally, smaller biases 

and RMSDs are observed during summer. Beside the overall smaller biases observed in 
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summer in the left column in Fig. 16, larger biases are observed at 800 hPa level at 12-, 

24-, and 48-h forecast lead times. Larger RMSDs are also observed above 400 hPa levels 

as shown in the right column in Fig. 16. In summer, all three DA configurations show 

close RMSDs in which EnKF shows slightly smaller results (extra 3% skill) over 800 hPa 

levels at 12-, and 24-h forecast lead times. In contrast, EnKF gives the lowest predicting 

skills in winter with much larger RMSDs over all levels (~6% less skill) while Hybrid 

gives more stable predicting skills in winter compared to 3D-Var. For biases, similar 

results are obtained. All three DA configurations show close results in summer with 

smaller biases obtained by EnKF at 800 level. In winter, EnKF gives much larger biases 

especially over the near surface levels.  

The forecasts of RH profiles in all three DA configurations also show significant 

diurnal variations in summer. At 12-. 36-, and 60-h forecast lead times, larger biases are 

obtained over lower levels at 950 hPa while at 24-, 48-, and 72-h forecast lead times, 

larger biases are obtained at higher levels (800 hPa). Different from wind, and 

temperature, the diurnal variations in RH profiles are probably caused due to the 

insufficiency of dealing convections in the afternoon in regional weather forecasting 

model.  

Similar to the forecasts of surface pressure and temperature, EnKF gives better 

results in summer especially at early forecast lead times. In contrast, EnKF shows much 

larger biases and RMSDs in winter compared to 3D-Var and Hybrid.  
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4.2.4 Discussion 

4.2.4.1 Analysis Increments 
The 3D-Var, Hybrid, and EnKF averaged analysis increments for wind, and 

temperature (wind results are slightly different from the other variables) in both seasons 

are compared at different layers. 

 

 

Figure 17 Column-averaged wind analysis increments. 
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Firstly, the column-averaged wind analysis increments of 3D-Var (Fig. 17a, b), 

Hybrid (Fig. 17c, d) and EnKF (Fig. 17e, f) in both seasons are compared. The seasonal 

variations are more obvious in 3D-Var and Hybrid configurations. Both 3D-Var and 

Hybrid show positive (red areas) increments in the south and negative (blue areas) 

increments in the north. In contrast, both 3D-Var and Hybrid show negative increments 

in both south and north but positive increment in the Great Plains and Florida. EnKF does 

not show much differences between winter and summer in which summer shows more 

negative increments over the oceans but less positive increments over the Rocky 

Mountains. By comparing between different DA configurations, Hybrid shows similar 

increments patterns to the 3D-Var configuration but with smaller magnitude. EnKF 

shows similar increments patterns to the other two configurations over the Great Plains 

and the Gulf of Mexico in summer. However, EnKF shows the opposite increments over 

the Atlantic Ocean and the north part of the Rocky Mountains during both seasons. The 

opposite characteristics of increments over the Atlantic Ocean and part of the Rocky 

Mountains may contribute to the differences showed in Table 7 and then propagate 

forward in the forecasts such as the results that smaller biases and larger RMSDs are 

obtained in Fig. 11. 
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Figure 18 Column-averaged wind analysis increments over near surface and tropopause layers. 
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The wind analysis increments at near surface layer and tropopause layer are also 

compared. For the truth that Hybrid shows similar patterns to the 3D-Var configuration, 

here only 3D-Var (Fig. 18a, c, e, g) and EnKF (Fig. 18b, d, f, h) results are plotted. The 

patterns of the column-averaged wind analysis increments (Fig. 17) are similar to the 

patterns of tropopause wind analysis increments (Fig. 18) which means the column-

averaged wind analysis increments in 3D-Var are mainly driven by the increments over 

the high altitudes. In contrast, EnKF shows similar patterns of increments in the near 

surface layer and the tropopause layer. The major differences between 3D-Var and EnKF 

wind analysis increments are the opposite impacts over the oceans in the near surface 

layer in which 3D-Var usually shows positive increments but EnKF usually shows 

negative increments. Different impacts are also obtained over the north Rocky Mountains 

over the tropopause layers in which 3D-Var shows all negative increments while EnKF 

shows large positive increments. 

Secondly, the temperature analysis increments (Fig. 19) are compared to the wind 

analysis increments. The column-averaged temperature analysis increments from 3D-Var 

and Hybrid show smaller positive increments over the south oceans during winter and the 

magnitude becomes larger during summer. In contrast, EnKF shows overall negative 

increments especially over the mountainous areas. The temperature analysis increments 

at near surface layers and tropopause layers from 3D-Var and EnKF are also compared 

(Fig. 19). The results are largely different from the wind increments. At the near surface 

layer, EnKF shows similar patterns to 3D-Var scheme. Overall negative increments are 

observed at the near surface layer in both seasons in which EnKF shows larger negative 
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values. At the tropopause layers, overall positive increments are observed in the 

variational scheme. EnKF shows much smaller increments including negative increments 

in the Great Lakes area. Two observations over the troposphere in the south California 

and Oklahoma showed significant impacts on both 3D-Var and EnKF increments during 

both seasons. Different from wind increments, EnKF shows similar results to variational 

schemes but tends to have more negative increments. 

 

 

Figure 19 Column-averaged temperature analysis increments. 
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Figure 20 Column-averaged temperature analysis increments at near surface and tropopause layers. 
 

4.2.4.2 Bias Variations 
In previous sections, we found that after the application of DA especially when 

3D-Var is applied, diurnal variations become more obvious in the predicted surface 

pressure, column-averaged wind and column-averaged temperature biases during 
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summer. Firstly, the system diurnal errors are brought out by perform a control (CTRL) 

experiment without the application of DA. Then, a 3D-Var configuration (3D-Var_4) 

during summer was applied to test if the diurnal variations are caused by the application 

of one-time DA in a day. In this experiment, the same observations, observation 

operators, satellite bias correction algorithms, and quality control decisions are used, but 

DA applications are applied four times a day at 00:00 UTC, 06:00 UTC, 12:00 UTC, and 

18:00 UTC. Both experiments are conducted during the summer period. The averaged 

biases of surface pressure, all-level mean wind, and all-level mean temperature are 

obtained in Fig. 21. The averaged diurnal difference is used to represent the diurnal 

variations. The systematic diurnal variations for all three variables can be obtained in Fig. 

20a in which ~0.13 Pa for surface pressure, ~0.16 m s-1 for wind and ~0.02 K for 

temperature. The diurnal variations of the 3D-Var experiment obtained from Fig. 9, Fig. 

10 and Fig. 12 are ~0.18 Pa for surface pressure, 0.12 m s-1 for all-level mean wind and 

0.12 K for all-level mean temperature. Compared to the systematic diurnal variations, it is 

obvious that one-time 3D-Var application has significant impacts on temperature diurnal 

variations and slightly smaller impacts on surface pressure, but no tend in increasing the 

magnitude of wind diurnal variations. The diurnal variations obtained in Fig. 20b are 0.08 

Pa, 0.02 m s-1, and 0.006 K for surface pressure, all-level mean wind and all-level mean 

temperature, respectively. Compared to the CTRL and one-time 3D-Var experiments, all 

diurnal variations are largely reduced which means the diurnal variations of biases 

obtained in the previous sections are the productions of one-time DA application and 

when the diurnal variations of the observations are brought into the system via DA four 
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times a day, the diurnal variations of biases caused by both system errors and one-time 

DA applications disappeared. 

 

 

Figure 21 Averaged biases of the predicted summer surface pressure (Pa), all-level mean wind (m s-1), and all-
level mean temperature (K). 

 

To further discuss the distribution of the diurnal variation of biases over the 

continental, the biases of surface pressure, all-level mean wind and temperature over the 
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Rocky Mountains (RM) and the Great Plains (GP) are plotted in Fig. 22. Generally, 

larger diurnal variations of biases are observed over the Great Plains especially in 

summer with variational data assimilation schemes. However, in winter, large diurnal 

variations of bias of temperature is observed over the Rocky Mountains with EnKF 

scheme (Fig. 22e). The major contribution of the diurnal variation of biases are from the 

mid-east of United Continental. Comparing different DA schemes, much smaller biases 

of surface pressure and wind and comparable bias of temperature are given in EnKF 

configuration in summer. In contrast, much larger biases of surface pressure and 

temperature are observed over the Rocky Mountains (Fig. 22a, e). 

 



 

86 
 

 

 

Figure 22 Averaged biases of the predicted surface pressure (a, b), all-level averaged wind (c, d), and all-level 
averaged temperature (e, f) over the RM and GP. 
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4.3 Individual Case study – A Summer Case 
One bipolar event happened during the second week of July 2012 are used to 

evaluate the results obtained in former sections. As shown in Fig. 23 (from National 

Climatic Data Center, NOAA), over two-thirds of the U.S. continents especially over the 

corn-belt region (Di, et al., 2015) and southwest coast suffered extremely drought, while 

the southeast U.S. (divided by the solid black line in Fig. 23) suffered extreme heavy 

precipitation events. 

The accompanying mean sea level pressure for the 2nd week of July, 2012 minus 

June-July-August (JJA) of 2012 (Fig. 24) shows a high pressure over the Great Lakes and 

relatively weaker high pressure over the Atlantic Ocean east of the Gulf of Mexico. The 

high pressure over the Great Lakes was the primary reasons for bringing in dry air from 

the north to the ‘corn belt’ region, and make this area extremely dry during the 2nd week 

of July. While the weaker one tended to prevent the dry air pushing southward to the 

southeast part of U.S. Under such a dynamic scenario, the drought was intensified in the 

‘corn belt’ region and spread into the Texas. However, the cyclone located over the Gulf 

of Mexico strengthened the low-level jet carrying moisture from the Gulf of Mexico to 

the southern coastal areas and caused this heavy precipitation events during the 2nd week 

of July.  
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Figure 23 Total precipitation distribution of the second week of July, 2012. (From NOAA, National Climatic 
Data Center). 

 

 

Figure 24 Sea level pressure (hPa) and 850-hPa wind vector (m s-1) differences between the 2012 2nd week of July 
average and the 2012 JJA average from NCEP/NCAR reanalysis. 
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4.3.1 Verification of the Drought 
A set of experiments involving a control experiment (CTRL) and three DA 

configurations including 3D-Var, Hybrid and EnKF are designed. The descriptions of 

these experiments are concluded in Table 6. The difference is that in the individual case 

study section, the DA is applied every 12-h continuously. The results are verified against 

in-situ observations and GLDAS products. 

Firstly, a single station near surface temperature time series from Manhattan, 

Kansas (KS) located at the station (39.102°N, 96.609°W) shown in Fig. 23 ("Δ") is used 

to validate our model results. Fig. 25 compares the simulated 2 m temperatures from 

CTRL, 3DVar, Hybrid, and EnKF experiments with the in-situ observational near-surface 

temperature from Manhattan and shows all experiments overestimated the temperature 

during the first two days and then become more reliable in the rest days of the week. The 

correlation coefficients (CC) between the in-situ near surface observation and each model 

output 2 m temperature are calculated. The results showed that all DA configurations 

largely improved the model outputs with both higher CC and lower RMSDs. Among 

these three DA configurations, 3D-Var and Hybrid shows comparable results and EnKF 

gives better scores. The CTRL experiment showed better results during the first two days 

and then dropped dramatically from the third day. In contrast, EnKF shows comparable 

results at first few DA cycles and better results at later DA cycles compared to the other 

experiments in predicting near surface temperature.   
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Figure 25 Time series of near-surface temperature from Manhattan, KS (39.102°N, 96.609°W) and the predicted 
2 m temperature from different experiments. 

 

The spatial correlation coefficients (SCC) and RMSDs between GLDAS hourly 

surface skin temperature and model hourly surface skin temperature over the drought area 

are obtained. The averaged SCC and RMSDs in CTRL experiment are 0.660 and 4.079, 

respectively. Compared to the CTRL experiment, all three DA configurations show great 

improvements in which the SCC and RMSD for 3D-Var are 0.754 and 3.515, 

respectively, 0.741 and 3.520 for Hybrid, respectively, and 0.773 and 3.382 for EnKF, 

respectively. EnKF shows better results among the three DA configurations. In Fig. 26, 
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the SCC and RMSD of the surface skin temperature obtained from the CTRL-GLDAS 

are used as basics and the differences of the SCC and RMSD between the DA-GLDAS 

experiments and the CTRL-GLDAS are calculated. The SCC above 0 in Fig. 26a and the 

RMSD under 0 in Fig. 26b indicate positive impacts, vice versa. Compared to 3D-Var, 

Hybrid shows the advantages in the first few DA cycles. The largest improvements were 

obtained after 6-7 DA cycles for all three DA configurations. Compared to the variational 

DA configurations, EnKF shows more advantages in the late DA cycles with both higher 

SCC and lower RMSDs in predicting surface skin temperature.  

 

 

Figure 26 (a): Spatial correlation coefficients and (b): RMSD differences of surface skin temperature.  
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Figure 27 Distribution of averaged surface skin temperature (K) from different model results. 
 

The extremely hot weather appeared over the southwest areas and the abnormally 

cold center near the northeast areas are clearly shown in GLDAS results (Fig. 27a). The 

CTRL experiment (Fig. 27b) largely underestimated the surface skin temperature 
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especially over the north and the southeast coast. In contrast, all three DA configurations 

well caught the patterns. Both 3D-Var and Hybrid slightly underestimate the surface skin 

temperature over Missouri and Illinois (Fig. 27c, d). Hybrid also slightly overestimate the 

surface skin temperature over Louisiana. Compared to 3D-Var and Hybrid, EnKF shows 

better results in these three states. The summer case study verifies that EnKF has more 

advantages in predicting temperature in summer (section 4.2.3.3). 

4.3.2 Verification of the Precipitation 
Secondly, the precipitation products from the CTRL experiment, and each DA 

configurations are compared to the GLDAS 3-h precipitation products. The major 

precipitation region is in the southeast coast of U. S. as shown in Fig. 23. The 3-h 

precipitation time-series is from GLDAS products, CTRL, 3D-Var, Hybrid and EnKF 

were plotted in Fig. 28. All three DA configurations have better correlations than the 

CTRL experiment in which 3D-Var and Hybrid give better correlations than EnKF. 

However, EnKF has the best RMSD compared to the other configurations. All 

experiments largely overestimate the precipitation amount over the precipitation peaks 

while the CTRL experiment shows better predictions of precipitation peaks during the 

last three days. In contrast, all DA configurations well predict the precipitation valleys. 

By comparing the performances of different DA configurations, the EnKF and Hybrid 

show better predictions in the later DA cycles than 3D-Var. 
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Figure 28 Time series of 3-h accumulated precipitation from different model results. 
 

The mismatches of the accumulated precipitation may be related to the mismatch 

of storm center locations or predicting of fake precipitation patterns. The daily 

precipitation distributions from GLDAS (Fig. 29a, f), CTRL (Fig. 29b, g), 3D-Var (Fig. 

29c, h), Hybrid (Fig. 29d, i), and EnKF (Fig. e, j) of July 10th (first row) and July 12th 

(second row) are plotted. In July 10th, all GSI configurations overestimate the total 

precipitation in major precipitation areas except the EnKF configuration, and a storm 

center was obtained over Texas and Oklahoma especially in CTRL and Hybrid 

experiments. The CTRL experiment failed to catch the storm center over the coast of 
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Gulf of Mexico, in contrast, the other configurations successfully caught this storm center 

but 3D-Var largely overestimate the total precipitation. In July 12th, the precipitation 

pattern in CTRL experiment moved to the east and the precipitation pattern in 3DVar 

moved to the west. In contrast, Hybrid, and EnKF show only slightly offset to the west of 

the precipitation pattern. Among Hybrid and EnKF, Hybrid largely overestimate the daily 

precipitation amounts, however, EnKF shows more reliable results compared to the other 

DA configurations. 

The individual case study of a heavy precipitation event during the 2012 drought 

summer period shows that EnKF has the advantages in predicting both temperature and 

precipitation during summer which confirmed the results obtained in the previous 

sections. 

 



 

 
 

 

 

Figure 29 Daily precipitation (mm) distribution of July 10th and July 12th, 2012, from different model results.  
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4.4 Individual Case study – A Winter Case 
Another heavy precipitation event happened in the Jan. 2nd to Jan. 4th, 2015 is 

used to verify the DA configurations during winter. The observed precipitation 

distribution during this period is concluded in Fig. 30. The observed precipitation data is 

obtained from NOAA’s Advanced Hydrologic Prediction Service. As shown in Fig. 30, 

this precipitation event started at the east of Texas and moved eastward.  

Also, the in-situ near-surface temperature observations from Manhattan, KS 

during Jan. 1st to Jan. 4th, 2015 are used to verify the model outputs from different 

configurations. Both 3D-Var and Hybrid show slightly improvements in CC and RMSDs 

compared to CTRL (Fig. 31). In contrast, EnKF shows a decrease of the CC but 

comparable value of RMSD with 3D-Var. When predicting near surface temperature, no 

obvious differences are found in the first few DA cycles between the CTRL and DA 

configurations, and all experiments underestimate the temperature. However, all DA 

configurations show smaller biases in late DA cycles especially in EnKF experiment. In 

the comparison of 3-h accumulated precipitation in the major precipitation area from 

GLDAS products (Fig. 32), EnKF shows the largest improvements in both CC and 

RMSD. In contrast, no obvious differences are found between 3D-Var, Hybrid, and 

CTRL experiments. However, EnKF underestimates the 3-h accumulated precipitation in 

the first few DA cycles compared to Hybrid configuration. 
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Figure 30 Observed precipitation distribution from Jan. 2nd to Jan. 4th, 2015 from NOAA. 
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Figure 31 Time series of near-surface temperature from Manhattan, KS (39.102°N, 96.609°W) in-situ 
observational and the predicted 2 m temperature from different experiments. 

 

 

Figure 32 Time series of 3-h accumulated precipitation from different numerical experiments. 
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The distributions of the daily precipitation from GLDAS, CTRL, 3D-Var, Hybrid, 

and EnKF are plotted in Fig. 33. On Jan. 2nd, all experiments matched the major 

precipitation patterns, however, all experiments also overestimate the precipitation 

amounts over the Texas. No significant improvements are found in the first DA cycle. On 

Jan. 3rd, Hybrid (Fig. 33i) and EnKF (Fig. 33j) well matched the major precipitation 

patterns while 3D-Var (Fig. 33h) overestimates the total precipitation in the storm center. 

On Jan. 4th, the storm centers observed in the CTRL experiment (Fig. 33l) move to the 

Gulf of Mexico compared to the storm centers appeared over Alabama and Georgia in 

GLDAS products (Fig. 33k). Both Hybrid and EnKF configurations underestimate the 

precipitation amounts. In contrast, the 3D-Var configuration matched the two storm 

centers. 

The individual case study of the heavy precipitation event during Jan. 2nd to Jan. 

4th, 2015 shows that the Hybrid configuration shows overall better results than 3D-Var 

and EnKF. EnKF performs different from the summer event which underestimate the 

accumulated precipitation amounts in the first few DA cycles and then becomes 

comparable to the other configurations. 

 



 

 
 

 

 

Figure 33 Daily precipitation (mm) distribution of Jan. 2nd, Jan. 3rd, and Jan. 4th, 2015, from different numerical results. 
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4.5 Summary 
The performance of 3D-Var, 3D-Var based ensemble-variational hybrid (Hybrid), 

and EnKF on regional short-term weather forecasts over the continental U. S. in both 

winter and summer are investigated using the regional model WRF-ARW with a model 

top at 50-mb and the operational DA model GSI using all operationally available 

observations. The forecast results are verified against conventional observations. 

The inclusion of ensembles in variational method can drive the convergence rate 

faster in summer. In winter, slightly slower convergence rate at first few iterations and 

then faster convergence rate at later iterations in both first and second outer loops when 

ensembles are included. When adjusting initial conditions, great improvements (10~20%) 

are found over the lower boundary layers and the tropopause layers. Beside the 

improvements, these three DA configurations show differences in adjusting different 

variables. 3D-Var and Hybrid show better improvements (3%) in adjusting surface 

pressure and wind in initial conditions while EnKF has better performance in adjusting 

temperature in both seasons. 

Predictions made by three DA configurations also vary in different variables, 

heights, and seasons. All three DA configurations show better forecast skills (~10%) in 

summer than winter while bias differs from different variables. Generally, Hybrid shows 

more advantages in predicting surface pressure, wind, temperature, and RH in winter. In 

contrast, EnKF shows better skills in predicting summer atmospheric states which is 

similar as obtained in Meng and Zhang (2008). For wind and temperature profiles, all 

three DA configurations show better forecast skills in the middle tropospheric layers, but 
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less skills in the tropopause layers. EnKF shows less forecast skills in predicting 

tropopause wind but better skills in predicting tropopause temperature compared to the 

other two DA configurations. Hybrid has the advantages in predicting wind and 

temperature at lower levels.  

The diurnal variation of biases observed in the experiments are mainly caused by 

two factors: systematic errors and one-time assimilation in a day. The temperature and 

surface pressure diurnal variations are largely caused by one-time assimilation in a day 

while the wind diurnal variations are strongly related to the systematic errors. When a 4-

time assimilation is applied per-day, this diurnal variation features disappeared. Two 

individual heavy precipitation events occurred during summer and winter, respectively, 

are used to verify the statistical results. Individual case studies showed that EnKF do 

have better skills in predicting summer heavy precipitation events but less skills in 

predicting winter events compared to Hybrid, and EnKF tends to underestimate the total 

precipitation amounts. However, EnKF shows better performance in predicting 

atmospheric states (e.g., temperature) than the other DA configurations in later DA 

cycles.   

To discuss the reasons for the different performance, analysis increments are 

firstly discussed. Similar increments are observed in different seasons. EnKF shows 

similar temperature increments to the variational schemes but tends to have more 

negative increments. In contrast, EnKF shows opposite wind incremental features to 

those in variational schemes. The reasons for the differences between different seasons 

and between using different DA configurations are complex. Absolutely, background 
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error covariance contributes a lot to the forecast qualities in both variational and Kalman 

filter data assimilations. The background error covariance used in 3D-Var is usually 

estimated via the so-called National Meteorological Center (NMC) model (Parrish and 

Derber, 1992) which is static. However, day-to-day variabilities are existed in the model 

forecast errors which can be as large as the average error and are ignored when the 

background error covariance is static. Compared to 3D-Var, the background error 

covariance used in EnKF is estimated form a set of ensembles which can provide flow-

dependent information into the system. The inclusion of ensembles provided more 

accurate estimate of uncertainties, less error in the analysis and less diurnal variations. 

3D-Var also benefited a lot by including flow-dependent ensembles in the background 

error covariance which the configuration here is called 3D-Var based ensemble Hybrid. 

The inclusion of ensembles greatly improved the analysis and have positive impacts on 

the forecasts especially in summer. However, there exists some deficiencies in the 

ensembles generated from regional model which lead to the decrease of predictabilities in 

winter when the atmospheric state shows less relations to the day-to-day errors. Also, the 

initial ensembles used in EnKF show more uncertainties when deeper convections exist. 
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CHAPTER FIVE COMPARISON OF THE INCLUSION OF INFRARED AND 
MICROWAVE IN DA 

As we proved in chapter 4, different atmospheric variables in different seasons are 

sensitive to different DA configurations. In this chapter, the impacts of infrared and 

microwave satellite data when assimilated alone are investigated and compared. The 

major goal of this chapter is to seek the advantages of using microwave satellite data in 

DA system for the prediction of heavy precipitation events.  

5.1 Introduction 
In the fact that the emitted radiance from the earth-atmosphere system is much 

smaller than that of solar radiation, the wavelength for the radiance emitted from the 

earth-atmosphere system is usually longer than that of solar radiation which is usually 

referred to as the infrared or thermal and microwave radiation (Liao, 2002). Large 

differences exist between the infrared and microwave radiances and thus differs the ways 

how they observe the earth’s key variables. 

Carbon dioxide, water vapor and ozone are three major gases which absorb the 

infrared radiation significantly. Four regions in the infrared band are strongly related to 

these gases. As shown in Fig. 34, CO2 absorbs the infrared radiation in the 15 μm band 

and the 4.3 μm band which overlaps with the solar radiation. Generally, satellite sensors 

(channels) that measure close to the spectral frequencies of CO2 absorption lines are 

temperature sensitive sensors (channels). Ozone absorbs the infrared radiation mainly in 
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the 9.6 μm band. Water absorbs the infrared radiation over the entire infrared spectrum 

with the strongest region in 6.3 μm band. The channels which sensitive to the H2O 

absorption lines are usually referred to the water vapor channels. The so called 

atmospheric window region is located between 800 to 1200 cm-1. The radiance 

measurement in the atmospheric window region is more sensitive to the surface 

characteristics due to the little absorption by atmospheric components.  

 

 

Figure 34 Observed brightness temperature for infrared spectrum with all absorption gases and their spectral 
locations. (Liao, 2002, Chapter 4.2). 
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For microwave, the wavelength is longer than infrared (usually at centimeter 

scale) and the microwave satellite sensors usually have much less channels than the 

infrared satellite sensors. Different from the infrared bands which are strongly absorbed 

by CO2, H2O, and O3, only water vapor and molecular oxygen showed significant 

absorption lines. As shown in Fig. 35, the molecular oxygen strongly absorbs the 

radiation at the 60 GHz band and 118.75 GHz, and water vapor starts to absorb the 

radiation near 180 GHz. As Zou, et al. (2013) noticed, more valuable information of the 

cloud and atmosphere under cloudy conditions can be obtained when using Microwave 

radiance technologies because microwave radiation can penetrate through non-

precipitation clouds and carries atmospheric humidity information within the clouds 

when compared to infrared humidity sensors. A comparison of the impacts of infrared 

and microwave satellite data in DA system on the NCEP’s operational global forecast 

model was taken out by Cucurull and Anthes (2014). The study of the impacts on global 

forecast model showed that the infrared and microwave satellite observations affect the 

global temperature in a similar way but large differences existed in the lower troposphere. 

Furthermore, they found that by assimilating infrared and microwave alone will make a 

small positive impact on the global forecast system.  

In this chapter, a set of experiments assimilate infrared or microwave satellite 

observations alone are taken out with the regional model top set at 10-mb. The impacts of 

infrared and microwave satellite observations when assimilated alone on our regional 

NWP system are investigated. Detailed channel selections of each sensor used in DA 

system is listed in appendix A. 
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Figure 35 Atmospheric transmittances as a function of frequency and wavelength. (Liao, 2002, Chapter 7.5). 
 

5.2 Statistical Results 
As described in chapter 3, the domain configuration for the second set of 

experiments are the same in the horizontal direction as those in the first set of 

experiments. The model lid is raised from 50-mb to 10-mb and more model vertical 

levels are used. The DA configurations are selected based on the results obtained in 

chapter 4 which Hybrid and EnKF are selected for winter and summer predictions, 

respectively. Experiments are designed using different observations in the DA system and 

they are concluded in Table 5. The averaged biases and RMSDs fit to conventional 

observations during the study periods are compared in this section. 
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5.2.1 Comparison of Analysis 
The surface pressure, wind, temperature, humidity, and precipitable water from 

the analysis assimilating infrared (IR) and microwave (MW) alone in the DA system are 

compared in this section. Table 8 concluded the differences of the analyzed surface 

pressure, all-level mean wind, all-level mean temperature, all-level mean humidity and 

precipitable water. No significant differences (less than 1%) are observed during summer 

when using EnKF configuration. In winter, MW configuration shows better results 

especially for precipitable water with 23% improvement in bias adjustment and 5.7% 

improvement in RMSD. 

 

Table 6 Comparison of the analysis from IR and MW configurations 
Surface Pressure 

(Pa) 
Winter Summer 

IR MW IR MW 
Bias 0.0205 0.0295 0.1940 0.1955 

RMSD 1.0206 1.0014 0.8224 0.8230 
All-level mean wind (m s-1) IR MW IR MW 

Bias 0.2220 0.2170 0.3640 0.3705 
RMSD 3.9168 3.8374 3.4618 3.4670 

All-level mean T (K) IR MW IR MW 
Bias 0.1325 0.0953 0.0891 0.0875 

RMSD 1.2768 1.2430 1.4279 1.4307 
All-level mean RH (%) IR MW IR MW 

Bias 0.8394 0.9902 1.0935 1.1056 
RMSD 11.0932 11.0298 11.4458 11.4607 

Precipitable Water (mm) IR MW IR MW 
Bias 0.3029 0.2364 0.5356 0.5291 

RMSD 2.1297 2.0089 3.7197 3.7162 
 

The differences in analyzed wind, temperature and RH profiles during both 

seasons (black for winter and red for summer) are calculated using MW results minus IR 
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results and plotted in Fig. 36. The blue solid line indicates the 0-demarcation. The 

negative values indicate that MW has more advantages in adjusting the initials, vice 

versa. No significant differences are observed in summer for both biases and RMSDs 

using EnKF configuration. The IR configuration shows slightly better RMSDs of wind 

(0.5%) and temperature (0.8%) over the tropopause layers, and better RMSDs of RH over 

higher tropospheric layers. In winter, the MW configuration shows overall better 

adjustments on wind and temperature profiles. For wind profiles, the MW configuration 

shows the largest advantages in adjusting wind in the tropopause with an extra 4% skill is 

obtained. In the lower troposphere, no significant differences are found in the biases, but 

MW shows better RMSDs (~2%). For temperature profiles, MW shows better 

performance in adjusting lower tropospheric biases and RMSDs. However, no big 

differences are found in the tropopause layers. Extra 6% skill is observed over the lower 

troposphere and lower stratosphere. For RH profiles, IR configuration shows better 

performance in adjusting biases. In contrast, the RMSDs show reverse features compared 

to summer results which MW configuration an extra 2% skill in the 500 hPa layers while 

IR configuration shows slightly better RMSDs in the lower troposphere. 
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Figure 36 Bias and RMSD differences of initial wind, temperature, and RH profiles between the MW and IR 
configurations.  
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5.2.2 Comparison of Tropospheric Forecasts 

5.2.2.1 Forecasts of Surface Pressure 
For the fact that no significant differences are made in summer using EnKF 

configuration, only the differences in winter are plotted in this section. The averaged bias 

and RMSD differences of the predicted winter results between IR and MW 

configurations are plotted in Fig. 37. MW configuration shows advantages in predicting 

surface pressure at 12-h forecast lead time with an extra 7% predicting skill. In contrast, 

IR configuration shows better predicting skills at longer forecast lead times with an extra 

7.7% predicting skill observed at 72-h forecast lead time. The MW configuration also 

shows less advantages in correcting bias at longer forecast lead times.  

 

 

Figure 37 Bias and RMSD differences of the predicted winter surface pressure between MW and IR 
configurations.  
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5.2.2.2 Forecasts of Wind 
The averaged bias and RMSD differences of the predicted all-level mean winter 

wind between IR and MW configurations are plotted in Fig. 38. MW and IR 

configurations tend to reach the same predictability level (red dashed line in Fig. 38) and 

bias magnitude (black solid line in Fig. 38) as the forecast lead time grows. Lower 

averaged biases and an extra 2% skill are obtained in predicting all-level mean winter 

wind when microwave observations are assimilated alone.  

 

 

Figure 38 Bias and RMSD differences of the predicted all-level mean winter wind between MW and IR 
configurations.  
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The averaged biases and RMSDs differences of the predicted wind profiles are 

plotted in Fig. 39. The blue areas indicate the negative values which means MW 

configuration has the advantages over the IR configuration, vice versa. MW 

configuration predicts larger biases over the tropopause layer but smaller biases over the 

other layers (Fig. 39a). The RMSD differences in Fig. 39b indicate that extra skills (3% 

extra skill over the tropopause layers) in predicting wind at early forecast lead times are 

obtained when microwave observations are assimilated alone. IR configuration only 

shows better predicting skills in the lower troposphere at 60-, and 72-h forecast lead 

times. 
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Figure 39 (a): Bias and (b): RMSD differences of the predicted winter wind profiles (m s-1) at different forecast 
lead times between the MW and IR configurations. 

 

5.2.2.3 Forecasts of Temperature 
The differences between the predicted temperature from MW and IR 

configurations are similar to the prediction of surface pressure. As shown in Fig. 40, MW 

only shows advantages in predicting all-level mean temperature at 12-h forecast lead time 

with an extra 3% predicting skill. In contrast, IR configuration shows better performance 

at later forecast lead times with both smaller biases and RMSDs. An extra 1% skill were 

obtained using IR configuration at 72-h lead time. The bias of the predicted winter 

temperature in MW configuration also grows faster than that in IR configuration. Bias in 

MW configuration is smaller than IR configuration at 12-h forecast lead time and then 

grows larger than those in IR. 
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Figure 40 Bias and RMSD differences of the predicted all-level mean winter temperature between MW and IR 
configurations. 

 

The differences of the averaged bias and RMSD of predicted temperature profiles 

from MW and IR configurations are plotted in Fig. 41. Similar to what Cucurull and 

Anthes (2014) obtained which large differences exist in the lower troposphere at later 

forecast lead times. Better performance in the lower troposphere with an extra 1.5% skill 

at 36-h lead time is observed in IR configuration while extra 1% skills at 12- and 24-h 

lead times are observed in MW configuration. However, large differences also exist in 
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the tropopause layers which an extra 15% skill is obtained in MW configuration in 

predicting tropopause temperature compared to IR configuration.  

 

 

Figure 41 (a): Bias and (b): RMSD differences of the predicted winter temperature profiles (K) at different 
forecast lead times between MW and IR configurations. 

 

5.2.2.4 Forecasts of RH 
The averaged bias and RMSD differences of the predicted all-level mean RH 

between the MW and IR configurations (Fig. 42) also have similar results to the predicted 

all-level mean T and surface pressure. Both the biases and RMSDs in the predictions of 

RH and T show that the IR and MW configurations reached the same predictabilities at 

24- or 36-h forecast lead times. An extra 2.5% skill is obtained from the MW 



 

118 
 

 

configuration at 12-h lead time while only an extra 1% skill is observed in the IR 

configuration at 72-h lead time. 

 

 

Figure 42 Bias and RMSD differences of the predicted all-level mean winter RH between MW and IR 
configurations. 

 

The characteristics of RH profiles assimilating MW and IR alone (Fig. 43) are 

slightly similar to that of temperature. Smaller biases (Fig. 43a) at lower troposphere at 

12-h lead time and smaller RMSDs (Fig. 43b) at the mid tropospheric layers with an extra 

4% skill are obtained from the MW configuration. In contrast, smaller biases at higher 

troposphere and lower troposphere at later forecast lead times are observed in the IR 
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configuration. A small amount of extra skill is obtained at 72-h lead time over higher 

troposphere.  

 

 

Figure 43 (a): Bias and (b): RMSD differences of the predicted winter RH profiles (%) at different forecast lead 
times between MW and IR configurations. 

 

5.3 Individual Case Study 
The small differences in EnKF configuration applied on summer may mainly due 

to the usage of ensemble members which the predictions are an average state of the 

ensemble forecasts. To investigate the differences between MW and IR configurations 

during summer, the summer case used in chapter 4 section 4.3 with Hybrid configuration 
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is simulated. Both the regional model lids at 50-mb and 10-mb are tested using the same 

horizontal configuration in section 4.3. Also, the drought condition occurred over the 

Corn Belt region and the heavy precipitation occurred in the south-east of U. S. are 

verified using both MW and IR configurations. A set of four experiments including the 

CTRL, IR, MW, and CON experiments are set up to investigate the differences between 

using different satellite sensors in DA system. The descriptions of the experiment set ups 

are concluded in Table 6. 

5.3.1 Results Obtained from WRF-50mb experiment 

5.3.1.1 Verification of Drought 
The near-surface temperature is firstly verified against the in-situ observations. A 

comparison of the in-situ observation and the model results from three DA configurations 

(Hybrid, Hybrid-IR, and Hybrid-MW) is plotted in Fig. 44. Three DA configurations 

showed similar results – all-three experiments overestimate the near-surface temperature 

at first few DA cycles, then underestimate it at later DA cycles. However, slightly 

improvements (an extra 2% skill) are obtained in the Hybrid-IR configuration compared 

to the Hybrid configuration, and the Hybrid-MW configuration shows a decrease of the 

predicting skill.  
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Figure 44 Time series of near-surface temperature observations from Manhattan, KS (39.102°N, 96.609°W) and 
the predicted 2 m temperature from different experiments. 

 

The differences of the SCC and RMSDs between the GLDAS surface skin 

temperature and the model results (Fig. 45) are calculated in the same way as in Fig. 26. 

The larger positive values in Fig. 45a and the smaller negative values in Fig. 45b indicate 

more improvements. Hybrid-IR shows better performances in the early DA cycles while 

Hybrid-MW shows better performances in the late DA cycles. However, no significant 

differences are found in the averaged distribution of surface skin temperature. 
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Figure 45 (a): Spatial correlation coefficients and (b): RMSD differences of surface skin temperature between 
IR and MW configurations with the regional model top at 50-mb. 

 

5.3.1.2 Verification of Precipitation 
The comparison of the precipitation time series over the major precipitation 

region between the three DA configurations are shown in Fig. 46. Different from the 

near-surface temperature predictions, less CC and larger RMSD (a decrease of 15% 

prediction skill) are observed in the Hybrid-IR configuration. The Hybrid-IR 

configuration shows even stronger overestimation of the precipitation amounts in the 

early DA cycles, and becomes comparable in the late DA cycles. In contrast, the Hybrid-

MW configuration shows better performance in the early DA cycles compared to the 

infrared experiment. 

The comparison of the distribution of daily precipitation is shown in Fig. 47. In 

July 8th (the first row in Fig. 47), the Hybrid (Fig. 47b) and Hybrid-IR (Fig. 47c) 

configurations overestimate the daily precipitation compared to the GLDAS products 

(Fig. 47a). In contrast, the Hybrid-MW (Fig. 47d) configuration shows much better 
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results with much smaller precipitation areas compared to the other two experiments. 

When it comes to July 12th (the second row in Fig. 47), the precipitation patterns 

successfully match the GLDAS products with slightly swift to the west. Among these 

three DA configurations, the Hybrid-MW predicts better precipitation patterns than 

Hybrid-IR.  

 

 

Figure 46 Time series of the 3-h accumulated precipitation from different numerical results with the regional 
model top at 50-mb. 

 



 

 
 

 

 

Figure 47 Daily precipitation (mm) distributions of July 8th, and July 12th, 2012, from different numerical results with the regional model lid at 50-mb. 
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5.3.2 Results obtained from WRF-10mb Experiment 

5.3.2.1 Verification of Drought 
The same observations are used for the verification of the model outputs with 

model lid at 10-mb. A comparison of the CTRL experiments with different model lids are 

firstly made (Fig. 48). Slightly improvements are made by raising the model lids to 10-

mb. The major differences are observed in the early two days. The CTRL-10mb 

experiment shows better performance in the first day prediction while the CTRL-50mb 

experiment shows better performance in the second day prediction.  

 

 

Figure 48 Time series of near-surface temperature observations from Manhattan, KS (39.102°N, 96.609°W) and 
the predicted 2 m temperature from different experiments with model top at 10-mb. 
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Similar to Fig. 45, the differences of SCC and RMSDs are plotted in Fig. 49. The 

impacts of the applied DA on regional forecasts show that the model lid at 10-mb 

predicts better than the model which model lid is set at 50-mb. The largest improvements 

by raising model lid to 10-mb are made in the Hybrid-MW configuration with an extra 

15% skill in predicting near-surface temperature. For the Hybrid-IR configuration, no 

significant improvements are made when model lid is raised. The differences between the 

infrared and microwave configurations also changed. When the model lid was set at 50-

mb, the Hybrid-IR shows better scores than the Hybrid-MW configuration. In contrast, 

when the model lid is set at 10-mb, the performance of the Hybrid-MW configuration 

exceeded the Hybrid-IR configuration with an extra 8% skill in predicting near-surface 

temperature. The significant improvement in the microwave experiment is believed as a 

result of the included extra stratospheric information via raising the model lid. Further 

discussion of the impacts of involving more stratospheric information into the system is 

addressed in chapter 6. 

The assimilation of MW alone makes a small positive impact in the first few DA 

cycles compared to all observations configuration. In the later DA cycles (on July 13th), 

larger improvements are made in the MW configuration compared to the all observations 

configuration. In contrast, the assimilation of IR alone makes smaller positive impacts 

compared to the MW configuration and the all observations configuration.  
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Figure 49 Spatial correlation coefficients (a) and RMSD (b) differences of surface skin temperature between IR 
and MW configurations with the regional model top at 10-mb. 

 

5.3.2.2 Verification of Precipitation 
All three DA configurations still overestimate precipitation amounts after the 

raising of model lid (Fig. 50). Smaller correlation coefficients are found in the Hybrid 

and Hybrid-MW configurations compared to the results obtained in the model results 

with 50-mb model top. In contrast, better RMSDs are found in these two configurations. 

The differences of the RMSD between the MW and IR configurations are enlarged by 

raising the model lid to 10-mb. Generally, an average of 45% more precipitation is 

generated in the Hybrid-IR configuration than the Hybrid-MW configuration. The largest 

difference was found at the early predictions where an average of 115% more 

precipitation is obtained in the Hybrid-IR configuration than the MW configuration.  

 



 

128 
 

 

 

Figure 50 Time series of the 3-h accumulated precipitation from different numerical results with the regional 
model top at 10-mb. 

 

The distributions of daily precipitation on July 08th, and 12th produced after the 

application of Hybrid, Hybrid-IR, and Hybrid-MW configurations on WRF system with 

model lid set at 10-mb are shown Fig. 51. The daily precipitation generated with a higher 

model lid shows similar characteristics to those with a lower model lid (Fig. 47). 

However, the daily precipitation amount is largely reduced in July 12th (second row in 

Fig. 51). The Hybrid (Fig. 51f) and Hybrid-IR (Fig. 51g) configurations again largely 

overestimate precipitation areas. In July 12th, an overestimation over the northwest was 

found in both Hybrid and Hybrid-MW configurations. In contrast, the Hybrid-MW shows 

more reliable results. 



 

 
 

 

 

Figure 51 Daily precipitation (mm) distributions of July 8th, and July 12th, 2012, from different numerical results with the regional model lid at 10-mb. 
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5.4 Summary 
The impacts of assimilating infrared and microwave satellite observations alone in 

DA system on regional short-term weather forecasts over the continental U. S. are 

investigated using the regional model WRF-ARW with a model top at 10-mb and the 

operational DA model GSI. The 3D-Var based ensemble-variational Hybrid algorithm is 

used in winter and the EnKF is used in summer. The forecast results are verified against 

conventional observations. 

In summer, no significant differences are found between the MW and IR 

configurations. The IR configuration performs slightly better than the MW configuration. 

The smaller differences found in summer may mainly due to the usage of ensembles as 

the initial conditions. The analysis and final predictions are results of the average states. 

In contrast, large differences are found in winter using the Hybrid configuration. The 

MW makes overall advantages compared to the IR when assimilated alone. In the 

analysis, larger advantages of the MW configuration are found in the tropopause layers 

for wind profiles. For analyzed temperature profiles, the MW configuration shows larger 

advantages in the lower troposphere and the lower stratosphere. For analyzed RH 

profiles, the IR configuration shows better skills in lower troposphere. The MW provids 

smaller RMSDs in the higher troposphere but also with larger biases.  

Predictions made by the IR and MW assimilations also vary in different variables 

and heights. In general, the MW has better predicting skills in the first 12-h predictions 

(except for wind predictions which MW shows overall better skills in short-period 

forecasts) compared to the IR when assimilated alone. An extra 7% skill in predicting 
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surface pressure and an extra 3% skill in predicting other variables at 12-h forecast lead 

time are obtained in MW configuration when compared to IR configuration. In contrast, 

an extra 7.7% skill in predicting surface pressure and an extra 1.5% skill in predicting 

other variables at later forecast lead times are obtained in IR configuration when 

compared to MW configuration. For different layers, MW configuration usually has 

better predicting skills in the higher layers. Extra 3% and 15% skills are found in 

predicting tropopause wind and temperature when microwave observations are 

assimilated alone, respectively. For RH profiles, MW configuration shows better skills 

(4%) in the higher tropospheric layers. IR shows a small extra 1% skill in predicting 

lower tropospheric temperature in later forecast lead times. 

Individual case studies are also conducted to verify the impacts of MW and IR 

satellite observations when assimilated alone. Two sets of vertical layers are used in 

model lid at 50-mb and 10-mb, respectively. When the model lid is set at 50-mb, the IR 

configuration shows extra skills in predicting temperature but tends to enlarge the 

overestimation of precipitation peaks while the MW configuration shows extra skills in 

predicting heavy precipitation. The advantages of predicting temperature when IR is 

assimilated alone are the results that infrared channels have more temperature channels. 

In contrast, the MW channels can penetrate through non-precipitation clouds and carry 

atmospheric humidity information within the clouds (Zou, et al., 2013). However, when 

the model lid is raised to 10-mb, more advantages are found in predicting both 

temperature and heavy precipitation when MW satellite observations are assimilated 

alone. The largely improved temperature predictions in MW configuration may due to the 



 

132 
 

 

extra stratospheric microwave information included in the assimilation system. In the 

next chapter, the impacts of the stratospheric microwave information are studied.  
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CHAPTER SIX IMPACTS OF STRATOSPHERIC MEASUREMENTS ON 
REGIONAL NWP SYSTEM 

In chapter five, the assimilation of microwave satellite observations alone 

advanced the regional NWP system in early forecast lead times. Extra skills in predicting 

wind and temperature in the tropopause layers are found when MW satellite observations 

are assimilated alone. MW configuration also shows advantages in predicting regional 

heavy precipitation events. Furthermore, large improvements are found when extra 

stratospheric microwave information is included in the DA system. In this chapter, we 

will discuss about the impacts of raising model lids on regional NWP predictions by raise 

the model lid to 1-mb. And the impacts of more stratospheric microwave information on 

regional NWP will be tested. At last, a FSO analysis will be taken out aiming at an 

optimal selection of the microwave channels. The performance of the optimal selected 

microwave channels is compared in individual case studies. 

6.1 Introduction 
In the early 20th century, many researches (e.g., Baldwin and Dunkerton, 1999 & 

2001; Baldwin, et al., 2003) suggested that by including the stratospheric state in NWP 

systems, some prediction skills can be gained in the troposphere. Later in the early 2000s, 

Charlton and his group tested the impacts of stratospheric state on troposphere forecasts 

and found that a small amount of extra skill (~5%) can be obtained by including 

stratospheric information in a simple statistical forecasting model of the troposphere, and 
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at the same time, based on three cases, they also found that the tropospheric flow and 

tropospheric synoptic-scale systems can be statistically significantly influenced by 

including the stratospheric initial conditions (Charlton et al., 2004). Recently, due to the 

significant theoretically improvements in data assimilation fields and the application of 

ensemble methods in NWP systems, the operational data assimilation system began to 

not only assimilate the traditional meteorological data but also assimilate multiple 

atmosphere constituents extending from ozone to aerosols, particle matters (e.g., PM2.5), 

greenhouse gases, etc. With a better representation of the atmosphere including the 

valuable stratospheric information, Gerber et al. (2012) found that an improvement of 

short-range forecasts can also be investigated and at the same time, the stratospheric 

information can provide additional skill on seasonal time scales forecasts.  

As described in chapter 3, the CTRL experiments in all three sets of experiments 

are used to investigate the impacts of raised model lids. The vertical resolutions are 

relatively coarser than those in studying convective gravity waves (150 levels or more, 

Costantino, et al., 2015). The impacts of the extra stratospheric microwave information 

on regional NWP system will be brought out based on the vertical weighting function of 

each channel. The vertical weighting function is the measurements of the level that 

contribute the most to the observed signal and it depends on the frequency of the 

observing channel. The weighting functions of AMSU-A, ATMS, and SSMI/S are shown 

in Fig. 52. Based on the weighting function of each sensor, a selection of the stratospheric 

microwave channels can be brought out. The detailed stratospheric channel selections of 

the microwave sensors are shown in appendix B.  
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Figure 52 Weighting functions of microwave sensors, (a): AMSU-A, (b): ATMS, and (c): SSMI/S. 
 

6.2 Impacts of Raised Model Lids with More Assimilated Stratospheric 
Observations on NWP System 

6.2.1 Impacts on Initials 

6.2.1.1 Systematic Differences on Initials 
Firstly, the systematic differences between the model results with different model 

lids (“WRF-50”, “WRF-10”, and “WRF-1” for model lid at 50-mb, 10-mb, and 1-mb, 

respectively) during winter are investigated. The detailed experiment configurations are 

described in chapter 3. The averaged biases and RMSDs fit to conventional observations 

during the study periods are compared in this section. 
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The comparison of the impacts of raising model lid from 50-mb to 10-mb and 

then further to 1-mb on the initial conditions are concluded in Table 9. The WRF-50 is 

used as the baseline, results showed in Table 9 are calculated using WRF-10 and WRF-1 

results minus the WRF-50 results. Generally, the configuration with raised model lid has 

better performances. The configuration with model lid set at 1-mb shows smaller RMSDs 

of surface pressure, temperature and precipitable water in initial conditions. However, the 

raising of model lids decrease the performance of adjusting initial wind. 

 

Table 7 Comparison of the initials with different model lids 
Surface Pressure 

(Pa) 
Winter 

10-mb – 50-mb 1-mb – 50-mb 
Bias 0.1511 0.1264 

RMSD -0.0433 -0.0926 
All-level mean wind (m s-1) 10-mb – 50-mb 1-mb – 50-mb 

Bias 0.0380 0.0356 
RMSD 0.8965 0.8446 

All-level mean T (K) 10-mb – 50-mb 1-mb – 50-mb 
Bias -0.4819 -0.3688 

RMSD -0.1894 -0.2028 
All-level mean RH (%) 10-mb – 50-mb 1-mb – 50-mb 

Bias -0.1592 -0.2949 
RMSD 2.3534 2.0512 

Precipitable Water (mm) 10-mb – 50-mb 1-mb – 50-mb 
Bias -0.0215 0.0040 

RMSD -0.0881 -0.0980 
 

The differences between the initials in WRF-10 (black solid lines), WRF-1 (red 

solid lines) and the initials in WRF-50 are plotted in Fig. 53. The negative values indicate 

that the raising of model lids had positive impacts on the initials, vice versa. Generally, 

the WRF-1 shows more positive impacts than WRF-10 with both smaller biases and 



 

137 
 

 

RMSDs on initial tropopause wind, temperature, and RH profiles. Close values are found 

in the middle troposphere.  

The raised model lids show overall positive impacts on the biases of the initials. 

Only the biases of wind at near surface layers are enlarged. Slightly larger wind and 

temperature biases are also observed at the tropopause layers in WRF-10 experiment. 

Biases of RH profiles are improved over all tropospheric layers. The RMSDs show 

different characteristics. Negative impacts are observed over the mid- and lower-

troposphere (under 400 hPa) for all three profiles. For wind profiles, less skills are 

observed in lower troposphere and at lower stratosphere. However, 2% and 8% more 

skills are obtained in WRF-1 configuration than WRF-10 over the lower troposphere and 

the tropopause. Temperature profiles show similar results, not only shows 10% and 13% 

more skills are obtained in WRF-1 configuration over the lower troposphere and 

tropopause, but also shows better skills over the tropopause and lower stratosphere when 

compared to WRF-10 configuration. RH and temperature have similar structures with 

less skills over the lower troposphere, and WRF-1 also shows some more skills (~4%) 

than WRF-10. 
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Figure 53 Bias (left panel) and RMSD (right panel) differences between model results with different model lids. 
(a, b): wind profiles (m s-1); (c, d): temperature profiles (K); (e, f): RH profiles (%). 
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6.2.1.2 DA impacts on initials 
The Hybrid scheme is used for the comparison of DA impacts with different 

model lids (Hybrid-50, Hybrid-10, and Hybrid-1 for model lids at 50-mb, 10-mb, and 1-

mb). The impacts of DA on the initials are concluded in Table 10. The results are 

calculated using the differences between the results from different model lid 

configurations and then remove the systematic differences. The negative values indicate 

that more improvements are made after DA applications and the smaller values the more 

improvements are made by raising the model lids. As shown in Table 10, overall positive 

impacts are made after the application of DA except that larger biases are obtained in all-

level mean temperature. By raising the model lid from 10-mb to 1-mb, more 

improvements are obtained in initial wind, temperature and precipitable water. But for 

initial surface pressure and RH, Hybrid-10 shows better results than Hybrid-1. 

 

Table 8 Comparison of the initials after DA with different model lids 
Surface Pressure 

(Pa) 
Winter 

10-mb – 50-mb 1-mb – 50-mb 
Bias -0.1518 -0.1226 

RMSD -0.1745 -0.1540 
All-level mean wind (m s-1) 10-mb – 50-mb 1-mb – 50-mb 

Bias -0.2119 -0.2149 
RMSD -0.3895 -0.3910 

All-level mean T (K) 10-mb – 50-mb 1-mb – 50-mb 
Bias 0.3823 0.2348 

RMSD -0.1954 -0.1983 
All-level mean RH (%) 10-mb – 50-mb 1-mb – 50-mb 

Bias -0.2558 -0.1989 
RMSD -1.7030 -1.1670 

Precipitable Water (mm) 10-mb – 50-mb 1-mb – 50-mb 
Bias -0.0844 -0.1356 

RMSD -0.1179 -0.1710 
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The impacts of the DA applications on initial profiles are also calculated in a 

similar way to those in Table 10 (Fig. 54). The negative values indicate that more 

improvements are made after DA application than raising the model lids alone. And the 

smaller the scores are, the more improvements are made. After the application of DA, 

improvements are made mainly in the troposphere. Biases of wind profiles differ from the 

temperature and RH profiles. Positive impacts on initial wind profiles are found over the 

lower troposphere. In contrast, small negative impacts are observed over the lower 

troposphere in initial temperature and RH profiles. In contrast, the positive impacts are 

found in the tropopause layers for temperature. RMSDs show overall improvements after 

DA application. Larger improvements for wind profiles are observed at lower 

troposphere with an extra 15% skill. Smaller improvements are also observed at the 

tropopause. Large improvements in initial temperature and RH profiles are also observed 

over the lower troposphere with extra 40% and 20% skills, respectively. Another large 

improvement for temperature is observed at the tropopause with an extra 50% skill.  

For the differences between the Hybrid-10 and Hybrid-1, no significant bias 

differences are found in the wind profile. For temperature and RH profiles, the Hybrid-10 

shows slightly smaller biases over the tropopause and higher in tropospheric layers. 

Hybrid-1 shows overall smaller RMSDs for wind and temperature profiles. The largest 

improvements of raising model lid from 10-mb to 1-mb are found over the tropopause 

layers with extra 3% and 15% for initial wind and temperature. Near surface temperature 

also meet larger improvements in Hybrid-1 with an extra 17% skill. In contrast, Hybrid-

10 shows better adjustment of initial RH profiles with an extra 5% skill. 
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Figure 54 Bias and RMSD differences between model results with different model lids after the application of 
DA. 
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6.2.2 Impacts on Tropospheric Forecasts 
As shown in section 6.2.1, more positive impacts are found on initial wind and 

temperature when more stratospheric observation is assimilated. In this section, whether 

the extra stratospheric observation has more positive impacts on the forecasts is tested. In 

this section, only the RMSDs are analyzed in the fact that the bias differences show 

similar results as in RMSD differences. 

6.2.2.1 Forecasts of surface pressure 
The systematic differences of the predicted surface pressure without the 

application of DA by raising the model lid to 10-mb and 1-mb are shown in Fig. 55. 

Similar to the initial conditions, the WRF-1 shows more improvements than the WRF-10 

experiments. An extra 3% skill in predicting near surface pressure in the first few lead 

times is observed in the WRF-10 configuration. The predictabilities obtained in WRF-10 

then reach the same level in WRF-50. In contrast, the WRF-1 shows overall 

improvements during the short-period forecasts with an extra 8% skill at the first 48-h 

forecast lead times.   

The improvements of the predicted surface pressure after the application of DA 

and the removal of systematic differences are shown in Fig. 56. As shown in Fig. 56a, the 

negative values in both Hybrid-10 and Hybrid-1 show improvements (4.5% and 10%, 

respectively) compared to the Hybrid-50 experiment. The Hybrid-1 still yield larger 

improvements than the Hybrid-10 experiment. However, in Fig. 56b, after removing the 

systematic differences, the Hybrid-1 only shows a small extra 0.5% skill than the Hybrid-

10 at 12-h forecast lead time when compared to the Hybrid-50 experiment. While at later 
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forecast lead times, Hybrid-10 shows extra 0.5% to 3.5% skills than the Hybrid-1 

experiment. 

 

 

Figure 55 Systematic RMSD differences of the predicted surface pressure (Pa). 
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Figure 56 (a): RMSD differences of the predicted surface pressure (hPa); (b): same as (a) but removed 
systematic differences. 

 

6.2.2.2 Forecasts of Wind 
The systematic differences of the predicted all-level mean wind by raising the 

model lid alone are shown in Fig. 57. The WRF-1 shows more improvements at early 

forecast lead times than the WRF-10 experiment. Averaged 1.5% and 2% extra skills 

over the predicting period are obtained in the WRF-10 and WRF-1 configurations, 

respectively. The daily variations of the predictabilities of wind are discussed in chapter 4 

which are results of the assimilation once per-day at 00:00 UTC. The largest 

improvement is found at 36-h forecast lead time in the WRF-1 experiment in which an 

extra 5.5% skill is found.  

After the application of DA, the RMSD differences of the predicted all-level 

mean wind and the results after the removal of systematic differences are shown in Fig. 

58. Both DA experiments showed improvements in the early forecast lead times. The 

Hybrid-1 shows better RMSDs in the first two-day forecasting.  However, when a 3-day 
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forecasting is made, smaller improvements are obtained compared to the Hybrid-10 

experiment. The improvements of both experiments are also smaller than raise the model 

lids alone in longer forecast lead times. A small extra 1% skill is obtained by including 

more stratospheric information below 10-mb after the removal of systematic differences. 

In contrast, an extra of 4% skill is obtained in the early forecast lead time when more 

stratospheric information up to 1-mb is included in the DA system after the removal of 

systematic differences. 

 

 

Figure 57 Systematic RMSD differences of the predicted all-level mean wind (m s-1). 
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Figure 58 (a): RMSD differences of the predicted all-level mean wind (m s-1); (b): same as (a) but removed 
systematic differences. 

 

The RMSD differences between the predicted wind profiles with a model lid at 

50-mb and the results with raised model lids are plotted in Fig. 59. The negative values 

(blue shaded areas) in Fig. 59a, b, d, and e indicate improvements are made by raising 

model lids, while the negative values (blue shaded areas) in Fig. 59 c, f (a removal of 

systematic differences are applied) indicate that larger improvements are made by 

including more stratospheric information in the DA system than raise the model lids 

alone. The major improvements are made in the tropopause layers for both model lids at 

10-mb and 1-mb. Averaged extra 6.5% and 11.5% skills are obtained by raising the 

model lid to 10-mb and 1-mb alone at 12-h forecast lead time, respectively. In the DA 

experiments, the major improvements are also obtained in the tropopause layers with 

averaged extra 7.7% and 15% skills for model lid raised to 10-mb and 1-mb at 12-h 

forecast lead time, respectively. Both raising the model lids alone and applying DA with 

extra stratospheric information show less predicting skills over the near surface level at 
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all forecast lead times. In Fig. 59c, f, the major contributions of the extra stratospheric 

included in the DA system are also in the tropopause layers. The Hybrid-10 shows less 

improvements in the lower stratosphere (100-150-mb) and lower troposphere. In contrast, 

the Hybrid-1 shows more improvements over all layers at early forecast lead times. An 

extra 5% skill is obtained over the tropopause layers after the removal of systematic 

differences. Less improvements are obtained over the lower troposphere at longer 

forecast lead times.  
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Figure 59 RMSD differences between the predicted wind profiles (m s-1) as a function of forecast lead time (h) 
with different model lids.  
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6.2.2.3 Forecasts of Temperature 
For temperature predictions without the application of DA (Fig. 60), only a small 

extra 3% skill is obtained at the 12-h forecast lead time when raising the model lid to 10-

mb. When longer predictions are made, the predictabilities dropped about 3% in the 

WRF-10 experiment when compared to the WRF-50 experiment. Comparable 

improvement is found at the 12-h forecast lead time when the model lid is raised to 1-mb. 

However, for longer predictions, larger improvements are obtained where an averaged 

extra 7% skill is found compared to the WRF-50 experiment, aiming at that the 

information between 10-mb and 1-mb in the stratosphere is critical for the prediction of 

all-level mean temperature.  

The differences of RMSDs after the application of DA are shown in Fig. 61a. The 

configuration with higher model lid still predicts better all-level mean temperature. The 

Hybrid-10 reaches the same predictability level as in Hybrid-50 at 48-h forecast lead time 

instead of 12-h forecast lead time without DA application. When the systematic 

differences are removed (Fig. 61b), improvements are made in both experiments. The 

Hybrid-1 shows larger improvements at 12-h forecast lead time with an extra 5.4% skill 

compared to an extra 2.9% skill in Hybrid-10. However, the extra information in the 10-

1-mb level included in the DA system only shows positive impacts on the prediction of 

temperature at early forecast lead time and no significant impacts are found when the 

forecast lead time reaches to 48 hours. In contrast, the extra information in the 50-10-mb 

level included in the DA system shows longer impacts. 

 



 

150 
 

 

 

Figure 60 Systematic RMSD differences of the predicted all-level mean temperature (K). 
 

 

Figure 61 (a): RMSD differences of the predicted all-level mean temperature (K); (b): same as (a) but removed 
systematic differences. 
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For the temperature profiles (Fig. 62), major improvements made by raising the 

model lid are mainly in higher levels and near surface level. By raising the model lid to 

10-mb alone, averaged extra 22%, 13%, and 20% skills are obtained at early forecast lead 

times in predicting temperature at near surface level, tropopause layers, and lower 

stratospheric layers, respectively. However, at longer forecast lead times, negative 

impacts are found in the lower tropospheric layers with an averaged decrease of 3% skill. 

When the model lid is raised to 1-mb, improvements are found in all vertical layers. The 

layers with major improvements show averaged extra 25.7%, 18.8%, and 22.4% skills 

which are slightly better than raising model lid to 10-mb.  

After the application of DA, similar structures are obtained in both experiments. 

As shown in Fig. 62b, c, slightly improvements are obtained in the lower troposphere 

while larger improvements are made in the tropopause layers.  After the removal of the 

systematic differences showed in Fig. 62a, d, the gross impacts of the inclusion of extra 

stratospheric information in the DA system are shown in Fig. 62c, f. Unlike the 

prediction of wind profiles, the inclusion of extra stratospheric information in DA system 

shows less impact in the lower stratospheric layers than raising the model lid alone. 

However, larger improvements over the tropopause layers are obtained in predicting both 

wind and temperature. Averaged extra 4.8% and 8% skills are obtained over the 

tropopause layers after the removal of systematic differences in the Hybrid-10 and 

Hybrid-1 experiments, respectively. Thus, the information in the 10-1-mb layers has 

more positive impacts on predicting the tropopause temperature. But for the near surface 

and lower tropospheric temperatures, more stratospheric information in the DA system 
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doesn’t show better improvements. The Hybrid-10 shows more improvements (an extra 

2.3% skill) over the lower levels at early forecast lead times than the Hybrid-1 

experiment (an extra 0.5% skill). Thus, the extra stratospheric information in the 10-1-mb 

layers has no significant impacts on the lower troposphere and near surface temperatures.  
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Figure 62 RMSD differences between the predicted temperature profiles (K) as a function of forecast lead time 
(h) with different model lids. 
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6.2.2.4 Forecasts of Relative Humidity 
Similar to the prediction of temperature, by raising the model lid to 10-mb alone 

only shows a small extra 2.6% skill in predicting RH at early forecast lead times and less 

predictabilities at longer forecast lead times than the WRF-50 experiment (Fig. 63). In 

contrast, when the model lid is raised to 1-mb alone, more improvements are found at 

longer forecast lead times. About extra 1% skill is found at the first day forecasting, but 

almost extra 5% skill is found at the third day forecasting compared to the WRF-50 

experiment. 

After the application of DA, no significant differences are found in the Hybrid-10 

experiment (Fig. 63a) compared to raising the model lid alone. The Hybrid-10 also shows 

less predictabilities at longer forecast lead times than the Hybrid-50 experiment. After the 

removal of systematic differences (Fig. 63b), only small extra 0.6-1% skills are found at 

12-, 36-, and 60-h forecast lead times in the Hybrid-10 experiment. In contrast, the 

Hybrid-1 shows more positive impacts on the early forecast lead times. An extra 5% skill 

is found at 12-h forecast lead time and it drops as forecast lead time increases. At 48-h 

forecast lead time, the predictability of Hybrid-1 reached a comparable level with the 

Hybrid-50 experiment. Thus, the extra stratospheric information in the 10-1-mb level 

included in the DA system shows more positive impacts on the prediction of humidity for 

two days. 
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Figure 63 Systematic RMSD differences of the predicted all-level mean RH (%). 
 

 

Figure 64 (a): RMSD differences of the predicted all-level mean RH (%); (b): same as (a) but removed 
systematic differences. 
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In the prediction of RH profiles, similar to the prediction of wind profiles, both 

the raising of model lids to 10 and 1-mb alone (Fig. 65a, d) show negative impacts on the 

near surface level with decrease of 40% and 27% skills at 72-h forecast lead time, 

respectively. In contrast, the improvements are made in lower tropospheric layers. An 

extra 5% skill is obtained at 800 mb level at 12-h forecast lead time when the model lid is 

raised to 10-mb. A smaller extra 4% skill is obtained at 800 mb level when the model lid 

is further raised to 1-mb. In contrast, the largest improvements are obtained in at later 

forecast lead times over lower troposphere with averaged extra 15% skill when the model 

lid is further raised to 1-mb.  

After the inclusion of extra stratospheric information, the impacts are shown in 

Fig. 65b, e. The impacts of DA show similar structures with negative impacts on the near 

surface levels and positive impacts on the lower troposphere. The results after the 

removal of systematic differences (Fig. 65c, f) indicate that more positive impacts are 

obtained by including extra stratospheric information over the 10-1-mb layers. The 

inclusion of extra stratospheric information over the 50-10-mb layers in the DA system 

only show extra 3% skill over lower levels. While an extra 10% skill is obtained at early 

forecast lead times when the information in the 10-1-mb is included in the DA system.  
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Figure 65 RMSD differences between the predicted RH profiles (%) as a function of forecast lead time (h) with 
different model lids.  

 

6.3 Impacts of Stratospheric Microwave Measurements on DA system 
As described in section 6.2, the raising of model lid to 1-mb has more positive 

impacts on the short-period regional weather forecasting. The inclusion of more 
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stratospheric observations in the DA system also show extra skills in regional NWP 

systems, especially over the tropopause layers. In this section, the impacts of the selected 

stratospheric microwave channels on regional weather forecasts are compared with the 

tropospheric microwave channels in a week-long prediction. The selection of microwave 

channels is based on the vertical weighting functions of each channel shown in Fig. 52. 

The detailed configurations of the experiments are described in Table 5. 

6.3.1 Statistical Results 
The bias and RMSD differences of the predicted atmospheric states between the 

Whole and TROPO experiments are analyzed. The negative values (or negative areas) 

indicating positive impacts are made by including stratospheric microwave channels in 

the DA system. 

6.3.1.1 Forecasts of Surface Pressure 
In the prediction of surface pressure (Fig. 66), positive impacts on both bias and 

RMSD are obtained when the stratospheric microwave channels are included. Good 

correlation (the CC is 0.6398) is found between the bias and RMSD differences with a 

low p value of 0.0137. The largest improvements for both bias and RMSD are found at 

48-h forecast lead time with an extra 1.1% skill. Thus, the stratospheric microwave 

information included in the DA system can propagate through the tropopause layers into 

the troposphere and then influence the forecasts of surface pressure within 2 days. At the 

same time, the biases also meet its largest improvements. For longer predictions, the 

predictability then drops as forecast lead time increases. The predictability of surface 

pressure by including stratospheric microwave information reaches a stable level 
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compared to the inclusion of tropospheric microwave channels alone after 4-day 

forecasting. 

 

 

Figure 66 Bias and RMSD differences of the predicted surface pressure (Pa) between the Whole and TROPO 
experiments. 

 

6.3.1.2 Forecasts of Wind, Temperature, Relative Humidity, and Precipitable 
Water 

The predicted all-level mean wind, temperature, RH and precipitable water are 

plotted in Fig. 67. An averaged extra 0.4% skill is obtained in the prediction of one-

week’s all-level wind (Fig. 67a). The largest improvement is found at the third day 

prediction with an extra 0.6% skill. For longer predictions during the rest of the week, the 
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RMSD differences become smaller and more stable. In contrast, no significant 

differences are found by including the stratospheric microwave information. Similar to 

the prediction of wind, the prediction of precipitable water also shows the largest 

improvements at the third day forecasting. An extra 0.8% skill is found at 72-h forecast 

lead time. At 108-h forecast lead time, by including stratospheric microwave information, 

the RMSD increases at a faster rate and reaches a comparable predictability level to the 

results obtained in the TROPO experiment. Also, no significant differences are found in 

bias corrections. Small improvements are obtained at early forecast lead times. There are 

no significant correlations between the bias and RMSD differences in the prediction of 

wind and precipitable water. Thus, the stratospheric microwave information included in 

the DA system can propagate through the tropopause layers and affect the prediction of 

wind and precipitable water within 2 to 3 days. 

The predictions of all-level mean temperature and RH show different features 

compared to the prediction of all-level mean wind and precipitable water. There exist 

very good correlations between the bias and RMSD differences in the prediction of 

temperature and RH with CCs of 0.9028 and 0.7968 and very small p values, 

respectively. For temperature predictions, the improvements are relatively smaller with 

an averaged extra 0.14% skill compared to the other atmospheric states. The 

improvements are made for both bias and RMSD when the forecast lead time reached 

120-h. Larger improvements are obtained for 5-6 days’ forecasts with an extra 0.9% skill. 

The improvements in the prediction of RH are relatively larger than the other variables 

with an averaged extra 1.1% skill. Larger improvements are obtained starting at the 48-h 
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forecast lead time with a maximum extra 1.5% skill. The stratospheric microwave 

information included in the DA system also can affect the prediction of humidity for 2-

day or longer forecasts. However, the information contained in the stratosphere may need 

longer time (up to 5 days) to affect the prediction of temperature. The larger 

improvements obtained in the prediction of humidity are mainly related to moisture 

information contained in the ATMS and SSMI/S channels been brought into the system. 

 

 

Figure 67 Bias and RMSD differences for (a): all-level mean wind speed (m s-1); (b): all-level mean temperature 
(K); (c) all-level mean RH (%); and (d) precipitable water between the Whole and TROPO experiments. 
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The bias and RMSD differences of the predicted profiles are shown in Fig. 68. 

The inclusion of stratospheric microwave information in the DA system shows positive 

impacts on both bias and RMSDs in the troposphere at 24-72 forecast lead times in the 

prediction of wind (Fig. 68a, b). An averaged extra 0.5% skill is found in the troposphere. 

For longer predictions at 108-, and 144-h forecast lead times, some advantages of the 

inclusion of stratospheric microwave information can be found in the tropopause layers. 

An extra 1.1% skill is found at later forecasts of wind in the tropopause layers. For 

temperature forecasts (Fig. 68c, d), negative impacts are found on the lower stratosphere 

and tropopause layers by including the stratospheric microwave information. The 

predictability of the temperature dropped by 1.6% and 0.5% in the lower stratosphere 

layers and the tropopause layers, respectively. In contrast, positive impacts are found on 

both lower troposphere bias and RMSDs. Larger impacts on the lower troposphere are 

found starting at 48-h forecast lead times and the largest improvement is found around 

132-h forecast lead time with an extra 3.6% skill. Compared to the wind and temperature, 

more positive impacts are obtained in the prediction of RH (Fig. 68e, f). Also, the 

impacts of the included stratospheric microwave information on the tropospheric 

humidity predictions started at 48-h forecast lead time for both bias and RMSDs. The 

largest improvements are also found in the lower tropospheric layers with an averaged 

extra 2% skill. 

 



 

163 
 

 
 

Figure 68 Bias and RMSD differences of the predicted (a, b): wind (m s-1); (c, d): temperature (K); (e, f): RH 
(%) profiles between the Whole and TROPO experiments. 

 

6.3.2 Forecast Sensitive to Observations 
In the previous sections, we found that usually after 2 to 3 days’ propagation, the 

stratospheric microwave information included in the DA system can go through the 
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tropopause layers and positively affect the prediction of tropopause and tropospheric 

variables at a regional scale. However, some negative impacts such as a “dropout” was 

found in the prediction of tropopause wind at 120-h forecast lead time (Fig. 68a, b). 

These negative impacts are usually believed as the results of using “flawed” observations 

in the DA system (Hotta, 2014).  

To find out which observations degraded the forecasting skills, the traditional 

OSE method is usually used (Yamaguchi, et al., 2009; Lord, et al., 2016). This method 

uses two sets of experiments in which the control experiment assimilates a standard set of 

observations and the other one excludes/includes the observations to be tested. The 

impacts of the observations to be tested can be brought out by comparing the results from 

the two sets of experiments. Despite the useful answers this method can provide, the 

computational expensive is extremely expensive and new control experiments are needed 

when new observations are added.  

A diagnostic technique called the Forecast Sensitivity to Observations was firstly 

developed by Langland and Baker in 2004 (Langland and Baker, 2004). This diagnostic 

technique enables us to identify the impacts of any observations on the forecasts all at 

once with the help of an adjoint model, and at the same time save lots of computational 

resources compared to OSE method. The detailed calculations of the impacts of 

observations can be found in Langland and Baker, 2004. In the FSO experiment, if the 

estimated errors were reduced (as negative values in the figures), thus the impact of the 

specified observation toward the forecasts is positive. In this thesis, to find out how 

observations affected the regional forecasts, the FSO technique without considering the 
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moisture observations and moist processes in the adjoint model (dry) is applied to the 

regional scale to match the domain configurations and study period in chapter 6. A pre-

selection of channels is brought out based on the National Aeronautics and Space 

Administration (NASA) Global Modeling and Assimilation Office (GMAO) analysis 

(Zhu and Gelaro, 2008). The AMSU-A series FSO results are shown in Fig. 69, the 

ATMS FSO results are shown in Fig. 70, and the SSMI/S series FSO results are shown in 

Fig. 71. The performance of the selected channels is verified in the individual case study 

in the next section. 
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Figure 69 Averaged total impact of AMSU-A channels over the continental U. S. from (a): MetOp-A; (b): 
MetOp-B; (c): NOAA15; (d): NOAA18; (e): NOAA19; and (f): Aqua. 
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Figure 70 Averaged total impact of ATMS-NPP channels over the continental U. S. 
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Figure 71 Averaged total impact of SSMI/S channels over the continental U. S. from (a): DMSP-17; and (b): 
DMSP-18. 

 

6.4 Impacts of Stratospheric Microwave Temperature Measurements – A 
Two-Season Case Comparison  

To explore the mechanisms of the impacts of the stratosphere on tropospheric 

weather forecast, DA configurations involving the microwave stratospheric temperature 

channels are conducted 4 times a day during Jan. 2015 and Jul. 2015. AMSU-A channels 

7-14 (8-14), ATMS channels 8-15 (9-15), and SSMI/S channels 5-7 and 22-24 are 

selected in the DA system during winter (summer) as these channels mainly measure the 

stratospheric temperature.  

Firstly, the stratospheric temperature and meridional wind analysis increment 

differences are plotted in Fig. 72. In winter temperature analysis increments (Fig. 72a), a 

warmer upper stratosphere (5-mb to 1-mb) is obtained by assimilating the microwave 

stratospheric measurements. The maximum warming region is located between 30-40°N 

with a value of 2.5K. In contrast, a cooled lower stratosphere is obtained especially over 
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the ozone layers. In summer (Fig. 72b), a warm pool is obtained between 22-40°N at 

upper stratosphere while a colder upper stratosphere with the maximum cooling effect of 

1.4K is obtained over the north. The temperature analysis increments in the lower 

stratosphere are relatively weaker compared to winter. The cooled lower stratosphere in 

this case study agrees with the results obtained by Fu, et al. (2004) in which a cooling 

lower stratosphere is observed using the MSU channel 4 measurements. The zonal-mean 

meridional wind analysis increments (Fig. 72c&d) are also adjusted to respond to the 

temperature analysis increments caused by the assimilation of microwave stratospheric 

temperature measurements. Opposite features of the zonal-mean meridional wind 

analysis increments are obtained in winter and summer. The corresponded temperature 

and meridional wind adjustments may also related to the adjusted BDC at mid- and 

upper-stratosphere. Positive and negative meridional wind are obtained in winter and 

summer at upper-stratosphere, respectively. As a result, the BDC at upper-stratosphere is 

enhanced and weakened in winter and summer, respectively. Furthermore, the 

transportation of ozone and warm air from the tropical area at upper-stratosphere is 

enhanced and weakened in winter and summer, respectively. And thus, warmer and 

colder upper-stratosphere at correspond latitudes are obtained by assimilating the 

microwave stratospheric measurements.  

As discussed in Karpechko et al. (2017), downward propagation of major sudden 

stratospheric warming events can affect the tropospheric weather forecast predictabilities 

due to its impacts on tropospheric circulations. However, the propagation usually takes 

one to three months to have significant impacts on troposphere. Also as Charlton et al. 
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(2004) discussed that consistent changes to the tropospheric synoptic-scale systems occur 

in response to the stratospheric initials starting at 5-day forecast lead times. In this study, 

faster response of the tropospheric circulations to the assimilation of microwave 

stratospheric temperature measurements. The predicted zonal-mean vertical velocity and 

meridional wind at 24-h forecast lead time are plotted in Fig. 73. In winter, the warmer 

upper stratosphere and the cooler ozone layers caused a more stable stratosphere and 

thus, strong downward vertical transportation anomaly is observed between 20-mb and 3-

mb. In the upper troposphere, a relatively weaker upward vertical transfer is observed. 

The strongest upward vertical transfer in the upper troposphere is located between 22° 

and 30°N where the Hadley Cell and Ferrel Cell descend. Also, a relatively weaker 

downward vertical transfer is observed at 50°N over 300 hPa. Strong opposite meridional 

wind is obtained in upper stratosphere compared to initial analysis increments. Compared 

to the stratosphere, very weak changes have been made to the tropospheric general 

circulations. Negative meridional wind at 400-mb is observed between 22° and 30°N, 

slightly weaker negative meridional wind is observed at near surface layer between 35° 

and 50°N. Combined with the vertical velocity anomalies, the tropospheric general 

circulations are weakened in response to the stratospheric initials in winter. Compared to 

winter wind anomalies, opposite features are obtained in the summer predictions. The 

predicted summer vertical velocity anomaly (Fig. 73b), more perturbations are observed 

compared to a more flat vertical velocity anomaly in winter. Strong upward vertical 

transfer is observed at around 5-mb between 30° and 45°N. In the troposphere, downward 
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vertical transfer is observed at around 25°N between 200-mb and 1000-mb. Downward 

vertical transfer is also observed at near surface layers between 36° and 45°N. Small 

turbulence is also observed between 36° and 45°N with some upward transfer located at 

800-mb height. The predicted summer meridional wind (Fig. 73d) also shows different 

features to winter predictions. Stronger negative meridional wind anomalies are observed 

at upper stratosphere. Negative meridional wind anomalies are also observed in the Ferrel 

Cell with slightly stronger northern wind at 200-mb between 37° and 45°N. Thus the 

tropospheric general circulation is slightly enhanced in response to the stratospheric 

initials in summer.  

 



 

 
 

 

 
Figure 72 Zonal-mean vertical temperature (a, b) and meridional wind (c, d) analysis increment differences. 
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Figure 73 Predicted zonal-mean vertical velocity (a, b) and meridional wind (c, d) anomalies at 24-h forecast lead time. 
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The change of stratospheric vertical transfer and tropospheric general circulations 

also have strong impacts on the predicted atmospheric states. The predicted zonal-mean 

temperature and RH at 24-h forecast lead time are plotted in Fig. 74. In winter, strong 

upper stratospheric warming is obtained (Fig. 74a). In summer, a cooling pool is obtained 

at 5-mb between 30° and 45°N. Compared to vertical velocity and meridional wind 

anomalies (Fig. 73), the upper stratospheric temperature predictions are more related to 

the vertical transfers. In winter, strong downward vertical transfer is obtained in upper 

stratosphere around 5-mb. As a result, more energy is transferred from the high 

temperature area at high altitudes to the low temperature area at low altitudes in the 

stratosphere and caused the warming upper stratosphere. In summer, strong downward 

vertical transfer is observed at 5-mb between 30° and 45°N. A cooling pool responds the 

downward vertical transfer is also obtained in Fig. 74b. In the troposphere, slightly 

warming effect is obtained in winter. In summer, strong cooling effect is obtained at 

surface layer which is also related to the strong downward vertical transfer in Fig. 73b. 

Warming effect is obtained at 900-mb between 38° and 45°N which is also related to the 

upward vertical transfer in Fig. 73b. 

The RH anomalies are mainly located in the troposphere due to the lack of water 

molecules in the stratosphere. In winter (Fig. 74c), decrease of RH is found in the 

tropopause and near surface layer. Increase of RH is obtained in the mid-troposphere 

except the ascending part of Ferrel Cell. Opposite features are obtained in summer, 

increase of RH is obtained in the tropopause and near surface layers. Decrease of RH is 

found in the mid-troposphere except ascending part of Ferrel Cell and the descending part 
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of Hadley Cell. The transport of tropospheric water vapor is strongly related to the 

tropospheric general circulations. As we discussed in Fig. 73, the tropospheric general 

circulations are weakened in winter but enhanced in summer. The weakened/enhanced 

winter/summer Ferrel Cell is responsible for the decrease/increase of RH in the 

tropopause and near surface layer with less/more water vapor from the tropical area. The 

changes of the RH in the mid-troposphere between 45° and 51°N are also related to the 

adjusted Ferrel Cell.  

 



 

 
 

 

 

Figure 74 Predicted zonal-mean temperature (a, b) and RH (c, d) at 24-h forecast lead time. 
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Figure 75 Predicted zonal-mean temperature (a, b) and vertical velocity (c, d) anomalies at 50°N as a function of forecast lead time (h). 
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Cross-sections of the zonal-mean temperature and vertical velocity anomalies at 

50°N where the Ferrel Cell ascending are plotted in Fig. 75. Propagation of the 

temperature anomaly can be identified in Fig. 75. In winter, the temperature pattern is 

relatively flat in the upper stratosphere. In the troposphere, slightly weak adjustment to 

the synoptic-scale waves can be identified starting from 72-h forecast lead time. In 

summer, the propagation of the temperature and vertical velocity are more obvious. In the 

upper stratosphere, impacts on the planetary waves are found. Between 5-mb and 300-

mb, the temperature pattern starts to propagate downward at 72-h forecast lead time and 

becomes stronger at 144-h forecast lead time. As shown in Fig. 75d, the magnitudes of 

the summer tropospheric synoptic-scale waves are also adjusted when microwave 

stratospheric measurements are assimilated.  

The averaged bias and RMSD differences of predicted wind, temperature, and RH 

profiles over the continental of U. S. are calculated and plotted in Fig. 76. The blue area 

indicates better forecast skills are obtained while the red area indicates a drop of 

predictability is obtained. Overall improvements of both bias and RMSD are obtained. 

Large improvements are observed over the tropopause layers in predicting wind and 

temperature when microwave stratospheric temperature measurements are assimilated. 

Extra 1.1% and 2.7% skills are obtained for tropopause wind and temperature 

predictions, respectively. For tropospheric predictions, most of the improvements are 

made in the first 72-h forecast lead times. The improvements in the lower tropospheric 

wind predictions are relatively weaker than temperature. Extra 0.15% and 0.6% skills are 

obtained for lower tropospheric wind and temperature predictions, respectively. For 
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predictions of RH, the major improvements are made in the first 48-h forecast lead times. 

The largest improvement is obtained at 24-h forecast lead time at 800 hPa with an extra 

2.7% skill. As the upward transfer becomes weaker as forecast lead time increases, the 

improvements moved upward. An extra 1.5% skill is obtained at 36-h forecast lead time 

at 600 hPa and an extra 1.6% skill is obtained at 72-h forecast lead time at 400 hPa. 
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Figure 76 Bias and RMSD differences of predicted wind, temperature, and RH profiles. 
 

6.5 Individual Case Study – The Winter Case in Section 4.4 
The winter case used in chapter 4 is predicted with the selected channels in this 

section. Four experiments including a CTRL experiment and three different GSI 

configurations are conducted. The detailed descriptions about these four experiments are 
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shown in Table 6. Firstly, the near-surface temperature from the Manhattan in-situ 

observations and WRF 2 m high temperature are compared in Fig. 77. Similar to Fig. 31, 

all experiments also underestimate temperature predictions during the early DA cycles 

and less errors at later DA cycles. The CTRL experiment shows slightly smaller CC and 

larger RMSD than the results from the CTRL_50mb. In contrast, the temperature scores 

reach comparable levels with slightly smaller RMSD than the Hybrid experiment showed 

in Fig. 31. No significant differences are found between the three DA experiments.  

 

 

Figure 77 Time series of the near-surface temperature from Manhattan, KS (39.102°N, 96.609°W) and the 
predicted 2 m temperature from different experiments. 
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The comparison of the 3-h accumulated precipitation over the major precipitation 

area from the GLDAS products and regional weather model forecasts are shown in fig. 

78. Slightly drop of the predictabilities of heavy precipitation is found by raising the 

model lid to 1-mb alone compared to the experiment with a model lid at 50-mb in Fig. 

31. However, on one hand, by including the selected microwave channels alone in the 

SELECTED experiment yields results comparable to those of the Hybrid experiment in 

Fig. 31 which included all operationally available observations. On the other hand, the 

inclusion of stratospheric microwave information in the Whole experiment yields results 

better than those of the TROPO experiment.  

 

 

Figure 78 Analyzed and predicted 3-h accumulated precipitation from different experiments. 
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The daily precipitation distributions of Jan. 2nd (first row in Fig. 79), Jan. 3rd 

(second row in Fig. 79), and Jan. 4th (third row of Fig. 79) from different experiments are 

also compared with the GLDAS products. No significant differences are found in each 

experiment. However, the CTRL experiment lacks the ability to predict lighter 

precipitation events such as the miss-predicted precipitation area over the North Carolina 

and South Carolina states in Fig. 79g. The Whole (Fig. 79c, h, and m) and SELECTED 

(Fig. 79d, i, and n) experiments show comparable results while the TROPO (Fig. 79e, j 

and o) slightly overestimates precipitation amounts over the coast areas.  



 

 
 

 

 

 

Figure 79 Daily precipitation (mm) distributions of Jan. 2nd, Jan. 3rd, and Jan. 4th, 2015, from different experiments. 
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6.6 Summary 
The impacts of the raised model lids and the extra stratospheric information 

included in the DA system on winter short-period weather forecasts are investigated in 

this chapter also using the regional weather forecast model WRF-ARW and the GSI DA 

system. The model results are verified against conventional observations, and GLDAS 

products are used to verify the individual case studies. 

Generally, the model with a lid at 1-mb generates better initials and forecasts than 

those with model lids at 10-mb and 50-mb. By raising the model lids alone, positive 

impacts are only found over the initial tropopause layers while negative impacts are 

obtained in the initial lower troposphere. However, after the application of DA, large 

improvements are obtained in the initials over both tropopause layers and lower 

troposphere layers. For the short-period forecasts, major improvements are mainly 

obtained over the tropopause layers at early forecast lead times. The impacts of the raised 

model lids on regional weather predictabilities compared to the model results with the 

model lid at 50-mb in percentage are summarized in Table 11 (by raising the model lids 

alone) and Table 12 (after the application of DA and a removal of systematic 

differences). Most of the improvements shown in Table 11 and 12 are made during the 

early forecast lead times. Despite the overall improvements by including extra 

stratospheric information in the DA system, decrease of the predictabilities of near 

surface wind, RH are observed.  
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Table 9 Impacts of the raised model lids alone on short-period weather forecast predictabilities 
Predicted Variables 10-mb 1-mb 

Surface Pressure 2.1% 7.4% 
 

Wind 
All-level Mean 1.7% 3% 

Tropopause 8% 12% 
Lower Troposphere 1.5% 3.5% 

 
Temperature 

All-level Mean 3% 3% 
Tropopause 13.5% 20% 

Lower Troposphere 1.8% 6% 
RH All-level Mean 2.7% 1.9% 

Lower Troposphere 2.2% 4% 
 

Table 10 Impacts of the assimilated stratospheric observation on short-period weather forecast predictabilities 
after the removal of systematic differences 

Predicted Variables 10-mb 1-mb 
Surface Pressure 2.3% 1.4% 

 
Wind 

All-level Mean 0.7% 2.2% 
Tropopause 1.3% 3.8% 

Lower Troposphere 0.3% 1.5% 
 

Temperature 
All-level Mean 3% 2.9% 

Tropopause 3.9% 9% 
Lower Troposphere 2.4% 0.4% 

RH All-level Mean 0.7% 3% 
Lower Troposphere 0.7% 5.4% 

 

After the investigation of how the raised model lids can affect regional weather 

forecasts. A specified set of experiments involving channel selections aiming at the 

impacts of stratospheric microwave channels on regional one-week weather forecasts are 

taken out. The inclusion of the stratospheric microwave channels in the DA system can 

propagate through the tropopause layers and affect the lower troposphere within 2-3 days. 

The impacts of the stratospheric microwave information on lower tropospheric 

temperature and RH are enlarged after 5 days’ propagation. Large positive impacts are 

also found in the tropopause wind predictions. However, negative impacts are found over 
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the lower stratosphere layers especially for temperature. An optimized microwave 

channel selection for the continental U. S. is carried out using the FSO technique. The 

optimized microwave channel selection in DA system shows more advantages in 

predicting heavy precipitation events than the configuration used in the global operational 

system. No significant differences are found when predicting temperature. 

Overall warmer stratosphere but cooler lower stratosphere in winter and summer 

2015 are obtained when the microwave stratospheric temperature measurements are 

assimilated. The adjusted stratospheric temperature and meridional wind patterns are 

related to the adjusted BDC. Small impacts on the tropospheric general circulations are 

found. The tropospheric predictabilities are slightly improved in response to the 

stratospheric initial conditions and adjusted tropospheric general circulations. Summer 

still holds better improvements than winter. The major improvements are also found in 

the tropopause layers. Extra 1% and 2.2% skills are obtained in the tropopause wind 

predictions and extra 1.5% and 0.3% skills are obtained in the tropopause temperature 

predictions.  
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CHAPTER SEVEN CONCLUSION AND DISCUSSION 

The technique of DA has been shown to provide significant impact to NWP 

systems. However, because of the large increasing amount of observations, the selection 

of DA schemes and observations are becoming more and more sensitive to forecasts of 

regional atmospheric states. The performance of three major DA schemes on regional 

weather forecasts were explored. The raised regional model lids and extra stratospheric 

information show the possibilities to better predicts weather on a regional scale. And a 

further application of FSO allows better forecasts of heavy precipitation events. 

7.1 The Performance of the Current Assimilation Schemes on Regional 
Tropospheric Weather Forecasts 

Chapter 4 explores the performances of three major assimilation schemes: 3D-

Var, 3D-Var based ensemble-variational 3D-Var Hybrid with 20% weight on the 

statistical background covariance, and EnKF on regional weather forecasts during both 

winter and summer. Faster convergence rate is obtained by including ensembles in 

summer. For the impacts on initials or model outputs, Hybrid and 3D-Var give better 

performances (3%) on surface pressure and wind, while EnKF shows better performances 

in adjusting temperature in both seasons. Large improvements (10~20%) are observed 

over the tropopause and lower troposphere.  

For the predictabilities involve these three DA schemes, better forecasting skills 

are obtained in all DA schemes in summer (~10% compared to winter forecasts). Among 
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these three DA schemes, Hybrid shows slightly better forecasting skills (~1%) in winter 

than 3D-Var. EnKF shows slightly better skills in summer compared to the variational 

methods. In contrast, EnKF shows ~6% less skills than the variational methods in winter 

predictions. The performances also vary in different vertical layers. Smaller biases and 

RMSDs are found in the mid-troposphere while larger ones are found in the tropopause 

layers. The incremental analysis shows that opposite impacts are obtained over the 

oceans and mountainous areas between the variational method and EnKF schemes. 

Furthermore, when enough DA cycles are performed in the individual case predictions, 

EnKF gains more predictabilities (10%) than the other two DA schemes in predicting 

heavy precipitation events.  

Bias diurnal variations exist when testing the performance of three major DA 

schemes. The systematic errors and one-time DA per-day are believed to be the main 

reasons for the temperature and surface pressure bias diurnal variations, while wind bias 

diurnal variations are related to systematic errors alone. When DA is applied four times a 

day, these bias diurnal variations are disappeared.  

7.2 Impacts of the Selection of Microwave and Infrared Satellite 
Observations in Data Assimilation system on Regional Tropospheric 
Weather Forecasts 

Chapter 5 explores the different impacts of using microwave and infrared satellite 

observations in DA system on regional short-period weather forecasts. No significant 

differences are found between the usage of microwave and infrared observations in 

summer using the EnKF configuration in DA system. The use of infrared observation 

only shows less than 1% advantage than the microwave observation over the tropopause. 
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In contrast, large differences are obtained in winter using the Hybrid configuration. The 

MW generates overall advantages in adjusting initials compared to IR when assimilated 

alone. Large improvements are made for the tropopause wind, lower stratospheric 

temperature and higher tropospheric humidity when MW is assimilated alone.  

For predictions, MW shows better skills than IR in the first 12-h predictions for 

most of the atmospheric variables (extra 7% skill for the prediction of surface pressure, 

3% for temperature and 2.6% for humidity), and overall better skills in predicting wind 

(extra 2%). IR shows better skills at longer forecast lead times when assimilated alone. 

The predictabilities of assimilating MW and IR observations also vary in vertical layers. 

Great advantages in predicting tropopause wind and temperature are found (extra 3% and 

15%, respectively) when MW is assimilated alone. For humidity, extra 4% skill is 

obtained when MW is assimilated alone. IR shows large advantages in predicting lower 

tropospheric variables when assimilated alone. 

When verified in the summer heavy precipitation case study, MW shows better 

results in predicting this event. And when the model lid is raised to 10-mb, MW 

generates even better forecasts of near surface temperature compared to IR when 

assimilated alone.  

7.3 Impacts of Extra Stratospheric Measurements on Regional 
Tropospheric Weather Forecasts 

In the fact that extra stratospheric information used in the summer case study 

shows extra skills in predicting both temperature and heavy precipitation event when 

MW is assimilated alone. Chapter 6 explores the impacts of the raised model lids and the 
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extra stratospheric information included in the DA system on winter short-period regional 

weather forecasts.  

Generally, the more stratospheric information, the better predictions the regional 

model can make. When the model lids are raised alone, positive impacts are mainly found 

over the initial tropopause layers while negative impacts are found in the initial lower 

troposphere. By including extra stratospheric information via DA systems, atmospheric 

states over both the tropopause and troposphere meet great improvements. Extra skills are 

also obtained in predictions when extra stratospheric information is brought into the 

system and the major improvements are also located over the tropopause layers.  

A week-long prediction involving microwave observations alone are took out to 

investigate the impacts of microwave stratospheric measurements. The microwave 

measurements included in the DA system can propagate through the tropopause layers 

and affect the lower tropospheric predictions within 2-3 days. The microwave 

stratospheric measurements have more positive effects on the lower tropospheric 

temperature and humidity predictions after 5 days’ propagation. Tropopause wind 

predictions also get more benefits from the stratospheric microwave information after 5 

days.  However, negative impacts are found over the lower stratospheric temperature 

predictions. An overall warmer stratosphere but cooler lower stratosphere in winter 2015 

is obtained when the microwave stratospheric temperature measurements are assimilated. 

The warmed stratosphere then impacts the tropospheric general circulations by weaken 

the Hadley and Ferrel circulations. The weakened tropospheric general circulations then 

have impacts on the tropospheric predictions. Positive impacts are generally obtained at 
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the first 72-h forecast lead times. In the case study, extra 1.1% and 2.7% skills are 

obtained in the predictions of tropopause wind and temperature. The improvements of the 

tropospheric predictabilities are relatively weaker with extra 0.15% and 0.6% skills in the 

predictions of lower tropospheric wind and temperature. The weakened Hadley and 

Ferrel cell also affect the transport of air moisture. An extra 2.7% skill is obtained in the 

prediction of lower tropospheric RH. 

Through the winter heavy precipitation case study, the extended microwave 

stratospheric measurements included in the DA system benefits the prediction of the 

heavy precipitation event. An optimized selection of the microwave channels over the 

regional scale is carried out using the FSO technique on regional models and the case 

study proved that the optimized selection of microwave channels can advantage the 

prediction of heavy precipitation events slightly. However, no significant improvements 

are found in predicting temperatures by including extended microwave stratospheric 

measurements.  

7.4 Future Directions 
This thesis aims to investigate the performance of three major DA schemes on 

regional NWP system, and to explore the impacts of extra stratospheric information on 

regional predictions of heavy precipitation events and other predictions. There are several 

works based on this thesis could be done in the future. 

Firstly, in this thesis, the horizontal resolution of the regional model iss set at a 

relatively coarse resolution. Since some of the observations are very dense in the 

continental U. S., a finer resolution for the regional model may obtain more effective DA 
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results. And the DA schemes been tested in this thesis are the basic formations. More 

advanced DA schemes such as 4D-Var and ensemble Kalman filter-variational hybrid 

schemes can also be compared for predictions of different variables in different seasons. 

The inclusion of ensembles in DA systems showed particularly high forecast 

improvements. In this thesis, only 40 ensemble members are used and the preparing of 

the ensembles are adding random perturbations into the regional initials followed by a 6-

h propagation. Do more ensemble members positively affect the DA performance? 

Furthermore, the deficiencies existed in the ensembles generated from regional model can 

greatly affect the forecast qualities especially during winter. Ensemble members with 

better qualities may have more positive impacts on the regional weather forecasts.  

Second, the microwave and infrared satellite observations show significant 

different impacts on regional weather forecasts. The microwave and infrared channels 

can also be classified into temperature channels, water vapor channels, etc. How these 

different channels affect the predictions of regional corresponding atmospheric variables? 

Possible relations between the predictions of temperature and moisture may exist. 

Finally, in chapter 7, only the impacts of stratospheric microwave channels over 

the continental U. S. been conducted in Hybrid scheme are investigated. For some of the 

stratospheric events, such as the Arctic Oscillation, are usually occurred over polar 

regions. For infrared satellite sensors, large amounts of information are distributed in 

different vertical layers. How the stratospheric infrared channels affect the tropospheric 

weather forecasts and how the combined stratospheric microwave and infrared 

information together affect the tropospheric weather forecasts. Further FSO results 
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investigating the infrared channels in regional scale can be obtained. In chapter 4, the 

EnKF scheme is proved to be more efficient in summer. How the extra stratospheric 

information been brought into the system via EnKF can affect the regional weather 

forecasts? An ensemble FSO (EFSO) technique can be applied on the reginal forecasts to 

investigate the impact of each channel from both microwave and infrared satellite sensors 

over the continental U. S. when one of the EnKF formats is used.  

 

 

 

 

 

 

 



 

195 
 

 

 
 
 
 

REFERENCES 

Anderson, J. L., 2001: An ensemble adjustment Kalman Filter for data assimilation. Mon. 
Wea. Rev., 129, 2884-2903. 

 
Anderson, E., and H. Jarvinen, 1998: Variational Quality Control. Quarterly Journal Royal 

Met. Society, 125 (554), 697-722. 
 
Anderson, E., J. Haseler, P. Courtier, G. Kelly, D. Vasiljevic, C. Brancovic, C. Cardinali, 

C. Gaffard, A. Hollingsworth, C. Jakob, P. Janssen, E. Klinker, A. Lanzinger, M. 
Miller, F. Rabier, A. Simmons, B. Strauss, J-N. Thepaut and P. Viterbo, 1998: The 
ECMWF implementation of three dimensional variational assimilation (3D-Var). Part 
Ⅲ: Experimental results. Quarterly Journal Royal Met. Society, 124 (550), 1831-1860. 

 
Andreas, P. W., M. A. Liniger, and C. Appenzeller, 2007: The Discrete Brier and Ranked 

Probability Skill Scores. Mon. Wea. Rev. 135, 118-124. 
 
Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. 

Academic Press, 489 pp. 
 
Badger, J., and B. J. Hoskins, 2001: Simple Initial Value Problems and Mechanisms for 

Baroclinic Growth. Journal of the Atmospheric Sciences, 58, 38-49. 
 
Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the 

Stratosphere to the Troposphere. J. Geophys. Res., 104, 30937-30946. 
 
Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather 

regimes. Science, 294, 581-584. 
 
Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, 

and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather 
forecasts. Science, 301, 636-640. 

 
Bao, Y., J. J. Xu, A. M. Powell, M. Shao, J. Min, and Y. N. Pan, 2015: Impacts of AMUS-

A, MHS, and IASI data assimilation on temperature and humidity forecasts with GSI-
WRF over the western United States. Atmos. Meas. Tech., 8, 4231-4242. 

 
Bergovind, P., and B. Döös, 1955: Numerical Weather map analysis. Tellus, 7, 329-340. 



 

196 
 

 

 
Berri, G. J., and J. Paegle, 1990: Sensitivity of Local Predictions to Initial Conditions. 

Journal of Applied Meteorology, 29, 256-267. 
 
Black, R. X., B. A. McDaniel, and W. A. Robinson, 2006: Stratosphere-Troposphere 

Coupling during Spring Onset. Journal of Climate, 19, 4891-4901. 
 
Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of 

helium and water vapor distribution in the stratosphere. Quart J. Roy. Meteor. Soc., 
75, 351-363, doi:10.1002/qj.49707532603. 

 
Boville, B. A., and D. P. Baumhefner, 1990: Simulated Forecast Error and Climate Drift 

Resulting from the Omission of the Upper Stratosphere in Numerical Models. Mon. 
Wea. Rev., 118, 1517-1530. 

 
Bouttier F., and P. Courtier, 1999: Data Assimilation concepts and methods, 

Meteorological Training Course Lecture Series, ECMWF 
 
Calvo, N., R. R. Garcia, W. J. Randel, and D. R. Marsh, 2010: Dynamical mechanism for 

the increase in tropical upwelling in the lowermost tropical stratosphere during warm 
ENSO events. Journal of the Atmospheric Science, 67 (7), 2331-2340. 

 
Caya, A., J. Sun, and C. Snyder, 2005: A Comparison between the 4DVAR and the 

Ensemble Kalman Filter Techniques for Radar Data Assimilation. Mon. Wea. Rev., 
133, 3081-3094. 

 
Chapman, S., 1930: On Ozone and atomic oxygen in the upper atmosphere. Philosophical 

Magazine, 10 (64), 369-383. 
 
Charlton, A. J., A. O’Neill, W. A. Lahoz, and A. C. Massacand, 2004: Sensitivity of 

tropospheric forecasts to stratospheric initial conditions. Q. J. R. Meteorol. Soc., 130, 
1771-1792. 

 
Cohen, N. Y., E. P. Gerber, and O. Bühler, 2014: What Drives the Brewer-Dobson 

Circulation? Journal of the Atmospheric Science, 71, 3837-3855. 
 
Collard, A., F. Hilton, M. Forsythe, and B. Candy, 2011: From observations to forecasts – 

part 8: the use of satellite observations in numerical weather prediction. Weather, 66, 
31-36. 

 
Collins, M., and M. R. Allen, 2002: Assessing the relative roles of Initial and Boundary 

Conditions in Interannual to Decadal Climate Predictability. Journal of Climate, 15, 
3104-3109. 

 



 

197 
 

 

Costantino, L., P. Heinrich, N. Mzé, and A. Hauchecorne, 2015: Convective gravity wave 
propagation and breaking in the stratosphere: comparison between WRF model 
simulations and lidar data. Ann. Geophys., 33, 1155-1171. 

 
Courtier, P., E. Andersson, W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud, A. 

Hollingsworth, F. Rabier and M. Fisher, 1998: The ECMWF implementation of three-
dimensional variational assimilation (3D-Var). Ⅰ: Formulation. Quarterly Journal 
Royal Met. Society, 124 (550), 1783-1807. 

 
Cucurull, L., and R. A. Anthes, 2014: Impact of Infrared, Microwave, and Radio 

Occultation Satellite Observations on Operational Numerical Weather Prediction. 
Mon. Wea. Rev., 142, 4164-4186. 

 
Delsole, T., 2004: Predictability and Information Theory. Part Ⅰ: Measures of Predictability. 

Journal of the Atmospheric Science, 61, 2425-2440. 
 
Delsole, T., 2005: Predictability and Information Theory. Part Ⅱ: Imperfect Forecasts. 

Journal of the Atmospheric Science, 62, 3368-3381. 
 
Derber, J. C., and W. S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP 

SSI analysis system. Mon. Wea. Rev., 126, 2287-2299. 
 
Diak, G. R., 1995: Column Cloud Liquid Water Amounts for Nonprecipitating Clouds 

versus an “Effective Cloud Fraction” Derived from Microwave Data: A Simulation 
Study. Journal of Atmospheric and Oceanic Technology, 12, 960-969.  

 
Dickinson, R. E., 1968: Planetary Rossby Waves Propagating Vertically Through Weak 

Westerly Wind Wave Guides. Journal of the Atmospheric Sciences, 25, 984-1002. 
 
Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the 

atmosphere. Proc. Roy. Soc. London, 236A, 187-193, doi:10.1098/rspa.1956.0127. 
 
Eliassen, A., 1954: Provisional report on calculation of spatial covariance and 

autocorrelation of the pressure field. Dynamic Meteorology: Data Assimilation 
Methods, L. Bengtsson, M. Ghil, and E. Kallen, Eds., Springer-Verlag, 319-330.  

 
English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. 

Saunders, and J. R. Eyre, 2000: A comparison of the impact of TOVS and ATOVS 
satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. 
Roy. Meteor. Soc., 126, 2911–2931. 

 
Epstein, E. S., 1969: The Role of Initial Uncertainties in Prediction. Journal of Applied 

Meteorology, 8, 190-198. 
 



 

198 
 

 

Evensen G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model 
using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-
10162. 

 
Evensen G., 2003: The ensemble Kalman filter: Theoretical formulation and practical 

implementation. Ocean Dynamics, 53, 343-367. 
 
Fu, Q., C. M. Johanson, S. G. Warren, and D. J. Seidel, 2004: Contribution of stratospheric 

cooling to satellite-inferred tropospheric temperature trends. Nature, 429, 55-58. 
 
Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. (Translated by Israel 

Program for Scientific Translations).  
 
Garcia-Moya, J.-A., A. Callado, P. Escriba, C. Santos, D. Santos-Munoz, and J. Simarro, 

2011: Predictability of short-range forecasting: a multimodel approach. Tellus, 
63(A), 550-563. 

 
Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer Dobson circulation due 

to increases in greenhouse gases. Journal of the Atmospheric Sciences, 65 (8), 2731-
2739. 

 
Geber, E. P., A. Butler, N. Calvo, A. Charlton-Perez, M. Giorgetta, E. Manzini, J. Perlwitz, 

L. M. Polvani, F. Sassi, A. A. Scaife, T. A. Shaw, S.-W. Son, and S. Watanabe, 2012: 
Assessing and Understanding the Impact of Stratospheric Dynamics and Variability 
on the Earth System. Bull. Amer. Meteor. Soc., 93, 845-859. 

 
Gelaro R., C. A. Reynolds, R. H. Langland, and G. D. Rohaly, 2000: A Predictability Study 

Using Geostationary Satellite Wind Observations during NORPEX. Mon. Wea. Rev., 
128, 3789-3807. 

 
Gibson, J. K., P. Kallberg, S. Uppala, A. Nomura, A. Hernandez, and E. Serrano, 1997: 

The ECMWF Re-Analysis: ERA description. ECMWF Re-Analysis Project Rep. 
Series, No. 1, 71pp. 

 
Gregory, D., J. -J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision 

of convection, radiation and cloud schemes in ECMWF Integrated Forecasting 
System. Quart. J. Roy. Meteor. Soc., 126, 1685-1710. 

 
Grise, K. M., D. W. J. Thompson, and P. M. Forster, 2009: On the Role of Radiative 

Processes in Stratosphere- Troposphere Coupling. Journal of Climate, 22, 4154-4161. 
 
Goncalves, L., J. Shuttleworth, S.C. Chou, Y. Xue, P. Houser, D. Toll, J. Marengo, and 

M. Rodell, 2006: Impact of different initial soil moisture fields on Eta model 



 

199 
 

 

weather forecasts for South America. J. Geophys. Res., 111, D17102, 
doi:10.1029/2005JD006309. 

 
Hamiltion, K., 1993: ‘The GFDL SKYHI general circulation model: some results of 

relevance for numerical weather prediction.’ In proceedings of ECMWF workshop on 
Stratosphere and Numerical Weather Prediction. Reading, UK. 

 
Hamrud, M., M. Bonavita, and L. Isaksen, 2015: EnKF and Hybrid Gain Ensemble Data 

Assimilation. Part Ⅰ: EnKF Implementation. Mon. Wea. Rev., 143, 4847-4864. 
 
Haynes, P. H., C. J. Marks, M. E. Mcintyre, T. G. Shepherd, and K. P. Shine, 1991: On the 

“Downward Control” of extratropical diabatic circulation by eddy induced mean 
zonal forces. Journal of Atmospheric Sciences, 48 (4), 651-678. 

 
Hoinka, K. P., 1997: The tropopause: Discovery, definition and demarcation. 

Meteorologische Zeitschrift, 6, 281-303. 
 
Holton, J. R., P. H. Haynes, M. E. Mcintyre, A. R. Douglass, and R. B. Rood, 1995: 

Stratosphere-troposphere exchange. Review of Geophysics, 33 (4), 403-439. 
 
Hotta, D., 2014: Proactive Quality Control Based on Ensemble Forecast Sensitivity to 

Observations. PhD thesis, University of Maryland. 
 
Houekamer, P. L., and H. L. Mitchell, 1998: Data Assimilation using an ensemble Kalman 

Filter technique. Mon. Wea. Rev., 126, 796-811. 
 
Hu M., H. Shao, D. Stark, K. Newman, and C. Zhou, 2015: GSI Community Version 3.4: 

User’s Guide. Developmental Testbed Center, National Center for Atmospheric 
Research, NOAA, pp 143 

 
Hu, S., S. Gu, X. Zhuang, and H. Luo, 2007: Automatic identification of storm cells 

using Doppler radars. Acta Meteor. Sinica, 21, 353–365. 
 
John, W. J., and V. H. Peter, 2006: Atmospheric Science: an introductory survey. Vol. 92, 

Academic press, 483 pp. 
 
Justus, C. G., and A. Woodrum, 1973: Upper Atmospheric Planetary-Wave and Gravity-

Wave Observations. Journal of the Atmospheric Science, 30, 1267-1275. 
 
Kalman, R. E., 1960: A New Approach to Linear Filtering and Prediction Problems. J. 

Basic Eng., 82(1), 35-45. 
 
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. 

Cambridge University Press, 341 pp. 



 

200 
 

 

Karpechko, A. Y., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: 
Predictabilities of Downward Propagation of Major Sudden Stratospheric 
Warmings. Quarterly Journal of the Royal Meteorological Society, 
doi: 10.1002/qj.3017. 

 
Kelly, G. A., P. Bauer, A. J. Geer, P. Lopez, and J. Thépaut, 2008: Impact of SSM/I 

observations related to moisture, clouds, and precipitation on global NWP forecast 
skill. Mon. Wea. Rev., 136, 2713–2726. 

 
Kleist, D. T., 2012: An evaluation of hybrid variational-ensemble data assimilation for 

the NCEP GFS. Ph.D dissertation, University of Maryland. 
 
Kleist, D. T., D. F., Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009a: 

Improving incremental balance in the GSI 3DVAR analysis system. Mon. Wea. 
Rev., 137(3), 1046-1060. 

 
Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W. -S. Wu, and S. Lord, 2009b: 

Introduction of the GSI into the NCEP Global Data Assimilation System. Weather 
& Forecasting, 24(6), 1691-1705. 

 
Klinker, E., F. Rabier, G, Kelly, and J. -F. Mahfouf, 2000: The ECMWF operational 

implantation of four-dimensional variational assimilation. Ⅲ: Experimental results 
and diagnostics with operational configuration. Quarterly Journal Royal Met. Society, 
126 (564), 1191-1215. 

 
Kharin V. V., and F. W. Zwiers, 2003: On the ROC scores of Probability Forecasts. Notes 

and Correspondence, 16, 4145-4150. 
 
Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric 

weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. R. 
Meteorol. Soc., 136 (649), 886-893. 

 
Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Z. Weng, 2010: 

Uncertainties in Microwave Properties of Frozen Precipitation: Implications for 
Remote Sensing and Data Assimilation. Journal of the Atmospheric Sciences, 67, 
3471-3487 

 
Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL 

atmospheric variational data assimilation adjoint system. Tellus, 56(A), 189-201. 
 
Lahoz, W. A., Q. Errera, R. Swinbank, and D. Fonteyn, 2007: Data Assimilation of 

stratospheric constituents: a review. Atmos. Chem. Phys., 7, 5745-5773. 
 



 

201 
 

 

Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas- driven wind 
trends with observational data. Science, 339 (6119), 563-567 

 
Liao, K. N., 2002: An Introduction to Atmospheric Radiation. Academic press, 583 pp. 
 
Lord, S., G. Gavno, and F. L. Yang, 2016: Analysis of an Observing System Experiment 

for the Joint Polar Satellite System. Bulletin of the American Meteorological 
Society, 97(8), 1409-1425. 

 
Lorenc, A. C., 1981: A global three-dimensional multivariate statistical analysis scheme. 

Mon. Wea. Rev., 109, 701-721. 
 
Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Q. J. R. Meteorol. 

Soc., 112, 1177-1194. 
 
Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: 

Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods 
for Global NWP. Mon. Wea. Rev., 143, 212-229. 

 
Mahouf, J.-F., and F. Rabier, 2000: The ECMWF operational implantation of four-

dimensional variational assimilation. Ⅱ: Experimental results with improved physics. 
Quarterly Journal Royal Met. Society, 126 (564), 1171-1190. 

 
Mahfouf, J.-F., P. Bauer, and V. Marécal, 2005: The assimilation of SSM/I and TMI 

rainfall rates in the ECMWF 4D-Var system. Quart. J. Roy. Meteor. Soc., 131, 437–
458, doi:10.1256/qj.04.17. 

 
Matsuno, T., 1971: A dynamical model of stratospheric warmings. J. Atmos. Sci., 27, 871-

883. 
 
Mears C. A., and F. J. Wentz, 2008: Construction on the Remote Sensing System V3.2 

Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders. 
Journal of Atmospheric and Oceanic Technology, 26, 1040-1056 

 
Meng, Z. Y., and F. Q. Zhang, 2008: Tests of an Ensemble Kalman Filter for Mesoscale 

and Regional-Scale Data Assimilation. Part Ⅲ: Comparison with 3DVAR in a 
Real-Data Case Study. Mon. Wea. Rev., 136, 522-540. 

 
Meng, Z. Y., and F. Q. Zhang, 2011: Limited-Area Ensemble-Based Data Assimilation. 

Mon. Wea. Rev., 139, 2025-2045. 
 
Migliorini, S., C. Piccolo, and C. D. Rodgers, 2008: Use of the Information Content in 

Satellite Measurements for an Efficient Interface to Data Assimilation. Mon. Wea. 
Rev., 136, 2633-2650. 



 

202 
 

 

 
Mueller, B., S.I. Seneviratne, C. Jimenez, T. Corti, M. Hirschi, G. Balsamo, A. Beljaars, 

A.K. Betts, P. Ciais, P. Dirmeyer, J.B. Fisher, Z. Guo, M. Jung, C.D. Kummerow, F. 
Maignan, M.F. McCabe, R. Reichle, M. Reichstein, M. Rodell, W.B. Rossow, J. 
Sheffield, A. J. Teuling, K. Wang, and E.F. Wood, 2011: Evaluation of global 
observations-based evapotranspiration datasets and IPCC AR4 simulations, 
Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230, 

 
Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause 

temperatures. Part Ⅱ: model results. Journal of the Atmospheric Sciences, 63 (5), 
1420-1431. 

 
Ott, E., B. R. Hunt, I. Szunyogh, and J. A. Yorke, 2004: A Local Ensemble Kalman Filter 

for atmospheric data assimilation. Tellus, 56, 415-428. 
 
Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s Spectral 

Statistical-Interpolation Analysis System. Mon. Wea. Rev., 120, 1747-1763. 
 
Prigent, C., J. R. Pardo, and W. B. Rossow, 2006: Comparisons of the Millimeter and 

Submillimeter Bands for Atmospheric Temperature and Water Vapor Soundings for 
Clear and Cloudy Skies. Journal of Applied Meteorology and Climatology, 45, 
1622-1633. 

 
Rabier, F., A. McNally, E. Andersson, P. Courtier, P. Unden, J.  Eyre, A. 

Hollingsworth and F. Bouttier, 1998: The ECMWF implementation of three-
dimensional variational assimilation (3D-Var). Ⅱ: Structure Function. Quarterly 
Journal Royal Met. Society, 124 (550), 1809-1829. 

 
Rabier, F. H. Jarvinen, E. Klinker, J.-F. Mahfouf and A. Simmons, 2000: The ECMWF 

operational implantation of four-dimensional variational assimilation. Ⅰ: Experimental 
results with simplified physics. Quarterly Journal Royal Met. Society, 126 (564), 
1143-1170. 

 
Rabier, F. H., 2005: Overview of global data assimilation developments in numerical 

weather-prediction centers. Q. J. R. Meteorol. Soc., 131, 3215-3233. 
 
Rajedran, K., A. Kitoh, R. Mizuta, S. Sajani, and T. Nakazawa, 2007: High-Resolution 

Simulation of Mean Convection and Its Intraseasonal Variability over the Tropics 
in the MRI/JMA 20-km Mesh AGCM.  Journal of Climate, 21, 3722-3739. 

 
Reinecke P. A., and D. R. Durran, 2009: Initial-Condition Sensitivities and the 

Predictability of Downslope Winds. Journal of the Atmospheric Sciences, 66, 3401-
3418. 

 



 

203 
 

 

Reiter, E. R., and L. F. Whitney, 1969: Interaction between subtropical and polar-front jet 
stream. Mon. Wea. Rev., 97, 432-438. 

 
Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. -J. Meng, K. 

Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, 
D. Lohmann, and D. Toll, 2004: The Global Land Data Assimilation System. 
Bull. Amer. Meteor. Soc., 85(3), 381-394. 

 
Rood R. B., 2005: Assimilation of stratospheric meteorological and constituent 

observations: A Review. SPARC Newsletter No. 25, July. 
 
Saito, K., T. Fujita, Y. Yamada, J. -I. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. 

Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The 
Operational JMA Nonhydrostatic Mesoscale Model. Mon. Wea. Rev., 134, 1266-
1298. 

 
Sasaki, Y. K., and J. S. Goerss, 1982: Satellite Data Assimilation Using NASA Data 

Systems Test 6 Observations. Mon. Wea. Rev., 110, 1635-1644. 
 
Sato, K., and M. Nomoto, 2015: Gravity Wave-Induced Anomalous Potential Vorticity 

Gradient Generating Planetary Waves in the Winter Mesosphere. Journal of the 
Atmospheric Science, 72, 3609-3624. 

 
Schwaerz, M., G., Kirchengast, 2003: Joint Temperature, Humidity, and Sea Surface 

Temperature Retrieval from IASI Sensor Data. The thirteenth International TOVS 
Study Conference, 558-567. 

 
Schwartz, C. S., J. S. Kain, S. J. Weiss, M. Xue, D. R. Bright, F. Kong, K. W. Thmoas, J. 

J. Levit, and M. C. Coniglio, 2009: Next-Day Convection-Allowing WRF Model 
Guidance: A Second Look at 2-km versus 4-km Grid Spacing. Mon. Wea. Rev., 
137, 3351-3372. 

 
Schwartz, C. S., Z. Liu, X. -Y. Huang, Y. -H. Kuo, and C. -T. Fong, 2013: Comparing 

Limited-Area 3DVAR and Hybrid Variational-Ensemble Data Assimilation 
Methods for Typhoon Track Forecasts: Sensitivity to Outer Loops and Vortex 
Relocation. Mon. Wea. Rev., 141, 4350-4372. 

 
Scott, K. A., M. Buehner, A. Caya, and T. Carrieres, 2012: Direct Assimilation of 

AMSR-E Brightness Temperatures for Estimating Sea Ice Concentration. Mon. 
Wea. Rev., 140, 997-1013. 

 
Sela, J., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 

108, 1279-1292. 
 



 

204 
 

 

Sela, J., 1982: The NMC Spectral Model, NOAA Technical Report, NWS-30, 36pp. 
 
Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of 

numerical weather prediction, Q. J. R. Meteorol. Soc., 128, 647-677. 
 
Skamarock W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. 

Huang, W. Wang, J. G. Powers, 2008: ”A Description of the Advanced Research 
WRF Version 3”, Mesoscale and Microscale Meteorology Division and National 
Center for Atmospheric Research, 124pp. 

 
Sjoberg, J. P., and T. Birner, 2012: Transient tropospheric forcing of sudden stratospheric 

warmings. Journal of the Atmospheric Sciences, 69, 3420-3432 
 
Smith, N., W. L. Smith Sr., E. Weisz, and H. Revercomb, 2015: AIRS, IASI, and CrIS 

Retrieval Records at Climate Scales: An Investigation into the Propagation of 
Systematic Uncertainty. Journal of Applied Meteorology and Climatology, 54, 1465-
1481 

 
Solonen, A., A. Bidov, J. M. Bardsley, and H. Haario, 2014: Optimization-Based Sampling 

in Ensemble Kalman Filtering. International Journal for Uncertainty Quantification, 
4(4), 349-364. 

 
Staelin, D. H., K. F. Kunzi, R. L. Pettyjohn, R. K. L. Poon, and R. W. Wilcox, 1976: 

Remote Sensing of Atmospheric Water Vapor and Liquid Water with the Nimbus 5 
Microwave Spectrometer. Journal of Applied Meteorology, 15, 1204-1214. 

 
Stocker, T. F., et al., 2001: Intergovernmental Panel on Climate Change (IPCC) Climate 

Change. Tech. Rep., 417-457. 
 
Stohl, A., H. Wernli, P. James, M. Bourqui, C. Forster, M. A. Liniger, P. Seibert, and M. 

Sprenger, 2003: A New Perspective of Stratosphere-Troposphere Exchange. Bulletin 
of the American Meteorological Society, 84(11), 1565-1573. 

 
Storch, H. V., H. Langenberg, and F. Feser, 2000: A Spectral Nudging Technique for 

Dynamical Purposes. Mon. Wea. Rev., 128, 3664-3673. 
 
Swnbank, R., and A. O’Neill, 1994: A Stratosphere-Troposphere Data Assimilation 

System. Mon. Wea. Rev., 122, 686-702. 
 
Thépaut, J. -N., 2003: Satellite data assimilation in numerical weather prediction: An 

overview. Proc. Seminar on Recent Developments in Data Assimilation for 
Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 75-95. 

 



 

205 
 

 

Tobin, D. C., H. E. Revercomb, C. C. Moeller, and T. S. Pagano, 2006: Use of 
Atmospheric Infrared Sounder high-spectral resolution spectra to access the 
calibration of Moderate Resolution Imaging Sepctroradiometer on EOS Aqua. 
Journal of Geophysics Research, 111, D09S05, doi:10.1029/2005JD006095. 

 
Torn, R. D., 2010: Performance of a Mesoscale Ensemble Kalman Filter (EnKF) during 

the NOAA High-Resolution Hurricane Test. Mon. Wea. Rev., 138, 4375-4392. 
 
Uhlmann, J. K., 1992: Algorithms for multiple target tracking. American Scientist, 80(2), 

128-141. 
 
Wan, Q. L., and J. J. Xu, 2011: A numerical study of the rainstorm characteristics of the 

June 2005 flash flood with WRF/GSI data assimilation system over south-east China. 
Hydrological Processes, 25(8), 1327-1341. 

 
Wan, Q. L., J. J. Xu, and J. H. He, 2009: Impacts of ATVOS Data Assimilation on 

Prediction of a Rainstorm over Southeast China. Journal of Tropical Meteorology, 
15(2), 155-161. 

 
Wang, L., and C. Cao, 2008: On-orbit calibration assessment of AVHRR longwave 

channels on MetOp-A using IASI. IEEE Trans. Geosci. Remote Sen., 46, 4005-
4013. 

 
Wang, L., C. Cao, and M. Goldberg, 2009: Intercalibration of GOES-11 and GOES-12 

water vapor channels with MetOp IASI hyperspectral measurements. J. Atmos. 
Oceanic Technol., 26, 1843-1855. 

 
Wang, F., L. Wang, T. Koike, H. Zhou, K. Yang, A. Wang, and W. Li, 2011: Evaluation 

and application of a fine-resolution global data set in a semiarid mesoscale river 
basin with a distributed biosphere hydrological model. J. Geophys. Res., 116, 
D21108, doi:10.1029/2011JD015990 

 
Wang, W., C. Bruyere, M. Duda, J. Dudhia, D. Gill, M. Kavulich, K. Keene, H. C. Lin, J. 

Michalakes, S. Rizvi, X. Zhang, J. Berner, S. Ha, and K. Fossell, 2016: “ARW 
Version 3 Modeling System User’s Guide”. Mesoscale and Microscale Meteorology 
Division and National Center for Atmospheric Research, 361pp. 

 
Wang, X. G., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based Ensemble-

Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-
Resolution Experiments. Mon. Wea. Rev., 141, 4098-4117. 

 
Waters, J. W., 1975: Remote Sensing of Atmospheric Temperature Profiles with the 

Nimbus 5 Microwave Spectrometer. Journal of the Atmospheric Sciences, 32, 1953-
1969. 



 

206 
 

 

 
Weng, F. Z., X. Zou, X. Wang, S. Yang, and M. D. Goldberg, 2012: Introduction to 

Suomi national polar-orbiting partnership advanced technology microwave sounder 
for numerical weather prediction and tropical cyclone applications. Journal of 
Geophysical Research, 117, D19112, doi:10.1029/2012JD018144. 

 
Wootten, A., J. H. Bowden, R. Boyles, and A. Terando, 2016: The Sensitivity of WRF 

Downscaled Precipitation in Puerto Rico to Cumulus Parameterization and Interior 
Grid Nudging. Journal of Applied Meteorology and Climatology, 55, 2263-2281. 

 
Wu D., J. Qu, and X.- J. Hao, 2015: Agricultural drought monitoring using MODIS based 

drought indices over the Corn Belt. International Journal of Remote Sensing, 
36(21), 5403-5425 

 
Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis 

with spatially inhomogeneous covariance. Mon. Wea. Rev., 130, 2905-2916. 
 
Xu, J., S. Rugg, M. Horner, and L. Byerle, 2009: Application of ATVOS Radiance with 

ARW WRF/GSI Data Assimilation System in the Prediction of Hurricane Katrina. The 
Open Atmospheric Science Journal, 3, 13-28. 

 
Xu, J. J., and A. M. Powell Jr, 2012: Dynamical downscaling precipitation over Southwest 

Asia: Impacts of radiance data assimilation on the forecasts of the WRF-ARW model. 
Atmospheric Research, 111, 90-103. 

 
Xu, J. J., and A. M. Powell Jr, 2015: Extreme events of stratospheric stationary waves and 

indications for stratosphere-troposphere coupling: simultaneous analysis in boreal 
winter. Theoretical and Applied Climatology, 120(3), 661-671. 

 
Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C. -C. Wu, 2009: An Observing System 

Experiment for Typhoon Conson (2004) Using a Singular Vector Method and 
DOTSTAR Data. Mon. Wea. Rev., 137, 2801-2816. 

 
Yang, H., 2015: Dynamic Coupling and Chemical Transport Between the stratosphere and 

the Troposphere, PhD thesis, Cornell University. 
 
Zhu, Y-Q, and R. Gelaro, 2008: Observation Sensitivity Calculations Using the Adjoint of 

the Gridpoint Statistical Interpolation (GSI) Analysis System. Mon. Wea. Rev., 136, 
335-351. 

 
Zou X. L., F. Z. Weng, and H. Yang, 2014: Connecting the Time Series of Microwave 

Sounding Observations from AMSU to ATMS for Long-Term Monitoring of 
Climate. Journal of Atmospheric and Oceanic Technology, 31, 2206-2222. 

 



 

207 
 

 

Zou, X. L., Z. K. Qin, and F. Z. Weng, 2011: Improved coastal precipitation forecasts with 
direct assimilation of GOES-11/12 imager radiances. Mon. Wea. Rev., 139, 3711-
3729. 

 
Zou, X. L., Z. K. Qin, and F. Z. Weng, 2013: Improved Quantitative Precipitation Forecasts 

by MHS Radiance Data Assimilation with a Newly Added Cloud Detection 
Algorithm. Mon. Wea. Rev., 141, 3203-3221. 

 

 



 

208 
 

 

BIOGRAPHY 

Min Shao was born in Dongtai, Jiangsu province, P. R. China. He received his 
Bachelor degree of Atmospheric Science from Nanjing University in 2011 and his Master 
degree of Environmental Science from Nanjing University in 2013. He joined the Ph.D. 
program of Earth Systems and Geoinformation Sciences at George Mason University in 
2013. He was employed for 4 years as a graduate research assistant under the instruction 
of Dr. John J. Qu. His research area at the time of this dissertation is about integrated 
remote sensing and numerical weather models in coupling stratosphere-troposphere for 
better tropospheric weather forecasts such as heavy precipitation events. 


	List of Tables
	List of Figures
	List of Equations
	List of Abbreviations and Symbols
	Abstract
	Chapter One Introduction
	1.1 Brief Introduction of Numerical Weather Prediction
	1.2 Data Assimilation in Numerical Weather Prediction
	1.3 Regional Weather Predictability
	1.4 Distinct and Coupled Stratosphere and Troposphere
	1.4.1 The Distinctions between Stratosphere and Troposphere
	1.4.2  The Connections between Stratosphere and Troposphere
	1.4.3 Assimilation of the  Stratospheric Observations

	1.5 Satellite Measurements
	1.6 Objectives and Outlines

	Chapter Two Literature Review of Data Assimilation and Satellite Observations
	2.1 Review of the Data Assimilation Algorithms
	2.1.1 Optimal Interpolation
	2.1.2 Three-Dimensional Variational Assimilation (3D-Var)
	2.1.3 Four-Dimensional Variational Assimilation (4D-Var)
	2.1.4 Kalman Filter and Ensemble Kalman Filter (EnKF)
	2.1.5 Ensemble-Variational Hybrid Data Assimilation

	2.2 Assimilation of Satellite Radiance/Brightness Temperature
	2.2.1 The Development of Satellite Observations
	2.2.2 Compared to In-situ Observations
	2.2.3 Direct Assimilation of Satellite Radiance/Brightness Temperature Using the Community Radiative Transfer Model (CTRM)


	Chapter Three Experimental Configuration
	3.1 Advanced Weather Research and Forecasting System
	3.2 Community Gridpoint Statistical Interpolation (GSI) system
	3.3 Data
	3.3.1 Initial Meteorological Field and Lateral Boundary Conditions
	3.3.2 Observations Used for Data Assimilation and Verification

	3.4 Experimental Set-up

	Chapter Four Evaluting the Performance of Different DA configurations
	4.1 Introduction
	4.2 Statistical Results
	4.2.1 Comparing the Convergence Rate during Variational Minimization
	4.2.2 Fits of Analysis to Observations
	4.2.3 Verification of Tropospheric Forecasts
	4.2.3.1 Forecasts of Surface Pressure
	4.2.3.2 Forecasts of Wind
	4.2.3.3 Forecasts of Temperature
	4.2.3.4 Forecasts of Relative Humidity

	4.2.4 Discussion
	4.2.4.1 Analysis Increments
	4.2.4.2 Bias Variations


	4.3 Individual Case study – A Summer Case
	4.3.1 Verification of the Drought
	4.3.2 Verification of the Precipitation

	4.4 Individual Case study – A Winter Case
	4.5 Summary

	Chapter Five Comparison of the inclusion of Infrared and Microwave in Da
	5.1 Introduction
	5.2 Statistical Results
	5.2.1 Comparison of Analysis
	5.2.2 Comparison of Tropospheric Forecasts
	5.2.2.1 Forecasts of Surface Pressure
	5.2.2.2 Forecasts of Wind
	5.2.2.3 Forecasts of Temperature
	5.2.2.4 Forecasts of RH


	5.3 Individual Case Study
	5.3.1 Results Obtained from WRF-50mb experiment
	5.3.1.1 Verification of Drought
	5.3.1.2 Verification of Precipitation

	5.3.2 Results obtained from WRF-10mb Experiment
	5.3.2.1 Verification of Drought
	5.3.2.2 Verification of Precipitation


	5.4 Summary

	Chapter Six Impacts of Stratospheric Measurements on regional NWP system
	6.1 Introduction
	6.2 Impacts of Raised Model Lids with More Assimilated Stratospheric Observations on NWP System
	6.2.1 Impacts on Initials
	6.2.1.1 Systematic Differences on Initials
	6.2.1.2 DA impacts on initials

	6.2.2 Impacts on Tropospheric Forecasts
	6.2.2.1 Forecasts of surface pressure
	6.2.2.2 Forecasts of Wind
	6.2.2.3 Forecasts of Temperature
	6.2.2.4 Forecasts of Relative Humidity


	6.3 Impacts of Stratospheric Microwave Measurements on DA system
	6.3.1 Statistical Results
	6.3.1.1 Forecasts of Surface Pressure
	6.3.1.2 Forecasts of Wind, Temperature, Relative Humidity, and Precipitable Water

	6.3.2 Forecast Sensitive to Observations

	6.4 Impacts of Stratospheric Microwave Temperature Measurements – A Two-Season Case Comparison
	6.5 Individual Case Study – The Winter Case in Section 4.4
	6.6 Summary

	Chapter Seven Conclusion And Discussion
	7.1 The Performance of the Current Assimilation Schemes on Regional Tropospheric Weather Forecasts
	7.2 Impacts of the Selection of Microwave and Infrared Satellite Observations in Data Assimilation system on Regional Tropospheric Weather Forecasts
	7.3 Impacts of Extra Stratospheric Measurements on Regional Tropospheric Weather Forecasts
	7.4 Future Directions

	References

