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Abstract

THE PERSISTENCE OF DATA: A ROAD MAP

Shrunal Pothagoni, B.S.

George Mason University, 2022

Honors Thesis Director: Dr. Sean D Lawton

The purpose of data mining is to use advanced mathematical and statistical techniques

to extract quantitative information from large data sets. These tools are incredibly powerful

and in conjunction with machine learning algorithms allow for extremely accurate pattern

prediction. However, there are various datasets that have qualitative properties that cannot

be discerned using classic data mining techniques. Topological Data Analysis (TDA) is a

field developed within the last two decades that uses methods in topology to extract such

qualitative features. In this paper we will study how to use abstract simplicial complexes on

point cloud data sets to find their most ‘optimal’ topology using computational homology.





Chapter 1: Introduction

Data mining techniques are commonly used to find patterns or extract meaning within data.

With the abundance of large and rich datasets, the ability to extract meaning from data

is more prevalent than ever. This information is processed using various statistical and

mathematical methods. However, an unfortunate consequence of using such methods is

that most data mining techniques provide no explanation as to what attributes or features

in a data set are responsible for a particular anomaly.

For instance, one might design a machine learning algorithm to find a particular object

within a set of images and given a large enough sample of data one can execute this algo-

rithm to output predictions with a high level of accuracy. However, this machine learning

algorithm cannot provide any explanation on what attributes are present in the image that

allow it help classify this set of data. This isn’t an issue when a data mining technique

is used for pattern prediction. But in the context of testing scientific hypotheses, these

statistical algorithms have a disadvantage.

To address this issue we need to examine what qualitative attributes our data set possess

rather than its quantitative attributes. The purpose of this thesis is to study an emerging

branch of mathematical data science known as Topological Data Analysis (TDA). TDA uses

methods in topology to extract information from sets that are often high dimensional, noisy,

and incomplete. A particular method in TDA is Persistent Homology (PH), a computational

tool that allows users to extract qualitative features that persist from a dataset across

multiple scales. There have been many applications of PH, such as signal analysis, material

science, and shape recognition to name a few. Our goal is to begin by first building the

theoretical background of persistence homology. Once this pipeline has been established

we will then move onwards and layout a proper road map so that if one were to decide to

algorithmically implement these tools, they could.
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Chapter 2 includes all the preliminary knowledge required to move forward throughout

this thesis. The first section will include su�cient background on basic concepts from linear

algebra and group theory and should be review to anyone who has completed (or nearly

completed) a traditional undergraduate mathematics degree. The last two sections will

cover some basic point set-topology as well as a basic introduction into category theory.

It is advised that one read through this chapter thoroughly as these concepts will be used

throughout this thesis.

Once the preliminaries have been established, we will move forward into the realm of

simplicial complexes in Chapter 3. Simplical complexes are pivotal in the field of PH. The

first section will focus on defining a simplical complex and how various complexes, such as

the Čech complex and Vietoris-Rips complex, are used to give datasets a topological struc-

ture. From here we will then explore the most important section of this thesis: simplicial

homology. Homological algebra is a necessary tool used to articulate the qualitative features

of a topological structure. This topological structure endowed upon the data set will allow

us to describe it’s global behavior.

At this point we have all of the relevant information to begin computing homology to

find persistent features within our dataset. Chapters 4 provides an outline for how the

theory discussed in the last few chapters can be synthesized to summarize this information

into a compact pictographic known as a barcode. Chapter 5 will be a basic guide on how

to implement persistence theory. This includes discussions on computational complexity,

outlines for algorithms, and a few toy examples.

Lastly, we will finish this thesis o↵ with a small introduction into what is the current

state of research in persistent theory. These topics will include a brief introduction into

multi-parameter persistent homology, noise filtration, and topological statistics.
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Chapter 2: Preliminary Background and Results

The techniques and methods developed to study persistent homology require the under-

standing of algebraic topology. Although it is often the case that many universities don’t

o↵er this course at the undergraduate level, those that have taken courses in linear alge-

bra, group theory, and topology have the necessary prerequisite knowledge to skip ahead

to Section 2.4 if desired. Otherwise, I would recommend reading the following definitions

and background as it will provide the foundation for the ideas that will be explored in this

thesis.

2.1 Basic Group Theory

Definition 2.1. A nonempty set G endowed with a closed operation ⇤ (i.e. if a, b 2 G,

then a ⇤ b 2 G), is a group, denoted by (G, ⇤),if it satisfies the following axioms:

1.) For all a, b, c 2 G, a ⇤ (b ⇤ c) = (a ⇤ b) ⇤ c (Associativity).

2.) G has an identity element eG that is for all g 2 G, eG ⇤ g = g ⇤ eG = g.

3.) For every element g 2 G there exists an element g�1 2 G such that g ⇤g�1 = g�1 ⇤g =

eG.

Remark 2.1. The operation ⇤ is often omitted and we instead write the operation of two

elements g ⇤ h as just gh.

Example 1. The most known example of a group is the set of integers Z under addition

(one can verify that if we change the operation to multiplication (Z, ·) is not a group).

However, there are a large variety of groups that range in complexity and interest. An
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example of a nontrivial group that is often introduced in most introductory algebra courses

is the dihedral group Dn, the set of symmetries on a regular polygon with n-sides

Definition 2.2. A group G is said to be abelian if for all g, h 2 G, gh = hg

Definition 2.3. A group homomorphism ' is a map between two groups (G, ⇤) and (H, ·),

denoted ' : G ! H, such that '(g ⇤ g0) = '(g) · '(g0) for all g and g0 in G. If ' is also a

bijective map between G and H then ' is known as an isomorphism of groups.

Definition 2.4. G is said to be a cyclic group if there exists an element a 2 G such that

every other element in G can be generated by repeated operations on a. Likewise, a is called

the generator of G.

Remark 2.2. Of course, not every group is cyclic in nature. However, it may be the case

that G has multiple elements that generate it. This is known as a generating set of G.

Consequently, if this set happens to consist of finitely many elements we say that G finitely

generated

2.2 Vector Spaces

Definition 2.5. A Vector Space V over a field k is a nonempty set equipped with addition

and scalar multiplication satisfying the following:

• V is an abelian group under addition (that is, it is closed under addition, addition

is associative, there is an additive identity, each element has an additive inverse, and

addition is commutative);

• V is closed under scalar multiplication, scalar multiplication is associative, the element

1 2 k is the identity scalar, and scalar multiplication distributes over scalar addition

and vector addition.

Definition 2.6. Let V be a vector space over a field k. A set of nonzero vectors B =

{v1,v2, . . . ,vn} is said to be linearly independent if

4



↵1v1 + ↵2v2 + . . .+ ↵nvn = 0

for some ↵1, · · · ,↵n in k if and only if ↵1 = · · · = ↵n = 0

Definition 2.7. Let V be a vector space over a field k. A set of vectors B ⇢ V is a

spanning set for V if, for every vector v 2 V , there exists a set of vectors v1, . . . ,vn in B

and ↵1, . . . ,↵n in k such that v = ↵1v1 + · · ·+ ↵nvn.

Definition 2.8. A basis B of a given vector space V is a nonzero set of vectors that are

linearly independent and are a spanning set for V.

A nontrivial result that arises as a consequence of assuming the axiom of choice is that

every nonzero vector space has a basis (a linearly independent spanning set) [Axl97]. One

of the fundamental results of linear algebra is that each basis for a vector space V has the

same size, and this size is referred to as the dimension of V . By convention, we say that

the dimension of the zero vector space is zero.

One of the standard results from linear algebra is that given a finite dimensional vector

space V and a nonzero k, V is isomorphic to kn if and only if n = dimV .

Definition 2.9. A linear transformation of a k vector spaces is a function

f : V !W

that preserves vector addition and scalar multiplication. That is, f(u + v) = f(u) + f(v)

and f(au) = af(u) for all u, v 2 V and a 2 k. If a linear transformation is also bijective

(i.e. injective and surjective), it is called an isomorphism of vector spaces.

Although there are various examples of interesting vector spaces, the contents of this

thesis will primarily focus on studying Rn. However, these definitions will play a crucial

role in Section 3.2 in which we extend the notion of bases with respect to groups.
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2.3 Topology

Definition 2.10. A topology on a set X is a collection T of subsets of X have the following

properties:

1.) ; and X are in T

2.) The union of any arbitrary subcollection of T is in T .

3.) The intersection of any finite subcollection of T is also in T .

A set X in which a topology T is defined is called a topological space. Often we denote

this as an order pair (X, T ) where T is the topology on the set X. However this notation

is often dropped within context if there is no confusion on what topology is being used.

Furthermore, all sets U 2 T are called open sets.

Remark 2.3. For the rest of this section we will assume X to be a topological space.

Definition 2.11. A set C is said to be closed if its compliment is open, that is, X�C 2 T

Definition 2.12. A function between two topological spaces X,Y , denoted f : X ! Y , is

continuous if f�1(U) is open in X for all open U ⇢ Y . Furthermore, a continuous function

f is a homeomorphism if it has a continuous inverse.

Proposition 1. Suppose f is a function between two topological spaces X,Y . f is contin-

uous if and only if for every closed set C ✓ Y , f�1(C) is closed in X.

Proof. Suppose that f is continuous and C ✓ Y is closed. It su�ces to show that f�1(C)

is closed in X. Given that X � C is open in Y we have that f�1(X � C) = X � f�1(C).

However, we know that f is continuous. So, X � f�1(C) is open. Thus, f�1(C) is closed.

Conversely, assume that the inverse image of closed is closed under f . Given an open set

U ✓ Y , Y �U is a closed. Then f�1(Y �U) = X � f�1(U). But this implies that f�1(U)

is open and f is continuous.
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Definition 2.13. A metric space is an ordered pair (X, dX) where X is a set endowed with

a function dX : X ⇥X ! R such that for any x, y, z 2 X:

1.) d(x, y) = 0 i↵ x = y and d(x, y)  0 (positive definite)

2.) d(x, y) = d(y, x) (symmetry)

3.) d(x, z)  d(x, y) + d(y, z) (triangle inequality).

Remark 2.4. Suppose (X, dX) is a metric space. We define open set to be any set that is

the union of ✏-balls where an ✏-ball, is any set of the form:

B✏(x) = {y 2 X : d(x, y) < ✏}

Consequently, this defines a topology on X known as the metric topology [Mun00]. In

particular, once a metric has been defined for a given set X, its topology is determined by

the set of open balls and closed sets are defined by closed balls.

Example 2. The consider the taxi cab metric on R2 defined by d(x, y) = |x1�y1|+|x2�y2|.

This defines a metric topology on R2 whose open balls look like a square rotated by 45�.

Definition 2.14. A cover of a set E is a collection of sets, {U↵ : ↵ 2 ⇤} for some index set

⇤, such that E ✓
S
↵2⇤ U↵.

Remark 2.5. Within the context of this thesis we will be referring to covers with respect

to a topological space X. Furthermore, if the covering of a topological space X consists of

a collection of open sets it is called an open cover of X.

Remark 2.6. If {U↵ : ↵ 2 ⇤} is a cover of X and there exists a subcollection of sets from

the cover that also covers X, it is called a subcover.

Definition 2.15. Let E ⇢ X. E is said to be compact if for every open cover of E there

exists a finite subcover.

7



2.4 Posets and Basic Category Theory

Definition 2.16 ([Rie17]). We define C to be a category if

• there is a class of object denoted Ob C

• for all x, y 2 Ob C there is a class of morphisms denoted as Hom(X,Y )

such that:

• Each morphism has a specified domain and codomain between objects (i.e. f : X ! Y

specifics a morphism between an object X to Y ).

• Each object has a unique identity morphism IX : C ! X.

• For any pair of morphism f and g, if the codomain of f is the domain of g, then there

exists a composite morphism g � f whose domain is equal to the domain of f and

codomain is that of g, i.e.,:

f : X ! Y, g : Y ! Z, g � f : X ! Z

These axioms are subject to the condition that the composition of morphisms is as-

sociative and that unital with respect identity morphism given by the to the two-sided

identity.

Remark 2.7. Classic examples of categories include:

• The categoryTop, whose objects are topological spaces and morphisms are continuous

functions

• The category Grp, whose objects are groups and morphisms are group homomor-

phisms

• Lastly, the category Vect, whose objects are vector spaces and morphisms are linear

transformations.

8



There are many other examples of categories. However, we will limit our focus to these

specific categories as they will appear again in the last chapter of this thesis.

Definition 2.17. Let (P,) be a preorder set (i.e.  is reflective and transitive). A

partially order set (often called poset) is a category such that

• the objects of this category is P itself;

• for all x an y in P there is single unique morphism in Hom(x,y) if and only if x  y.

Otherwise Hom(x,y) is empty.

Example 3. Suppose P = N. Then N can be represented by following ”Hasse diagram”

1! 2! 3! · · ·

and N2 can be represented as

...
...

...

(3, 1) (3, 2) (3, 3) · · ·

(2, 1) (2, 2) (2, 3) · · ·

(1, 1) (1, 2) (1, 3) · · ·

Definition 2.18. Given two categories C and D, a functor , F : C ! D satisfies:

• An object F (x) 2 ObD for every x 2 Ob C

• A morphism F (�) 2 Hom(F (x), F (y)) for each � 2 Hom(x, y)

such that F respects the composition operation in C and D, i.e. F (f � g) = F (f)�F (g) and

that F (Idx) = IdF (x) for all x 2 Ob C

9



Chapter 3: Simplical Complexes

3.1 Simplical Complexes

Notation. Throughout the rest of this thesis we will use I to denote the unit interval [0, 1].

Definition 3.1. Let V be a R-vector space and C be a subset of V . C is said to be a

convex if every pair of points c1, c2 2 C the line segment between c1 and c2 is in C, that is,

c1 + (c2 � c1)t 2 C

for all t 2 I [ST15].

We can think of a convex set as a shape where, given any two points in the set, there is

a linear path from one point to the other point within the shape itself.

Definition 3.2. Let {v0, ..., vk} be a set of vectors in V . This set is said to be convex

independent or c-independent if dim(Span{v0 � vi, ..., vk � vi}) = k for any 0  i  k.

Definition 3.3. Let V be a vector space over R. A convex set generated by c-independent

vectors {v0, v1, . . . , vk} is called a (closed) k�simplex denoted by [v0, v1, . . . , vk].

Definition 3.4. A simplical complex K (Euclidean) is a finite set of open simplices in some

Rn such that:

(1) if (s) 2 K then all open faces of [s] 2 K;

(2) if (s1) \ (s2) 6= ; then (s1) = (s2) [ST15].

Remark 3.1. All zero dimensional simplicies are referred to as the vertices of a simplicial

complex. Furthermore, given a k-simplex defined by vertices {vi0 , . . . , vik} then any subset

of these vertices form a face which is also a simplex in the simplicial complex.

10



Figure 3.1: Visualization of Simplicies

Figure 3.2: Examples of Non-Simplicial Complexes

3.1.1 Čech and Rips Complex

Given a point cloud dataset there are multiple ways in which one can derive a simplicial

complex. However, the choice of which simplicial complex to construct is highly dependent

on the computational constraints of the problem. In this thesis we will primarily focus on

the Čech Complex and the Rips Complex.

Definition 3.5. Given a set of points K = {k1, . . . , kn} ⇢ Rd and a real value ✏ > 0, a

n-simplex � = [ki0 , ..., kin ] is in the Čech complex ČechRd(K, ✏) if and only if

\

0jn

B(kij , ✏) 6= ;.

In particular, the Čech complex is determined by the parameter ✏. 3.4 shows how a

particular ✏ results in a particular simplical complex. It will become apparent in Section 3

11



Figure 3.3: A 3-Dimensional Simplical Complex

that variations to ✏ will e↵ect the ”birth” and ”death” of certain simplicies and the complex

as a whole, thus, changing their topological characteristics.

Definition 3.6. Recall that a topological space X is said to second countable or completely

separable if there exists a countable basis.

Definition 3.7. A topological space X is said to be locally compact if at every point x 2 X

there exists a compact neighborhood around it. In particular x 2 U ⇢ K where U is open

and K is compact.

Definition 3.8. A cover {Ui}i2I of X is said to be locally finite if for all points x 2 X,

there exists a neighborhood Ux that contains it such that it intersects only finitely many

elements of the cover.

Definition 3.9. Suppose that {Ui}i2I is an open cover of X. A refinement of this open

cover is a set of open subset {Vk}j2J which is still an open cover of X such that for each

j 2 J there exists an i 2 J such that Vj ⇢ Ui

Definition 3.10. A topological space X is said to be paracompact if every cover has a

finite local refinement.

12



Figure 3.4: Construction of the Čech Complex given a point cloud

Definition 3.11. Consider two topological spaces X and Y with continuous maps f ,

g : X ! Y . A homotopy from f to g is a function F : X ⇥ I ! Y such that F (x, 0) = f(x)

and F (x, 1) = g(x) for all x 2 X. Furthermore, X and Y are considered to be homotopy

equivalent if there exists two continuous functions f : X ! Y and g : Y ! X, such that

f � g is the homotopic to IdX and g � f is homotopic to IdY .

One should think of homotopy between X and Y as a continuous deformation from one

function to the other function. A simple illustration of this idea is that any simple closed

loop in R2 can be continuously deformed into a circle in R2 and vice versa.

Definition 3.12. A topological space X is said to be contractible if X is homotopy equiv-

alent to a point.

Definition 3.13. A topological vector space is a vector space V over a field k is endowed

with a topology such that vector addition and scalar multiplication are continuous functions,

that is,

13



+: V ⇥ V ! V and · : k ⇥ V ! V

are continuous functions.

Proposition 2. If V be a Topological Vector Space over R and C ⇢ V be a convex subset,

then C is contractible.

Proof. Let c 2 C. Consider the continuous function F : C ⇥ [0, 1]! C defined by F (x, t) =

ct � (1 � t)x. By construction, this yields us a homotopy between IdC at t = 0 and the

constant map at c for t = 1. By convexity of C all inputs into F will be contained in C.

Then for all x 2 C, F (x, 0) ⇠= IdC and F (x, 1) ⇠= c (where c is the constant function). Thus,

IdC ' c.

Definition 3.14. Given an open cover U = {U↵} of a given topological space X there is

an associated simplical complex defined as the nerve of U denoted as N (U). This simplical

complex is constructed so that each vertex v↵ corresponds to each open set U↵ and every

k-simplex is defined by k + 1 nonempty intersections of the corresponding U↵.

Remark 3.2. It follows by definition that the Čech Complex is equivalent to the nerve of

a given set of vertices K. However, it should be noted that since N (K) is determined by

the intersection of the open sets, N (K) changes with respect to the chosen ✏ for the Čech

Complex.

Theorem 3.1. If U is an open cover of a paracompact space X such that every nonempty

intersection of finitely many sets in U is contractible, then X is homotopy equivalent to the

nerve N (U).

Unfortunately, the proof for this theorem is beyond the scope of this thesis. Anyone

interested in reading the details of this proof and its construction can find it in Hatcher’s

Algebraic Topology [Hat02]. Instead, we will be using this theorem to prove a rather strong

condition that follows in the use of the Čech Complex.

14



Corollary 1. The Čech Complex ČechRd(K, ✏) is homotopy equivalent to the union of balls

URd(K, ✏) : =
S

ki2K B(ki, ✏)

Proof. By definition, ČechRd(K, ✏) is equivalent to the N (K). It su�ces to prove that

URd(K, ✏) is a paracompact space and that every finite nonempty intersection of sets from

it are contractible. First, Rd is a locally compact space. It follows that since subspaces of

locally compact spaces are locally compact, URd(K, ✏) must be locally compact. Second,

URd(K, ✏) is an open cover on the set of points K. Furthermore, URd(K, ✏) is a finite open

cover on K, implying second countablity. Therefore, the union of balls on a finite dataset is

a paracompact space. Furthermore, every open set in URd(K, ✏) is defined as an open ball,

which is convex. But every finite intersection of convex sets are also convex. Thus, a finite

intersection of sets from URd(K, ✏) are contractible.

Definition 3.15. Given a set of points K = {k1, . . . , kn} ⇢ Rd and a real value ✏ > 0, a

n-simplex � = [ki0 , ..., kin ] is in the Vietoris-Rips complex (or often called Rips complex)

RipsRd(K, ✏) if and only if

B(kij , ✏) \ B(kij0 , ✏) 6= ;

for any j, j0 2 {0, 1, . . . , n� 1, n}.

Definition 3.16. Given a graph G, a flag complex or clique complex of G is the maximal

simplicial complex that has the graph as its 1-skeleton.

In essence, the intuition is that given a set of vertices and edges if it appears that

they form simplex (the cliques) in the 1-skeleton, then the simplex is contained within the

complex. The Rips complex is an example of a flag complex. From a computational stand

point this serves as a strong advantage for the Rips complex. In particular, the relevant

information for the simplical complex is implicitly encoded within the 1-skeleton. Therefore

it isn’t necessary to store all of the simplices of the simplical complex.

The main di↵erence between the Čech complex and the and Rips complex is that one

15



must find the common intersection for all B(pij , ✏) to compute a simplex in the Čech Com-

plex. This inevitable will lead to the Čech Complex being computationally more expensive

than the Rips complex. In particular, the time complexity for computing the Čech complex

is O(nd+1) where n is the number of points used and d is the d�skeleton whereas the time

complexity for the 1-skeleton of the Rips complex is O(n2) [DI12].

This computational ine�ciency is the primary reason to chose the Rips complex over

the Čech complex. This is also further amplified by the following relationship from Ghrist’s

paper [Ghr08] :

ČechRd(K, ✏) ⇢ RipsRd(K, ✏) ⇢ ČechRd

✓
K,

q
2n
n+1✏

◆

Figure 3.5: Here we can see the relationship between the Čech complex (left) and the Rips
complex (right). Imagine taken from [Ghr08]
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3.2 Simplicial Homology

Up till this point we have discussed what is a simplicial complex and how one is constructed.

However, our ability to define and further talk about the geometric characteristics of a

simplicial complex is contingent on applying group theoretic properties to the complex. To

begin, we will give a gentle introduction into finitely generated abelian groups. We will

then conclude with studying the homology of a given simplicial complex.

3.2.1 Finitely Generated Abelian Groups

Definition 3.17. Let G be an abelian group. G is said to be a free abelian group if G is

isomorphic to
L

↵2⇤ Z for some index set ⇤

Remark 3.3. Abelian groups can have bases as well. The definition of a basis for group

is similar to that of basis of a vector space. It must still generate all of G and be linearly

independent, however, rather than using coe�cients from a field, its coe�cients are derived

from Z.

Proposition 3. An abelian group has a basis if and only if G is a free abelian group.

Proof. Let B be a basis for G. Consider the map

f :
M

x2B
Z! G, f((↵x)x2B) =

X

x2B
↵xx.

This function is a homomorphism since

f((↵x)x2B + (�x)x2B) =
X

x2B
(↵x + �x)x

=
X

x2B
↵xx+

X

x2B
�xx

= f((↵x)x2B) + f((�x)x2B).

17



Furthermore, the map

f�1 : G!
M

x2B
Z, f�1

 
X

x2B
↵xx

!
= (↵x)x2B.

defines an inverse function for f . Thus, f is an isomorphism.

Conversely, suppose that

f :
M

i2I
Z! G

is an isomorphism. Consider the set {�j}ı2I where �j = (ni)i2I such that ni = 1 if i = j

otherwise ni = 0. The set B = {f(�j)}i2I generates all of G as it is the image of a generating

set for
L

i2I Z. Also,

↵1f(�1) + . . .+ ↵nf(�n) = 0

if and only if ↵1 = . . . = ↵n = 0 by construction. Thus, B is a basis of G.

Proposition 4. If G is an abelian group generated by n elements and F is a free abelian

group of rank n, then

G ⇠= F/H

where H is a subgroup of F

Proof. Let hg1, . . . gni be the generating set for G. Suppose that {x1, . . . xn} is the basis for

F . Define

f : F ! G, f(xi) = gi.
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By construction f is surjective. Take H = ker(f) and by the first isomorphism theorem

G ⇠= F/H.

Definition 3.18 (Smith Normal Form). Suppose that A 2Mm⇥n(Z). Then there exists a

pair of invertible matrices S and T such that SAT is equivalent to a matrix of the form,

0

BBBBBBBBBBBBBBBBB@

↵1 0 0 · · · 0

0 ↵2 0 · · · 0

0 0
. . . 0

... ↵r
...

0

. . .

0 · · · 0

1

CCCCCCCCCCCCCCCCCA

where each ↵i is on the diagonal of the matrix and ↵i|↵i+1 for all i where 1  i  r

Remark 3.4. A matrix that has a SNF is not necessarily diagonalizable. For example,

SNF

0

B@
1 1

0 1

1

CA =

0

B@
1 0

1 0

1

CA

since

0

B@
1 1

0 1

1

CA

0

B@
1 0

1 0

1

CA

0

B@
1 0

1 0

1

CA =

0

B@
1 1

0 1

1

CA .

However,

0

B@
1 1

0 1

1

CA is not diagonalizable.
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Remark 3.5. Every matrix with integer entries has a Smith Normal Form and can be

obtained via the following elementary row operations

• Row recombine. Replace the ith row by itself plus k times another jth row where

k 2 Z. Symbolically denoted as ri  ri + krj

• Row Scaling. Every ith row can be scaled by �1. Symbolically denoted as ri  �ri

• Row Transposition. Exchanging or swapping the ith and jth row. Symbolically de-

noted as ri $ rj

This is similarly true for operations done with the columns.

Theorem 3.2. Let F be a free abelian group of rank n and let H be a subgroup of F .

Given that {x1, . . . , xn} is a basis for F there exists d1, . . . , dr > 0 such that,

• di|di+1 for 1  i  r and

• {d1x1, . . . , drxr} is a basis for H.

Proof. Let {f1, . . . , fn} be a basis for F and {h1, . . . , hm} ✓ H is a generating set of H. Of

course,

hi = ai1f1 + . . .+ ainfn

for some ↵i 2 Z. Consider the matrix transformation from A : F ! H by

0

BBBB@

a11 . . . a1n
...

. . .
...

ar1 . . . arn

1

CCCCA
.

since the columns of A correspond to the basis of F and the rows of A are the generators

of H.
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Given a set of elementary row operations, we are able to obtain A’s Smith Normal Form

B =

0

B@
D 0

0 0

1

CA .

where D is the diagonal matrix as defined before. Consequently the columns of B also

define a basis for F and the rows of B, {d1x1, . . . , drxr, 0, . . . , 0}, defines a generating set

for H. Thus, {d1x1, . . . , drxr} is a basis of H.

Theorem 3.3 (Fundamental Theorem of Finite Abelian Groups). If G is a finitely gener-

ated free abelian group then

G ⇠= Zk �
nM

i=1

Z/diZ

where k � 0 and di|di+1

Corollary 2. Let A,B be two matrices of size m⇥ n and l ⇥ n respectively whose entries

are composed of integers such BA = 0. Then

ker(B)/im(A) ⇠= Zm�r�s �
rM

i=1

Z/↵iZ

where the Rank(B) = s, the Rank(A) = r, and each ↵i are generated from the diagonal

entries of A’s smith normal form.

Proof. ker(B) is a subgroup of Zm as well as a finitely generated abelian group. Then

ker(B) ⇠= Zm�s by Rank-Nullity. Furthermore, given that im(A)  ker(B) it su�ces to

prove that im(A) has a compatible basis with respect to ker(B). The image of A has a

basis generated by the entries of its Smith Normal Form. In particular, im(A) ⇠=
Lr

i=1 ↵iZ.

Thus,
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ker(B)/im(A) = Zm�s
� rM

i=1

↵iZ
⇠= Zm�r�s �

rM

i=1

Z/↵iZ

3.2.2 Chain Complexes

Definition 3.19. Let [s] = [v0, v1, . . . , v`] be an `-simplex. We will say that [vi1 , vi2 , . . . , vi` ] ⇠

[vj1 , vj2 , . . . , vj` ] if there exists an even permutation that maps (i1, i2, . . . , i`)! (j1, j2, . . . , j`).

Since all permutations are either even or odd, this implies that ⇠ is an equivalence relation.

An oriented simplex denoted as hsi = hv0, v1, . . . , v`i is a simplex endowed with a choice of

one of these two equivalence classes.

Definition 3.20. Let K be a simplical complex, G be an abelian group. We define the

group of `-chains to be

C`(K,G) =

8
<

:
X

�i2K
mi�i : mi 2 G

9
=

;

where �i is an `-simplex in K with coe�cients in G.

Remark 3.6. Every `-chain is a free abelian group with each basis corresponding uniquely

to the number of `-simplexes in K. Consequently, if G is a field, then every `-chain is a

vector space. The importance of this featture will become apparent later in this chapter.

Definition 3.21. Consider the oriented `-simplex hsi = hv0, v1, . . . v`i. The boundary map,

@, is defined as

@(hsi) =
X̀

i=0

(�1)ihv0, v1, . . . , vi�1, vi+1, . . . , v`i.

Remark 3.7. In essence, the boundary map is quite literally taking a k-simplex and re-

moving it’s interior to expose the shell of the k-simplex. This is of course composed of the
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k � 1-simplicies. The following image provides a visual intuition of this map.

Figure 3.6: Visual Intuition of the Boundary Map

Proposition 5. Given an oriented `-simplex hsi, @2(hsi) = @(@(hsi)) = 0

Proof. Consider the simplical chain complex

0 · · · C`+1(K,G) C`(K,G) C`�1(K,G) · · · 0@ @ @

@2

@ @ @ .

Let hsi be an `+ 1-simplex. Notice that

@2(hsi) = @

 
l+1X

k=0

(�1)khv0, v1, . . . , v̂k, . . . , v`, v`+1i
!

=
l+1X

k=0

(�1)k@ (hv0, v1, . . . , v̂k, . . . , v`, v`+1i)

However, this divides our current sum into the following two sums with the relation
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@2(hsi) =
l+1X

k=0

(�1)k
0

@
k�1X

j=0

hv0, v1, . . . , v̂j , . . . , v̂k, . . . , v`, v`+1i

+
`+1X

j=k+1

hv0, v1, . . . , v̂k, . . . , v̂j , . . . , v`, v`+1i

1

A

=
X

j<k

(�1)j+khv0, v1, . . . , v̂j , . . . , v̂k, . . . , v`, v`+1i

+
X

k<j

(�1)j+k�1hv0, v1, . . . , v̂k, . . . , v̂j , . . . , v`, v`+1i

implying that

@2(hsi) =
X

j<k

⇣
�1)j+k + (�1)j+k�1

⌘
hv0, v1, . . . , v̂j , . . . , v̂k, . . . , v`, v`+1i

= 0

and that the im @i ✓ ker @i+1.

Definition 3.22. A chain complex is a sequence of abelian groups Ci along with the group

homomorphisms @i : Ci ! Ci+1 satisfying im @i ✓ ker @i+1 (this is true since @2(hsi) = 0).

In general a chain complex may be infinite in one direction, or infinite in both directions,

however, since our chain complex is constructed from a simplicial complex, it will be finite.

Within the context of this thesis we will refer to these chain complexes as simplicial chain

complexes. We refer to the entire complex with the notation C• and write

C• : · · ·
@i�! Ci

@i+1���! Ci+1
@i+2���! Ci+2

@i+3���! · · ·

Remark 3.8. In the creation of simplicial chain complexes, since they are all finite free

abelian groups under addition they are isomorphic to
Ln

i=1 Z where n represents the number
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of k-simplexes of K. For example, consider the simplical complex represented by Figure

3.1. The resulting simplicial chain complex is

0! Z! Z8 ! Z23 ! Z18 ! 0

given that there are exactly 18 vertices, 23 edges, 8 faces, and one tetrahedron.

Figure 3.7: Visual Intuition of a Simplicial Chain Complex

Definition 3.23. Given i 2 Z+, the i-th homology of C• is the quotient group Hi(C•) =

ker(@i)/im(@i+1). If each homology group is 0, the complex is said to be exact.

Definition 3.24. For a nonnegative integer i the i-th Betti number, �i, is defined as the

rank of the i -th homolgy of C•.

Betti numbers are relevant in determining if two topological spaces are potentially dif-

ferent from each other. Their utility will become apparent in the following chapter when we
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compare how the Rips Complex as ✏ changes. Also note that although the homology groups

might be abelian, it is not the case that they are free abelian groups. However since all

finitely generated abelian group are isomorphic to the product of cyclic group, the following

theorem holds.

Corollary 3. Let Hi(C•) be the homology group of a chain complex C• generated by a

simplicial complex. Then

Hi(C•) = ker(@i)/im(@i+1) = Z�i �
M

k

(Z/mkZ)

for integers m1  m2  . . .  mn generated from the Smith Normal Form of im(@i+1) where

each integer mk is a divisor of its latter mk+1. This secondary component
L

i Z/miZ is

known as the torsion subgroup of Hi(C•).

Remark 3.9. Over Z, the following provides an intuition for how homology allows us

identify characteristics of topological space:

• H0(C•) can be interpreted as the number of connected component;

• H1(C•) gives the abelianization of ⇡1;

• Hdim(M)(C•) gives the orientability of a manifold M without it’s boundaries.

Although it is common practice to calculate the homology over Z, since we are given

the flexibility to use any free abelian group, we will be using Z2 (field of order 2). In the

absence of torsion, the Betti numbers under Z2 are the same as those under Z, according

to the Universal Coe�cient Theorem [Hat02]. Thus, we have a clear benefit with respect

to computational time complexity if we chose to use Z2. In fact, when computing the Betti

numbers over Z2 our calculations simplify to

�i = Rank(Hi(K✏,Z2)) = Rank(ker (@i))� Rank(im(@i+1))
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However, this does pose a problem in the presence of torsion. In particular, although

we may still use Z2 coe�cients, these answers may di↵er from those computed using Z

coe�cients. Luckily this issue can be circumvented entirely by using various other finite

fields as presented by [ZC05].
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Chapter 4: Persistence of Data

The goal of this chapter is to establish the framework to find the persistence of a given

dataset. The first step is to begin with creating a simplicial complex from a given set of

data; the details of which were already mentioned in 3.1.1. Thus, we will instead begin

by computing the homology via the boundary maps of the derived simplicial complex.

Consequently, it is important that we then encode the homological information in a way

that we can observe its changes with respect to the increasing complexity of the simplical

structure. This is often done with pictographic diagrams known as barcodes or persistence

diagrams which are then used to analyze the data and interpret the results.

4.1 Computing Homology

In the previous chapter we laid out the relevant background and theory of calculating the

homology of a simplicial complex. Moving forward in this section we will explicitly compute

the homology of a given complex. This computation will allow us to generalize how we will

be able to algorithmically implement these calculations to any complex.

Example 4. To illustrate how we will be computing the homology over the constructed

simplex of a given point cloud let us calculate the homology of the nontrivial simplical

3-complex shown below.

Notice that there is exactly one 3-simplex, five 2-simplex, 13 1-simplex, and 11 vertices.

This yields us the simplicial chain complex

C• : 0
@4�! Z2

@3�! Z5
2
@2�! Z13

2
@1�! Z11

2
@0�! 0.

Since our choice of G is Z2, a finite field, every `-simplex in its corresponding `-chain
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Figure 4.1: A 3-Dimensional Simplical Complex

can be uniquely classified (up to permutation) to a standard basis element in Zn
2 , where n is

the number of `-simplexes. This allows us to represent the boundary maps, @i, as a matrix

transformation from one finite basis to another. In particular, the boundary maps of our

chain complex C• are given by the following:
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@3 :

ABCD

ABC

BCD

ACD

ABD

BEF

2

66666666664

1

1

1

1

0

3

77777777775

@2 :

ABC ACD ABD BCD BEF

AB

AC

AD

BC

BD

BE

BF

CD

EF

HI

IJ

IK

JK

2

66666666666666666666666666666666666664

1 0 1 0 0

1 1 0 0 0

0 1 1 0 0

1 0 0 1 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 1

0 1 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

77777777777777777777777777777777777775
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@1 :

AB AC AD BC BD BE BF CD EF HI IJ IK JK

A

B

C

D

E

F

G

H

I

J

K

2

66666666666666666666666666666664

1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1

3

77777777777777777777777777777775

.

As one might notice, the construction of the boundary matrices given by @i corresponds

to the decomposition of each `-simplex into the corresponding `�1-simplexes. To be specific,

each row of the boundary map will represent a particular ` � 1-simplex and each column

will represent `-simplex. So if hsi is a `-simplex in the j-th column, hki is an `� 1-simplex

in the i-th row, and hki is in @(hsi), then @i,j = 1, zero otherwise.

For example, consider the matrix for @2. Notice that ABC is a 2-simplex in our simplicial

complex. Since @(ABC) = AB + AC + BC, column one and rows one, two and four all

have ones whereas all other rows are zero.

4.2 Smith Normal Form and The Standard Algorithm

Once the boundary maps have been constructed one might assume it su�ces to reduce

them into echelon form and calculate the dimension of the Rank and Null Space to find the
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the Betti Numbers. However, one must be careful with calculating the homology. This is

especially true since we are generally calculating the homology with coe�cients in a finite

field or principle integral domain (PID). Here I will outline how to reduce a matrix into

this Smith Normal Form as discussed in Chapter 3.2.1, the results of which give rise to the

matrix reduction algorithm known as the Standard Algorithm when our free abelian group

is Z2.

Recall that every relation matrix can be reduced into Smith Normal Form using the

list of elementary operations as described in Remark 3.4. The only distinct di↵erence that

is apparent between simplifying this matrix via the elementary operations described in

Remark 3.4 versus row reduction taught in an introductory linear algebra course is that we

cannot scale a row by an arbitrary coe�cient. In the case of Principle Ideal Domains (PIDs)

such as Z we are only allowed to scale by �1 (or trivially by 1). This is, of course, because

scaling the entries of the rows or columns by other PID coe�cients will change the greatest

common divisors of the entries of the matrix. Thus, changing the homological calculation.

To begin, suppose that a group G describes a set of n nontrival linear relationship on

its set of m generators as described by

nX

i=1

mX

j=1

aijxm.

With respect to homology, this relationship describes the linear decomposition of the

ker(@) and im(@). Of course, this linear relation can be represented as a matrix

A =

2

66664

a11 . . . a1m
...

. . .
...

an1 . . . anm

3

77775

Begin operating on the matrix by using the elementary column and row operations until

a11 becomes the smallest possible integer entry. Once this has been established, reduce all
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other entries in its subsequent row and column to zero to yield the matrix

2

66666664

d1 0 . . . 0

0 a22 . . . a2m
...

...
. . .

...

0 an2 . . . anm

3

77777775

.

If this is done correctly, 1  d1 should divide any aij from A for 2  i  m and

2  j  n. From there, all that is left is to simplify every diagonal entry of A until reduced

into the form

2

666666666666666664

d1 0 . . . 0 0 . . . 0

0 d2 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 . . . dr 0 . . . 0

0 . . . . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 0 . . . 0

3

777777777777777775

.

Now that we have defined how to compute the Smith Normal Form of any matrix with

entries from a PID, we will now define a reduction algorithm for computing persistent

homology. This algorithm was first introduced in [ZC05]. We will not focus too much on

the details of how to explicitly write the code, but rather give the general outline of the

algorithm from [Les19]. To begin, let R be an n⇥m matrix. For j 2 {1, . . . , n}, we define

the pivot of R⇤,j (i.e. the j-th column of R) by

⇢Rj : =

8
>><

>>:

null if R⇤,j = 0

max{i : R(i, j) 6= 0} otherwise
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Algorithm 1 Standard Reduction Algorithm
Require: B is an n⇥m
Ensure: A reduced matrix R given by left-to-right column addition on B

R B
for j 2 {1, . . . n} do

while 9k < j such that null 6= ⇢Rj = ⇢Rk do

add �R(⇢Rj ,j)

R(⇢Rj ,k)
R⇤,k to R⇤,j

end while
end for

In general, one must be careful of course with the scaling coe�cient �R(⇢Rj ,j)

R(⇢Rj ,k)
with

regard to the PID in question. The input matrices that are relevant to us will only have

entries of either 0 or 1 and so the coe�cient is neglectible. With this, our algorithm is

further simplified to just include left-to-right column addition according to the position of

the pivots. This is often referred to as the Standard Algorithm.

Example 5. Consider the following matrix over Z2

2

66666664

1 1 0 0

1 0 1 1

0 0 1 1

1 0 1 0

3

77777775

.

By applying the Reduction Algorithm the following steps will occur:

2

66666664

1 1 0 0

1 0 1 1

0 0 1 1

1 0 1 0

3

77777775

add col. 1 to col. 3������������!
col. 3

2

66666664

1 1 1 0

1 0 0 1

0 0 1 1

1 0 0 0

3

77777775

add col. 3 to col. 4������������!
col. 4

2

66666664

1 1 1 1

1 0 0 1

0 0 1 0

1 0 0 0

3

77777775

.
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Next we will take our reduced matrix R and normalize it. This is outlined from [ZC05].

The algorithmic implimentation is as stated below:

Algorithm 2 Normalize Reduced Matrix Algorithm
Require: Reduced matrix R
Ensure: A normalized matrix N obtained via upwards row addition

N  R
for i 2 {m, . . . , 1} in descending order do

if 9 column j of N such that it’s pivot is i then
for k 2 {i� 1, . . . , 1} in descending order do

if Nk,j 6= 0 then

add �Nk,j

Ni,j
Ri,⇤ to Rk,⇤

end if
end for

end if
end for

Example 6. Using the reduced matrix from Example 4 we can normalize it using Algorithm

2 to yield the following:

2

66666664

1 1 1 1

1 0 0 1

0 0 1 0

1 0 0 0

3

77777775

add row 4 to row 2�����������!
row 2

2

66666664

1 1 1 1

0 0 0 1

0 0 1 0

1 0 0 0

3

77777775

add row 4 to row 1�����������!
row 1

2

66666664

0 1 1 1

0 0 0 1

0 0 1 0

1 0 0 0

3

77777775

.

2

66666664

0 1 1 1

0 0 0 1

0 0 1 0

1 0 0 0

3

77777775

add row 3 to row 1�����������!
row 1

2

66666664

0 1 0 1

0 0 0 1

0 0 1 0

1 0 0 0

3

77777775

add row 2 to row 1�����������!
row 1

2

66666664

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

3

77777775
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4.3 Filtration to Barcodes

Assume we are given an arbitrary point cloud in a finite metric space X. The goal of

this section is introduce methods to define how we will find the qualitative measurements

of a given point cloud regardless of small variances in the data (more broadly known as

Topological Inference) [OPT+17]. In particular, suppose we are given an experimental

dataset K = {ki}ni=0 which can be represented as a point cloud. This point cloud has a

natural simplicial complex defined by ČechX(K, ✏) but can also be ascribed via RipsX(K, ✏).

However we arrive at two fundemental questions: what is an appropriate choice of ✏ and

why? [Ghr08] To begin, we must first examine how our simplicial complex changes as a

function of ✏.

Definition 4.1. Let S be a finite simplicial complex and let S1 ⇢ S2 ⇢ . . . ⇢ Sk = S is

sequence of subcomplexes called the filtered simplicial complex.

Figure 4.2: This image illustrates the filtration of a given point cloud P

Remark 4.1. With respect to the Vietoris-Rips Complex, since RipsX(K, ✏1) ✓ RipsX(K, ✏2)

given that ✏1  ✏2, we can describe its filtration as

RipsX(K) : = {RipsX(K, ✏i)}i2N.
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The same reasoning can be applied for the Čech complex as well.

Remark 4.2. In particular, given that Si = ČechX(K, ✏i) varies for a given ✏i, there arises

a natural filtered simplicial complex. Consequentially, we can apply homology to all of the

subsequent subcomplexes. For all n, there exists and inclusion map ◆ : Si ! Sj and an

induced Z2-linear map fi,j : Hn(Si)! Hn(Sj). It follows by functoriality that we have the

following definition.

Definition 4.2. Let S1 ⇢ S2 ⇢ . . . ⇢ Sk = S be a filtered simplical complex. The nth

persistent homology of S is given by the pair ({Hn(Si)} , fi,j) where i, j 2 {1, 2, . . . , k} with

i  j, and fi,j : Hn(Si)! Hn(Sj) induced by the inclusion map ◆ : Si ! Sj . In particular, it

is a functor F : Simp! AbGrp where Simp is the category of filtered simplicial complexes

and AbGrp is the category of abelian groups.

By creating a filtration on a point cloud we are able to now calculate their homology

groups to study the evolution of the simplex. In essence, as ✏ changes our sequence of

homology classes give us an immediate representation of how the homology of the complex

is evolving. If ✏ is too small of a parameter, then the sequence of homology classes indicates

to us that the structure of the data is discrete and separated whereas if ✏ is far too large of a

parameter, the homology classes will indicate that everything is interconnected and trivial

as illustrated below.
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Of course, neither of these extremes are of use for classification. Rather, like most things,

the solution is somewhere in the middle. Our goal is to illustrate the birth of new topological

feature within the data and measure how long they will persist before they eventually die.

This can be parameterized (by ✏) to create a long horizontal bar for each homology class.

The ’birth’ of a new topological feature will begin the horizontal bar and persist for its

corresponding homology class until the topological feature ’dies’, in which the bar will end.

Definition 4.3. The Boundary Matrix of a simplicial complex K, denoted as [@], is the

matrix of all the boundary maps @ : C⇤(K,G)! C⇤(K,G) with the basis given by all of the

simplicies {�1, . . . ,�n} of K.

Remark 4.3. One should not confuse the boundary matrix to be the same as the boundary

maps. Although the boundary matrices encode all the same information as the boundary

maps, the boundary matrix is a square matrix that describes the decomposition of every

simplex.

Example 7. Consider the triangulation of S1 described by {[A], [B], [C], [AB], [AC], [BC]}

over the free abelian group Z2. Then

C• : 0! C1(S
1,Z2)

@1�! C2(S
1,Z2)

@0�! 0

where C1(S1,Z2) ⇠= Z3
2 with respect to the basis {[A],[B],[C]} and C2(S1,Z2) ⇠= Z3

2 with

respect to the basis {[AB],[BC],[AC]}. Of course, @0 is the zero map and @1 can be described

with respect to these ordered bases as,

2

66664

1 1 0

1 0 1

0 1 1

3

77775
.

The resulting boundary matrix is as follows:
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[@] :

A B C AB AC BC

A

B

C

AB

AC

BC

2

666666666666664

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

777777777777775

Definition 4.4. A barcode of B is a multiset of intervals Ii with given multiplicities mi 2 N

often denoted as {(Ii,mi)}. All intervals of finite form are represented as (a, b] whereas the

infinite forms are denoted as [a,1) [PRSZ20].

Theorem 4.1 ([ZC05]). Let R be the reduced matrix obtained from [@]. Then

Bi([@]) = {[j, k) : ⇢Rk = j, dim(�j) = i}

[ {[j,1) : R⇤,j = 0, dim(�j) = i, @k such that ⇢Rk = j}

These pictographic images are the barcodes of a filtered simplical complex as illustrated

by Figure 4.3.

Remark 4.4. Given the boundary matrix [@] from Example 7, it follows by Theorem 4.1

that

B0(S
1) = {[0,1), [2, 4), [3, 5)}

B1(S
1) = {[6, 7)}.

Unfortunately, given a large enough sample of data one will notice that visualizing the

persistent homology using barcodes will becomes quite cluttered. To avoid this we create
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Figure 4.3: This barcode illustrates of how the homology classes are changing with respect
to the filtered simplicial complex. Image taken from [Ghr08]

what are known as Persistent Diagrams.

Notation 1. We denote R = R [ {1}

Definition 4.5. A Persistent Diagram is a multiset that is the union of a finite multiset

of points in R2
with the multiset of points on the diagonal � = {(x, y) 2 R : x = y}, where

each point on the diagonal has infinite multiplicity. [OPT+17]

Both barcodes and persistent diagrams encode the same topological information of a

given filtered simplicial complex. To be specific, once a bar, [a, b), has been retrieved and

stored in Bi, it is as simple as using a as the x-coordinate and b as the y-coordinate.

In addition, it is also a lot clearer to read and interpret the results of a persistent diagram

as opposed to barcodes. For example, it is likely that in the beginning of the filtration many

short lived topological features will begin and die. This is nothing more than noise in our

dataset relative to the more prominent global features we are trying to identify. With a

persistent diagram these short lived features we identify as topological noise can be ignored

by measuring their distance to �.
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Figure 4.4: Persistent Diagram. Image taken from [FC16]

Now that we have defined how to find a persistent diagram XK of a given dataset K,

it naturally follows that we would like to measure the distance between another persistent

diagram YL. However, this necessitates that the cardinality of XK and YL must be the same

in order to bijectively study the relationship of each point to another.

Definition 4.6. The pth Wasserstein distance between two persistent diagrams XK and

YL is defined as

Wp[d](XK, YL) : = inf
 2�

2

4
X

x2XK

d[x, (x)]p

3

5
1/p

for p 2 [1,1) and

W1[d](XK, YL) : = inf
 2�

"
sup
x2XK

d[x, (x)

#

for p =1, where d is a metric on R2 (usually the Lp norm) and � is the set of all bijective

functions between XKand YL.

Remark 4.5. The most commonly implemented distance function used between persistent
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diagrams is called the bottleneck distance W1[L1]. [OPT+17]

Figure 4.5: The distance between two persistent diagrams using the bottleneck distance.
Image taken from [FC16]
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Chapter 5: Algorithmic Implimentation

In our previous chapter we have outlined how we use homological algebra to find the per-

sistence of global topological features in datasets. The primary focus of this chapter will

be to outline the algorithm implementation of such tools so that anyone with interest in

studying persistent homology can do so. Our currently pipeline for computing PH is given

by the following flow chart.

Data Filtration Persistent Diagram Interpretation

During the filtration process one will need to decide on what type of simplical structure

they will want to build from a given dataset. In this thesis we have outlined two such

examples; the Čech complex and Vietoris-Rips complex. However, rather than focusing

on both the Čech and Rips complex we will primarily focus on developing the persistent

barcodes and diagrams for the Rips complex. There are two reasons for this decision. First,

there is a clear inclusion between the Rips complex and the Čech complex given a particular

size ✏ given by 3.1.1. Second, the Čech Complex will require us to check the common

intersection of all of B(pi, ✏). This subtle di↵erent between the pair-wise intersection from

the Rips complex makes a large computational di↵erence when computing their skeletons

as stated in Chapter 3.

I do not claim that any of these algorithms or implementations are uniques or even

computationally e�cient. Anyone interested in understanding how to create fast and com-

putational e�cient algorithms to compute the Vietoris-Rips Complex and its respective

homology I implore you to read [Zom10] and [DI12]. Think of this section as a guide on

how to create a simplicial filtration and the corresponding persistent diagram.
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5.1 Deriving Complexes From Point Clouds

To begin, let us first illustrate how to create the 1-skeleton of the Rips-Complex. This is

relatively straightforward since all that we need to check is whether or not B(pi, ✏)\B(pj , ✏) =

;. If it is not empty then we can append an edge to the two vertices. The explicit algorithm

is as shown below.

Algorithm 3 1-Skeleton Algorithm

Require: A point cloud K = {ki}ni=0 and a choice of ✏
Ensure: sk1(K, ✏)

edges = [ ]
for ki 2 K do

for kj 2 K \ ki do
if d(ki, kj) < 2✏ then

continue
else

edges.append(hi, ji)
end if

end for
end for
return edges

Example 8. Let’s consider the following dataset K = {ki}50i=1 where each point ki 2 K is a

randomly dispersed around a circle of radius 2.5 < r < 3 centered at the origin

Figure 5.1: A noisy set of points around a circle of radius 3.

Then the following filtration of simplicial complexes is for ✏ 2
�
1
4 ,

1
2 ,

3
4 , 1

 

Notation. We will denote the list �k to be the set of k�simplicies. Furthermore, the list
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Figure 5.2: The resulting 1-skeleton.

of all simplicies from our current simplical complex will be denoted as � = {�1, . . .�n}.

This list is ordered by the size of the simplex (i.e. all of the 0-simplex will be listed first,

then the 1-simplicies, etc.).

Now that we have created an algorithm to create the 1-skeleton the subsequent step

would be to find the higher dimensional simplicies to form the entirety of the Rips complex.

To do this we must first break our approach down into two separate algorithms–an algorithm

to compute the boundary map and an algorithm to compute the cliques. In essence, we

want to be able to look at a list of simplicies determined by our data and accurately assess if

there are enough present that we can append this new simplex into our complex. To begin

let us define the explicit algorithm for computing the boundary map of a given simplex.

Given the input, the algorithm is taking the list of simplicies that are stored and it-

eratively removing a vertex (index value if you are writing this code in python) for each

simplex. This reduces the size of the original list (the starting simplex) by one and we

append this new smaller list (our boundaries) to a new list denoted �n�1.

The purpose for including an algorithm to compute the boundary operator of a simplex is
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Algorithm 4 Boundary Operator Algorithm

Require: A set of oriented n-simplex �n = {�1n,�2n, . . . ,�mn }
Ensure: �n�1 = {@(�in)}mi=1

�n�1 = [ ]
for �in 2 �n do

for j 2 {0, 1, . . . , n} do

Remove vj from �in such �in ! �jn�1

Append �jn�1 to �n�1

end for
end for
return �n�1

to double check our predictions on how to build higher dimensional simplicies. For instance,

suppose we find the simplicies hv1, v2, v3i and hv1, v3, v4i within the set of all 3�simplicies.

These simplicies are the boundary of the 4�simplex hv1, v2, v3, v4i. However, we cannot

assume this simplex exists in our complex unless all 4 of the faces are found in the set of

3�simplicies. Thus, the following algorithm is required for an accurate construction of the

Rips complex.

Algorithm 5 Simplicial Construction Algorithm

Require: A set of oriented n-simplex �n = {�1n,�2n, . . . ,�mn }
Ensure: �n+1 constructed by finding the corresponding cliques

�n�1 = [ ]
for �in 2 �n do

for �jn 2 �n do

if hvi0, . . . , v̂ik, . . . , vini = hv
j
0, . . . ,

ˆ
vjs, . . . , v

j
ni for k  s then

Create Simplex �n+1 = hvi0, . . . , vik, . . . , v
j
s, . . . , vini

if @(�n+1) 2 �n then
Append �n+1 to �n+1

end if
end if

end for
end for

It su�ces to use the previous algorithms in conjunction to build the Vieotris-Rips Com-

plex. Once a 1-skeleton has been created from a point cloud we want to recursively build

higher dimensional simplicies on top of it. Thus, we outline the Rips Complex algorithm

below.
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Algorithm 6 k-Skeleton of the Vietoris-Rips Complex

Require: sk1(K, ✏) and desired largest n-skeleton where n � 1
Ensure: skn(K, ✏) ✓ RipsRn(K, ✏)

Complex = [ ]
if n=1 then

Append sk1(K, ✏) to Complex
else

Append sk1(K, ✏) to Complex
Rips-Complex(n� 1, s-builder(sk1(K, ✏)))

end if

Figure 5.3: This visual diagram illustrates how the computer is being programed to complete
the simplex or ignore it.

In practice, it is often the case that we only desire the lower dimensional skeletons of

the of the Rips Complex. This and the additional fact that computing higher dimensional

simplicies is computationally expensive is the reason we include the ability to terminate the

recursive algorithm at a desired size. If one does however want to build the entire complex

it can be attained by setting n = |K|.

The final step left in computing the homology is creating the boundary matrix. This

can be achieved by initializing the zero matrix whose size is the same as the total number

of simplicies generated by the complex and then altering it using the boundary operator

algorithm.

Now that the boundary matrix has been achieved, apply the standard reduction algo-

rithm and we have our homology explicitly expressed. We will not include an algorithm to
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Algorithm 7 Boundary Matrix Algorithm

Require: The list of all simplicies � = {�1, . . . ,�n}
Ensure: The Boundary Matrix [@].

Initialize [@] to be the zero matrix
for k 2 {1, . . . , n} do

for �i 2 �k do
for �j 2 �k+1 do

if �i 2 @(�j) then
[@]i,j = 1

else
continue

end if
end for

end for
end for

compute the barcode as it is outlined by Carlsson and Zomorodian’s Theorem in Chapter

4.
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Chapter 6: Multi-Parameter Filtrations and Persistent

Modules

Until this point we have defined all of the ideas necessary for studying the persistence of

what is known as a 1-Parameter Persistent Homology. Unfortunately the applications of

1-parameter persistent homology are quite narrow and not robust with respect to noisy

data. These various limitations point in the direction of studying what is known as multi-

parameter persistent homology. Here are a few notable reason for the need to use multi-

parameter persistent homology.

1-Parameter Homology is su�ciently useful when the point cloud in hand is clean (i.e.

the variance of the data is limited). However, anyone with experience in data science is aware

that datasets can be very noisy. Rather than not using the dataset, it is far more suitable

to find methods to potentially de-noise the data so that it can be properly integrated into

a data mining algorithm. Unfortunately it is known that 1-parameter persistent homology

is not robust with noisy data.

Of course, if there was an additional parameter that could be used to filter out noise,

we could control this parameter and optimize it to find an ‘optimal’ topological structure.

Another application in which multi-parameter persistent homology is useful is in the

case where the dataset has instances of ‘spikes’ or ‘tendrils’ given by Figure 6.2. This

was first introduced in [ZC05], one could remove a portion of data to make the tendril or

spike ‘disjoint’ from the main body. The ability to do this requires that there is a second

parameter to control the amount of data that should be removed from the main body.

There are various other examples that may require the need for a second parameter and

possibly many more that require multiple parameters. Thus, we are left with the task of

providing a more general definition of filtrations and persistent modules.
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Figure 6.1: This visual illustrates how barcodes are not stable with respect to noise. No-
tice that a slight introduction of noise from the left most image to the middle derails the
persistence in the barcodes produced. Image credits to [LW15]

6.1 Bifiltration and Bipersistence Modules

Definition 6.1 ([BL22]). Let J be one of the poset of categories N,Z, or R. Then a J -

indexed filtration is a functor F : J ! Top such that Fs ⇢ Ft for all s  t in J . Similarly,

a J�indexed persistent module is a functor such that F : J ! Vect.

Remark 6.1. A d�parameter filtration is a functor F : Nd ! Top such that Fs ⇢ Ft

for all s  t in N (with respect to the product partial ordering on Nd). In the case we

are dealing with a 2�parameter filtration, often referred to as a bifiltration, we yield the

following communative diagram below.

...
...

...

K3,1 K3,2 K3,3 · · ·

K2,1 K2,2 K2,3 · · ·

K1,1 K1,2 K1,3 · · ·
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Figure 6.2: Visualization of a tendril data set. Image taken from [KW18]

Remark 6.2. Quite similarly, a bipersistence module is a functor F : N2 ! Vect with the

communative diagram

...
...

...

M3,1 M3,2 M3,3 · · ·

M2,1 M2,2 M2,3 · · ·

M1,1 M1,2 M1,3 · · ·

Depending on the contextual setting of the problem there arises a multitude of functions

that can be used to filter through the dataset. Regardless of filtration method used, all of

these methods begin with the use of what are known as sublevel and superlevel filtrations.

Definition 6.2 (Sublevel/Superlevel Filtration [BL22]). Suppose T is a topological space

and � : T ! R (not necessarily continuous). The Sublevel Filtration S"(�) is the R-indexed

filtration given by
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Figure 6.3: An example of a bifilration of simplicial complexes

S"(�) = {p 2 T : �(p)  r}

and the Superlevel Filtration S#(�) is the Rop-indexed filtration given by

S#(�) = {p 2 T : �(p) � r}

In particular, we use these definitions to define how to control another parameter within

our bifiltration. Suppose that P is a finite metric space such that � : P ! R. The

sublevel-Rips bilfiltration S"(�) : R2 ! Simp is defined by S"(�)a,r = ��1(�1, a] and the

superlevel-Rips bifiltration, S#(�) : Rop ⇥ R! Simp is defined by S"(�)a,r = ��1[a,1).

Now we are left with the choice of how to define our function �. Both Matthew Wright

and Michael Lesnick have stated in their documentation for RIVET (a multiparameter

persistent homology software) that this lead us to three natural choices of � [The20].

Example 9. The Ball Density function is one of the first prominently known filtration

examples. It is defined by � : P ! R such that
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�r(x) = |{y 2 P : d(x, y)  r}|.

This choice of � surveys regions around the metric space P . In doing so, based on the

parameter r (often called the bandwidth parameter) we get a reading on how points cluster

around each other. If the returned value is high for a particular value of x we assume that

the density is high and statistically significant. In the case that the returned value is low,

we assume that the data is sparse and likely represents noise that might be removed.

Example 10. Another suitable choice is the Gaussian density function,

��(x) = ↵
X

y2P
exp


�d(x, y)2

2�

�

where ↵ is some normalizing constant.

Example 11. Another suitable choice is the Gaussian Density function given by

��(x) = ↵
X

y2P
exp


�d(x, y)2

2�

�

where ↵ is some normalizing constant. With respect to image processing, this density

function provides a robust measurement for how topological features present in an image

blur. Over time if the image loses sharpness it will inevitably also lose its topological

features.

Example 12. Lastly, consider the Eccentricity function given by

�(x) =
1

|P |
X

y2P
d(x, y).

This function determines the average distance between a point x and the rest of the

dataset P. In the case of a dataset that has similar features to that of a tendril or spike, by
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isolating the points whose average distance is the largest we are able to filter out the central

core. As a byproduct our dataset has now changed so that the branched components of the

central object is now separated into multiple components.

6.2 No Good Barcodes

One might naturally assume that given a bifiltration and a bipersistent module there must

also be an equivalent 2 dimensional barcode that could be represented via bounded rectan-

gular regions–maybe even generalized further for multiparameter filtrations and persistent

modules. However this is not necessarily true. Let us begin by formalizing the notion of a

”good” barcode.

Definition 6.3. A good barcode for an N2 indexed persistent module M is a collection BM

of subsets in R2 such that for each a  b in R2

RankMa,b = |{S 2 BM : a, b 2 S}|

Unfortunately, there are many examples of multiparameter persistent modules that have

no good barcodes. We will not go further into discussing why this is the case as it requires

a deeper look into quiver representation theory [Oud17]. But it is worth noting that as a

result of not having a well defined measurement of barcodes in generalized persistent theory

requires the development and research of new qualitative summaries are required.

One might even further ask that such summaries can be embedded into a Banach or a

Hilbert space so that they can be used in conjunction with standard data mining techniques

[B+15]. This is the current area of research that is most notably being studied. These

methods include the use of Hilbert functions, fiber barcodes, and graded betti numbers

[LW15].
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