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To save the ever-increasing costs of maintaining an integrated circuit (IC) supply chain

facility, take advantage of cutting-edge technology nodes, and meet the market demand, the

manufacturing supply chain of ICs is globally distributed, known as the horizontal model in

the supply chain. In the IC supply chain’s horizontal model, separate entities fulfill various

stages of design, fabrication, testing, packaging, and integration of ICs, forming a globally

distributed chain. Outsourcing different stages of the manufacturing supply chain to the

third-party facilities with no reliable monitoring on them results in identifying them as un-

trusted entities. Involving untrusted third-party facilities in supply chain manufacturing has

introduced multiple forms of security threats such as IC overproduction, hardware Trojan

insertion, reverse engineering (RE), intellectual property (IP) theft, and counterfeiting. To

combat these threats, many design-for-trust countermeasure mechanisms have been widely

studied in the literature, such as watermarking, IC metering, IC camouflaging, split man-

ufacturing, and logic obfuscation. Amongst them, logic obfuscation a.k.a. logic locking, as

a proactive scheme, has received significant attention in recent years, in which the designer

would be able to add post-manufacturing programming capability into the circuits.



Logic obfuscation is the process of hiding the correct functionality of a circuit, during the

stages at untrusted parties, when the programming value, referred to as the key, is unknown.

Only once the correct key is provided, the circuit behaves correctly, and the correct key

would be initiated and stored in a tamper-proof non-volatile memory after fabrication at

a trusted party. However, the introduction of different de-obfuscation attacks, particularly

Boolean satisfiability (SAT)-based attacks, have undermined the effectiveness of the vast

majority of existing logic locking countermeasures.

The evolution of different de-obfuscation attacks in recent years results in the intro-

duction of numerous logic locking solutions, which makes them resilient and robust against

many of the state-of-the-art de-obfuscation attacks, including SAT-based attacks. In this

thesis, we first provide a comprehensive overview of the state-of-the-art defense and at-

tack mechanisms in logic locking. Then, we reveal some limitations of the existing attack

mechanisms leading us to introduce newer and stronger attack approaches with much more

capabilities and performance compared to the existing ones. For this purpose, we introduce

the satisfiability modulo theory (SMT) attack, in which the adversary has the capability of

modeling non-Boolean logic locking mechanisms using theory solvers. SMT attack is the

first of its kind that is able to model non-Boolean characteristics of the circuit. Then, we

will introduce the neural network guided SAT (NNgSAT) attack that exploits the benefit of

a message passing neural network (MPNN) to reduce the complexity of the de-obfuscation

model, especially when complex structures, such as routing modules and multipliers, are

parts of the logic locked circuits.

After that, we also go one step further and propose two new countermeasures to combat

state-of-the-art attacks. Unlike almost all state-of-the-art logic locking solutions that focus

on functional/logic locking, we introduce a new logic locking paradigm, called data flow

obfuscation, which targets the flow/timing of the circuit as a new means for logic locking.

We exploit the essence of asynchronicity to lock the flow/timing of the circuits, making it

almost impossible to be modeled/formulated using state-of-the-art attacks.



We also introduce a communication and obfuscation management architecture (COMA),

as an alternative solution, for enhancing the security of logic locking against the existing

attack. The main aim of COMA is to protect the main secret of logic locking, which is the

logic locking key, from being stolen or revealed. For this purpose, in COMA, we propose

an architecture allowing the designer to store the logic locking key outside of the IC that is

manufactured in an untrusted foundry.

As a result, the outcome of this thesis aims to provide an assessment of the capabilities

and limitations of the existing studies on logic locking, either defense or attack mechanisms.

By introducing newer and stronger approaches, this research also opens new directions

for the designers to evaluate the security of the designs using more appropriate and well-

formulated mechanisms, leading to stronger and more reliable design and implementation

with enhanced security.



Chapter 1: Introduction to Hardware Obfuscation

1.1 Hardware Security Vulnerabilities

The cost of building a new semiconductor fab was estimated to be $5.0 billion in 2015,

with large recurring maintenance costs [7], and sharply increases as technology migrates to

smaller nodes. To reduce the fabrication cost, take advantage of cutting-edge technology

nodes, and meet the market demand, the manufacturing supply chain of ICs is globally

distributed [7]. Fig. 1.1 demonstrates the main steps in the life cycle of an IC, from the

specification at the design house to fabricated/packaged chip at the field. In the IC supply

chain with a globalized model, a.k.a the horizontal model, separate entities fulfill various

stages of design, fabrication, testing, packaging, and integration of ICs, forming a globally

distributed chain. As demonstrated in Fig. 1.1, the red parts indicate untrusted entities in

the IC supply chain. Outsourcing and the involvement of numerous stakeholders in various

stages of the supply chain dramatically reduce the cost and time-to-market of the chip [7].

However, it reduces the control of original manufacturers and IP owners/vendors over the

supply chain. The loss of control will results in numerous security vulnerabilities, including

but not limited to IP piracy, Overbuilding, hardware Trojans, counterfeiting, and Reverse

Engineering (RE) [8, 9].

The IP piracy refers to the illegal use of the intellectual property. For example, an

attacker in a design house, can steal valuable IP cores and sell them as genuine. The

Overbuilding means that a rogue foundry can overproduce extra ICs and sell them illegally.

Hardware Trojans, are malicious modifications to original circuitry inserted by adversaries

to exploit hardware or to use hardware mechanisms to create backdoors in the design.

These backdoors can leak sensitive (or private) information as well as enable launching

other possible attacks. Counterfeit ICs are replicas of the genuine ICs that are fraudulently
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Figure 1.1: Major Steps in IC Supply Chain.

made to appear almost identical to the genuine ICs [10]. Reverse engineering is a complex

process involving steps, such as attempts to infer the functionality of the design, extraction

of the gate-level netlist, and identification of the device technology [11].

1.2 Design-for-Trust Techniques

To counter these threats, various hardware design-for-trust (DfTr) techniques have been

widely studied in the literature, including watermarking, IC metering, split manufacturing,

IC camouflaging, and logic locking [12–16]. The watermarking and IC metering techniques

are passive protection models that could be used to detect overproduction or illegal copies,

however, they cannot prevent IP theft or overproduction. In split manufacturing the design

is split into two parts, corresponding to the back end of the line (BEOL) and front end of

the line (FEOL) metal layers, that are manufactured in separate foundries and ultimately

stacked together. However, it can prevent piracy only by an untrusted foundry, and not by

an end-user. The Camouflaging techniques use logic gates (or other physical structures such

as dummy vias) with high structural similarity, that are indistinguishable from one another

to protect against reverse engineering. However, camouflaging is only effective against post-

manufacturing attempt(s) of reverse engineering, while it provides no limitations against a

foundry’s attempt at reverse engineering, as a foundry has access to all masking layers and

is not trapped by structural ambiguity for being able to logically extract a netlist. The logic

obfuscation, a.k.a. logic locking, on the other hand, introduce limited programmability by
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inserting key programmable gates to hide or lock the functionality. By using obfuscation,

the target chip produces the correct output only when the key inputs are correct. The

purpose of obfuscation is to protect against reverse engineering at an untrusted foundry.

By using obfuscation, even by having all mask information, the attacker cannot generate

the correct functionality of a circuit without the correct key values, and such key values are

not shared with the manufacturer.

logic locking techniques, however, did not end the threat against different security vul-

nerabilities, as these solutions that were proposed over the last decade were broken using

various carefully crafted attacks. As demonstrated in Fig. 1.2, a decade of research in

this area has resulted in a wide range of defense and attack mechanisms. Amongst attack

mechanisms introduced in logic locking, the Boolean satisfiability (SAT) attack could be

considered as the turning point in this topic [1]. In this attack model, the attacker has

access to (1) a reverse-engineered but obfuscated netlist, (2) a functional (unlocked) chip

with open access to the scan chain. Using this attack model, the formulated Boolean Sat-

isfiability Attack (SAT Attack) can effectively break all previously proposed logic locking

techniques, including random insertion (RLL), fault-based logic locking (FLL), strong logic

locking (SLL), and logic barriers [16–20]. The SAT attack has an iterative structure, and

in each iteration, a SAT solver is used to find a specific input, called discriminating in-

put pattern (DIP) that finds two sets of keys producing different outputs. After finding

all DIPs, the SAT solver can eliminate all incorrect keys leading to the extraction of the

correct functionality of the circuit. In general, the SAT attack could eliminate all incorrect

keys within a few iterations, leading to retrieving the correct functionality of the circuit,

and unlike the brute force attack that requires attack time exponential with respect to the

number of inputs, its execution time grows almost polynomially. The original SAT attack is

applicable to combinational circuits. However, the existence of the much-needed scan chain

for functional and structural testing, makes the sequential circuits also vulnerable to this

attack when an adversary gains access to the scan chain. We will elaborate the details of

the SAT attack in Chapter 2.
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Figure 1.2: Logic Locking: Defenses and Attacks over the Time.

1.3 Post-SAT Logic Locking Era

The main strength of the SAT attack comes from two important factors: (1) The pruning

power of each DIP (each iteration of the SAT attack) is very high. In fact, the portion

of incorrect keys that would be ruled out per each iteration is big leading to termination

(successful de-obfuscation) within a few iterations (few minutes). (2) The access to the

scan chain is NOT restricted, which helps the adversary to apply the SAT attack for each

combinational logic part of the circuit separately (independently).

Considering these two factors, as demonstrated in Fig. 1.2, there are four main groups of

countermeasures that have been introduced in the literature to show how a logic obfuscation

technique could be built to defeat the SAT attack. Three out of four groups try to either

4



weaken the pruning power of DIPs or introduce a solution that could not be formulated by

the SAT attack, which could be enumerated as: (1) point-function structure, (2) cyclic and

behavioral obfuscation, and (3) routing obfuscation. However, the main focus of the fourth

group of countermeasures, on the other hand, is to (4) restrict any unauthorized access to

the scan chain to completely invalidate the possibility of engaging the SAT attack. Although

these countermeasures provide robustness against the powerful SAT attack, further studies

show how these countermeasures still suffer from fundamental shortcomings leading to the

introduction of newer attacks on them. In Chapter 2 we review many of these obfuscation

solutions and attack mechanisms in more detail, summarize and compare the effectiveness

of obfuscation solutions against these attacks, and describe the strength and weaknesses of

various obfuscation and attack solutions.

1.4 Problem Statement

As we discussed previously, the introduction of the SAT attack could be considered as

the turning point in logic locking studies. Hence, as demonstrated in Fig. 1.2, all logic

locking countermeasures introduced after 2015 (after the introduction of the SAT attack),

aim to break this powerful de-obfuscation attack. However, some post-SAT logic locking

countermeasures still suffer from fundamental deficiencies. For instance, the first group in

Fig. 1.2, i.e. point function-based logic locking techniques, such as Anti-SAT, SARLock,

and SFLL [21–23], suffer from various structural and functional vulnerabilities that were

eventually exploited to break them [24–27].

1.4.1 Requiring More Powerful Attacks

Apart from those logic locking techniques with different vulnerabilities, there exist some

other countermeasures that formulate a resilient and robust logic locking mechanism against

the SAT attack as well as other state-of-the-art de-obfuscation attacks. In such mechanisms,

different attributes and characteristics have been targeted and employed for obfuscation
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purposes to add complexity into the designs, making them much more difficult to be modeled

and broken using state-of-the-art attacks. For example, the SAT attack benefits from the

directed acyclic graph (DAG) based nature of the input netlist and the ability of SAT attack

to logically model the obfuscation into a satisfiability problem. To counter the SAT attack,

recently some design obfuscation schemes have been proposed to violate these assumptions.

For instance, in some techniques of the second group of Fig. 1.2, i.e. cyclic/behavioral

obfuscation, the key-programmable combinational cycles are added into the design, which

traps the SAT solver in an infinite loop [28,29]. Some other approaches focus on obfuscating

the behavioral and analog parameters of the design [30, 31]. One example is the approach

adopted in [31], where the obfuscation, in addition to logical properties of the netlist, targets

the setup and hold properties (timing properties) of the circuit as a locking mechanism.

Considering that setup and hold time are not logical properties, they cannot be translated

into CNF statements for formulating the SAT attack.

Similarly, in the third group of Fig. 1.2, i.e. routing-based obfuscation, to weaken the

SAT attack, the main aim of the obfuscation is to increase the complexity of the SAT

problem, thereby the run-time of each iteration of the SAT solver would be increased sub-

stantially [32, 33]. In such techniques, by exploiting the strength of symmetric routing

structures, such as permutation networks or crossbars, the complexity of the SAT circuit

per each iteration would be increased significantly. In general, when the logic locked cir-

cuits contain complex structures, such as large routing networks, big multipliers, or big tree

structures, the logic locked circuit is hard-to-be-solved for the SAT attack. Usage of these

structures for obfuscation may lead to a strong defense, as many SAT solvers fail to handle

such complexity.

1.4.2 Requiring More Powerful Defenses

During the last decade, numerous attacks have been introduced in the literature, showing the

vulnerability of the prior art logic locking techniques. The basics of logic locking techniques

have evolved along with the evolution of de-obfuscation attacks, and over the time both
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the attack and defense mechanisms became increasingly sophisticated. The logic locking

techniques, however, are not yet as mature as those in the field of Cryptography, and almost

none of them is simultaneously impeccable against different de-obfuscation attacks.

1.4.3 Requiring Secure Logic Locking Key Architecture

Apart from making the logic locking techniques resistant against different de-obfuscation

attacks, the secret of logic locking, which is the key of logic locking, must also resist passive,

active, or destructive attacks that could be deployed to read the logic locking key values.

Mostly, the key of logic locking will be stored in secure and tamper-proof memory (TPM)

[34] within the circuit, and during the activation, the key value will be initiated in TPMs,

and in each power ON, the logic locking key from TPM will be loaded into the design.

Hence, neither the activation of such devices nor the storage of key values in them should

expose or leak the key information.

1.5 Motivation

With considering the above-mentioned shortcomings and limitations of attacks and defenses

in logic locking literature, in this thesis, we are motivated to address these concerns as

follows:

(1) The introduction of such complex logic locking countermeasure techniques, partic-

ularly in the second and the third groups of Fig. 1.2, with no successful attack on them

motivates us to investigate their vulnerabilities and the possibility of breaking such tech-

niques. With the comprehensive investigation on existing de-obfuscation attacks, we found

that most of them get the benefit of formal verification methods to model and break the

existing logic locking. For instance, the SAT solver is widely used for the verification of

RTL design, and in the SAT attack, this solver has been engaged to model almost all logic

locking solutions. Now the big question is that ”how we can extend and enhance the capa-

bility of de-obfuscation attacks using formal verification methods that are not employed so

far?”. With a concentration on this approach, in this thesis, with the introduction of two
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new attacks, we show how we can extend the capability and performance of the SAT attack

using more powerful computing and decision-making engines.

(2) Since there exists a direct relationship between the strength of the de-obfuscation

attack and the formal method used for de-obfuscation, in this thesis, we also aim to answer

this question that ”how we can model and formulate a new logic locking solution, which

is hard-to-be-modeled using the existing formal verification tools and methods?”. Hence,

with going one step further, and with the introduction of a new logic locking solution, we

show how we can harden the process of formal-based modeling and make any de-obfuscation

attack almost impossible on such techniques.

(3) Additionally, since all the de-obfuscation attacks on logic locking rely on the fact

that the logic locking key is stored within the design, in this thesis, we will investigate how

we can prevent following such assumption. For instance, as an alternative solution, the

logic locking key could be stored outside of the chip. However, such a scenario requires

constant connectivity to the key management source and secure communication for the key

exchange to prevent any leakage of the key. Now the question is that ”how we can design and

implement a new architecture to support such capability?”. Thus, with the introduction of

a new communication and obfuscation management architecture, applicable to the specific

families of designs, we show how we can prevent storing the key within the design.

1.6 Contribution of this Thesis

To address the research problems described above, we propose some approaches to extend

the capability and performance of existing de-obfuscation attacks, which allow us to have

a much more appropriate framework for security evaluation of logic locking in the future.

We also introduce newer logic locking countermeasures based on the updated framework to

extend the reliability and robustness of logic locking techniques. The main contributions of

this thesis are as follows:

1. We first provide a comprehensive review of the current status of logic locking in the
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literature. After reviewing the current status, we will show how the proposed schemes

in this thesis will help us towards a more appropriate security evaluation on logic

locking.

2. We introduce a satisfiability modulo theory (SMT) attack on logic locking. SMT

attack could be considered as the superset of the SAT attack with much more capa-

bilities and better performance. The SMT attack would be able to engage different

theory solvers to model the non-Boolean nature of the circuit. The main aim of

the SMT attack is to reveal the vulnerabilities of the second group of Fig. 1.2, i.e.

cyclic/behavioral logic locking techniques. In the SMT attack, with engaging a graph

theory solver, in one case study, we show how the SMT attack could be used to break

the logic locking mechanisms that target the non-Boolean nature of the design.

3. We exploit a specific neural network engine for enhancing the performance of existing

SAT-based attacks. The main aim of this new attack, called neural network guided

SAT (NNgSAT) attack is to target and investigate the advantage of using neural

network for accelerating the de-obfuscation execution time in the third group of Fig.

1.2, i.e. routing-based logic locking techniques. In NNgSAT, we show how complex

structures, such as routing blocks, could be solved with a message passing neural

network (MPNN)-based SAT solver.

4. We introduce a reliable logic obfuscation technique that meets the main requirements

of a well-designed and appropriate logic locking solution: (1) Hard-to-be-modeled us-

ing the existing de-obfuscation attacks, such as the SAT attack and any other state-

of-the-art attacks; and (2) Have a low impact on the circuit, including low overhead

without compromising the test/implementation flow. To fulfill these requirements,

we introduce a new logic locking paradigm, called data flow obfuscation, which ex-

ploits the essence of asynchronicity. In data flow obfuscation, by benefiting from

the handshaking mechanism of asynchronous circuits, the system’s FFs/latches will

operate out of sync. Hence, the adversary has no sufficient knowledge to apply the
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sequential SAT attack. Also, due to the inherited asynchronicity, the exact time of

writing/capturing data into/from the scan chain becomes hidden. Hence, the SAT

attack cannot be applied even while scan chain access is open. Moreover, this newly

proposed paradigm creates stateful/oscillating combinational cycles into the design

which extensively boosts the difficulty of modeling this technique.

5. To avoid storing the key within the design, we propose a communication and obfus-

cation management architecture (COMA) for secure activation of obfuscated circuits

that are manufactured in untrusted foundries and meet the constant connectivity

requirement, namely ICs that belong to a) 2.5D package-stack devices and b) IoT

devices with constant connectivity to the cloud/internet. We describe two variants of

our proposed solutions: The first one is used for secure activation of IPs within 2.5D

package-integrated devices (similar to DARPA SPADE). The second variant is used

for the secure activation of connected IoT devices. The proposed COMA allows us to

(1) push the obfuscation key and obfuscation unlock mechanism off of an untrusted

chip, (2) make the key a moving target by changing it for each unlocks attempt, (3)

uniquely identify each IC, (4) remove the need for implementing a secure memory in

an untrusted foundry.

1.7 Thesis Organization

The organization of this thesis is as follows: In Chapter 2, the background and the history of

logic locking have been described. Chapter 3 describes the SMT attack, and how the theory

solvers could be engaged in it to extend the capability and performance beyond the SAT

attack. Chapter 4 will explain how we engage message passing neural network (MPNN) as

an acceleration engine to guide the SAT attack, which is applicable to logic locked circuits

with complex structures. In Chapter 5, the overall structure of data flow obfuscation has

been elaborated. We demonstrate how data flow obfuscation could be resistant against all

state-of-the-art de-obfuscation attacks. Chapter 6 provides the detail of communication

10



and obfuscation management architecture (COMA), which helps us to keep the secret of

the logic locking outside of the chip that is manufactured in an untrusted foundry to protect

the design from being stolen. Finally, Chapter 7 concludes the thesis by summarizing the

current status of logic locking as well as suggestions for future research directions in this

topic.
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Chapter 2: Background on Logic Locking: Defenses and

Attacks

As discussed in Chapter 1, logic locking techniques did not end the threats against IP piracy

(or other related concerns), as these solutions that were proposed over the last decade were

broken using various carefully crafted attacks. In this Chapter, after introducing the basic

definitions of hardware obfuscation, a.k.a. logic locking, we review many of these obfusca-

tion solutions and distinguish between weak and robust logic locking solutions. Then by

highlighting the weaknesses of existing solutions, we explain and review the most notable

attack mechanisms that successfully break the existing countermeasures. Then, we sum-

marize and compare the effectiveness of obfuscation solutions against these attacks, and

describe the strength and weaknesses of various obfuscation and attack solutions.

2.1 Basic Definitions of Logic Locking

Logic locking is the capability of adding post-fabrication programmability using key gates.

Based on the type of the key gates used for logic locking, we can categorize them as: (1)

XOR-based, (2) MUX -based, and (3) LUT -based. As their names imply, they are using

XORs/MUX s/LUT s for obfuscation, respectively. Fig. 2.1 depicts a simple example of

each of these models. As an instance, assuming that the original circuit is demonstrated

in Fig. 2.1(a), Fig. 2.1(c) shows a simple XOR-based obfuscated (locked) version of this

circuit. In this case, if k0 = 1, the second input of the final OR gate would be toggled, thus

resulting in the corruption of the output. For this example, when the k0 = 0, the correct

functionality would be recovered.

During the last decade, different logic locking solutions commonly have engaged the

above-mentioned basic gates with different structures/functions for obfuscation purposes.
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(a) The Original Circuit (b) MUX -based Locking (k0 = 1)

(c) XOR-based Locking (k0 = 0) (d) LUT -based Locking (k0:3 = 0001)

Figure 2.1: Basic Gates used for Logic Locking.

Based on the location, structure, count, intercorrelation, etc., of these gates, the counter-

measures provide various levels of robustness against the existing attacks.

Logic locking could be implemented at different levels of abstraction. Fig. 2.2 demon-

strates a simple example of logic locking in different levels of abstraction. For instance,

at layout-level as shown in Fig. 2.2(a), the metal-insulator-metal (MIM) structure, which

connects two adjacent metal layers, has been engaged as key-based programmable unit for

routing-based locking [35]. In general, moving from layout-level to HLS- or architecture-

level will mitigate implementation effort; however, at a lower level of abstraction, finding

a logic locking countermeasure at lower overhead is more possible. At the moment, more

than 90% of existing logic locking techniques are introduced and implemented at the gate-

level, an example of which has been demonstrated in Fig. 2.2(c), that could be done as a

post-synthesis stage on the synthesized netlist in the supply chain.

One important property of logic locking techniques is the output corruptibility. Cor-

ruptibility means that when an incorrect key is applied to the locked circuit, (1) for how

many output pins, and (2) for what percentage of the input patterns, the primary output

(PO) will be corrupted. Based on the location, structure, count, intercorrelation, etc., of

the key-based XORs/MUX s/LUT s that are engaged for locking purposes, the corruptibility

13



(a) (b) (c)

“ ”  
‘ ’

“ ”
“ ”

“ ” 
‘ ’

“ ”
“ ”

“ ” 
‘ ’

“ ”
“ ”

(d) (e)

Figure 2.2: Logic Locking Examples at Different Level of Abstractions.

will change. Corruptibility directly affects the resiliency of the countermeasure against the

existing attacks. For instance, if the corruptibility is low, it allows the adversary to look for

a specific way for only those POs affected or those specific input patterns that produce out-

put corruption. For a well-designed logic locking countermeasure, the corruptibility must

be high to avoid such vulnerabilities.

The key of logic locking will be initiated and stored in a tamper-proof non-volatile

memory (tpNVM) after the fabrication via a trusted party. At power UP of a locked IC, as

a part of the boot process, the content of tpNVM must be read and loaded into temporary

registers connected to the locked logic. Fig. 2.3 shows a simple example of key initialization

structure when logic locking is in place. This part of the design consists of (1) tpNVM that

consists of the logic locking key, (2) tpNVM wrapper which serializes the logic locking key
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Figure 2.3: Logic Locking Key Initialization from tpNVM.

via parallel-in serial-out (PISO) module, and (3) temporary registers that stores the logic

locking key while the IC is power ON.

2.2 Models and Assumptions in Attacks on Logic Locking

Based on the threat models and assumptions evaluated in the de-obfuscation attacks on

logic locking, the attacks could be categorized into different sub-groups. Some of the attacks

require access to one additional activated version of the fabricated circuit, known as oracle.

This group of attacks could be referred to as oracle-guided attacks. On the other hand,

those attacks with no need for having access to the oracle could be called oracle-less attacks.

During the last decade, most of the attacks are members of oracle-guided attacks.

Many of the de-obfuscation attacks require access to the netlist of the chip. Acquiring

the netlist of the chip could be accomplished in two common scenarios: (1) the adversary

as an end-user can obtain the fabricated IC from the field/market, and then reconstructs

the netlist through physical reverse engineering. Fig. 2.4 demonstrates the main steps of

physical reverse engineering, including de-packaging, delayering, imaging, image (of metal

layers) processing, and re-constructing the netlist. In this case, during the physical reverse

engineering, since the key is stored in tpNVM, it will be wiped out in the de-packaging

stage; (2) the adversary might be located at the foundry, and they receive the GDSII of the

chip from the design house to be fabricated. The GDSII at the foundry is locked, and the
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(a) The Packaged IC (b) De-packaging (c) Imaging per Metal Layer

(d) Extracting Layout (e) Extracting the Netlist

Figure 2.4: The Main Steps of Reverse Engineering.

adversary at the foundry has no information about the key. Hence, in both cases, either at

the foundry or at the field/market, the netlist acquired by the adversary would be locked.

Unlike the above-mentioned attacks that require access to the locked netlist, there exists

a very limited number of de-obfuscation attacks, in which the adversary relies on optical

probing, such as electro-optical probing (EOP) and electro-optical frequency management

(EOFM). Such attacks focus on pinpointing and probing the logic gates and flip-flops of

the circuits containing the secrets. So, regardless of the logic locking technique used in the

circuit, this group of attacks would be able to reveal the security assets like logic locking

key without requiring to have access to the locked netlist.

The availability of design-for-testability (DFT) structure, i.e. scan chain architecture,

for testability/debug purposes in ICs opens a big door for the attackers to assess and break

logic locking techniques. Hence, many of the attacks on logic locking assume that the

scan chain is OPEN. Fig. 2.5 shows a simplified scan architecture with two scan chains.

Assuming that the scan chain is OPEN, SE, SI, and SO pins would be available. So, the

adversary can reach (control and observe) each combinational part, e.g. CL1 and CL2 in
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Figure 2.5: Scan Chain Architecture in ICs.

Fig. 2.5, whose FFs are part of the scan chain. The scan chain access allows the adversary

to divide the de-obfuscation problem into a bunch of much smaller sub-problems (for each

CL), and assess them independently. However, it is very common for an IC to limit/restrict

access to the scan chain for security purposes. But, even while the access to the scan chain

is NOT OPEN (e.g. SO pins are burned), some other de-obfuscation attacks have studied

and demonstrated the possibility of retrieving the correct key/functionality of the locked

circuit via primary inputs/outputs (PI/PO).

2.3 Most Notable Attacks and Defenses in Logic Locking

Based on the models and assumptions we previously discussed, all attacks on logic lock-

ing could be categorized into different groups, each aiming to target and break one or a

few logic locking countermeasure techniques. Since many of the existing attacks on logic

locking assume that the oracle is available for the adversary, in this Chapter, we will re-

view defenses and attacks in which the availability of the oracle is met [36]. Most of the
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Figure 2.6: Categorization of Attacks against Logic Locking Schemes.

oracle-guided attacks could be also known as algorithmic attacks, in which, a systematic

flow has been proposed that results in the exposure of either logic locking key or the correct

functionality of the locked circuit. Fig. 2.6 depicts almost all existing oracle-guided attacks,

each targeting one or a few logic locking solutions. As illustrated in Fig. 2.6, these attack

mechanisms, based on functionality, capability, effectiveness, and time-line are categorized

into three categories: (1) Test-inspired attacks that were mostly inspired from test concepts

and attempted to discover the obfuscation key value based on the location of Key Gates

(KGs). (2) SAT attack, formulation of which significantly affected the direction and previ-

ous assumptions of the hardware obfuscation research community. (3) Post-SAT Attacks,

where the focus of hardware security researchers changed to the design of an attack against

obfuscation solutions that resist the SAT attack.

2.4 Stage 1: Test-Based De-obfuscation Attacks

Shortly after the introduction of the very first logic locking solution, i.e. random-based

logic locking (RLL or EPIC) [16], in which random placement strategy has been used for

inserting key-based XORes, the possibility of using testability and fault analysis attributes

was investigated as a means of attack on logic locking. Many of these de-obfuscation

attacks exploit almost the same techniques/algorithms that are widely used for automatic
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test pattern generation (ATPG). In this section, we review these attacks that rely on the

ATPG-based techniques/algorithms.

2.4.1 Brute Force Attack

The brute force attack is the most intuitive attack against obfuscated circuits, which is

very similar to an exhaustive test. This attack exhaustively searches for the correct key

by testing all key and input values. For instance, assuming that adversary has access to

the reverse-engineered netlist, and considering that the circuit has four primary input (PI)

pins ( i0..3) and two key inputs (KI)s (k0..1), an exhaustive search may result in applying

of 22+4 = 64 test patterns (in the worst case) and checking the output against an activated

(functionally correct) chip to verify correctness. Based on the number of primary inputs

(|PI|) and the number of key bits (|KI|), the number of possible test patterns is (2|PI|+|KI|).

Hence, the search space for a brute force attack is extremely large, making the attack even

for small circuits and a small number of keys unfeasible in a reasonable amount of time. For

example, a small circuit with 20 input pins, which is obfuscated with 80 key gates poses 2100

possible test pattern. An attacker can reduce the number of test patterns using functional

test or random test, in which the exponential impact of |PI|s will be eliminated, and only

2|KI| × (func test patterns) is required for brute force attack. But even with this change,

the attack time is exponential with respect to the number of key gates.

2.4.2 Sensitization Attack

After introducing the RLL (EPIC) [16], Rajendran et al. [18] proposed a sensitization

attack, which determines individual key values, in a time linear to the |KI|, by applying

patterns that sensitize key values to the primary outputs (PO)s. As its name implies,

sensitization of an internal wire (key bit) L to an output PO means that the value of L can

be propagated to PO and thus any change on L is observable on PO. After determining an

input pattern that propagates the value of the key-bit to the output, the attacker applies
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Table 2.1: Classification of KGs in Sensitization Attack.

Term Description Strategy used by attacker
Runs of KGs Back-to-Back KGs Replacing by a Single KG

Isolated KGs No Path between KGs
Finding Unique Pattern per
KG (Golden Pattern (GP))

Dominating KGs
k1 is on Every Path Muting k0,
between k0 and POs Sensitizing k1

Concurrently Mutable Convergent at a Third Gate Muting k0/k1,
Convergent KGs Both can be Propagated to POs Sensitizing k1/k0
Sequentially Mutable Convergent at a Third Gate Determining k1 by GP,
Convergent KGs One can be Propagated to POs Update the Netlist, Target k0
Non-Mutable Convergent at a Third Gate

Brute Force Attack
Convergent KGs None can be Propagated to POs

the input pattern to a functional IC (oracle). The correct key value will be propagated

to output by applying this pattern to the oracle. The attacker observes and records this

output as the value of the sensitized key-bit, and by using such technique all keys could be

sensitized and observed at POs.

The propagation of a key-bit to the output is heavily dependent on the location of the key

gates (KG)s, hence, they classify KGs based on their location and discuss corresponding

attack strategies for each case. The summary of strategies and techniques used in the

sensitization attack is reflected in Table 2.1. To combat sensitization attack, they also

proposed a countermeasure, called SLL, in which the KGs are inserted in locations with

maximum mutual interference. The key value of the KGs located at maximized mutual

interference cannot be sensitized and propagated to the POs. Similar to SLL, several prior-

art methods in the literature, including fault-analysis-based logic locking (FLL), LUT-based

locking, etc. [17–19,37] tried to maximize the complexity of obfuscation using different KGs

replacement strategies.

2.4.3 Random-based Hill-Climbing Attack

Plaza et al. [38] developed a new algorithmic attack that uses test patterns and observes

responses. Unlike sensitization attack [18], their proposed approach does not require netlist
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access. They propose a randomized local key-searching algorithm to search the key that can

satisfy a subset of correct input/output patterns. The algorithm proposed in [38] is iterative

in nature. At first, it selects a random value for key bits, and then at each iteration, the key

bits, which are selected randomly, are toggled one by one. The target is to minimize the

frequency of differences between the observed and expected responses. Hence, a random

key candidate is gradually improved based on observed test responses. If no solution is

found in one iteration, the algorithm resets the key to a new random key value. However,

the complexity of this attack quickly increases with the increasing number of KGs.

The main purpose of this attack is to break the very first logic locking technique, i.e.

RLL [16]. However, in many cases, it faces a very long execution time with no results.

This happens for two main reasons which significantly undermine the success rate of this

attack: (1) The key will be initiated randomly, and (2) The complexity of the attack will be

increased drastically, particularly when the key size is large or the key bits are correlated.

2.5 Stage 2: SAT-based Attacks

Solving a Boolean satisfiability problem is the process of satisfying a Boolean expression

or equation. In 2015, Subramanyan et al. [1] propose a new and powerful attack on

logic locking that gets the benefit of the SAT solver, which is used to solve a satisfiability

problem. The engagement of the SAT solver as a means for attacking the locked circuits

has got the most attention in recent years for some important reasons, such as the strength,

the performance of the attack, and the scalability.

2.5.1 Traditional/Pure SAT Attack

The SAT attack was first introduced by Subramanyan et al. [1]. At the same time, El

Massad et al. proposed the same technique, in which a SAT solver is engaged for attacking

the combinational logic locked netlist [2]. Getting inspired by the miter (distinguisher)

circuit that is widely used for formal verification, the SAT attack uses a specific duplication
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Figure 2.7: The SAT Attack Iterative Flow [1, 2].

mechanism to break the logic locked netlists.

The main steps of the SAT attack have been demonstrated in Fig. 2.7. As shown in

Fig. 2.7(a), in the SAT attack, the attacker first duplicates the locked circuit and builds a

double circuit known as the key-differentiating circuit (KDC). The KDC is used for finding

an input (Xd[i]) that for two different key values, this input generates two different outputs.

The key values and the Xd[i], will be found by a SAT solver query. Such input is referred

to as the discriminating/distinguishing input pattern (DIP). Each DIP (Xd[i]) is used to

create a DIP validation circuit (DIVC). The validation circuit, as shown in Fig. 2.7(b)

assures that for a previously found DIP, two different keys generate the same output value

(part of the correct key pool). Each iteration of the SAT attack finds a new DIP and adds

a new DIP validation circuit (DIVC) to the whole problem. The DIVCs are then ANDed

together to form a correct key validation circuit (SCKVC). In each iteration, the SAT solver
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tries to find a new DIP and two key values that satisfy the double circuit (KDC) and the

validation circuit (SCKVC). This iterative process continues until the SAT solver cannot

find a new DIP. At this point, any key that generates the correct output for the set of

previously found Xds is the correct key. Algorithm 1 provides an algorithmic representation

of the SAT attack, which has an iterative structure for finding all DIPs.

Algorithm 1 SAT-based Attack Algorithm [1]

1: function SAT Attack(Circuit CL, Circuit CO)
2: i ← 0;
3: F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2);

4: while SAT (Fi ∧ (Y1 �= Y2)) do

5: Xd[i] ← sat assignment (Fi∧(Y1 �=Y2));

6: Yd[i] ← CO(Xd[i]);

7: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]);
8: i ← i+1 ;

9: K∗ ← sat assignmentK1(Fi);

The main purpose of the SAT attack was to break the primitive logic obfuscation tech-

niques, including RLL [16], SLL [18], and FLL [37]. For all these logic locking counter-

measure solutions, the SAT attack was able to rule out a significant number of key values

at each iteration (by finding each DIP), and it was able to break them within a few itera-

tions/minutes.

2.6 Stage 3: Post-SAT Attacks

In order to thwart the SAT attack, the first attempted approach was to weaken the strength

of the DIPs to reduce its pruning power. Reducing the pruning power of DIP means that the

found DIP can rule out a less portion of the incorrect keys (the best case is one incorrect key)

per each iteration. SARLock [22] and Anti-SAT [21] were the first prior art logic locking

countermeasures that focused on the reduction of DIPs’ pruning power. Both SARLock

and Anti-SAT engaged one-point flipping function, demonstrated in Fig. 2.8. When one

of these countermeasures is applied to a circuit, during the SAT invocation, each DIP is

able to rule out only one incorrect key. Hence, the SAT attack requires finding all 2|KI|− 1

incorrect keys one by one. Hence, it makes the logic locking exponentially hard for the SAT
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Figure 2.8: Flipping Structure of SARLock and Anti-SAT.

attack with respect to the number of key bits |KI|.
Similar to the point-function techniques, many other approaches have been proposed

after the introduction of the SAT attack to show how we can make robust logic locking

techniques against the SAT attack. However, many of the state-of-the-art logic locking

countermeasures still suffer from big shortcomings, thus resulting in the introduction of the

newer attack leading to break them. In the following, we will evaluate these countermea-

sures, such as point function techniques, and the attacks on them.

2.6.1 Removal Attack

Point function techniques, such as SARLock [22] and Anti-SAT [21], suffer from big struc-

tural and functional shortcomings. One big structural shortcoming of them is that, as

shown in Fig 2.8, in the implementation of one-point flipping circuit, the locking cir-

cuitry is completely decoupled from the original circuit. A removal attack identifies and

removes/bypasses the locking circuitry to retrieve the original circuit and to remove depen-

dence on key values [24]. The removal attack, presented in [24], was used to detect and

remove SARLock [22]. However, the distinguishing of locking circuitry in Anti-SAT [21] is

not as straightforward as that of SARLock, and removal attack fails to break such counter-

measures that are hard to be detected (preventing removal by pure structural analysis).
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2.6.2 Signal Probability Skew (SPS) Attack

The Signal Probability Skew (SPS) attack [24] leverages the structural traces in Anti-SAT

block to identify and isolate the Anti-SAT block [21]. Signal probability skew (SPS) of a

signal x is defined as s = Pr[x = 1] − 0.5, where Pr[x = 1] indicates the probability that

signal x is 1. The range of s is [−0.5, 0.5]. If the SPS of signal x is closer to zero, an attacker

has a lower chance of guessing the signal value by random. For a 2-input gate, the signal

probability skew is the difference between the signal probability of its input wires. The

flipping-circuit in the Anti-SAT is constructed using two complementary circuits, g and g,

in which the number of input vectors that make the function g equal to 1 (p) is either close

to 1 or 2n− 1. These two complementary circuits converge at an AND gate G. Considering

this structure, the absolute difference of the signal probability skew (ADS) of the inputs of

gate G is quite large, noting that the SAT resilience is ensured by this skewed p. Algorithm

2 shows the SPS attack, which identifies the Anti-SAT block’s output by computing signal

probabilities and searching for the skew(s) of arriving signals to a gate in a given netlist.

Algorithm 2 SPS Attack Algorithm [24]

1: function SPS Attack(Circuit CL)
2: ADSarr ← {};
3: for each gate ∈ CL do
4: ADSarr(gatei) ← Compute ADS(CL, gatei);

5: G ← Find Maximum(ADSarr);
6: Y ← Find value from skew(G); � Correct value of Anti SAT output
7: CLock ← remove TFI(CL, G, Y ); � Transitive FanIn of the gate G
8: return CLock � CLock: CL after removing Anti SAT block

2.6.3 Bypass Attack

Although SARLock and Anti-SAT break the SAT attack, they also suffer from another

functional shortcoming in which the output corruption upon application of a wrong key

is quite low. As demonstrated in Fig. 2.8, for each incorrect key, only one input pattern

corrupts the PO. Hence, the corruptibility of such countermeasures is very low. Observing
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and relying on the very low level of output corruption in such SAT-hard obfuscation so-

lutions, the bypass attack [25] was introduced. The bypass attack instantiates two copies

of the obfuscated netlist using two randomly selected keys, and builds a miter circuit that

evaluates to 1 only when the output of two circuits is different. The miter circuit is then

fed to a SAT solver looking for such inputs. The SAT returns with minimum of two inputs

for which the outputs are different. These input patterns are tested using an activated IC

(golden IC) validating the correct output. Then a bypass circuit is constructed using a

comparator that is stitched to the primary output of the netlist which is unlocked using the

selected random key, to retrieve the correct functionality if that input pattern is applied.

The Bypass attack works well when the SAT-hard solution is not mixed with the traditional

logic locking mechanism since its overhead increases very quickly as output corruption of

logic locking increases. This observation motivated researchers to look at possibilities of

approximate attacks to retrieve the key values associated with non SAT-hard obfuscation

solutions that are mixed with SAT-hard solutions.

2.6.4 AppSAT Attack

The corruptibility shortcoming of the SARLock and Anti-SAT could be addressed by engag-

ing and integrating primitive logic locking techniques, such as RLL, SLL, or FLL, with them.

Such primitive logic locking solutions exhibit a high level of output corruption. Hence, with

integrating point-function techniques with primitive techniques, the resulting approach that

is known as compound logic locking techniques, could get the benefit of both of them with

high corruptibility acquired from primitive techniques as well as SAT robustness acquired

from the point function techniques. However, such compound solutions suffer from a newer

attack in which approximation has been used for de-obfuscation. So far, defense solutions

to mitigate the SAT attack, are based on the assumption that the attacker needs an exact

attack on logic locking, in which the exact correct key is recovered. However, Shamsi et

al. [27] proposed a new attack, called approximate SAT (AppSAT) which relax this con-

straint. AppSAT shown in Algorithm 3, is an approximate attack on logic locking based on
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the SAT attack and random testing. The authors use probably-approximate-correct (PAC)

model for formulating approximate learning problems. The exact SAT attack continues to

find DIPs until no more DIPs can be found. However, the AppSAT will be terminated in

any early step in which the error falls below the certain limit. If this condition happens, the

key value will be considered as an approximate key with a specified error rate; otherwise,

the random sampling that resulted in a disagreement will be added to a SAT formula as

a new constraint. In AppSAT, heuristic methods for estimating the error is used for large

functions, to avoid any computation complexity. In the approximate key extracted from the

AppSAT on compound logic locking techniques, it is guaranteed that the key corresponded

to the primitive technique is correct, and the error rate of the POs related to the key value

corresponded to the point function technique will be smaller than the given threshold.

Algorithm 3 AppSAT Attack Algorithm [27]

1: function AppSAT Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2);
3: while SAT (Fi ∧ (Y1 �= Y2)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 �=Y2)); Yd[i] ← CO(Xd[i]);
5: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]); i ← i+1 ;
6: every n rounds do
7: for each (x ∈ Random Patterns) do
8: if CL(X, K1, Y) �= CO(X) then
9: FailedPatterns ← FailedPatterns + 1;

10: Fi+1 ← Fi+1 ∧ (CL(X, K1, Y) = CO(X)); i ← i+1 ;

11: if error ¡ ErrorThreshold then
12: return K1 as an approximate key

13: K∗ ← sat assignmentK1
(Fi);

2.6.5 Double-DIP Attack

Double-DIP [39] is another approximate attack, shown in Algorithm 4. Double-DIP is an

extension of SAT attack in which during each iteration, the discriminating input should

eliminate at least two wrong keys. To illustrate its effectiveness, Double-DIP targets

SARLock+SSL, representing a compound of SAT-hard and high output corruption ob-

fuscation. When the Double-DIP attack terminates, the key of the traditional logic locking

(SSL) is guaranteed to be correct. As a result, the compound logic locking will be reduced
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to a single SAT attack resilient technique, which could then be attacked using a bypass

attack.

Algorithm 4 Double-DIP Attack Algorithm [39]

1: function DoubleDIP Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2) ∧ CL(X, K3, Y1) ∧ CL(X, K4, Y2) ;
3: while SAT (Fi ∧ (Y1 �= Y2)) ∧ (K1 �= K3)) ∧ (K2 �= K4)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 �=Y2)) ∧ (K1 �= K3)) ∧ (K2 �= K4));
5: Yd[i] ← CO(Xd[i]);

6: Fi+1 ← Fi

∧4
j=1 CL(Xd[i], Kj , Yd[i]); i ← i+1 ;

7: K∗ ← sat assignmentK1(Fi);

2.6.6 Bit-Flipping Attack

The Bit-flipping attack [40] is yet another attack against compound logic locking schemes in

which a SAT-hard solution such as SARLock is combined with a primitive logic locking to

guarantee both high error rates and resilience to the SAT-based attack. In the Bit-flipping

attack, the keys are first separated into two groups (k1 and k2) by counting DIPs for two

keys with a hamming distance equal to one. The attack is motivated by the observation that

in primitive logic locking, the wrong key causes a substantial wrong input-output pattern.

However, the error rate of the bit-flipping function is usually very small. As shown in

Algorithm 5, after separation of keys, this attack fixes SAT-resilient keys, k2, as a random

number, and uses a SAT solver to find the correct key values for k1. After finding k1, the

bypass attack is applied to retrieve the original circuit.

2.6.7 AppSAT Guided Removal Attack

AppSAT Guided Removal (AGR) attack is another mechanism that targets compound

logic locking, particularly Anti-SAT + traditional logic locking [24]. This attack integrates

AppSAT with a removal-based simple structural analysis of the locked netlist. Unlike

AppSAT, the AGR attack recovers the exact correct key. In this attack, first, the AppSAT

is used to find the key of the primitive logic locking techniques. Then, AGR targets the

remaining key bits belong to the SAT-resilient (point-function) logic locking, such as the
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Algorithm 5 Bit-flipping Attack Algorithm [40]

1: function BitFlipping Attack(Circuit CL, Circuit CO)
2: for each j < Fixed-iteration do
3: KA ← a random key;
4: for each bit b ∈ KA do
5: KB ← KA while bit b flipped;
6: i ← 0; F0 ← CL(X, KA, YA) ∧ CL(X, KB , YB);
7: while SAT (Fi ∧ (YA �= YB)) do
8: Xd[i] ← sat assignment (Fi∧(YA �=YB));
9: Fi+1 ← Fi ∧ (X �= Xd[i]); i ← i+1 ;

10: if i > Threshold then
11: b is in K1,
12: break;

j ← j + 1;

13: K2 ← all key bits / K1; � Seperation is Done. Then, fix K2 as a random number.
14: K1 ← SAT ATTACK (CL, CO); � Find Traditional Keys using SAT.
15: C∗

L ← update netlist(CL — K1)

16: return (BYPASS ATTACK(C∗
L);

Anti-SAT block, through a simple structural analysis. As shown in Algorithm 6, after

exploiting the AppSAT attack, in the post-processing steps, AGR finds the gate (G) at

which most of the Anti-SAT key bits converge. AGR finds G by tracing the transitive

fanout of the Anti-SAT key inputs, where all the Anti-SAT key bits converge. The ratio of

key bits converging at each of the inputs of the gate G, are close to 0.5, which is shown as

the selected property in line 7 of Algorithm 6. AGR identifies the candidates for gate G by

checking this property for all gates in the circuit, and then sort these candidate based on

the number of key inputs that converge at a gate and pick the gate G from all candidates,

which has the most number of key inputs converge to that gate. Then the attacker re-

synthesize the design with the constant value for the output of G gate and retrieving the

correct functionality.

2.6.8 Sensitization Guided SAT Attack

While the one-point flipping circuit in Anti-SAT and SARLock are completely decoupled

from the original netlist, Li et al. [41] proposed the AND-tree Insertion (ATI), as a SAT-

resilient logic locking, which embeds AND trees inside the original netlist. It not only

makes all aforementioned attacks less effective, but it also decreases the implementation
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Algorithm 6 AGR Attack Algorithm [24]

1: function AGR Attack(Circuit CL, Circuit CO)
2: #Cand ← num gates(CL)
3: while (#Cand > 1 and !Timeout) do
4: AppSAT Attack(); � 4 times
5: Candidates ← {};
6: for each gate ∈ CL do
7: if gatei has the selected property then
8: Candidates ← Candidates + 1;

9: G ← Find Max key count(Candidates);
10: CLock ← remove TFI(CL, G); � remove Transitive FanIn of the gate G
11: return CLock; � CLock: CL after removing Anti SAT block

overhead. Additionally, the inputs of the AND-tree are camouflaged by inserting INV/BUF

camouflaged gates, which can be replaced with the XOR/XNOR gates in order to lock

the AND-tree. However, this defense was broken by a new attack that was coined as

Sensitization Guided SAT (SGS) attack [24]. The SGS attack is carried out in two stages:

(1) sensitization that exploits bias in input patterns which allows an attacker to apply only

a subset of DIPs, i.e., those that bring unique values to the AND-tree inputs. (2) SAT

attack using the patterns discovered in the first stage.

2.6.9 Functional Analysis Attack

Aiming to provide a defense that resists all previously formulated attacks led to the intro-

duction of Stripped-Functionality Logic Locking (SFLL) [23]. In SFLL the original circuit

is modified for at-least one input pattern (cube) using a cube stripping unit, demonstrated

in Fig. 2.9. As shown, Yfs is the output of the stripped circuit, in which the output cor-

responding to at least one input pattern is flipped. The restore unit not only generates

the flip signal for one input pattern per each wrong key, but it also restores the stripped

output, (e.g. IN = 4 in Fig. 2.9) to recover the correct functionality on Y . Note that

applying removal attack on restore unit recovers Yfs, which is not the correct functionality.

In addition, SFLL-HD is able to protect
(
k
h

)
input patterns that are of Hamming Distance

(HD) h from the k-bit secret key, and accordingly uses Hamming Distance checker as a

restore unit (e.g. h = 0 in Fig. 2.9 is also called TTLock [42]).
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Although SFLL was resilient against all previously formulated attacks, it was exploited

using a newly formulated attack, called Functional Analysis on Logic Locking (FALL) attack

[26]. In this attack model, the adversary is assumed to be a malicious foundry that knows

the locking algorithm and its parameters, e.g. h in SFLL-HD. A FALL attack is carried out

in three main stages and relies on structural and functional analysis to determine potential

key values of a locked circuit. First, the FALL attack tries to find all nodes which are

the results of comparing an input value with a key input. It is done by a comparator

identification. Such nodes (nodesRU ), which contain these particular comparators, are very

likely to be part of the functionality restoration unit. The set of all inputs that appear

in these comparators, should be in the fan-in cone of the cube stripping unit. Then, it

finds a set of all gates whose fan-in-cone is identical to the members of nodesRU . This set

of gates must contain the output of the cube stripping unit. Second, the attacker applies

functional analysis on the candidate nodes suggested by and collected from the first stage

to identify suspected key values. Broadly speaking, the attacker uses functional properties

of the cube stripping function used in SFLL, to determines the values of the keys. Based on

the author’s view, this function has three specific properties. So, they have proposed three

attack algorithms on SFLL, which exploit the unateness and Hamming distance properties of

the cube stripping functions. The input of these algorithms is circuit node c, that computed

from the first stage, and the algorithm checks if c behaves as a Hamming distance calculator

in the cube stripping unit of SFLL-HD. If the attack is successful, the return value is the

protected cube. Third, they have proposed a SAT-based key confirmation algorithm using a

list of suspected key values and I/O oracle access, that verifies whether one of the suspected

key values computed from the second stage, is correct.

2.6.10 CycSAT Attack

Considering the strength of all previously formulated attacks, some of the researchers started

seeking solutions that fundamentally violated the assumptions of these attacks with respect

to the nature of locked circuits. One of such attempts was the introduction of cyclic logic
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Figure 2.9: SFLL-HD while h = 0.

locking [28,43], was first proposed in [43]. In this obfuscation technique, as demonstrated in

Fig. 2.10, combinational cycles are added and each deliberately established cycle is designed

to have more than one way to open. The requirement for having more than one way to open

each cycle assures that even if the original netlist has no cycle by itself, the cycles remain

irreducible by means of structural analysis. The cyclic obfuscation resulted in obfuscation

with a high level of output corruption, while it was able to break the SAT attack either by

1) trapping it in an infinite loop, or 2) forcing it to exit with a wrong key depending on

whether the introduced cycles make the circuit stateful or oscillating.

The promise of secure cyclic obfuscation was shortly after broken by CycSAT attack

[44], whose algorithm is demonstrated in Algorithm 7. In CycSAT, the key combinations

that result in the formation of cycles are found in a pre-processing step. These conditions

Figure 2.10: An Example of Cyclic Obfuscation using 2-to-1 MUXes.
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are then translated into problem augmenting conjunctive normal forms (CNF) formulas,

denoted as cycle avoidance clauses, the satisfaction of which guarantees no cycle in the

netlist. The cycle avoidance clauses are then added to the original SAT circuit CNF and

the SAT attack is executed. The validity of this attack, however, was challenged in [28], as

researchers illustrated that the pre-processing time for CycSAT attack is linearly dependent

on the number of cycles in the netlist. Hence, by building an exponential relation between

the number of feedback and the number of cycles in the design, the pre-processing step of

CycSAT will face exponential runtime.

Algorithm 7 CycSAT Attack on Cyclic Locked Circuits [43]

1: function CycSAT Attack(Circuit CL, Circuit CO)

2: W = (w0, w1, ...wm) ← FindFeedback(CL);

3: for each (wi ∈W ) do

4: F (wi, w
′
i) ← no structural path(wi);

5: i ← 0; NC(K)=∧m
i=0F (wi, w

′
i)

6: C∗
L(X, K, Y) ← CL(X, K, Y) ∧ NC(K); F0 ← C∗

L(X, K1, Y1) ∧ C∗
L(X, K2, Y2);

7: while SAT (Fi ∧ (Y1 �= Y2)) do

8: Xd[i] ← sat assignment (Fi∧(Y1 �=Y2));

9: Yd[i] ← CO(Xd[i]);

10: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]);
11: i ← i+1 ;

12: K∗ ← sat assignmentK1(Fi);

2.6.11 Advanced Cyclic SAT Attacks

Inability to analyze all cycles in the prepossessing step of CycSAT results in missing cycles

in the pre-processing step of CycSAT, leading to building a stateful or oscillating circuit,

trapping the SAT stage of the CycSAT attack. BeSAT [45] remedies this shortcoming by

augmenting the CycSAT attack with a run-time behavioral analysis. As shown in Algorithm

8, by performing behavioral analysis at each SAT iteration, BeSAT detects repeated DIPs

when the SAT is trapped in an infinite loop. Also, when SAT cannot find any new DIP, a

ternary-based SAT is used to verify the returned key as a correct one, preventing the SAT

from exiting with an invalid key.

Although BeSAT resolves some shortcomings of CycSAT, its key restriction rule can

face big-size cycle formulas even in moderate-size circuits. Another advanced cyclic-based
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Algorithm 8 BeSAT Attack on Cyclic Locked Circuits [45]

1: function BeSAT Attack(Circuit CL, Circuit CO)
2: W = (w0, w1, ...wm) ← FindFeedback(CL);
3: for each (wi ∈W ) do
4: F (wi, w

′
i) ← no structural path(wi);

5: i ← 0; NC(K)=∧m
i=0F (wi, w

′
i)

6: C∗
L(X, K, Y) ← CL(X, K, Y) ∧ NC(K); F0 ← C∗

L(X, K1, Y1) ∧ C∗
L(X, K2, Y2);

7: while SAT (Fi ∧ (Y1 �= Y2)) do
8: Xd[i] ← sat assignment (Fi∧(Y1 �=Y2)); Yd[i] ← CO(Xd[i]);
9: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]);

10: if (Xd[i] in DIP) and (CL(Xd[i], K1) �= Yd[i])) then

11: Fi+1 ← Fi+1 ∧ (K1 �= K̂1) ∧ (K2 �= K̂1);
12: else if (Xd[i] in DIP) and (CL(Xd[i], K2) �= Yd[i]) then

13: Fi+1 ← Fi+1 ∧ (K1 �= K̂2) ∧ (K2 �= K̂2);

14: i ← i+1 ;

15: while SATK1
(Fi) do � Correct Key: K̂c

16: if Ternary SAT(Fi, Kc) then

17: Fi ← Fi ∧ (K1 �= K̂c)
18: else
19: K∗ ← K̂c; break;

SAT attack that focuses on the shortcomings of CycSAT and BeSAT is icySAT [46]. They

propose an algorithm that can produce non-cyclic conditions in polynomial time w.r.t. the

size of the circuit, avoiding the potentially exponential runtime of BeSAT. Also, icySAT

improves the attacks on cyclic logic locking techniques for cases whether the original circuit

is cyclic, or if the feedback dependencies are re-convergent, or whenever the types of the

cycles are oscillating.

2.6.12 Sequential SAT Attack: Unrolling/BMC

Since the availability of the scan chain structure undermines the robustness of many logic

locking techniques, there exist other sub-groups in logic locking techniques, such as scan-

based logic locking, scan blockage, and sequential logic locking, in which the availability of

the scan chain is restricted/blocked [47–52]. In such scenarios, assuming that the oracle is

still available, however as demonstrated in Fig. 2.11, the adversary will lose access to the

scan chain structure and the access would be limited to PI/PO of the oracle. Therefore, all

of the previously discussed de-obfuscation attacks will fail to evaluate and break the locked
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(a) Scan Locking (b) Scan Blockage

Figure 2.11: Limiting the Access to the Scan Chain Structure.

circuits with limited scan chain access. However, further studies on logic locking show that

restricting access still cannot guarantee robustness against state-of-the-art threats.

The preliminary version of the SAT-based sequential de-obfuscation attack was first

introduced in [53]. The sequential SAT attack shows how the SAT solver could still be

engaged to break the logic locked circuits with limited scan chain access. The sequential

SAT attack uses an iterative method to prune the search space, similar to the SAT attack.

Due to the limited access to internal registers, instead of seeking a DIP in each iteration,

it instead finds a sequence of input patterns X denoted as discriminating input sequence

(DIS) that can produce two separate outputs for two different keys. To build the sequence

using the SAT attack, the sequential SAT gets the benefit of unrolling/unfolding to create

the combinational equivalent circuit. Then, the SAT solver will be used for a specific depth

to generate the DIS. For instance, Fig. 2.12, shows a sequential circuit unrolled for τ clock

cycles. In this case, the SAT could be invoked to return a DIS with the length of τ . Fig.

2.13 shows the main steps of the combinational SAT attack and the SAT-based sequential

de-obfuscation attack, in which unrolling determines the length of DISes.

A query with a bounded depth could also be done using a bounded model checker

(BMC). So, in order to accomplish the unrolling step, with determining the boundary, the
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Figure 2.12: Unrolling the Sequential Circuit for τ Cycles.

(a) Combinational SAT (b) Sequential SAT

Figure 2.13: Combinational SAT vs. Sequential SAT Attack.

BMC engine could be invoked to model the locked circuit as an FSM, and the specifica-

tion could be formalized by temporal logic properties. So, the BMC could be exploited as

an alternative approach to do the symbolic model checking before invoking the SAT pro-

cedure. Algorithm 9 demonstrates the overall procedure of the primitive sequential SAT

attack, once the unrolling is done using the BMC engine. C(X,K, Y ) indicates the locked

circuit generating output sequence Y using input sequence X and the key value K, and

CBlackBox(X) refers to the output sequence of the oracle for the same input sequence.

After building the model from the locked circuit, the attack instantiates a BMC to find the

XDIS . Then, the model would be updated with a new constraint to guarantee that the next

pair of keys, that will be discovered in the subsequent attack iterations, produce the same

output for previously discovered XDIS . The iterations continue until no further XDIS is

found within the boundary of b. After reaching the boundary, if the algorithm passes three
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criteria, the key could be found with one more SAT instantiation. The boundary could be

extended if termination conditions are not met. The primitive sequential SAT attack in [53]

specified three main termination conditions for this attack:

Unique Completion (UC): This condition verifies that the key generated by the

algorithm is unique. The attack is successfully ended, and the key is the correct one, if

there is only one key that meets all previous DISes.

Combinational Equivalence (CE): If there is more than one key for all previously

found DISes (non-unique key), the attack checks the combinational equivalency of the re-

maining keys. In this step, the input/output of FFs are considered as pseudo PO/PI al-

lowing the attacker to treat the circuit as combinational. The resulting circuit is subjected

to a SAT attack, and if the SAT solver fails to find a different output or next state for two

different keys, it concludes that all remaining keys are correct and the attack terminates

successfully.

Unbounded Model Check (UMC): If both UC and CE fail, the attack checks the

existence of a DIS for the remaining keys using an unbounded model checker. This is an

exhaustive search with no limitation on bound (or the number of unrolls). If no DIS is

discovered, the existing set of DIS is a complete set, and the attack terminates. Otherwise,

the bound is increased and previous steps are repeated.

Algorithm 9 Sequential Attack on Obfuscated Circuits [53]

1: b = initial boundary, Terminated = False;
2: Model = C(X,K1, Y1) ∧ C(X,K2, Y2) ∧ (Y1 �= Y2);
3: while not Terminated do
4: while (XDIS ,K1,K2)← BMC(Model, b) = T do
5: Yf ← CBlackBox(XDI);

6: Model = ∧ C(XDIS ,K1, Yf ) ∧ C(XDIS ,K2, Yf );

7: if UC(Model, b) ∨CE(Model, b) ∨UMC(Model) then
8: Terminated;

9: b = b+ boundary step;
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2.6.13 KC2 Attack

Although the primitive unrolling/BMC-based sequential SAT attack formulates logic locking

techniques with no access to scan chain structure, it runs into the scalability issues as it

relies on two sub-routines which are in PSPACE and NP, thereby, failing to terminate

for even moderately small circuits, which contain only a few thousand gates. To mitigate

the scalability issue of the primitive sequential SAT attack, Shamsi et al. propose a fast

sequential de-obfuscation attack, called KC2 [54]. As demonstrated in Fig. 2.13, the SAT

circuit (SATC) requires an update per each iteration, in which the new learned clauses will

be added to the list of previously found clauses. Hence, with more iteration, the size of the

SAT problem will be increased drastically. In sequential SAT, it gets worse because the

SAT problem will be expanded in two dimensions, i.e. iterations and unrolling. Hence, to

avoid the unnecessary piling up of the clauses in the SATC, KC2 implements the following

dynamic optimization tweaks in the attack procedure, resulting in the improvement and

acceleration of the primitive BMC-based sequential SAT:

(1) Incremental SAT-Solving: It determines when SAT instance requires to be gen-

erated for solving, and by using the BMC engine, the same SAT solver instance can be used

for various tasks, e.g. BMC calls, termination check, simplification, and even unbounded

checking.

(2) Key-Condition Sweeping: It helps detecting equivalent nodes in a circuit and

allows merging them. It could be accomplished using different sweeping techniques, such

as BDD-sweeping, cut-sweeping, and SAT-sweeping [55].

(3) Key-Condition to BDD Conversion: It helps to keep the canonical information

corresponded to the key small, even while there exists large conjunction of circuit copies,

especially for deep DISes.

(4) Negative Key-Condition Compression: It helps keeping track of disqualified

keys. By representing each key-disqualifying as a clause, the solver could be reconstructed

(simplified) to this condition when the algorithm detects a build up of clauses in the solver.

(5) Termination Conditions: Since CE is a stronger condition, UC could be skipped.
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Also, rare invocation of UMC could be integrated with interpolation-based model checking

(IMC) for faster termination.

Although KC2 integrates these tweaks to overcome the scalability and performance

issue of the primitive sequential SAT attack, their experimental results still show that when

locking is added in even medium-size circuits, such as large ISCAS-89 circuits with few

thousands of gates, KC2 fails to break them.

2.6.14 ScanSAT on Both Static and Dynamic Scan Locking

ScanSAT aims to break the scan-based logic locking techniques. In scan-based logic locking,

as demonstrated in Fig. 2.11(a), since the availability of scan is locked, the adversary has

only access to the PI/PO. Hence, similar to the primitive sequential SAT attack and KC2,

ScanSAT [3] is based on the fact that the complex τ -cycle transformation of scan-based

locking could be modeled by generating an unfolded/unrolled combinational equivalent

counterpart of the scan-locked circuit. In this case, the locking parts added into the scan

path become part of the resultant combinational circuit. Hence, the adversary faces a

combinational (unrolled) locked circuit with key gates at the pseudo-primary I/Os of the

circuit. The combinational equivalent of a locked circuit in Fig. 2.14(a) is provided in

Fig. 2.14(b), where the locking on the stimulus and the response are modeled separately as

combinational blocks driven by the same scan locking key. In general, ScanSAT models the

locked scan chains as a logic-locked combinational circuit, paving the way for the application

of the combinational SAT attack to reveal the key (sequence of unrolled), unlocking the scan

chains, and thus, restoring access to the oracle.

In addition to de-obfuscating the statically scan-locked circuit, ScanSAT is also able to

be applied on dynamically scan-locked circuit that is locked by DOS architecture [56]. In

DOS architecture, a LFSR has been engaged to generate runtime dynamic keys. In oracle-

guided attacks, since the output of the netlist are continuously checked with the oracle,

dynamically changing the key in the oracle will corrupt this oracle-oriented evaluation,

and results in failure of such attacks. In ScanSAT, it is assumed that after successfully
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Figure 2.14: Converting a Locked Scan Chain to its Combinational Counterpart [3].

reverse engineering, the LFSR structure, and consequently its polynomial are known to the

adversary. Hence, finding the seed of LFSR and the update frequency parameter (p as the

time interval of updating the key based on the LFSR output), that is the only secret in

DOS architecture, would lead to deriving all the keys that are dynamically generated on

the chip.

A simple method to identify p is to apply the same stimulus pattern repeatedly from the

SI, and observe the response through the SO. The point is that after p capture operations,

by repeatedly applying the same stimulus, the response would be different because of the

updated key; thus, most likely, there will be a noticeable change in the observed response,

helping detect the update operation on the key.

After finding p, the same approach that was used for static scan obfuscation would be

used in this case. The difference now is that the SAT attack could be executed for at most

p iterations (after p iterations, the key is updated). If more than p DIPs are required to

identify a dynamic key, the SAT attack needs to be terminated prematurely upon p DIPs.

Another SAT attack must be executed subsequently to identify the next dynamic key in the

sequence still within p iteration. Since the updated key is generated by the LFSR whose

polynomial is known for the adversary, independent SAT attack runs on each dynamic

key reveals partial information of the seed; thus, the information from independent SAT
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Figure 2.15: Flowchart for the DynUnlock Attack [4].

attack runs by gradually gathering information about the seed in every run, and finally

by incorporating into the ScanSAT model, the relationship between the seed and the keys

would be revealed.

2.6.15 DynUnlock: Yet Another Attack on Dynamic Scan Locking

As a countermeasure against ScanSAT attack, dynamic encrypt flip-flop (EFF-Dyn) [57]

combines scan locking approach from EFF [47] and a PRNG, to introduce dynamicity in

the design. In EFF-Dyn, based on the value of scan controlling signal, i.e. scan enable

(SE), the source of the key to the circuit would be changed. In the test mode, the test key

must be provided externally, and in case of a mismatch with the locking key embedded in

the circuit, there exists a PRNG that updates the key in every clock cycle controls the key

gates dynamically. However, similar to LFSR, the structure of PRNG and its polynomial

would be known for the adversary after successfully reverse engineering. Hence, DynUnlock

[4] proposes a similar approach to scanSAT to find the seed of the PRNG in EFF-Dyn.

Assuming that the structure of PRNG is similar to an LFSR, in DynUnlock [4], as
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demonstrated in Fig. 2.15, it first starts by reverse-engineering the LFSR circuit and ob-

taining the equations corresponding to each clock cycle. Next, it determines the location

of key gates inserted between the SFFs. Then it models this sequential logic circuit into a

combinational circuit with SFFs replaced with inputs and outputs. Once modeling is com-

plete the combinational obfuscated counterpart circuit, with seed bits acting as primary key

inputs, is fed to a SAT solver, which provides a DIP and its corresponding output pattern.

In [4], the authors carry out the attack for just one capture cycle. To recover more bits,

they restart the LFSR circuit and obtain a new DIP and its corresponding output pattern

from the SAT solver, and recover more seed bits. They repeat the restart step until all the

seed bits have been recovered, or the remaining seed bits can be brute-forced.

2.6.16 Shift-and-Leak Attack

Due to the failure of scan obfuscation architectures against sequential SAT and scanSAT

attacks, more recent studies evaluate and reveal the effectiveness of the scan chain blockage

after activation of the obfuscated circuit. The first scan blockage architecture, called robust

design-for-security (R-DFS), was first introduced in [5], in which the obfuscation key is

stored in a custom-designed scan (storage) cell, called secure cell as demonstrated in Fig.

2.16. In this new customized cell, based on the value of the SE pin and the new pin called

Test, the key values could be loaded into SCs either directly from tpNVM or through SI,

and the SO will be blocked after activation to avoid any secret leakage. However, the shift-

and-leak attack [48] breaks the R-DFS by exploiting the availability of the shift-in process

through the SI, and the capability of reading out the PO through chip pin-outs in the

functional mode.

To remedy the leakage issue, the authors in [48] proposed modification to the R-DFS

(mR-DFS), which blocks any shift operation after the obfuscation key is loaded from the

tpNVM, removing the ability of an adversary to apply the shift-and-leak attack. However,

the work in [49] illustrates how a glitch-based shift-and-leak attack allows an adversary to

still leak the logic obfuscation key through the PO even if the shift operation is disabled.
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Figure 2.16: Scan Blockage in R-DFS [5].

2.7 Robust Logic Locking Solutions

In pursuit of obfuscation schemes that could not be attacked by SAT-motivated attackers,

some researchers tried to extend the locking mechanism to aspects of a circuit’s function that

cannot be translated to CNF. For example, Xie et al. [31] proposed a timing obfuscation

scheme, denoted as delay logic locking (DLL). The Goal of the DLL obfuscation scheme is

to introduce setup time and hold time violation if the correct key is not applied. In this

case, the obfuscation attempts to change both logical and behavioral (timing) properties.

A functionally-correct but timing-incorrect key will result in timing violations, leading to

circuit malfunctions. Considering that timing is not translatable to CNF, the SAT solver

remains oblivious to the keys used for timing obfuscation.

In addition, few very recent research papers have focused on increasing the execution

time of each SAT iteration rather than the total execution time, such as Cross-Lock and

Full-Lock [32, 33]. The Full-Lock in [33] is argued that the strength of SAT solvers comes

from their Conflict-Driven Clause Learning (CDCL) ability, which is resulted by recursively

calling Davis-Putnam-Logemann-Loveland (DPLL) algorithm. Hence, the Full-Lock creates
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Table 2.2: Comparison of State-of-the-art Logic Obfuscation Techniques.

Category Defense Attacked by

Pre-SAT
Random-based (RLL) [16] Sensitization [18], SAT [1]
Fault-based (FLL) [37] SAT [1]

Sensitization-based (SLL) [18] SAT [1]

Point Function

SARLock [22] SPS+Removal [24], Bypass [25], Bit-Flipping [40], AGR [24]
Anti-SAT [21] SPS+Removal [24], Bypass [25], Bit-Flipping [40], AGR [24]
SFLL [23] FALL [26]

+ Primitive (Compound) AppSAT [27], Double-DIP [39], Bit-Flipping [40], AGR [24]

Cyclic and Behavioral
Cyclic [43] CycSAT [44], BeSAT [45], icySAT [46]

SRCLock [28] � (NO Attack)
DLL [31] � (NO Attack)

Routing Obfuscation
Cross-lock [32] � (NO Attack)
Full-Lock [33] � (NO Attack)

Restricting Scan Chain

EFF+RLL [47] Sequential SAT [53,54], ScanSAT [3,4]
R-DFS+SLL [5] Sequential SAT [53,54], Shift&Leak [48,49]
MSSD+RLL [48] Shift&Leak [48,49]
DynScan+SLL [57] DynUnlock [3, 4]

an obfuscation method that results in very deep recursive call trees. They argue that the

SAT attack execution time can be expressed by formula 2.1, in which N denotes the number

of iterations (DIPs) of the SAT attack, TDPLL(Φ) is the execution time of recursive calls

for DPLL algorithm on CNF Φ, and t is the execution time of the remaining bookkeeping

code executed at each iteration.

TAttack =

N∑

i=1

T (i) =

N∑

i=1

(t+ TDPLL(Φ)) =

N∑

i=1

M∑

j=1

(TAvg
DPLL) �MN × TAvg

DPLL (2.1)

Authors argue that M in formula 2.1 denotes the number of recursive DPLL calls. In

Full-Lock [33], by observing the SAT hardness of CNF formulas produced using a fixed-

length CNF constructor [58], it is proved that the CNF related to a routing obfuscation

technique is a member of medium-length CNFs that maximizes the number (M) and the

computational complexity (TAvg
DPLL) of recursive DPLL calls. Hence, as a new routing ob-

fuscation technique, the key-programmable routing block has been built using logarithmic

networks in Full-Lock [33]. The strong aspect of this alternative solution is that (1) the
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problems posed at each iteration of SAT attack is a SAT-hard problem, (2) the output cor-

ruption of this methods is significantly higher than obfuscating solution relying on increasing

the N , (3) it is not susceptible to SPS, removal, bypass, and approximate attack.

Table 2.2 shows the effectiveness of obfuscation solutions against the attacks discussed in

this Chapter. As illustrated, the SRCLock [28], DLL[31], Full-Lock [33], and Cross-lock [32]

are resistant to all attacks discussed so far, which motivates us to propose more powerful

attacks, which will be discussed in Chapter 3 and Chapter 4 respectively.
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Chapter 3: SMT Attack: Next Generation Attack on

Obfuscated Circuits

As discussed in Chapter 2 and illustrated in Fig. 1.2 in Chapter 1, after introduction of the

SAT attack in 2015 [1, 2], different studies have evaluated various mechanisms for building

SAT-hard obfuscation solutions. However, the logic-based obfuscation schemes that rely

on extending the Boolean behavior of a circuit can be broken by at least one of the state-

of-the-art attacks, including SAT, SPS, removal, bypass, and AppSAT [1, 2, 24, 25, 27, 39].

Hence, recent studies have focused on obfuscation schemes that fundamentally violate the

assumptions of these attacks with respect to the nature of the obfuscated circuit, or use

non-logical properties of a netlist to obfuscate its behavior [28, 31,43].

3.1 SAT Attack Failure in Representing Behavioral Attributes

A SAT attack works perfectly fine if the logic obfuscation is of Boolean nature. This is

because any Boolean logic could be easily transformed into its Conjunctive Normal Form

(CNF) and be converted into a satisfiability assignment problem. But in the case of Be-

havioral logic obfuscation, the locking mechanism is designed to control aspects of circuit

operations that could not be translated to CNF as required by a SAT solver. The delay-

locking (DLL) scheme proposed in [31], cyclic-based obfuscation presented in [43], and

SRCLock [28] are good instances of such locking mechanism. For the purpose of locking,

DLL uses a tunable delay key-gate (TDK) which is illustrated in Fig. 3.1. TDK consists of

a conventional key-gate (XOR/XNOR) with a tunable delay buffer (TDB). The capacitive

load of the buffer is controlled by a transmission gate, where activating the transmission

gate increases the wire load capacitance of the internal wire, resulting in a larger TDK prop-

agation delay. Hence, the functionality and propagation delay of a TDK, both, depends on
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Figure 3.1: Overall Structure of Tunable Delay Key-Gate (TDK).

the value of its key-inputs.

In DLL, the TDK cells are used to control the setup and hold time violations such that

only one sequence of activation keys guarantees that the circuit operates with no violation.

To apply the DLL, a design is first altered such that most timing paths are balanced to

be sensitive with respect to small changes in the path delay, such that a small variation in

delay causes setup or hold violations. This is achieved by means of carefully engineering the

clock skew, cell sizing, and Vth swapping. Then the TDK cells are inserted in the common

portions of setup and hold critical paths, such that attempting to only fix setup causes

hold violation, and attempting to fix hold causes setup violation with the exception of one

sequence of correctly configured TDK keys that assures all timing paths meet both setup

and hold check timing constraints. Considering that the delay is not a logical behavior, the

TDK cell behavior could not be completely captured by CNF, hence the delay locking is

not directly attackable by a SAT attack. In [31] it was illustrated that even a mixed integer

linear programming (MILP) based attack has up to 39% timing violation ratio (TVR).

However, as we will illustrate in this Chapter, by employing an SMT attack we could find

the keys to this obfuscation problem in few minutes.
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3.2 Proposed Attack: SMT Attack

In this Chapter, we construct an attack model based on Satisfiability Modulo Theory (SMT)

solver, and illustrate that the capability of this attack goes far beyond that of SAT attacks.

More precisely, with specific formulation, we illustrate that the SMT attack on obfuscated

circuits is significantly faster and more efficient compared to the SAT attack on Boolean logic

obfuscation. Additionally, it could be used to attack behavioral logic obfuscation schemes,

which is not possible by a pure SAT-based attack. To illustrate the second point, we attack

and break the timing-logic obfuscation scheme in [31], based on which we generalize and

illustrate how other similar SMT attacks could be formulated.

3.3 SMT Attack Threat Model

The SMT attack is an oracle-guided attack, in which we assume that the attacker has the

reverse-engineered but obfuscated netlist. In addition, the attacker is able to buy/steal the

correctly unlocked (activated) IC from the open market/field. Consequently, the attacker

can apply arbitrary input to activated IC and observe its corresponding output. Hence, the

attacker can query the oracle with any stimuli pi, and observe its output po. The purpose

of the attack is to find the key inputs, that make the obfuscated netlist equivalent to that

of the unlocked netlist.

3.4 Basics of the SMT Solver

In this section, we first review the usage and capabilities of an SMT solver, and then we

illustrate how the SMT solver could be used to form an SMT attack on obfuscated circuits

regardless of obfuscation’s reliance on logical or non-logical properties of a circuit.
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3.4.1 SMT Solver Usage and Capabilities

A Satisfiability Modulo Theory (SMT) is used to solve a decision problem while honoring

constraints that could be expressed using first-order theories such as equality, reasoning,

arithmetic, graph-based deduction, etc. Hence, it could be considered as a solver for a broad

set of problems that could be categorized as Constraint Satisfaction Problems (CSP), which

is a superset of Boolean Satisfiability Problems (BSP) that are solvable by SAT solvers.

Additionally, the ability to express theories such as inequality (e.g. 3x+ y < z) provides a

much richer Application Programming Interface (API) to the end user to define a problem

compared to that of a SAT solver.

In general, there are two different approaches for solving an SMT problem. The first ap-

proach is based on translating the problem into a Boolean SAT instances denoted by Eager

approach; In this approach the existing Boolean SAT solvers are used as is. However, the

SMT solver has to work a lot harder for solving some problems that are otherwise very obvi-

ous (e.g. for checking the equivalence of two 32-bit values). However, by deploying a theory

solver, this could be achieved in no time. For this reason, many SMT solvers follow an-

other approach which referred to as the Lazy Approach. The Lazy approach integrates the

Boolean satisfiability solvers, which are based on the Davis-Putnam-Logemann-Loveland

(DPLL) in modern SAT, and theory solvers that decide the satisfiability of formulas over

specific theories. Each theory solver provides two capabilities: (1) theory propagation

among various theory solvers for checking possible conflicts on partial assignments, and

(2) clause learning result of which is shared by the SAT solver to speed-up pruning the

decision tree. Additionally, since several applications of SMT deal with formulas involving

two or more theories at ones, modern SMT solvers provide the capability of combining the-

ory solvers using Nelson-Oppen [59] or Shostak [60] method to support a more expressive

language. In combining theory solvers, if two theories Γ1 and Γ2 are both defined axiomat-

ically, their combination can simply be defined as the theory axiomatized by a union of the

axioms of the two theories, Γ1, and Γ2. For example, Consider Γ1 and Γ2 are two different

theories, it is possible to define Γ1 ⊕ Γ2 as a combined theory of Γ1 and Γ2, where Γ1 ⊕ Γ2
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is the set of all models that satisfy Γ1 ∪ Γ2. This is adequate if the signatures of the two

theories are disjoint. Otherwise, if Γ1 and Γ2 have symbols in common, one has to consider

whether a shared function symbol is meant to stand for the same function in each theory or

not. In the latter case, a proper signature renaming must be applied to the theories before

taking the union of their axioms. In [61] they have described general conditions for the

combination of theories that may have symbols in common. The ability to combine the-

ory solvers proves extremely useful when dealing with applications such as model checking

and predicate abstraction-based model check in which we need to check the satisfiability of

formulas over several data types.

Theories are defined as classes of models with the same signature. More precisely, a Σ-

theory Γ is a pair of (Σ, A) where Σ is a signature and A is a class of Σ-models. In general a

theory solver for a theory Γ is a procedure which takes as input a collection of Γ-literals μ and

decides whether μ is Γ-satisfiable. A theory (Γ-solver) to be effectively used within an SMT

solver should have the following properties [62]: (1) Model Generation: theory solver should

be able to produce a Γ-model of the problem description μ. (2) Conflict Set Generation:

when the theory solver reaches inconsistency, it should be able to produce a subset η of

μ which has caused the inconsistency. The subset η is referred to as theory conflict. (3)

Incrementality : The Γ-solver should be able to save and keep its status across invocation

calls to avoid recomputation. (4) Backtrackability : it is important for theory solver to

has the ability to undo the step if it is needed. Equality with Uninterpreted Functions

(EUF), linear real arithmetic (LRA), linear integer arithmetic (LIA), Mixed Integer and

Real Arithmetic, Difference Logic, Bit Vectors, Arrays, etc. are the examples of theories

commonly used in SMT.

In this work, we use an SMT solver and formulate some attacks against specific obfus-

cated circuits, illustrating the power of adapting various theory solvers for extending the

capabilities of attack by constraining and monitoring non-logical properties of a netlist. For

this purpose, and to illustrate that the SMT attack is a super-set to the SAT attack, we

first illustrate that the original SAT attack against obfuscated circuits could be effectively
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formulated using an SMT solver, resulting in a similar performance. Then we illustrate

how the SMT solver could be used to attack logic obfuscation problems out of the reach of

pure SAT attacks, and for that purpose, we break the logic and timing obfuscation in [31]

which is not possible by a pure SAT attack. We illustrate that this attack could be achieved

using both the Eager and Lazy approach of the SMT attack. Then we illustrate how the

SMT attack could become significantly more efficient than a SAT attack by adopting the

capabilities of theory solvers like BitVector, and formulate an accelerated SMT attack, that

requires substantially smaller iterations and runtime compared to a SAT attack against

specific obfuscation schemes. In addition, we formulate the accelerated SMT attack to be

capable of approximate attacks.

3.5 SMT Attack Overall Flow

When building an SMT attack on obfuscated circuits, as illustrated in Fig. 3.2, the SMT

attack could be invoked with any number and combination of theory solvers and a SAT

solver. In order to use the SMT solver to formulate an attack, few preliminary steps should

be taken. The first step is to make a minor modification to an extracted netlist after reverse

engineering, providing the capability of testing various behaviors of the obfuscated circuit

to the SAT or SMT solver. The transformation is simply replacing the obfuscated cells with

their equivalent Key Programmable Gates (KPG). A KPG performs the same function as

the obfuscated cell, however, it allows building a key-controlled representation of the logical

behavior of the obfuscated cell for the purpose of the logical-model building. Fig. 3.3

captures the KPG translation gates for each type of the gates that have previously used in

recent literature for the purpose of obfuscation. For example, when attacking a camouflaged

cell that could be either an AND gate or an XOR gate, it is replaced with its KPG which

is simply a MUX with each of its input tied to one of the camouflaged cell possibilities.

The function performing the KPG replacement in the algorithms described in this work is

ReplaceKPG(Nobf) that replaces all obfuscated cells in an obfuscated module with their

KPGs equivalent based on the translation table in Fig. 3.3.
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Figure 3.2: Overall Architecture of SMT Attack for Circuit Deobfuscation.

When using an SMT solver, before invoking a theory solver, the input model or input

behavior should be translated to a model μ which is understood by that theory solver. As

illustrated in Fig. 3.2, the translation step may be different for each theory solver used.

As an example, to break the Delay Logic Locking in [31], we use a graph theory solver and

translate the obfuscated netlist to a graph model that is understood by the graph-theory

solver. The required translation step (μ ← Netlist) is simply the inversion of the netlist

under attack to its graph representation, where each gate is a node in the graph, and each

net an edge. We have additionally included the functionality to compute the logical effort

in our graph translation routine, that annotates each edge with the logical effort needed to

drive that edge as a measure of its delay. We could alternatively use a second theory solver

to capture the static timing of the netlist and exchange information with the graph theory

solver for more accurate results. The final step before invoking the SMT/SAT attack is the

translation of the netlist under attack into its CNF form as described in [1].

After building model μ for each Theory and SAT solver, the SMT attack is formulated

based on the flow of information exchange between theory and SAT solver. In General,

the formulation of the SAT portion of SMT solver is similar to that of pure SAT attack

as described in [1]. However, in addition to the SAT solver, each theory solver is then
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Figure 3.3: Translation Table to Key Programmable Gates (KPG).

tuned by a declaration of theory constraint. At this stage, invoking the SMT solver returns

a satisfiable assignment and a list of learned theory and conflict clauses for theory solver

and SAT solver respectively. The SMT attack is then achieved by composing the correct

control flow for invocation of theory and SAT solver(s), and by managing the intermediate

sequence of CNF-based information exchange. The general flow of information in an SMT

formulated problem, including that of SMT attack, is illustrated in Fig. 3.2.

3.6 SMT Attack Mode 1: SMT reduced to SAT Attack

As was mentioned previously, the SAT attack finds a functionally correct key for an ob-

fuscated circuit by checking a small subset of all input patterns, hence removing the need

for brute-force testing of all input patterns. Considering that SMT solver is a superset of

SAT solver and contains a SAT solver, any attack formulated for SAT could be similarly

formulated for an SMT solver.

Alg. 10 illustrates the SAT attack that could be similarly implemented in a SMT solver.

The formulation of attack remains similar to that of the original attack proposed in [1, 2].

The SAT attack in Alg. 10 follows the steps illustrated in Fig. 3.4. In this algorithm, the

obfuscated gates are first replaced with key programmable gates (KPG) to create the Key

Programmable Circuit (KPC). Then the CNF representation of the circuit is generated.

Two KPCs are then used to generate a Key Differentiating Circuit (KDC). The KDC
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Algorithm 10 SMT Reduced to SAT Attack in [1, 2]

1: function SAT Attack(Obfuscated Netlist Nobf , Functional Circuit Corg)

2: KPC ← ReplaceKPG(Nobf );

3: C(X, K, Y) ← Circuit Translation to CNF(KPC );
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 �= Y2);
5: SCKVC = TRUE ;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE ; � Learned Clauses
8: SMTLC ← SATC ;
9: while (((XDI , K1, K2, CC) ← SMT.Solve(SMTLC))= TRUE ) do

10: Yf ← Corg(XDI);

11: DIVC = C(XDI , K1, Yf ) ∧ C(XDI , K2, Yf );
12: SCKVC = SCKVC ∧ DIVC ;
13: LC = LC ∧ CC
14: SMTLC = KDC ∧ SCKVC ∧ LC ;

15: Key ← SMT.Solve(SMTLC);

receives an input and two different keys and determines whether they generate the same

output or not. The KDC is then used as the first SMT satisfiability problem represented by

SMTLC for the first invocation of SMT solver. Calling the SMT solve function on the posed

formula then return an assignment for keys K1, K2, and the discriminating input XDI such

that the formulated SMTLC is satisfied. In addition, the SMT solver returns a list of learned

Conflict Clauses (CC). In line 10, the correct output (Yf ) for the discriminating input XDI

is found. In the next step, the SMT formula needs to be updated to use the discriminating

input and learned clauses to further constrain the satisfiability problem. This is done in

multiple steps. In line 11, the discriminating input found in the current iteration is used to

create a Discriminating Input Validation Circuit (DIVC) which is illustrated in Fig. 3.4(d).

The DIVC circuits formed at each iteration are ANDed together to create a circuit that

checks the correctness of a key for all previously found discriminating inputs. This circuit

is referred to as Set of Correct Key Validation Circuit (SKCVC). In line 13, the currently

found Conflict Clauses are added to the set of previously found Learned Clauses (LC). Note

that this step is done implicitly for SMT, which is a stateful solver. Finally, in line 14

the SMT satisfiability problem is constrained by ANDing together the KDC, SCKVC and

LC clauses. The SAT attack formulated using SMT solver continues until the SMT solver

returns UNSAT. A final call to the SMT solver returns the correct key. Note that this SMT
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(a) Building Miter (b) DIP + eval Matching

(c) Finding More DIPs (d) Correct Key

Figure 3.4: From Obfuscated Circuit to Recovering the Key in the SAT Circuit.

attack is a one-to-one translation of the original SAT attack in [1, 2]. In section 3.10.1, we

illustrate that the formulation of SAT attack using SMT solver results in a very similar

performance to that of pure SAT attack. However, the SMT attack could further benefit

from the usage of SMT solvers to extend its capabilities to attack obfuscation schemes that

could not be logically modeled.

3.7 SMT Attack Mode 2: Eager SMT Attack

Theory solvers could be used to extend the capabilities and performance of SMT solver

compared to that of a SAT solver. This, as illustrated in Fig. 3.5 could be done either by

(1) using the theory solver to extract all required clauses that complete the CNF description

with respect to the obfuscation scheme and then perform a SAT attack, referred to as

the SMT Eager approach, or (2) by invoking the theory and SAT solver in parallel to
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(a) Eager SMT (b) Lazy SMT

Figure 3.5: SMT Execution Flow.

simultaneously model and solve the problem, referred to as Lazy approach.

In this section, we illustrate how the Eager approach of SMT attack could be used to

attack the obfuscation schemes that could not be broken or understood by a pure SAT

attack. For this purpose, we formulated an SMT attack on the delay-locking (DLL) scheme

proposed in [31]. Notice that the proposed approach could be used in formulating attacks

on other obfuscation techniques that rely on non-logical properties of circuit obfuscation

such as timing, power, delay, etc. by using the appropriate theory solvers.

Fig. 3.6 illustrates the translation steps for converting a DLL[31] obfuscated circuit

(using translation table in Fig. 3.3) to its key programmable circuit and its graph represen-

tation. As illustrated in Fig. 3.6(b), K1 effectively has no impact on the logical behavior of

the circuit and only changes its delay properties. Hence, subjecting this obfuscated circuit

to a SAT attack results in a random assignment to K1. Therefore, by having k TDK cells,

which have 2k keys in total, a SAT solver returns one logically correct key sequence among

2k different set of such logically correct keys that control the TDK cells, however, only one

of such keys doesn’t result in setup and hold violations. Hence, a correct attack should

consider the delay and timing properties of the netlist in addition to its logical correctness.

The shortcoming of SAT attack to capture the delay and timing properties of the netlist,

when attacking DLL obfuscation, is remedied in the proposed SMT attack using a graph

theory solver. To illustrate this, we formulate an Eager and a Lazy SMT attack on DLL

obfuscation. In the Eager approach, we use the theory solver as a pre-processing step, in
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(a) netlist obfuscated with TDK cells

(b) Key Programmable Circuit (KPC)

(c) representative graph of the netlist

Figure 3.6: Conversion Flow in SMT using Graph Theory Solver.

which we deduct the complete set of Valid-Path Constraint Clauses (VPCC) between all

primary inputs and outputs of the obfuscated netlist. This VPCC is a CNF representation

of all valid assignments of the keys, such that no setup or hold violation is created. Note

that among many such possibilities, only one possibility has both the correct timing and

the correct logical behavior.

To build the VPCC clauses, we should compute the setup and hold constraints on every

timing path. The setup and hold timing checks for a timing path is expressed using the

following inequalities:

tcs−lr + tclk−q + tp + tsetup + U ≤ tcs−cr + Tclk (3.1)

tcs−lr + tclk−q + tcd ≥ thold + tcs−cr + U (3.2)

57



Figure 3.7: Various Delay Components of a Timing Path.

In this equation which uses the notation in Fig. 3.7, the tcs−lr is the clock source to

launch register delay, tcs−cr is the clock source to capture register delay, U is the clock

jitter/uncertainty, tclk−q is the clock to q delay of the launch register, tsetup is the capture-

register setup time, thold is the hold time requirement for the capture register, tp is the

propagation delay through the longest path in the timing path, and finally the tcd is the

propagation delay through the shortest path in the logic. Considering that the DLL logic

is only inserted on Data sections of timing path, it can only affect the tp and tcd. Note that

it is also possible to enhance the DLL obfuscation beyond that described in [31] and use

the TDK cells for building clock skew in the clock network, however, a similar attack still

could be formulated. For now, let’s consider that DLL, as described in [31], only affects the

Data section of the timing path. The equations 3.1 and 3.2 could be re-written as:

tp ≤ Tclk + (tcs−cr − tcs−lr)− tclk−q − tsetup − U = Upper (3.3)

tcd ≥ thold + (tcs−cr − tcs−lr)− tclk−q + U = Lower (3.4)

Before performing any reverse engineering, we know the TCLK from the functional chip

purchased on market. Note that a functional chip (the oracle) is needed to perform the SAT

or SMT attack as explained in section 3.3. Now let’s consider a netlist obtained after reverse

engineering. The end-point and start-point registers for each timing path are known. Hence,

by means of spice simulation, the register could be characterized and the tclk−q, tsetup and
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thold are extracted. Note that there is a limited type of registers used in a physical design,

and at this step, only a handful of registers need to be characterized. Extracting a measure

for uncertainty could be also achieved by means of spice simulation.

At this point, considering that a TDK cell can change the delay of a timing path, the

delay of each timing path (Dj) could be divided into a constant delay (Cj) and a variable

delay (Vj(K)), where the variable delay is a function of the number of TDK cells in that

timing path, and the key assumed for each TDK. Hence, Delay of Timing path j from start

point s to endpoint p (Ds→p
j ) that passes through N TDK cells each with delay Ds→p

TDK(i),

depending on the value of key Ki is obtained from:

Ds→p
j = Cs→p

j + V s→p
j (k) (3.5)

Ds→p
j = Cs→p

j +

N∑

i=1

Ki ×Ds→p
TDK(i) (3.6)

For a given timing path, and by using the equation 3.6, we could rewrite the delay

constraints in equations 3.3 and 3.4 as:

∀j| Ds→p
jmax

= Cs→p
jmax

+
N∑

i=1

Ki ×Ds→p
TDK(i) ≤ Upper (3.7)

∀j| Ds→p
jmin

= Cs→p
jmin

+
N∑

i=1

Ki ×Ds→p
TDK(i) ≥ Lower (3.8)

These inequalities capture the lower and upper bound delay constraint for every pair

of input-output pins in a design and collectively capture the model μ of the graph theory

solver. Based on this formulation, the number of added inequalities is M × N, in which M

is the number of primary inputs, and N is the number of primary outputs. However, one
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inequality bounds all timing paths between the selected input-output pin pair, removing the

need to express the inequality for every timing path in the design as needed in MILP-based

attack that was suggested in [31].

Algorithm 11 Eager SMT Attack on DLL [31]

1: function SMT Eager Att(Obfuscated Netlist Nobf , Functional Circuit Corg)

2: KPC ← ReplaceKPG(Nobf );

3: C(X,K,Y) ← Circuit Translation to CNF(KPC );
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 �= Y2);
5: SCKVC = TRUE ;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE ; � Learned Clauses
8: G(X,K) ← Graph Translation(Nobf );

9: TLC ← GenTLC (G(X,K)); � Theory Learned Clauses
10: SMTLC ← SATC ∧ TLC ; � SMT Clauses
11: while (((XDI ,K1,K2,CC) ← SMT.Solve(SMTLC))= TRUE ) do
12: Yf ← Corg(XDI);

13: DIVC = C(XDI ,K1,Yf ) ∧ C(XDI ,K2,Yf );
14: SCKVC = SCKVC ∧ DIVC ;
15: LC = LC ∧ CC
16: SMTLC = KDC ∧ SCKVC ∧ LC ;

17: Key ← SMT.Solve(SMTLC);

Pre-Processing step by using a graph theory solver for SMT attack (Eager )

1: function GenTLC(Graph G)
2: Inputs ← G.find start points();
3: Outputs ← G.find end points();
4: TLC ← []
5: for each (Sp in Inputs) do
6: for each (Ep in Outputs) do
7: Upper(Sp,Ep)(K) ← !(distance leq(Sp, Ep, tcd));
8: Lower(Sp,Ep)(K) ← distance leq(Sp, Ep, tp);

9: TLC ← SMT.solve(Upper(Sp,Ep)(K) ∧ Lower(Sp,Ep)(K) ∧ TLC);

10: return TLC

After writing these inequalities for each input-output pair, a call to the SMT solve func-

tion returns all key combinations for which all paths constraints/inequalities are satisfied.

In the other word, by assuming any of the returned key combinations, the circuit will not

violate its setup and hold timing checks. However, note that only one (or few) of these key

values is logically correct. The correct key value then could be extracted by invoking a SAT

solver, and by providing the set of key combinations (in CNF format) as a constraint to
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the logical circuit satisfiability problem. This process is illustrated in Alg. 11. As it can be

seen in Alg. 11, function GenTLC is responsible for generating all inequalities. Line 7-8 of

GenTLC function generates inequality for each input (Sp) to each output (Ep).

This algorithm is similar to Alg. 10, with the additional step of using a theory solver for

pre-processing the netlist in line 8, extraction of all key combination resulting in a correct

timing behavior in line 9, and providing these constraints to the SAT solver in the next

step in line 10. Note that the solve function in the Eager approach is called in two places;

first for generating the timing valid key combination clauses (inside GenTLC function), and

then iteratively inside the SAT attack while loop.

For some obfuscation methods, the pre-processing step of the Eager approach may be-

come extremely time-consuming or computationally impossible. An example of such obfus-

cation problem is the SRCLock [28]. The authors have shown that the obfuscation is SAT

hard, since without pre-processing the cycles, the SAT solver will be trapped or produce an

incorrect key. Additionally, they have suggested two mechanisms by which the number of

cycles in a netlist could exponentially grow with respect to the number of inserted feedbacks.

For attacking cyclic logic, as suggested by CycSAT attack [44] we need to pre-process the

netlist and extract the No Cycle Conditions to prevent the SAT solver from being trapped.

However, in SRCLock[28] the number of cycles grows exponentially, and therefore the run-

time of pre-processing step also grows exponentially, preventing us to ever reach the SAT

attack. For such problems, the Eager approach that relies on the reduction of the problem

to a SAT problem does not work. However, the Lazy approach of the SMT attack provides

a solution.

3.8 SMT Attack Mode 3: Lazy SMT Attack

Using the Lazy approach of SMT attack relaxes the requirement of Eager approach to

complete the pre-processing step before invoking the SAT attack.

In the Lazy approach, the SAT solver and theory solver(s) simultaneously check different

models of a unified satisfiability problem, exchange clauses, and check each other’s literal
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assignment. This could significantly prune the decision tree of a SAT solver search space for

finding a satisfying assignment and remove the need for complete and unbounded execution

of theory solver as it only has to check the validity of constraints for SAT assigned literals.

Algorithm 12 Overall SMT Attack (Lazy Approach)

1: function SMT Lazy Att(Obfuscated Netlist Nobf , Functional Circuit Corg)

2: KPC ← ReplaceKPG(Nobf );

3: C(X,K,Y) ← Circuit Translation to CNF(KPC );
4: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 �= Y2);
5: SCKVC = TRUE ;
6: SATC = KDC ∧ SCKVC ;
7: LC = TRUE ; � Learned Clauses
8: G(X,K) ← Graph Translation(Nobf );

9: TCE(K) ← GenTCE (G(X, K)); � Theory Constraint Expressions (Not Solved)
10: TCE(K1,K2) ← TCE(K1) ∪ TCE(K2) ;
11: while (((XDI ,K1,K2,CC) ← SMT.Solve(SATC, TCE(K1,K2)))= TRUE ) do
12: Yf ← Corg(XDI);

13: DIVC = C(XDI ,K1,Yf ) ∧ C(XDI ,K2,Yf );
14: SCKVC = SCKVC ∧ DIVC ;
15: LC = LC ∧ CC
16: SMTLC = KDC ∧ SCKVC ∧ LC ;

17: Key ← SMT.Solve(SMTLC ,TCE(K));

Initialization of constraints for SMT attack (Lazy Approach)

1: function GenTCE(Graph G)
2: Inputs ← G.find start points();
3: Outputs ← G.find end points();
4: TCE(K) ← []
5: for each (Sp in Inputs) do
6: for each (Ep in Outputs) do
7: Upper(Sp,Ep)(K) ← !(distance leq(Sp, Ep, tcd));
8: Lower(Sp,Ep)(K) ← distance leq(Sp, Ep, tp);

9: Range(Sp,Ep)(K) ← Lower(Sp,Ep)(K) ∧ Upper(Sp,Ep)(K);
10: TCE(K) ← TCE(K) ∪ Range(Sp,Ep)(K);

11: return TCE(K)

In order to illustrate the Lazy approach of SMT attack, in this section, we formulate an

SMT attack to again break the DLL [31] obfuscation. The Lazy approach of SMT attack

on DLL [31] is illustrated in Alg. 12. The big difference in the Lazy and Eager approach is

that after model generation for theory solver, the SMT solve function is not called. This is

illustrated in line 9 of this algorithm, where the constraining expressions are only defined

for the theory solver by making a call to GenTCE function. The returned constraining
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expressions are then duplicated for K1 and K2. The SMT solve function is then called to

find an assignment for a discriminating input XDI , and two different keys K1 and K2 such

that generated outputs are different at least in one bit, however, both keys generate a valid

timing scenario. Since the SAT model (SATC) and Theory models (TCE(K1,K2)) share

literals and are subjected to a unified set of constraints, the decision tree and search space

for the SMT solvers is significantly reduced.

3.9 SMT Attack Mode 4: Accelerated Lazy SMT Attack

In this section, we argue that re-formulating the Lazy SMT which benefits from capabilities

of BitVector theory solver allows us to build a more efficient attack.

Our modification to the SAT attack is inspired by the observation that higher output

corruption, reduces the SAT hardness of an obfuscation scheme. A discriminating input

XDI , is an input capable of sensitizing the logic paths of the netlist under study, such

that (1) some of the differences in the values of internal nodes in the result of application

of two different keys K1 and K2 are propagated to at least one output. (2) none of the

previously found DIPs (that were used in building a DIVC) were able to propagate the

generated inconsistency to a primary output. This mechanism is continued until the number

of sensitized paths, reaches a point where any inconsistency is propagated to the primary

outputs using the constructed set of DIVC circuits. At this point, the set of previously

found XDIs form a complete set of discriminating inputs, such that if a key generates the

correct output for all inputs in this set, it will generate the correct output for all other

inputs.

Different DIPs have different pruning power. A DIPs strength could be assessed based

on the number of inconsistencies that it could sensitize to the primary outputs conditioned

that previous DIPs were incapable of doing so. Hence, depending on the pruning power of

DIPs, the size of the complete set of DIPs could be different. A minimal complete set of

DIPs is the smallest set of DIPs that could de-obfuscate the circuit. In our Lazy approach

for SMT attack, we propose a mechanism to reduce the size of the complete set of DIPs
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pushing it towards the minimal set. Since in each SAT or SMT iteration one DIP is found,

having a smaller number of DIPs result in a smaller number of iterations.

In the SAT attack, it requires only a single bit difference in the output for the generation

of a DIP. In SMT attack, we could make a stronger requirement for the generation of DIPs.

This could be achieved by forcing the SMT solver to find DIPs with the largest possible

Hamming distance of primary outputs when for the same input, two different keys are

applied. Such a DIP has a much higher pruning capability, and is able to sensitize a larger

number of key-related inconsistencies to the output. The discovery of such powerful DIPs

reduces the number of required DIPs that is needed to form a complete set of DIPs that

could de-obfuscate the circuit, reducing the attack time by almost an order of magnitude.

3.9.1 The Usage of BitVector Theory Solver

Assessing DIPs based on the hamming distance of the primary output is easily imple-

mentable in SMT solver by using a BitVector theory solver. The BitVector theory solver

allows us to perform integer-oriented arithmetic operations such as addition, subtraction,

and multiplication. The Hamming Distance (HD) of output Y1 and Y2 is obtained using:

HD(C(XDI ,K1), C(XDI ,K2)) = HD(Y1, Y2) =

N∑

i=1

Y1(i)⊕ Y2(i) (3.9)

The HD is then used to write the constraining expressions that are posed on the BitVec-

tor theory solver using the formulation:

ThLower ≤ HD(Y1, Y2) ≤ ThUpper = Size(Output) (3.10)

The upper threshold ThUpper is kept constant equal to the size of output pins, but the

lower threshold ThLower is defined as a variable, allowing us to sweep the hamming distance

constraint posed on BitVector theory solver from a maximum value of the number of output

bits to a minimum value of 1. The lower bound could be reduced every time the SMT solver
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returns UNSAT, indicating there is no other DIP that satisfies the HD requirement of the

theory solver. The process terminates when the SMT cannot even find a DIP that causes

HD of 1. Adaption of this constraint forces the SMT solver to find DIPs with higher pruning

power, reducing the size of a complete set of DIPs.

3.9.2 The Usage of Timeout

For an SMT or a SAT attack, the execution time is determined based on the formula,

∑N
i=1 t(i), where t(i) is the execution time of the ith iteration of an SMT attack. Hence,

by just reducing the number of SAT iterations N , we cannot guarantee a shorter execution

time, because finding a DIP with tighter constraint may pose a more difficult problem to the

SMT solver and increase t(i). For this purpose, we can limit the time allowance for finding

a DIP in each iteration. The timeout limit TO prevents the SMT solver from spending a

long time for finding a DIP with a large HD when finding such DIP has become excessively

difficult. By adapting the timeout feature, during an SMT attack, the HD requirement is

reduced when either (1) the SMT solver returns UNSAT, indicating there exists no such

input, or when (2) we encounter time-out interrupt. In this case, the HD constraint posed

on the BitVector theory solver is reduced by one and the SMT solver is called. Note that

the time interrupt is supported by MonoSAT [63] used in this work, and many other freely

available SMT solvers. Also, note that the use of time interrupt pushes the final solution

away from a minimal complete set of DIPs. However, our experiments illustrate that this

usually results in considerably smaller execution time.

3.9.3 Enabling Approximate Attack

Our objective is to enable the SMT attack to be carried against a netlist similar to that of

Fig. 3.8, which is obfuscated by both SAT Hard (SH) and high Corruption (HC) obfuscation

schemes, to find all keys for the HC obfuscation, and to detect the trap of SH obfuscation

and exit while generating an approximate key.

The SAT hard obfuscation mechanisms suggested in recent literature, such as SARLock,
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Figure 3.8: A Hybrid Obfuscation Scheme.

Anti-SAT, and SFLL [21–23], have a very small output corruption, and the SAT hardness

is maximized when there is only a single input for a given key that results in an incorrect

output. The pruning power of DIPs found in each iteration of the SAT solver for SH

obfuscation solutions is very small, and each DIP eliminates a single key value. Hence,

the number of SAT or SMT iterations increases exponentially with respect to the key size.

This is used as a mechanism to trap the SAT solver. To increase the corruption, the SH

obfuscation is combined with a HC obfuscation. The purpose of approximate attacks is to

find the correct key for the HC obfuscation without being trapped by SH obfuscation.

The accelerated SMT attack could significantly improve the performance of approximate

attacks. Since HC obfuscation schemes result in high output corruption, finding DIPs that

lead to larger HD at the output biases the SMT attack to find the HC related obfuscation

keys in the earlier iterations. The remaining problem is the design of a termination strategy

for the accelerated and approximate SMT attack to detect the trap of SH obfuscation, exit,

and report the approximate key. For this purpose, we use a constraint on the number

of allowed repetitions R when HD is very small (e.g. 1). If the remaining and un-found

keys are only the SH keys, the SMT keeps finding weak DIPS (HD of 1) and iterations are

completed very quickly. By setting the repetition limit R to an appropriately large value,

we can detect the trap and terminate the attack.

The unique feature of accelerated approximate attack is that if we remove the timeout

(TO) requirement, then the approximate attack guarantees that the HD of the approxi-

mately unlocked circuit and that of the functional circuit is at most HDLow bits different,

with HDLow being the hamming distance requirement in which the R repetition is taken
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place. This could be proven as follows: Suppose that there exist an undiscovered discrimi-

nating input and two keys that cause larger than HDLow bit difference (HDLow+D) in the

primary outputs. Hence, the SMT solver when constrained by BitVector theory solver for

finding HD = HDLow+D should return SAT. This contradicts the SMT previous execution

control state where the SMT attack for that HD has returned UNSAT, otherwise, the HD

constraint was not reduced.

3.9.4 Accelerated SMT Attack Formulation

Alg. 13 demonstrates the reformulated Lazy approach of SMT attack on obfuscated circuits.

In this algorithm, the HDHigh, and HDLow are the high and low threshold requirement

for hamming distance on primary outputs, TO is the timeout limit per iteration, R is the

repetition allowance before exiting and generating an approximate key, and RHD is the

hamming distance after which the repetition condition is checked.

The BitVector theory solver input model is defined in lines 14 and 15, and converted to

theory constraint expressions in lines 16 and 17. The TCE poses an upper and lower bound

on the hamming weight difference of the outputs of two instances of the same circuits with

the same input, but two different keys. The SMT attack sweeps the hamming distance in

the first while loop, while the second while loop formulates the modulo satisfiability theory

attack. The SMT solver receives the SMTLC model, the BitVector theory solver constraint

TCE and the timeout allowance TO and check whether there is a valid assignment for

SMTLC conditioned that TCE is valid withing TO time allowance. If it exists, the while

loop is satisfied. Additionally, it returns the discriminating input XDI , the two keys found

(K1,K2) and a list of learned conflict clauses CC. Then theXDI , similar to the original SAT

attack is used to construct additional DIVC and update the satisfiability model SMTLC .

At the end of each iteration, the algorithm checks whether the hamming distance is reduced

to the limit, where the repetition condition for SH problems is checked. In this case, if the

repetition count reaches the specified threshold value R, the SMT attack is terminated.
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Algorithm 13 Accelerated SMT Attack

1: function AccSMT Attack(Obfuscated Netlist Nobf , Functional Circuit Corg)
2: HDHigh = Number of output bits; � Upper hamming distance limit;
3: HDLow = HDHigh - 1; � Lower hamming distance limit;
4: TO = 50s; � Timeout constraint;
5: R = 20; � Repetition limit;
6: RHD = 1; � Repetition condition;
7: Rcount = 0; � Repetition count variable;
8: KPC ← Replace KPG(Nobf );

9: C(X,K,Y) ← Circuit Translation to CNF(KPC );
10: KDC = C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 �= Y2);
11: SCKVC = TRUE ;
12: SATC = KDC ∧ SCKVC ;
13: LC = TRUE ; � Learned Clauses
14: BV(X,K) ← Circuit Output to BitVector(Nobf );

15: BVS(X, K1, K2) = SUM of 1s(BV(X,K1) ⊕ BV(X,K2))
16: TCE ← BVS(X,K1,K2) ≥ HDLow; � Theory constraint expression;
17: TCE ← TCE ∪ (BVS(X, K1, K2) ≤ HDHigh);
18: while HDLow ≥ 1 do
19: while (((XDI ,K1,K2,CC) ← SMT.Solve(SMTLC , TCE, TO)) = T ) do
20: Yf ← Corg(XDI);

21: DIVC = C(XDI ,K1,Yf ) ∧ C(XDI ,K2,Yf );
22: SCKVC = SCKVC ∧ DIVC ;
23: LC = LC ∧ CC
24: SMTLC = KDC ∧ SCKVC ∧ LC ;
25: if (HDLow ≤ HDR) then
26: if (Rcount == R) then
27: Break;

28: Rcount ++;

29: HDLow--;

30: Key ← SMT.Solve(SMTLC);

3.10 SMT Attack Performance Evaluation

For evaluating different modes of SMT Attack, we used a farm of desktops with a 4-core

Intel Core-i5 CPU, running at 1.8GHz, with 8 GB RAM. The operating system on desktops

was Ubuntu Server 16.04.3 LTS. For a fair comparison, and to reduce the impact of the

operating system background processes, we dedicated one desktop to each SMT solver at

a time. For benchmarking, we used most of the ISCAS-85 benchmarks, characteristics of

which is listed in Table 3.1. Since MiniSAT has been used in the SMT Solver as its built-in

SAT solver, we use the default values of resource limits in MiniSAT as resource limits of

the SMT attack (68 years for the CPU time limit and ≈ 2147 TB for the memory usage
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Table 3.1: ISCAS-85 Benchmarks and their Characteristics.

Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

# of Inputs 36 41 60 41 33 233 50 178 207
# of Outputs 7 32 26 32 25 140 22 123 108
# of Gates 120 162 320 506 603 872 1179 1726 2636

Table 3.2: Execution Time of SAT vs SMT (Attack Mode 1).

Circuit c2670 c3540 c5315 c7552

SAT SMT SAT SMT SAT SMT SAT SMT

#iter time #iter time #iter time #iter time #iter time #iter time #iter time #iter time

1% 3 0.102 5 0.474 10 0.513 8 1.31 9 0.405 10 0.441 11 0.577 19 0.806
5% 45 1.514 57 3.589 19 1.502 25 1.249 32 1.354 24 2.433 67 5.271 42 4.261
10% 312 14.08 342 15.752 36 1.782 36 2.973 59 3.798 57 4.881 97 15.82 94 15.67
25% 781 114.5 692 108.6 77 9.796 65 8.462 95 19.63 107 22.48 215 225.6 228 270.8

limit). As the baseline for comparing SMT attack performance against a pure SAT attack,

we employed the Lingeling-based SAT attack by [1]. In addition, for each attack, we ran

the solvers Five times on SMT and SAT solvers and reported the average runtime.

3.10.1 Evaluation of SMT reduced to SAT Attack

As explained in section 3.6, and explained by Alg. 10 the SMT solver could be used for a SAT

attack using the same formulation as the original SAT attack as proposed in [1, 2]. In this

section, we evaluate the performance of SMT attack when used in this mode. The purpose of

this section is to illustrate that attack formulate using the SMT solver is a superset of SAT

attacks, and with the same formulation provides similar performance. For this comparison,

we employed two obfuscation methods: (1) random XOR/XNOR insertion (RLL) [16],

and (2) obfuscation using nets with unbalanced probabilities (IOLTS’14 ) [64]. ISCAS-85

benchmarks are obfuscated using these schemes with obfuscation overhead ranging from 1%

to 25%.

Table 3.2 compares the execution time of SMT attack and the SAT attack proposed in

[1,2] when RLL obfuscation is deployed. As captured in this table, the execution time of the
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Figure 3.9: Performance Comparison between SMT Attack and SAT Attack.

SMT attack when reduced to SAT Attack is approximately equivalent, in terms of a number

of iteration and execution time, with that of an original SAT attack across all benchmarks

and all ranges of obfuscation overhead. Fig. 3.9 illustrates the same comparison when the

IOLTS’14 obfuscation method is deployed. As illustrated, the SMT reduced to SAT, in

terms of performance, behaves similarly to the SAT attack.

3.10.2 Evaluation of Eager SMT Attack

We used the Delay Logic Locking scheme [31] in our case study to show the extended

capabilities of the SMT attack in solving obfuscation problems that cannot be modeled in a

SAT attack. The Eager approach of SMT attack is evaluated in this section, and the Lazy

approach is evaluated in the following section. Additionally, to increase the obfuscation

difficulty and demonstrate the strength of the SMT attack, in addition to obfuscation using

DLL, we obfuscated the circuit with additional MUX and XOR gates using gate insertion

policy in IOLTS’14 [64], such that 50% of the keys are used for DLL, and 50% for IOLTS’14

obfuscation. Finally, we used some of the keys for both logic and delay obfuscation to create

dependencies such that the solvers could not divide and conquer the attack.

The Eager attack against DLL was formulated in Alg. 11. As the algorithm suggests, the

Eager approach attacks the obfuscation in two separate phases. In the first phase, the theory

solver models and constrains the problem and calls the SMT solver to extract all valid key

combinations. The key combinations are converted into a CNF statement, which is passed
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Table 3.3: Execution Time of SMT Attack in the Eager Mode (Attack Mode 2).

Circuit c1908 c2670 c3540 c5315 c7552

1% 0.077 + 1.663 0.068 + 170.0 0.053 + 4.054 1.291 + 114.6 0.580 + 138.6
2% 0.016 + 1.919 0.221 + 175.6 0.200 + 5.001 1.535 + 144.6 1.808 + 185.5
3% 0.054 + 2.161 0.337 + 212.7 1.359 + 6.328 3.057 + 160.4 2.247 + 245.9
5% 0.075 + 2.810 0.495 + 248.4 1.553 + 8.325 3.891 + 256.9 7.812 + 353.3
10% 0.499 + 3.812 38.78 + 407.1 1.524 + 14.35 16.19 + 550.3 33.92 + 782.7
25% 8.951 + 21.71 112.4 + 972.5 9.459 + 92.42 60.30 + 1567 2920 + 5244

SMT execution time = x+ y, x : The execution time of the SAT engine of the SMT Solver,

y : The execution time of the theory engine of the SMT Solver

to the SAT solver. In the second phase, the SAT solver attacks the circuit satisfiability

problems augmented with these additional CNF clauses on valid key combinations, and

make a new round of calls to the SMT solvers. As illustrated in Fig. 3.5(a), the invocation

of theory and SAT solver, and the overall SMT attack is serialized. Accordingly, in order to

reflect our experimental results for evaluating of Eager approach, we separate the execution

time of the theory solver and that of the SAT solver.

Table 3.3 captures the results of the Eager SMT attack for different ISCAS-85 bench-

marks with different obfuscation overhead. The theory execution time indicates the time

required by graph theory to find all possible and valid key combinations (where only one of

them is valid). Similarly, SAT execution time demonstrates the time taken by SAT solver

to find a valid key, given the additional theory solver generated constraining clauses. As

illustrated in this table, the SMT attack, in all cases is concluded and reported the correct

key. The result of the pure SAT attack is not reported, as it always produces the wrong key

for being oblivious to the DLL key values. Hence, the SMT solver in this respect extends

the attack capability by means of including various theory solvers.

Note that the execution time of the SAT solver (the x value in each column of reported

data in Table 3.3) depends on the (1) size of the circuit, and (2) the percentage of obfuscated

cells. Hence the circuit c7552, for being larger than c1908 has a longer SAT attack time

across all percentage obfuscation points. In addition, the increase in the SAT attack time

is only slightly super-linear (close to polynomial) with respect to an increase in the degree
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of obfuscation. On the other hand, the execution time of the theory solver (the y value

in each column of reported data in Table 3.3) depends on (1) the number of input, (2)

the number of outputs, and (3) the degree of obfuscation. Hence, a circuit with a larger

number of IOs has a longer execution time for its theory solver, but the execution time is

bounded by O(NM), with M and N being the number of inputs and outputs respectively.

This indicates that the run-time of theory solver (unlike the MILP-based attack that was

suggested in [31]) does not exponentially increase with respect to a number of timing paths

in a netlist, as it only depends on the number of IOs and not the total number of timing

paths.

3.10.3 Evaluation of Lazy SMT Attack

The Lazy approach of SMT attack, as illustrated in Fig. 3.5(b), uses the SMT solve function

to simultaneously solve the theory and circuit SAT problem. In this approach, the theory

model is defined but is not solved. In many applications, the Lazy approach outperforms the

Eager solution. In addition, there are situations, where the Eager solution faces exponential

runtime if solved separately. As an instance, SRCLock [28] focus on posing exponential

runtime on pre-processor needed for detection of cycles, Hence, the Eager approach is not

even applicable. However, the parallel invocation of the theory and SAT solver, and the

resulting literal exchange, and the additional constraints posed on the solver could result

in a significant reduction in the time needed to explore the problem’s decision tree, and

removes the need to complete the pre-processing before starting the SAT attack. Hence,

if the execution time of the theory solver poses a runtime beyond acceptable, the problem

could only be attacked by the Lazy SMT approach.

Table 3.4 shows the Lazy SMT attack execution time on ISCAS-85 benchmarks that

were obfuscated using the process that was explained in the previous section (mixing 50%

DLL+ 50% IOLTS). Considering the SAT and theory solver are invoked simultaneously,

we have a single execution for the entire SMT problem, and unlike the Eager approach, we

cannot separate the execution time of the theory solver and the SAT solver. As illustrated,
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Table 3.4: Execution Time of SMT Attack in the Lazy Mode (Attack Mode 3).

Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

1% 0.033 0.177 0.263 0.567 0.466 20.44 0.983 11.53 13.07
2% 0.049 0.262 0.325 0.676 0.596 21.86 3.443 11.76 17.83
3% 0.065 0.329 0.350 0.877 0.723 23.39 2.436 15.27 19.04
5% 0.049 0.340 0.517 1.085 1.456 28.87 2.587 38.87 45.96
10% 0.204 0.503 1.195 5.622 3.334 83.06 6.712 94.80 319.6
25% 0.599 1.481 2.036 297.2 95.67 2706 126.3 552.8 8045

Table 3.5: Comparing the AccSMT (Attack Mode 4) with the Original SAT Attack.

Circuit c2670 c3540 c5315 c7552

SAT AccSMT SAT AccSMT SAT AccSMT SAT AccSMT

#iter time #iter time #iter time #iter time #iter time #iter time #iter time #iter time

1% 3 0.102 2 0.316 10 0.513 3 0.185 9 0.405 2 0.163 11 0.577 3 0.374
5% 45 1.514 11 3.589 19 1.502 6 0.761 32 1.354 6 0.408 67 5.271 17 2.607
10% 312 14.08 26 5.817 36 1.782 11 1.236 59 3.798 12 1.753 97 15.82 19 4.721
25% 781 114.5 107 24.05 77 9.796 16 1.606 95 19.63 27 7.916 215 225.6 24 23.52

in comparison with the Eager approach, in most cases the Lazy approach finds the key

obfuscation key in a shorter time.

In the Lazy approach, the number of iterations decreases drastically compared to the

Eager approach. However, the execution time of each iteration increases. This is because

each DIP needs to satisfy both the theory constraints and the circuit SAT formulation.

However, when a DIP is found, it is a stronger DIP with higher pruning power.

By comparing the results of Eager and Lazy approach of SMT attack in Table 3.3 and

Table 3.4 we observed that in a majority of cases, the Lazy approach outperforms the

Eager approach. However, in some cases (e.g. for Benchmark C1908 with 50% overhead),

the Lazy approach may become slower than the Eager approach, indicating that the Lazy

approach doesn’t always result in a stronger attack. However, note that there exist a set

of problems (such as SRCLock [28]), that the Eager approach is not even applicable, since

the pre-processing step cannot conclude in a reasonable amount of time, leaving the Lazy

approach as the only solution forward.
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Complete Set of DIPs = {DIP1, DIP2, DIP3, ..., DIPn}

Figure 3.10: Potentially Valid Keys Reduced in Each Iteration of SMT/SAT Attack.

3.10.4 Evaluation of Lazy AccSMT Attack

Before invoking the SMT or SAT attack, any key could be considered as a potentially

valid key. The strength of a DIP comes from its ability in reducing the size of this set in

each iteration. After finding each DIP, as illustrated in Fig. 3.10, the size of potentially

valid key set reduces. When reaching a complete set of DIPs, any key left in this set is a

correct key. As discussed in section 3.9, a stronger DIP could sensitize a larger number of

inconsistencies (due to the application of a discriminating input and two different keys) to

the primary outputs. Hence, it is natural for such a DIP to have a higher pruning power

in reducing the number of potentially valid keys. To evaluate this claim, we profiled the

number of potentially valid key after each iteration of SMT and SAT attack, when working

on the same obfuscation problem. Fig. 3.11 illustrates the key reduction rate in three

ISCAS-85 benchmarks obfuscated by RLL [16]. In all scenarios, the DIPs found by the

AccSMT solver are stronger, as the number of remaining keys is reduced at a significantly

higher rate. As illustrated, the number of iterations is also significantly reduced because

the complete set of DIPs, when the pruning power of DIPs is higher, is of smaller size.

The stronger DIPs found by the AccSMT attack, result in a significant reduction of

the number of DIs needed for a complete discriminating input set. Each DI is found in one

iteration, Hence, a smaller number of DIs indicates a smaller number of iterations. Table 3.5

compares the execution time and the number of iterations between the SAT solver and the

AccSMT solver. The ISCAS-85 benchmarks for this simulation are obfuscated using RLL

[16] obfuscation scheme with the overhead of 1% to 5%. As reported in this table, across
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Figure 3.11: Key Reduction Rate in SAT Attack and AccSMT Attack.

all attacks, the AccSMT attack is carried in a smaller number of iterations and requires

order(s) of magnitude smaller execution time.

As described in section 3.9.3, the AccSMT attack is able to distinguish between SAT-

hard (SH) and high-corruption (HC) obfuscation. It quickly finds the correct keys for HC

obfuscation, detects the SH trap, exits, and reports the approximate key.

To evaluate the approximate mode of the AccSMT attack, we have obfuscated the

ISCAS-85 benchmarks using SARLock + IOLTS14 as suggested in [22]. The overall struc-

ture of the obfuscated circuit is illustrated in Fig. 3.8. In this hybrid obfuscation scheme,

the SARLock is the SH obfuscation, and the RLL is the HC obfuscation protocol. The in-

vocation of the original SAT attack in [1,2] results in a timeout, due to the SARLock trap.

However, the AccSMT can very quickly find all the keys for HC obfuscation, detect the

SH trap, and report the approximate key. Table 3.6 depicts the number of iterations and

execution time of the AccSMT attack for finding the approximate keys for each instance of

the obfuscated circuit under attack. Note that repetition count (R=20 in our case study)

is excluded from this table.
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Table 3.6: Execution Time and the Number of Iterations of AccSMT (Attack Mode 4).

Circuit c1908 c2670 c3540 c5315 c7552

#iter time #iter time #iter time #iter time #iter time

1% 7 0.512 16 3.075 8 1.304 3 0.384 7 2.905
5% 18 0.701 25 11.91 15 1.681 11 1.707 33 17.56
10% 31 4.085 51 26.47 21 3.779 35 7.402 61 44.07
25% 71 8.605 105 76.8 66 22.91 56 16.64 88 58.32

3.11 What we Learnt in this Chapter

In this Chapter, we introduced the SMT attack that could break behavioral locking tech-

niques by means of invocation of theory solvers apart from the SAT solver, to model the

non-logical and behavioral aspects of a circuit operation. We illustrated that even using

these non-logical properties for obfuscation, does not increase the security of an obfuscated

netlist, indicating the need for further study and exploration in this domain to generate

obfuscation schemes with provable security.
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Chapter 4: NNgSAT: Neural Network guided SAT Attack on

Logic Locking

In this Chapter, we propose a neural-network-guided SAT attack (NNgSAT ), in which

we examine the capability and effectiveness of a message-passing neural network (MPNN) for

solving the complex structures (SAT-hard instances), such as big multipliers, large routing

networks, or big tree structures. In NNgSAT, after being trained as a classifier to predict

SAT/UNSAT on a SAT problem (NN serves as a SAT solver), the neural network is used

to guide/help the actual SAT solver for finding the SAT assignment(s).

4.1 Hard SAT Instances in Logic Obfuscation

The strength of the SAT solver comes from their Conflict-Driven Clause Learning (CDCL)

ability. In each iteration of the SAT attack, a new SAT problem will be created, and the goal

of the SAT solver is to find a satisfying (SAT) assignment for each SAT problem (per each

iteration). The SAT problem is represented in conjunctive normal form (CNF) consisting

of clauses, and each clause consists of one (a few) literal(s). The SAT solver tries to either

assign or derive the value of each literal, and each assignment of value to a literal pushes

the solver down into one of the branches of its decision tree. The decision tree of the SAT

solver is built based on Davis–Putnam–Logemann–Loveland (DPLL) tree that is a complete

backtracking-based search tree used for deciding the satisfiability of the propositional logic

formula. The traversal on the DPLL tree is based on a recursive DPLL algorithm leading

to the finding of a SAT assignment (The DIP in each SAT attack iteration).

The SAT attack (or one of its derivatives) faces a challenging problem when a design con-

tains any form of hard-to-be-solved instances. As a case of hard SAT instances, which brings

difficulties for the SAT solvers, we could list deep or symmetric or tree-based structures,
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particularly while these structures are only built using the same basic gate, such as large

multipliers, combinational systolic array modules, hierarchical routing blocks, big AND-

tree structures, etc. [1, 32, 33, 41]. Having such structures sends the corresponded CNF far

away being under/over constrained, and when the SAT problem is a medium-length CNF,

it brings difficulties for the SAT solver. Fig. 4.1 shows the number of recursive DPLL calls1

for fixed-length 3-SAT CNFs, where the ratio of clauses to variables is varied from 2 to

8 [33, 58]. As demonstrated, when the SAT problem is a medium-length CNF (clauses to

variables ratio from 4 to 6), it requires more DPLL calls than under/over constrained CNFs

(> 6 or < 4).

As discussed in Chapter 2, this observation has been the motivation for techniques

such as Cross-Lock and Full-Lock [32, 33]. In these techniques, the main block used for

obfuscation is a key-programmable routing block, which helps to build an extremely large

medium-length CNF with thousands of variables. Since it faces millions of DPLL calls for

each iteration of the SAT attack, it exponentially increases the runtime of each iteration

of the SAT attack. It is surprisingly clear that when a design has such hard-to-be-solved

instances, there is no chance for any of the existing attacks to break them, which motivates

us to propose this new NN-based attack.

The question we aim to answer in this Chapter is whether we can train and use a neural

network to predict a satisfying assignment to the literals of the SAT-circuit CNF and all

constraints corresponded to each iteration of the SAT attack, particularly when the search

tree is extremely deep. The goal is to save time and speed up the SAT attack. In cases

the SAT solver cannot find the DIP for an iteration, we examine the effectiveness of a

message-passing NN (MPNN) for predicting the DIP. This question is the motivation for

the formulation of our proposed NNgSAT attack.

1DPLL algorithm is a recursive-based function that is the main part of the SAT solver for finding the
satisfying assignments.
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Figure 4.1: The Impact of Clause-to-Variable Ratio on DPLL Calls.

4.2 Neural Network Learns the SAT Solving

Glimpsing the progress of the SAT community starting around 1992 shows that before 2015

there were the most important conceptual advances resulting in the modern SAT algorithm

based on CDCL. However, since 2015, the performance improvements has declined signif-

icantly [65]. On the other hand, the substantial ever-increasing the usage and application

of the neural network (NN) [66–70] on important problems raises a big question that ”can

a NN learn and improve the performance of the SAT solving?”. More recently, a study

proposes the first NN-based architecture that is designed for satisfiability problems, called

NeuroSAT [71]. NeuroSAT is a message-passing neural network (MPNN) that learns to

solve SAT problems after only being trained as a classifier to predict satisfiability. In Neu-

roSAT, it is shown that a trained NN on only toy problems could solve a bigger problem

on its own. Also, based on the iterative structure of MPNN, more iterations at test time

leads to solving bigger and even completely different domains than the problems it was

trained on. For each problem, NeuroSAT starts guessing UNSAT at the early stages with

low confidence until it finds a solution, at which point it converges and return the satisfying

assignment with very high confidence. The training phase of the NeuroSAT relies on a sin-

gle bit of supervision, in which the only difference between a pair of SAT/UNSAT problem
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(a) (b)

Figure 4.2: NeuroSAT Operations on (lit1 ∨ lit2) ∧ (¬lit1 ∨ ¬lit2).

is one bit.

Since the SAT solver accepts the problems in CNF format, and since the SAT problem

has a syntactic structure that could be encoded into a vector space, the best way to encode

a SAT problem using a NN is to model it using an undirected graph. In this graph, there is

one set of nodes each represents a literal, and one more set of nodes each represents a clause.

For edges, there is a set of edges between each literal and each clause it appears in, and

also there is another set of edges between each literal and its complement. Fig. 4.2, shows

a simple example how a SAT problem ((lit1 ∨ lit2) ∧ (¬lit1 ∨ ¬lit2)) could be represented

with an undirected graph with aforementioned rules. Nodes on the top represent each of

the four literals, and nodes on the bottom represent each of the two clauses.

Assuming that this graph-based representation will be used for building the architec-

ture of the NN, it could be parameterized by simply two vectors related to literals/clauses

(Linit,Cinit). Also, considering that a message-passing approach is used for the NN, the

multi-layer perceptrons (MLP) could be (Lmsg,Cmsg,Lvote), and as a special form of recur-

rent NN (RNN), there exists two layer-norm long short-term memory (LSTM) networks for

literals and clauses (Lu,Cu) [72]. Considering nv as the number of variables and nc as the

number of clauses in a SAT problem, to model it to be solved using the iterative structure

of the MPNN, at every time step t, the NN has a matrix L(t) ∈ R
2nv×d whose ith row

contains the embedding2 for the literal li and a matrix C(t) ∈ R
nc×d whose jth row contains

the embedding for the clause cj , which are initialized with Linit and Cinit respectively.

Using this formal definition, a single operation of voting (one iteration of message pass-

ing) consists of applying the following two updates, in which M is the (bipartite) adjacency

2The row corresponding to a clause/literal referred to as the embedding of that clause/literal.
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matrix defined by M(i, j) = 1 if {li ∈ cj}, Flip is the operator that takes a matrix L

and swaps each row of L with the row corresponding to the literal’s negation, and both

Lt
h ∈ R

2nv×d and Ct
h ∈ R

nc×d as the hidden states for Lu and Cu respectively, which

initialized to zero matrices:

(Ct+1, Ct+1
h )← Cu

(
[Ct

h,M
�Lmsg(L

(t))]
)

(4.1)

(Lt+1, Lt+1
h )← Lu

(
[Lt

h, F lip(L(t),MCmsg(C
(t+1))]

)
(4.2)

In this model, each iteration consists of two stages. First, each clause receives messages

from its neighboring literals and updates its embedding based on the current embeddings

(Fig.4.2a). Next, each literal receives messages from its neighboring clause as well as from

its complement and updates its embedding based on the current embeddings (Fig.4.2b). By

using this scheme, after T iterations, it could compute L
(T )
∗ ← Lvote(L

(t)) ∈ R
2nv , which is

a single scalar representation of the vote for each literal, and then computes the average of

the literal votes y(T ) ← mean(L
(T )
∗ ) ∈ R. This vote could be used as a parameter to show

the confidence rate (CR) of the prediction provided by the NN.

Fig. 4.3 provides a better representation to understand how iterative-based MPNN

could be used to predict and guess the satisfying assignment for a SAT problem with a

scalar representation of the vote (CR). It illustrates the sequence of literal votes for 24

iterations L
(1)
∗ to L

(24)
∗ ,

(
L
(T )
∗ ← Lvote(L

(t))
)
, as the NN runs on a SAT problem. As shown

in Fig. 4.3, to clarify the voting of each literal, L
(T )
∗ is reshaped to be an R

nv×2 matrix

so that each literal is paired with its complement (the ith row contains the scalar votes for

xi and x̄i). As shown in Fig. 4.3, for iterations at the early stages, almost every literal is

voting UNSAT with low confidence (light blue). Then, a few scattered literals start voting

SAT for the next few iterations. However, it is not dominant to affect the mean vote. In

most cases with a sudden change, there is a phase transition, and all the literals (and hence

the network as a whole) start to vote SAT with very high confidence (dark red). After
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Figure 4.3: The Sequence of Literal Votes in the MPNN

Adopted from [71].

(a) (b) (c) (d)

Figure 4.4: Extracting the Satisfying Assignment using 2-Clustering K-means.

this phase transition, the vote for each literal converges, and the network does not need to

continue evolving.

As shown in Fig. 4.3, most of the variables have one literal vote distinctly darker (higher

confidence rate) than the other. Also, the dark votes have all approximately the same color

tone, and the same color tone could be seen for light votes. Based on this distinguishable

coloring, it turns out that there exists a meaningful relationship between the satisfying

assignment and these patterns (Darker votes are 1 s and Lighter ones are 0 s). However, to

have a more reliable decoding solution, it could be translated using a 2-clustering mechanism

calculated by the k-means algorithm [73]. As shown in Fig. 4.4, applying 2-clustering on the

literal votes in each iteration (Lt) helps to distinguish between 0s and 1s to correctly extract

the satisfying assignment (blue and red dots denote literals set to 0 and 1, respectively).
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Figure 4.5: NeuroSAT’s success rate on SR(n).

A key observation of the NN usage for solving SAT problems is that it can solve SAT

problems that are far larger than the models used during training. This is when the NN

runs more iterations of message passing leading to find the satisfying assignment. As an

example, Fig. 4.5 shows the success rate of the NN on SR(n)3 for a range of n as a function

of the number of iterations T . The NN is only trained on SR(U(10, 40)) (the number of

variables n is uniformly sampled from between 10 and 40 during training), however, as

shown in Fig. 4.5, even though it is trained on SR(40) and below, it solves SAT problems

sampled from SR(n) for n much larger than 40 by simply running for more iterations.

The observation that NeuroSAT can solve problems that are substantially larger and

more difficult than it ever saw during training (by simply running for more iterations),

motivates us to engage an MPNN to examine the effectiveness of this form of the solver for

de-obfuscation purpose, particularly while there exists hard-to-be-solved structures in the

locked circuit.

3SR(n) is a distribution over pairs of random SAT problems on n variables, in which one element of the
pair is satisfiable, the other is unsatisfiable, and the two differ by negating only a single literal occurrence
in a single clause.
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4.3 NNgSAT:A NN guides The SAT Attack

As its name implies, in NNgSAT, getting inspired from NeuroSAT, a message passing neural

network (MPNN) has been engaged and trained on the specific SAT problems obtained from

logic locked circuit to be used as a guide for the SAT solver within the SAT attack. Given

the SAT attack algorithm illustrated in Algorithm 1 in Chapter 2, to get the benefit of the

MPNN, after being trained using the generated data set(s), the MPNN-based SAT solver

is called in parallel with the actual SAT solver per each SAT iteration. Fig. 4.6 provides

an overview of the major steps in the NNgSAT attack. As can be seen, most steps are

similar to the traditional SAT attack. However, per each iteration, after updating the CNF

of miter+constraints, and adding the new double-circuit for finding the new DIP, both the

SAT solver and MPNN-based SAT solver will be called in parallel to solve the updated CNF.

Based on a pre-defined threshold time (SATtimeth), if the actual SAT solver could find the

satisfying assignment before SATtimeth, the MPNN-based SAT solver will be skipped, and

for the next step both solvers will be called again. However, in those cases that the SAT

solver could not find the satisfying assignment within SATtimeth, a part of the predicted

satisfying assignment by the MPNN-based SAT solver, which have the highest literal votes

(CR), will be extracted as a new (guiding) learned constraint, to help the actual SAT solver

for finding the precise satisfying assignment.

Since the MPNN-based SAT solver is called in parallel with the actual SAT solver, after

SATtimeth, we assume that T iterations of the MPNN-based SAT solver is executed (T

times of message passing). As shown in Fig. 4.6, in MPNN-based SAT solver, for a CNF

with nc clauses and nv variables, set of clauses (C) and set of literals (L) will be initialized

with nc clauses and 2nv variables (nv variables + nv negated variables). Then, similar to the

NeuroSAT, for T iterations of message passing, C and L would be updated in two stages:

(1) clause updating: based on the current embeddings of the literals it contains (∀c, c ←
Cu(c,

∑
l∈c Lmsg(l)), (2) literal updating: based on the current embeddings of the clauses it

occurs in, plus the current embedding of its negation (∀l, l ← Lu(l,
∑

l∈cCmsg(c), l̄). Also,
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Figure 4.6: The Major Steps of NNgSAT Attack.

to have better convergence, a nc × 2nv sparse matrix G has been used, in which Gi,j=1

if and only if the ith clause contains the jth literal. Similar to NeuroSAT, the Flip(L)

function swaps the first half of the rows of a matrix (L) with the second half. Also, to

acquire better projection, after T iterations, the NN flops L to proceed the prediction. The

Flop(L) function concatenates the first half of the rows of a matrix with the second half

along the second axis. Then, the flopped L followed by a projection (Vproj as an MLP, to

project into an nv-dimensional vector for completing the prediction (scalar vote)).

In NNgSAT, the number of message passing operations (the MPNN iterations) depends

on the value of SATtimeth and scalar vote (CR). We assumed that when we reach at

time=SATtimeth, T iterations have been done in the MPNN. However, it might be possible

that after T iterations of the MPNN, the prediction is UNSAT or even SAT with low CR.
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Hence, to avoid misguiding the SAT attack, more iterations are also required in MPNN-

based SAT solver. Hence, to not lose the chance of solving by the actual SAT attack and to

continue using the MPNN, we do not stop any of the solvers (either actual or MPNN) after

SATtimeth. Instead, we define a few thresholds for the scalar vote (CR) in the MPNN.

When we reach each threshold, we extract the prediction provided by the MPNN, and use

those variables that have the highest scalar vote (CR) as a guided constraint. Then, we

run a new actual SAT solver learned by the miter+constraints extracted from all previous

iterations (successfully done), as well as guided by the MPNN. Hence, based on the pre-

defined confidence thresholds, a few instances of the actual SAT solver would be run in

parallel after SATtimeth, each is guided by different constraints predicted by the MPNN

with different CR. Amongst all actual SAT solvers executing in parallel, the first actual

SAT instance that returns SAT, will be used as the solution for the current SAT iteration,

all others will be skipped.

Figs. 4.7, 4.8, and 4.9 show three different scenarios in NNgSAT w.r.t. the parallel

SATs. In Fig. 4.7, after SATtimeth, the CR is less than the first (minimum) CR threshold

(vt1). So, we continue running both to see which solver reaches the next state. In this

case, even before reaching the first CR threshold (vt1), the actual SAT was able to find the

result. So, we skip the MPNN, and the SAT attack goes to the next SAT iteration. In

Fig. 4.8, after SATtimeth, the CR is still less than the first (minimum) CR threshold (vt1).

However, before finding the SAT assignment by the main actual SAT solver, the MPNN

reaches the first CR threshold (vt1). When the MPNN reaches a CR threshold, it generates

a prediction as a SAT assignment, and variables with the highest CR (Those variables with

CRbit >90%) will be extracted as a set of the learned clause. Then a new actual SAT solver

(the second instance) will be started guided by the extracted learned clause acquired by the

MPNN. Now, two actual SAT solvers and MPNN execute simultaneously, and in this case,

after a while, the second SAT instance that was guided by the MPNN were able to find

the SAT assignment far sooner, and two other instances (the first actual SAT solver and

MPNN) will be skipped. Similar scenarios are demonstrated in Fig. 4.9, where the third
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Figure 4.7: Parallel Execution in NNgSAT with Different Scalar Votes - Scenario 1.

Figure 4.8: Parallel Execution in NNgSAT with Different Scalar Votes - Scenario 2.

SAT solver returns faster.

It should be noted that in the MPNN-based SAT solver, there is no dependency between

the learned parameters and the size of the SAT problem. However, since the SAT attack

iteratively adds a new double circuit, as well as a lot of learned clauses found in the previous

iteration, the size of the SAT problem, would be increased extremely, which makes it very

memory-intensive. Hence, to query the MPNN with more scalability, building the sparse

matrix G would be based on a limited number of non-eliminated variables and clauses.

Although we would like to pass all clauses/variables to the MPNN, in many cases, the

problem would not fit into the available memory. Hence, we traverse the learned clauses

in ascending size order, collecting part of them that does not exceed a fixed cutoff. Also,
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Figure 4.9: Parallel Execution in NNgSAT with Different Scalar Votes - Scenario 3.

we only query the MPNN on random subsets of the clauses for problems that exceed the

cutoff.

Since both SAT/UNSAT will happen in each SAT attack, the MPNN should be able

to predict UNSAT as well. To help construct proofs for UNSAT problems, the MPNN

that has been trained on a large dataset, in which every unsatisfiable problem contains a

small contradiction, learns to detect these contradictions instead of searching for satisfying

assignments. Then, the variables involved in the contradiction can be extracted and enable

constructing a resolution proof more efficiently. The NN cannot predict that a SAT problem

is UNSAT with high confidence, and it almost never guesses SAT on an UNSAT problem.

It only predicts SAT, once it has found one satisfying assignment. Hence, it could be

considered as a certificate of satisfiability.

4.3.1 Training Dataset Generation

With extensive analysis, we observe that our proposed NN-based SAT attack works best if

the NN is trained in two phases. First, the NN needs to be initially trained using simple and

small random SAT problems with single-bit supervision to learn how distinguishing between

SAT and UNSAT. Also, with a minor change compared to the NeuroSAT, as illustrated in
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Table 4.1: Specifications of the Modified ( m) Benchmark Circuits.

Circuit # PIs # POs # Gates # Mults # Crossbars # LUTs # AND-trees

c2670 m 287 161 5,793 1 of 12×14, 1 of 18×18 1 of 24×20 4×LUT-6, 2×LUT-8 2×AND-16

c3540 m 87 47 7,605 2 of 7×10, 1 of 20×16, 1 of 18×22 1 of 18×15, 1 of 20×16 4×LUT-5, 3×LUT-8 2×AND-15, 1×AND-26

c5315 m 206 152 10,851 3 of 11×14, 1 of 12×22 2 of 19×14, 1 of 36×30 6×LUT-4, 2×LUT-6, 2×LUT-7 1×AND-32

c6288 m∗ 85 74 7,378 1 of 20×25 3 of 9×9, 1 of 12×15 2×LUT-8, 1×LUT-9, 2×LUT-12 4×AND-22, 1×AND-52

c7552 m 224 121 12,722 1 of 12×18, 1 of 22×26 2 of 15×15, 1 of 30×36 3×LUT-6, 1×LUT-15 2×AND-15, 3×AND-27

b14 m 289 308 20,407 2 of 8×12, 2 of 12×14, 1 of 36×34 2 of 26×22 2×LUT-11 2×AND-16, 1×AND-44

b15 m 488 526 19,348 1 of 29×25 1 of 30×32, 1 of 36×36 2×LUT-11, 1×LUT-16 3×AND-33, 1×AND-36

b17 m 1452 1512 47,972 2 of 17×21, 1 of 18×22 1 of 26×22, 1 of 32×30 4×LUT-6, 2×LUT-12 2×AND-42

b20 m 527 516 38,856 1 of 8×12, 1 of 32×26 1 of 24×26, 1 of 60×64 2×LUT-11, 1×LUT-14 1×AND-12, 1×AND-48

b22 m 767 757 35,658 1 of 12×14, 2 of 11×11, 1 of 14×18 2 of 17×14, 1 of 24×22 4×LUT-5 1×AND-16, 4×AND-29

∗: c6288 contains 16×16 multiplier by itself.

Fig. 4.6, the network is not only fine-tuned using single-bit supervision, but it also followed

by training with a single set of hyper-parameters as a coarse heuristic that broadly assigns

higher CR to selected variables [74].

Then as the second phase of the training, the NN is trained specifically for a set of only

small-size circuits that contain small-size of the complex structures, listed as follows:

1. n×m bit-wise multiplier built by AND/XOR trees (m,n ≤ 8).

2. n×m crossbar network built by 2-to-1 MUXes (m,n ≤ 16).

3. n−input look-up-tables (LUT) built by 2-to-1 MUXes (n ≤ 8).

4. n-to-1 AND-tree structures, built by AND2 (binary-tree).

We insert these structures into the circuit as a part of the original circuit, as well as

a part of the obfuscation module (key-programmable crossbars or LUTs). The sizes that

are selected for this phase of the training must be small enough to make them solvable

by the traditional SAT attack. Also, to maximize what is learned by the network from

these special structures, we engage circuits as simple as possible. To do that, we add these

structures into a circuit that only contains wires connecting outputs to the inputs. In fact,

this dataset only consists of these structures.
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4.4 NNgSAT Performance Evaluation

To investigate the performance and effectiveness of NNgSAT, we selected and used large

circuits from ISCAS-85 and ITC-99 benchmark suite, as summarized in Table 4.2. For the

neural network, we used NeuroSAT with minor changes in training and message passing

calculations described in Section 4.3. To compare the results of NNgSAT with the actual

SAT attack, we use the traditional SAT attack [1]. We also use MiniSAT as the SAT solver

of both traditional SAT and NNgSAT. The timeout has been set to 2×105 seconds (∼ two

days). All experiments have been done on a Dell PowerEdge R620 equipped with 28-core

Intel Xeon E5-2670 2.50GHz and 64GB of RAM.

For the training phase, we built two different training datasets. First, as initial training,

to force the network to learn problems substantive, we define a distribution SR(n) over

pairs of random SAT problems, where one element is SAT, and the other is UNSAT, and

they differ by negating only a single literal occurrence in a single clause. After fine-tuning

over these pairs, it is also trained on a single set of hyper-parameters as a coarse heuristic

that broadly assigns higher CR to selected variables, and training is done using ADAM

optimizer [75] with a constant learning rate of 10−4. Second, we built 20,000 obfuscated

circuit samples (based on the small sizes from Section 4.3.1), each obfuscated using key-

programmable LUTs/crossbars and solved by the actual SAT solver. Then, we train the

NN based on the output of the actual SAT solver per each iteration.

To show the effectiveness of NNgSAT on complex structures, we modify the selected

benchmark circuits by embedding some large-size complex structures into the design. To

test the efficacy of the NNgSAT in finding satisfiable assignments in real-circuits, we then

embedded larger-than-trained structures into the raw benchmark circuits as follows:

1. n×m bitwise multipliers built by AND/XOR trees (8¡m,n¡32).

2. n×m crossbar network built by 2-to-1 MUXes (16¡m,n¡36).

3. n−input look-up-tables (LUT) built by 2-to-1 MUXes (n¡16).
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Table 4.2: Specifications of the Raw Benchmark Circuits

Circuit: c2670 c3540 c5315 c6288∗ c7552 b14 b15 b17 b20 b22

# of Inputs 233 50 178 32 207 277 485 1452 522 767

# of Outputs 140 22 123 32 108 299 519 1512 512 757

# of Gates 1,193 1,669 2,307 2,416 3,513 9,014 8,367 36,770 19,682 29,162
∗: c6288 is a 16×16 multiplier by itself.

4. n-to-1 AND-tree structures, built by AND2 (binary-tree).

By using these structures, we built new and modified benchmark circuits to be evaluated

using NNgSAT, as described in Table 4.1. As shown, for each design, 1,2, or 3 multipliers

with different sizes, 1, or 2 crossbars, few LUTs, and AND-tree(s) have been inserted to

be considered as a part of the original design. It is worth mentioning that in a few cases,

particularly for smaller circuits, since the wiring is limited, we had to add extra primary

inputs/outputs into the design to provide the required nets. A comparison between the

original circuits listed in Table 4.2 and modified ( m) ones listed in Table 4.1 shows that

some of the modified circuits have more PI/PO. Furthermore, these modules are embedded

with the highest conservation to avoid emerging any form of incompatibilities, such as

avoiding the creation of nonsense logic function, bypass logic, and combinational cycles. It

should be noted that the size of these structures must be large enough to be considered as

hard-to-be-solved instances. On the other hand, the size must be small enough to keep the

overhead less than the acceptable overhead threshold (e.g. %5-%10)4.

After building the modified benchmark circuits, one more step is the obfuscation to

be assessed by NNgSAT. For obfuscating the benchmark circuits, we also used the key-

programmable form of these structures. We insert large-size LUTs5 and key-programmable

crossbars with different sizes. More precisely, crossbars with size 18×16, 24×18, and 36×30,
as well as LUTs with 10 and 12 inputs are added into the design.

4Although these structures incur up to 5× overhead in the benchmark circuits, in the real applications,
such as well-known microprocessors, the overhead of these structures would be less than %5.

5For LUTs, the configuration bits are assumed as the key inputs.
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Table 4.3: Execution Time Comparison between NNgSAT and the SAT Attack.

Circuit: c2670 m c3450 m c6288 m c7552 m

Attack: NNgSAT SAT NNgSAT SAT NNgSAT SAT NNgSAT SAT

1C18×16, 4LUT10 1607.8 3858.6 1205.7 1205.7 3055.7 timeout 2490.5 2490.5

2C18×16, 2LUT12 7207.4 timeout 4184.7 timeout 3112.9 timeout 8679.2 timeout

1C24×18, 4LUT10 2494.7 12029.1 4284.5 4284.5 1285.1 timeout 2570.7 16372.8

2C24×18, 2LUT12 5670.8 timeout 5991.6 5991.6 2976.1 timeout 7708.4 timeout

1C36×30, 4LUT10 6850.7 23074.5 5573.9 timeout 2403.3 timeout 6189.5 21688.8

2C36×30, 2LUT12 5034.7 timeout 6408.3 timeout 3606.6 timeout 11684.8 timeout

2C18×16, 2C24×18 7920.7 timeout 6270.8 18604.4 1967.2 timeout 5608.5 12685.8

2C18×16, 2C36×30 8134.8 timeout 6303.1 timeout 3007.2 timeout 6122.7 timeout

2C24×18, 2C36×30 8507.3 timeout 7190.8 timeout 4622.9 timeout 8642.8 timeout

Circuit: b15 m b17 m b20 m b22 m

Attack: NNgSAT SAT NNgSAT SAT NNgSAT SAT NNgSAT SAT

1C18×16, 4LUT10 4661.8 4661.8 2207.4 timeout 2764.9 11706.6 7294.7 timeout

2C18×16, 2LUT12 13212.9 timeout 10766.2 timeout 12647.1 timeout 7554.6 timeout

1C24×18, 4LUT10 7206.4 12473.8 5622.1 timeout 9223.7 timeout timeout timeout

2C24×18, 2LUT12 11382.4 timeout 10684.5 timeout 10700.5 timeout 14382.8 timeout

1C36×30, 4LUT10 7681.1 timeout 9034.8 timeout 9927.8 timeout 11042.1 timeout

2C36×30, 2LUT12 4896.4 timeout 7221.5 timeout 10082.8 timeout 11894.7 timeout

2C18×16, 2C24×18 6672.3 timeout 4956.7 timeout 5501.2 timeout 5974.6 timeout

2C18×16, 2C36×30 9501.8 timeout 6079.3 timeout 6442.6 timeout timeout timeout

2C24×18, 2C36×30 timeout timeout 12820.3 timeout timeout timeout 10941.5 timeout

∗ timeout = 2×105 Seconds.
+ ncCm×n = nc crossbars with size m× n controlled by the key.
+ nlLUTn = nl LUTs with n inputs configured with the key.

Table 4.3 illustrates the average execution time of the traditional SAT attack [1] and our

proposed NNgSAT on obfuscated benchmark circuits. As shown, in many cases, the original

SAT attack fails to extract the satisfying assignment(s) within the allowed time threshold

when a large-size of such complex structures are in place. However, after being trained over

single-bit supervision and hyper-parameters and expanding the training over only small-size

complex structures, NNgSAT could break almost all obfuscated circuits within a few hours.

Also, NNgSAT is affected far less by the size of the circuit or the size of the obfuscation

module, showing that correctly being trained, the network could also improve itself for

especially large circuits that never saw during the training. Besides, unlike accelerated SAT

solutions (e.g. parallelism of SAT) that linearly improve the performance, in almost all

cases, the NNgSAT improvement is super-linear.

In some cases, the execution time of the traditional SAT attack and that of NNgSAT
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Figure 4.10: The Impact of Confidence Rate on the Success of MPNN predictions.

is equal. This shows that in a non-negligible part of SAT iterations, the network might

not provide useful guidance for the actual SAT attack. Hence, when the execution time is

identical, it means that none of the network’s predictions was helpful for the SAT attack

for that case and within N SAT iterations. Also, since the neural network guidance is

prediction-oriented, due to misguiding that will happen in a few cases, regardless of the size

of the circuit, the performance of NNgSAT might be varied.

This observation shows that the predictions could be categorized based on their effec-

tiveness: (1) guiding prediction that correctly guides its corresponding SAT solver to find

a SAT assignment, (2) misguiding prediction that incorrectly guides its SAT solver to an

UNSAT, (3) skipped prediction that are skipped/terminated because one of the parallel SAT

solvers on this problem found a solution. The ratio of each category is dependent on the
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Figure 4.11: SAT Parallelism Efficiency on Success Rate and Speedup of NNgSAT.

CR we choose for each run. Fig. 4.10 shows the distribution of two first categories6 based

on different values of CR. As shown in Fig. 4.10(a, b), when we start the prediction with

lower average CR, the rate of misguiding prediction is considerably higher. The predictions

help more when the average confidence ratio is 0.7< CR <0.9. Hence, as shown in 4.10(c,

d), to get the most benefit of the network, CR must be 0.7< CR <0.9.

As we discussed previously, based on the CR, a different number of parallel SAT solvers

guided by the MPNN would be executed. To examine the impact of the number of parallel

SAT executions on the performance of NNgSAT, we compare the NNgSAT runtime for

different numbers of parallel executions over different CR ranges. Fig. 4.11 shows that

when we set the CR on a higher range (e.g. 0.8-0.99), as discussed previously, it requires

more message passing to guide the SAT. Hence, the performance of the higher ranges will

be decreased. However, when we use more cores, it could help to improve the speed-up.

On the other hand, for higher ranges, the success rate is not considerably higher. For CR

0.8-0.99, the success rate is only 5% higher than that of CR 0.7-0.9. However, since for

0.7< CR <0.9, it is less restricted, the performance is significantly higher78. Hence, the

6Due to the parallelism, there are some SAT solvers per each iteration, in which only one might find the
SAT assignment and all others must be skipped. Hence, the ratio of skipped prediction is far higher and
omitted from Fig. 4.10

7For CR 0.65-0.85, although it is less restricted than CR 0.7-0.9, the performance is lower because in
many cases, the prediction is misguided leading to UNSAT.

8All the results and the speedup reflected in Fig. 4.11 are for those cases in which both attacks, the
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number of cores is set to 8, and CR is 0.7-0.9 to have the best tuning for the NNgSAT.

Based on these observations, to gather results for Table 4.3, we used 8 cores (8 different

CRs) and the CR range is set to 0.7-0.9.

4.5 What we Learnt in this Chapter

In this Chapter, we proposed a neural-network-guided SAT attack, called NNgSAT attack,

which uses a Message Passing Neural Network to predict satisfying assignments that could

help and significantly speed up the conventional SAT attack in solving the design that con-

tains complex hard-to-be-solved structures. Our experimental results showed that NNgSAT

could de-obfuscate 93.5% of the logic circuits locked with or contained complex structures

within a reasonable time, while the original SAT attack fails to de-obfuscate them.

traditional SAT and NNgSAT, successfully de-obfuscate the locked circuits. This cannot be used as the
total speedup of NNgSAT vs. the traditional SAT because for many cases NNgSAT solves problems that
were not solvable by the traditional SAT, and in these cases, the speedup cannot be calculated.
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Chapter 5: Data Flow Obfuscation: A new Paradigm for

Obfuscating Circuits

Comparison of the state-of-the-art logic locking techniques show that a reliable logic obfus-

cation technique must provide TWO main features: (1) the logic locking technique must be

resilient against different attacks, including both combinational and sequential SAT attack;

(2) it should be added without compromising the test flow. Table 5.1 summarizes almost

all state-of-the-art logic locking techniques, each suffering from a big shortcoming. As we

discussed in Chapter 2, although numerous logic locking countermeasures have been intro-

duced after the SAT attack, many of them are vulnerable to newer attacks, e.g. removal,

bypass, and functional analysis attack. Since the SAT attack is only applicable to combina-

tional circuits (sequential circuits with open access to the scan chain), many recent studies

have investigated the possibility of blocking/obfuscating the scan chain. However, these

solutions inflict significant limitations, such as compromising test flow. In this Chapter,

we introduce data flow obfuscation [76], which could be considered as a new logic locking

paradigm. In data flow obfuscation, by benefiting from the handshaking mechanism of

asynchronous circuits, the system’s FFs/latches will operate out of sync. So, the sequential

SAT attack is no longer applicable to a data flow obfuscated circuit. Also, due to the in-

herited asynchronicity, the exact time of writing/capturing data into/from the scan chain

becomes hidden. Hence, the SAT attack cannot be applied even while scan chain access is

open.

5.1 Combinational De-obfuscation

In Table 5.1, for categories known as pre-sat, point function, cyclic and behavioral, and

routing-based obfuscation, an important threat model assumption is that the attack model
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Table 5.1: Comparison of State-of-the-art Logic Obfuscation Techniques.

Category
Defense

Corrupt
Attacked by Overhead

Test/Implementation Issues

ibility
Limitation

Test Test
Complexity Time

Pre-SAT
RLL [16]

high
Sensitization [18], SAT [1]

low NO change NO change lowFLL [37] SAT [1]
SLL [18] SAT [1]

Point Function

SARLock [22] low Different Attacks [24,25,40] low

NO change NO change low
Anti-SAT [21] low Different Attacks [24,25,40] low
SFLL [23] variant FALL [26] moderate

+ Primitive (Compound) high Different Attacks [24,27,39,40] low

Cyclic Cyclic [43]
high

CycSAT [44], icySAT [46]
high NO change NO change lowand SRCLock [28] SMT [77]

Behavioral DLL [31] SMT [77]

Routing Cross-lock [32]
very high

NNgSAT [78] very high
NO change NO change lowObfuscation Full-Lock [33] NNgSAT [78] very high

Blocked EFF+RLL [47]

high

Different Attacks [3, 53,54] low NO change NO change low
or Locked R-DFS+SLL [5] Different Attacks [48,53,54] moderate test coverage NO change low
Scan MSSD+RLL [48] Shift&Leak [48,49] moderate test coverage key init high
Chain DynScan+SLL [57] Scan Unlock [3, 4] high trusted tester NO change low

Data Flow Obfuscation high NO Attack low NO change NO change low

is oracle-guided. In an oracle-guided attack model for combinational de-obfuscation , as

previously described in Chapter 2, the adversary has access to an unlocked/activated chip

(oracle) with open scan chain access, as well as the reverse-engineered yet locked netlist.

In the SAT attack, for any arbitrary obfuscated combinational logic (ccomb lock), by getting

inspiration from themiter circuit used in formal verification, a (distinguishing)miter circuit

has been built as miter ≡ ccomb lock(dip, k1) �= ccomb lock(dip, k2), which returns a specific

discriminating input pattern (dip) that produces different output for two different keys k1

and k2. Then, this dip is queried on the oracle, ccomb, eval ← ccomb(dip) and the I/O-

constraint ccomb lock(dip, k1) = ccomb lock(dip, k2) = eval is stored back in the SAT solver

and the miter circuit would be solved again. When the miter + constraints problem has

no longer satisfying assignment, it could identify the correct key.

5.2 Sequential De-obfuscation

Since the SAT attack is only applicable when the access to the scan chain is open, the studies

in blocked or locked scan chain category evaluate the security of primitive logic obfuscation
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techniques [16, 79] while the access to the scan chain is blocked/locked. In this case, the

adversary has only access to the PI/PO, and PO would be a function of PI and the state

of the circuit, which makes it impossible for the SAT attack to formulate it at once.

As previously described in Section 2.6.12 of Chapter 2, to still exploit the combinational

SAT attack while the scan access is restricted, few recent studies have engaged unrolling

or BMC as a pre-processing step to formulate the sequential obfuscation using the com-

binational SAT attack [3, 4, 53, 54]. As shown in Fig. 5.1, the adversary unrolls the se-

quential circuits τ times. A τ -time unrolled circuit is an equivalent combinational model

of a sequential circuit for τ clock cycles. It takes in τ input patterns (as a sequence), and

produces τ outputs, while the intermediate states are cascaded 1. After unrolling, similar

to the combinational de-obfuscation, the SAT attack would find the sequences of inputs

(i0, i1, i2, ..., iτ−1), called distinguishing input sequence (dis) with two different keys k1 and

k2 such that the outputs (o0, o1, o2, ..., oτ−1) will differ. Every time the unrolled miter be-

comes unsatisfiable at some depth d (no more dis), the adversary extends the unrolling

until a termination condition is satisfied. Termination conditions are unique completion

(UC): when there is only one key that satisfies the I/O-constraints for unrolled circuit

(correct key); combinational equivalence (CE): where the transition function is com-

binationally equivalent between two duplicated circuits with two keys (k1 and k2) (shadow

key), and unbounded model check (UMC): if a call to an unbounded model checker (τ

= ∞) concludes that the result is invariant in the reachable statespace [53, 54].

The point is that the unrolling step relies on the synchronicity of FFs in the obfuscated

sequential circuit. When the sequential circuit is synchronous, moving forward from any

arbitrary clock cycle to the next one (cycle t→ t+1) updates the FFs only once at positive

(negative) edges of the clock signal. Hence, in the unrolling step, the combinational parts

would be replicated only once per each clock cycle. But, for circuits and systems that

asynchronously control the data flow in the circuit, the unrolling-based SAT or BMC faces

1Similarly, model checking could be used to check the satisfying assignment in a sequential (transition)

system. A model checker with bounded depth corresponds to bounded model checking (BMC) and an

unbounded one to unbounded model checking (UMC).
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Figure 5.1: Sequential Circuit vs. its Combinational Counterpart (τ Cycles).

a big obstacle during the unrolling step to build the equivalent combinational model for a

specific number of clock cycles.

5.3 Asynchronicity

To asynchronously control the data flow in a circuit (partially or fully), one could adopt

the asynchronous circuit paradigm. The asynchronous circuits have multiple advantages

over synchronous circuits, particularly for newer technology nodes, such as no clock skew

problems, robustness towards process variations, as well as advantages in terms of power

consumption and electromagnetic emissions [80].

For two main reasons, most designers consider asynchronous circuits as a perilous ap-

proach: (1) the lack of electronic design automation (EDA) tools, and (2) opposition to

change designers’ mentality towards asynchronicity. However, the ever-increasing atten-

tion on these circuits results in introducing powerful synthesis and verification tools for

asynchronous circuits [81–83]. It allows any designer to non-disruptively incorporate asyn-

chronicity in an EDA flow, and there is no need for the designer to change the synchronous

mentality/structure. As an instance, AnARM is an ultra energy-efficient asynchronous

ARM processor that is successfully implemented and fabricated using the STMicroelectron-

ics 28nm technology, using standard cells and conventional CAD tools while achieving a

59% improvement in energy when compared with the ARM Cortex-A7 [84]. As of today,

widespread application of asynchronous circuits could be seen in IoTs, NoCs, mixed-signal

circuits, etc. [85, 86].
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5.4 from Synchronicity to Asynchronicity

Signal transition graph (STG) is the formal specification of the asynchronous circuits, which

is used in most asynchronous synthesis and verification tools [87]. The STG could be drawn

from scratch by the designer based on the specification of the design. However, one could

use the desynchronization paradigm that generates the equivalent asynchronous model of

any synchronous circuit. By providing formal proofs of correctness based on the theory of

Petri nets [88], the desynchronization [89] provides a fully automated flow for building the

flow-equivalent asynchronous counterpart.

To build the flow-equivalent asynchronous model of any synchronous circuit using desyn-

chronization, as shown in Fig. 5.2, after removing the clock signal, FFs would be replaced

with master (M) and slave (S) latch pairs. All latch enable signals (en) must be controlled

using new macros, called asynchronous latches controllers, which uses a handshaking struc-

ture (req, ack) to emulate FFs’ behavior. For example, in four-phase handshaking, as the

most prevalent handshaking protocol, φ1 is enabling req by a sender for the a valid data.

φ2 is enabling ack by the receiver, acknowledging the arrival of the new data. φ3 is lowering

(disabling) previous req, and finally φ4 is lowering the corresponded ack. Handshake signals

are not related to a global clock and are based on the local, relative timing relationships

between the opening and neighboring latch enable signals. Also, during desynchronization,

delay elements must be added per each combinational logic (CL) to mimic the delay of all

timing paths and asynchronous latch controller. Also, the first/last latches of the asyn-

chronous part (m1 and s3 in Fig. 5.2b) that are dealing with other (synchronized) parts of

the circuit will be handled by some controlling signals, e.g. a specific state of the circuit,

or controlling signals like FFs enables.

It is also worth mentioning that all latches are operating based on their controllers. By

using desynchronization, one latch will be enabled when tokens are ready, and will be dis-

abled after receiving the ack corresponded to the new data (lowering req). It will prevent
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(a) Synchronous Circuit

(b) Desynchronized Circuit

Figure 5.2: Synchronous to Asynchronous Conversion.

extra propagation when inputs of the latch change, which avoids increasing power consump-

tion. Furthermore, latches controllers are the only added parts when the desynchronization

is accomplished; However, we show that since the proposed solution is required to be ac-

complished on a small part of the circuit, it does not incur large area/resource overhead.

5.5 Desynchronization

Three main steps of the Desynchronization, which provides a fully automated methodology

to build the flow-equivalent asynchronous model of any synchronous circuit are: (1) Con-

verting FFs to M and S latches, with decoupled enable signals (e.g. in Fig. 5.2b FFi is

replaced with Mi and Si whose controllers are mi and si). (2) Matched delays generation

for combinational logics (CLs), based on their timing path delays. (e.g. d1−4 are matched

delay for FF1−4 to mimic the delay of their timing paths as well as the delay of each

asynchronous latch controller (m1−3 and s1−3)). (3) Implementation of the asynchronous

controller of each latch, e.g. ctrls in Fig. 5.2b, based on the data flow dependencies in the

original netlist.
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In step 1, after replacing FFs with latches, re-timing is often used as a performance

improvement technique [90]. By using re-timing, latches are moved across CLs (e.g. M3 is

placed before CL4. S1 is placed after CL1 in Fig. 5.2).

In step 2, matched delay elements are generated for emulating the timing path delay

of their corresponding CLs. These will be connected to corresponding controllers in the

next step. In this step, the netlist is synthesized for the target cycle time TT , using a

conventional synthesis tool. The TT is captured using {TT ≥ TCQ + TC + TL}, in which

the TT is a delay between two rising edges of control signal of the latch, TCQ is the delay

of local clock propagation through a latch, TC is the delay of the CL, and TL is the latch

controller delay. By using this inequality, and based on the delay of critical paths in each

CL, these matched delays are generated. When TCs are equal in all CLs (balanced timing

paths), then the separation time between adjacent rising edges of every local clock equals

TT . Also, in any desynchronized circuit, the ith rising transition of a local clock cannot

appear later than (i− 1)× TT , showing that the temporal behaviors of the desynchronized

circuits are also similar to synchronous counterpart [89].

Step 3 implements the asynchronous controller for each latch. These controllers are

connected to the controllers of neighboring latches with the delay elements built during step

2. A variety of desynchronization models exist to implement these asynchronous controllers.

The behavior of these models can be typically specified using STG, which is a decision-free

subclass of Petri nets [88]. An STG, as shown in Fig. 5.3b, may be defined as a 3-tuple

(Φ, →, I0), where Φ is the set of events, and events are the latch enable values (high/low)

in asynchronous controllers. → corresponds to an arc, which illustrates event transitions,

and for a latch controller, it determines changes in latch enable values. I0 is the initial

marking, called token, and denotes the initial event signal states. In desynchronization, it is

crucial to properly define I0, as the initial tokens, and it is fully dependent to handshaking

protocol used for desynchronization [89]. Tokens determine which data is ready. In STGs,

as in Petri nets, these tokens could be updated (moved) based on the interaction between

different latches. For example, a signal is enabled when all its predecessor arcs are marked
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(a) Four Cascaded Latches (b) Corresponding STG

Figure 5.3: Desynchronization Model for a Pipeline Structure.

”•” are tokens (ready data). ”◦” are bubbles (not-ready data). Latches are transparent when ”en”s are

high. ”a+” means rising transition, and ”a-” means falling transition.

with a token. An enabled signal can fire, removing tokens from all its predecessors’ arcs, and

populating tokens to its successors’ arcs. For instance, Fig. 5.3a shows a part of a pipeline

with cascaded latches. Fig. 5.3b depicts an STG representing the behavior of these latches.

Over the time, based on the location of data, tokens move around determining which latch

will catch a new data. Without loss of generality, we use semi-decoupled four-phase control

for handshaking [91], which represents a good trade-off between simplicity and performance,

however, any valid desynchronization latch controller may be used instead [89].

Based on the generalization of semi-decoupled four-phase control, there are four rules

imposed on the latch control signals of the STG. Using these four rules, the designer can

specify the corresponding STG for any circuit: (1) a+ → a−: rising of each signal (each

latch enable) should be followed by falling of that signal. (2) b− → a+: For latch A (master)

to read a new data, latch B (slave) must have completed the read of previous token from

A. (3) a− → b−: For latch B (slave) to complete the reading of a data token coming from

A (master), it must first wait for latch A to complete the reading of that data token (4)

a+ → b+: For latch B (slave) to read a new data, it must wait for latch A to read that

new data token.

Considering these four rules, we now illustrate an example of the desynchronization

methodology based on semi-decoupled four-phase control for a small circuit. Fig. 5.4a is

an arbitrary synchronous netlist with three FFs. In Fig. 5.4b, all FFs are replaced with

latches subjecting to re-timing (e.g. CL4 is placed between latches C and D). Since the
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fan-out of rightmost FF in Fig. 5.4a is two, it is converted to one M , (E), and two Ss, (F

and G). After converting FFs to latches, the corresponding STG is generated based on all

four aforementioned rules (Fig. 5.4c). Then, based on the drawn STG, the corresponding

asynchronous controller for latches enables are implemented. Considering that we use the

semi-decoupled four-phase control, the circuit depicted in Fig. 5.4e must be engaged for

each latch controller. It is latch controller (left (red) one for Ms and right (blue) one for

Ss) based on semi-decoupled four-phase control. The handshaking signals between Ms and

Ss are connected directly. However, for multiple dependencies in STG (i.e. one to many

latches, or vice versa), the handshaking must be handled by merging req or ack signals

respectively. This merge is performed using C -elements, which is an event-driven AND

gate. A possible implementation is using the function Z = AB+ZA+ZB, where A and B

are the C -element inputs, and Z is its output. For example, as shown in Fig. 5.4c, latch C

is dependent on both D and G. So, in Fig. 5.4d, Ri of latch C is driven using a conjunction

of Ros of D and G using a C -element.

After implementing the asynchronous latch controller, it must be connected to the circuit

depicted in Fig. 5.4b to build the complete desynchronized counterpart of the synchronous

circuit. It is proven in [89] that: (1) A desynchronized circuit never halts (liveness prop-

erty); and (2) The sequence of data values of a desynchronized circuit are identical to its

synchronous counterpart (flow-equivalence).

Also, by using desynchronization, physical design, verification, and design for testability

can be accomplished “as is,” using conventional synchronous EDA tools [89]. For instance,

for design for testability, a low-frequency clock may be distributed to latches in test mode

[92]. For testing the asynchronous controllers, as rising and falling of reqs and acks follow

each other, in the presence of a stuck-at fault on either req or ack, either the environment

or the circuit will wait forever, and cause a deadlock, which may be easily detected during

design for testability. Circuits that have the property that they halt for all faults are called

self-testing.
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(a) A Synchronous Circuit (b) FFs→{Ms and Ss}+re-timing (c) STG Generation using semi-
decoupled four-phase control

(d) Building the Asynchronous
Controller based on its generated
STG

(e) Latch Controller (Left: Ms, Right: Ss) with matched delays (d)

Figure 5.4: Top Illustration of Desynchronization Flow.

5.6 Concept of Data Flow Obfuscation

Since the sequential SAT attack relies on the synchronous unrolling mechanism, the pre-

served flow-equivalency after desynchronization, motivates us to propose a new obfuscation

paradigm. In general, two circuits could be called flow-equivalent if there is no difference

between the sequence of values stored at each latch. The observation is done indepen-

dently for each latch. As an example of flow-equivalent circuits Fig. 5.5 demonstrates

two flow-equivalent circuits. Fig. 5.5a, shows the synchronous behavior, while Fig. 5.5b

shows the desynchronized behavior. Using this characteristic of asynchronous circuits, in

section 5.8, we show how our proposed obfuscation technique could get benefit from this
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(a) Synchronous Behaviour

(b) Asynchronous (Desynchronized) Behaviour

Figure 5.5: Timing Diagram of Synchronous vs. Asynchronous Circuits.

flow-equivalency concept to introduce a new obfuscation paradigm, called data flow obfus-

cation.

5.7 Threat Model

Similar to categories known as pre-sat, point function, cyclic and behavioral, and routing-

based obfuscation in Table 5.1, we make the following assumption about the adversary

capabilities: (1) The adversary can successfully do the reverse-engineering on the chip,

and retrieve the gate-level netlist (yet locked). (2) The adversary can purchase an acti-

vated/unlocked chip (oracle) from the market. (3) The access to the scan chain of the

oracle is not restricted. So, the adversary could apply any query to FFs using SI and read

the updated values through SO after one clock cycle (capture mode).

5.8 Proposed Data Flow Obfuscation

As discussed previously, in all existing logic obfuscation techniques, the synchronicity is kept

intact during manufacturing stages. However, due to the synchronicity, these techniques

were vulnerable to unrolling-based SAT or BMC even while the scan chain is restricted.
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It should be noted that, for the most potent attacks on logic obfuscation, there exists

a big inspiration from a formal verification method such that the attack relied on and

adopted from the verification method to successfully de-obfuscate circuits, e.g. miter circuit

in traditional SAT [1], or BMC/unrolling in sequential SAT [53]. Hence, the main aim

of this new obfuscation paradigm is to add ambiguity in a way such that it turns the

obfuscated circuit into a completely new form that cannot be modeled using any of the

existing formal verification methods. We target part of the data flow in a circuit to be

obfuscated using asynchronicity. When the asynchronicity is used in a circuit, due to the

high non-deterministic behavior, it is extremely challenging to come up with an automated

approach to establish invariance properties, which are vital in proving the correctness of a

circuit with asynchronous parts. There exist a few methods that ease the formal verification

in asynchronous parts [93, 94], helping the designers to do formal verification for datapath

of asynchronous circuits. However, to prevent any form of easing, in our proposed data

flow obfuscation, we target to obfuscate the asynchronous controllers, which is the source

of desynchronization with the self-testable feature. Also, since we assume that the scan

access must be still fully open, the proposed obfuscation must be in a way that conceals

the writing/capturing into/from the storage elements. Hence, in the proposed solution,

the controller of latches is obfuscated such that without the correct key, the temporal

characteristics of the datapath will be hidden.

5.8.1 How Data Flow Obfuscation Works?

The main steps of our proposed data flow obfuscation are:

(1) Converting the targeted synchronous part(s) of the circuit to its (their) flow-equivalent

asynchronous counterpart using desynchronization described in Sections 5.4 and 5.523.

(2) Inserting false paths into the desynchronized circuit. Each false path could be an

2The conversion could be done fully (whole circuit) or partially (part(s) of the circuit). However, targeting

and obfuscating only critical part(s) of the circuit (partially) guarantees the security at lower overhead.
3Re-timing will be done as a part of de-synchronization in data flow obfuscation. However, it might not

change the location of latches (relocation). So, we need to apply a minor relocation for some latches to avoid
any form of re-synchronization-based attack described in Sections 5.10.1 and 5.10.2.
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(a) Original Asynchronous Circuit (b) False Paths Insertion

(c) Updating the STG (d) Locked Asynchronous Ctrl.

Figure 5.6: An Example of Data Flow Obfuscation with only False Paths.

extra wiring from the output of one latch to any arbitrary combinational logic.

(3) Updating the corresponding STG based on the added false paths. For each false

path, few extra transitions with initial token must be added to the STG to reflect the

changes.

(4) Obfuscating the asynchronous latches controller circuit (based on STG w.r.t. the

new false paths) by using proposed C* -element that is a key-controlled event-driven AND

gate.

Fig. 5.6 demonstrates step-by-step implementation of the data flow obfuscation on the

circuit from Fig. 5.4a. First, the targeted parts of synchronous circuit (Fig. 5.4a) are

converted to their asynchronous counterpart (Fig. 5.6a). Then, in the desynchronized

circuit a specific number of false paths are inserted (e.g. D → CL2(E) and G→ CL1(A) in
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(a) C*-element (b) Function Bypassing

Figure 5.7: Essential Modules for False Path Insertion.

Fig. 5.6b). Since the connectivity between latches is altered, the STG should be updated

(Fig. 5.6c). Also, the changes must be reflected into the asynchronous controllers. For

instance, before adding the false paths, F was the only predecessor of A. So, Ro of F was

directly connected to Ri of A. However, after adding the false path G → A, both F and

G are the predecessors of A. Thus, a C -element must be added to merge their req signals.

The C -element here implies that latch A may only be opened whenever data from both

G and F are ready. However, for any false path like G → A, it should have no impact

on timing when the key is correct. To achieve this, we introduce a C* -element, in which

a key-controlled MUX is used to control the C -element’s inputs. As shown in Fig. 5.7a,

based on the key value, the C -element input is either {A, B} or {A, A}, and based on the

C -element’s definition, if both inputs are the same, the output will be equal to the identical

input pair: Z = AA+ZA+ZA = A, meaning that with correct key, the added false paths

will have no timing effect.

As shown in Fig. 5.6, the only obfuscated part in data flow obfuscation is the usage

of C* -elements that alters the behaviour of controllers based on the key value. However,

these C* -elements only control the timing (behavior) of latches. Hence, regardless of the

key value, each false path is connected directly to one arbitrary chosen CL, and could affect
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its functionality. For instance, for false path G→ A, regardless of the key value (k0), latch

G would affect the functionality of CL1, and the key value only controls the time of the act.

To avoid this problem, the false paths can be connected to the chosen CL as don’t cares,

or non-occurring inputs. Fig. 5.7b shows these two models for a simple circuit. As shown,

the output of all cases is the same, i.e. a ∨ b, and the added false path fp does not affect

the output in both cases. For instance, in non-occurring4, fp is ANDed with wi ∧ wj ∧ wk,

which is always ZERO, and has no impact on the logic.

5.8.2 Shortcomings of False Path Insertion

With inserting only false paths, the data flow obfuscation is, however, vulnerable to re-

synthesis and removal attack. Since the false paths are connected to corresponding CLs as

don’t care or non-occurring, they explicitly have no impact on the circuit’s functionality.

Hence, the attacker could re-synthesis the reverse-engineered netlist, and by using logic

optimization effort during the synthesis, the false paths will be removed during optimization.

Then, the adversary can find some extra elements/connections in the controller that have no

corresponding part in the datapath (already removed). So, he/she can distinguish between

the original parts and the extra logic added for the false paths in the controller and retrieve

the original circuit. So, to combat this issue, we add one more step which adding extra false

latches on false paths.

5.8.3 Adding False Latches on the False Paths

We updated and added one more step in our proposed data flow obfuscation to support

adding false latches:

(1) (Same Step) desynchronization + re-timing (relocate).

(2) (Same Step) Inserting false paths into the circuit.

(3) (New Step) Inserting false latches (M/S pairs) on the false paths + an

asynchronous controller for each added false latch to control its behavior.

4non-occurring cases can be found using SAT solver. First, few wires must be selected, then its condition
clause must be added, and solved by SAT. If SAT solver returns UNSAT, that condition is non-occurring.
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(a) Original Asynchronous Circuit (b) False {Paths+Latches} Insertion

(c) Updating the STG (d) Locked Asynchronous Ctrl.

Figure 5.8: An Example of Data Flow Obfuscation with False {Paths + Latches}.

(4) (Same Step) Updating the STG based on new insertions.

(5) (Same Step) Obfuscating the controller via C* elements.

Inserting pairs of false latches in false paths allows us to control the logic value of these

paths. So, there is no longer a need to add false paths as don’t care or non-occurring, and

the re-synthesis and removal attack is no longer a valid attack. The concept of insertion

the false {paths + latches} is visualized in Fig. 5.8. Similar to the previous example, first,

the circuit must be converted to its asynchronous counterpart (desynchronized). Fig. 5.8a

shows the asynchronous model of our simple circuit from Fig. 5.4a. After that, one false

path is added from CL2(B) to CL1(A), then a pair of master and slave latches (I and H),

are added in this path (Fig. 5.8b). Based on these changes, the STG is updated (Fig.
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5.8c). Compared to the STG of the previous example, not only new transitions are added,

the STG has new nodes describing the events of new false latches. Finally, these updates

must be reflected into the obfuscated asynchronous controller (Fig. 5.8d). Note that extra

controller modules are added for false latches. Also, the Key-controlled gates must be added

to properly control the behavior of latches H and I. When the key is correct, the added

false path must have a value that does not affect the functionality of CL1. For this purpose,

the behavior of the false latches is controlled using k0−2. So, while the k0−2 is correct (000

in this case), the AND gates mask the handshaking of H and I with their neighboring

latches. Hence, these latches are disabled (and no new data will be captured in them). So,

the initial value of these latches will be kept intact, and will be used as the new input of

CL1. In CL1, based on the initial value of these latches, this false path will be connected

to an arbitrary gate. (e.g., with initial value 0, it could be connected to an OR or XOR

gate). However, while the key is not correct, the behavior of these latches would be changed

repeatedly, resulting in corrupting the functionality of CL1.

Additionally, false {paths + latches} must not affect their neighboring latches when the

key value is correct (e.g. latches H and I must have no effect on A and B in Fig. 5.8d). This

is achieved by adding two C* -element before A and B, controlled by k3 and k4 respectively

to effectively eliminate this temporal relation (e.g. in path I → A, C* -element skips the

effect of the behavior of I on the behavior of A).

5.8.4 Key Classification

The keys added to asynchronous latches controllers, will be categorized into two main

groups: (1) handshake-in keys: keys that control the impact of incoming signals to false

latches (k0−2 in Fig. 5.8d), (2) handshake-out keys: keys that control the impact of outgoing

signals from false latches (k3−4 in Fig. 5.8d). Based on the value of these two groups,

different scenarios could happen: (1) Correct Functionality: While both groups are

correct. In this case, similar to the timing diagram depicted in Fig. 5.9a, the firing of

latches alternates appropriately. (2) Halt in data flow: While handshake-in keys are
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(a) Original Circuit (b) Locked Desynchronized Circuit

Figure 5.9: Comparison of Timing Diagram of Latch Enables.

correct, but handshake-out keys are incorrect, halts will happen (e.g., if k0−2 = 000 and

k3−4 �= 00, H and I would halt). As shown in Fig. 5.9b, after latch H controller (h) is

halted, more halts are happened in other paths and results in a complete deadlock in the

whole circuit. (3) Incorrect Functionality: While the handshake-in keys are incorrect,

regardless of the handshake-out keys, the function will be incorrect.

5.9 Security/Testability Analysis of Data Flow Obfuscation

5.9.1 Security versus the SAT Attack

Since the adversary has access to the scan chain in data flow obfuscation, he/she is able

to apply combinational de-obfuscation for any accessible part of the circuit using the SAT

attack. However, for two important reasons, the traditional SAT attack cannot be applied

on data flow obfuscated circuit: (1) In the SAT attack, it is crucial to know the exact time

of writing/capturing into/from the scan chain; But, in data flow obfuscation, this timing is

controlled (locked) by an asynchronous controller. The adversary cannot determine when

he/she must write into the scan, and when the updated data is ready to be observed. (2)

Due to the nature of asynchronous controllers, the latch enable controller consists of many

stateful cycles. The SAT solver works perfectly fine if the circuit is a directed acyclic graph

(DAG), and only structural cycles could be analyzed using a pre-processing engine before
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Table 5.2: Data Flow Obfuscation against Different Attacks on Logic Locking.

Attack To break The reason why this attack fails breaking the proposed data flow obfuscation

Traditional
SAT [1]

Primitive
Logic [16, 79]

It requires to write/capture into/from scan flip flops, but the exact time of writing/capturing
into/from the latches (replaced with FFs) and that of neighboring FFs is hidden (locked)
by the obfuscated asynchronous controller.

Removal [24] SARLock,
AntiSAT
[21,22]

When the added logic for locking is completely separated from the original circuit, it finds
and removes the locking part to retrieve the original circuit. In the data flow obfus-
cated circuit, after removing all key-related parts from an asynchronous controller, extra
latches+paths will remain active in the datapath affecting the original functionality.

Approximate
SAT [27]

AntiSAT or
SARLock +
Primitive [24]

It guesses a key with low error rate when low and high-corruption techniques are com-
pounded. But, since the data flow obfuscation is not added on a specific point, the output
corruptibility is high, and in this case, the error rate of the approximate key will be high
(useless).

FALL [26] SFLL [23] This attack is an upgraded version of removal attack combined with functional analysis, and
specialized for SFLL (SFLL is an expanded version of SARLock). However, since the false
{latches+paths} are not detectable in data flow obfuscation, after applying removal on data
flow obfuscated circuit, the functional analysis cannot deal with the malfunction caused by
false {latches+paths}.

cyclic-SAT
[44–46]

cyclic locking
[28,43,95]

As a basic assumption, in a cyclic-based SAT attack, the stateful cycles will be skipped
before pre-processing the combinational cycles. However, in data flow obfuscated circuit,
the keys are located in stateful cycles, and this attack cannot formulate this form of cycles.

SMT [77] Delay Locking
[31]

Using a graph theory solver, the SMT formulates setup/hold time to guarantee the timing
constraint. In data flow obfuscated circuit, there is no timing violation when the key is not
correct making this attack useless.

CP&SAT
[96]

Cross-lock
[32], Full-lock
[33]

It finds the CNFs corresponded to routing modules, and simplifies them using cardinality
constraints. Then It uses the SAT attack on the simplified CNF. It only works on routing-
based obfuscation and has no efficiency on data flow obfuscation.

Sequential
SAT [53,54]

Sequential or
Scan Lock [5,
47, 97]

It requires unrolling, and the time of unrolling in synchronous circuits was at rising/falling
clock edge, and synchronous for all FFs. But, in data flow obfuscated circuit, the time
that latches are updated is desynchronized and hidden using an obfuscated asynchronous
controller.

Shift/Leak
[48,49]

Scan Block [5,
48]

It is very specialized for only one case that has leaking possibilities. Not Applicable to data
flow obfuscated circuit.

Scan Unlock
[3, 4]

Scan Lock [47,
57]

It detects the structure of LFSR used for dynamicity. No special deterministic structure is
used in data flow obfuscation to be detected using the same approach.

running the SAT solver. Depending on whether the cycle is oscillating or stateful, the

SAT solver will either be trapped in an infinite loop or will return UNSAT. Moreover, in

attacks such as BeSAT [45] that can track and detect non-structural cycles, the very first

assumption is that the circuit has no stateful combinational cycle by itself.

5.9.2 Security versus the Sequential SAT Attack

The adversary may attempt to engage either an unrolling-SAT attack or SAT integrated

with BMC (SAT-BMC) by creating the unfolded combinational equivalent circuit to find
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dises. The length of dises determines the number of unrolling required before running the

SAT solver. When the circuit is synchronous, per each clock cycle, the FFs will be updated

only once. So, the adversary can replicate whole CLs iteratively (per each clock cycle) to

build the unrolled circuit. However, when we use asynchronicity in data flow obfuscation,

the adversary needs to know the list of enabled latches continuously and cycle-accurately

to unroll those parts that are triggered with new latched data. But, in the data flow

obfuscation paradigm, the asynchronous controller that determines which latches must be

enabled/disabled is obfuscated. So, the adversary cannot build the unrolled circuit to still

get the benefit of the SAT attack, and thus, the sequential SAT attack cannot be applied

to this technique.

5.9.3 Security versus the Re-Synch. + Sequential SAT Attack

Since the sequential SAT attack cannot be applied directly to data flow obfuscation, the

adversary might add a pre-processing step, such as re-synchronization, to make this attack

valid. In re-synchronization, which is the reverse of desynchronization, the asynchronous

controller is removed, M and S latches are merged as FFs, and all FFs are connected to a

global clock. However, for a few reasons, re-synchronization of obfuscated desynchronized

netlist is not possible:

First, since each controller requires a local clock tree in asynchronous circuits, and these

local trees do not have the same delay [98], the adversary needs to confirm two constraints

below, which contradict each other: (1) Theoretically, the adversary must use a clock

period larger than any delay element, to avoid metastability happening in the asynchronous

controllers from the delay element. The delay constraints of an asynchronous circuit could

be modeled using the following formulas obtained from Fig. 5.10:

DRi + Tri+1 +DLi+1 > DLi + Tci +DPi + Tsi+1 (5.1)

DAi + Tai +DLi + Tci +DPi > DLi+1 + Thi+1
(5.2)

115



Figure 5.10: Hold and Setup Paths in an Asynchronous Circuit.

(2) But, the adversary must use a very small clock period to utilize the delay element

as a time offset. Hence, based on these two constraints, the timing correctness conditions

cannot be satisfied. Also, the timing constraints between the datapath and the asynchronous

controller must be preserved making it more challenging [98].

Second, as a step during re-synchronization, the attacker must analyze every connectivity

in the netlist, and effectively create a mapping problem using bipartite graphs between

pairs of {M , S} to FFs. To accomplish this, the attacker must have prior knowledge of

design methodology used for creating the asynchronous circuit (2-phase latches or 3-phase

latches, handshaking protocol, initial marking (tokens), etc.). Even while the adversary has

access to this prior knowledge, since the connectivity is obfuscated using false paths, the

false mapping will be added to this bipartite graph, leading to failure of correct matching

between Ms and Ss.

Additionally, as shown in Fig. 5.2 and Fig. 5.4, during desynchroniztion flow, re-

timing has been engaged in data flow obfuscation by moving parts of CLs before/after

the latches. By doing so, re-synchronization cannot be accomplished directly. Re-timed

asynchronous circuit can be converted to a 2-phase non-overlapping synchronous design,

with two clock signals, φ1 and φ2. However, false paths with extra latches makes this 2-

phase non-overlapping synchronous netlist malfunction. For example, latches H and I in

Fig. 5.8b would be connected to clock signal φ1 and φ2 (non-overlapping clock signals).

By connecting these two false latches to clock signals, their values would be updated which
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alters the functionality of CL1.

5.9.4 Security versus the Structural-based Attacks

The attacker might try to guess the value of the keys based on the overall structure of

the locked netlist. For instance, all handshaking signals to/from latches H and I in Fig.

5.8d are controlled using C* -element and key-gates (ANDs). Hence, the attacker might

guess that this pair of latches are false latches located on a false path. So, the value of

the keys can be retrieved easily. However, to avoid such circumstances, these key-gates and

C* -element will be added for a set of arbitrary (actual) latches in the netlist. For example,

in Fig. 5.8d, the same key-gates are added between C and D. However, they always must

be active. Also, the original C -element before C and E could be replaced with C* -element.

So, unlike C*-element before A and B, in which only one of the inputs is valid, in these

C* -elements, both inputs are valid. By using this simple mechanism, the attacker cannot

start guessing/detecting the false {paths + latches} based on the location/type of key gates.

Fig. 5.11 shows a more complicated instance, in which all C -element are replaced with C* -

element. Also, similar to the latches H and I, C* -element and key-gates (ANDs) are used

for {A, B} and {C, D}. So, the attacker cannot apply any form of key-guessing structure

to find the false {paths + latches}.

5.9.5 Security versus Other State-of-the-Art Attacks

As was shown in Table 5.1, there exist many attacks on different logic obfuscation tech-

niques, each is modeled to break one or more specific techniques. However, Table 5.2

explains why none of these attacks is applicable to the proposed solution. The biggest ad-

vantage of the proposed data flow obfuscation is the usage of extensive non-determinism of

asynchronicity for obfuscation purposes. In data flow obfuscation, the main source of this

non-determinism, which is the asynchronous controller, is the main target of obfuscation.

Obfuscating an asynchronous controller makes every step of simplification dependent on

the key value, and it extremely boosts up the state space in the asynchronous part. This

117



Figure 5.11: Data Flow Obfuscation Example with More Deceiving Paths.

implies the difficulty of attacking the proposed data flow obfuscation, where it requires an

extensive (likely impossible) investigation on how the existing formal verification methods

might be fitted and useful to be adopted in this case.

5.9.6 Testability of Data Flow Obfuscation

As discussed previously, the handshaking asynchronous controller is a self-testing circuit.

However, since we use the halt in false paths for logic locking purposes, data flow obfuscation

prevents the self-testing and contradict this property. To protect against an untrusted test,

this contradiction enforces the designer to use an incorrect key to keep the self-testing

property of these circuits. For instance, k0−2 in Fig. 5.8d must be 111 to avoid any halt

(the correct key is 000). As another example, similarly, k5 in Fig. 5.8d must be 1 to avoid

halt on the other path (But in this case, the correct key is 1). Also, since C* -element

does not create a halt in any path, keys connected to C* -element could be an arbitrary

value to choose a path in latches controllers. It shows that there is no relation, e.g. bit

flipping, between the correct key and key used for the test. Using incorrect key allows false

latches located in the false paths to be updated. Hence, false paths can affect the CLs’

functionality. Although the designer can generate test patterns that avoid making them

driving, since the incorrect key only adds false paths to the original netlist, few more test
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Table 5.3: Specifications of the Benchmark Circuits.

Small Circuit: s298 s526 s1423 s5378 s9234 s13207 s15850 s35932 s38584

# of Inputs 3 3 17 35 36 62 77 35 38
# of Outputs 6 6 5 49 39 152 150 320 304
# of Gates 119 193 657 2779 5597 7951 9772 16165 18253
# of FFs 14 21 74 179 211 638 534 1728 1426

Large Circuit: b17 b18 b19 MC8051 AES-GCM SPARC

# of Inputs 37 37 24 52 116 95
# of Outputs 97 23 30 112 15 108
# of Gates ∼28K ∼95K ∼190K ∼6.6K ∼49.5K 233K
# of FFs ∼1.5K ∼3.3K 6.6K ∼1K ∼5.1K 12K

patterns are required to test these paths, which has no impact on test patterns generated

for original parts of the netlist. Hence, there is no restriction for test pattern generation.

5.10 Experimental Results for Data Flow Obfuscation

We evaluate the data flow obfuscation over three sets of benchmark circuits, all listed

in Table 5.3. The experiments are all executed on a 24-core Intel Xeon processors run-

ning at 2.4GHz with 256 GB of RAM. Area, power, and delay overhead of the data flow

obfuscation are obtained using conventional Synopsys Design Compiler along with Synop-

sys generic 32nm library. We evaluate the security/overhead of the data flow obfuscation

based on: (1) obfuscation overhead: Selection, desynchronization, and insertion of false

{paths + latches} depend on the circuit size. (2) key size: Regardless of the circuit size,

for a key size, a nearly fixed part of a circuit will be selected, desynchronized, and false

{paths + latches} will be inserted.

5.10.1 Modeling of Attacks on Data Flow Obfuscation

Since the proposed data flow is dependent to the locked asynchronous controller, the timing

of writing/capturing into latches is hidden, and the traditional SAT attack does not work

even while the scan chain is available. So, to evaluate the security of the data flow obfus-

cation, we deploy two new versions of sequential SAT: (1) S SAT: Resync + BMC + SAT,
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Table 5.4: Runtime of Re-synch. + Sequential SAT with Different Configurations.

Circuit
Obfuscation Overhead = 5% Obfuscation Overhead = 10% Key Size = 100 Key Size = 200

S SAT S BeSAT S icySAT S SAT S BeSAT S icySAT S SAT S BeSAT S icySAT S SAT S BeSAT S icySAT

s298 463.5 UNSAT UNSAT inf/l w/k UNSAT UNSAT 207.1 w/k inf/l inf/l UNSAT inf/l inf/l
s526 w/k UNSAT inf/l UNSAT UNSAT inf/l UNSAT UNSAT inf/l w/k UNSAT inf/l
s1423 UNSAT UNSAT inf/l w/k inf/l inf/l 568.7 UNSAT inf/l inf/l w/k UNSAT inf/l
s5378 w/k inf/l UNSAT UNSAT UNSAT inf/l UNSAT UNSAT inf/l UNSAT inf/l inf/l
s9234 UNSAT inf/l UNSAT UNSAT UNSAT inf/l w/k inf/l inf/l UNSAT UNSAT inf/l
s13207 UNSAT UNSAT inf/l w/k UNSAT inf/l UNSAT UNSAT UNSAT w/k inf/l UNSAT
s15850 w/k inf/l inf/l w/k inf/l UNSAT UNSAT inf/l inf/l w/k UNSAT inf/l
s35932 w/k inf/l inf/l w/k UNSAT inf/l w/k UNSAT inf/l w/k inf/l UNSAT
s38584 w/k UNSAT UNSAT UNSAT inf/l UNSAT w/k inf/l UNSAT UNSAT UNSAT UNSAT

b17 UNSAT UNSAT inf/l w/k inf/l UNSAT w/k UNSAT inf/l w/k UNSAT inf/l
b18 UNSAT UNSAT UNSAT UNSAT inf/l inf/l w/k UNSAT inf/l w/k UNSAT inf/l
b19 UNSAT inf/l inf/l UNSAT UNSAT inf/l w/k UNSAT UNSAT w/k inf/l UNSAT

MC8051 w/k UNSAT inf/l w/k inf/l inf/l w/k inf/l inf/l w/k inf/l inf/l
AES-GCM w/k inf/l inf/l UNSAT inf/l UNSAT w/k inf/l inf/l w/k UNSAT inf/l
SPARC UNSAT UNSAT UNSAT timeout UNSAT UNSAT w/k UNSAT inf/l w/k UNSAT inf/l

- All numbers are in Seconds.
- timeout: 105 Seconds ≈ one day (Stop the attack process when time reaches timeout)
- {S SAT/S BeSAT/S icySAT}: Re-Synch + Sequential SAT integrated with {Pure SAT/BeSAT/icySAT}.
- UNSAT: Could not find the satisfiable assignment (The attack was not able to formulate the data flow obfuscated circuit correctly).
- inf/l: Infinite Loop (for stateful cyclic, the attack (cyclic-based) cannot find a decision for a stateful cycle).
- w/k: wrong key (The attack was not able to formulate, or the cycles lead to an incorrect formulation, both leading to a wrong key.

(2) S BeSAT/S icySAT: Resync + BMC + BeSAT/icySAT [46]/[45].

Regarding the former version of the deployed attack, due to the failure of unrolling on

desynchronized circuits, we need a pre-processing step to re-produce the re-synchronized ver-

sion of the obfuscated circuit. We discussed in Section 5.9.3 that the exact re-synchronization

is almost impossible. In this section, to validate our claim, regardless of the timing criteria,

we developed an intuitive re-synchronization technique. The steps of the re-synchronization

are as follows: (1) Removing the obfuscated asynchronous controller; (2) Merging each pair

of M and S latches based on the connectivity of them (moving them across CLs). (3)

Replacing each pair of M and S latches with a FF. (4) Connecting FFs to a synchronous

clock signal. (5) Adding an extra key-controlled MUX for each path that comes from the

output of FFs. (For each MUX, an input comes from the output of the FF, and one input

is an extra key. The selector of the MUX is another key input.) Using these 5 steps, Fig.

5.12 shows the re-synchronized version of the obfuscated circuit from Fig. 5.8b. Now, this

re-synchronized version could be the input of the Sequential SAT attack. By using this

model, if a path is a false path, then the logic value of this path is always fixed. So, the

MUX must select the extra key input with corresponded value; However, if a path is an
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Table 5.5: Key Size and Overhead (OO) Relation in Different Scenarios.

Circuit
Key Size Obfuscation (Area) Overhead

OO = 1% OO = 5% OO = 10% Key Size = 100 Key Size = 200

s298 18 22 27 132.47% 306.71%
s526 20 24 31 68.20% 154.24%
s1423 17 20 32 27.71% 43.54%
s5378 24 34 54 12.67% 21.02%
s9234 29 37 67 6.29% 14.21%
s13207 31 95 201 5.52% 9.35%
s15850 27 88 176 4.26% 7.31%
s35932 52 221 472 1.34% 2.80%
s38584 47 237 460 1.24% 2.01%

b17 43 307 561 0.57% 0.90%
b18 137 408 835 0.12% 0.31%
b19 221 557 926 0.09% 0.17%

MC8051 34 107 271 5.51% 8.28%
AES-GCM 189 643 1017 0.21% 0.40%
SPARC 324 1004 1722 0.07% 0.14%

actual one, the other input of the MUX must be selected.

Regarding the latter version of the deployed attack, since the asynchronous controller

is in place with lots of combinational cycles, we replaced the traditional SAT attack with

existing cyclic-SAT attacks, i.e. BeSAT and icySAT [45,46].

5.10.2 Attack Results

Table 5.4 shows the results of two attacks. For all cases, both attacks failed to break

the obfuscated desynchronized circuit. The result of the attacks, in both versions, might

return a wrong key, might return UNSAT, or might trap in an infinite loop. These three

scenarios happen for a few main reasons: (1) regarding the wrong key (w/k) and UNSAT in

S SAT, the unrolling could not build the correct unrolled version due to asynchronicity; (2)

regarding facing an infinite loop in S BeSAT and S icySAT, all are because of facing lots of

stateful cycles in asynchronous controller; and (3) regarding the UNSAT in S BeSAT and

S icySAT, before facing an infinite loop, the solver is trapped in a wrong decision leading

to UNSAT (because of incorrect formulation).

As shown in Table 5.4, in some rare cases, we see some numbers are struck out and
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(a) Obfuscated Asynchronous Circuit (b) Re-synchronized Circuit

Figure 5.12: Re-synchronization using MUX-based Path Selection.

replaced with w/k and UNSAT when we apply the S SAT on re-synchronized circuits. In

these cases, the S SAT was able to find the correct key values. However, we found that

re-timing did not relocate the latches after desynchronization for such cases. So, we force

the re-timing step to do a minor relocation for set of latches to eliminate the possibility of

applying any form of re-synchronization. In this case, after enforcing those minor relocation,

the S SAT fails to break them. Also, for some cases, we face time-out (105 seconds),

implicitly showing the complexity of SAT circuit. For all other cases, since we remove all

stateful combinational cycles during re-synch., we only faced with w/k or UNSAT. Table

5.4 implies that the existing attacks cannot formulate the proposed solution properly to

break it, regardless of the size/portion of the circuit, and regardless of the number of false

paths inserted into the circuit.

Based on the two obfuscation metrics, we evaluated these deployed attacks in 5 different

scenarios, in which a specific value for one of the metrics has been fixed. Table 5.5 shows

that for each scenario with a fixed metric, what the value of the other metric is, which helps

us to have an estimated relationship between these two metrics.

122



Table 5.6: Data Flow Obfuscation Overhead (Locking Overhead = 10%).

Circuit
Area um2 Max Delay ns Power uW

original locked ↑↓% original locked ↑↓% original locked ↑↓%
s298 152.1 165.2 8.62% 0.31 0.33 6.45% 14.17 15.34 8.23%
s526 284.3 307.4 8.16% 0.26 0.25 -3.84% 13.34 14.49 8.64%
1423 1018.7 1101.8 8.16% 1.22 1.25 2.45% 44.84 48.40 7.94%
s5378 2181.5 2316.5 6.19% 0.62 0.58 -6.4% 103.2 109.45 6.1%
s9234 2895.1 3019.0 4.28% 0.38 0.37 -2.65% 131.3 136.92 4.28%
s13207 5023.5 5361.0 6.72% 1.28 1.23 -3.9% 214.9 228.13 6.1%
s15850 6077.1 6404.0 5.38% 1.25 1.18 -5.5% 272.6 286.1 4.9%
s35932 15413.4 16657.3 8.07% 1.15 1.24 7.7% 1609.4 1730.18 7.5%
s38584 23118.6 24639.5 6.58% 1.14 1.13 -0.8% 1786.9 1902.15 6.4%

b17 46872.9 49319 5.22% 1.34 1.31 -2.24% 1927.6 2025.7 5.1%
b18 134829 139737 3.64% 1.82 1.83 0.55% 2269.9 2360.4 3.9%
b19 252945 262001 3.58% 1.97 1.94 -1.52% 2982.7 3070.1 2.9%

MC8051 4982.9 5474.7 9.87% 1.29 1.31 1.55% 188.6 206.3 9.3%
AES-GCM 105319 113681 7.94% 1.76 1.77 0.57% 1876.4 2018.8 7.6%
SPARC 298231 313650 5.17% 1.38 1.41 2.17% 3380.7 3533.4 4.5%

5.10.3 Area/Power/Delay Overhead Comparison

In this section, we evaluate the post-synthesis overhead of our data flow obfuscation. Table

5.6 compares the power, performance (delay), and the area (PPA) of the original vs. ob-

fuscated circuits while the obfuscation overhead is set to 10%. 10% obfuscation overhead

means that 10% of all FFs in a circuit must be converted to latches using desynchronization.

Also, for any obfuscation overhead percentage, the number of extra {paths + latches} is set
to be less than 10% of the total latches. Further, the actual latches that are obfuscated us-

ing the same key gates (to prevent any key-guessing or structural attacks) are set to be less

than 10% of the total latches. For example, for b17 with ∼1.5K FFs, for 10% obfuscation

overhead, we replace 150 FFs with latches; we insert up to 15 false {paths + latches}, and
up to 15 actual latches are obfuscated using the same key gates. PPA overhead in the data

flow obfuscation is the consequence of two operations: (1) desynchronization and (2) adding

false {paths + latches}. The overhead of desynchronization is dominant while the ratio of

FFs to the total number of gates is higher in the original netlist. For instance, for s13207,

whose FFs’ ratio to all gates is 638/7951 = 8.03%, the area overhead is 6.72%. However, in

s9234 with a ratio of 3.76%, the area overhead is only 4.28%. Table 5.7 demonstrates the
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Table 5.7: Area Breakdown (Locking Overhead = 10%).

Circuit
Combinational FF (%) Latches (%) Delay Asynchronous

Logic (%) Units (%) Controller (%)

s13207 52.01% 33.80% 7.97% 3.59% 2.63%
s35932 42.76% 40.31% 9.51% 4.28% 3.14%
b17 59.77% 28.33% 6.68% 3.01% 2.21%

AES-GCM 44.06% 39.39% 9.30% 4.18% 3.07%
b18 69.67% 21.36% 5.04% 2.27% 1.66%

SPARC 59.33% 28.64% 6.76% 3.04% 2.23%

Table 5.8: Data Flow Obfuscation Overhead (Key Size = 200).

Circuit
Area um2 Max Delay ns Power uW

original locked ↑↓% original locked ↑↓% original locked ↑↓%
s298 152.1 618.6 306.71% 0.31 0.32 3.7% 14.17 26.41 86.4%
s526 284.3 722.8 154.24% 0.26 0.28 8.2% 13.34 22.76 70.6%
s1423 1018.7 1462.2 43.54% 1.22 1.12 -8.3% 44.84 51.05 13.9%
s5378 2181.5 2640 21.02% 0.62 0.64 2.9% 103.2 114.48 10.9%
s9234 2895.1 3306.6 14.21% 0.38 0.36 -6.3% 131.3 141.35 7.7%
s13207 5023.5 5493 9.35% 1.28 1.25 -2.0% 214.9 227.50 5.9%
s15850 6077.1 6521.6 7.31% 1.25 1.16 -6.8% 272.6 281.37 3.2%
s35932 15413.4 15844.9 2.80% 1.15 1.25 8.6% 1609.4 1648.8 2.4%
s38584 23118.6 23583.1 2.01% 1.14 1.18 3.7% 1786.9 1814.7 1.6%

b17 46872.9 47295.4 0.90% 1.34 1.37 2.3% 1927.6 1944.7 0.89%
b18 134829 135242 0.31% 1.82 1.74 -4.1% 2269.9 2282.6 0.56%
b19 252945 253382 0.17% 1.97 1.98 0.5% 2982.7 2994.0 0.38%

MC8051 4982.9 5395.4 8.28% 1.29 1.23 -4.7% 188.6 201.4 6.83%
AES-GCM 105319 105741 0.40% 1.76 1.79 1.7% 1876.4 1894.6 0.97%
SPARC 298231 298644 0.14% 1.38 1.33 3.6% 3380.7 3390.5 0.29%

area breakdown of some of the circuits when the obfuscation overhead is 10%.

Regarding the delay overhead, since re-timing is used during desynchronization, in some

cases we even achieved slight delay improvement. However, in some cases, it imposes only

a very slight difference in cycle time by up to 8%. Regarding the power overhead, due to

moving from edge-triggered design to level-triggered, the power overhead is less compared

to area overhead. As seen in Table 5.6, our data flow obfuscation paradigm increased the

power consumption by up to 10%.

Table 5.8 compares the PPA of the original circuits vs. obfuscated circuits when the key

size is 200. As shown in Fig. 5.11, and as implied in Table 5.5, in data flow obfuscation,

for each extra {paths + latches}, as well as for any actual latch that are obfuscated to
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Table 5.9: Data Flow Obfuscation Overhead Comparison

Circuit Overhead

CAT 1 CAT 2 CAT 3 CAT 4 Proposed

SFLL DLL Cyclic Full Inter R-DFS DisORC Data
[23] [31] Obf. Lock Lock +SLL +TRLL Flow

[95] [33] [96] [5] [99] Obf.

s35932
Area ↑↓% -22.6% 5.3% 24.4% 28.1% 25.3% 9.7% 8.5% 2.8%
Power ↑↓% -59.6% 3.7% 37.7% 34.9% 21.1% 14.7% 17.8% 2.4%
Delay ↑↓% 0.5% 34.2% 17.5% 56.2% 5.8% 6.5% 8.7% 8.6%

s38584
Area ↑↓% -28.9% 4.7% 18.6% 26.9% 21.4% 10.4% 7.8% 2.0%
Power ↑↓% -47.6% 2.4% 37.7% 30.1% 17.5% 14.8% 13.5% 1.6%
Delay ↑↓% -0.8% 36.7% 13.7% 52.7% 14.2% 6.2% 9.5% 3.7%

b18
Area ↑↓% -5.6% 4.7% 13.9% 18.7% 3.4% 7.1% 2.7% 0.3%
Power ↑↓% -11.6% 3.1% 28.8% 23.2% 1.8% 9.8% 6.9% 0.6%
Delay ↑↓% -0.6% 39.9% 9.6% 53.9% 5.7% 5.9% 8.4% -4.1%

b19
Area ↑↓% -2.7% 4.8% 9.7% 14.2% 2.8% 6.9% 1.6% 0.2%
Power ↑↓% -6.2% 3.5% 22.3% 21.7% 2.2% 9.2% 1.2% 0.4%
Delay ↑↓% 0.6% 44.7% 9.0% 52.6% 4.8% 5.4% 7.5% 0.5%

Overhead Low
High High Very

High Moderate Moderate LowDelay Power High

Attacked by
FALL SMT BeSAT CP&SAT

–
Shift &

– –
[26] [77] [45] [96] Leak [5]

disable key-guessing, 3-5 keys could be added. So, when the key size is 200, regardless of

the size of the circuit, 50-60 latches are needed. Accordingly, when the size of the key is 200,

the area overhead is much higher in small circuits. However, for larger circuits, the ratio

of false latches compared to the size of the circuit is significantly low, and since the real

applications (ICs) are far larger than small circuits listed in Table 5.3, the area overhead is

low in this approach. For instance, in AES-GCM, the area overhead is even less than 1%

(0.4%). To reflect a better evaluation of overhead, in Table 5.9, we compare the overhead of

data flow obfuscation when the key size is set to 200 with state-of-the-art logic obfuscation

techniques5. As shown, on average, the overhead incurred by data flow obfuscation is much

lower compared to almost all techniques. In some techniques, the overhead of one metric

might be better than that of data flow obfuscation, but on average, it could be concluded

that the overhead of the proposed technique is completely acceptable.

5Since the strength of the data flow obfuscation does not depend on the number of {paths + latches},
we could add as much as the key size (e.g. ≥ 64) to prevent breaking them using attacks like brute-force.
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key0:1 R E

{00} 1 0
{01} 0 clk

{10} 0 clk
{11} 0 1

(a) Clock-Controlled Latch (b) Latch Insertion (c) Latch Functionalities

Figure 5.13: Latch-based Logic Locking Technique [6].

5.10.4 Comparison with State-of-the-art

Most recently, a new study has evaluated the possibility of latch-based architecture as a

new means of logic obfuscation [6]. In this study, as shown in Fig. 5.13, key-programmable

latches could be used as: (1) regular storage elements (FFs that are replaced with green

latches subjected to re-timing), (2) programmable logic decoys (red latches/CLs) with con-

stant output (always zero with no driving effect), and (3) programmable path delay decoy

for delay manipulation (yellow latches). However, unlike our proposed data flow obfusca-

tion, it is still fully dependent on the clock signal (reset and enable of latches are a function

of the clock signal) allowing us to convert this solution to a synchronous obfuscated prob-

lem. Clock-dependent latches operate as storage elements with synchronized gated clock,

and due to this synchronicity, by integration with two pre-processing steps, it still could

be modeled and broken using sequential SAT integrated with cyclic model: (step 1) Gen-

erating a single-clock synchronized locked circuit using a generalized/automated model,

and (step 2) Detection of (some) programmable logic decoys with constant output through

(pseudo-exhaustive) test patterns on testable points of oracle.

Unlike latch-based logic locking that uses BMC with two copies of circuit per each clock

cycle (due to level-triggering of latches) [6], we first generate a single-clock model to avoid

this duplication per cycle. Fig. 5.14 shows we could build a single-clock fully synchronized
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(a) Latch-based Logic Locked Circuit

(b) Single-Clock Synchronized Latch-based Logic Locked Circuit

Figure 5.14: Re-synchronization in Latch-based Logic Locking.

circuit from the latch-based logic locked circuit. Based on the modes of latches demonstrated

in Fig.5.13c, Latches are replaced with a FF with two MUXes (one 2-to-1 preceding and

one 4-to-1 following). The 4-to-1 MUX builds all three modes illustrated in Fig.5.13c, and

the 2-to-1 MUX is for keeping FF values when clk is not triggering (latching). Also, a

2-to-1 MUX will be added before each neighboring FF (immediate neighbors of latches).

Now, all FFs are connected to a low frequency generalized clock signal (clkg). The selector

of 2-to-1 MUXes of FFs corresponded to latches will be connected to the original clock

signal, and the selector of that of neighboring FFs will be connected to a gated clock signal

for falling (clkf ) or rising (clkr) levels. This generalized model could be used for different

scenarios with more complexities, such as multi-clock systems, and circuits with gated clock,

all could be synchronized using generalized clock signal clkg [100]. It allows us to use BMC

with ONLY one copy of the circuit per each clock cycle, which improves the scalability

significantly.
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Table 5.10: Attack Time on the existing latch-based logic locking.

Circuit key size = 20 key size = 50 key size = 100 key size = 200

exe time exe time exe time exe time

s1423 468.5 521.6 321.1 1450.8
s5378 1422.1 1475.9 1855.6 2991.3
s15850 225.8 3006.5 2284.5 4712.6
s35932 3824.5 2071.9 10225.4 11452.8

timeout: 105 Seconds ≈ one day (Stop the attack when time reaches timeout)
Attack Time: Resync. + Decoy COI Reduction + Sequential SAT integrated with BeSAT

Also, since programmable logic decoys (red latches and red CLs) always generate con-

stant output (zero output), and since testable pin are dedicated for latches (using extra

MUXes and duplicate FFs) in the existing latch-based approach [6], the adversary would

be able to apply test patterns (stuck-at-fault or pseudo-exhaustive) on testable points at

Cone-Of-Influence (COI) of oracle to detect latches with constant (zero) output. For some

fundamental reasons, the programmable logic decoys could not be large enough to make

this test infeasible: (1) programmable logic decoys are hardware overhead, which must be

limited, (2) these logic decoys add difficulties to P&R which compromises the performance,

and (3) it should not have an impact on maximum frequency of the circuit before adding

obfuscation. Detecting these latches helps reducing the cone-of-influence, and consequently

the SAT circuit before running the sequential SAT attack. Table 5.10 shows the execution

time of the sequential SAT attack when it is integrated with these two pre-processing steps.

However, since our proposed data flow obfuscation is truly desynchronized (token-based

with no dependency on a clock signal), this form of re-synchronization is not applicable to

it.

Table 5.11 also shows some major advantages of the proposed solution against existing

latch-based logic locking [6]. For example, we use a self-testable asynchronous controller;

however, latch-based adds extra MUXes/FFs to make the latches testable, resulting in extra

overhead. We add false latches pair by pair, which makes any structural/functional analysis

exponentially harder (any pair of neighboring latches is a point of analysis); However,
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Table 5.11: Proposed Data Flow Obfuscation vs. Latch-based Logic Locking.

Scheme Test Unit False Latches Clock Dependency Synchronizable

Proposed Self Testable Paired Truly Asynchronous �
Latch-based [6] Duplicate FFs Single Fully Clock-dependent �

Scheme BMC Model ? Cyclic ? Cyclic Model ?

Proposed � Stateful/Oscillating in Ctrls hard
Latch-based [6] � (with resynchronizing) structural in datapath easy

Scheme Overhead Area∗ ↑↓% Power∗ ↑↓% Delay∗ ↑↓%

Proposed Latches + Ctrls 1.32% 1.25% 2.17%
Latch-based [6] Latches + Ctrls + Decoy Logic 13.7% 5.4% 2.11%

∗: Average on s35932, s38584, b18, and b19 when key size = 200.

latch-based adds decoy latches one by one, which allows analyzing them linearly (each

latch is a point of analysis). In the proposed scheme, the latch enables controller consists

of many stateful cycles that boost the difficulties for the adversary (no cyclic modeling).

However, only easy-to-track structural cycles might be added into the existing latch-based

logic locking when the key is not correct. Also, the overhead is much higher in the existing

approach due to adding programmable logic decoys.

5.11 What we Learnt in this Chapter

In this Chapter, to combat state-of-the-art attacks on logic obfuscation, we introduced a

new obfuscation paradigm called data flow obfuscation. By exploiting the concept of asyn-

chronicity, in data flow obfuscation, we showed how the flow of the data could be obfuscated

in any arbitrary circuit. In data flow obfuscation, we engage false {paths + latches} using

the asynchronous structure to control the flow of data in specific timing paths. Using this

mechanism, we showed that the SAT attack has no longer an advantage for the adversary

even while the scan access is not restricted. Also, we showed that how asynchronicity combat

the sequential SAT attack by invalidating the unrolling step in these attacks. We compre-

hensively investigated the effectiveness of data flow obfuscation over wide-range benchmark
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families. Our experiments showed the resiliency of this new paradigm against all existing

attacks at significantly low overhead.
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Chapter 6: COMA: Communication and Obfuscation

Management Architecture

As discussed in Chapter 1, to remain hidden, in addition to resisting the attacks against its

obfuscated circuit(s), the IC should also resist passive, active, or destructive attacks that

could be deployed to read the key values. Hence, neither the activation of such devices nor

the storage of key values in them should expose or leak the key information. Activation of

an obfuscated IC requires storing the activation key in a secure and tamper-proof memory

[34, 101]. However, there exist a group of applications that could use an alternative key

storage. This alternative solution is to store the key outside the IC, where the IC is activated

every time it is needed. This option requires constant connectivity to the key management

source and a secure communication for key exchange to prevent any leakage of the key. This

solution allows an IC designer to store the chip unlock key outside of an untrusted chip. So,

no secure and tamper-proof memory is needed. Since the key is stored outside the untrusted

chip, a constant connectivity to an obfuscation key-management solution is an indispensable

requirement for this category of devices. This requirement could be easily met for two

prevalent groups of architectures: (1) 2.5D package-stack devices where a single trusted

chip is used for key management and activation of multiple obfuscated ICs manufactured in

untrusted foundries, and (2) IoT devices with constant connectivity to the cloud/internet.

In this Chapter, we propose the COMA [102] as a key-management and communication

architecture for secure activation of obfuscated circuits that are manufactured in untrusted

foundries and meet the constant connectivity requirement, namely ICs that belong to a)

2.5 package-integrated and b) IoT solutions. We describe two variants of our proposed

solutions: The first variant of COMA is used for secure activation of IPs within 2.5D

package-integrated devices (similar to DARPA SPADE). The second variant of COMA is
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used for secure activation of connected IoT devices. The proposed COMA allows us to (1)

push the obfuscation key and obfuscation unlock mechanism off of an untrusted chip, (2)

make the key a moving target by changing it for each unlock attempt, (3) uniquely identify

each IC, (4) remove the need for implementing a secure memory in an untrusted foundry,

and (5) utilize two novel mechanisms for ultra-secure or ultra-fast encrypted communication.

6.1 COMA Advantage in 2.5D and IoT Devices

In 2.5D package-integrated ICs, similar to DARPA SPADE architecture [103], a chip which

is fabricated in a trusted foundry, but in a larger technology node, is packaged with an un-

trusted chip fabricated in an untrusted foundry in a smaller technology node. The resulting

solution benefits from the best features of both technologies: The untrusted chip may be

used as an accelerator, providing the resulting hybrid solution with the much-needed scal-

ability (higher speed and lower power), while the trusted chip provides the means of trust

and security. The untrusted chip is isolated from the outside world and any exchange of

information to/from the untrusted chip passes through the trusted chip.

In the IoT devices on the other hand, the constant connectivity is a characterizing

feature in a wide range of IoT devices. In these solutions, the obfuscation key could be

stored in the cloud, and activation of an IoT device could be done remotely. This model

allows custom, monitored, and service-oriented activation (Activation As A Service). An

additional advantage is removing the possibility of extracting an unlock key from a non-

volatile memory that otherwise would have to be used for storing the obfuscation unlock

key. Examples of which are IoT devices used for providing various services, military drones

activated for a specific mission, video decryption services for paid pay-per-view transactions,

etc., where a device has to operate in an unsafe environment and is at risk of capture and

reverse engineering. In these applications, the IC fabricated in an untrusted foundry is

activated either every time it is powered up, or for certain time intervals. The key vanishes

after the service is performed, or when the device is powered down. The activation of such
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devices is performed using a remote key management service (in the cloud or at a trusted

base-station), and the key exchange to/from these devices should be secured.

In both 2.5D system solutions and IoT devices, the need for implementation of a tamper-

proof memory, for storage of IC activation key, in an untrusted process is removed. Some

reasons why implementing a secure memory in an untrusted foundry may be undesired, or

practically unfeasible include:

Availability: The targeted foundry may not offer the required process for implementing

a secure memory with the desired features. An example could be the requirement for storing

sensitive information in magnetic tunnel junction (MTJ) memories to prevent probing and

attacks that could be deployed against flash-based NVMs. Fabricating such ICs requires a

hybrid process that supports both CMOS and MTJ devices, which may be unsupported by

the targeted foundry.

Verified Security: The secure memory may be available in the targeted technology,

however not be fully tested and verified in terms of its resistance against different attacks.

Cost: Implementing secure memory requires additional fabrication layers and processing

steps, increasing the cost of manufacturing. Increasing the silicon area is a far cheaper

solution than increasing the number of fabrication layers.

Reusability: In 2.5D system solutions, a trusted chip could be shared by multiple un-

trusted chips, manufactured in different foundries. Moving the secure memory to the trusted

chip removes the need for implementing the secure memory in all utilized processes. The

trusted chip could be designed once with utmost security for the protection and integrity

of data. This also reduces the cost of manufacturing untrusted chips by removing the need

for additional processing steps for implementing secure memory.

Ease of Design: Implementing secure memory requires pushing the design through non-

standard physical design flow to implement the tamper-proof layers in silicon and package.

In addition, the non-volatile nature of tamper-proof memory requires read and write at

elevated voltages, increasing the burden on the power-delivery network design. Reuse of a

trusted chip with a tamper proof memory that could manage activation of other obfuscated
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ICs, relaxes the design requirement of ICs to standard physical design and fabrication

process.

6.2 Prior Art Key-Oriented Architectures

Active metering, Secure Split-Test, and logic obfuscation have been proposed to protect ICs

from supply chain-related security threats by initializing the HW control to a locked state

at power-up and hiding the design intent [12,16–18,104–107]. Some of these techniques sup-

port single activation, while others support active metering mechanisms. Active metering

techniques [12,18,104,106] provide a mechanism for the IP owner to lock or unlock the IC

remotely. In these solutions, the locking mechanism is a function of a unique ID generated

for each IC, possibly and preferably by a Physical Unclonable Function (PUF) [34]. Only

the IP owner knows the transition table and can unlock the IC. Active metering, combined

with a PUF, makes the key a moving target from chip to chip. However, there exist a

few issues with previous metering techniques: first, the key(s) to unlock each IC remains

static. Second, these techniques unlock the chips before they are tested by the foundry.

Hence, the IP owner can control how many ICs enter the supply chain, but not how many

properly tested ICs exit the supply chain. Finally, these techniques do not respond well to

the threat of the foundry requesting more IDs by falsifying the yield to be lower during the

test process. Such shortcomings can potentially allow the foundry to ship more out-of-spec

or defective ICs to the supply chain.

Many of these shortcoming were addressed in FORTIS [97] shown in Fig. 6.1. In

FORTIS the registers that hold the obfuscation key are made a part of the scan chain,

allowing the foundry to carry structural test by assigning test values to these registers prior

to the activation of the IC. Authors of [97] argue that placing a DFT compression logic, not

only reduces the test size, but also prevents the readout of the individual register values.

After testing the IC, the obfuscation key is transferred and applied to unlock the circuit

using two types of cryptographic modules: a public-key crypto engine, and a One Time Pad

(OTP) crypto engine.
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Figure 6.1: FORTIS: Overall Architecture.

In FORTIS, the public and private keys are hardwired in the design. A TRNG is used

to generate a random number (m) that is treated as a message. This message is encrypted

using the private key of the chip to generate a signature sig(m). The actual message and

its signature are concatenated and later used as a mean for the authentication of the chip.

At the same time, the TRNG generates another random number KS . This random number

is used as the key for OTP, and at the same time is encrypted using the public key of

the designer to generate KDpub(KS). OTP uses KS for encrypting the (m, sig(m)), and

the output of OTP is concatenated with the KDpub(KS). The resulting string of bits is

transmitted to the SoC designer. The SoC designer uses an OTP to obtainm and sig(m) for

the purpose of authentication. She then uses the private key of the designer to recover KS .

Finally, KS is used by OTP to encrypt the chip unlock key (CUK). The encrypted CUK is

transmitted to the chip, decrypted using OTP, and applied to the obfuscation unlock key

registers to unlock the circuit.

FORTIS, however, suffers from several security issues including 1) using identical public

and private keys in all manufactured chips, and thus its inability for unique device authen-

tication, 2) being vulnerable to modeling attack in which the FORTIS structure is modeled

in software for requesting the CUK from SoC designer 3) being vulnerable to side channel

attacks on public-key encryption engine aimed at recovering the private key of the chip, 4)

being vulnerable to fault attacks in which the value of KS is fixated, 5) requiring a secure
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memory for storage of the obfuscation unlock key, and 6) not addressing the mechanism

for generating a unique and truly random seed to initialize PRNG. After describing our

proposed solution, in section 6.7, we explain how these vulnerabilities are addressed in our

proposed solution.

Our proposed solution fits the category of active metering techniques. The key is neither

static nor stored in the untrusted chip. A key that is used to activate the IC at the test

time cannot be reused to activate the same or a different IC in the future. Hence, the test

facility is able to accomplish the test process using ATPG tools with a key which is valid for

structural/functional test and it is not valid for any subsequent activation. Additionally, the

communication to/from IC is secured using a side-channel protected cryptographic engine,

combined with a dynamic switching and inversion structure that enhances the security of the

chip against invasive and side-channel attacks. We demonstrate that COMA provides two

useful means of secure communication to/from the untrusted chip, one for added security,

and one for supporting a higher throughput. The proposed architecture is a comprehensive

solution for the key management of the obfuscated IPs, where the challenges related to the

activation of the IC and secure communication to/from the IC are addressed at the same

time. However, as discussed earlier, it is not a universal solution and would fit within the

context of IoT-based solutions or within 2.5D package-integrated solutions, as this solution

requires constant connectivity.

6.3 Proposed COMA Architecture

The primary goal of the COMA is to remove the need for storing the obfuscation key (OK)

on an untrusted chip while securing the communication flow used for activation of the obfus-

cated circuit in the untrusted chip. The additional benefits of the proposed architecture are

the implementation of two new modes of 1) highly secure and 2) very high-speed encrypted

communication.

We propose two variants of the COMA architecture: The first variant is designed for
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Figure 6.2: Proposed COMAs for (left) 2.5D and (right) IoT-based/remote devices.

securing the activation of the obfuscated IP and communication to/from an untrusted IC

in 2.5D package-integrated architectures similar to the DARPA SPADE architecture [103]

(denoted by 2.5D-COMA). The second proposed architecture is designed for protecting IoT-

based or remotely activated/metered devices (denoted by R-COMA). Fig. 6.2 captures the

overall architecture of two variants of the proposed COMAs.

6.3.1 2.5D-COMA: Protecting 2.5D package integrated system solutions

The DARPA SPADE project [103] explores solutions in which an overall system is split

manufactured between two different technologies, In this solution, a trusted IC which is

constructed in an older yet secure technology is packaged with an IC fabricated in an

untrusted foundry in an advanced geometry. The purpose of this solution is to provide the

best of two worlds: the security of older yet trusted technology and the scalability, power,

and speed of the newer yet untrusted technology. The 2.5D-COMA is designed to work with

an architecture similar to the DARPA SPADE architecture. The proposed solution allows

an entire or partial IP in an untrusted chip to be obfuscated, while pushing the mechanism
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for unlocking and secure activation of the untrusted chip out to a trusted chip. In this

solution, the trusted chip encapsulates the sensitive information, verifies the integrity of

the untrusted chip, performs sensitive logic monitoring, and controls the activation of the

untrusted chip. Also, the key to unlock the obfuscated circuit changes per activation, details

of which will be explained shortly.

As shown in Fig. 6.2, the two variants of COMA contain two main parts, the trusted side

(green) and the untrusted side (red). In both variants, the architectures of untrusted chips

are identical, and only the architectures of trusted sides are different. In 2.5D-COMA, only

the trusted chip is equipped with a secure memory. The secure memory stores the Obfus-

cation Key (OK) and the Secret Key (SK) used for encrypted communication between the

trusted and untrusted chips. The SK is generated using a PUF in the untrusted chip, thus

it is unique for each untrusted chip, and the untrusted chip does not need a secure memory

to store the SK. The Configurable Switching Network (CSN) and Reverse CSN (RCSN) are

logarithmic routing and switching networks. They are capable of permuting the order and

possibly inverting the logic levels of their primary inputs while these signals are being routed

to different primary outputs. The RCSN is the exact inverse of the CSN. Hence, passing a

signal through CSN-RCSN (or RCSN-CSN) will recover the original input. The switching

and inversion behavior of CSN-RCSN is configured using a True Random Number (TRN).

This TRN is generated in the trusted chip to avoid any potential weakening/manipulating

of the TRNG. In addition, since the TRNG in COMA is equipped with standard-statistical-

tests applied post-fabrication, such as Repetition-Count test and the Adaptive-Proportion

test, as described in NIST SP 800-90B [108], any attempt at weakening the TRNG during

regular operation (i.e. fault attack) can be detected by continuously checking the output

of a source of entropy for any signs of a significant decrease in entropy, noise source failure,

and hardware failure. By using TRN for the CSN-RCSN configuration, any signal pass-

ing through the CSN is randomized, and then by passing through the RCSN is recovered.

Additional details are provided in section 6.4.1.

The untrusted chip unlock process in COMA is as follows: Prior to each activation,
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the CSN and RCSN are configured with the same TRN. Since the SK is a PUF-based key

generated at the untrusted side, first the SK must be securely readout from untrusted chip.

This is done by deploying public key cryptography, the details of which are described in

section 6.4.4. Then, the trusted chip encrypts the TRN using the SK and sends it to the

untrusted chip. To perform an activation, as shown in Fig. 6.2, the OK is read in segments,

denoted as Partial Obfuscation Key (POK), and is passed through the CSN and encryption

on the trusted side and the decryption and RCSN on the untrusted side. This process is

repeated every time the obfuscated circuit in the untrusted chip is to be activated, each

time using a different TRN for configuring the CSN-RCSN. Usage of a different TRN as

the configuration input for the CSN-RCSN for each activation randomizes the input data

to the Secret key crypto engine. Hence, by using a different TRN for each activation, the

obfuscation key (after passing through CSN) is transformed into a one-time license, denoted

as Dynamic Activation License (DAL). Since the OK is read and sent in segments (from

the trusted chip), the DAL will be received (at untrusted chip) in segments, denoted as

Dynamic Partial Obfuscation Key (DPOK), shown in Fig. 6.2, and is used as an input to

RCSN. Passing DPOKs through RCSN recovers the POKs, and concatenating the POKs

will generate the OK. Note that the DAL is only valid until the TRN is changed. So, the

DAL cannot be used to activate other chips or the same chip at a later time.

In 2.5D-COMA, the untrusted chip(s) is used as an accelerator, and for safety reasons

should not be able to directly communicate to the outside world. Hence, all communication

to/from the untrusted chip must go through the trusted chip. In addition, it is possible

that the computation, depending on the sensitivity of processed data, is divided between the

trusted and untrusted chips. Hence, there is a need for constant communication between

the trusted and untrusted chips. The communication needed is sometimes for limited but

highly sensitive data, and sometimes for vast amounts of less sensitive data. As illustrated

in Fig. 6.3, the proposed architecture is designed to provide two hybrid means of encrypted

communication : (1) Double-Cipher Communication (DCC) as ultra-secure communication,

and (2) Leaky-Cipher Communication (LCC) as ultra-fast communication mechanism [109].
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(b)

Figure 6.3: Modes of Encrypted Communication in COMA: (a) DCC, (b) LCC.

Double-Cipher Communication (DCC)

As shown in Fig. 6.3(a), in DCC each message passes through both CSN-RCSN and

the secret key cryptography engine, where the TRN used in CSN-RCSN is renewed every

U cycles. DCC provides the ultimate protection against side-channel attacks. In DCC

mode, two necessary requirements for mounting a side channel attack are eliminated. The

side channel attack aims to break the cryptography system by analyzing the leaked side

channel information for different input patterns. Hence, (1) the degree of correlation between

the input and the leaked side-channel information, and (2) the intensity of side-channel

variation, are important. In COMA, the attacker cannot control the input to the secret-

key cryptography. In addition, the input to the CSN is randomized using a TRN and

then passed to the secret-key cryptography, removing the correlation between leaked side

channel info (from secret-key cryptography) and the original input to the CSN. Additionally,

the secret-key cryptography engine is side-channel protected to pass a t-test [110]. So, the

intensity and variation in side-channel information is significantly reduced, making the DCC
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Figure 6.4: 2.5D-COMA Architecture.

an extremely difficult attack target.

Leaky-Cipher Communication (LCC)

LCC is a fast and energy-efficient mode of communication between the trusted (or remote

device) and the untrusted chip. As illustrated in Fig. 6.3(b), in this protocol, the CSN-

RCSN pair is used for exchanging data. The secret key cryptography engine is used to

transmit a TRN from one chip to the other. Since the throughput of TRNG is the bottleneck

point compared to the performance of CSN-RCSN, the TRNG is used as a seed generator

to the PRNG (which offers higher performance) on both sides, Hence, in LCC mode, PRNG

is used to configure the CSN-RCSN to avoid any performance degradation on transmitting

data. For U consecutive cycles, the PRNG is kept idle allowing the CSN to use the same

PRNG output for U cycles. It not only reduces the power consumption of PRNG and

TRNG, it also provides faster communication in LCC mode. However, using this model of

communication is prone to algebraic and SAT attacks as each communicated message leaks

some information about the TRN used to configure the CSN-RCSN pair. If an attacker

can control the message and observe the output of the CSN, each communicated message

leaks some information about the key, reducing its security. Extracting the key from such

observations is possible by various attack models, including Satisfiability attacks. Hence,

an attacker with enough time and enough traces could extract the TRN and retrieve the

communicated messages. Preventing such attacks poses a minimum limit to U (the update
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frequency of the PRNG). U should be small to prevent SAT and other trace-based learning

or analysis attacks, but large enough to be energy efficient. In Section 6.6, we deploy a SAT

attack against LCC and will further elaborate on the required TRN update frequency.

6.3.2 R-COMA: Protecting IoT devices

The R-COMA architecture in the untrusted chip is identical to that of 2.5D-COMA. How-

ever, the trusted chip is replaced with a remote key management service. The R-COMA

provides a mechanism for an IP owner to remotely activate parts or entire functionality of

the hardware. Similar to 2.5D-COMA, the DAL is different from chip to chip and from

activation to activation. In R-COMA, the obfuscation unlock key is stored in a central

database, while the CSN, the TRNG for configuring CSN-RCSN, and the secret key cryp-

tography engine are implemented in software.

In R-COMA, an authentication server (AS) first securely receives the PUF-based SK

from the untrusted chip. Then, it generates a TRN and sends it to the untrusted chip for

RCSN configuration. Then, the AS starts sending the obfuscation key (OK). For the activa-

tion phase, the communication is double encrypted and authenticated using the CSN-RCSN

and side-channel protected cryptography engine. Each COMA-protected device needs to

be registered with the AS to receive the obfuscation key. The registration is done using

the PUF-ID of the untrusted chip. Hence, the PUF is used for both authentication and

generation of the secret key for communication. In R-COMA, the generation of DAL is

granted after PUF authentication, and is based on the generated TRN, and the stored OK,

which is generated at design time. The generation of DAL is algorithmic and takes linear

time.

6.4 Implementation Detail of COMA

Fig. 6.4 captures the overall architecture of COMA and the relation and connectivity of

its macros. As discussed, COMA supports both key-management and secure data commu-

nication. Based on the selected mode of communication (LCC/DCC), the message passes
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Figure 6.5: Logarithmic Network (a) Omega-based Blocking, (b) near Non-blocking.

through {CSN → RCSN} or {CSN → encryption → decryption → RCSN}. RNG, which

contains both TRNG and PRNG, is used on both sides. In the trusted chip, RNG is used

for implementing a side-channel protected cryptography engine, as well as generating the

configuration of the CSN-RCSN (TRN). On the untrusted side, it is used only for imple-

menting the side-channel protected cryptography engine. Finally, PUF is engaged in the

untrusted chip for both unique IC authentication and for the generation of the secret key for

encryption. As shown in Fig. 6.4, all modules employ an AXI-stream interface to maximize

the simplicity of the overall design and minimize the overhead incurred by the controller of

the top module on each side. The description of the behavior of each macro in COMA is

provided next.

6.4.1 Configurable Switching Network (CSN)

The CSN is a logarithmic routing network that could route the signals at its input pins to

its output pins while permuting their order and possibly inverting their logic levels based

on its configuration. Fig. 6.5(a) captures a simple implementation of an 8-by-8 CSN using

OMEGA [111] network. The network is constructed using routing elements, denoted as

Re-Routing Blocks (RRB). Each RRB is able to possibly invert and route each of the input

signals to each of its outputs. The number of RRBs needed to implement this simple CSN
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for N inputs (N is a power of 2) is simply N/2 ∗ logN . Each CSN should be paired with an

RCSN. The RCSN, is simply constructed by flipping the input/output pins of RRB, and

treating the CSN input pins as its output pins and vice versa.

The OMEGA network along with many other networks of such nature (Butterfly, etc.)

are blocking networks [111], in which we cannot produce all permutations of input at the

network’s output pins. This limitation significantly reduces the ability of a CSN to ran-

domize its input. Also, we will show that a blocking CSN can be easily broken by a SAT

attack within few iterations.

Being a blocking or a non-blocking CSN depends on the number of stages in CSN.

Since no two paths in an RRB are allowed to use the same link to form a connection,

for a specific number of RRB columns, only a limited number of permutations is feasible.

However, adding extra stages could transform a blocking CSN into a strictly non-blocking

CSN. Using a strictly non-blocking CSN not only improves the randomization of propa-

gated messages through the CSN, but also improves the resiliency of these networks against

possible SAT attacks for extraction of a TRN used as the key for a CSN-RCSN cipher.

A non-blocking logarithmic network could be represented using LOGn,m,p, where n is the

number of inlets/outlets, m is the number of extra stages, and p indicates the number of

copies vertically cascaded [112].

According to [112], to have a strictly non-blocking CSN for an arbitrary n, the smallest

feasible values of p and m impose very large area/power overhead. For instance, for n = 64,

the smallest feasible values, which make it strictly non-blocking, are m = 3 and p = 6, which

means there exists more than 5× as much overhead compared to a blocking CSN with the

same n, resulting in a significant increase in the area and delay overhead. To avoid such

large overhead, we employ a close to non-blocking CSN described in [112] to implement the

CSN-RCSN pair. This network is able to generate not all, but almost all permutations,

while it could be implemented using a LOGn,log2(n)−2,1 configuration, meaning it needs

log2(n) − 2 extra stages and no additional copy. Fig. 6.5(b), demonstrates an example

of such a close-to-non-blocking CSN with n = 8. In the results section, we demonstrate
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that using these close-to-non-blocking CSNs enhances the resiliency of a CSN against SAT

attack, even in small sizes of CSNs with significantly lower power, performance and, area

(PPA) overhead.

6.4.2 Authenticated Encryption with Associated Data

The Authenticated Encryption with Associated Data (AEAD) is used in the DCC mode

for communicating messages, and in the LCC mode for the initial transmission of the CSN-

RCSN key (TRN). Authenticated ciphers incorporate the functionality of confidentiality,

integrity, and authentication. The input of an authenticated cipher includes Message, As-

sociated Data (AD), Public Message Number (NPUB), and a secret key. The ciphertext is

generated as a function of these inputs. A Tag, which depends on all inputs, is generated

after message encryption to assure the integrity and authenticity of the transaction. This

tag is then verified after the decryption process. The choice of AEAD could significantly

affect the area overhead of the solution, the speed of encrypted communication, and the

extra power consumption. To show the performance, power, and area trade-offs, we employ

two AEAD solutions: a NIST compliant solution (AES-GCM), and a promising lightweight

solution (ACORN).

AES-GCM is the current National Institute of Standards and Technology (NIST) stan-

dard for authenticated encryption and decryption as defined in [113]. ACORN is one of

two finalists of the Competition for Authenticated Encryption: Security, Applicability, and

Robustness (CAESAR), in the category of lightweight authenticated ciphers, as defined in

[114]. An 8-bit side-channel protected version of AES-GCM and a 1-bit side-channel pro-

tected version of ACORN are implemented as described in [115]. Both implementations

comply with the lightweight version of the CAESAR HW API [116].

Our methodology for side channel resistance is threshold implementation (TI), which

has wide acceptance as a provably secure Differential Power Analysis (DPA) countermea-

sure [117]. In TI, sensitive data is separated into shares and the computations are performed

on these shares independently. TI must satisfy three properties: 1) Non-completeness: Each
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share must lack at least one piece of sensitive data, 2) Correctness: The final recombination

of the result must be correct, and 3) Uniformity: An output distribution should match

the input distribution. To ensure uniformity, we refresh TI shares after non-linear trans-

formations using randomness. We use a hybrid 2-share/3-share approach, where all linear

transformations in each cipher are protected using two shares, which are expanded to three

shares only for non-linear transformations.

To verify the resistance against DPA, we employ the Test Vector Leakage Assessment

methodology in [110]. We leverage a ”fixed versus random” non-specific t-test, in which we

randomly interleave first fixed test vectors and then randomly-generated test vectors, leading

to two sequences with the same length but different values. Using means and variances of

power consumption for our fixed and random sequences, we compute a figure of merit t.

If |t| > 4.5, we reason that we can distinguish between the two populations and that our

design is leaking information. The protected AES-GCM design has a 5-stage pipeline and

encrypts one 128-bit input block in 205 cycles. This requires 40 bits of randomness per

cycle. In ACORN-1, there are ten 1-bit TI-protected AND-gate modules, which consume

a total of 20 random reshare, and 10 random refresh bits per state update. In a two-cycle

architecture, 15 random bits are required per clock cycle.

6.4.3 Random Number Generator (RNG)

An RNG unit is required on both sides to generate random bits for side channel protection

of AEAD units, a random public message number (NPUB) for AEAD, and TRNs for CSN-

RCSN. We adopted the ERO TRNG core described in [118], which is capable of generating

only 1-bit of random data per over 20,000 clock cycles. In our TI implementations, AES-

GCM needs 40 and ACORN 15 bits of random data per cycle. So, we employed a hybrid

RNG unit combining the ERO TRNG with a Pseudo Random Number Generator (PRNG).

TRNG output is used as a 128-bit seed to PRNG. The PRNG generates random numbers

needed by other components. The reseeding is performed only once per activation.

The choice of PRNG depends on the expected performance and overhead. To support
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COMA, we adopted two different implementations of PRNG: (1) AES-CTR PRNG, which

is based on AES, is compliant with the NIST standard SP 800-90A, and generates 12.8 bits

per cycle. (2) Trivium based PRNG, which is based on the Trivium stream cipher described

in [119]. The Trivium-based PRNG is significantly smaller in terms of area and much faster

than AES-CTR PRNG. It can generate 64 bits of random data per cycle, however, it is not

compliant with the NIST standard.

6.4.4 PUF and Secure PUF Readout

The response of the PUF to a challenge selected randomly by Enrollment Authority (SoC

designer) is used as the secret key in AEAD. Hence, the readout of the PUF-response

should be protected. The simplest solution for the safe readout of a PUF-generated key is

to enable the readout by burning one set of fuses, and disabling it by burning a second set

of fuses. However, this solution, especially when combined with a weak PUF, is not likely

to be resistant against the untrusted foundry, which may possibly burn the first set of fuses,

read out PUF key, and then repair fuses before releasing the chip. To avoid this problem,

we implement a lightweight one-sided public key cryptography (encryption only) based on

Elliptic-Curve Cryptography (ECC). Considering the PUF readout is a one-time event, the

performance of the public-key cryptography engine is not critical.

In order to prevent any attempts at fully characterizing a PUF in the untrusted foundry,

only strong PUFs, e.g. an arbiter PUF, are considered. The secure readout of the PUF key is

allowed only at the device enrollment time, in the secure facility. During the secure readout,

the strong PUF is fed with multiple challenges selected by the Enrollment Authority. The

corresponding PUF responses are encrypted by the untrusted chip using the public key

of the Enrollment Authority, that is embedded in the chip layout or stored in the one-

time programmable memory. Only the Enrollment Authority has access to the decrypted

responses. Afterward, one of the previously applied challenges is randomly selected and

used for the generation of the secret key. This challenge is then hardwired on the untrusted

chip, and the PUF response to that challenge is recorded by the Enrollment Authority. This
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PUF response is then stored in the secure memory of the trusted chip in 2.5D-COMA, or

in the secure cloud directory in R-COMA. This process makes each PUF key unique to a

given device, and resistant to any unauthorized readout by the untrusted foundry.

Still, additional precautions must be taken to protect this scheme against an attack

aimed at replacing a real PUF with a pseudo-PUF, generating randomly looking responses

that can be easily calculated by an attacker. An example of such a pseudo-PUF may be a

lightweight symmetric-key cipher, with a fixed key known to the untrusted party, encrypting

each challenge and outputting a ciphertext as the PUF response.

Such pseudo-PUF should be treated as a Trojan and detected by Enrollment Authority

using the best known anti-Trojan techniques, e.g., those based on the measurement and

analysis of the power consumption during the operation of the device [120]. Additional

methods may be used to differentiate the outputs of a strong PUF from encrypted data,

e.g., using known correlations between the PUF responses corresponding to closely-related

challenges, such as challenges differing on only one bit position, or being mutual comple-

ments of each other [121]. These kinds of PUF-health tests may be specific to a particular

strong PUF type, e.g., to an arbiter PUF, and will be the subject of our future work.

6.5 COMA Resistance against various Attacks

6.5.1 Assumed Attacker Capabilities

Different sources of vulnerability are considered in this section to demonstrate the COMA

security. The attacker can be an adversary in the manufacturing supply chain, and has

access to either the reverse engineered or design house-generated netlist of the COMA-

protected untrusted chip. The attacker can purchase an activated COMA-protected IC

from the market. The attacker can monitor the side channel information of chips at or post

activation. The attacker can observe the communication between untrusted and trusted (or

remote manager) chips and could also alter the communicated data. An Attack objective

may be (1) extracting the obfuscation key (OK), (2) illegal activation of the obfuscated
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Figure 6.6: The t-test Results for Pr and UnPr version of AES-GCM and ACORN.

circuit without extracting the key, (3) extracting the long-term secret key (SK), (4) ex-

tracting short-term CSN keys (TRNs), (5) eavesdropping on messages exchanged between

the untrusted chip and the external sources, (6) removing the COMA protection, or (7)

COMA-protected IC overproduction.

6.5.2 Side Channel Attack (SCA)

The objective of SCA on COMA is to extract either the secret key (SK) used by AEAD or

the TRN used by CSN. Extracting a SK is sufficient to break the obfuscation; extracting a

TRN reveals only messages sent in the LCC mode.
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DCC significantly increases the SCA difficulty, since (1) the AEAD is side-channel pro-

tected, and (2) the attacker loses access to the input of AEAD. Fig. 6.6 captures our

assessment of side channel resistance of AEAD using a t-test for unprotected and protected

implementations of AES-GCM and ACORN [122]. As illustrated, both implementations

pass the t-test, indicating increased resistance against SCA. On the other hand, the in-

ability to control the input to AEAD comes from the COMA requirement of encryption

in the DCC mode where a message first passes through the CSN. Hence, there exists no

relationship between the power consumption of the AEAD and the original input due to

CSN randomization. CSN power consumption is also randomized as it is a function of n

inputs (possibly known to the attacker) and 3n× (log2n− 1) TRN inputs unknown to the

attacker, while the TRN is repeatedly updated based on the value of U . Note that during

the physical design of COMA, the side channel information on power and voltage noise

(IR drop) could be further mitigated using timing aware IR analysis [123–125], and voltage

noise aware clock distribution techniques [126,127].

The LCC mode is prone to side-channel, algebraic, and SAT attacks aimed at extracting

the TRN. However, the attack must be carried out in a limited time while the TRN of the

CSN/RCSN is unchanged. As soon as the TRN is renewed, the previous side-channel

traces or SAT iterations are useless. The period of TRN updates (U) introduces a trade-off

between energy and security and can be pushed to maximum security by changing the TRN

for every new input. In section 6.6.3 we investigate the time required to break the LCC

using side-channel or SAT attack and accordingly define a safe range for U to prevent such

attacks.

6.5.3 Reverse Engineering

In COMA, reverse engineering (RE) to extract the secret key from layout is useless as the

secret key is not hardwired in the design and is generated based on PUF. RE to extract

the key from memory in an untrusted chip is no longer an option as the key is not stored

in the untrusted chip. RE to extract the key from the trusted chip’s memory is limited by
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the difficulty of tampering with secure memory in the trusted technology.

6.5.4 Algebraic Attacks

Algebraic attacks involve (a) expressing the cipher operations as a system of equations,

(b) substituting in known data for some variables, and (c) solving for the key. AES-GCM

and ACORN have been demonstrated to be resistant against all known types of algebraic

attacks, including linear cryptanalysis. Therefore, in the absence of any new attacks, the

DCC mode is resistant against algebraic attacks. Using CSN and RCSN for fast encryption

is new and requires more analysis. CSN can be expressed as an affine function of the data

input x, of the form y = A ·x+ b, where A is an n×n matrix and b is an n× 1 vector, with

all elements dependent on the input TRN. Although recovering A and b is not equivalent

to finding the TRN, it may enable the successful decryption of all blocks encrypted using a

given TRN. We protect against this threat in two ways: (1) The number of blocks encrypted

using a given TRN is set to the value smaller than n, which prevents generating and solving

a system of linear equations with A and b treated as unknowns, (2) We partially modify the

TRN input of CSN with each block encryption (by simply shifting the input TRN bits), so

the values of A and b are not the same in any two encryptions, without the need of feeding

CSN with two completely different TRN values.

6.5.5 Counterfeiting and Overproduction

COMA can be used to prevent the resale of used ICs, usage of illegal copies, and reproduction

of a design. During packaging and testing, each COMA protected IC is first tested and then

is matched with a trusted chip. So, the untrusted chip can only be activated by the matched

trusted chip or the registered remote manager. Building illegal copies that work without the

secure chip (or remote activation) and reproduction of the design requires successful RE.

Blind reproduction is useless as its activation requires a matching trusted chip or passing

PUF authentication of a remote manager. By receiving one or more DALs for testing,

the manufacturer cannot activate additional IPs as the DAL changes from activation to
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activation.

6.5.6 Removal attacks

Removal of the TRNG fixates the DAL and breaks the LCC mode. In DCC mode, it

gives an attacker control over the input to the AEAD, increasing the chances of SCA on

the cryptography engine. NIST standard SP 800-90B [108] dictates that continuous health

testing must be performed on the TRNG. These tests include repetition counting to detect

a catastrophic failure and adaptive proportion testing to detect loss of entropy. Removal of

the TRNG would be detected as this would result in insufficient entropy to satisfy the health

test, assuming the test is implemented on the trusted chip. Removal of COMA architectural

modules makes the chip non-functional as COMA is not a wrapper architecture, but a

fused one. Complete removal of COMA requires successful RE. Removing the PUF can be

made challenging by using a strong PUF, with a large number of challenge-response pairs.

Replacing such a PUF with a deterministic function is challenging as such functions are

likely to have a substantially different area and power, making them detectable.

Table 6.1: Main features of the two proposed COMA variants.

Feature COMA1 COMA2

AEAD AES-GCM ACORN
PRNG AES-CTR Trivium
BUS Width 8 8
Pins used for Communication 8 8
CSN-RCSN Size 64 64
Trusted Memory 4 Kbits 4 Kbits
Cfix: initialization overhead (cycles) 10,492 20,452
Cbyte: cycles needed for encrypting each byte 72 17
PRNGperf : Throughput of generating PRN 128bit/10cycles 64bit/cycle
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Table 6.2: Resource Utilization of the COMA Architecture.

Name AES-GCM+AES-CTR ACORN+Trivium

Slice LUT FF Slice LUT FF

TRUSTED

AEAD EXT 1,336 3,804 4,432 333 1,067 591
RNG 712 2,226 618 215 601 450
CSN 257 540 739 257 540 739
Others 149 345 144 149 345 144

UNTRUSTED

AEAD EXT 1,336 3,804 4,432 333 1,067 591
RNG 738 2,352 628 241 683 460
RCSN 252 607 737 252 607 737
ECC 563 1569 1161 563 1569 1161
PUF [128] 177 — — 177 — —
Others 209 359 257 209 359 257

On Xilinx Artix-7 (XC7A100T-1CSG324) FPGA.

6.6 COMA Implementation Results

For evaluation, all designs have been implemented in VHDL and synthesized for both FPGA

and ASIC. For ASIC implementation we used Synopsys generic 32nm educational libraries.

For FPGA verification, we targeted a small FPGA board, Digilent Nexys-4 DDR with Xilinx

Artix-7 (XC7A100T-1CSG324).

6.6.1 COMA Area Overhead

We implemented two variants of COMA architecture: a NIST compliant solution (denoted

by COMA1) and a lightweight solution (denoted by COMA2). The AEAD and PRNG in

COMA1 are based on AES-GCM and AES-CTR respectively. The COMA2 is implemented

by using ACORN for AEAD and Trivium for PRNG, The details of these two variants are

summarized in Table 6.1. The breakdown of area (in terms of Slices, LUTs, and FFs) for

these solutions for an FPGA implementation in Xilinx Artix-7 is reported in Table 6.2. The
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Table 6.3: Resource Utilization for ASIC implementation of COMA.

Name AES-GCM+AES-CTR ACORN+Trivium

Cells Areaum2 Tclkns PowermW Cells Areaum2 Tclkns PowermW

COMA 25338 0.11 1.97 1.62 8681 0.046 1.18 0.84

� RNG 5684 0.025 1.43 0.431 1267 0.007 0.27 0.144

� CSN/RCSN 1749 0.008 0.08 0.11 1749 0.008 0.08 0.11

� AEAD 13675 0.061 1.67 0.704 2257 0.013 0.97 0.251

� ECC 3278 0.016 1.34 0.321 3278 0.016 1.34 0.321

Using Synopsys generic 32nm libraries.

breakdown of area (in terms of Cells and um2), critical path, and power consumption for

an ASIC implementation is reported in Table 6.3. Note that the 2.5D-COMA needs both

the trusted and untrusted parts of the architecture, while the R-COMA only requires the

untrusted part. Table 6.4 reports optimized area and frequency results on FPGA for top-

level of trusted and untrusted sides. As illustrated, the total area of a lightweight solution

is around 1/3 of the NIST-compliant solution. The reported numbers in Table 6.2 include

the overhead of all sub-modules including AEAD, CSN-RCSN, RNG, ECC, etc. Due to the

optimization on the boundaries among the units, resource utilization in Tables 6.4 is less

than the sum of row values in Table 6.2.

6.6.2 COMA Performance

Fig. 6.7 compares the performance of two solutions in DCC and LCC mode. As illustrated,

for small data sizes, the COMA1 outperforms the COMA2 solution. However, as the size

of data increases, the COMA2 outperforms the COMA1 solution. It is due to the fact that

stream ciphers such as ACORN have a long initialization phase, making them inefficient for

small data size. In addition, our AES-GCM implementation benefits from an 8-bit datapath,

but the ACORN is realized by a 1-bit serial implementation. The total latency in terms
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Table 6.4: Optimized results of COMA Architecture.

Name AES-GCM+AES-CTR ACORN+Trivium

Slice LUT FF Freq[MHz] Slice LUT FF Freq[MHz]

Trusted 2,297 7,094 5,892 103 1,030 2,901 1,924 121

Untrusted 2,818 8,781 7,169 109 1451 4,182 3,156 120

On Xilinx Artix-7 (XC7A100T-1CSG324) FPGA.

Figure 6.7: Execution Time in AES-GCM+AES-CTR and ACORN+Trivium.

of the number of clock cycles for COMA1 and COMA2 implementations can be calculated

using equation (6.1), in which the number of cycles for the initialization and finalization is

fixed and is given in Table 6.1. The Cbyte is the number of cycles needed for encrypting each

input message byte, which is 17 and 72 for COMA2 and COMA1, respectively. Hence, in

spite of longer initialization, the COMA2 outperforms the COMA1 for message sizes larger

than 128 Bytes.

Tcomm = Cfix +Messagesize × Cbyte (6.1)
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6.6.3 COMA performance in LCC mode

In the LCC mode, the AEAD is used to synchronize the initial seed of the PRNG, while the

CSN is used for encrypting data. The random (TRN) configuration key for the CSN-RCSN

is generated by PRNG, which is updated after transferring every U messages. In COMA,

the PRNG has a limited buffer size, and as soon as the buffer is filled with random data, the

PRNG stops producing additional bits. The consumption of TRNG output is synchronized

(every U messages) and the generation of random inputs is limited to the size of buffer.

Hence, the PRNGs in the trusted and untrusted sides are always in sync. The number

of cycles it takes to initialize the LCC mode includes the time to initialize the secret key

engine (Cfix), the encryption and transfer and decryption of PRNG seed (CENC), and the

time for the PRNG to generate enough output from a newly received TRN (CPRNG):

CLCC−init = Cfix + CENC + CPRNG (6.2)

Depending on the AEAD used for transferring the original seed, the Cfix is obtained

from Table 6.1. The seed size in our implementation is 16 Bytes, hence the CENC is simply

Cbytes × 16, and the CPRNG is:

CPRNG =
Bitsneeded
PRNGperf

=
3n× (log2n− 1)

PRNGperf
(6.3)

Finally, after initialization, and by using a CSN of size n when the bus width of COMA

is BW , the number of cycles to encrypt and transfer one byte of information is:

CLCC
byte =

8

n
× (

n

BW
+ 1) (6.4)

Using a 64-bit CSN and BW of 8 bits, the CLLC
byte = 9/8. Compared to CDCC

byte for the

COMA1 (CDCC
byte =72), and for the COMA2 (CDCC

byte =17), the LCC mode is at least an order

of magnitude faster. Fig. 6.7 compares the superior performance of LCC mode compare
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Table 6.5: SAT Execution Time on Blocking CSN and a Close to Non-blocking CSN .

CSN Size 4 8 16 32 64 128 256 512

Mode blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk blk non-blk

SAT Iterations 6 14 7 18 8 25 12 31 14 TO 24 TO 25 TO TO TO
SAT Exe. Time (s) 0.01 0.01 0.03 0.15 0.2 2.35 0.8 79.18 5.9 TO 130.5 TO 1136.2 TO TO TO

TO: Timeout = 2× 106 seconds; The SAT attack is carried on a Dell PowerEdge R620 equipped with Intel Xeon
E5-2670 2.6 GHz and 64GB of RAM.

with DCC mode in both COMA variants.

Frequency of TRN updates in LCC mode

The frequency of TRN update (U) for LCC is an important design feature. A large U

reduces energy as PRNG/TRNG is kept idle for U −P cycles. P is the number of required

cycles to refill the PRNG buffer after a TRN read. However, when the TRN is fixated for a

long duration of time, the possibility of a successful side-channel, algebraic, or SAT attack

on the CSN increases. The minimum number of messages required for an algebraic attack

(even if such attack is possible) is n, which is the CSN input size. Our experiments show

that a SAT attack could recover the key with an even smaller number of inputs. Knowing

the number of encryptions/decryptions needed by such attacks, we can set the U to a safe

value smaller than the number of required messages to make it resistant to these attacks.

So, the value of U should be between P ≤ U ≤ n.

The SAT attack against CSN is implemented similar to [1]. In this attack, the CSN

gate-level netlist and an activated chip are available to the attacker, while the attacker

aims to extract the CSN-RCSN configuration signals. Table 6.5 captures the results of the

SAT attack against blocking and near non-blocking CSNs. As illustrated, the time to break

a near non-blocking CSN is significantly larger. In each iteration SAT test one carefully

selected input message. Hence, if the U is kept smaller than the number of required SAT

iterations, the SAT attack could not be completed.
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Figure 6.8: Energy Breakdown in COMA.

Energy saving in LCC mode

As illustrated in Fig. 6.9(a), in the LCC mode, the TRN is updated every U cycles. U

is determined based on the fastest attack on CSN-RCSN pair, which is the SAT attack.

After each TRN update, the PRNG takes P cycles to refill its buffer. Note that P cycles

required for PRNG could be stacked at the beginning of U cycles, or distributed over U

cycles depending on the size of the PRNG buffer. As long as the TRN completely changes

every U cycle, the possibility of attack is eliminated. Hence in each U cycles, for P cycles

the PRNG/TRNG and CSN are active, and for U − P cycles, the PRNG is clock gated,

and only CSN is active. In both cases, the AEAD is active only for the initial exchange of

PRNG seed, allowing us to express the power consumption of the LCC mode as:

ELCC = CPRNG × PH +
(
U(

n

BW
+ 1)− CPRNG

)× PL (6.5)

Obviously, the number of required cycles to refill the PRNG buffer after TRN read (P )

affects energy consumption and communication throughput. If P < U , as illustrated in Fig.

6.9(a), for U −P cycles the PRNG is kept idle (power-gated). However, if P > U , as shown
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Table 6.6: COMA vs. FORTIS.

Scheme Key Management Data Communication Private Key SC Protected

FORTIS Constant �* Embedded (known to the fab) �
COMA PUF-based Unique �+ No private key at untrusted �
Scheme Session Key Activation Need to TPM Source of Randomness

FORTIS Vulnerable to Fault Attack Once at Untrusted Side Pseudo RNG
COMA Secure per Demand (License) at Trusted Side True RNG

*: Not Implemented, but Naturally available using OTP. Limited Performance Due to Lightweight RSA
+: Available in Two Variant: DCC (Fully Secure and Limited Performance) and LCC (Leaky yet Secure and High Performance).

Table 6.7: Area Overhead of COMA vs. FORTIS.

Design Gate Count FORTIS/Design COMA1/Design COMA2/Design

b19 40,789 24.52% 62.1% 21.28%

VGA LCD 43,346 23.07% 58.45% 20.02%

Leon3MP 253,050 3.95% 10.01% 3.43%

SPARC 836,865 1.19% 3.02% 1.03%

Virtex-7 2M 0.5% 1.26% 0.43%

in Fig. 6.9(b), the communication should be stopped for P −U cycles till the next TRN is

ready and to resist SAT or algebraic attacks.

The energy consumption of LCC mode for COMA architectures constructed using NIST-

compliant and lightweight solution when transmitting different size of messages is captured

in Fig. 6.8. As illustrated, the LCC mode, for having to synchronize the two sides using

a TRNG seed, is burdened with the initialization cost of AEAD. However, when the CSN-

RCSN and PRNG are setup, the energy consumed for exchanging additional messages grow

at a much lower rate compare to DCC mode (which is dominated by AEAD and PRNG

power consumption (as reported in table 6.3).
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(a) While P < U

(b) While P > U

Figure 6.9: Power Consumption of LCC Mode of Communication.

6.7 Comparing COMA with Prior Work

To the best of our knowledge, FORTIS [97] is the only comprehensive key-management

scheme that was previously proposed. Table 6.6 compares our proposed solution against

FORTIS. COMA addresses several shortcomings of the FORTIS:

1) In FORTIS, all chips use identical keys, hence there is no mean of differentiating

between chips. In COMA each chip has a unique key generated by PUF. 2) In COMA,

secret key for communication and authentication is generated by PUF, when FORTIS relies

on embedding the private key and public key in GDSII. So, the private key in FORTIS will

be known to the fabrication posing the risk that the entire process of activation could be

faked in software. In COMA, such attack is prevented as secret key is generated by PUF and

is securely read out using public key cryptography. 3) In FORTIS, the usage of the private

key for chip authentication is vulnerable to SCA. In COMA, the secret-key cryptography
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is side channel protected, and the public-key encryption is only used once, making COMA

secure against SCA. 4) In FORTIS, there is also the possibility of deploying a fault attack

by fixing the value of session key Ks. In COMA, the same attack would require fixing the

PUF output or replacing the PUF with a known function. This however could be tested

by reading out the output of the PUF using multiple challenges and performing statistical

test on the PUF response (PUF health check). 5) In FORTIS, the activation is done once,

hence there is a need to store the obfuscation key in the untrusted chip. In COMA, the

need to store the obfuscation key in untrusted chip is removed. In R-COMA, the activation

takes place on demand, and the key is removed after power down or reset. In 2.5D-COMA,

the activation key is stored in a trusted chip. 6) COMA provides two new mechanisms for

communication: a) the DCC mode for added security, and b) the LCC mode for high-speed

communication. 7) COMA uses a TRNG to produce the seed for PRNG, while FORTIS

uses a PRNG without addressing a random source for its seed.

In terms of area overhead, FORTIS [97] provides an estimate for the incurred overhead

of their solution, which is around 10K gates. As shown in Table 6.3, the number of cells

for implementing the NIST-compliant (COMA1) implementation is 25.4K gates, while the

lightweight solution (COMA2) is implemented using 8.7K gates. Table 6.7 compares the

area overhead of FORTIS against COMA1 and COMA2 when these architectures are de-

ployed to protect a few mid- and large-size benchmarks. Using COMA2, which improves

the overhead by 14% compared to FORTIS, requires between 0.43% and 21.3% of circuit

area in selected benchmarks.

6.8 What we Learnt in this Chapter

In this Chapter, we presented COMA, an architecture for obfuscation-key management and

metered activation of an obfuscated IC that is manufactured in an untrusted foundry, while

securing its communication. The proposed solution removes the need to store the key in

161



the untrusted chip, makes the obfuscation unlock-key a moving target, allows unique iden-

tification of the protected IC, and secures the communication to/from the protected chip

using two hybrid cryptographic schemes for ultra-high-speed and ultra-security. Our exper-

imental results showed that compared to the state-of-the-art key management architecture,

FORTIS, COMA is able to reduce the area overhead by 14%, while addressing many of the

shortcomings of the previous work.
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Chapter 7: Conclusion

The ever-increasing cost of integrated circuits (IC) manufacturing, increasing the recur-

ring cost of the fab maintenance, and having access to the most advanced technology node

have pushed many high-tech companies to become fabless. Outsourcing the stages of the

manufacturing supply chain to the third-party facilities with no reliable monitoring on

them results in the introduction of multiple forms of security threats such as IC overpro-

duction, Trojan insertion, Reverse Engineering (RE), Intellectual Property (IP) theft, and

counterfeiting. To combat these threats, different design-for-trust (DfTr) countermeasure

techniques have been proposed in the literature. Amongst them, logic obfuscation a.k.a.

logic locking, in which post-manufacturing programming capability could be added into the

circuits, received significant attention in recent years as a proactive and robust countermea-

sure.

logic locking introduces limited programmability into a netlist through inserting addi-

tional key programmable gates at design time. After fabrication, the functionality of the

IC is programmed by loading the correct key values. To resist the physical attacks, such

as reverse-engineering, the key inputs could be stored in and driven by an on-chip tamper-

proof memory. The purpose of inserting key gates is to protect the IC design from untrusted

foundries. Since the functionality of a design is locked with a secret key, the attacker cannot

learn the functionality of the obfuscated netlist after reverse engineering.

Due to the importance of logic locking, many studies have evaluated the effectiveness

(strength) of this paradigm in different abstraction levels. Amongst all state-of-the-art

threats on logic obfuscation, the Boolean satisfiability (SAT) attack has seriously chal-

lenged the effectiveness of the vast majority of existing logic locking solutions. After the

introduction of the SAT attack in 2015, researchers have proposed various mechanisms for

building SAT hard obfuscation solutions. However, many of such obfuscation schemes were
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later broken using newer attacks such as SPS, removal, bypass, and AppSAT, making the

current defense schemes unreliable.

Recently, a new breed of obfuscation schemes has been introduced, relied on breaking

the SAT assumptions for building SAT hard solutions without having the vulnerabilities

of the previous SAT hard solution. For example, Cyclic obfuscation, by introducing cycles

into netlist break the SAT model as the netlist can no longer be represented by a directed

acyclic graph (DAG). Alternatively, the delay logic locking (DLL) extends the obfuscation

representation beyond logic and locks the circuit using its delay and timing properties,

attempting to build SAT hard solutions. Another group of countermeasures tries to sig-

nificantly increase the runtime of each iteration of the SAT solver. In such techniques, by

exploiting the strength of symmetric routing structures, such as permutation networks or

crossbars, the complexity of the SAT circuit per each iteration will be increased significantly.

7.1 What We Learnt in this Thesis

The objective of this thesis was to develop newer attacks, capable of evaluating and as-

sessment of the breaking possibility of the obfuscation solutions that cannot be breakable

by state-of-the-art attacks. However, this thesis went one step further, and apart from

proposing newer powerful attacks, it also covers two different defense solutions, one as a

new robust logic locking solution, and one as a key management architecture for securing

the logic locking key. The new logic locking solution could resist the existing attacks on

logic locking, and due to its nature, it could be known as a new promising paradigm in

the literature. Also, the key management architecture helps double-securing the activation

of obfuscated circuits that are manufactured in untrusted foundries to protect the IC from

being reverse engineered and stolen.

As the first newer attack with higher capability and performance beyond the existing

attacks, in Chapter 3, we introduced a class of satisfiability modulo theory (SMT) attacks

that could break behavioral logic locking techniques. The SMT attack benefits from the

expressive nature of theory solvers, which allow the attacker to express constraints that are
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difficult or even impossible to express using CNF, including timing, delay, power, arithmetic,

graph, and many other first-order theories. We first illustrated that a SAT attack could be

easily implemented using an SMT solver to prove that SMT attack is a superset of the SAT

attack. Then we proposed two variants of SMT attack on obfuscated circuits using the Eager

and Lazy approach of SMT solver. We illustrated that using the Eager and Lazy approach,

we could break the delay logic locking (DLL) obfuscation that cannot be broken by a SAT

attack, proving that SMT attack’s capabilities go beyond a SAT attack. It shows that by

only using non-logical properties of a netlist for obfuscation, we do not provably increase

the security of an obfuscated netlist, indicating the need for further study and exploration

in this domain to generate obfuscation schemes with provable security. Then we proposed

the Accelerated SMT attack (AccSMT), and we illustrated that by using theory solvers

(BitVector theory solver in this experiment), we could significantly speed up the attack

against specific obfuscated circuits, and reported a significant reduction in the execution

time of the AccSMT compared to the SAT attack. Finally, we illustrated that with a small

modification, the AccSMT could be used as an approximate attack, allowing us to find an

approximate key for obfuscation schemes that combine a SAT hard obfuscation with high

corruption obfuscation.

To further extend the capability of the SAT attack, especially in terms of the scalability

when complex modules are in place, in Chapter 4, we proposed a neural-network-guided

SAT attack, called NNgSAT attack. In the NNgSAT attack, we use a message passing

neural network to predict satisfying assignments that could help and significantly speed up

the conventional SAT attack in solving the design that contains complex hard-to-be-solved

structures (e.g. routing obfuscation [32,33]). In NNgSAT, after being trained as a classifier

to predict SAT/UNSAT on a SAT problem, the neural network is used to guide/help the

actual SAT solver for finding the SAT assignment(s). By training NN on conjunctive normal

forms (CNFs) corresponded to a dataset of logic locked circuits, our experiments showed

that NNgSAT could solve 93.5% of the logic locked circuits containing complex structures

within a reasonable time, while the existing SAT attack cannot proceed the attack flow in

165



them.

With the combination of both proposed attacks in this thesis, i.e. the SMT attack and

the NNgSAT attack, as an evaluation framework on logic locking, we would be able to

assess and break a wide range of state-of-the-art logic locking techniques, including but not

limited to, pre-SAT (primitive) techniques, point function that combined with primitive

techniques (compound), cyclic and behavioral, and routing-based obfuscation techniques.

Also, with the integration of BMC that could be easily integrated with SMT attack, se-

quential SAT attack could be emulated using the proposed approaches. Having such strong

and comprehensive framework allows the designers to evaluate the security of newer logic

locking techniques using a unified and well-designed attack framework.

Considering these new attacks, in Chapter 5, to combat state-of-the-art attacks on logic

obfuscation, including but not limited to SAT, Sequential SAT, SMT, and NNgSAT, we

proposed a new obfuscation paradigm called data flow obfuscation. In data flow obfuscation,

by exploiting the concept of asynchronicity, we showed how the flow of the data could be

obfuscated in any arbitrary circuit. Locking the flow of the data will affect the timing of

moving data within the circuit, making it almost impossible for the adversary to model

any form of attack on it. In data flow obfuscation, we engaged false {paths + latches}
using the asynchronous structure to control the flow of data in specific timing paths. Using

this mechanism, we showed that since the time of data capturing in scan chains is locked,

the SAT attack has no longer an advantage for the adversary even while the scan access

is not restricted. Also, we showed that how asynchronicity combat the sequential SAT

attack by invalidating the unrolling step in these attacks. We comprehensively investigated

the effectiveness of this new obfuscation paradigm over wide-range benchmark families.

Our experiments showed the resiliency of this new paradigm against all existing attacks at

significantly low overhead.

Furthermore, to boost the security of logic locking techniques, considering the possibil-

ity of direct access/extract of the logic locking key, in Chapter 6, we went one step further
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to protect the IC from being reverse engineered or stolen. We introduced a novel com-

munication and obfuscation management architecture (COMA) to handle the storage of

the obfuscation key and to secure the communication to/from the obfuscated circuits that

are manufactured in untrusted foundries and meet the constant connectivity requirement,

namely ICs that belong to a) 2.5D package-integrated and b) IoT solutions. COMA ad-

dresses three challenges related to the obfuscated circuits: First, it removes the need for

the storage of the obfuscation unlock key at the untrusted chip. Second, it implements a

mechanism by which the key sent for unlocking an obfuscated circuit changes after each

activation (even for the same device), transforming the key into a dynamically changing

license. Third, it protects the communication to/from the COMA protected device and

additionally introduces two novel mechanisms for the exchange of data to/from COMA

protected architectures: (1) a highly secure but slow double encryption, which is used for

the exchange of key and sensitive data (2) a high-performance and low-energy yet leaky

encryption, secured by means of frequent key renewal. We demonstrated that compared to

state-of-the-art key management architectures, COMA reduces the area overhead by 14%,

while allowing additional features including unique chip authentication, enabling activation

as a service (for IoT devices), reducing the side channel threats on key management ar-

chitecture, and providing two new means of secure communication to/from an untrusted

chip.

7.2 Future Directions

For future work, we anticipate the following research directions:

Extending and Maturation of Attack Framework on Logic Locking: With

the combination of different attacks introduced on logic locking, including the SMT attack

and the NNgSAT attack, the framework of security evaluation on logic locking will become

more powerful, requiring a much more sophisticated countermeasure to resist against this

framework. Formal verification tools can play an important role in this area for making a
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much more comprehensive attack framework. Many of the existing attacks on logic locking

have engaged methods and mechanisms used in such formal tools. However, none of the

existing attacks integrates any formal verification tool as a means and major part of the

attack on logic locking. Particularly, the availability of commercial formal verification tools

with high scalability could significantly mitigate the scalability and performance issue of

the existing attack in a more standard way. Boosting the strength of the attack framework

using the formal tools helps the researchers to evaluate new logic locking countermeasures

with a standard and much stronger tool, helping to move faster towards the sophistication

of the logic locking algorithms.

Extending and Maturation of Scan-based Logic Locking Countermeasures:

Depending on the state-of-the-art attacks introduced on logic locking, new studies move

towards the introduction of methods that are resilient against newer attacks. For instance,

since the SAT, SMT, NNgSAT, and many of the other attacks require access to the scan

chain to target each combinational logic part separately, many recent studies attempt to

evaluate and assess the restricting access to the scan chain architecture for restricting any

unauthorized scan chain access. In this case, the adversary has only access to primary

inputs/outputs (PI/PO). Since almost all of the circuits are sequential, and the SAT attack

cannot formulate flip-flop (the state), the attacker is no longer able to use the SAT attack.

However, none of these techniques offer provable security guarantees. For example, the

introduction of sequential-based SAT attacks, such as KC2, shows that the attack could be

still formulated even while the scan access is restricted. However, the existing sequential

SAT attacks suffer from low scalability especially when large circuits are in place. Hence,

securing the scan using a well-designed and robust approach is still an open and promising

direction in logic locking. The main shortcoming of the existing locking/blocking scan chain

technique is that they impose critical restrictions on the circuits. For example, in some cases

it is assumed that the tester is a trusted party that should have the correct key; however,

it is a hard assumption to maintain in many practical cases. In some other cases, the tester

has to rely on observing the PO for any test/debug purposes, such as functional test, which
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might reduce the testability coverage depending on the topological hierarchy of the design-

under-test. Hence, there is a need to revisit the security of such obfuscation techniques

to overcome these drawbacks and to guarantee the resiliency provided by a restricted scan

chain architecture, which will be the subject of our future work.

Extending and Maturation of Asynchronous and Latch-based Logic Lock-

ing: With the introduction of data flow obfuscation, as a new paradigm for obfuscating

the circuit, future studies on logic locking might be redirected towards this new paradigm,

in which the concept of latch-based or clock-gating-based logic locking is used for obfus-

cation purpose. Since most state-of-the-art attacks on logic locking exploit the methods

and mechanisms used in existing formal verification tools, focusing on the clock tree or

the timing of the circuit, and finding the correlation between the logic (function) and the

timing (events) would be hard/impossible to be modeled. However, data flow obfuscation

as a preliminary investigation on this breed requires more evaluation/assessment, might

resulting in the introduction of extended/advanced techniques relying on this new concept.

Mixture of Analog and Digital Logic Locking: More recent studies show their

interest once Boolean (digital) logic locking is mixed with complex analog logic locking. For

instance, the usage of chaotic computing as a means of logic locking, helps the designer to

add configurable dynamicity into the locked circuit. Adding dynamicity significantly boosts

the complexity of the attack formulation. Particularly, in many cases, such as the SAT

attack or the SMT attack, any dynamic change during the de-obfuscation will invalidate

all previous computations. Hence, the attacks fail to be applied in such cases. Also, a

complex analog structure that is hard to be modeled using the SMT attack would be an

open research direction.
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