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Abstract

HELLY-TYPE THEOREMS ON SUPPORT LINES FOR FAMILIES OF CONGRUENT
DISKS IN THE PLANE

Tyler R. Russ, PhD

George Mason University, 2023

Dissertation Director: Dr. Valeriu Soltan

In this dissertation, we consider the problem to determine Helly-type numbers for sup-

port lines of nonoverlapping families of congruent disks in the plane. This problem, origi-

nally posed by R. Dawson for the case of disjoint families of convex bodies and by V. Soltan

for the case of disjoint families of unit disks, has been recently solved. This research gen-

eralizes to the case of non-overlapping families of congruent disks. An essential part of the

argument is based on the study of “critical” families of congruent disks.



Chapter 1: Introduction and Main Results

1.1 Helly-Type Theorems in n Dimensions

In 1913, Edward Helly discovered the following result.

Theorem 1.1. Suppose K is a family of at least n + 1 convex sets in the n-dimensional

vector space Rn such that K is finite or each member of K is compact. If each n+1 members

of K have a common point, then all members of K share a point p in common.

That same year, Edward Helly communicated this result to his colleague, Johann Radon,

who published a proof of it in 1921.

Since then, various results of a similar spirit have been discovered. Nowadays, these

related ideas and results form a well-established field of combinatorial geometry, called

Helly-type theorems. Detailed descriptions of results in this field are given in the clas-

sical surveys of Danzer, Grünbaum, and Klee [5] and of Eckhoff [8]. Various books and

proceedings contain individual chapters dedicated to Helly-type results (see, e.g. [3] and

[9]).

Helly’s theorem can be generalized in a variety of directions by reinterpreting the point p

of Helly’s theorem as a set of various kinds or by relaxing the condition that the members of

K be compact. We list below some notable generalizations of Helly’s theorem. Everywhere

below, K means a finite family of convex sets in Rn.

The first generalization is a theorem of Grünbaum [11] which provides conditions guar-

anteeing the existence of a j-dimensional convex set contained in each member of K.

Theorem 1.2. Let g(n, 0) = n + 1, g(n, 1) = 2n, g(n, j) = 2n − j for 1 < j < n, and

let g(n, n) = n + 1. If K is a finite family of at least g(n, j) convex sets in Rn and each

1



subfamily of g(n, j) members of K has an intersection of dimension no less than j, then the

intersection
⋂
K is at least j-dimensional.

Observe that in the plane with j = 0, we obtain the original statement of Helly’s

theorem. Similar observations apply to the subsequent generalizations.

Another generalization, due to De Santis [7], relaxes the condition that the members of

K be compact, and focuses on convex subsets of Rn whose intersection contains a plane of

specified dimension.

Theorem 1.3. If K is a finite family of at least n + 1 − j convex subsets of Rn and the

intersection of each n + 1 − j members of K contains a j-dimensional plane, then
⋂
K

contains a j-dimensional plane.

We will say that a plane L ⊂ Rn of dimension m is an m-transversal of a given family K

of convex sets in Rn if L meets every member of K. A generalization due to Horn [15] and

Klee [16] provides conditions which guarantee that a j-dimensional plane is a transversal of

K.

Theorem 1.4. For integers 1 ≤ j ≤ n+ 1 and a family K of at least j compact convex sets

in Rn, the following statements are equivalent:

(a) each j members of K have a common point;

(b) every plane of deficiency j− 1 in Rn admits a translate which intersects each member

of K;

(c) every plane of deficiency j in Rn lies in a plane of deficiency j − 1 which intersects

each member of K.

Another result of a similar spirit is due to Santaló [22].

Theorem 1.5. If P is a family of parallelotopes in Rn with edges parallel to the coordinate

axes, and an (n−1)-transversal is admitted by each subfamily Q ⊂ P of at most 2n−1(n+1)

members, then P itself admits an (n− 1)-transversal.

2



The following theorem of Bohnenblust-Karlin-Shapley [2] has its roots in game theory

and represents an important application of Helly’s theorem.

Theorem 1.6. Suppose C is a compact convex set in Rn and Φ is a finite family of

continuous convex functions on C such that for each x ∈ C there exists φ ∈ Φ with

φ(x) > 0. Then there are positive numbers α0, . . . , αj with j ≤ n, and members φ0, . . . , φj

of Φ such that
∑j

0 αiφi(x) > 0 for all x ∈ C.

1.2 Transversal and Support Lines in the Plane

An actively developing subfield of Helly-type theorems is devoted to transversal lines of

convex sets in the plane. We will say that a family K of convex sets in the plane has

the (transversal) property T provided a line meets every member of K. Similarly, K has

the (transversal) property T (n) provided every subfamily of n members from K admits a

common transversal line.

The geometric nature of Helly-type theorems on transversal lines is rather complex even

for the case of disjoint families of compact convex sets in the plane. The book of Hadwiger

and Debrunner [12] and the survey of Eckhoff [8] describe various statements and counter-

examples on the existence of line transversals for such families. In particular, arbitrarily

large families of pairwise disjoint convex bodies in the plane exist that have the property

T (5) but not T .

Danzer [4] proved that T (5) =⇒ T for any disjoint family of congruent disks in the

plane, and Grünbaum [10] claimed that T (4) =⇒ T for any disjoint family F of at least six

congruent disks. It turns out, however, that Grünbaum’s assertion is incorrect. As shown

in Aronov et al. [1], arbitrarily large disjoint families F of unit disks exist that have the

property T (4) but not T .

A special class of transversals, namely support lines, was introduced by Dawson [6].

Given a family K of convex bodies in the plane, Dawson says that K has the (support)

property S provided a line supports every member of K (compare Figure 1.1). Similarly,

3



Figure 1.1: Support line for a family of convex bodies in the plane.

the family K has the (support) property S(n) if every subfamily of size n has property S.

Dawson [6] proved a number of assertions which are summarized in the following theorem.

Theorem 1.7. For a finite disjoint family K of convex bodies in the plane, one has

S (5) =⇒ S, S (4) =⇒ S if cardK ≥ 7, S (3) =⇒ S if cardK ≥ 237,

where cardK stands for the cardinality of K.

A primary method of proof in Dawson [6] is a combinatorial approach exemplified in

his proof of the statement S(4) =⇒ S if cardK ≥ 7 of Theorem 1.7. To convert this

problem to a combinatorial setting, a set of combinatorial objects (symbols) is chosen,

each symbol standing for a convex body. Next, the relevant geometric constraints on the

bodies in the plane are translated into incidence properties on these symbols in a one-to-

one correspondence. Three incidence properties are relevant for this proof, and we state

them together with their corresponding geometric interpretation, given parenthetically, in

the following: (i) No pair of symbols is contained in more than four words. (Two disjoint

bodies have precisely four support lines.) (ii) No triple of symbols is contained in more than

three words. (Three disjoint bodies have at most three support lines.) (iii) Every quadruple

of symbols is contained in at least one word. (This corresponds to the property S (4) for

the family.)

Since the theorem specifies a threshold of seven bodies, it suffices to designate a ground

set of seven symbols {A,B, . . . , G}. The author exhaustively denumerates all possible sets of

words, each respective set called a code, that satisfies the given incidence properties. Three

4



combinatorial configurations are possible, two of which avoid the word ABCDEFG which

corresponds to the property S for the seven bodies. Each respective incidence structure is

then translated back into the geometric setting where the specific support relations implicit

in the incidence relations represented by each code are expressed. It is then demonstrated

that the codes avoiding the property S are not geometrically realizable by showing that

their respective support relations result in impossible configurations.

Revenko and Soltan [18] improved the last assertion of Theorem 1.7 by proving that

S(3) =⇒ S for any disjoint (possibly infinite) familyK of convex bodies, with cardK ≥ 143.

Figure 1.2, reproduced from [18], shows a disjoint family of 16 convex bodies with property

S(3) but not S. This construction together with the above statement places the exact

threshold number, the minimum required cardinality that guarantees the family satisfies the

property, between 17 and 143, inclusive. The following problem, formulated in [18], is still

open.

Problem 1.8. Find the smallest value of the natural number n such that S(3) =⇒ S for

any disjoint family of n or more convex bodies in the plane.

Revenko and Soltan [19] (see also [20]) relaxed the disjointness condition and examined

Helly-type theorems for the case of families of pairwise nonoverlapping convex bodies in the

plane. First, they observed that S(n) does not imply S for any integer n ≥ 1, as illustrated

by the construction depicted in Figure 1.3. Next, they proved that if a nonoverlapping

family of convex bodies has no point in common, then S(6) =⇒ S. Figure 1.4 below shows

that, generally, S(5) does not imply S.

Various generalizations of these results to the case of k-disjoint families of convex bodies

in the plane can be found in the paper of Revenko and Soltan [21].

5



Figure 1.2: Sixteen convex bodies with the property S(3) but not S.

1.3 Main Results of the Dissertation

In view of the rather challenging combinatorial nature of Problem 1.8, V. Soltan [23, 24]

studied a similar problem for the case of congruent disks in the plane, the results of which

are summarized together in the following theorem.

6



Figure 1.3: Nonoverlapping triangles, with the property S(n) but not S.

⋯

Figure 1.4: Nonoverlapping triangles with the property S(5) but not S.

Theorem 1.9. If F is a disjoint family (possibly infinite) of unit disks in the plane, then

S(4) =⇒ S. Furthermore, S(3) =⇒ S provided cardF ≥ 7.

Figure 1.5 below reproduced from [24] shows that, generally, for disjoint families of six

congruent disks, the property S(3) does not imply S.

The results detailed in Section 1.2 above illustrate a number of the essential respective

differences in establishing various Helly-type results for disjoint versus for nonoverlapping

families of convex bodies. These differences motivated the study of the following problem.

Problem 1.10. Let F be a nonoverlapping family of congruent disks in the plane.

1. Determine the conditions, including the threshold number, which guarantee the exis-

tence of a natural number k satisfying the implication S(k) =⇒ S.

7



Figure 1.5: Disjoint family of six unit disks with the property S(3) but not S.

2. Find the respective minimum values for k satisfying each set of relevant conditions in

the preceding statement.

This problem is completely solved in the present dissertation. The methods used here

are primarily geometric and constructive in contrast to the combinatorial methods used in

Dawson [6] and in Revenko and Soltan [18]. The Helly-type results obtained here derive

from the exhaustive study of an express series of well-posed combinatorial problems of a

geometric nature. These problems are studied and solved in order of the steps described

below.

We need some terminology for their description. We will say that a line ` is a common

support for the family F provided every disk from F is supported by `. If the family F has

precisely n members, then we will denote it by Fn.

STEP 1. Given an arbitrary family Fn of n congruent disks in the plane, we establish

bounds on the possible values of the number s(Fn) of common support lines for Fn (see

Chapter 2). We prove the inequalities

3 ≤ s(F2) ≤ 4, s(F3) ≤ 3, s(Fn) ≤ 2 if n ≥ 4

,

and describe all combinatorial types of the families Fn for all maximum values of s(Fn).

8



STEP 2. Utilizing the above bounds on the numbers s(Fn) of common support lines, we

prove our first Helly-type theorem regarding any nonoverlapping family F of congruent

disks in the plane: S(4) =⇒ S (see Theorem 2.15).

STEP 3. In Chapter 3, we describe all combinatorially distinct configurations of touching

critical families F4. This description is given separately for the following two cases:

1) No three disks from F4 have their centers on a line (see Section 3.1).

2) The centers of three disks in F4 belong to a line (see Section 3.2).

STEP 4. Based on the description of all touching critical families F4, we prove in Chap-

ter 4 that any touching critical family F contains at most seven disks (see Theorem 4.6,

Lemma 4.20, and Figure 4.7).

STEP 5. Our second Helly-type theorem regarding any nonoverlapping family F of con-

gruent disks in the plane follows from Theorem 4.6: S(3) =⇒ S provided cardF ≥ 8 (see

Theorem 4.25).

9



Chapter 2: Common Support Lines for Finite Families of

Congruent Disks

2.1 Preliminaries

In this chapter we determine the number of common support lines for an arbitrary family

Fn (n ≥ 2) of congruent disks of radius r > 0 in the plane. We also characterize those

families Fn which allow the maximum possible number of such lines.

In what follows, we denote the members of Fn by the labels C1, C2, . . . , Cn. With this

notation, we will assume that the disks C1 and C2 have their centers o1 and o2 on the x-axis

of the plane with respective coordinates (−δ, 0) and (δ, 0), so that 2δ is the distance between

their centers (see Figure 2.1).

o1 o2

C1 C2

(a)

o1 o2

C1 C2

(b)

o1 o2

C1 C2

(c)

Figure 2.1: Disks centered at o1 (−δ, 0) , o2 (δ, 0) either overlap (δ < r), touch (δ = r), or
are disjoint (δ > r).

Remark 2.1. Observe that each family {C1, C2} together with the x- and y-axes has the

following four symmetries: reflection over the y-axis, reflection over the x-axis, rotation

of 180◦ about the origin, and identity symmetry. These symmetries form a group under

composition and correspond to the group of symmetries of the rectangle which we know from

elementary group theory coincides with the Klein four-group V (Kleinsche Vierergruppe).
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We use the following terminology and notation.

Definition 2.2. A family F of congruent disks of positive radius r in the plane is called

1) disjoint if every pair of disks taken from F is disjoint,

2) nonoverlapping if every pair of disks taken from F does not overlap,

3) touching if it is nonoverlapping and a pair of disks in F touch,

4) overlapping if a pair of disks in F overlap.

The line containing points a and b is denoted 〈a, b〉. The closed line segment with

endpoints a and b is denoted either ab or [a, b]. The open line segment with endpoints a

and b is denoted (a, b). The length of a line segment [a, b] is denoted ‖a − b‖. A triangle

with vertices at points a, b, c in the plane is denoted 4abc. The acute angle formed by lines

` and `′ is denoted
(̂̀, `′).

2.2 Common Support Lines for a Family F2

Theorem 2.3. For a family F2 = {C1, C2} of congruent disks of positive radius r in the

plane, the following statements hold.

(a) If F2 is overlapping, then it has precisely two support lines. These are the horizontal

lines {y = ±r} (see Figure 2.2).

(b) If F2 is touching, then it has precisely three support lines. Two of these are the

horizontal lines {y = ±r}, and one is the vertical line {x = 0} (see Figure 2.3).

(c) If F2 is disjoint, then it has precisely four support lines. Two of these are the horizontal

lines {y = ±r}, and two are the (slant) lines

{
y =

±r√
δ2 − r2

x

}
(see Figure 2.4).
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Proof of Theorem 2.3

Part (a). Observe that the origin is interior to both disks (see Figure 2.2).

y=r
C1

y=-r

C2
x

Figure 2.2: Overlapping family F2 and its two support lines.

Part (b). If the family F2 is touching, then the respective centers of C1 and C2 are

o1 (−r, 0) and o2 (r, 0) and the disks share a common boundary point at the origin o (0, 0).

The vertical line `v through the origin is the only line that separates the disks since it is the

unique tangent line for each disk at their common boundary point. The remaining supports

are the horizontal lines {y = ±r} (see Figure 2.3).

ℓ1

C1

ℓ2

C2
x

ℓv

Figure 2.3: Touching family F2 and its three support lines.

Remark 2.4. This is a continuation of Remark 2.1. We observe that the collection con-

sisting of the touching family F2 = {C1, C2} together with its support lines `1, `2, `v and

12



the x-axis has a set of symmetries whose structure under composition coincides with the

Klein four-group V .

We will need the following basic lemma from plane analytic geometry.

Lemma 2.5. The distance from a line ` in the coordinate (x, y)-plane, given by the equation

Ax+By + C = 0, to a point p (x1, y1) equals

d (`, p) =
|Ax1 +By1 + C|√

A2 +B2
.

o1C1
o2 C2

Figure 2.4: Disjoint family F2 and its four support lines.

Part (c). If C1 and C2 are disjoint, then 2δ > 2r. Observe that any common support

line of the two disks is either horizontal, or is a slant line that crosses the x-axis in the

origin o and separates the disks. The horizontal lines {y = ±r} support F2 (compare

Figure 2.4). In the following, we refer to Figure 2.5 repeatedly. Consider the segment op

from the origin o to the boundary ∂C2 of C2 in the first quadrant, which belongs to the

slant line of positive slope supporting both disks. This segment forms the hypotenuse of a

right triangle with legs of length x0 and y0 as depicted in Figure 2.5. This segment is also

a leg in the right triangle with hypotenuse oo2 of length δ whose second leg po2 has length

r so that ‖p − o‖ =
√
δ2 − r2 and x20 + y20 = δ2 − r2 (see Figure 2.5). In particular, the

support line ` with positive slope k = y0/x0 has standard form y0x−x0y = 0, and supports
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the disk C2 at the point p (x0, y0) at a distance r to its center o2. Applying Lemma 2.5, we

have

d (`, o2) =
|y0 δ + (−x0)·0|√

x20 + y20
=

|y0 δ|√
δ2 − r2

= r,

which yields

(y0 δ)
2 = r2

(
δ2 − r2

)
⇐⇒ y0 =

r

δ

√
δ2 − r2.

o2

δ-x0

δ2 - r2 r

C2

o (x0, 0)

p(x0, y0)

ℓ

y0 = r
δ

δ2 - r2

x0 = δ2-r2

δ

x

y

Figure 2.5: Slant line ` through the origin o supporting the family F2.

The Pythagorean relation (δ − x0)2 + y20 = r2, observed in Figure 2.5, together with the

value for y0, yields the identity

δ − x0 =
√
r2 − y20 =

√
r2 −

(r
δ

√
δ2 − r2

)2
=

√
r2δ2 − r2

(
δ2 − r2

)
δ2

=

√
r4

δ2
=
r2

δ
.

This in turn determines

x0 = δ − r2

δ
=
δ2 − r2

δ
.
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The positive slope k of the slant line supporting F2 is given by the ratio

k =
y0
x0

=

r
√
δ2 − r2
δ

δ2 − r2

δ

=
r
√
δ2 − r2
δ

· δ

δ2 − r2
= r

√
δ2 − r2

(δ2 − r2)2
=

r√
δ2 − r2

.

By symmetry, the slant line with negative slope supporting C1 and C2 has the equation

y = −kx, where k is given above.

2.3 Common Support Lines for a Family F3

Let F3 = {C1, C2, C3} be a family of pairwise distinct congruent disks of positive radius r.

As above, we parameterize the disks C1, C2 by their respective centers o1 (−δ, 0) , o2 (δ, 0).

Theorem 2.6. For a family F3 = {C1, C2, C3} of congruent disks of radius r in the plane,

the following statements hold.

(a) If F3 is overlapping, then it has at most two support lines. F3 has precisely two support

lines if and only if it lies in the slab between two parallel support lines (see Figure 2.6).

Explicitly, disk C3 has center (x0, 0) where x0 6= ±δ.

(b) If F3 is touching, then it has at most two support lines. F3 has precisely two support

lines if and only if its configuration is equivalent up to a symmetry in the Klein four-

group V to one of the configurations depicted in Figure 2.8, or it lies in a slab (see

Figure 2.9). That is, the center of C3 is one of the following:

(i) o3 (±r,±2r), or

(ii) o3 (x0, 0), where |x0| ≥ 3r.

(c) If F3 is disjoint, then it has at most three support lines (see Figure 2.12a). F3 has

precisely three support lines if and only if
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(i) C3 has center (0,±2r) and δ =
2r√

3
.

Additionally, F3 has precisely two support lines if and only if it has one of the configu-

rations depicted in Figures 2.12b, 2.12c, 2.12d, or 2.12e. That is, F3 has precisely two

support lines if and only if one of the following holds: the center of C3 is

(ii) o3

(
±
(
δ + 2

√
δ2 − r2

)
,±2r

)
,

(iii) o3

(
±
(
δ − 2

√
δ2 − r2

)
,±2r

)
, where δ 6= 2r√

3
,

(iv) o3

(
0,± rδ√

δ2 − r2

)
, where δ 6= 2r√

3
, or

(v) o3 (±x0, 0), where |x0| > δ + 2r, or |x0| < δ − 2r, whenever δ > 2r.

Preliminary Discussion for the Proof of Theorem 2.6. We construct each arbitrary

family F3 (up to symmetries in the Klein four-group V ) from a suitable arbitrary family F2,

by adjoining to it a disk C3. The subfamilies F2 = {C1, C2} are described in Theorem 2.3.

In later proofs, we will make use of the fact that an arbitrary family Fn = {C1, . . . , Cn}

with m support lines can be constructed by extending a suitable (not necessarily unique)

family Fn−1 with k ≥ m support lines by adjoining a disk Cn. This holds in general, and the

number of support lines of a finite family Fn−1 forms a natural upper bound on the number

of support lines of any family Fn constructed from it. In particular, when we construct a

family F3 by adjoining a disk C3 to a family F2, we tighten the constraints on the placement

of lines supporting the resulting extended family. The number of supports of any subfamily

F2 ⊂ F3 provides a natural upper bound on the number of support lines of the family F3

containing it.

Proof of Theorem 2.6

Part (a). If a family F3 is overlapping, then it has an overlapping subfamily. Re-

index, if needed, so that C1 and C2 overlap. The subfamily {C1, C2} has precisely two
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C1 C2 C3

Figure 2.6: An overlapping family F3 within a slab.

support lines `1 and `2 (see Theorem 2.3, Part (a), and Figure 2.2). Hence the family F3

has at most two support lines by the preliminary discussion above.

If the family F3 has two support lines, then C3 must be in the slab between the lines

`1, `2, the sole supports of F2. So, F3 lies entirely in the slab (see Figure 2.6). The converse

assertion is simply if F3 lies in a slab, then the family has at least two supports and no

more than two, so it has precisely the two supports `1, `2.

Part (b). If a family F3 is touching, it has a touching subfamily F2. Reparametrize if

needed so that C1 and C2 are touching. This subfamily has three support lines {`1, `2, `v}

(Theorem 2.3, Part (b)), and these lines divide the plane into 6 regions (see Figure 2.7).

Two lines support F3 only if two of these lines support C3, which happens only if C3 is

placed optimally in a corner of one of the six labeled regions. Regions 1, 3, 5 are equivalent

to regions 2, 4, 6 by reflection symmetry over the y-axis. Furthermore, since regions 1 and 5

are equivalent by reflection symmetry over the x-axis, up to symmetries in V we have only

two cases to consider: place C3 in region 1 or in region 3. With C3 in region 1, the centers

of the disks are not collinear. With C3 in region 3, the centers of the disks are collinear.

Case 1 (Touching family F3 with two support lines, members with noncollinear centers).

Let F3 be a nonoverlapping family with touching subfamily F2 = {C1, C2} as in Theo-

rem 2.3, Part (b), so that δ = r. Then F3 has two support lines, and its members have

noncollinear centers, if and only if the center of C3 is one of o3 (±r,±2r). Furthermore,

disk C3 is optimally placed in one of the four identical regions labeled 1, 2, 5, 6 in Figure 2.7
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1 2

3 4

5 6

C1 C2

ℓ1

ℓ2

ℓv

Figure 2.7: The support lines divide the plane into 6 regions.

and touches F2 at a point in {(±r,±r)}, and F3 is supported by the lines in one of the sets

{`1, `v}, {`2, `v} (see Figure 2.8).

Proof. Let a nonoverlapping family F3 contain the touching subfamily F2 = {C1, C2} sup-

ported by the lines `1, `2, `v (Theorem 2.3, Part (b)). Suppose F3 has two support lines and

the centers of its members do not lie on a line. Then C3 does not lie in a slab with F2 and

is not supported by both of its parallel support lines `1, `2. The family F3 has two support

lines only if the lines in one of the sets {`1, `v}, {`2, `v} support C3. This obtains when C3

is placed optimally in one of the four identical regions labeled 1, 2, 5, 6 of Figure 2.7 (up

to symmetries in V ), and its center is one of o3 (±r,±2r). Conversely, if disk C3 has its

center in {o3 (±r,±2r)}, then the centers of the members of F3 do not lie on a line, and C3

is positioned optimally in a corner of one of the four identical regions labeled 1, 2, 5, 6, so

that the lines in one of the sets {`1, `v}, {`2, `v} support C3, and consequently F3 has two

support lines. Furthermore, C3 is a translate of C1, so any point of contact occurs in the

lines y = ±r so that {C3} ∩ F2 ∈ {(±r,±r)}.

Case 2 (Touching subfamily F2 with two parallel support lines, members with collinear

centers). Let F3 be a nonoverlapping family of congruent disks with touching subfamily

F2 = {C1, C2}, so that δ = r. Then F3 has two parallel support lines if and only if

the centers of its members lie on a line. Explicitly, C3 has center o3 (x0, 0) where |x0| ≥

3r. Furthermore, C3 has point of contact {C3} ∩ F2 ∈ {(±(δ + r), 0)} when x0 = ±3r.
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C1 C2

C3

ℓ1

ℓv

C3
′

C3
″ C3

″′

ℓ2

Figure 2.8: Positions for disk C3 of touching family F3 as in Case 1 with two common
support lines.

Otherwise, disk C3 lies in the slab in one of the two regions labeled 3, 4 in Figure 2.7,

disjoint from F2, and F3 is supported by both of `1, `2 (see Figure 2.9).

Proof. Let a nonoverlapping family F3 contain the touching subfamily F2 = {C1, C2} sup-

ported by `1, `2, `v (Theorem 2.3, Part (b)), so that the centers of the disks in F2 lie on

the x-axis. Suppose F3 has two parallel support lines which necessarily coincide with `1, `2.

Since both of `1, `2 support C3 and the disks are congruent, the center of C3 necessarily lies

on the x-axis, and the centers of the disks are collinear. Conversely, suppose the centers of

the disks in F3 lie on a line. The family F2 lies in a slab between `1, `2 and C3 is congruent

to these disks, so C3 lies in the slab between `1, `2, and F3 is supported by this pair of par-

allel lines. Furthermore, the centers of the disks lie on the x-axis, and C3 has center (x0, 0)

with |x0| ≥ 3r since the family is nonoverlapping. When x0 = ∓3r, the disk C3 touches

either C1 or C2 at one of (∓ (δ + r) , 0), respective of order. Otherwise, C3 lies in the slab

in one of the two regions labeled 3, 4 in Figure 2.7, disjoint from F2 (see Figure 2.9).

If the nonoverlapping family F3 has the touching property, reparametrize the disks if

needed, so that its subfamily F2 = {C1, C2} touches, and has the three common support

lines `1, `2, `v (Theorem 2.3, Part (b)). Disk C3 cannot be supported by all three lines since
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the disks are distinct. Either the members of F3 have their centers on a line or they avoid

this property. When their centers do not lie on a line, two lines support F3 only when C3

is placed optimally, as documented in Case 1. Otherwise, the disks have collinear centers

and exactly two parallel lines support F3, as documented in Case 2. Any touching family

F3 has a maximum of two support lines.

C1 C2C3 C3
′

C3
″′

C3
″

Figure 2.9: Positions for disk C3 for a touching family F3 within a slab.

Part (c). Let the family F3 be disjoint. Then its subfamily F2 = {C1, C2} is disjoint

and therefore has four support lines (Theorem 2.3, Part (c)). It follows that the natural

upper bound on the number of support lines of F3 is four. To show that any geometrically

realizable family F3 has at most three common support lines, we suppose for the moment

that four lines support F3 in order to induce a contradiction. We provisionally label these

support lines for reference:

`1 = {y = r}, `2 = {y = −r}, `3 =

{
y =

rx√
δ2 − r2

}
, `4 =

{
y =

−rx√
δ2 − r2

}
(2.1)

The lines `1, `2, `3, `4, together with the boundaries of the disks of disjoint F2, partition the

plane into 12 nontrivial regions which are labeled in Figure 2.10. The remaining 4 regions

do not affect our analysis. To construct F3 from F2, we adjoin a congruent disk C3 to

{C1, C2}. In particular, in order that F3 has four support lines, both of `1, `2 necessarily

support C3, so C3 must lie in the slab between `1 and `2. None of the regions 5, 6, 7 and 9

of Figure 2.10 can individually contain C3: by symmetry, if C3 were disjoint from F2 and
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1 2 3

4 5
6

7 8
9

C1 C2

ℓ1

ℓ3 ℓ4

10 11 12
ℓ2

Figure 2.10: The 12 nontrivial regions formed by the lines `1, `2, `3, `4 and curves ∂C1, ∂C2.

wholly contained in region 5, it would not contain the origin in its interior, which would

force δ > 3r. Since C3 must be disjoint from C1, it would lie to the right of the vertical

line x = −δ + r. Within this triangular region, the maximum vertical height between the

slant lines `3, `4 is less than 2r, so these lines cut C3 and the region cannot contain the

disk (see Figure 2.11). Up to reflection symmetry over the y-axis, this entails that C3 is

o1C1
o2 C2

C3

x

y

Figure 2.11: The slant support lines of any disjoint family F2 cut any disk situated between
its members.

in region 4. If line `3 supports C3, then C3 coincides with C1, but by convention the disks

must be distinct and by assumption disjoint. No placement for C3 satisfies the constraints,

so no family of three disks has four support lines.

The disjoint families F3 with two or more support lines are depicted in Figure 2.12. The
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C1 C2

C3

(a)

C1 C2

C3 C3
′

C3
″ C″

3
′

(b)

C1 C2

C″

3
′

C3
′

C3
″

C3

(c)

C3

C1 C2

C3
′

(d)

C1 C2 C3

(e)

Figure 2.12: Configurations of disjoint families F3 with two or more support lines.
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following case establishes that a configuration F3 in which three lines support each of the

congruent disks exists, and provides explicit calculations for the placement of those disks.

Case 3 (Disjoint family F3 supported by three lines). Let F3 be a disjoint family of three

congruent disks in the plane. The family F3 is supported by three lines if and only if its

disjoint subfamily F2 = {C1, C2} is parameterized by δ = 2r/
√

3, and disk C3 has its center

in {o3 (0,±2r)}. Furthermore, the lines {y = r} and {y = ±
√

3x} support the disjoint

family F3. This is the only configuration of three disks with three support lines up to

symmetries in the Klein four-group V .

Proof. Suppose F3 is a family of three disks in the plane supported by three lines. Then

F3 is necessarily disjoint since Parts (a) and (b) of this theorem (Theorem 2.6) show that

any F3 that contains a nondisjoint subfamily F2 has a maximum of two support lines.

In particular, the subfamily F2 = {C1, C2} is disjoint, and we adopt the parametrization

o1 (−δ, 0), and o2 (δ, 0) for the respective centers of C1, C2 as in Theorem 2.3, Part (c).

The family F3 has three support lines if and only if C3 and F2 share three of the four

support lines listed in Equation (2.1). The
(
4
3

)
= 4 ways to select three of these support

lines are listed here:

{`1, `2, `3}, {`1, `2, `4}, {`1, `3, `4}, {`2, `3, `4}

If both of `1, `2 support C3, then the family F3 lies in a slab, and has exactly two support

lines since no slant line supports three distinct disks in a slab. Since three lines support C3,

precisely one of `1, `2 supports C3, so that one of the sets {`1, `3, `4}, {`2, `3, `4} contains

the supports of C3. By symmetry, we may assume `1 supports C3, so that C3 has its

center on the horizontal line {y = 2r} and is supported by the lines in the set {`1, `3, `4}.

Since `1 supports C3 from below, the disk lies in some combination of the regions 1, 2, 3 of

Figure 2.10. If C3 is placed optimally in region 1 or 3, precisely two lines support C3, so

C3 necessarily overlaps with region 2 of Figure 2.10.
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Lines `3 and `4, are symmetric about the y-axis, and form part of the boundary of region

2. By symmetry, both of `3, `4 support C3 if and only if disk C3 lies entirely in region 2

with its center on the line {x = 0}. This determines the coordinates of the center of C3 as

o3 (0, 2r). It remains to determine δ. Line `3 supports C3 if and only if the distance from

line `3 to the point o3 (0, 2r) is r. By Lemma 2.5, this holds whenever

d (`3, o3) =

∣∣∣r · 0 + (−
√
δ2 − r2) · 2r

∣∣∣√
r2 +

(
−
√
δ2 − r2

)2 =
2r
√
δ2 − r2√

r2 + δ2 − r2
= r,

which reduces to

4
(
δ2 − r2

)
= ±δ2.

Since δ > r > 0, we have

4
(
δ2 − r2

)
= δ2 ⇐⇒ δ =

2r√
3
.

Conversely, suppose the family F3 has a disjoint subfamily F2 parameterized by δ = 2r/
√

3,

and disk C3 has center o3 (0, 2r). Then line `1 supports C3, and the slant lines `3 and `4, with

respective slopes ±r/
√
δ2 − r2 = ±

√
3, are at a distance r to point o3 and, consequently

support C3, so that disjoint family F3 has three support lines. In the case that each line

in the set {`2, `3, `4} supports C3, similar arguments show that δ = 2r/
√

3 and disk C3 has

center o3 (0,−2r).

Case 3 above establishes the unique disjoint family F3 of congruent disks supported by

three lines up to symmetries in V . The extension of a disjoint family F2 to an overlapping

family F3 with exactly two support lines is equivalent by a reparameterization to the family

described in Part (a) above. The extension of a disjoint family F2 to a touching family F3

with exactly two support lines is equivalent by a reparametrization to one of the families

described in Part (b) of the present theorem. Otherwise, a disjoint family F2 is extended
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to the disjoint family F3 = F2 ∪{C3}. The remaining cases detail the explicit placement of

the disk C3 for each respective disjoint family F3 with precisely two common support lines.

If precisely one of `1, `2 supports C3, then the disk lies in one of the angular regions

labeled 1, 3, 10, 12 in Figure 2.10, or overlaps with one of the regions bounded by three lines

(regions 2, 11). If neither of `1, `2 supports C3 and the family has precisely two support

lines, then C3 is necessarily supported by both slant lines of F2 and has its center on the

line {x = 0}. Disk C3 lies in the union of regions 2 and 6 or in the union of regions 9 and

11, and the center of C3 is not permitted to lie on either of the lines {y = ±2r}. If both

parallel support lines support C3, then the family lies in a slab. By symmetry, we have the

following four cases to consider. We can place C3 either in an angular region (e.g. region

1), or with support from one horizontal line such that C3 overlaps with a region bounded

by three lines (e.g. region 2). Or, we can place C3 in an angular region bounded by the

two slant lines (e.g. the union of region 9 and 11) with center o3(0, y3) where y3 6= ±2r , or

within the slab determined by `1 and `2 (e.g. region 4) of Figure 2.10.

Case 4 (Disjoint family F3 with its third disk in an angular region such as region 1). Let

the family F3 have disjoint subfamily F2 = {C1, C2} whose respective members have centers

o1 (−δ, 0) and o2 (δ, 0) (Theorem 2.3, Part (c)). F3 has exactly two support lines and a disk

in an angular region of Figure 2.10 if and only if C3 has its center in {o3 (±x0,±2r)}, where

|x0| = δ + 2
√
δ2 − r2. Furthermore, the disjoint family F3 is supported by exactly one

horizontal support line (`1 or `2) and one slant line (`3 or `4) (see Figure 2.12b).

Proof. Let F3 contain the disjoint subfamily F2. Suppose F3 is supported by two lines,

one of which is horizontal, and C3 is wholly contained in a wedge, one of the the regions

labeled 1, 3, 10, 12 in Figure 2.10. By symmetry, assume the disk is in region 1 so that the

lines `1, `4 support C3. Since `1 supports C3 from below, we provisionally assign its center

the label o3 (x0, 2r) with x0 < 0. Line `4 supports C3 if and only if the distance from `4 to

the point o3 is exactly r (see Equation (2.1) for `4). Lemma 2.5 determines the following
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relation:

d
(
−rx−

√
δ2 − r2y = 0, o3

)
= r ⇐⇒

∣∣∣−rx0 − 2r
√
δ2 − r2

∣∣∣√
r2 + (

√
δ2 − r2)2

= r

⇐⇒
∣∣∣−x0 − 2

√
δ2 − r2

∣∣∣ = δ

Disk C3 is supported by `4 from above, which means `4 (x0) > 2r. This inequality shows

that the expression above is positive which permits us to write

−x0 − 2
√
δ2 − r2 = δ ⇐⇒ −x0 = δ + 2

√
δ2 − r2,

where x0 < 0. Conversely, if C3 has center o3 (x0, 2r) with the value stated above, then C3

lies in region 1 supported by both of `1, `4, so that the family F3 has two support lines. By

symmetry disk C3 lies in an angular region for each choice in {o3 (±x0,±2r)} for the center

of C3.

Case 5 (Disjoint family F3 with one horizontal support, and a disk that overlaps with a

region bounded by three lines such as region 2). Let the family F3 have disjoint subfamily

F2 = {C1, C2} whose respective members have centers o1 (−δ, 0) , o2 (δ, 0) (Theorem 2.3,

Part (c)). F3 has exactly two support lines, one of which is horizontal, and a disk overlapping

with a region bounded by three lines of Figure 2.10 if and only if the center of C3 is in

{o3 (±x0,±2r)} with |x0| = 2
√
δ2 − r2−δ and δ 6= 2r/

√
3. Furthermore, the disjoint family

F3 is supported by exactly one horizontal support line (`1 or `2) and one slant support line

(`3 or `4) (see Figure 2.12c).

Proof. If F3 is supported by two lines, one of which is horizontal, and C3 is not wholly

contained in a wedge (regions 1, 3, 10, 12 of Figure 2.10), then C3 overlaps with a region

bounded by three lines such as region 2, and is supported by the lines in one of the sets

{`1, `3}, {`1, `4}.
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By symmetry, assume the lines in {`1, `4} support C3 centered at o3(x0, 2r) and δ 6=

2r/
√

3. In the proof of Case 4 above, we determined the placement of C3 in region 1

supported by `1 and `4 where we derived the relation

∣∣∣−2
√
δ2 − r2 − x0

∣∣∣ = δ.

If C3 lies on the opposite side of `4 as calculated in Case 4 above, then C3 overlaps with

region 2 and the other branch of the solution applies for x0 so that

−2
(
−
√
δ2 − r2

)
− x0 = δ ⇐⇒ x0 = 2

√
δ2 − r2 − δ.

Observe that if δ = 2r/
√

3, then

x0 = 2
√
δ2 − r2 − δ = 2

√(
2r√

3

)2

− r2 −
(

2r√
3

)
= 2

√
r2

3
− 2r√

3
= 0,

and the family satisfies the conditions of Case 3, implying it has three support lines. Con-

versely, suppose disk C3 has center o3

(
2
√
δ2 − r2 − δ, 2r

)
and δ 6= 2r/

√
3. Then, the lines

`1 and `4 both support C3 from below, so that C3 overlaps with region 2. For δ small,

disk C3 may overlap with region 3. Furthermore, disjoint F3 is supported by exactly one

horizontal support line (`1) and one slant support line (`4).

Case 6 (Disjoint family F3 with its third disk supported by both slant support lines of

F2). Let F3 have disjoint subfamily F2 = {C1, C2} whose respective members have centers

o1 (−δ, 0) and o2 (δ, 0) as in Theorem 2.3, Part (c). F3 has exactly two slant support

lines `3, `4 if and only if C3 has its center in {o3 (0,±γ)} with γ = rδ/
√
δ2 − r2, and

δ 6= 2r/
√

3 (see Figure 2.13). Furthermore, C3 is entirely contained in region 2 or 11,

respectively, whenever 0 < δ < 2r/
√

3, and partially contained in one of these regions
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whenever δ > 2r/
√

3, in which case it is either in the union of regions 9 and 11, or in the

union of regions 2 and 6.

C3

C1 C2

C3
′

Figure 2.13: A disk C3 supported by the slant lines `3, `4 of F2.

Proof. F2 = {C1, C2} is a disjoint subfamily of F3. If F3 has exactly two support lines

none of which is horizontal, then the slant lines `3, `4 necessarily support C3. Disk C3 is

either in the union of regions 9 and 11 or in the union of regions 2 and 6 of Figure 2.10.

By symmetry, let C3 lie in the union of regions 9 and 11. Lines `3 and `4 intersect at the

origin, and their symmetry about the y-axis implies both of `3, `4 support the congruent

disk C3 if and only if the center o3 of C3 has x-coordinate equal to zero. Each of C2, C3

has a radius orthogonal to `4. These radii are legs in similar right triangles each of which

has its hypotenuse on one of the coordinate axes (see Figure 2.14). From similar triangles

in the figure, inspection verifies the equivalent proportions between the triangles

r√
δ2 − r2

=
γ

δ
⇐⇒ γ =

rδ√
δ2 − r2

.
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Family F3 has exactly two support lines if δ 6= 2r/
√

3. Otherwise, we have

γ =
rδ√
δ2 − r2

=

r · 2r√
3√(

2r√
3

)2

− r2
=

2r2√
3√
r2

3

=
2r2√

3
·
√

3

r
= 2r,

implying C3 has center (0,−2r), and the family satisfies the conditions of Case 3, so that

the three lines `2, `3, `4 support C3, contrary to supposition. Conversely, suppose C3 has

its center in {o3 (0,±γ)} where γ = rδ/
√
δ2 − r2, and δ 6= 2r/

√
3. By symmetry, let its

center be o3 (0, γ). Then, by direct calculation using Lemma 2.5, lines `3 and `4 are both

at distance r to the point o3, which implies the lines support C3. And with δ 6= 2r/
√

3,

the disjoint family F3 has exactly two support lines. Furthermore, the boundary condition

δ = 2r/
√

3 forces an optimally placed disk C3 entirely in region 2 or 11 (Figure 2.10),

respectively, supported by three lines. Whenever 0 < δ < 2r/
√

3, the acute vertical angles(
̂̀
3, `4

)
formed by `3, `4 narrow, forcing disk C3 entirely into region 2 or 11 supported by

the slant lines `3, `4. When δ > 2r/
√

3, an optimally placed disk C3 is supported by both

of `3, `4 and is contained either in the union of regions 9 and 11, or in the union of regions

2 and 6.

The centers of the members of F3 lie on a line if and only if C3 lies in a slab with C1, C2

if and only if F3 is supported by the parallel support lines `1, `2.

Case 7 (Disjoint family F3 lies in a slab). Let F3 have disjoint subfamily F2 = {C1, C2} as

in Theorem 2.3, Part (c). F3 is disjoint and contained in a slab if and only if C3 has center

(x0, 0) with either |x0| > δ + 2r, or |x0| < δ − 2r only if δ > 2r. Furthermore, such a disk

C3 is in region 4, region 8, or in the union of regions 5, 6, 7, 9 of Figure 2.10. The centers

of C1, C2, C3 are collinear, and the slab is determined by the parallel support lines `1, `2 of

F3 (see Figure 2.12e).
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C3

ℓ3

ℓ4

r
r C2
(δ,0)

(0,-γ)

γ

x

y

Figure 2.14: Calculating the center of a region 9 disk supported by `3 and `4.

Proof. F2 = {C1, C2} is a disjoint subfamily of F3, which is contained in a slab. The parallel

lines `1, `2 determine the boundary of the closed slab containing F3. Disks C1, C2, C3 are

congruent, so their centers are equidistant to the boundary of the slab, which places their

centers on the x-axis. We provisionally label the center of C3 as o3 (x0, 0), and since F3 is

disjoint, we have either |x0| > δ + 2r, or |x0| < δ − 2r only if δ > 2r. The first condition

places C3 in region 4 or 8 of Figure 2.10. The second condition places C3 in the union

of regions 5, 6, 7, 9 between C1 and C2 only if δ > 2r. Conversely, suppose C3 has center

o3 (x0, 0) and |x0| > δ + 2r, or |x0| < δ − 2r only if δ > 2r. Since each disk has radius r

and the center of C3 is collinear with the centers of C1, C2, disk C3 lies in the slab whose

boundary is determined by `1, `2, both of which support F3. The stated conditions on x0

guarantee that F3 is disjoint.

In the Preliminary Discussion to this theorem, we observed that the number of supports

of F2 ⊂ F3 forms a natural upper bound on the number of supports of F3. In the introduc-

tion to Part (c) we determined that the upper bound for disjoint families of size three is 4 and

then showed that this upper bound is not realizable, so that any family F3 has fewer than

four support lines. This bound is sharp. Case 3 (Theorem 2.6, Part (c)) above describes

the particular configuration of three disks supported by three lines. Cases 4 through 7
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(Theorem 2.6, Part (c)) above show that in all other cases, a family of three disks has a

maximum of two support lines. It follows that any family F3 of congruent disks in the plane

has at most three support lines.

Corollary 2.7. (Corollary to Case 4 of Theorem 2.6, Part (c).) Let the family F2 be

disjoint. Disjoint F3 = F2 ∪{C3} with its third disk in region 1 of Figure 2.10 has precisely

two support lines `1, `4 if and only if C3 has center

o3 (−γ, 2r) = o3

(
−
(
δ + 2

√
δ2 − r2

)
, 2r
)
.

Proof. F2 = {C1, C2} is a disjoint subfamily of F3. Suppose F3 has two support lines

and C3 is in region 1 of Figure 2.10, then the pair of lines `1, `4 support disk C3. Since

line `1 supports any disk of radius r whose center lies on the horizontal line {y = 2r}, we

tentatively label the center of C3 as o3 (−γ, 2r). Observe that we use γ here in place of x0

which was used in Case 4. The distance from `4 to o4 must be r, which happens if and only

if C3 is placed optimally in region 1, as depicted in Figure 2.15. Lines `1 and `4 intersect

at the point p, forming four cones in the plane.

C1 C2

C3

o1 o2

o3
p

ℓ1

ℓ2

ℓ3

ℓ4

Figure 2.15: Disk C3 in region 1 supported by lines `1 and `4.
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As seen in Figure 2.16 (though true in general) the perpendicular bisectors of the ad-

jacent cones created by lines `1 and `4 form a right angle. The center o3 of disk C3 lies

on the angle bisector of the acute angle
(
̂̀
1, `4

)
, so line segment [o3, p] bisects this angle.

This implies α = (1/2) ·
(
̂̀
1, `4

)
for angle α as labeled in the figure. Similarly, line segment

[o1, p] bisects the obtuse angle formed by lines `1 and `4. It follows that line segment [o1, p]

is perpendicular to line segment [o3, p], so that angles α and β as labeled are complemen-

tary. Line segment [o3, p] forms the hypotenuse of a right triangle, that is similar by the

angle-angle (AA) similarity theorem to the right triangle with hypotenuse [o1, p] as seen in

Figure 2.16. Since point {p (x1, y1)} belongs to `1, we have y1 = r. Its x-coordinate x1 is

given by the following (compare Equation (2.1)).

`1 (x1) = `4 (x1) ⇐⇒
−rx1√
δ2 − r2

= r ⇐⇒ x1 = −
√
δ2 − r2.

The point p has coordinates (x1, y1) =
(
−
√
δ2 − r2, r

)
. The right triangle 4o3pq (point

α

β

α

β

r

r

p - δ2 - r2 , r

o3

o1

Figure 2.16: Disk C3 in region 1 supported by lines `1 and `4.
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q := {(−γ, r)}) has a leg of length r and a (horizontal) leg with endpoints p and q (−γ, r)

of length

−
√
δ2 − r2 − (−γ) = γ −

√
δ2 − r2.

The right triangle 4o1pq′ (point q′ := {(−δ, r)}) with vertex o1 (−δ, 0) has a leg of length r,

and a leg that is a horizontal line segment with endpoints q′ (−δ, r) and p
(
−
√
δ2 − r2, r

)
.

The length of this horizontal leg is given by the difference

−
√
δ2 − r2 − (−δ) = δ −

√
δ2 − r2.

The side lengths of these similar triangles, yields a proportion involving γ that leads to

r

γ −
√
δ2 − r2

=
δ −
√
δ2 − r2
r

⇐⇒ γ =
2r2 + δ

(√
δ2 − r2 − δ

)
(
δ −
√
δ2 − r2

)
⇐⇒ γ =

2r2

δ −
√
δ2 − r2

− δ.

Conversely, if F3 has disjoint subfamily F2 parameterized by convention and has disk C3

with center o3 (−γ, 2r) with γ as derived above, then the lines `1, `4 support C3 in region 1.

Furthermore, disjoint F3 has two support lines.

The following remark provides an equivalent expression for x0 to that given in Case 4.

Remark 2.8. The values x0 = δ + 2
√
δ2 − r2 and x0 =

2r2

δ −
√
δ2 − r2

− δ are equal.
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Proof. Either rewrite the second expression, multiplying by the conjugate of the expression

in its denominator, or observe the following string of equivalences:

δ + 2
√
δ2 − r2 =

2r2

δ −
√
δ2 − r2

− δ ⇐⇒ 2δ + 2
√
δ2 − r2 =

2r2

δ −
√
δ2 − r2

⇐⇒ (δ +
√
δ2 − r2)(δ −

√
δ2 − r2) = r2

⇐⇒ δ2 − (δ2 − r2) = r2

Corollary 2.9. (Corollary to Case 5 of Theorem 2.6, Part (c).) Let F2 be disjoint. From

the proof of Case 5 of Theorem 2.6, Part (c), we derive the values

x0 = 2
√
δ2 − r2−δ, xp′ = 2

√
δ2 − r2−δ+r2

δ
= x0+

r2

δ
, and yp′ =

r

δ

(
2δ −

√
δ2 − r2

)
.

A third disk C3 in region 2 with center o3

(
2
√
δ2 − r2 − δ, 2r

)
is supported by lines `1 and

`3 at the respective points (x0, r) and
(
xp′ , yp′

)
. Similarly, a disk C3 in region 2 with center

o3

(
−2
√
δ2 − r2 + δ, 2r

)
is supported by lines `1 and `4 at the respective points (−x0, r)

and
(
−xp′ , yp′

)
.

Remark 2.10. (Remark on Case 5 of Theorem 2.6, Part (c).) Let F2 be disjoint, so that

δ > r > 0. The expression

|x0| =
√(

2δ −
√
δ2 − r2

)2
− 3r2,

is identical to the expression derived in Theorem 2.6, Part (c).
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Proof. Either solve

√(
2δ −

√
δ2 − r2

)2
− 3r2 = p

√
δ2 − r2 − q for p, q, or observe the fol-

lowing string of equivalences:

√(
2δ −

√
δ2 − r2

)2
− 3r2 = 2

√
δ2 − r2 − δ

⇐⇒ 4δ2 − 4δ
√
δ2 − r2 +

(
δ2 − r2

)
− 3r2 = 4

(
δ2 − r2

)
− 4δ

√
δ2 − r2 + δ2

⇐⇒ δ2 − 4r2 = −4r2 + δ2

Remark 2.11. (Remark on Case 5 of Theorem 2.6, Part (c).) Let the family F2 be disjoint,

so that δ > r > 0, then √(
2δ −

√
δ2 − r2

)2
− 3r2 < δ.

Proof. By the preceding Remark,

√(
2δ −

√
δ2 − r2

)2
− 3r2 = 2

√
δ2 − r2 − δ.

Furthermore,

2
√
δ2 − r2 − δ < δ ⇐⇒ 4δ2 − 4r2 < 4δ2 ⇐⇒ −4r2 < 0.

2.4 Common Support Lines for a Family F4

Let F4 = {C1, C2, C3, C4} be a planar family of pairwise distinct congruent disks of positive

radius r. As in Theorem 2.3, we parameterize disks C1, C2 by their respective centers

o1 (−δ, 0) , o2 (δ, 0).

Theorem 2.12. Any family F4 = {C1, C2, C3, C4} of congruent disks of radius r in the

plane has at most two support lines.
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(a) If F4 is overlapping, then it has at most two support lines. F4 has precisely two support

lines if and only if it lies entirely in a slab.

(b) If F4 is touching, then it is the extension of a nonoverlapping family F3, and has at

most two support lines. F4 has precisely two support lines if and only if the family lies

in a slab, or if it has the configuration in Figure 2.17a. Furthermore, if F4 lies in a slab

then it is an extension of a disjoint F3 or of a touching F3 as depicted in Figure 2.9 or

Figure 2.12e (see Figure 2.17b). If F4 has the configuration in Figure 2.17a then it is

the extension of a disjoint F3 or of the touching F3 depicted in Figure 2.8.

(c) If F4 is disjoint, then it is the extension of a disjoint F3, and has at most two support

lines. It has precisely two support lines if and only if it lies entirely in a slab, or if it

has the configuration in Figure 2.18 (up to symmetries in the Klein four-group V ).

Proof of Theorem 2.12 To show that any F4 has at most two support lines, we induce a

contradiction by supposing that the extension F4 of some F3 is supported by at least three

lines, including, say, `1, `2, `3. Since F4 contains F3 = {C1, C2, C3} as a subfamily, each of

`1, `2, `3 supports F3. Considering Theorem 2.6, Part (c), F3 must have the configuration

in Figure 2.12a where `1, `2, `3 correspond to the depicted lines. In the subfigure, three

(unbounded) polyhedral regions support a disk of radius r with three lines, and each of

these three regions contains a disk. If C4 is placed in one of these polyhedral regions, then

the Dirichlet principle guarantees the disks are not distinct.

Disk C4 must be placed in the remaining region bounded by the three lines `1, `2, `3,

which is a closed regular polygon with side length 4r/
√

3. This region is bounded above

by the line {y = r}, and has (0, 0) as a vertex. Calculating, we find its incenter to be the

point I (0, 2r/3). This implies the inradius of the incircle is r/3. Since this region cannot

support a disk of radius r, either C4 is not supported by `1, `2, `3 or the disks in the family

are not distinct, contrary to supposition. No construction resolves the contradiction. It
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follows that Fn (n ≥ 4) cannot have more than two support lines. The disjoint families F4

with precisely two support lines are depicted in Figures 2.18 and 2.19.

Part (a) If F4 is overlapping then it has an overlapping subfamily F3. Reparametrize

the disks if needed, so that C1 and C2 of F3 overlap. By Theorem 2.6, Part (a), any

overlapping F3 has at most two support lines, so the family F4 has at most two support

lines. In particular, the overlapping family F3 with two support lines lies in a slab which by

convention is determined by the supports `1, `2, and the subfamily {C1, C2, C4} is supported

by two lines only if C4 lies in the slab. It follows that F4 necessarily lies in the slab.

Conversely, suppose overlapping F4 lies entirely in a slab. No slant line supports the family

since C1, C2 are not separable. Since the disks are congruent and distinct, their centers lie

on a line and each disk is supported by precisely the two parallel support lines `1, `2.

Part (b) If F4 is touching, it has a touching subfamily F3. Reparametrize the disks if

needed, so that C1, C2 ∈ F3 are touching. If F4 has two support lines, then it is the extension

of a touching F3 supported by at least two lines. The two choices for F3 satisfying these

conditions are depicted in Figures 2.8, and 2.9 (Cases 1 and 2 of Theorem 2.6, Part (b)).

Disk C3 of the family depicted in Figure 2.8 has center o3 (−r, 2r) and F3 is supported by

both of `v, `2. In an extension of the family, disk C4 must have center o4 (r, 2r), so that

both of `v, `2 support C4, and the family F4 has the configuration in Figure 2.17a. If we

extend the family F3 depicted in Figure 2.9 which lies entirely in a slab, then the family F4

is supported by the two lines `1, `2 only if C4 is supported by these lines. This places C4 in

the slab containing F3, so that F4 lies entirely in the slab.

Conversely, suppose touching F4 lies in a slab, or F4 has the configuration in Fig-

ure 2.17a. If F4 lies in a slab, then it has precisely two support lines. If F4 has the

configuration in Figure 2.17a, then it is touching and has two support lines. Furthermore,

if touching F4 lies in a slab, and C1 ∩ C2 6= ∅, then various placements for C4 with center

o4 (x0, 0) are permitted. Let o3(γ, 0) denote the center of C3. The family is nonoverlapping
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C1 C2

C3 C4

(a)

C1 C2 C3C4

(b)

Figure 2.17: Touching families F4 with two support lines.

when the following conditions hold:

|γ| ≥ 3r and |x0| ≥ 3r and x0 6∈ (γ − 2r, γ + 2r)

Disk C4 touches C1 or C2, respective of order, for the two values x0 = ∓3r. Disk C4 touches

C2 and C3 when |x0| = 3r and γ = 5r. And, disk C4 touches C3 when x0 = γ ± 2r.

Part (c) If F4 is disjoint, then each subfamily F3 is disjoint. If F4 has two support

lines, then it is necessarily the extension of a disjoint family F3 with at least two support

lines. Five families have this property as documented in Theorem 2.6, Part (c) and depicted

in Figure 2.12.

Extension 1: Disjoint F3 described in Case 3 of Theorem 2.6, Part (c) and depicted in

Figure 2.12a has three support lines. Recall that no disk of radius r can be contained in the

bounded triangular region supported by the three lines since the incircle of the triangular

region has radius r/3 (as stated in the proof above). If any two of these lines support C4,

then it must overlap with some disk of F3. In particular, since the disks are congruent, the

center of C4 must coincide with the center of one of these disks, so that the disks are not

distinct, a contradiction. The configuration of lines determines three angular (polyhedral)

regions not containing disks, and it follows that C4 is distinct from the disks of F3 and
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C1 C2

C3 C4

Figure 2.18: A disjoint family F4 with two support lines.

supported by two lines only if it is optimally placed in one of these three empty angular

regions. This leads to a configuration with incidence relations equivalent to those of the

family depicted in Figure 2.18. Conversely, a family with this configuration meets the stated

conditions.

Extension 2: Disjoint F3 with two common supports described in Case 4 of Theo-

rem 2.6, Part (c) and depicted in Figure 2.12b has its third disk in an angular region, which

we take to be region 1 of Figure 2.10 so that both of `1, `4 support F3 up to symmetry.

Since the lines `1, `4 create four angular regions in the plane, three of which are occupied

by C1, C2, C3, the only construction that preserves these two support lines is to place the

fourth disk optimally in region 2, which yields a configuration whose incidence relations are

equivalent to those of the family depicted in Figure 2.18. Conversely, a family with this

configuration meets the stated conditions.

Extension 3: Disjoint F3 described in Case 5 of Theorem 2.6, Part (c) and depicted in

Figure 2.12c with two support lines has its third disk in a region bounded by three lines. Up

to symmetry, we take this to be the union of regions 2, 6 of Figure 2.10 bounded by the lines

`1, `3, `4. Let both of `1, `4 support disk C4. Since the lines `1, `4 create four angular regions

in the plane, three of which are occupied by C1, C2, C3, the only construction that preserves

its two support lines is to place the fourth disk optimally in region 1 (see Figure 2.10),

so that the family has a configuration whose incidence relations are equivalent to those of
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the family depicted in Figure 2.18. Conversely, a family with this configuration meets the

stated conditions.

Extension 4: Disjoint F3 described in Case 6 of Theorem 2.6, Part (c) and depicted

in Figure 2.12d with two support lines has its third disk supported by the slant lines of F2,

and we take C3 to be in the region formed by the union of regions 9 and 11 of Figure 2.10

up to symmetry. Since the transverse lines `3, `4 create four angular regions in the plane,

three of which are occupied respectively by C1, C2, C3, the only construction that preserves

its two support lines is to place the fourth disk optimally in the union of regions 2, 6

of Figure 2.10 supported by both of `3, `4, which yields a configuration whose incidence

relations are equivalent to those of the family depicted in Figure 2.18. Conversely, a family

with this configuration meets the stated conditions.

C1 C2 C3 Cn

Figure 2.19: A disjoint family Fn with two support lines.

Extension 5: Disjoint F3 described in Case 7 of Theorem 2.6, Part (c) and depicted

in Figure 2.12e lies entirely in a slab between two horizontal lines. We take its third disk

to be in region 8 of Figure 2.10 and note that no slant line supports the family. We place

disk C4 disjoint from the disks of F3, and maintain its two support lines only if both of

`1, `2 support C4 which entails that the disk is placed in the slab. The resulting disjoint

F4 lies in a slab as in Figure 2.19. Conversely, suppose disjoint F4 lies in a slab (compare

Figure 2.19) or has the configuration depicted in Figure 2.18, then F4 is disjoint and has

precisely two support lines.
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2.5 Common Support Lines for a Family Fn (n ≥ 5)

Let Fn (n ≥ 5) be a family of pairwise distinct congruent disks of positive radius r. As in

Theorem 2.3, we parameterize disks C1, C2 by their respective centers o1 (−δ, 0) , o2 (δ, 0).

Theorem 2.13. Any family Fn (n ≥ 5) of congruent disks of radius r in the plane has at

most two support lines.

(a) If Fn is overlapping, then it has at most two support lines. Fn has precisely two support

lines if and only if it lies entirely in a slab.

(b) If Fn is touching, then it has at most two support lines. Fn has precisely two support

lines if and only if it lies entirely in a slab.

(c) If Fn is disjoint, then it has at most two support lines. Fn has precisely two support

lines if and only if it lies entirely in a slab.

Proof of Theorem 2.13 Theorem 2.12 lists exhaustively the families with four members

supported by exactly two lines. Some of these families are extendable to a family with two

support lines, and if two lines support an extension of one of these families, then it lies in

a slab as we prove in the following.

Part (a) Overlapping F2 lies in a slab (compare Theorem 2.3, Part (a)). For n = 3, 4,

any overlapping Fn with two support lines lies in a slab by Theorem 2.6, Part (a), and

Theorem 2.12, Part (a), respectively. For n ≥ 5, suppose overlapping Fn with two support

lines does not lie entirely in a slab. If the disk Ci (i ∈ {3, 4, 5, . . . , n}) is not in the slab

with F2, then the subfamily {C1, C2, Ci} ⊂ Fn is not supported by two lines, and since Fn

contains this subfamily, it has at most one support line, a contradiction. To resolve the

contradiction, disk Ci (i ∈ {3, 4, 5, . . . , n}) must lie in the slab between the support lines

`1, `2 of F2, so that the entire famlily lies in the slab. Conversely, if overlapping Fn (n > 2)

lies in a slab, then it has precisely two support lines. Overlapping Fn (n ≥ 5) has two

support lines if and only if the family lies in a slab.
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Part (b) If F5 is touching, then it has a touching subfamily F4 where C1 touches C2.

If precisely two lines support F5, then at least two lines support F4. The two choices (up

to symmetries in the Klein four-group V ) for F4 ⊂ F5 are depicted in the two subfigures

of Figure 2.17 (Theorem 2.12, Part (b)). If we extend the family depicted in Figure 2.17a

to a family with five congruent members retaining its two support lines, then both of `1, `v

must support the adjoined disk C5. Since the two intersecting lines form exactly four

angular regions in the plane, each of which supports precisely one optimally placed distinct

congruent disk, the Dirichlet principle guarantees that a fifth disk placed optimally in one

of these angular regions coincides with one of the four original disks. The extension has at

most one common support line contradicting the claim F4 ⊂ F5 with two common supports.

Consider the family depicted in Figure 2.17b, which lies entirely in a slab. An extension

F5 of the family retains two support lines only if C5 is supported by both of `1, `2. This

entails that the disk lies in the slab with F4, so that F5 lies entirely in the slab. Since no

other construction results in a touching family F5 with two support lines, any touching F5

with two support lines lies in a slab.

Furthermore, if two lines support touching Fn (n > 5), then each of its touching sub-

families of size five necessarily lies in a slab. Since n > 5 the family Fn has at least six

subfamilies of size five. Suppose the distinct subfamilies H and H′ of size five are supported

by the respective pairs of lines `, `′ and m,m′. Since two lines support Fn, it has the support

property S, so that {`, `′} ∩ {m,m′} 6= ∅. If the lines are not identical, then precisely one

line supports Fn contrary to supposition. It follows that both subfamilies H and H′ lie in a

slab between a single pair of common support lines. This holds for every pair of subfamilies

of size 5 and it follows transitively that the entire family lies in a slab. Conversely, if Fn

(n ≥ 5) lies in a slab, then the family is supported by exactly two parallel support lines

since the disks are congruent and distinct. Any touching Fn (n ≥ 5) has precisely two

support lines if and only if the family lies entirely in a slab.
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Part (c) Let disjoint F4 ⊂ F5. If F5 has precisely two support lines, then F4 has

at least two common supports. The two choices (up to symmetries in V ) for F4 ⊂ F5

are depicted in Figures 2.18 and 2.19 (Theorem 2.12, Part (c)). If we adjoin a congruent

disk C5 to the family depicted in Figure 2.18, both of `1, `3 must support C5 to retain two

support lines. Since the intersecting lines `1, `3 form exactly four angular regions in the

plane, each of which supports precisely one of the optimally placed distinct congruent disks

of F4, the Dirichlet principle guarantees that a fifth disk placed optimally in one of these

angular regions coincides with one of the four original disks. It follows that any extension

F5 of the family has at most one common support contrary to supposition.

Consider the family depicted in Figure 2.19, which lies entirely in a slab supported by

both of `1, `2. In order for an extension F5 to have two support lines, both of `1, `2 must

support the adjoined disk C5. This places C5 in the slab containing F4, so that F5 lies

entirely in the slab. The remainder of the proof is identical to the last paragraph of the

preceding part, and we summarize it here: no other construction results in a disjoint F5

with two support lines, so any disjoint F5 with two support lines lies in a slab. If two lines

support disjoint Fn (n > 5), then each of its touching subfamilies of size five necessarily

lies in a slab. The family Fn has at least six subfamilies of size five. Any two subfamilies of

size five lie in a slab between a single pair of common support lines, otherwise only one line

supports Fn contrary to supposition. It follows transitively that the entire family lies in a

slab. Conversely, if Fn (n ≥ 5) lies in a slab, then the family is supported by exactly two

parallel support lines since the disks are congruent and distinct. Any disjoint Fn (n ≥ 5)

has precisely two support lines if and only if the family lies entirely in a slab.

We often have the explicit coordinates of the point where a support line contacts the

boundary of a disk. To describe an extension of a family of disks, it is often convenient to

calculate the image of a point reflected over a given support line. The following lemma,

whose proof immediately follows from standard facts of analytic geometry, provides this

result.
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Lemma 2.14. (a) Given a horizontal line {y = m}, and a point p (x0, y0), the image of its

reflection over the line is p′ (x′0, y
′
0) = p′ (x0, 2m− y0).

(b) Given a vertical line {x = c}, and a point p (x0, y0), the image of its reflection over the

line is p′ (x′0, y
′
0) = p′ (2c− x0, y0) .

(c) Given a line of direct variation {y = kx}, with k 6= 0, and a point p (x0, y0), the image

of its reflection over the line is p′ (x′0, y
′
0), where

x′0 =
2ky0 −

(
k2 − 1

)
x0

k2 + 1
and y′0 =

(
k2 − 1

)
y0 + 2kx0

k2 + 1
.

(d) Given a line {y = kx+m} with k 6= 0, and a point p (x0, y0), the image of its reflection

over the line is p′ (x0 − 2∆x, y0 − 2∆y), where

∆x =
k (kx0 − y0 +m)

k2 + 1
and −∆y =

kx0 − y0 +m

k2 + 1
.

2.6 First Helly-Type Theorem on Support Lines

This section is devoted to the proof of our first Helly-type result. It extends the assertion

of Theorem 1 from [23], proved there for the case of disjoint families.

Theorem 2.15. For any nonoverlapping family F of congruent disks in the plane, one has

S(4) =⇒ S.

Geometric Proof of Theorem 2.15. Assume, for contradiction, the existence of a nonover-

lapping family F of congruent disks in the plane, with the property S(4) but not the

property S. Necessarily, |F| ≥ 5. Since S(4) =⇒ S for any disjoint family of congruent

disks in the plane (see the paper [23]), it follows that the family F is touching. Let r denote

the common radius of the disks in F .
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Choose a touching pair of disks from F and denote them by C1 and C2. As established

above by convention, we assume that the disks C1 and C2 have their respective centers

o1 and o2 on the x-axis of the plane with respective coordinates (−r, 0) and (r, 0). As

established in Theorem 2.3, the subfamily {C1, C2} has precisely three support lines: two

of them are the horizontal lines `1, `2, given, respectively, by the equations y = ±r, and

the third is the vertical line `v, given by the equation x = 0 (see Figure 2.20). We let

L12 = {`1, `2, `v}.

ℓ1

C1

ℓ2

C2
x

ℓv

Figure 2.20: Touching family {C1, C2} and its three support lines.

With this notation, we prove the following auxiliary lemma.

Lemma 2.16. Every disk C ∈ F \ {C1, C2} is supported by at least two lines from the

family L12.

Proof. Assume for the moment the existence of a disk C ∈ F \{C1, C2} which is supported

by exactly one line, say `, from the family L12 (the existence of ` is guaranteed by the

property S(4)). Choose any other disk C ′ ∈ F \ {C1, C2, C} (this is possible since |F| ≥ 5).

By the condition S(4), a line `′ supports the family {C1, C2, C, C
′}. Because `′ supports

{C1, C2, C}, the choice of C implies that `′ = `. Since the disk C ′ was chosen arbitrarily in

F \ {C1, C2, C}, we conclude that ` is a common support line for the entire family F . The

latter contradicts the assumption on F .
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We continue with the proof of Theorem 2.15. The assumption that F does not have

the property S implies that no line from the family L12 supports F . Denote by C3, C4,

and C5 the disks from F which are not supported by the lines `1, `2, and `v, respectively.

We observe that the disks C3, C4, and C5 are pairwise distinct. Indeed, if, for instance,

C3 = C4, then `v would be the only line from L12 which supports C3. The latter contradicts

Lemma 2.16.

Hence each of the disks C3, C4, C5 is supported by precisely two lines from L12, and no

line from L12 supports {C3, C4, C5}. Renumbering, if necessary, the disks C3, C4, C5, we

obtain the only possible configuration of disks from F and lines from L12:

1. `1 supports {C1, C2, C4, C5}

2. `2 supports {C1, C2, C3, C5}

3. `v supports {C1, C2, C3, C4}

Analysis of this configuration shows that C5 is supported by the lines `1 and `2, and

thus is contained in the slab between these lines, which is the union of regions 3 and 4 in

Figure 2.21. Similarly, C4 is supported by the lines `1 and `v (but not by `2), and thus is

contained in the corner of one of the regions 1 and 2 in Figure 2.21. Finally, C3 is supported

by the lines `2 and `v (but not by `1), and thus is contained in the corner of one of the

regions 5 and 6 in Figure 2.21.

A straightforward geometric argument shows that the family {C1, C3, C4, C5} has no

common support line, in contradiction with the assumption that F has the property S(4).

The obtained contradiction shows that F has the property S.

Combinatorial Proof of Theorem 2.15. Since F is touching, its tangent subfamily F2 =

{C1, C2} has supports L12 = {`1, `2, `v}. If F has S(4) and not S, then at least two lines in

L12 support each disk Ck ∈ F (k ≥ 3). If a single line ` ∈ L12 supports a particular disk Ck

(k ≥ 3), then a line supports each of {C1, C2, Ck, C4}, {C1, C2, Ck, C5}, . . . , {C1, C2, Ck, Cn}

consistent with S(4) since |F| = n ≥ 5. Since ` alone supports {C1, C2, Ck}, it necessarily

46



supports the union of the listed families which is {C1, C2, C3, C4, C5, . . . , Cn} = F , a con-

tradiction. So at least two lines in L12 support each disk Ck ∈ F (k ≥ 3). We prove the

following lemma before concluding the proof.

Lemma 2.17. If a finite touching family F of congruent disks in the plane of size |F| ≥ 5

has property S(4), then a line supports each subfamily {C1, C2, C3, C4, Ck} (k ≥ 5).

Proof. We repeat Figure 2.7 as Figure 2.21 below. The family F has property S(4), and

1 2

3 4

5 6

C1 C2

ℓ1

ℓ2

ℓv

Figure 2.21: Originally Figure 2.7.

from the paragraph preceding this lemma, two lines in L12 = {`1, `2, `v} necessarily support

each of the disks C3, C4 and each Ck ∈ F for each fixed k ≥ 5. Precisely one arrangement

of the supports in L12 avoids the property S(5) for each subfamily F4 ∪ {Ck} = Gk ⊂ F

(k ≥ 5). Combinatorially, to avoid S(5) we assign two distinct labels from the multi-

set {`1, `2, `1, `v, `2, `v} to each of the three disks, stipulating up to labels that both of

`1, `2 support C3 (in the slab), both of `1, `v support C4, and both of `2, `v support Ck

(with k fixed) (see Figure 2.21). Since `v is disjoint from C3, no line supports one of

{C1, C3, C4, Ck}, {C2, C3, C4, Ck}, a contradiction. To avoid contradiction, one of the la-

bels necessarily appears with higher frequency in the multiset. Up to labels, replacing one

copy of `v with `1 yields {`1, `2, `1, `v, `2, `1} = {`1, `1, `1} t {`2, `v, `2} and by the Dirichlet
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principle, line `1 supports {C3, C4, Ck}, so that necessarily a line supports each subfamily

{C1, C2, C3, C4, Ck} ⊂ F (k ≥ 5).

We conclude the proof, assuming that the family F does not have property S. As

established in the preceding, since at least two lines in L12 support each disk Ck ∈ F (k ≥ 3),

the subfamily F4 ⊂ F necessarily has two support lines. According to Theorem 2.12,

Part (b), either F4 lies in a slab as in Subfigure 2.17b, or it has the square configuration

shown in Subfigure 2.17a.

If F4 ⊂ F lies in a slab, then at least one of `1, `2 supports each disk C,D ∈ F by

Lemma 2.17. If precisely one of `1, `2 supports one of C,D ∈ F , then a line supports each

disk of F by the argument given in the paragraph preceding Lemma 2.17. Otherwise both

of `1, `2 support both of C,D, and the family has property S (compare Figure 2.21 and

Subfigure 2.17b).

If F4 ⊂ F has the square configuration depicted in Subfigure 2.17a, the two supports

of F4 are `1, `v ∈ L12. At least one of `1, `v supports each disk C,D ∈ F by Lemma 2.17,

and it is impossible for both of `1, `v to support disk C in any position, so that precisely

one of `1, `v supports it. It follows from the argument given in the paragraph preceding

Lemma 2.17 that the family F has property S.
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Chapter 3: Nonoverlapping Critical Families of Four

Congruent Disks

We rely on the following definitions.

Definition 3.1. A nonoverlapping (touching, disjoint) family F of congruent disks in the

plane with the property S (3) but not S (4) is called critical .

Any critical family F necessarily has a minimum of four members.

Remark 3.2. As noted earlier, the subfamily {C1, C2} together with its family of support

lines L12 = {`1, `2, `v} has the symmetries in the Klein four-group V which consist of

reflection over line `v, reflection over the x-axis, rotation of 180◦ about the origin, and

identity symmetry. Since the condition on support lines of critical families prohibits a

line from supporting the entire family, adjoining additional disks cannot result in a family

with the symmetries of the square, since this constraint implicitly prevents 90◦ rotational

symmetry. Furthermore, it is impossible for any family to develop an additional line of

symmetry through the origin since that line of symmetry would cut each disk C1, C2 and each

adjoined disk is nonoverlapping. For this reason, we do not need to concern ourselves with

the symmetries represented by the various dihedral groups. Restricting to the symmetries in

the Klein four-group V is sufficient to determine whether any two touching critical families

F4 containing the touching subfamily {C1, C2} are distinct.

This chapter is devoted to the description of nonoverlapping critical families F4 of

congruent disks in the plane of positive radius r. In particular, we retain the use of the

parameter r with the understanding that a generalization of this method to disks with two

or more distinct radii would require a similar explicit parametrization. Since the case of

disjoint families F4 is studied in the paper of Soltan [23], it remains to consider the case
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of touching families F4. We first describe all combinatorially distinct families F4 with the

property that no three disks from F4 have their centers on a line (Section 3.1). We then

describe all combinatorially distinct families F4 with the property that three disks from F4

have their centers on a line (Section 3.2).

We need some definitions and terminology. Given a critical family F4, we will say that

a line supporting at least three disks is a critical support line or a critical support of the

family. A subfamily of size three of a critical family is a critical subfamily. These definitions

are meaningful since if a single subfamily of size three of F4 is not supported, then the family

is not critical; whereas, it is not necessary that every subfamily of size three have a distinct

support line. For critical subfamilies of size k > 3, we will say critical subfamily of size k

or critical subfamily Fk. The expressions critical subfamily of size 3 and critical subfamily

are interchangeable.

A non-horizontal definite critical support line of a family of congruent disks either sup-

ports the disks on the left or on the right, while a horizontal definite critical support line

of the family either supports the disks from above or from below. A non-horizontal line

that supports a subfamily {Ci, Cj} (i < j) on the left (respectively, on the right) will be

denoted `def ijL (respectively, `def ijR). If a separating support of {Ci, Cj} (i < j) meets Ci

on the left and Cj on the right then it will be denoted `sepijLR. Similarly, a separating

support of {Ci, Cj} (i < j) which meets Ci on the right and Cj on the left will be denoted

`sepijRL. A class of configurations can be explicitly characterized where this labeling scheme

is potentially ambiguous, and in the few places where those configurations arise in this text

their descriptions are elaborated for clarity.

3.1 Touching Critical Families F4 Avoiding Three Disks in a

Slab

In what follows, we assume that no three disks of the touching critical family F4 have their

centers on a line. For a touching family F4 = {C1, C2, C3, C4} we adhere to the convention
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that disks C1 and C2 have their respective centers o1 (−r, 0) and o2 (r, 0) on the x-axis of the

plane and they share a common point at the origin o (0, 0). The vertical line `v through the

origin is the only common support of C1 and C2 that separates the disks, and the remaining

supports are the horizontal lines `1 and `2 given by the equations y = ±r (see Figure 3.1).

ℓ1

C1

ℓ2

C2
x

ℓv

Figure 3.1: Touching family {C1, C2} and its set of supports L12 = {`1, `2, `v}.

Consequently, neither of C3, C4 lies between `1 and `2 supported by both lines. And

since F4 is critical neither of `1, `2 supports both C3 and C4. By symmetries in the Klein

four-group V , we may assume that either `1 or `v supports C3 and that its center o3(γ, y3)

has parameter γ ≥ 0.

We organize our description of the touching critical families F4 by the magnitude of the

parameter γ. For γ small (0 ≤ γ < r), line `1 necessarily supports {C1, C2, C3}. When

γ = r, line `v necessarily supports C3 . When γ > r, line `1 necessarily supports C3. We

document all touching critical families F4 avoiding three disks in a slab with γ in the three

respective ranges 0 ≤ γ < r, the assignment γ = r, and γ > r.

3.1.1 Case 1: 0 ≤ γ < r

With γ in this range, `1 necessarily supports C3. Since F4 is critical, a line supports

{C1, C2, C4}, so that one of `2, `v necessarily supports C4.
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a). We begin by documenting critical families where line `2 supports disk C4, which

avoids support from line `v. These configurations are documented in Lemmas 3.3 and 3.4.

A line must support subfamily {C1, C3, C4}, which requires that a support of {C1, C3}

supports C4. The subfamily {C1, C3} is disjoint since line `1 separates C1 from C3 and

γ 6= −r. By Theorem 2.3, Part (c), this subfamily has two definite and two separating

supports which are listed in the set

L13 = {`def13L, `def13R, `sep13LR = `1, `sep13RL}.

Since line `1 is disjoint from C4, three candidate lines remain. In the following lemma line

`def13L supports C4.

Lemma 3.3. If `2 supports C4, and C3 has center o3(γ, 2r) with γ = (r/3) ·
(
9− 4

√
3
)
,

then the touching family F4 is critical. Furthermore, the left definite support `def13L of

{C1, C3} supports C4 on the right (from below), and the separating support `sep23LR of

{C2, C3} supports C4 on the left (from above). Furthermore, γ < r and C4 avoids `v.

Proof. Let δ = r so that {C1, C2} is a touching subfamily. Let 0 ≤ γ < r, so that `1

necessarily supports C3 and consequently {C1, C2, C3}. Since C4 avoids support from `v

by supposition, line `2 necessarily supports it, and consequently {C1, C2, C4}. Let `def13L

support C4, and consequently {C1, C3, C4}. Since γ is nonnegative, disk C4 has center

o4(x4,−2r) with x4 < 0.

Explicitly, line `def13L is parallel to 〈o1, o3〉 with slope 2r/(γ+r). Since this line supports

C1, applying Lemma 2.5 to calculate the distance d (`def13L(x)− y = 0, o1 (−r, 0)) leads to

the following:

d

(
2rx

γ + r
− y +m = 0, (−r, 0)

)
= r ⇐⇒

∣∣∣∣2r · (−r)γ + r
− (0) +m

∣∣∣∣ = r

√(
2r

γ + r

)2

+ (−1)2
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Since the expression `def13L (−r) = −2r2/(γ + r) + m > 0 is positive by construction (see

Figure 3.2), we lift the absolute value and solve for m to derive the following equation:

`def13L(x) =
2rx

γ + r
+
r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

Since F4 avoids three disks in a slab, line `def13L separates C4 from {C1, C3}, necessarily

supporting C4 on the right (from below) at a distance r to the point o4 (x4,−2r). Applying

Lemma 2.5 to line `def13L and point o4 yields the following equation:

∣∣∣∣∣ 2r

γ + r
(x4)− (1)(−2r) +

r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

∣∣∣∣∣ = r

√
4r2 + (γ + r)2

γ + r

Since the point (x4, `def13L (x4)) lies on the line (see Figure 3.2), the facts |`def13L (x4)| > 2r

and `def13L (x4) < 0 together imply

|`def13L (x4)| − 2r = −`def13L (x4)− 2r > 0

is equivalent to |`def13L (x4) + 2r|. This leads to the expression

x4 = −
(
γ + 2r +

√
5r2 + 2rγ + γ2

)
,

which guarantees `def13L supports {C1, C3, C4}.

To ensure property S (3), a line necessarily supports {C2, C3, C4}. This line must be

the separating support `sep23LR of {C2, C3} since `1 (its associated separating support) and

the definite supports of {C2, C3} are disjoint from C4 whenever `def13L supports C4 on the

right (see Figure 3.2). The line `sep23LR either supports C4 on the left or on the right.

In Lemma 3.4 below, we describe the configuration with support on the right. Here, we

describe the family in which `sep23LR supports C4 on the left.
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o1 o2

ℓdef13L

ℓsep23LR

o3

o4

ℓ1

ℓ2

Figure 3.2: Touching critical F4 with r = 1 and γ = (1/3) ·
(
9− 4

√
3
)
≈ 0.6906. Line

`sep23LR supports C4 on the left.

Let `sep23LR support C4 on the left, so that it is also a definite support of {C2, C4}

parallel to 〈o2, o4〉 which has the following slope:

ksep23LR =
0− (−2r)

r −
[
−
(
γ + 2r +

√
4r2 + γ2 + 2rγ + r2

)] =
2r

γ + 3r +
√

5r2 + 2rγ + γ2

We derive an expression for the slope of this line by a second method. Observe that line

`sep23LR contains the midpoint ((γ + r)/2, r) of segment [o2, o3] by symmetry. Applying

Lemma 2.5 to line `sep23LR with slope k and the point o2 yields the following equivalence:

d

(
kx− y − kγ + r

2
+ r = 0, (r, 0)

)
= r ⇐⇒

∣∣∣∣kr − 1 · (0)− kγ + r

2
+ r

∣∣∣∣ = r
√
k2 + 1

Since `sep23LR(r) > 0, we lift the absolute value and solve to derive the expression k for its

slope. Equating the two expressions ksep23LR = k, as in

2r

γ + 3r +
√

4r2 + γ2 + 2rγ + r2
=

4r(r − γ)

3r2 + 2rγ − γ2
,
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leads to the following equation in the indeterminate γ with parameter r:

(3)γ4 − (12r)γ3 − (11r2)γ2 + (4r3)γ + 11r4 = 0

In terms of r, the affiliated real root is given by nonnegative γ =
r

3

(
9− 4

√
3
)

where γ < r

since
(
9− 4

√
3
)
< 3. With δ = r > 0, the subfamily {C1, C2} is touching, and with γ as

given above, the touching family F4 is critical.

Lemma 3.4. If γ = (r/3) · (β+ + β− − 1) with β± = 3
√

2
3
√

13± 3
√

33, then the touch-

ing family F4 is critical. Furthermore, the left definite support `def13L of {C1, C3} and

the separating support `sep23LR of {C2, C3} both support C4 on the right (from below).

Additionally, γ < r and C4 avoids `v.

Proof. Suppose F4 has property S (3) and γ is nonnegative. Let the left definite support

`def13L of {C1, C3} support C4 and consequently {C1, C3, C4}. The equation of this line

derived in Lemma 3.3 is reproduced here:

`def13L(x) =
2r

γ + r
x+

r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

As documented in Lemma 3.3, the following expression for the parameter x4 guarantees

that `def13L supports C4 on the right:

x4 = −
(
γ + 2r +

√
5r2 + 2rγ + γ2

)

As discussed in Lemma 3.3, a line supports {C2, C3, C4} only if `sep23LR supports C4.

If `sep23LR supports C4 on the right, then it is a definite support of {C3, C4}, parallel to
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ℓ1

ℓ2

Figure 3.3: Touching critical family F4 with r = 1 and γ ≈ 0.2956. Line `sep23LR supports
C4 on the right.

〈o3, o4〉, with slope

ksep23LR =
4r

2γ + 2r +
√

5r2 + 2rγ + γ2
.

We obtain a second expression k for the slope of `sep23LR. Since the line contains the

midpoint ((γ + r)/2, r) of [o2, o3], and passes at a distance r to the point o2 (r, 0), applying

Lemma 2.5 to line `sep23LR and the point o2 yields the following string of equivalences:

d

(
kx− y − γ + r

2
k + r = 0, o2 (r, 0)

)
= r ⇐⇒

∣∣∣∣k(r)− 1 · (0)− γ + r

2
k + r

∣∣∣∣ = r
√
k2 + 1

⇐⇒ k(r)− γ + r

2
k + r = r

√
k2 + 1

Since `sep23LR (r) > 0 (see Figure 3.3), we lift the absolute value to solve for k. Equating

the two expressions for the slope ksep23LR = k, as in

4r

2γ + 2r +
√

5r2 + 2rγ + γ2
=

4r(r − γ)

3r2 + 2rγ − γ2
,
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leads to the following equation in the indeterminate γ parameterized by r:

γ3 + (r)γ2 + (3r2)γ − r3 = 0

In terms of r, the nonnegative real root is given by

γ =
r

3

(
β+ + β− − 1

)
,

with β± = 3
√

2
3
√

13± 3
√

33. Since β++β−−1 < 3, the bound γ < r holds. With δ = r > 0,

and γ equal to the value derived above, the touching family as described is critical.

b). Lemmas 3.3 and 3.4 account for the touching critical families F4, where both `2 and

`def13L support C4, and C4 avoids support from `v. We now show that no further critical

families (γ < r) avoid three disks in a slab where C4 avoids support from `v. Recall that the

lines in L13 comprise the supports of {C1, C3}. Of these supports, line `1 is disjoint from C4

by the definition of critical family, and the two preceding lemmas exhaust the configurations

where line `def13L supports C4.

We proceed with the two remaining supports `def13R, `sep13RL of L13 in order. In the

following, we describe each relevant critical configuration of disks and support lines, and

explicitly show that each one is not geometrically realizable.

In no touching critical F4 that avoids three disks in a slab do both of `2, `def13R support

C4 with y4 = −2r. If `def13R supports C4 it necessarily separates C4 from {C1, C3} to avoid

three disks in a slab, supporting C4 on the left. A line in

L23 = {`def23L, `def23R, `sep23LR, `sep23RL = `1}

necessarily supports {C2, C3, C4} (compare Figure 3.4). Of these lines, line `1 is disjoint

from C4, and the definite supports of {C2, C3} do not support C4: by symmetry, the

supports `def13R, `def23L of C3 support both of C3, C4 if and only if `def13R supports C4
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o3

o4
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Figure 3.4: The depicted family F4 with γ < r is not critical.

on the left and their point of intersection p lies on the line {y = 0}. With γ < r, line

`def23L has negative slope and cuts C1, exiting its boundary ∂C1 below the line {y = 0}

since C1, C2 are touching. Since the support `def13R also meets ∂C1 below the line {y = 0},

the supports `def13R, `def23L of C3 necessarily intersect at a point p below the x-axis. Since

`def13R supports C4 on the left and p lies below the x-axis, the line `def23L necessarily cuts

C4.

Furthermore, since `def23L cuts C4, the parallel definite support `def23R is disjoint from

C4 by symmetry (compare Figure 3.4). Finally, line `sep23LR (6= `1) is disjoint from C4:

rotate line `def13R, which supports C4 and cuts C2, clockwise away from C4 dynamically

maintaining contact with the boundary of C3 until it supports C2 on the left in the position

of support `sep23LR disjoint from C4. No line supports the subfamily.

In no touching critical family F4 that avoids three disks in a slab does `2 support C4 with

y4 = −2r, and line `sep13RL (negative slope) support C4 on the right. Since F4 is critical,

a line supports {C2, C3, C4}. Line `def23L cuts C4: rotate line `sep13RL, which supports C4

(and cuts C2), clockwise into C4 dynamically maintaining contact with the boundary of C3

until it supports C2 on the left. This line is in the position of support `def23L and it cuts C4

for γ < r. Since the disk has radius r, the parallel right definite support `def23R of {C2, C3}
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is disjoint from C4. By symmetry, the supports `sep13RL and `sep23LR (positive slope) of C3

support both of C3, C4 if and only if `sep13RL supports C4 on the right and their point of

intersection p lies on the x-axis (so that `sep23LR supports C4 on the left). Line `sep13RL

(negative slope) meets the boundary ∂C1 of C1 above the x-axis, and line `sep23LR (positive

slope) meets the boundary ∂C2 of C2 above the x-axis, so these two lines meet at a point p

above the x-axis, exterior to both of C1, C2. Since `sep13RL supports C4 on the right and p

lies above the x-axis, the line `sep23LR is disjoint from C4. No line supports the subfamily.

In no touching critical family F4 that avoids three disks in a slab does `sep13RL support

C4 on the left, and line `2 support C4 with y4 = −2r. If `sep13RL supports C4 on the left,

then x4 > r: in the limit γ → r, the line `sep13RL → `v, and `v supports C4 on the left if

and only if x4 = r. Perturbing disk C3 from this position a positive distance ε > 0 so that

γ = r − ε < r induces a negative slope in line `sep13RL which then cuts any congruent disk

with center o(r,−2r), forcing x4 > r since y3 = −2r. Consequently C4 avoids `v. Since F4

is critical, a line in L23 supports {C2, C3, C4}. The left definite support `def23L of {C2, C3}

is disjoint from C4 by construction since it lies to the left of `sep13RL below `2.

Continuing with this configuration (lines `2, `sep13RL support C4), line `def23R cuts C4

whenever 0 ≤ γ < r: suppose γ > 0 and `def23R supports C4. Line `def23R supports C4 on

the right precisely when γ = r which is not permitted, so the line necessarily supports C4

on the left. Reflecting the family over the vertical line `v (a symmetry in V ) preserves the

labels on C3, C4, interchanges C1 with C2, and reverses left-right orientation. So the critical

supports that support C4 on the left map to `sep13RL 7→ `sep23LR and `def23R 7→ `def13L both

of which support C4 on the right. The family coincides with the configuration documented

in Lemma 3.4 with γ > 0. Since this is the unique family with this configuration of supports,

it follows that the family where `sep13RL and `def23R support C4 on the left (by reflection

over line `v) is critical only if γ < 0, a contradiction. As a consequence, whenever 0 ≤ γ < r,

line `def23R cuts C4. Finally, in the slightly expanded range −r < γ ≤ r the line `sep23LR

(with nonnegative slope) never enters the cone in the fourth quadrant determined by `2 and
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`v, and is therefore necessarily disjoint from C4 in the restricted range 0 ≤ γ < r. No line

supports {C2, C3, C4}.

The preceding arguments exhaust the critical configurations for touching families F4

avoiding three disks in a slab, in which C4 is not supported by `v.

c). We proceed documenting critical families F4 avoiding three disks in a slab, where

`1 supports C3 with center o3(γ, 2r) (nonnegative γ < r). In the following, we lift the

restriction on `v and require C4 to have its center in {o4(±r, y4)} so that `v supports

C4 and consequently {C1, C2, C4}. We place no restrictions on support from `2, so that

y4 = ±2r is permitted and the bound |y4| ≥ 2r ensues since F4 is nonoverlapping. Line

`1 ∈ L13 is not permitted to support {C1, C3, C4}.

If y4 ≤ −2r, then the left definite support `def13L of {C1, C3} is disjoint from C4: line

`def13L, which has positive slope and supports C1 on the left, is disjoint from disk C4 which

lies directly below C1 supported by `v. In no critical family F4 does `def13L support C4

with y4 < 0. In the following lemma, we document the touching critical family F4, where

line `def13L supports C4 on the right and y4 > 0.

Lemma 3.5. Let δ = x4 = r, and let `1 support C3 with center o3(γ, 2r). If nonnegative

γ < r is a real solution of the equation

γ4 − (4r)γ3 +
(
9r2
)
γ2 −

(
14r3

)
γ + 4r4 = 0,

then the touching family F4 is critical. Furthermore, the left definite support `def13L of

{C1, C3} supports C4 on the right (from below), and the right definite support `def23R of

{C2, C3} supports C4 on the left (from below).

Proof. Let `1 support {C1, C2, C3} which then supports C3 with center o3(γ, 2r) where

0 ≤ γ < r. Let δ = x4 = r, so that `v supports {C1, C2, C4}. Let `def13L support

{C1, C3, C4}, separating C4 from {C1, C3} to avoid three disks in a slab. An equation for
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line `def13L is derived in the preceding lemma, and we reproduce it here:

`def13L(x) =
2r

γ + r
x+

r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

Since y4 < 0 implies C4 is disjoint from the line, we must have y4 > 0, and consequently

`def13L supports C4 from below (on the right). Applying Lemma 2.5 to calculate the distance

d (`def13L(x)− y = 0, o4(r, y4)) = r

yields the following equation:

∣∣∣∣∣ 2r

γ + r
(r) + (−1)(y4) +

r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

∣∣∣∣∣ = r

√(
2r

γ + r

)2

+ (−1)2

Here, since `def13L(r) < y4, we evaluate the norm using the inequality y4 − `def13L(r) > 0,

and simplify to obtain

y4 =
4r2 + 2r

√
5r2 + 2rγ + γ2

γ + r
.

A line must support {C2, C3, C4}. The left definite support `def23L of {C2, C3} is disjoint

from C4 since it avoids the first quadrant. The separating support `sep23LR ( 6= `v) of

{C2, C3} is disjoint from C4: rotate `def13R, which is disjoint from C4 and cuts C2, clockwise

away from C4 a positive magnitude, dynamically maintaining contact with the boundary

of C3 until it supports C2. The resulting line, in the position of `sep23LR, remains disjoint

from C4.

Finally, line `def23R necessarily supports C4, on the left in order to avoid three disks in

a slab and the support property S. Line `def23R is parallel to 〈o2, o3〉 with slope −2r/(r −

γ) and we denote its y-intercept by m. Applying Lemma 2.5 to calculate the distance
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d (`def23R(x)− y = 0, o2 (r, 0)) = r yields the following equation:

∣∣∣∣ −2r

r − γ
(r) + (−1)(0) +m

∣∣∣∣ = r

√(
−2r

r − γ

)2

+ 1

Since `def23R(r) > 0, we lift the absolute value to solve for the intercept m > 0 (see

Figure 3.5), which corresponds to the positive branch of the solution, and an equation for

the line follows:

`def23R(x) = − 2r

r − γ
x+

2r2 + r
√

5r2 − 2rγ + γ2

r − γ

o1 o2

ℓdef13L

ℓdef23R

o3

o4

ℓ1

ℓ2

Figure 3.5: Touching critical family F4 with r = 1 and γ ≈ 0.3551. Line `def23R supports
C4 on the left.
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Since the line supports {C2, C3, C4}, Lemma 2.5 provides the following equation for the

distance d (`def23R(x)− y = 0, o4(r, y4)) = r:

∣∣∣∣∣ −2r

r − γ
(r)− 4r2 + 2r

√
5r2 + 2rγ + γ2

γ + r
+

2r2 + r
√
r2 − 2rγ + γ2

r − γ

∣∣∣∣∣ = r

√(
−2r

r − γ

)2

+ (−1)2

Since `def23R(r) < y4, we evaluate the norm with y4− `def23R(r) > 0, and simplify to arrive

at the following equation in γ with parameter r, which determines the critical family:

(γ + r)2
(
γ4 − (4r)γ3 +

(
9r2
)
γ2 −

(
14r3

)
γ + 4r4

)
= 0

Since the fourth degree polynomial above evaluated at γ = 0 yields 4r4 and evaluated at

γ = r yields −4r4, the intermediate value theorem guarantees a solution 0 < γ < r which

places the family in the critical configuration described.

We recall that the lines in L13 = {`def13L, `def13R, `sep13LR = `1, `sep13RL} comprise the

supports of {C1, C3}. The preceding lemma describes critical families F4 where `1 supports

C3 and both of `def13L, `v support C4. Since line `1 supports C3, it is disjoint from C4. We

show that the remaining supports in L13 do not induce any further critical families F4 that

are geometrically realizable.

In no touching critical family F4 that avoids three disks in a slab do both of `v, `def13L

support C4 with center o4(−r, y4). Since line `def13L is disjoint from C4 whenever it lies

below the x-axis with x4 = −r, this forces C4 into the second quadrant with y4 > 0. A line

must support {C2, C3, C4}. To avoid three disks in a slab, any definite support in L23 must

separate C4 from the subfamily. Line `def23L supports C4 on the right only if γ = r, which

is beyond the bound given. Since line `def13L supports C4 with x4 = −r, this forces the

center of C4 below the line {y = 4r}, so that the definite support `def23R cannot support

C4 on the left. Line `sep23LR (6= `1) is disjoint from C4 since it does not enter the cone

bounded by `1 and `v. No critical configuration is possible.
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In no touching critical family F4 with γ small (γ < r so `1 supports C3) do both of

`v, `def13R support C4 with center o4(±r, y4). The line `def13R must support C4 on the left

to avoid three disks in a slab. If y4 > 0 then C4 with x4 = −r is disjoint from the line (for

all γ ≥ 0). If x4 = r (with y4 > 0), then `def13R supports C4 on the left precisely when

γ = −r (and not when γ > 0). The alternative, y4 < 0, requires y4 ≤ −2r since F4 is

nonoverlapping. If x4 = r, then `def13R is disjoint from C4 since it doesn’t enter the cone

bounded by `2 and `v.

Finally, if x4 = −r (with y4 ≤ −2r), it is possible for `def13R to support C4 on the left.

A line must support {C2, C3, C4}. Both definite supports of {C2, C3} have negative slope

(since γ < r) and are disjoint from the cone bounded by `2 and `v that contains C4. The

remaining support `sep23LR (6= `v) is disjoint from C4: rotate `def13R, which supports C4

and cuts C2, clockwise a positive magnitude away from C4 dynamically maintaining contact

with the boundary of C3 until it supports C2 on the left. This line, disjoint from C4, is in

the position of `sep23LR. No critical family fits this description.

In no touching critical family F4 where γ is small (γ < r) do both of `v, `sep13RL support

C4 with center o4(±r, y4). If either y4 > 0 and x4 = r, or alternatively if y4 < 0 and x4 = −r,

then the line `sep13RL (negative slope) is disjoint from the respective cone containing C4

(bounded respectively by `1, `v or `2, `v). If x4 = −r and y4 > 0, then support on the

left is possible. A line must support {C2, C3, C4}. Line `def23L necessarily cuts C4: rotate

`sep13RL, which supports C4, clockwise into C4 dynamically maintaining contact with the

boundary of C3 until it supports C2. This line is in the position of `def23L and necessarily

cuts C4 (since γ < r). By symmetry, line `def23R (parallel at a distance 2r) is disjoint from

C4. The separating support (6= `1) of {C2, C3} has positive slope and is disjoint from the

cone bounded by `1, `v that contains C4. The family is not geometrically realizable.

Similarly, if x4 = r and y4 < 0, then `sep13RL (for a restricted range of γ) supports C4

on the right. In this position, the left definite support `def23L, which separates {C2, C3}

from {C4}, necessarily cuts C4: rotate `sep13RL, which supports C4 and cuts C2, clockwise
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into C4 dynamically maintaining contact with the boundary of C3, until it supports C2 (on

the left). The line is in the position of `def23L and necessarily cuts C4 (since it has negative

slope for γ < r). Since `def23L cuts C4, the parallel support `def23R is disjoint from C4 by

symmetry. Finally, line `sep23LR (positive slope) is disjoint from the cone containing C4. No

critical family fits this description.

3.1.2 Case 2: γ = r

When γ = r, line `v necessarily supports C3 and though `1 is permitted to support it, no

critical family has this configuration of supports: if both `1, `v support C3, then disk C3

has center o3(r, 2r), and the touching subfamily {C2, C3} has precisely three support lines

two of which coincide with `1, `v. Line `2 must support {C1, C2, C4} to secure S(3) and

avoid S(4) = S, and the vertical line `def23R must support {C2, C3, C4} since lines `1, `v

are not permitted to support C4. This forces C4 to have center o4(3r,−2r), and inspection

confirms that no line in L13 supports subfamily {C1, C3, C4} with C4 in this position.

Since F4 is nonoverlapping, the bound |y3| ≥ 2r holds. By reflection symmetry over the

x-axis (in the Klein four-group V ) any configuration with y3 ≤ −2r maps to an equivalent

one with y3 ≥ 2r, so we stipulate that y3 ≥ 2r. By the argument given above, no critical

family avoids three disks in a slab where C3 has center o3(r, 2r). We proceed with critical

families where C3 has center o3(r, y3) with y3 > 2r so that `v supports C3 and `1 may

support C4. One of `1, `2 must support C4. The critical families with γ = r where line `1

supports C4 are described in Lemmas 3.8 through 3.15. We proceed with the configuration

where both of `2, `def13L support C4 so that C4 has center o4(x4,−2r). In the following

lemma with parameter γ = r, the family avoids three disks in a slab, line `2 supports C4,

and line `def13L supports C4 on the right.
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Lemma 3.6. Let δ = r, coordinate y4 = −2r, and C3 have center o3(r, y3). If y3 > 2r is a

real solution of the equation

(3)y43 + (4r)y33 −
(
20r2

)
y23 +

(
32r3

)
y3 − 128r4 = 0,

then the touching family F4 is critical. Furthermore, the left definite support `def13L of

{C1, C3} and the separating support `sep23LR of {C2, C3} both support C4 on the right.

Proof. Let δ = r = γ, so that `v supports C3, and consequently {C1, C2, C3}. Let C3

have center o3(r, y3) where we stipulate that y3 > 2r. Let `def13L support C4 on the

right so that it is parallel to 〈o1, o3〉 with slope y3/2r. Denote its y-intercept by m,

and observe that this line supports C1. Applying Lemma 2.5 to calculate the distance

d (`def13L(x)− y = 0, o1(−r, 0)) = r leads to the following equation:

∣∣∣y3
2r

(−r) + (−1)(0) +m
∣∣∣ = r

√(y3
2r

)2
+ (−1)2

By construction y3,m > 0 (compare Figure 3.6). Furthermore, m = y3 implies line `def13L

is a vertical support of C3, so m > y3 >
y3
2
> 0 which allows us to lift the norm and derive

`def13L(x) =
y3
2r
x+

√
y23 + 4r2 + y3

2
.

Applying Lemma 2.5 to calculate the distance d (`def13L(x)− y = 0, o4(x4,−2r)) = r yields

the following equation:

∣∣∣∣∣y32r
x4 + (−1)(−2r) +

√
y23 + 4r2 + y3

2

∣∣∣∣∣ = r

√(y3
2r

)2
+ (−1)2
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Since `def13L(x4) < −3r, we have −(`def13L(x4) + 2r) > 0, which provides the following

expression for x4 consistent with support from this line:

x4 = −2r

y3

(√
y23 + 4r2 +

y3
2

+ 2r

)

o1 o2

ℓdef13L

ℓsep23LR

o3

o4

ℓ1

ℓ2

Figure 3.6: Touching critical family F4 with r = γ = 1 and coordinates x4 ≈ −5.1984 and
y3 ≈ 2.4648. Line `sep23LR supports C4 on the right.

A line must support {C2, C3, C4}. Since x4 < −4 by construction, both definite supports

of {C2, C3} are disjoint from C4 (observe that `def23L = `v). So, the separating support

`sep23LR (with positive slope) must support C4. The line supports C4 on the left or on the

right. In Lemma 3.7 below, we describe the family with support on the left.

Let `sep23LR support C4 on the right. This line contains the midpoint (r, y3/2) of the

interval [o2, o3], and the resulting expression for its slope as a definite support of {C3, C4}
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leads to the following equation for the line:

`sep23LR(x) =
2y3(y3 + 2r)

4ry3 + 8r2 + 4r
√
y23 + 4r2

(x− r) +
y3
2

Applying Lemma 2.5 to line `sep23LR with slope k and the point o4(x4,−2r) leads to the

following equation:

2r

y3

(√
y23 + 4r2 +

y3
2

+ 2r

)
k − 2r + kr − y3

2
= r
√
k2 + 1

Substituting the expression for the slope of line `sep23LR from its equation above in place of

the parameter k in the equation given directly above and rewriting leads to the following

equation in the indeterminate y3 parameterized by r:

(y3 + 2r)2
(
(3)y43 + (4r)y33 −

(
20r2

)
y23 +

(
32r3

)
y3 − 128r4

)
= 0

Since the fourth degree polynomial evaluated at y3 = 2r yields 64r4 and evaluated at y3 = 3r

yields −139r4, the intermediate value theorem guarantees a solution 2r < y3 < 3r which

places the family in the critical configuration described.

Lemma 3.7. Let δ = r, disk C4 have center o4(x4,−2r), and C3 have center o3(r, y3). If

y3 > 2r is a positive real solution of the equation

(2)y33 + (7r)y23 −
(
8r2
)
y3 − 32r3 = 0,

then the touching family F4 is critical. Furthermore, the left definite support `def13L of

{C1, C3} supports C4 on the right and the separating support `sep23LR of {C2, C3} supports

C4 on the left.
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Proof. Let δ = γ = r and let y3 > 2r so that C3 with center o3(r, y3) is disjoint from `1.

Let `def13L of L13 support C4, whose equation we reproduce from the preceding lemma:

`def13L(x) =
y3
2r
x+

√
y23 + 4r2 + y3

2

An expression for x4 consistent with support from this line is found by applying Lemma 2.5

to line `def13L and the point o4:

x4 = −2r

y3

(√
y23 + 4r2 +

y3
2

+ 2r

)

The expression for x4 follows from the inequality `def13L(x4) + 2r < 0.

o1 o2

ℓdef13L

ℓsep23LR

o3

o4

ℓ1

ℓ2

Figure 3.7: Touching critical family F4 with r = γ = 1 and coordinates y3 ≈ 2.0876 and
x4 ≈ −5.6859. Line `sep23LR supports C4 on the left.

As in the preceding lemma, the definite supports of {C2, C3} are disjoint from C4, and

here we describe the family where `sep23LR supports C4 on the left. Line `sep23LR contains
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the point
(
r,
y3
2

)
and is a definite support of {C2, C4}, so its equation is the following:

`sep23LR(x) =
y3

2r + y3 +
√

4r2 + y23
(x− r) +

y3
2

Alternatively, since the line supports C2, Lemma 2.5 applied to line `sep23LR and the point

o2 yields a second expression k for its slope. Equating the two expressions, as in

√
y23 − 4r2

2r
=

y3

2r + y3 +
√

4r2 + y23
,

leads to the following equation:

(2)y33 + (7r) y23 −
(
8r2
)
y3 − 32r3 = 0

An expression for the solution of this polynomial equation is

y3 =
r

6

(
β+ + β− − 7

)

where β± =
3
√

881± 24i
√

237. Using a suitable reference triangle, this expression can be

rewritten as

y3 =
r

6

(
−7 + 2

√
97 cos(φ/3)

)
∈ R

with φ = tan−1(24
√

237/881) which verifies the solution is real. Since the polynomial

evaluated at y3 = 2r yields −4r3 and evaluated at y3 = 3r yields 61r3, the intermediate

value theorem guarantees a solution 2r < y3 < 3r which places the family in the critical

configuration described.

With γ = r and y3 > 2r, the preceding proof shows that in no further critical families

do both of `2, `def13L support C4 since no other lines in L23 are capable of supporting C4.
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Since y3 > 2r, line `1 is permitted to support C4, and we describe critical configurations of

disks where both of `1, `def13L support C4.

Lemma 3.8. Let δ = r, coordinate y4 = 2r, and C3 have center o3(r, y3). If y3 > 2r is the

smallest positive real solution of the equation

(2)y33 − (7r)y23 −
(
8r2
)
y3 +

(
32r3

)
= 0,

then the touching family F4 is critical. Furthermore, both the left definite support `def13L

of {C1, C3} and the separating support `sep23RL of {C2, C3} support C4 on the right.

Proof. Let δ = r = γ, so that `v supports C3 and consequently {C1, C2, C3}. Let C3 have

center o3(r, y3) with y3 > 0 which forces y3 > 2r. Let `1 support {C1, C2, C4}, so that C4

has center o4(x4, 2r). Let `def13L support {C1, C3, C4}, so that the following equation from

the previous lemma describes the line:

`def13L(x) =
y3
2r
x+

√
y23 + 4r2 + y3

2

We find a commensurate expression for x4 by applying Lemma 2.5 to evaluate the distance

d (`def13L(x)− y = 0, o4(x4, 2r)) = r which results in the following equation:

∣∣∣∣∣y32r
x4 + (−1)(−2r) +

√
y23 + 4r2 + y3

2

∣∣∣∣∣ = r

√(y3
2r

)2
+ (−1)2

Since line `def13L necessarily supports C4 on the left to avoid three disks in a slab, the

positive value `def13L(x4) < r implies |`def13L(x4)− 2r| = 2r − `def13L(x4) > 0 which

permits us to rewrite the preceding as

x4 = − r

y3

(
2
√
y23 + 4r2 + y3 − 4r

)
.
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The definite supports of {C2, C3} and the separating support `sep23LR are disjoint from

C4, so the associated separating support `sep23RL (with negative slope) must support C4,

necessarily on the right hand side. This line contains the midpoint (r, y3/2) of [o2, o3] and

is a definite support of {C2, C4} parallel to 〈o2, o4〉, so an equation for the line is given by

`sep23RL(x) =
y3

2r − y3 −
√

4r2 + y23
(x− r) +

y3
2
.

o1 o2

ℓdef13L

ℓsep23RL

o3
o4

ℓ1

ℓ2

Figure 3.8: Touching critical family F4 with r = γ = 1 and coordinates y3 ≈ 2.4185 and
x4 ≈ −1.9414. Line `sep23RL supports C4 on the right.

Since this line supports C4, Lemma 2.5 applied to line `sep23RL with slope k and the

point o4 leads to the following equation:

−2r

y3

(√
y23 + 4r2 +

y3
2
− 2r

)
k − 2r − kr +

y3
2

= r
√
k2 + 1

The preceding expression without the norm is correct since `sep23RL(x4) > 2r. Substituting

the expression for the slope of line `sep23RL(x) from its equation given above in place of k
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in the equation directly above, leads to the following equation in the indeterminate y3 with

parameter r:

(2)y33 − (7r)y23 −
(
8r2
)
y3 +

(
32r3

)
= 0

If y3 is the smallest positive real solution of this equation, then the family F4 is critical.

Specifically, the real solution can be written as

y3 =
r

6

(
7 + sin

(
φ

3

)(√
97 +

97√
97

))
,

where φ = tan−1
(
881/24

√
237
)
. The solution is real since its imaginary component (not

expressed above) contains the conjugate factor 97/
√

97 −
√

97 which is identically zero.

Since the polynomial evaluated at y3 = 2r yields 4r3 and evaluated at y3 = 3r yields −r3,

the intermediate value theorem guarantees a solution 2r < y3 < 3r which places the family

in the critical configuration described.

The preceding contains exhaustive descriptions of the critical families with γ = r where

lines `def13L and `1 both support C4. We proceed with the description of critical configu-

rations (γ = r), where y3 > 2r (by symmetry) and line `def13R supports C4, necessarily on

the left to avoid three disks in a slab. By the comments leading up to Lemma 3.3, in no

critical family does `def13R support C4, and C3 have center o3(r, 2r).

In no critical family with y3 > 2r do both of `2, `def13R support C4. Since `def13R

necessarily supports C4 on the left, no line supports {C2, C3, C4}: by construction line

`def23L = `v cuts C4 for all 2r ≤ y3 < ∞. By symmetry, the right definite support `def23R

(at distance 2r) is disjoint from C4 for all 2r ≤ y3 < ∞. Line `sep23LR (with positive

slope) is disjoint from C4: rotate `def13R, which supports C4, clockwise, away from C4,

dynamically maintaining contact with the boundary of C3, until it supports C2. This line,

in the position of `sep23LR, is disjoint from C4. The associated separating support `sep23RL

is also disjoint. The family is not geometrically realizable.
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We proceed with descriptions of critical families where both of `1, `def13R support C4.

Lemma 3.9. Let δ = r, line `1 support C4, and C3 have center o3(r, y3). If y3 > 4r is a

positive real solution of the equation

(3)y43 − (4r)y33 −
(
20r2

)
y23 −

(
32r3

)
y3 − 128r4 = 0,

then the touching family F4 is critical. Furthermore, the right definite support `def13R of

{C1, C3} and the separating support `sep23RL of {C2, C3} (with negative slope) both support

C4 on the left.

Proof. Let γ = δ = r, and let `1 support C4 and consequently {C1, C2, C4}. Let line `def13R

support C4 (on the left) and consequently {C1, C3, C4}. The derivation of the equation for

`def13L in Lemma 3.7 differs from that of the parallel line `def13R only in the sign on the

radical, which leads to

`def13R(x) =
y3
2r
x+
−
√
y23 + 4r2 + y3

2
.

Since this line supports C4, a commensurate expression for x4 results from applying Lemma 2.5

to calculate the distance d (`def13R(x)− y = 0, o4(x4, 2r)) = r by the following equation:

∣∣∣∣∣y32r
x4 + (−1)(2r) +

−
√
y23 + 4r2 + y3

2

∣∣∣∣∣ = r

√(y3
2r

)2
+ (−1)2

Since `def13R(x4)− 2r > 0, we lift the absolute value, and rewrite the preceding as

x4 =
2r

y3

(√
y23 + 4r2 + 2r − y3

2

)
.
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o1 o2

ℓdef13R

ℓsep23RL

o3

o4

ℓ1

ℓ2

Figure 3.9: Touching critical family F4 with r = γ = 1 and coordinates y3 ≈ 4.1529 and
x4 ≈ 2.1830. Line `sep23RL supports C4 on the left.

A line must support {C2, C3, C4}. The left definite support `v of {C2, C3} is disjoint

from C4. The separating support `sep23LR of {C2, C3} with positive slope is disjoint from

C4: rotate `def13R which supports C4, clockwise, away from C4, dynamically maintaining

contact with the boundary of C3 until it supports C2 in the position of `sep23LR disjoint

from C4. The remaining lines to consider are `sep23RL (with negative slope) and `def23R.

We document the family with support from `def23R in Lemma 3.10.

Let the line `sep23RL support C4. This requires y3 > 4r: the two oblique separating

supports of {C2, C3} meet at the midpoint p (r, y3/2) of segment [o2, o3] by symmetry. If

the center of C4 lies on the horizontal line containing p, then y3/2 = y4 = 2r, so that

y3 = 4r, and both separating supports of {C2, C3} support C4 by symmetry. But then

`def13R cuts C4 contrary to the construction. Furthermore, translating disk C3 vertically

downward from this position (y3 = 4r), dynamically maintaining `def13R in contact with

∂C4, forces C4 disjoint from `sep23RL by geometric inference (compare Figure 3.9). This

means disk C3 must be translated vertically upward in order for both of `sep23RL, `def13R to
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support C4, forcing y3 > 4r. Furthermore, this line can only support C4 on the left in this

configuration.

Since `sep23RL contains the midpoint (r, y3/2) of [o2, o3] and supports C2, applying

Lemma 2.5 to calculate the distance d
(
k(x− r)− y +

y3
2

= 0, o2(r, 0)
)

= r results in the

following equation:

∣∣∣kr + (−1)(0)− kr +
y3
2

∣∣∣ =
∣∣∣y3

2

∣∣∣ =
y3
2

= r
√
k2 + 1

Solving for k, we choose the negative branch, and an equation for the line follows:

`sep23RL(x) = −
√
y23 − 4r2

2r
x+

√
y23 − 4r2 + y3

2

Alternatively, the separating support `sep23RL = `def34L is a definite support of {C3, C4},

parallel to 〈o3, o4〉, which provides a second expression k for its slope. Equating the two

expressions for the slope, as in

y3(2r − y3)

2r
(√

y23 + 4r2 + 2r − y3
2

)
− γ · y3

= −
√
y23 − 4r2

2r
,

leads to the following equation in the indeterminate y3 with parameter r:

(y3 − 2r)2
(
(3)y43 − (4r)y33 −

(
20r2

)
y23 −

(
32r3

)
y3 − 128r4

)
= 0

Since the fourth degree polynomial above evaluated at y3 = 4r yields 64r4 and evaluated at

y3 = 5r yields −587r4, the intermediate value theorem guarantees a solution 4r < y3 < 5r

which places the family in the critical configuration described.
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We proceed with the description of critical configurations with γ = r, where `def13R

supports C4. As stated in the preceding, we document the configuration in which `def23R

supports C4 in the following lemma.

Lemma 3.10. If δ = γ = r, disk C3 has center o3(r, 8r/3), and C4 has center o4(3r, 2r), then

the touching family F4 is critical. Furthermore, line `1 supports C4, and the right definite

support `def13R of {C1, C3} and the (vertical) right definite support `def23R of {C2, C3} both

support C4 on the left.

Proof. Let δ = γ = r. Let the lines `1, `def13R and `def23R support C4, so that the three

lines support the respective subfamilies {C1, C2, C4}, {C1, C3, C4} and {C2, C3, C4}. Since

both of `1, `def23R support C4, its center is necessarily o4(3r, 2r). Since line `def13R is a

o1 o2

ℓdef13R
ℓdef23R

o3

o4

ℓ1

ℓ2

Figure 3.10: Touching critical family F4 with r = γ = 1 and coordinates x4 = 3 and
y3 = 8/3. Line `def23R supports C4 on the left.

separating support of {C1, C4}, it contains the midpoint (r, r) of segment [o1, o4]. The line

supports C1, and applying Lemma 2.5 to line `def13R with slope k and the point o1 results
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in the following equation:

|k(−r) + (−1)(0)− kr + r| = r
√
k2 + 1

Solving yields k =
4

3
. Since `def13R is parallel to 〈o1, o3〉, the equation

y3 − 0

r − (−r)
=

4

3
reduces

to y3 = 8r/3, and the line has equation

`def13R(x) =
4

3
(x− r) + r =

4

3
x− r

3
.

The touching family F4 as described is critical.

The preceding exhausts the critical configurations with γ = r where a definite support

in L13 supports {C1, C3, C4}. We now describe critical configurations with γ = r where

a separating support in L13 supports {C1, C3, C4}. When γ = r, the (vertical) separating

support `sep13RL = `v of {C1, C3} supports {C1, C2, C3}, and is not permitted to support

C4 to avoid the property S. The only separating support to consider is `sep13LR.

In no critical family with disk C3 centered at o3(r, y3) (y3 > 0) does line `sep13LR support

C4 (y4 = −2r). The bound y3 > 0 requires y3 ≥ 2r. With the assignment y3 = 2r, the

separating support `sep13LR = `1 is not permitted to support C4 to avoid property S. We

therefore require y3 > 2r. The separating support `sep13LR (6= `v) is permitted to support

C4 on the left or on the right. In either configuration, no line supports {C2, C3, C4}: note

that `def23L = `v is not permitted to support C4. Since C4 is in the cone bounded by `2

and `v, the definite support `def23R and the separating support `sep23RL of {C2, C3} (with

negative slope) are disjoint from C4 in either configuration. Line `sep23LR in L23 is the

only viable support that remains. If `sep13LR supports C4 on the right, then the separating

support `sep23LR (positive slope) is disjoint from C4. One configuration remains which we

describe in the following paragraph.
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In no critical family does `v support C3 (y3 > 0), line `2 support C4, and `sep13LR

( 6= `v) support C4 on the left. As shown in the preceding paragraph, the definite supports

of {C2, C3} and the separating support `sep23RL are disjoint from C4. So line `sep23LR

supports C4, necessarily on the right. The family described is not constructible which we

prove analytically in the following proof environment.

Proof. Let δ = γ = r, line `2 support C4 (y4 = −2r), and let C3 have center o3(r, y3) with

y3 > 2r. Here we prove that in no critical family does line `sep13LR support C4 on the left

and line `sep23LR support C4 on the right (compare Figure 3.11).

The separating support `sep13LR (6= `v) of {C1, C3} with slope k contains the mid-

point (0, y3/2) of [o1, o3]. Applying Lemma 2.5 to calculate the distance d (`sep13(x)− y =

0, o1(−r, 0)) = r yields the equation

∣∣∣k(−r) + (−1)(0) +
y3
2

∣∣∣ = r
√
k2 + 1.

By construction, `sep13LR(−r) > r > 0, permitting us to drop the norm in the preceding,

and derive an equation for the line as follows:

`sep13LR(x) =
y23 − 4r2

4ry3
x+

y3
2

Since the line supports C4 with center o4(x4,−2r), Lemma 2.5 provides a commensurate

expression for x4 by the following equation:

∣∣∣∣y23 − 4r2

4ry3
(x4) + (−1)(−2r) +

y3
2

∣∣∣∣ = r

√(
y23 − 4r2

4ry3

)2

+ 1
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Since the line supports C4 from above, the inequality `sep13(x4)+2r > 0 allows us to remove

the norm and write

x4 =
r
(
4r2 − 8ry3 − y23

)
y23 − 4r2

.

o1 o2

ℓsep13LR

ℓsep23LR

o3

o4

ℓ1

ℓ2

Figure 3.11: Touching critical family F4 with r = γ = 1 and coordinates y3 = 7/2 and
x4 ≈ −4.3940. Line `sep23LR approaches ∂C4 from the right as y3 →∞.

Lemma 3.7 provides one expression for the slope of `sep23LR, and we derive a second

expression for its slope by viewing the line as a definite support of C3, C4. Equating the

two expressions, as in √
y23 − 4r2

2r
=

(y3 + 2r)2(y3 − 2r)

2ry23 + 8r2y3 − 8r3
,

leads to the following equation in the indeterminate y3 with parameter r:

y33 + (2r)y23 −
(
4r2
)
y3 + 8r3 = 0
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The equation has a pair of complex conjugate solutions and one real solution which can be

expressed in the form

y3 = −2r

3

(
β+ + β− + 1

)
,

where β± =
3
√

19± 3
√

33 > 0. The negative expression for y3 above contradicts the re-

quirement y3 > 2r > 0, so that the family as described is not critical. In the limit y3 →∞,

the lines `sep13LR and `sep23LR converge to the boundary of C4 from the left and right,

respectively (compare Figure 3.11). An explicit quantification of this convergence is given

in Remark 3.11 following this proof environment.

We provide a second verification that the configuration as described is not constructible.

To force an inconsistency, let y3 = 2r + ε for some ε > 0 since y3 > 2r by construction.

Substituting r = 1 and y3 = 2r + ε into the equation in the indeterminate y3 given above

leads to the equation

(ε2 + 8ε+ 8)2 = ε(4 + ε)3.

Solving for ε, the solution is either complex (ε = −1.1607 ± 1.2126i) or negative (ε =

−5.6786). Since no positive value for ε appears, the configuration described is not con-

structible.

Remark 3.11. As noted in the preceding proof, lines `sep13LR and `sep23LR converge to

the boundary of C4 as y3 → ∞ (compare Figure 3.11). For any ε > 0 (independent of ε

in the preceding proof), a range of choices for y3 guarantees that the separating support

`sep23LR (positive slope) and disk C4 are ε-close. Since the limit y3 → ∞ entails x4 → r,

the boundary ∂C4 of disk C4 approaches `v from the left in the limit. Using this property,

we provide a loose analytic bound that guarantees the desired convergence.

Let ε > 0 be given with the requirement that d (C4, `sep23LR − y = 0) < ε. If C4

is ε-close to `v then the distance from C4 to `sep23LR is less than ε since the separating

support `sep23LR passes between the disk and the vertical line (compare Figure 3.11). By

inspection, disk C4 is ε-close to `v if and only if x4 is ε-close to−r since C4 has radius r. That
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is d (C4, `v) ≤ ε if and only if |x4 − (−r)| ≤ ε with the expression for x4 from the preceding

proof. Solving the equation |x4 + r| = ε leads to the expression y3 =
2r

ε
[2r +

√
4r2 + ε2].

If y3 ≥
2r

ε
[2r +

√
4r2 + ε2] then the distance from C4 to the line `sep23LR is less than ε. In

the sense used above, the family is then ε-close to the critical configuration described.

The preceding shows that in no critical family with γ = r that avoids three disks

in a slab do both of `2, `sep13LR support C4. Up to this point, we have exhausted both

definite supports of L13 and we recall that line `v = `sep13RL cannot support C4. The line

`sep13LR ∈ L13 remains. This line may support C4 on the left or on the right. Since we have

exhausted the configurations where `2 supports C4, the configuration where `1 supports

C4 remains (y3 > 2r). In the following, we examine families where both of `1, `sep13LR

support C4, so that y4 = 2r. If `sep13LR supports C4 on the right, then both definite

supports and the separating support `sep23LR (positive slope) of {C2, C3} are disjoint from

C4. The following lemma describes the critical configuration where line `1 supports C4 and

line `sep23RL supports C4.

Lemma 3.12. Let γ = r and C4 have center o4(x4, 2r) with x4 < 0 expressed below. If

y3 > 2r is a solution of the equation

y43 −
(
5r2
)
y23 −

(
4r3
)
y3 − 4r4 = 0,

then the family F4 is critical. Furthermore, the separating support `sep13LR of {C1, C3},

and the separating support `sep23RL of {C2, C3} both support C4 on the right.

Proof. Let γ = r, and let C4 have center o4(x4, 2r) so that `1 supports {C1, C2, C4}. Let

`sep13LR support C4 on the right so that x4 < 0. Since `sep13LR contains the midpoint

(0, y3/2) of [o1, o3], applying Lemma 2.5 to `sep13LR with slope k and the point o1 yields the
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following equation for the line:

`sep13LR(x) =
y23 − 4r2

4ry3
x+

y3
2

This line supports C4, and applying Lemma 2.5 to line `sep13LR and the point o4 yields the

following commensurate expression for x4:

x4 =
r(4r2 − 8ry3 + 3y23)

4r2 − y23

o1 o2

ℓsep13LR

ℓsep23RL

o3

o4

ℓ1

ℓ2

Figure 3.12: Touching critical family F4 with r = γ = 1 and coordinates y3 ≈ 2.6590 and
x4 ≈ −1.2829. Line `sep23RL supports C4 on the right.

As stated in the paragraph preceding the lemma, line `sep23RL supports C4. Furthermore,

it must support C4 on the right, otherwise the subfamily {C2, C3} is touching and the family

has property S. An equation for line `sep23RL derived in Lemma 3.9 is reproduced here:

`sep23RL(x) = −
√
y23 − 4r2

2r
x+

√
y23 − 4r2 + y3

2
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Viewing this line as a definite support of {C2, C4} parallel to 〈o2, o4〉 provides a second

expression for its slope. Equating the two expressions for the slope, as in

2r + y3
2y3

= −
√
y23 − 4r2

2r
,

leads to the following equation in the indeterminate y3 with parameter r:

y43 −
(
5r2
)
y23 −

(
4r3
)
y3 − 4r4 = 0

Since the polynomial above evaluated at y3 = 2r yields 16r4 and evaluated at y3 = 3r yields

−20r4, the intermediate value theorem guarantees a solution 2r < y3 < 3r which places the

family in the critical configuration described.

Lemma 3.12 describes the only configuration where `v supports C3, line `1 supports C4,

and `sep13LR supports C4 on the right. We proceed with configurations where `v supports

C3 (γ = r), line `1 supports C4, and `sep13LR supports C4 on the left. In this configuration,

`def23L = `v is not permitted to support C4. In the following lemma, the right definite

support `def23R of {C2, C3} is a critical support of F4.

Lemma 3.13. Let δ = γ = r, and let C4 have center o4(3r, 2r). If y3 = r
(
1 +
√

5
)
, then

the family is critical. Furthermore, the separating support `sep13LR of {C1, C3}, and the

(vertical) right definite support `def23R of {C2, C3} both support C4 on the left.

Proof. Let δ = γ = r so that line `v supports C3 on the left. Let C4 have center o4(3r, 2r), so

that `1 supports {C1, C2, C4}, and the (vertical) right definite support `def23R = {x = 2r}

of {C2, C3} supports C4 on the left. Necessarily y3 > 2r since C3 is disjoint from `1.

Let `sep13LR support C4 on the left. By observation, line `sep13LR is a definite support of

{C1, C4}, and its slope is k = 1/2. By symmetry, the line contains the midpoint (0, y3/2)
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of [o1, o3], so one equation for the line is

`sep13LR(x) =
1

2
x+

y3
2
.

o1 o2
ℓsep13LR

ℓdef23R

o3

o4

ℓ1

ℓ2

Figure 3.13: Touching critical family F4 with r = γ = 1 and coordinates y3 = 1 +
√

5 and
x4 = 3. Line `def23R supports C4 on the left.

Since line `sep13LR supports C3, Lemma 2.5 applied to line `sep13LR and the point o3

leads to the following equation:

∣∣∣∣12r + (−1)y3 +
y3
2

∣∣∣∣ = r

√(
1

2

)2

+ 1

Since positive `sep13LR(r) < y3, we lift the absolute value by negating the expression on the

left hand side in the preceding equation, and solve to find y3 = r
(
1 +
√

5
)
. These values

for the parameters and lines completely determine the critical family.

We continue with the case γ = r so that `v supports C3 on the left. The separating

supports of {C2, C3} are permitted to support C4 on the left or on the right since either
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configuration for each line avoids three disks in a slab. In the following lemma, line `sep23RL

supports C4 on the left.

Lemma 3.14. Let γ = r, and let C4 have center o4(x4, 2r) with x4 > 0 as expressed below.

If y3 > 2r is a solution of the equation

y33 − (2r)y23 −
(
4r2
)
y3 − 8r3 = 0,

then the family is critical. Furthermore, the separating support `sep13LR of {C1, C3} and

the separating support `sep23RL of {C2, C3} both support C4 on the left, and the subfamily

{C3, C4} is touching.

Proof. Let γ = r, and let C4 have center o4(x4, 2r) so that `1 supports C4 with x4 > 0. Let

`sep13LR support C4 on the left. We reproduce its equation, derived in Lemma 3.12:

`sep13LR(x) =
y23 − 4r2

4ry3
x+

y3
2

This line supports C4, and a commensurate expression for x4 > 0 is the negative of that

obtained in Lemma 3.12 since the respective disks C4 are on opposite sides of the line:

x4 = −r(4r
2 + 8ry3 − y23)

4r2 − y23

As stated in the paragraph preceding the lemma, line `sep23RL is permitted to support C4

on the left or on the right. Furthermore, if line `sep23RL supports C4 on the right, then line

`sep13LR coincides with `def14L, and line `sep23RL coincides with `def24R. Interchanging the

labels on C3 and C4 also changes the labels on line `def14L 7→ `def13L and on line `def24R 7→

`def23R so that the disks and lines coincide with the family described in Lemma 3.5.
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o1 o2

ℓsep13LR

ℓsep23RL

o3

o4

ℓ1

ℓ2

Figure 3.14: Touching critical family F4 with r = γ = 1 and coordinates y3 ≈ 3.6786 and
x4 ≈ 2.0874. Line `sep23RL supports C4 on the left.

Let `sep23RL (negative slope) support C4 on the left. The line supports C2 and contains

the midpoint (r, y3/2) of [o2, o3], so Lemma 2.5 applied to line `sep23RL with slope k and

the point o2 yields the following:

∣∣∣k(r)− kr + (−1)(0) +
y3
2

∣∣∣ = r
√
k2 + 1

Since y3/2 > 0, we lift the absolute value in the preceding and solve for the (negative) slope

of `sep23RL:

k = −
√
y23 − 4r2

2r

Viewing the line `sep23RL as a definite support of {C3, C4} parallel to 〈o3, o4〉 provides a

second expression for its slope. Equating the two expressions for the slope, as in

−4r2 − y23
4ry3

= −
√
y23 − 4r2

2r
,
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leads to the following equation in the indeterminate y3 with parameter r:

y33 − (2r)y23 −
(
4r2
)
y3 − 8r3 = 0

Two of its roots form a complex conjugate pair, and its real root is expressed by

y3 =
2r

3

(
β+ + β− + 1

)
,

where β± =
3
√

19± 3
√

33 > 0. Either a numerical or an explicit algebraic calculation

demonstrating d (o3, o4) = 2r verifies that {C3, C4} is touching. The calculation is omitted

for brevity. These values for the parameters and lines completely determine the critical

family.

This exhausts the configurations where `sep23RL supports {C2, C3, C4}. We next consider

its associated separating support `sep23LR. This line is permitted to support C4 on the left

or on the right since either configuration avoids three disks in a slab. In the following lemma

line `sep23LR supports C4 on the left.

Lemma 3.15. Let δ = r = γ, and let C4 have center o4(x4, 2r) with x4 > 0 as expressed

below so that `1 supports C4. If y3 > 2r is the smaller of the two positive real solutions of

the equation

y43 − (8r)y33 +
(
4r2
)
y23 +

(
32r3

)
y3 + 32r4 = 0,

then the family is critical. Furthermore, the separating support `sep13LR of {C1, C3} and

the separating support `sep23LR of {C2, C3} both support C4 on the left.

Proof. The equation for line `sep13LR given in the previous lemma is reproduced here:

`sep13LR(x) =
y23 − 4r2

4ry3
x+

y3
2
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A commensurate expression for x4 from the previous lemma follows:

x4 = −
r
(
4r2 + 8ry3 − y23

)
4r2 − y23

o1 o2

ℓsep13LR

ℓsep23LR

o3

o4

ℓ1

ℓ2

Figure 3.15: Touching critical family F4 with r = γ = 1 and coordinates y3 ≈ 3.5010 and
x4 ≈ 2.3920. Line `sep23LR supports C4 on the left.

The equation for line `sep23LR differs from that of line `sep23RL given in the previous

lemma in the sign on the term for its slope which is positive here. An equation for the line

follows:

`sep23LR(x) =

√
y23 − 4r2

2r
(x− r) +

y3
2

As a left definite support of {C2, C4}, we derive a second expression for its slope. Equating

the two expressions for its slope, as in

4r2 − y23
y23 − 4ry3 − 4r2

=

√
y23 − 4r2

2r
,
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leads to the following equation in the indeterminate y3 with parameter r:

y43 − (8r)y33 +
(
4r2
)
y23 +

(
32r3

)
y3 + 32r4 = 0

Two roots of this equation form a complex conjugate pair, and the affiliated root for pa-

rameter y3 is the smaller of its two positive real roots. Since the polynomial evaluated at

y3 = 3r yields 29r4 and evaluated at y3 = 4r yields −32r4, the intermediate value theorem

guarantees a solution 3r < y3 < 4r which places the family in the critical configuration

described.

The preceding documents the configuration where `sep13LR and `sep23LR support C4 on

the left. We proceed to describe configurations where `sep13LR supports C4 on the left, and

`sep23LR supports C4 on the right. In the description of these configurations, line `sep23LR

coincides with line `sep24LR (positive slope), and line `sep13LR coincides with line `def14L.

A line in L12 \ {`v} = {`1, `2} must support {C1, C2, C4}. Precisely two placements for C4

avoid three disks in a slab.

In no critical family of congruent disks with δ = γ = r and y3 > 2r does line `sep13LR

support C4 on the left, line `sep23LR support C4 on the right, and line `1 support C4 with y4 =

2r. In a configuration of this description, line `sep23LR necessarily coincides with `sep24LR,

but this line is disjoint from C3 as we show in the following. Since `sep13LR = `def14L

supports C3 on the right, the parallel definite support `def14R (positive slope) supports C4

and is disjoint from C3. Rotate `def14R, which cuts C2 and is disjoint from C3, clockwise

away from C3, dynamically maintaining contact with the boundary ∂C4 of C4 until it

supports C2 on the left in the position of `sep24LR (with positive slope). The line is disjoint

from C3, a contradiction since `sep23LR = `sep24LR supports C3. The family as described is

not geometrically realizable.

In no critical family with δ = γ = r and y3 > 2r does line `sep13LR support C4 on the left,

line `sep23LR support C4 on the right, and line `2 support C4 with y4 = −2r. Observe that
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the family described coincides with the configuration documented in the proof preceding

Lemma 3.12 by interchanging the positions of C3 and C4 and relabeling as needed. The

family was shown to have no geometric realization, so no corresponding critical family exists.

Remark 3.16. For the configurations described in the preceding paragraphs, each family

approaches the configuration of a critical family. For the configuration with y4 = −2r,

Remark 3.11 shows that the configuration is ε-close to a critical configuration with y3

large enough; namely, one disk is separated a positive distance ε from its intended critical

support. In the configuration with y4 = 2r, observe that the line `sep23LR cuts C4. However,

as y3 → ∞, the line approaches the boundary of C4. That is, for any ε > 0, a sufficiently

large value for y3 forces the line `sep23LR within an ε-distance of the boundary ∂C4 of C4,

so that the family is ε-close to the critical configuration described in the following sense.

This one line fails to support C4 and is instead secant to C4, demarcating an arbitrarily

small segment of the disk.

The preceding exhausts the configurations for touching critical families F4 with γ = r

that avoid three disks in a slab.

3.1.3 Case 3: γ > r

We now show that no additional critical configurations avoid three disks in a slab. A handful

of observations condense our analysis.

Observe that the description of any critical family with γ > r where `v supports C4 is

necessarily equivalent to one of the preceding descriptions of critical families by symmetries

in the Klein four-group V . In the descriptions of those families, line `v supports one of

C3, C4, and one of `1, `2 supports the other disk. Since we permitted C4 to have any

position along `1, `2 in each configuration where `v supports C3 (y3 6= 2r), some symmetry

in V necessarily transforms the family to one of the previously documented configurations.

Observe further that any configuration with γ > r where `2 supports C4 with −r < x4 <

r, is identical by a symmetry in V to a configuration where `1 supports C3 with 0 ≤ γ < r.

Consider for the moment configurations avoiding three disks in a slab where `1 supports C3
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with γ > r, and `2 supports C4. If line `def13R supports C4, then the corresponding range

for x4 is −r < x4 < r since the line necessarily supports C4 on the left. Also, if line `sep13RL

supports C4 on the left hand side, then the corresponding range for x4 is −r < x4 < r. In

these configurations, a symmetry in V maps the family so that disk C4 coincides with C3

in a configuration with 0 ≤ γ < r, which have been exhaustively documented. Since line

`1 (= `sep13LR) is necessarily disjoint from C4, two lines remain to consider. With γ > r,

if `def13L supports C4, then the supports of {C2, C3} are disjoint from C4 since the line

necessarily supports C4 on the right.

Finally, the configuration where `sep13RL supports C4 on the right forces x4 < −r, so

that no preceding configuration is equivalent to a family with this description. Consider

the lines in L23 = {`def23L, `def23R, `sep13LR, `sep13RL} separately. Line `def23L necessarily

cuts C4 by construction since the line lies to the left of `sep13RL (which supports C4) below

line `2. This implies the parallel line `def23R is disjoint from C4. Finally, the separating

supports `sep23RL and `sep23LR = `1 are disjoint from C4 by construction. No critical family

fits this description. The condition γ > r induces no new critical configurations that avoid

three disks in a slab.

3.2 Touching Critical Families F4 with Three Disks in a Slab

In the preceding, we examined touching critical families F4 avoiding three disks in a slab.

In the following, we consider touching critical families F4 permitting three disks in a slab.

Following our convention, disks C1, C2 ∈ F4 have their centers on the x-axis with δ =

r. Since {C1, C2} is touching, Theorem 2.3, Part (b) guarantees the subfamily has three

support lines.

With three disks in a slab, either a third disk lies in the slab with touching subfamily

{C1, C2}, or no other disk lies in the slab determined by `1, `2. If {C1, C2} is in the slab

with three disks, then one of C3, C4 is in the slab. Relabel as needed so that C3 is in the

slab with center o3(γ, 0), observing the bound |γ| ≥ 3r since F4 is nonoverlapping. Since
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any configuration with γ ≤ 0 is identical by reflection symmetry about `v (in V ) to one

with γ > 0, we stipulate γ ≥ 3r.

If C3 lies in the slab with {C1, C2} both of `1, `2 support {C1, C2, C3}, so line `v must

support {C1, C2, C4} to secure S(3) and avoid property S. This means x4 = ±r and the

parameter y4 associated with the center o4(x4, y4) of C4 must avoid the values in {−2r, 0, 2r}

in particular, and necessarily |y4| ≥ 2r since F4 is nonoverlapping. Any configuration with

y4 < 0 is identical to a configuration with y4 > 0 by reflection symmetry over the x-axis (in

V ), so we stipulate y4 > 2r.

In no critical family with touching {C1, C2, C3} in a slab does C3 have center o3(3r, 0),

and C4 have center o4(r, y4) with y4 > 2r. If γ = 3r, then touching {C2, C3} has three

support lines by Theorem 2.3, Part (b). Since F4 is critical, a line must support {C2, C3, C4}.

The definite supports `1, `2 ∈ L23 are necessarily disjoint from C4, so the vertical separating

support `sep23RL must support C4 which entails x4 = r. The vertical lines `v and `sep23RL

are parallel and support C4 on the left and on the right, respectively. A line must support

{C1, C3, C4}. Since the definite supports `1, `2 of {C1, C3} are disjoint from C4, a separating

support of {C1, C3} must support C4. But disk C4 lies in the slab determined by the

vertical lines `v, `sep23RL above line `1 and the separating supports of {C1, C3} don’t enter

this region of the plane. No line supports {C1, C3, C4}, so the critical family as described

is not geometrically realizable.

Since no critical family F4 has its subfamily {C1, C2, C3} in a slab with γ = 3r, we

proceed with γ > 3r. Line `v necessarily supports C4 with center o4(±r, y4) where y4 > 2r

by symmetry.

In no critical family does C3 have center o3(γ, 0) with γ > 3r, and C4 have center

o4(r, y4) with y4 > 2r. Since `v supports C4 on the left, no line supports {C1, C3, C4}: the

definite supports `1, `2 are necessarily disjoint from C4, and as in the case with γ = 3r, the

separating supports of {C1, C3} are disjoint from C4 for analogous reasons.
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Up to symmetries in V , precisely one family F4 has F3 = {C1, C2} ∪ {C3} in a slab

(x4 = −r), which is documented in the following lemma.

Lemma 3.17. Let δ = r, disk C4 have center o4(−r, y4), and C3 have center o3(γ, 0), so

that the subfamily {C1, C2, C3} lies in the slab determined by `1, `2. If γ > 3r is a solution

of the equation

γ4 −
(
10r2

)
γ2 −

(
16r3

)
γ + 9r4 = 0,

then the family F4 is critical. Furthermore, the separating support `sep13RL of {C1, C3},

and the separating support `sep23RL of {C2, C3} (both with negative slope) support C4 from

below and above, respectively.

Proof. Let δ = r, so that the touching subfamily {C1, C2} has the set of support lines

L12 = {`1, `2, `v} following Theorem 2.3, Part (b). Let disk C3 have center o3(γ, 0) with

γ > 3r, so that both lines `1, `2 support {C1, C2, C3} (see Figure 3.16).

A line must support {C1, C2, C4}, so line `v necessarily supports C4. As detailed in the

paragraphs preceding the lemma, disk C4 necessarily has center o4 (−r, y4) with |y4| > 2r.

A separating support of {C1, C3} necessarily supports {C1, C3, C4}. With x4 = −r, the

separating support of {C1, C3} with positive slope is disjoint from C4, so the separating

support `sep13RL with negative slope supports C4. This line supports C4 from below by

construction since `v supports disk C4. The line `sep13RL with slope k contains the midpoint

((γ − r)/2, 0) of [o1, o3] and supports C1. Applying Lemma 2.5 to calculate the distance

d

(
kx− y − kγ − r

2
+ 0 = 0, o1(−r, 0)

)
= r,

leads to the following equation in the indeterminate k

−kr − kγ − r
2

= r
√
k2 + 1,
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since `sep13RL(−r) > 0. An equation for the line follows:

`sep13RL(x) = − 2r√
γ2 + 2rγ − 3r2

(
x− γ − r

2

)

This line supports C4, and Lemma 2.5 applied to the line and the point o4 leads to the

following expression:

y4 =
2r(r + γ)√

γ2 + 2rγ − 3r2

When C4 has center o4 (−r, y4) with y4 expressed above, line `sep13RL supports subfamily

{C1, C3, C4}.

o1 o3o2

o4

ℓ2

Figure 3.16: Touching critical family F4 with r = 1 and γ ≈ 3.6972.

A line must support {C2, C3, C4}. Since `1, `2, and the separating support `sep23LR of

{C2, C3} (positive slope) are disjoint from C4, the associated separating support `sep23RL

(negative slope) supports C4. This line supports C4 from above, otherwise `sep13RL is disjoint

from C4. The line `sep23RL contains the midpoint ((r + γ)/2, 0) of [o2, o3] and supports C2.
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Lemma 2.5 applied to the line and the point o2 to calculate the distance

d

(
kx− y − kr + γ

2
+ 0 = 0, o2(r, 0)

)
= r

leads to the derived equation k
r − γ

2
= r
√
k2 + 1 since `sep23RL(r) > 0. Solving for k yields

the following equation for the line:

`sep23RL(x) = − 2r√
γ2 − 2rγ − 3r2

(
x− r + γ

2

)

Since `sep23RL is a definite support of {C2, C4} parallel to 〈o2, o4〉, we derive a second

expression kdef24 for the slope. Equating the two expressions ksep23RL = kdef24 for the

slope, as in

− (r + γ)√
γ2 + 2rγ − 3r2

= − 2r√
γ2 − 2rγ − 3r2

,

leads to the following equation in γ with parameter r:

γ4 −
(
10r2

)
γ2 −

(
16r3

)
γ + 9r4 = 0

An expression for the affiliated solution is

γ =
r√
3

(√
β+ + β− + 5 +

√
10− (β+ + β−) +

12
√

3√
β+ + β− + 5

)

with β± =
3
√

89± 6
√

159. The equation has two positive real solutions, one of which is less

than r, forcing {C1, C2} to overlap with C3. Since the polynomial evaluated at γ = 3r yields

−48r4 and evaluated at γ = 4r yields 41r4, the intermediate value theorem guarantees a

solution 3r < γ < 4r which places the family in the critical configuration described.
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The preceding contains exhaustive descriptions of the touching critical families F4 with

a touching subfamily F3 in a slab, and Lemma 3.17 documents the one constructible critical

family with this property up to symmetries in V . Since only one critical family F4 has a

touching critical subfamily in a slab, up to symmetries in V , any other configuration must

have a disjoint critical subfamily in a slab. We observe that the touching critical families

F4 with three disks in a slab avoids two pairs of touching disks in contrast to the critical

families F4 avoiding three disks in a slab (see Lemma 3.14).

The preceding implies that either F4 \ {C1} = {C2, C3, C4} or F4 \ {C2} = {C1, C3, C4}

lies in a slab. Since either/both configuration(s) is/are identical under reflection over `v (in

V ), we stipulate that disjoint {C1, C3, C4} lies in a slab. By symmetry, one of `1, `v supports

C3 with center o3(γ, y3). We document these configurations sequentially beginning with the

case that `v supports C3. Observe that any configuration where `v supports either of C3, C4

maps to a configuration (by symmetries in V ) where `v supports the disk C3, so it suffices

to restrict our attention to configurations where line `v supports C3. In particular, γ 6= x4

since the assignment γ = −r implies `v supports F4. This confirms our statement above

that any critical configuration with a touching critical family in a slab coincides with the

family described in Lemma 3.17. So it suffices to consider γ = r and y3 ≥ 2r since F4 is

nonoverlapping. Subfamily {C1, C3, C4} lies in a slab supported by the definite supports of

{C1, C3} by construction. Line `v is not permitted to support C4, so precisely one of `1, `2

supports {C1, C2, C4}.

In no critical touching family F4 with three disjoint disks in a slab does C3 have center

o3(r, 2r). As noted above, any configuration with a touching subfamily of size three in a slab

must coincide with the family described in Lemma 3.17. Explicitly, since C3 touches C2 in

this configuration, both of `1, `v support C3, and line `2 necessarily supports C4 with center

o4(x4,−2r). A line must support {C2, C3, C4} and line `1 = `sep23 must remain disjoint

from C4. The final confirmation that only one family has a touching critical subfamily in

a slab is that C4 touches C1 only if `v supports the disk. Since the definite supports of
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{C2, C3} (one of which is `v) are disjoint from C4 by construction, the subfamily has no

support and the family F4 described is not geometrically realizable.

Since no critical configuration has y3 = 2r, we proceed with y3 > 2r. A line must

support {C1, C2, C4}, and since line `v supports C3 (γ = r), precisely one of `1, `2 supports

C4 since no disk lies in the slab with {C1, C2}.

We first document the critical families F4 where `1 supports C4. Following this, we

document the configurations where `2 supports C4. In the following lemma, line `1 supports

C4.

Lemma 3.18. Let γ = r, and let C4 have center o4(x4, 2r) with x4 < 0 as determined

below. If y3 = r
(√

5 + 4
√

2 + 1
)

, then the family F4 is critical. Furthermore, subfam-

ily {C1, C3, C4} lies in a slab supported by both definite supports of {C2, C3}, and the

separating support `sep23RL of {C2, C3} (with negative slope) supports C4 on the right.

Proof. Let γ = r and let `1 support C4. Since C4 lies in a slab with {C1, C3}, both definite

supports `def13L, `def13R support C4 and consequently {C1, C3, C4}. With γ = r, line `v

supports C3 on the left, and the equation of the left definite support of {C1, C3} is identical

to that derived in Lemma 3.6:

`def13L(x) =
y3
2r
x+

√
y23 + 4r2 + y3

2

Lemma 2.5 applied to line `def13L and the point o4 leads to the following expression for x4

consistent with support from the line:

x4 =
r

y3
(4r − y3)

A line must support {C2, C3, C4}. Line `def23L necessarily cuts C4 and line `def23R is

disjoint from C4 by symmetry. A separating support of {C2, C3} must support C4. The
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o1 o2

ℓsep23RL

o3

o4

ℓ1

ℓ2

Figure 3.17: Touching critical family F4 with r = 1 = γ and coordinates y3 =
√

5 + 4
√

2+1

and x4 =
√

10 + 8
√

2−
√

5 + 4
√

2−
√

2.

separating support `sep23LR (with positive slope) cuts C4: rotate `def13R, which supports

C4 on the right, clockwise, dynamically maintaining contact with the boundary of C3, until

it supports C2 on the left. This line cuts C4. The separating support `sep23RL of {C2, C3}

(with negative slope) necessarily supports C4. As in Lemma 3.7 with γ = r, line `sep23RL

contains the midpoint (r, y3/2) of [o2, o3], and an equation for the line follows:

`sep23RL(x) = −
√
y23 − 4r2

2r
(x− r) +

y3
2

Additionally, `sep23RL as a definite support of {C2, C4} is parallel to 〈o2, o4〉 providing a

second expression for its slope. Equating the expressions for the slope of `sep23RL, as in

y3
2r − y3

= −
√
y23 − 4r2

2r
,
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leads to the following equation in the indeterminate y3 with parameter r:

y43 − (4r)y33 −
(
4r2
)
y23 +

(
16r3

)
y3 − 16r4 = 0

With coordinate y3 = r
(√

5 + 4
√

2 + 1
)

, the affiliated solution of the above equation, the

family F4 as described is critical.

We proceed with the configuration where disjoint {C1, C3, C4} lies in a slab and `v

supports C3 centered at o3(r, y3) with y3 > 2r. A line must support {C1, C2, C4}. Line `v is

not permitted to support it, and the one configuration where line `1 supports C4 has been

documented. In the following lemma, line `2 supports {C1, C2, C4}.

Lemma 3.19. Let δ = r = γ, and let C4 have center o4(x4,−2r) with x4 < 0, as doc-

umented below. If y3 = r
(√

5 + 4
√

2− 1
)

, then the family F4 is critical. Furthermore,

subfamily {C1, C3, C4} lies in a slab supported by the definite supports of {C1, C3}. The

separating support `sep23LR of {C2, C3} (with positive slope) supports C4 on the left (from

above).

Proof. Let γ = r so that line `v supports C3, and let C4 lie in a slab with {C1, C3}. The

equation of the left definite support, derived in Lemma 3.6, is reproduced here:

`def13L(x) =
y3
2r
x+

√
y23 + 4r2 + y3

2

This line supports C4 with center o4(x4,−2r). Lemma 2.5 applied to line `def13L and the

point o4 leads to the following expression for x4 consistent with support from the line:

x4 = − r

y3
(4r + y3)
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ℓdef13L

ℓsep23LR

o3
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ℓ1
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Figure 3.18: Touching critical family F4 with r = 1 and y3 =
√

5 + 4
√

2− 1.

A line must support {C2, C3, C4}. Since the definite supports of {C2, C3} are disjoint

from C4, a separating support of {C2, C3} must support it. Since the separating support

with negative slope is disjoint from C4, the associated separating support `sep23LR neces-

sarily supports C4. This support is necessarily on the left: if `sep23LR supports C4 on the

right, then it coincides with the definite supports `def34R and `def13R since the subfamily

{C1, C3, C4} lies in a slab. Line `sep23LR then supports C1 on the right and C2 on the left,

so it coincides with `sep12RL = `v which is disjoint from C4, a contradiction.

Line `sep23LR (positive slope) supports C4 on the left, and its equation, derived in

Lemma 3.7, is reproduced here:

`sep23LR(x) =

√
y23 − 4r2

2r
(x− r) +

y3
2

As a definite support of {C2, C4}, we have a second expression k for its slope. Equating the

expressions k = ksep23LR for the slope, as in

y3
2r + y3

=

√
y23 − 4r2

2r
,
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leads to the following equation in the indeterminate y3 with parameter r:

y43 + (4r)y33 −
(
4r2
)
y23 −

(
16r3

)
y3 − 16r4 = 0

With coordinate y3 = r
(√

5 + 4
√

2− 1
)

, the affiliated solution of the above equation, the

family F4 as described is critical.

The preceding lemmas and counterexamples exhaust the configurations for critical F4

where `v supports C3. In all other configurations we stipulate that `1 supports C3 and `2

supports C4 by symmetry. The disjoint subfamily {C1, C3, C4} lies in a slab, and a line

in L12 \ {`1} = {`2, `v} must support {C1, C2, C4}. As stated earlier, any configuration

where `v supports C4 is identical to one where `v supports C3 (by symmetries in V ), so it

is sufficient to consider when `2 supports C4 which entails y4 = −2r.

We proceed to identify a bound on γ that ensures we include every describable critical

configuration of disks and avoid the description of duplicate families. The condition γ ≥ 0

where {C1, C3, C4} lies in a slab does not produce every possible configuration of disks. No

value for nonnegative γ places {C1, C3, C4} in a vertical slab, so the range γ ∈ [0,∞) is not

exhaustive. Allowing γ in the unrestricted range γ ∈ (−∞,∞) generates duplicate families

by symmetry as we show in the following paragraph.

Observe that the assignment γ = 0, induces x4 = −2r: line `v supports C1 on the right

and the center o3 of C3 lies on the line. The subfamily {C1, C3, C4} has rotation symmetry of

180◦ about the center o1 of disk C1. By rotational symmetry about o1, since line `v contains

the center o3 of C3, it follows that the vertical tangent line {x = −2r} to C1 contains the

center o4 of C4. This means that for γ in the range γ ≥ 0, the corresponding range for x4

is x4 ≤ −2r. Furthermore, reflecting any family with γ ≥ 0 over the x-axis (a symmetry in

V ) maps the family to an equivalent configuration with γ ≤ −2r by the map x4 7→ γ since

it preserves the placement of C1 and C2 and it preserves subfamily {C1, C3, C4} in a slab.

This reflection interchanges C3 with C4 and by interchanging the labels on C3 and C4 we
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have an equivalent configuration for F4 with γ ≤ −2r in which line `1 = {y = r} supports

C3 and line `2 = {y = −r} supports C4. It follows that the description of the families with

γ ≥ 0 accounts for the configurations with γ ≤ −2r.

With γ ≥ 0, the only subrange of the reals (−∞,∞) not accounted for is γ ∈ (−∞, 0) \

(−∞,−2r] = (−2r, 0). It follows that every critical configuration with γ ∈ (−∞,∞) has

a representative with γ in the restricted range γ ∈ (−2r,∞). We consider the two ranges

(−2r, 0) and [0,∞) separately.

For γ ∈ (−2r, 0), the value γ = −r is excluded since `v supports F4 in this configuration.

So line `1 necessarily supports C3 in this range. It is sufficient to examine the two subranges

−2r < γ < −r and −r < γ < 0. As detailed above, we stipulate that `2 supports C4. A

line in L23 must support C4, and the lines `1 = `sep23RL and `def23R are disjoint from C4 by

construction. Two candidate lines `def23L, `sep23LR remain. For each range, we show that

no line supports {C2, C3, C4}. Recall that disjoint {C1, C3, C4} lies in a slab.

Let γ be in the range −2r < γ < −r. In the limit γ → −r, the line `sep23LR → `v

supports C4 on the right. A perturbation γ = −r − ε < −r by a positive distance ε causes

line `sep23LR to cut C4: rotate `def13R which supports C4 and cuts C2, into C4 dynamically

maintaining contact with ∂C3 until the line supports C2, so that the resulting line is in

the position of `sep23LR (which lies to the right of `v below `2) and cuts C4. To verify that

`sep23LR cuts C4 over the interval −2r < γ < −r, observe that in the configuration with

γ = −2r, the line does not avoid the disk, and cuts it. Since the line cuts the disk, no

critical configuration ensues.

Finally, line `def23L is disjoint from C4. If line `def23L supports C4, then it necessarily

supports the disk on the right. This configuration coincides with the family documented

in Lemma 3.20 by a reflection over the x-axis as we show in the following. This reflection

preserves left-right orientation and the labels on C1, C2 and interchanges C3 with C4. Under

the reflection, the subfamily {C1, C3, C4} remains in a slab preserving the correspondences

of the critical support `def13L = `def34L = `def14L. The other critical support `def23L has the

respective correspondences `def23L = `sep24LR = `sep34LR. Each of these labels is mapped
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according to `def23L 7→ `def24L, `sep24LR 7→ `sep23LR, and `sep34LR 7→ `sep43LR = `sep34RL.

This results in the correspondence `def24L = `sep23LR = `sep34RL. These correspondences

coincide with the family documented in Lemma 3.20. In particular, since x4 = r(1 −

2
√

3) < −2r, the corresponding value for γ (x4 7→ γ reflected over the x-axis) is outside the

prescribed bound. So no critical family of this description has γ in this range.

The final subrange to consider is −r < γ < 0. Since {C1, C3, C4} is in a slab, both

lines `def13L, `def13R ∈ L13 support C4. No line supports {C2, C3, C4}: In this range, line

`def23L with negative slope is disjoint from C4 by the remarks in the preceding paragraph.

The only support not disjoint from C4 is `sep23LR which cuts C4: rotate `def13R, which

supports C4 and cuts C2, into C4 maintaining contact with ∂C3 until the line supports C2

in the position of `sep23LR, cutting C4 for γ in this narrow range. This exhausts the possible

critical configurations for −2r < γ < 0.

To complete the documentation of the critical configurations with disjoint {C1, C3, C4}

in a slab, we proceed to describe critical configurations with γ in the range γ ≥ 0 where

`1 supports C3, and `2 supports C4. We begin with the interval 0 ≤ γ < r and adjoin

disk C3 with center o3(γ, 2r) to the family {C1, C2}. A line must support {C2, C3, C4}, and

the definite supports of {C2, C3} and its separating support `1 are disjoint from C4 since

0 ≤ γ < r. The separating support `sep23LR (6= `1) of {C2, C3} necessarily supports C4. In

the following lemma line `sep23LR supports C4 on the left.

Lemma 3.20. Let δ = r, disk C4 have center o4(x4,−2r), and C3 have center o3(γ, 2r). If

γ = r
(
2
√

3− 3
)
, then the family F4 is critical. Furthermore, subfamily {C1, C3, C4} lies in

a slab supported by the definite supports of {C1, C3}. The separating support `sep23LR of

{C2, C3} (with positive slope) supports C4 on the left (from above).

Proof. Let δ = r, and let C3 have center o3(γ, 2r) with 0 < γ < r where {C1, C3, C4} lies

in a slab. The equation for the left definite support is identical to that given in Lemma 3.3
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which we reproduce here:

`def13L(x) =
2r

γ + r
x+

r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

Applying Lemma 2.5 to line `def13L and the point o4 yields the following equation:

∣∣∣∣∣ 2r

γ + r
(x4)− (−2r) +

r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

∣∣∣∣∣ = r

√(
2r

γ + r

)2

+ 1

This leads immediately to

x4 = −(2r + γ),

since 0 < `def13L(x4) + r < `def13L(x4) + 2r (compare Figure 3.19).

o1 o2

ℓdef13L

ℓsep23LR

o3

o4

ℓ1

ℓ2

Figure 3.19: Touching critical family F4 with r = 1 and coordinates γ = 2
√

3 − 3 and

x4 = 1− 2
√

3.
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A line must support {C2, C3, C4}, and as in the paragraph preceding this lemma, line

`sep23LR must support C4. Furthermore, this support must be on the left: if line `sep23LR

supports C4 on the right, then the line is a definite support of {C3, C4}, so that the string

`sep23LR = `def34R = `def13R implies that line `def13R = `sep12LR = `v, contrary to suppo-

sition. The expression for ksep23LR from Lemma 3.3, together with the fact that the line

contains the midpoint

(
r + γ

2
, r

)
of [o2, o3], leads to the following equation for the line:

`sep23LR(x) =
4r(r − γ)

3r2 + 2rγ − γ2

(
x− r + γ

2

)
+ r

As a definite support of {C2, C4}, we derive a second expression for its slope. Equating the

two expressions for the slope, as in

0− (−2r)

r − x4
=

2r

3r + γ
=

4r(r − γ)

3r2 + 2rγ − γ2
,

simplifies to the following equation in the indeterminate γ with parameter r

γ2 + (6r)γ − 3r2 = 0.

With γ = r
(
2
√

3− 3
)
, the affiliated solution of the equation, and consequently x4 =

r
(
1− 2

√
3
)
, the family as described is critical.

The preceding lemmas and nonconstructibility proofs exhaust the configurations for

touching critical families F4 where {C1, C3, C4} lies in a slab and C3 has center o3(γ, 2r)

with 0 ≤ γ ≤ r. We proceed documenting configurations with γ > r, where line `1 supports

C3, line `2 supports C4, and disjoint {C1, C3, C4} lies in a slab.

A line must support {C2, C3, C4}. The right definite support `def23R of {C2, C3} is

disjoint from C4 by construction, and `1 ∈ L23 is prohibited. Two lines remain. The
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separating support `sep23RL of {C2, C3} (with positive slope) is disjoint from C4: rotate

`def23R, which is disjoint from C4, through a positive angle (counterclockwise) away from

C4, dynamically maintaining contact with the boundary of C2, until it supports C3 on

the left. The line is in the position of `sep23RL ( 6= `1), disjoint from C4. The line `def23L

remains. Since the line does not coincide with `def13L, it cannot support C4 on the left. In

the following lemma the line supports C4 on the right.

Lemma 3.21. Let δ = r, disk C4 have center o4(x4,−2r), and C3 have center o3(γ, 2r). If

γ = r
(

2
√

3 + 1
)

and x4 = −r
(

3 + 2
√

3
)
,

then the family F4 is critical. Furthermore, subfamily {C1, C3, C4} lies in a slab supported

by the definite supports of {C1, C3}, and the left definite support `def23L of {C2, C3} sup-

ports C4 on the right.

Proof. Let δ = r, and let subfamily {C1, C3, C4} lie in a slab where C3 has center o3(γ, 2r)

with γ > r. Let `2 support {C1, C2, C4} so that C4 has center o4(x4,−2r). Since {C1, C3, C4}

lies in a slab, the definite supports of {C1, C3} support C4, and the equation of the left def-

inite support from Lemma 3.20 is reproduced here:

`def13L(x) =
2r

γ + r
x+

r
√

5r2 + 2rγ + γ2 + 2r2

γ + r

We reproduce the commensurate expression x4 = −(2r + γ) from the previous lemma.

A line must support {C2, C3, C4}, and as shown in the paragraph preceding the lemma,

line `def23L must support C4 on the right. The definite support `def23L has slope parallel

to 〈o2, o3〉 and we denote its y-intercept by m. Applying Lemma 2.5 to line `def23L and the

point o2 yields ∣∣∣∣ 2r

γ + r
(r) + (−1)(0) +m

∣∣∣∣ = r

√(
2r

γ − r

)2

+ 1,
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o1 o2
ℓdef13L

ℓdef23L

o3

o4

ℓ1

ℓ2

Figure 3.20: Touching critical family F4 with r = 1 and γ = 2
√

3 + 1.

which leads to the following equation:

`def23L(x) =
2r

γ − r
x+

r
√

5r2 − 2rγ + γ2 − 2r2

γ − r

This line also supports C4, and Lemma 2.5 applied to the line and the point o4 leads to the

equation

γ2 − (2r)γ − 11r2 = 0.

With the affiliated solution γ = r
(
2
√

3 + 1
)
, we rewrite the expression x4 = −r

(
3 + 2

√
3
)
,

and these assignments guarantee the family is critical.

This exhausts all describable configurations for touching critical families of size four

with three disks in a slab.

3.3 Touching Critical Families F4: Summary of Results

In the preceding section, the touching critical families F4 were constructed by exhaustion.

This collection contains a representative of every touching critical family F4.
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Lemma 3.22. The number of touching critical families F4 is no more than 17, and at least

one representative of each distinct type is depicted in the collection of Figures 3.21, 3.22,

and 3.23.

We proceed to show that precisely 17 touching families of size four are critical up to

symmetries in the Klein four-group V .

Theorem 3.23. The number of combinatorially distinct touching critical families F4 is

precisely 17 and a representative for each family is depicted in the collection of Figures 3.21,

3.22, and 3.23.

Proof. Denote by F the collection of |F| = 17 touching critical families depicted in Fig-

ures 3.21, 3.22, and 3.23. Let F3 denote the set of disks C3 (distinguished by their centers

o3) of the families in F, and denote by F4 the set of disks C4 (distinguished by their centers

o4) of these families.

Table 3.1 contains standardized data with r = 1 for the coordinates of the center o3

of disk C3 for each respective touching critical family F4 in F. Direct observation of the

rows in Table 3.1 confirms that the center o3 of disk C3 in each of the 17 families in F is

distinct since each pair of coordinates is distinct. Explicitly, each respective coordinate pair

(γ, y3) associated with some center o3 has either γ = 1 or y3 = 2 with the one exception

listed in the row for Figure 3.21a. Observe that any pair of coordinates o3, o
′
3 listed in

Table 3.1 with γ = r = 1 in their first coordinate differs in value in their respective second

coordinate, y3. Similarly, any two coordinates o3, o
′
3 with y3 = 2r = 2 differ in value in their

respective γ-coordinate. Since no pair F , G in F of touching critical F4 has disk C3 in the

same position, the |F3| = 17 disks C3 in these families are distinct so that |F3| = |F|.

A similar direct comparison of the values in Table 3.2 confirms that precisely one pair of

families in F has their respective disks C4 in the same position with common center o4(3, 2).

The two families are depicted in the respective Figures 3.23b and 3.23d. Furthermore, an

1The exact value γ = (1/3) ·
(
β+ + β− − 1

)
with β± = 3

√
2

3
√

13± 3
√

33 for the coordinate in o3(γ, y3)

does not fit conveniently in Table 3.1, so its decimal approximation γ ≈ 0.2956 is listed there.
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o1 o3o2

o4

(a)

o1 o2

o3

o4

(b)

o1 o2

o3

o4

(c)

o1 o2

o3

o4

(d)

o1 o2

o3

o4

(e)

Figure 3.21: Critical F4 with three disks in a slab.
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o1 o2

o3

o4

(a)

o1 o2

o3

o4

(b)

o1 o2

o3

o4

(c)

o1 o2

o3

o4

(d)

o1 o2

o3

o4

(e)

o1 o2

o3
o4

(f)

Figure 3.22: Six touching critical F4 avoiding three disks in a slab.
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o1 o2

o3

o4

(a)

o1 o2

o3
o4

(b)

o1 o2

o3
o4

(c)

o1 o2

o3

o4

(d)

o1 o2

o3

o4

(e)

o1 o2

o3

o4

(f)

Figure 3.23: Remaining six touching critical F4 avoiding three disks in a slab.
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Table 3.1: Centers o3(γ, y3) of disks C3 in each touching critical family F4 (r = 1)

Three disks in a slab Figure 3.21a o3 (3.6972, 0)

Figure 3.21b o3

(
1,
√

5 + 4
√

2 + 1
)
≈ o3 (1, 4.2645)

Figure 3.21c o3

(
1,
√

5 + 4
√

2− 1
)
≈ o3 (1, 2.2645)

Figure 3.21d o3
(
2
√

3− 3, 2
)
≈ o3 (0.4641, 2)

Figure 3.21e o3
(
2
√

3 + 1, 2
)
≈ o3 (4.4641, 2)

Avoiding 3 disks in a slab Figure 3.22a o3
(
(1/3) ·

(
9− 4

√
3
)
, 2
)
≈ o3 (0.6906, 2)

Figure 3.22b o3 (0.2956, 2)1

Figure 3.22c o3 (0.3551, 2)
Figure 3.22d o3 (1, 2.4648)
Figure 3.22e o3 (1, 2.0876)
Figure 3.22f o3 (1, 2.4185)
Figure 3.23a o3 (1, 4.1529)
Figure 3.23b o3 (1, 8/3) ≈ o3 (1, 2.6667)
Figure 3.23c o3 (1, 2.6590)

Figure 3.23d o3
(
1, 1 +

√
5
)
≈ o3 (1, 3.2361)

Figure 3.23e o3 (1, 3.6786)
Figure 3.23f o3 (1, 3.5010)

exhaustive comparison of the values for o3 in Table 3.1 and the values for o4 in Table 3.2

reveals that no coordinate pair is common to both tables.

To avoid repeated values among the respective centers o4, and to avoid multiple place-

ments for C4 induced by symmetries in V , we define the restriction F′ of F to contain the

touching critical families of F depicted in Figures 3.21, 3.22, and 3.23 excluding the families

depicted in Figures 3.21a and 3.23d, so that |F′| = 15. In order for a critical subfamily

{C1, C2, C3} ⊂ F4 ∈ F′ to have a symmetry in V its respective disk C3 must have its center

o3 on the x-axis or on line `v. No family in F′ has this property since the family depicted

in Figure 3.21a does not belong to the collection. We note here that the family depicted

in Figure 3.21a uniquely has a touching critical subfamily F3 in a slab, and is necessarily

distinct from all other families F4. It suffices to consider the remaining 16 families.

We define the corresponding restrictions F′3 and F′4 to denote the respective restrictions

of F3 and F4 that exclude the respective disks C3, C4 of the families depicted in Figures 3.21a

and 3.23d. Since the respective coordinates for the center o3(γ, y3) of each disk C3 in F3
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Table 3.2: Centers o4(x4, y4) of disks C4 in each touching critical family F4 (r = 1)

Three disks in a slab Figure 3.21a o4 (−1, 2.2104)
Figure 3.21b o4 (−0.0620, 2)
Figure 3.21c o4 (−2.7664,−2)

Figure 3.21d o4
(
1− 2

√
3,−2

)
≈ o4 (−2.4641,−2)

Figure 3.21e o4
(
−(3 + 2

√
3),−2

)
≈ o4 (−6.4641,−2)

Avoiding 3 disks in a slab Figure 3.22a o4
(
−(1/3) ·

(
9 + 4

√
3
)
,−2

)
≈ o4 (−5.3094,−2)

Figure 3.22b o4 (−4.6786,−2)
Figure 3.22c o4 (1, 6.5173)
Figure 3.22d o4 (−5.1984,−2)
Figure 3.22e o4 (−5.6859,−2)
Figure 3.22f o4 (−1.9414, 2)
Figure 3.23a o4 (2.1830, 2)
Figure 3.23b o4 (3, 2)
Figure 3.23c o4 (−1.2829, 2)
Figure 3.23d o4 (3, 2)
Figure 3.23e o4 (2.0874, 2)
Figure 3.23f o4 (2.3920, 2)

are distinct as confirmed by inspecting Table 3.1, the same holds for the subset F′3 ⊂ F3.

To clarify, the respective sizes of the sets are |F3| = 17, |F4| = 16, and |F′3| = 15 = |F′4|.

For each family F ∈ F′, define the rule denoted by φ, that associates the disk C3 ∈

(F′3 ∩ F) with the disk C4 ∈ (F′4 ∩ F). The mapping φ : F′3 → F′4 is a bijection by the

following: exhaustive construction of the set F of the touching critical families F4 reveals

that adjoining each respective disk C3 ∈ F′3 ⊂ F3 to touching {C1, C2} induces precisely

one critical family F4 ∈ F′. This holds since with C3 ∈ F′3 fixed, only one position for C4

induces the property S(3) without inducing S, and this pair of disks belongs to the same

family {C3, C4} ⊂ F ∈ F′. Since φ associates each disk C3 with precisely one disk C4,

the rule determined by φ : F′3 → F′4 is a function. Furthermore, since each disk C4 in the

restricted set F′4 is in a family in F′ by construction, the mapping φ is onto. Since the sizes

of F3 and F4 are identical (|F′4| = 15 = |F′|), the mapping φ is one-to-one. It follows that

φ : F′3 → F′4 is a bijection, and its inverse φ−1 : F′4 → F′3 is well-defined.
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Equipped with this notation, we now verify that the families in F are distinct. To verify

that no two families are duplicates, Remark 3.2 confirms that it is sufficient to restrict our

attention to the symmetries in the Klein four-group V since {C1, C2} ⊂ F . Furthermore,

any critical family F of size four has a representative H in F since the collection was

constructed by exhaustion. Since F maps onto its representative H by some symmetry

in V , we stipulate without a loss of generality that each critical family F is oriented in

accordance with Figures 3.21, 3.22, and 3.23, and their respective parameters are listed in

Tables 3.1 and 3.2.

If the mapping id : F 7→ G with id ∈ V preserves labels on the disks, then id : (C3 ∈

F) 7→ (C3 ∈ G). If F ,G ∈ F are distinct, then the map is impossible since F ,G are oriented

as in the figures and tables, and their respective disks labeled C3 are distinct. If such an

identification exists, then necessarily id maps the center o3 of C3 ∈ F ∈ F to the center

o4 of C4 ∈ G ∈ F so that id ∈ V interchanges the labels on C3, C4. However, as noted

above, no coordinate pair for o3 listed in Table 3.1 appears in the list of coordinates for o4

in Table 3.2, and since id ∈ V preserves the coordinates together with their signs as listed,

this outcome is impossible.

For some pair F ,G ∈ F′, the possibility remains that C3 ∈ F corresponds to C4 ∈ G by a

nonidentity symmetry in V . Since the nontrivial symmetries in V correspond to reflections

over the x- and y-axes and rotation of 180◦ about the origin, the order of the coordinates

and their respective numerical values up to sign are preserved, so that (γ, y3) 7→ (±γ,±y3)

and (x4, y4) 7→ (±x4,±y4) under these transformations. If a pair of families F ,G ∈ F′ are

identical under symmetry, then a necessary condition on the coordinates for the center o4

of C4 ∈ F is that |x4| = |γ| = γ and |y4| = |y3| = y3 for C3 ∈ G with coordinate o3(γ, y3)

since (o4 ∈ F) 7→ (o3 ∈ G). No value of the parameter γ in any pair of coordinates (γ, y3)

for o3 listed in Table 3.1 appears as a value for ±x4 in any coordinate (x4, y4) for o4 listed

in Table 3.2. Since this necessary condition is not met, the map described is impossible.

No disk C4 ∈ F′4 can be mapped by nonidentity elements of V (reflection or rotation) onto
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a disk C3 ∈ F′3, so the families in F′ are distinct. This accounts for the 15 families of F′

which are pairwise distinct.

Observe that if two families F ,G ∈ F are identical under a symmetry not contained in

V , then two conditions must be met. Namely, both families must have the same symmetry

(not in V ) and the respective subfamilies {C3, C4} must be touching since the proposed

line of symmetry cannot cut {C1, C2}. Since the subfamily {C3, C4} touches in only one

family of F, both of these necessary conditions are not met by any pair of families F4. The

symmetries in V are sufficient.

The preceding accounts for the 15 pairwise distinct families in F′ and the family depicted

in Figure 3.21a, which in total comprises 16 of the 17 families. The single family depicted

in Figure 3.23d remains, which we denote for the remainder of this proof by F . Since the

17 disks of F3 are distinct, the mapping id : F 7→ G that carries C3 ∈ F to C3 ∈ G for

some G ∈ F is impossible, so that some symmetry ψ ∈ V necessarily maps ψ : (C4 ∈ F) 7→

(C3 ∈ G), interchanging disks C3, C4. In F , the coordinate pair for o4 is (3, 2). However,

since ψ : F 7→ G carries ψ : o4 7→ o3 and since no coordinate o3 in Table 3.1 is in the set

{(±3,±2)}, no such mapping ψ ∈ V exists.

The center o4(3, 2) of C4 ∈ F coincides with the center of C4 belonging to the family

depicted in Figure 3.23b. The touching critical subfamily {C1, C2, C4} with C4 centered

at o4(3, 2) induces two distinct critical families F4, which are depicted in the respective

Figure 3.23b and 3.23d. No symmetry in V aligns the respective disks C3, so the two

families are distinct. It follows that the family depicted in Figure 3.23d is pairwise distinct

from its complement of families in F.

The 17 families represented in F are distinct.

Remark 3.24. Regarding the preceding theorem, disjoint critical families are documented

in Soltan [23]. The 17 touching critical families depicted in Figures 3.21, 3.22 and 3.23 were

constructed by exhaustion up to the symmetries in the Klein four-group V , and represent

every touching critical family of size four. Five families have three disks in a slab, which
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are depicted in Figure 3.21. In these families, either the three disks form a touching critical

subfamily F3 as in Figure 3.21a, or the critical subfamily F3 is disjoint. Precisely 12 families

avoid three disks in a slab and they are depicted in Figures 3.22 and 3.23.
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Chapter 4: Nonextendable Nonoverlapping Critical Families

of Disks

In this chapter we determine the threshold number for nonoverlapping critical families. We

identify the maximal nonoverlapping critical families which are, equivalently, nonextendable

by exhaustively documenting these families. This includes determining which of the 17

critical families F4 documented in Chapter 3 are extendable and subsequently constructing

an explicit representative corresponding to each extension.

4.1 Reduction to Critical Families F4

In this section we show that any nonoverlapping critical family Fn (n ≥ 5) of congruent

disks in the plane can be obtained from a suitable nonoverlapping critical subfamily F4 by

a consecutive extension of critical subfamilies.

Theorem 4.1. Any critical nonoverlapping (disjoint) family Fn (n ≥ 5) of congruent disks

in the plane contains a critical nonoverlapping (disjoint) subfamily F4.

Proof. This follows immediately from Theorem 2.15 since a critical family does not have

property S, and the fact that a subfamily of a disjoint family is itself disjoint.

Corollary 4.2. Any critical nonoverlapping family Fn = {C1, . . . , Cn} (n ≥ 5) can be

renumbered such that every subfamily Fk = {C1, . . . , Ck} (4 ≤ k ≤ n) is critical.

Corollary 4.3. Any nonoverlapping subfamily Fm ⊂ Fn that contains a critical subfamily

F4 ⊂ Fn is itself critical.
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4.2 Extensions Fn from disjoint critical subfamilies F4

Suppose we are given a touching critical family Fn. In accordance with Theorem 4.1, at least

one nonoverlapping critical subfamily F4 belongs to Fn. If this subfamily F4 is touching,

then it is possible to derive Fn by a consecutive extension of F4, and these extensions are

detailed in Section 4.3. If the family Fn does not concurrently contain a touching critical

subfamily F4, then every critical subfamily F4 of Fn is disjoint. The latter case is considered

below.

Theorem 4.4. Let Fn be a touching critical family of congruent disks in the plane. If

Fn does not contain a touching critical family F4, then n = 5 and the family F5 has the

configuration depicted in Figure 4.3. The family F5 depicted in Figure 4.3 is nonextendable.

Proof. 1. Assume first that n = 5. Suppose a touching critical family F5 = F4 ∪ {C5} is

the extension of a disjoint critical family F4 = {C1, C2, C3, C4}. If F5 is not concurrently

the extension of a touching critical subfamily F ⊂ F5 of size four, then each of its touching

subfamilies of size four has the support property S(4). Since C5 touches at least one

disk of F4, we stipulate up to labels that C5 touches C4. The subfamilies of size four

containing {C4, C5} are of the form {C4, C5} ∪ {Ci, Cj} (i 6= j ∈ {1, 2, 3}), so that precisely

1 ·
(
3
2

)
= 3 touching subfamilies of size four in F5 contain subfamily {C4, C5}. Additionally,

the subfamily {C1, C2, C3, C5} is not necessarily disjoint.

For notational convenience, we fix the touching subfamilies by label as in the following:

F = {C4, C5} ∪ {C1, C2} = {C1, C2, C4, C5}

G = {C4, C5} ∪ {C1, C3} = {C1, C3, C4, C5}

H = {C4, C5} ∪ {C2, C3} = {C2, C3, C4, C5}
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Since {C4, C5} is touching, it has three support lines L45 = {`1, `2, `3}. Reparametrize

as needed so that C4, C5 have their respective centers o4, o5 on the x-axis of the coordinate

plane with coordinates (−r, 0) and (r, 0), respective of order. This is depicted in Figure 4.1.

o4 o5

ℓ1

ℓ2

ℓ3

Figure 4.1: Touching subfamily {C4, C5} of the extension F5 of disjoint critical F4.

If none of F ,G,H is critical, then a line supports each subfamily, and these lines are

necessarily in L45 since {C4, C5} belongs to each of F ,G,H. And since disjoint F4 is critical

so that no line supports it, each of the three lines in L45 supports precisely one of the

subfamilies F ,G,H. Up to labels, we stipulate the following:

`1 supports F =⇒ `1 supports {C1, C2, C4}

`2 supports G =⇒ `2 supports {C1, C3, C4}

`3 supports H =⇒ `3 supports {C2, C3, C4}

The preceding implies the following pairs of lines support each respective disk as labeled:

Both of `1, `2 support C1, both of `1, `3 support C2, and both of `2, `3 support C3.
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These constraints determine the configuration of disjoint F4. In the following paragraph,

recall that F4 is disjoint and C4 is centered at (−r, 0) (see Figure 4.1).

Since both of `1, `3 support C2, the disk is centered at either (−r, 2r) or (r, 2r). Since

C2∩C4 = ∅, the center o2 of disk C2 necessarily has coordinates (r, 2r) (compare Figures 4.1

and 4.2). Since both of `2, `3 support C3, the disk is centered at either (−r,−2r) or (r,−2r).

Since C3 ∩ C4 = ∅, the center o3 of disk C3 has coordinates (r,−2r) (compare Figures 4.1

and 4.2). The resulting subfamily {C2, C3, C4, C5} is depicted in Figure 4.2.

o2

o3

o4 o5

ℓ1

ℓ2

ℓ3 ℓdef23R

Figure 4.2: Induced placement of C2, C3 relative to C4 given the support relations.

The third condition states that both of `1, `2 support C1, so C1 lies in the slab with

{C4, C5}. Furthermore, since F4 is critical, a line necessarily supports {C1, C2, C3}, and

this line coincides with a support in L23. Disk C1 is in the slab, and line `3 ∈ L23 is not

permitted to support C1 since F4 is critical. If a separating support in L23 supports C1,

then C1 overlaps with C5, and the extension F5 = F4∪{C5} is overlapping, a contradiction.

The remaining line `def23R ∈ L23 necessarily supports C1. This entails that the center

o1 of C1 has coordinates (3r, 0). This configuration coincides with the critical family F4

depicted in Figure 15 of Soltan [23] with the particular parametrization for the family in
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which the pairs of support lines are orthogonal, which is permitted for disjoint families of

size four. Extending this family by adjoining C5 centered at (r, 0) as in Figure 4.3, the

touching family F5 = F4 ∪ {C5} is critical. Notably, though this family coincides with

the extension F5 depicted in Figure 15 in Soltan [23], this particular parametrization is

prohibited for disjoint families.

Explicitly, the family F5 has S(3) since a line supports each of the four critical subfam-

ilies of its disjoint critical subfamily F4 ⊂ F5, and line `1 supports each of {C1, C2, C5},

{C1, C4, C5}, {C2, C4, C5}; line `2 supports each of {C1, C3, C5}, {C3, C4, C5}; and, `3 sup-

ports {C2, C3, C5}, so that a line supports each of the six critical subfamilies containing

C5. Since `1 supports F , line `2 supports G, line `3 supports H, and `def23R supports

{C1, C2, C3, C5}, the family does not contain a touching critical subfamily F4.

The constraints on the touching subfamily {C4, C5} force the respective pairs of support

lines to be orthogonal. The condition that F4 is disjoint forces the configuration of the

four disjoint disks {C1, C2, C3, C4} to coincide with that depicted in Figure 4.3 which is

necessarily the only configuration and parametrization of the disjoint critical subfamily F4

that induces a touching critical family F5.

The family F5 depicted in Figure 4.3 is not extendable. To form the extension F6 =

F5 ∪ {C6}, we either place disk C6 with x6 < 0 in the slab with {C4, C5}, or in the convex

region of the plane bounded by the lines `1, `3 since F5 has the symmetries of the square.

If we place C6 in the slab with {C4, C5}, then no line supports {C2, C3, C6}. If we place

C6 in the cone bounded by `1, `3, then no line supports {C1, C3, C6}. The family F5 is

nonextendable and therefore maximal.

The Dirichlet principle implies that if the aforementioned touching subfamilies F ,G,H of

size four of F5 are not critical, then precisely two lines in L45 support each of C1, C2, C3. In

any other configuration for touching critical family F5 = F4∪{C5} extended from a disjoint

critical subfamily F4 (where C5 touches C4), then for at least one disk in {C1, C2, C3},

precisely one of `1, `2, `3 supports the disk. Up to labels, suppose `1 supports C1, and

neither of `2, `3 supports C1. Then, since disjoint F4 is critical, line `1 is prohibited from
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o1

o2

o3

o4 o5

ℓ1

ℓ2

ℓ3 ℓdef23R

Figure 4.3: Unique touching critical F5 with no touching critical F4.

supporting both of C2, C3. Suppose `1 does not support C2, then we immediately infer that

no line supports {C1, C2, C4, C5}. Since F5 has the support property S(3), a line supports

each of {C1, C2, C4}, {C1, C2, C5}, {C1, C4, C5}, and {C2, C4, C5} so that the subfamily

F ′4 = {C1, C2, C4, C5} ⊂ F5 is necessarily critical. Since F ′4 ⊂ F5 is touching, it is a

touching critical family of size four, and this extension F5 is accounted for in Section 4.3.

2. Consider the case of any touching critical family Fn = Fn−1 ∪ {Cn} (n ≥ 6) that

does not contain a touching critical subfamily F4. The family necessarily contains a disjoint

critical subfamily F4 by Theorem 4.1. We proceed to show that this leads to a contradiction.

If any disk C5, C6, . . . , Cn ∈ Fn touches the critical disjoint subfamily F4, then the sub-

family {Ci} ∪ F4 ⊂ Fn (i ∈ {5, . . . , n}) of size five necessarily takes on the configuration F

depicted in Figure 4.3 by the arguments given above. Since this family F5 is nonextendable,

this contradicts the fact that F belongs to Fn, so necessarily F4 ∩ {C5, C6, . . . , Cn} = ∅.

Since Fn is touching, it necessarily contains, up to labels, at least one pair Cm, Cn of

touching disks with m ∈ {5, . . . , n − 1}. Combinatorially, the family Fn contains precisely

t := 1 ·
(
k−2
2

)
≥ 6 touching subfamilies Gk ⊂ Fn (k ∈ {1, . . . , t}) of size four of the form

{Cm, Cn} ∪ {Ci, Cj} (i, j 6= m,n). This includes the following six families:
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G1 = {C1, C2, Cm, Cn}, G2 = {C1, C3, Cm, Cn}, G3 = {C1, C4, Cm, Cn}

G4 = {C2, C3, Cm, Cn}, G5 = {C2, C4, Cm, Cn}, G6 = {C3, C4, Cm, Cn}

Since a line supports each subfamily Gk, and {Cm, Cn} ⊂ Gk (for each k), then each Gk

is supported by at least one line in Lmn = {`1, `2, `3} (observe that we renew the labels

`1, `2, `3 for this part, Part 2., of the current proof). By the Dirichlet principle, one of the

lines in {`1, `2, `3} supports at least

⌈
6

3

⌉
= 2 subfamilies Gkλ ,Gkµ with kλ, kµ ∈ {1, . . . , 6}

(the subscript k is indexed by the symbols λ, µ and below by ν). If line ` supports {Gkλ ,Gkµ}

with Gkλ ∩ Gkµ = {Cm, Cn}, then line ` necessarily supports F4 since

∣∣Gkλ ∪ Gkµ∣∣ = |Gkλ |+
∣∣Gkµ∣∣− ∣∣Gkλ ∩ Gkµ∣∣ = 4 + 4− 2 = 6,

so that Gkλ ∪ Gkµ = F4 ∪ {Cm, Cn}.

And if line ` ∈ Lmn supports three or more subfamilies including Gkλ ,Gkµ ,Gkν with

kλ, kµ, kν ∈ {1, . . . , 6}, then line ` supports either F4 or, up to labels, {C1, C2, C3} ∈ F4 by

the Dirichlet principle since the intersection
∣∣Gkλ ∩ Gkµ∣∣ ≤ 3 for each pair of disks among

the six Gk. Then, by a further application of the Dirichlet principle, the remaining two

lines in Lmn support the remaining three Gk, so that a line `′ ∈ Lmn supports, up to

labels, {C1, C2}. If lines `, `′ correspond to the parallel supports `1, `2, then ` supports F4,

a contradiction. So lines `, `′ correspond to `1, `3 or `2, `3, in which case the intersection

{C1, C2} ∩ {Cm, Cn} 6= ∅, a contradiction.

To avoid this contradiction, each line ` ∈ Lmn necessarily supports precisely two of the

subfamilies Gkλ ,Gkµ with kλ, kµ ∈ {1, . . . , 6} where
∣∣Gkλ ∩ Gkµ∣∣ = 3 which necessarily implies
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that each line ` ∈ Lmn supports three disks of F4. In particular, lines `1, `3 ∈ Lmn each

respectively support three disks in F4, which we temporarily label as {D1, D2, D3} ⊂ F4

and {E1, E2, E3} ⊂ F4. And since |F4| = 4, necessarily |{D1, D2, D3} ∩ {E1, E2, E3}| ≥ 2,

so that `1, `3 both simultaneously support at least two disks in F4. Observe that this forces

the disks to have respective centers (−r, 2r) and (r, 2r), so that these disks touch Cm, Cn,

respective of order, which contradicts the condition F4 ∩ {Cm, Cn} = ∅.

The obtained contradiction implies that any touching critical family Fn (n ≥ 6) neces-

sarily contains a touching critical subfamily F4.

Corollary 4.5. The touching critical families Fn described in Section 4.3 together with

the family F5 depicted in Figure 4.3 completely describe all touching critical families Fn

with n ≥ 5.

4.3 Extendibility of Touching Critical Families F4

It is not trivial to determine whether a particular critical family F4 is extendable. No a

priori, combinatorial criterion prevents any particular extension F5 = F4 ∪ {C5}. As a

representative example, consider for the moment the family depicted in Figure 3.21a. If we

adjoin a congruent disk C5 to F4 with center o5(x5, y5) = (x5, 2r), then line `1 (not shown)

supports it and consequently the subfamilies {C1, C2, C5}, {C1, C3, C5}, and {C2, C3, C5}.

A subsequent horizontal translation brings C5 in contact with `sep23RL = `sep34LR on the left

side of the disk, and the line consequently supports the additional subfamilies {C2, C4, C5}

and {C3, C4, C5}. In this configuration, lines `1 and `sep23RL support five of the six critical

subfamilies of F5 = F4 ∪ {C5} that contain C5. A line in L14 must support the remaining

subfamily {C1, C4, C5} to ensure S(3). One possibility is line `sep14LR (not pictured in

Figure 3.21a), which, together with `1 and `sep23RL, forms the boundary of a region in the

plane where each line simultaneously supports a disk of nonzero radius which is potentially

congruent to the disks in F4. It remains to determine the radius of the disk.
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The description of the region in the preceding paragraph involves two of the five crit-

ical supports of F4 and a third line that supports two disks in F4. Heuristically, many

configurations of lines and the associated bounded regions that they respectively inscribe

support a disk of nonzero radius that is potentially congruent to those of F4. No a priori

reason forbids an extension F5 = F4 ∪ {C5} where any number of the critical supports of

F4 support C5.

Explicitly, if none of the critical supports of F4 support C5, then six distinct lines, one

each from the respective sets of support lines Lij (i 6= j and 1 ≤ i < j ≤ 4) must support

C5. Such a configuration is unlikely but not impossible. Surveying the 17 critical families

F4 of Chapter 3, one must check at least 384 relevant configurations of lines. Alternatively,

if one critical support of F4 supports C5, then at least three additional distinct lines among

the supports in the sets Lij (i 6= j and 1 ≤ i < j ≤ 4) must also support C5. Surveying

the 17 critical families F4 of Chapter 3, one must check at least 350 configurations of lines.

Alternatively, precisely two critical supports of F4 may support C5 in which case one must

check at least 221 relevant configurations of lines.1 Additionally, it is possible for three

critical supports of F4 to support the disk C5. Furthermore, once we have identified a

suitable region bounded by three or more relevant lines that concurrently support a disk

of nonzero radius, we must determine whether the disk is congruent to the members of F4

which unavoidably requires a geometric or analytic justification.

Since this direct approach involves evaluating multiple inscribed regions among the 955

configurations of lines mentioned, we proceed by showing in particular that two critical

supports of F4 necessarily support C5 in any extension, significantly reducing the scope of

our analysis. The primary goals of this section are encapsulated in the following theorem.

Theorem 4.6. Of the 17 families in F (introduced in Theorem 3.23), precisely four families

are extendable. These correspond to the families depicted in Figures 3.21d, 3.21e, 3.22a,

and 3.22b. The number of extensions Fk (k ≥ 5) is finite, and the size of the largest maximal

extension Fk contains seven disks.

1See Appendix A for explicit calculations.
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The proof of Theorem 4.6 (see page 144) is a direct consequence of the results contained

in Lemma 4.7 through Corollary 4.16 detailed below. These lemmas and corollaries describe

the properties of the touching subfamilies of size four of an extension F5. In particular,

Lemmas 4.7 and 4.8 and Corollaries 4.9 and 4.10 taken together show that any touching

critical family F5 has precisely one critical subfamily F4. The two remaining touching

subfamilies of size four have the support property S. The following lemmas assume F4 ∈ F

is parametrized by convention as in Tables 3.1 and 3.2.

Lemma 4.7. If a touching critical family F4 = {C1, C2, C3, C4} is extendable to F5 =

F4 ∪{C}, then the subfamily F ′4 = {C1, C2, C3, C} ⊂ F5 is a touching critical family or has

the support property S.

Proof. Since F5 = F4 ∪ {C} is critical by supposition, at least one line supports each

of its subfamilies {C1, C2, C}, {C1, C3, C}, and {C2, C3, C}. If no line supports F ′4 =

{C1, C2, C3, C}, then it is a critical subfamily. The subfamily F ′4 ⊂ F5 is not disjoint

since {C1, C2} ⊂ F ′4 is a touching subfamily. Either a line supports {C1, C2, C3, C} or F ′4

is a touching critical family with a representative in F.

Lemma 4.8. If a touching critical family F4 = {C1, C2, C3, C4} is extendable to F5 =

F4 ∪ {C}, then a line in L12 supports the subfamily F ′4 = {C1, C2, C3, C} ⊂ F5, and this

line is a critical support of F4.

Proof. From Lemma 4.7, family F ′4 is either critical or it has the support property S. To

induce a contradiction, suppose F ′4 is a touching critical family with a representative in F.

As noted in the proof of Theorem 3.23, each respective disk C3 of the 17 families depicted

in Figures 3.21, 3.22, and 3.23 has distinct coordinates according to Table 3.1. Since the

extension F5 = F4 ∪ {C} contains the critical subfamily F ′4 = {C1, C2, C3, C} ⊂ F5, it

follows that disk C 6∈ F4 since this would imply F ′4 = F4. This requires disk C to be

in a symmetric position to C4, which implies the subfamily {C1, C2, C3} has at least one

symmetry of the Klein four-group V . As in the proof of Theorem 3.23, the only family
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with this property is that depicted in Figure 3.21a, so that disk C 6∈ F4 is centered at

(−1,−2.2104) (compare Table 3.2). However, direct inspection confirms that no line in L34

supports {C3, C4, C}.

Since the subfamily {C1, C2, C3} ⊂ F4 does not coincide with that depicted in Fig-

ure 3.21a, the disk C3 ∈ (F3 ∩ F4) induces a unique placement for C4 ∈ (F4 ∩ F4). Since

F4 6= F ′4, the subfamily F ′4 ⊂ F5 is not identical as labeled to a family in F. Heuristically,

disk C3 ∈ F ′4 may correspond to disk C4 in some family G ∈ F. However, the fact that the

families in F are pairwise distinct up to symmetries in V precludes this possibility.

It is impossible that both F5 and its subfamily F ′4 are critical, so the touching subfamily

F ′4 ⊂ F5 is not critical. A line ` supports every member of F ′4 as a direct consequence of

Lemma 4.7. Since {C1, C2} ⊂ F ′4, the line ` is in L12, and ` is by definition a critical support

of F4.

Corollary 4.9. If a touching critical family F4 = {C1, C2, C3, C4} is extendable to F5 =

F4 ∪ {C}, then a line in L12 supports the subfamily F ′′4 = {C1, C2, C4, C} ⊂ F5, and this

line is a critical support of F4.

Proof. Compare this with the proof of Lemma 4.8. As a corollary to Lemma 4.7, either F ′′4

has a representation in F or it has the support property S. Assume F ′′4 ∈ F. In particular,

assume for the moment that F ′′4 ∈ F′ as in the proof of Theorem 3.23, so that F ′′4 is one of

the families depicted in Figures 3.21, 3.22 and 3.23 excluding those depicted in Figures 3.21a

and 3.23d.

Using the function φ : F′3 7→ F′4 introduced in Theorem 3.23, we determine the structure

of critical F ′′4 ∈ F′ by the following method. By construction, the function evaluation

φ−1(C4) = C ∈ F′3 is unique, so that given disk C4 ∈ F ′′4 , we have F ′′4 = {C1, C2} ∪

{C4, φ
−1(C4)} = {C1, C2, C4, C} ∈ F′. Since {C1, C2, C4} ⊂ (F ′′4 ∩ F4), the containment

F4 ∈ F′ implies φ−1(C4) = C3 = C and F ′′4 = {C1, C2, C4, φ
−1(C4)} = F4, so that |F5| = 4,

a contradiction.
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Since critical F ′′4 6= F4, necessarily F ′′4 6∈ F′. Family F ′′4 ∈ (F \ F′) coincides with one of

the families depicted in Figures 3.21a and 3.23d. If F ′′4 is identical to the family depicted

in Figure 3.21a, then the family F4 does not have this configuration, and C3 6= C. Since

C4 ∈ F4, we infer C4 ∈ F4, so that C4 has center (−1, 2.2104) as in Table 3.2 with r = 1.

From the exhaustive construction of F, we infer that the subfamily {C1, C2, C4} induces

precisely one placement for a disk C and necessarily C ∈ F3 since only one point in the set

{(±1,±2.2104)} is in F3 and none of these is in F4, as verified by inspecting Tables 3.1 and

3.2. In particular, C = C3 ∈ F3 so that F ′′4 = F , a contradiction.

Alternatively, if F ′′4 is identical to the family depicted in Figure 3.23d, then a disk in

F4 has its center in {(±3,±2)}. And since F4 is parametrized by convention, the disk

has center (3, 2) and corresponds to C4 ∈ F4. Since F ′′4 6= F4, disk C3 6= C. Since only

two families have disk C4 centered at (3, 2), the subfamily F4 corresponds to the family

depicted in Figure 3.23b. Superimposing F4 with F ′′4 , the disks C and C3 overlap, so that

F5 containing {C3, C} is overlapping, a contradiction.

The preceding arguments apply equally if instead we consider separately F4 ∈ F′ and

F4 6∈ F′. It follows that the touching subfamily F ′′4 = {C1, C2, C4, C} ⊂ F5 is not critical

and some line ` in L12 supports each of its members and is a critical support of F4 by

definition.

Corollary 4.10. Any touching critical family F5 not depicted in Figure 4.3 contains pre-

cisely one touching critical subfamily of size four which corresponds to one of those in F up

to the symmetries in V .

Proof. The family F5 does not have the configuration depicted in Figure 4.3, so it contains

a touching critical subfamily F4. The result follows as an immediate consequence of Lem-

mas 4.7, 4.8 and Corollary 4.9. Of the 1 ·1 ·
(
3
2

)
= 3 subfamilies of size four of F5 = F4∪{C},

the subfamilies F ′4 and F ′′4 have the support property S, whereas F4 ⊂ F5 is critical and

corresponds to one of the families depicted in Figures 3.21, 3.22, and 3.23.
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Corollary 4.11. If a critical family F5 = F4 ∪ {C} is the extension of a touching critical

family F4, then at least two critical supports of F4 in L12 support C.

Corollary 4.12. If a critical family Fn = Fn−1 ∪ {Cn} is the extension of a touching

critical family Fn−1 which itself is the extension of a touching critical family F4, then at

least two critical supports of F4 in L12 support Cn.

Proof. According to Lemma 4.8 and Corollary 4.9, each subfamily F ′4 = {C1, C2, C3, Cn} ⊂

(F4 ∪ {Cn}) and F ′′4 = {C1, C2, C4, Cn} ⊂ (F4 ∪ {Cn}) has the support property S. Fur-

thermore, the lines that support these subfamilies are critical supports of F4 in L12, so that

at least two critical supports of F4 support Cn.

To summarize the preceding, each family in F is distinct. If an extension F5 = F4 ∪ {C}

exists, then it has precisely one touching critical subfamily which is F4. In particular,

Lemma 4.8 and Corollary 4.9 require that two distinct critical supports of F4 in L12 support

disk C and consequently at least one critical support of F4 in L12 supports each of the two

remaining touching subfamilies of size four.

We now develop criteria that guarantee a touching critical F4 is extendable. Since the

family depicted in Figure 3.21a is unique in having a touching critical subfamily in a slab,

we dispense with this family separately.

Lemma 4.13. The family depicted in Figure 3.21a is not extendable.

Proof. Suppose F5 = F4 ∪ {C} is an extension of F4 depicted in Figure 3.21a. Lemma 4.8

guarantees that a line in L12 supports the subfamily {C1, C2, C3, C} = F ′4 ⊂ F5, which

must be one of `1, `2 since the subfamily {C1, C2, C3} lies in a slab (`1 is not shown).

Furthermore, Corollary 4.9 guarantees that a line in L12 supports F ′′4 = {C1, C2, C4, C},

consequently `v supports C. Disk C is supported by either both of `1, `v or both of `2, `v

which places the disk at one of the corners determined by these respective pairs of lines

(refer to Figure 3.21a). These constraints provide precisely three possible placements for
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the disk C in the extension since disks are not permitted to overlap or coincide. A line

supports each critical subfamily of F5 containing C except for {C3, C4, C}.

In particular, if line `2 supports disk C, then C is disjoint from the supports in L34

since line `2 separates it from the lines in L34. On the other hand if line `1 (not pictured)

supports C, then line `def34L is disjoint from C, and since C overlaps with the slab containing

{C3, C4}, the line `def34R cuts C by symmetry. By inspection, line `sep34LR (pictured) cuts

C and the associated separating support `sep34RL (not pictured) cuts C: a rotational shift

of `1 maintaining contact with the boundary of C3 that brings the line to the position of

`sep34RL drives the line into C, so that it cuts the disk.

We are now ready to state the criteria for extendable critical families F4.

Lemma 4.14. Any touching critical family F4 is extendable if and only if line `1 supports

C3, and line `2 supports C4.

Proof. By the conventions in this paper, the parameters γ, y3 associated with the center o3

of C3 are nonnegative, so that each line in {`1, `2} supports a disk in {C3, C4} only if line

`1 supports C3 and line `2 supports C4.

( ⇐= ) Suppose line `1 supports C3 and line `2 supports C4 in a touching critical F4.

Then neither of C3, C4 lies in the slab with {C1, C2} since F4 does not have property S. This

describes the families depicted in Figures 3.21d, 3.21e, 3.22a, and 3.22b. By Corollary 4.11,

two critical supports of F4 in L12 necessarily support C, so disk C lies in the slab with

{C1, C2} supported by both of `1, `2. These lines support five of the six critical subfamilies,

the exception being {C3, C4, C}. By convention, a line in L34 supports C1 on the left (line

`def13L in each of the four respective figures). Place C in the slab opposite C1, so that it

contacts this line. The line supports {C3, C4, C} and C is disjoint from F4, so the touching

family F5 is critical.

( =⇒ ) Suppose F5 = F4 ∪ {C} is a critical extension of F4. As a consequence of

Corollary 4.11, at least two distinct critical supports in L12 support C, so that a line

supports F ′4 = {C1, C2, C3, C} and a line supports F ′′4 = {C1, C2, C4, C}. If either line `1
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does not support C3 or line `2 does not support C4, then line `v supports one of F ′4,F ′′4

(and neither of `1, `2 supports it). Either disk C3 lies above `1, and `2 supports C4, or

both disks lie above `1 as confirmed by inspecting Figures 3.21, 3.22, and 3.23 depicting

the 17 members of F. The case when C3 lies in a slab with {C1, C2} is accounted for in

Lemma 4.13.

In the first of the configurations described above, line `2 supports C4 and line `v supports

C3. By Corollary 4.11 both lines support C. This describes the three families depicted in

Figures 3.21c, 3.22d, and 3.22e. The lines `v and `2 intersect in a right angle, creating

four angular regions capable of supporting a disk tangent to both lines, two of which are

occupied respectively by C1, C2. If C is centered at o(r,−2r) in the fourth quadrant of the

plane, then in each respective family, the line `def34R of the four in L34 approaches nearest

to the boundary of disk C but does not enter the quadrant.

Otherwise, under the convention r = 1, disk C is centered at (−r,−2r) = (−1,−2)

(where `2 supports C4 and `v supports C3). For the family depicted in Figure 3.21c, disk

C overlaps with C4 since the center o4 of C4 has coordinates (−2.7664,−2) with r = 1 (see

Table 3.2), and the pair C,C4 would touch precisely if disk C4 had center o4 with coordinates

(−3, 2). For the respective Figures 3.22d and 3.22e with C centered at o(−1,−2), line

`def34R of the four in L34 approaches nearest to the boundary of C. In the family depicted

in Figure 3.22d, line `def34R supports C precisely when the line meets the horizontal at an

angle of 45◦ since it supports C2. The line is disjoint from C since it meets the horizontal

at an angle less than 45◦ since γ − x4 > y3 − y4 for the family.

For the family depicted in Figure 3.22e, line `def34R does not support C2. We observe

instead that `def34R supports C5 centered at (−1,−2) with r = 1 if and only if a translate

C ′5 of disk C5 along the line parallel to `def34R through the point (−1,−2) touches disk C3.

A direct calculation shows that this condition does not hold. Explicitly, we approximate
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the positive slope of `def34R by

k = 0.6212 ≈ 4.1

6.6
>

4.0876 . . .

6.6859 . . .
≈ 0.6114,

which inclines the line slightly toward C3, so that the translate C ′5 of disk C5 with its center

o′5 on the line with slope k through (−1,−2) approaches closer to C3 than it would along

the line parallel to `def34R through (−1,−2). Solving for d (o3, o
′
5) ≤ 2, where o′5 is the

center of the translate C ′5, leads to a quadratic with negative discriminant whose graph lies

above the x-axis, which implies C3 and the translate C ′5 are disjoint for all values of x. The

calculation is omitted for brevity. Since disks C3, C
′
5 are disjoint for any position of o′5 on

the line, this implies disk C5 is disjoint from `def34R. The families in this first configuration

are not extendable.

For a family in the second configuration described above, both of C3, C4 lie above line

`1. Up to labels, `v supports C3 and `1 supports C4 (the one exception is Figure 3.22c).

This describes the three families depicted in Figures 3.21b, 3.22c, 3.22f, and the six families

depicted in Figure 3.23. As a consequence of Lemma 4.8 and Corollary 4.9, both of `1, `v

support disk C. These lines intersect in a right angle, creating four angular regions capable

of supporting a disk tangent to both lines, two of which are respectively occupied by one of

C1, C2. With the convention r = 1, either C has center (r, 2r) = (1, 2) or center (−r, 2r) =

(−1, 2). In Figures 3.21b, 3.22c, 3.22f, and 3.23c, disk C overlaps with one of C3, C4 in

either position, so no extension is possible.

Five families remain. In Figures 3.23a, 3.23b, 3.23d, 3.23e, and 3.23f, disk C centered at

(r, 2r) = (1, 2) overlaps with one of C3, C4 by geometric inference. The remaining position

centers disk C at (−r, 2r) = (−1, 2). Inspecting Figure 3.23a, the supports in L34 are

disjoint from a congruent disk C centered at (−1, 2). In Figures 3.23d and 3.23f, no line

in L34 supports disk C centered at (−1, 2). In both families, the definite supports and one

separating support of {C3, C4} are disjoint from C by geometric inference (see the respective
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figures). The associated separating support `sep13LR = `sep34RL of each respective family

cuts C since the corresponding line in each respective family supports C1 on the left from

above and C touches C1. The family depicted in Figure 3.23e is similar to those depicted

in Figures 3.23d and 3.23f since the definite supports of {C3, C4} are disjoint from C by

observation. Furthermore, the support `sep13LR = `sep34 cuts C since it supports C1 from

above and the pair {C1, C} is touching. Since {C3, C4} is touching this accounts for the

three supports of L34.

For the remaining family depicted in Figure 3.23b, line `def34R ∈ L34 and both separating

supports of L34 are disjoint from C centered at (−1, 2) by observation. The remaining line

`def34L cuts C: the centers of disks C4, C lie on the line {y = 2r = 2} (standardized with

r = 1), and by symmetry either both separating supports of {C4, C} support disk C3 or they

do not. The line `sep14RL = `def13R supports C3, and rotating `sep14RL clockwise into C3,

dynamically maintaining contact with the boundary of C4, until it supports C from below

shows that this separating support of {C4, C} cuts C3. Since the separating support of

{C4, C} that supports C from below cuts C3, it is impossible that the line `def34L supports

C (from above) since this would require both separating supports of {C4, C} to support C3,

a contradiction.

This accounts for the nine families, and it follows that no extension is possible if either

line `1 fails to support C3 or line `2 fails to support C4. And when `1 supports C3 and `2

supports C4, an extension is possible with C placed in the slab with {C1, C2} as outlined

above.

The following corollaries are an immediate consequence of the preceding.

Corollary 4.15. The 7 critical families of size four depicted in Figures 3.21a, 3.21b, 3.21c,

3.22c, 3.22d, 3.22e, 3.22f, and the 6 families depicted in Figure 3.23 are nonextendable and

therefore maximal.

Corollary 4.16. The critical families of size four depicted in Figures 3.21d, 3.21e, 3.22a,

and 3.22b are extendable.
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We now explicitly describe the extensions of the families identified in Corollary 4.16

including the maximal extensions of each family. Each family is distinct since the placement

of disks C3, C4 is distinct as confirmed by Tables 3.1 and 3.2. Furthermore, adjoining disks

to each family cannot induce an additional line of symmetry through the origin, so that we

do not need to concern ourselves with the symmetries of the various dihedral groups. The

symmetries in V are sufficient to verify the various extensions are distinct. Corollary 4.12

guarantees that in any touching extension Fk+1 = Fk ∪ {Ck+1} (k ≥ 4) the congruent disk

Ck+1 is placed in the slab determined by `1, `2 since two critical supports of F4 in L12 must

support Ck+1.

Lemma 4.17. The touching critical family F4 depicted in Figure 3.21d has two extensions

F5 = F4 ∪ {C5} of size five. Each family F5 is nonextendable and therefore maximal.

Proof. Corollary 4.16 states that the family depicted in Figure 3.21d is extendable. As a

consequence of Corollary 4.11, disk C5 must lie in the slab determined by `1, `2 since two

critical supports of F4 in L12 must support C5. Disk C5 is not permitted to overlap with

F4, and in particular since C5 is placed in this slab, it is sufficient to ensure that C5 does

not overlap with the subfamily {C1, C2}.

Since `1 supports {C1, C2, C3, C5} and `2 supports {C1, C2, C4, C5}, a line supports every

critical subfamily except {C3, C4, C5}. To preserve S(3) in the extension F5, a support

of {C3, C4} must support C5. Since the lines `1, `2 correspond to the definite supports

of each respective subfamily {C1, C5} and {C2, C5}, any other support of the respective

subfamilies separates the respective pair of disks. Furthermore, Theorem 2.3, Part (c)

guarantees that the disjoint subfamily {C3, C4} has four support lines which are listed in

the set L34 = {`def34L, `def34R, `sep34LR, `sep34RL}. When line `def34L = `def13L supports

C5 on the right, it separates C5 from {C1, C2} since `def34L = `sep15LR, and the resulting

extension F5 is touching (see Figure 4.4a).

The critical support `sep34RL = `sep23LR of F4 separates {C2, C5} when it supports C5

(necessarily on the right), so we must only determine whether C5 overlaps with C1. Since
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line `sep34RL contains the center o1 of C1, rotate the collection of disks and lines C1, C2,

and `sep34RL through an angle of 180◦ about o1 so that the image C ′2 of C2 lies in the slab

adjacent to C1. Disks C3, C4 remain in place and the rotation about o1 maps line `sep34RL

onto itself. The image C ′2 of C2 is in the position of C5 supported by `sep34RL. Since {C1, C2}

is touching, the subfamily {C1, C
′
2} 7→ {C1, C5} is touching as is the resulting extension F5

(see Figure 4.4b).

ℓdef13L

ℓsep23LR

o3

o4

(a)

ℓdef13L

ℓsep23LR

o3

o4

(b)

Figure 4.4: Extensions of size 5 of the family depicted in Figure 3.21d.

The remaining lines `def34R, `sep34LR in L34 induce overlapping extensions which are not

permitted. Since line `def34R = `def13R supports C1 on the right, it necessarily supports

C5 on the left in an extension, separating {C1, C5} since `def13R = `sep15RL. We show that

disk C5 overlaps with C2. Let C5 with center (3r, 0) touch C2 and assume that `def34R

(positive slope) supports C5 on the left. Since C5 lies to the right of C2, a line with negative

slope supports C3 on the right and C5 on the left, a contradiction. Since `def34R supports

a congruent disk C5 with x5 < 3r, that disk overlaps with C2 which is not permitted.

The remaining line `sep34LR contains the center o1 of C1. As detailed above, its associated

separating support `sep34RL = `sep23LR supports the (two) disks C2 and C5 that touch C1
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on opposite sides. Rotating this associated separating support `sep34RL counterclockwise

about the point o1 (through disk C3) to coincide with `sep34LR implies the line is disjoint

from both of C2, C5 since γ 6= x4. To the left of `sep34LR, a disk translated from the position

of C5 centered at (−3r, 0) to the right C5 7→ C ′5 meets the line, and overlaps with C1 which

is not permitted. Similarly, to the right of `sep34LR a disk translated from the position of C2

centered at (r, 0) to the left C2 7→ C ′2 meets the line and overlaps with C2 (and C1) which

is not permitted.

The families F5 depicted in Figure 4.4 cannot be extended since an extension F6 nec-

essarily incorporates both disks labeled C5 in the respective extensions F5 and the pair of

disks overlaps which is not permitted.

Lemma 4.18. The touching critical family F4 depicted in Figure 3.21e has five extensions

F5 = F4 ∪ {C5} of size five. Each of these families is extendable.

Proof. An extension F5 has congruent disk C5 in the slab between `1, `2. It is nonoverlap-

ping if C5 does not overlap with {C1, C2}. Since the lines `1, `2 coincide with the definite

supports of both subfamilies {C1, C5} and {C2, C5}, the remaining supports of each respec-

tive subfamily separates the disks. Since `1 supports C3 and `2 supports C4, a line supports

every critical subfamily except possibly {C3, C4, C5}, so a line in L34 necessarily supports

C5. By Theorem 2.3, Part (c), the disjoint subfamily {C3, C4} has the four supports listed

in the set L34 = {`def34L, `def34R, `sep34LR, `sep34RL}. When `def34L = `def13L supports C5,

it separates C5 from {C1, C2} (see Figure 4.5a).

The critical support `def34R of F4 necessarily supports C5 on the left in any extension.

Since the line has positive slope and supports C3 from below, it supports a disk C5 in

the slab disjoint from C2 (see Figure 4.5d). The critical support `sep34LR = `def23L of F4

necessarily supports C5 on the right in any extension, separating C5 from C2, so we check

if C5 overlaps with C1. Since line `sep34LR contains point o1, rotating the collection of disks

and lines C1, C2 and `sep34RL through an angle of 180◦ about o1 maps disk C2 7→ C ′2 = C5
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in the slab so that it touches C1 and line `sep34LR supports C5 on the right (see Figure 4.5c).

ℓdef13L

ℓdef23L

o3

o4

(a)

ℓdef13R

ℓdef23L

o3

o4

(b)

ℓdef13L

ℓdef23L

o3

o4

(c)

ℓdef13L

ℓdef23L

o3

o4

(d)

ℓdef13R

ℓdef23L

o3

o4

(e)

Figure 4.5: Extensions of size 5 of the family depicted in Figure 3.21e.

Line `sep34RL contains the point o1, and cuts C2 which touches C1. By symmetry about

point o1, the line cuts any congruent disk in the slab that touches C1 on its left, so the

line supports a disk C5 disjoint from C1 (see Figure 4.5b). Additionally, since line `sep34RL

has positive slope and supports C3 from below, it supports disk C5 disjoint from C2 on

the left. Explicitly, since γ = r + 2r
√

3, a disk centered at (γ, 0) is disjoint from C2 since
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γ − δ = (r + 2r
√

3) − r = 2r
√

3 > 2r, and x5 > γ implies disk C5 with center o5(x5, 0) is

disjoint from C2 (see Figure 4.5d).

The family has 5 extensions which are depicted in Figure 4.5.

Lemma 4.19. The touching critical family F4 depicted in Figure 3.21e has eight extensions

F6 = F5 ∪ {C6} of size six. Each of these families is extendable.

Proof. The touching critical F4 depicted in Figure 3.21e has five extensions F5. The number

of extensions of size six is bounded above by
(
5
2

)
= 10 since each extension incorporates two

of the disks labeled C5 in the respective extensions F5. This upper limit is not attained.

In the respective families depicted in Figure 4.5a (`def34L supports C5) and Figure 4.5b

(`sep34RL supports C5), the two disks labeled C5 overlap: each line `def34L, `sep34RL has

positive slope and supports C4 and its respective disk C5 on the left, so the respective

congruent disks C5 necessarily overlap by construction. Similar comments show that the

two disks labeled C5 in the respective families depicted in Figures 4.5d and 4.5e also overlap.

The two respective pairs of overlapping disks labeled C5 in their respective extensions

prevent two possible extensions F6. The remaining 10 − 2 = 8 extensions are depicted in

Figure 4.6.

Lemma 4.20. The touching critical family F4 depicted in Figure 3.21e has four extensions

F7 = F6 ∪ {C7} of size seven. These families are nonextendable and therefore maximal.

Proof. The family depicted in Figure 3.21e has five extensions F5 as described in Lemma 4.18.

Since each respective extension F7 uses three of the disks labeled C5, the number of ex-

tensions F7 is bounded above by
(
5
3

)
= 10. As noted in Lemma 4.19, two respective pairs

of disks labeled C5 in their respective extensions overlap. Since adjoining an overlapping

pair to one of the three remaining disks labeled C5 forms a family of size 7, we lose three

extensions F7 for each pair of overlapping disks. A total of six possible extensions are lost,

and the remaining 10− 6 = 4 extensions of size 7 are depicted in Figure 4.7.
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Figure 4.6: Extensions of size 6 of the family depicted in Figure 3.21e.
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These families are nonextendable. Each extension of size 7 depicted necessarily contains

one disk from each of the overlapping pairs of disks labeled C5. Any further extension

incorporates a pair of overlapping disks in the family.

ℓdef13L

ℓdef23L
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(a)

ℓdef13L

ℓdef23L
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o4
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o4

(c)

ℓdef13R

ℓdef23L

o3

o4

(d)

Figure 4.7: Extensions of size 7 of the family depicted in Figure 3.21e.

Lemma 4.21. The touching critical family F4 depicted in Figure 3.22a has three extensions

F5 = F4 ∪ {C5} of size five. Each of these families is extendable.

Proof. Line `def34L supports a disk C5 on the right that is disjoint from F4, so the extension

is nonoverlapping (Figure 4.8a). If `def34L supports C5 on the left then `def34R supports C5

on the right, and the disk overlaps with C1 since disk C1 overlaps significantly with the slab

determined by lines `def34L, `def34R (losing two positions). Any disk supported by `def34R

on the left overlaps with C2 since the disks nearly coincide. Any disk C5 placed in contact

with the critical support `sep34LR = `def13L on its left within the slab determined by `1, `2
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is nonoverlapping with F4 (Figure 4.8c). The line `sep34RL supports a disk C5 on the right

in the slab that is nonoverlapping with F4 (Figure 4.8b). The three extensions F5 with

disk C5 placed to the left of `sep34LR = `def13L and therefore nonoverlapping with F4 are

depicted in Figure 4.8.
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o4

ℓ1

ℓ2
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Figure 4.8: Extensions of size 5 of the family depicted in Figure 3.22a.

Lemma 4.22. The touching critical family F4 depicted in Figure 3.22a has two extensions

F6 = F5 ∪ {C6} of size six. These families are nonextendable and therefore maximal.

Proof. The family F4 depicted in Figure 3.22a has three extensions F5 which are depicted

in Figure 4.8. Any extension of size six selects two of the respective disks labeled C5, so

the number of extensions F6 is bounded above by
(
3
2

)
= 3. By inspection, one of these

pairs overlaps, and the remaining 3 − 1 = 2 extensions F6 are depicted in Figure 3.22a.
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An extension of size 7 requires adjoining all three of the respective disks labeled C5, two of

which overlap, so each family F6 is nonextendable and therefore maximal.

ℓdef13L
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o4

ℓ1

ℓ2

(b)

Figure 4.9: Extensions of size 6 of the family depicted in Figure 3.22a.

Lemma 4.23. The touching critical family F4 depicted in Figure 3.22b has three extensions

F5 = F4 ∪ {C5} of size five. Some of these families are extendable.

Proof. The line `def34L supports a disk C5 on the right that is disjoint from F4 (Fig-

ure 4.10a). If `def34L supports C5 on the left, then the disk overlaps with C1 since disk

C1 overlaps significantly with the slab determined by the lines `def34L, `def34R (losing two

positions).

Any disk C5 within the slab determined by `1, `2 that contacts line `sep34LR = `def13L

from the left does not overlap with F4 (Figure 4.10c). The line `sep34RL supports a disk on

the right disjoint from F4 (Figure 4.10b). However, a congruent disk supported on the left

by `sep34RL nearly coincides with C2.

The three extensions F5 with disk C5 placed to the left of `sep34LR = `def13L are depicted

in Figure 4.10.

Lemma 4.24. The touching critical family F4 depicted in Figure 3.22b has one extension

F6 = F5 ∪ {C6} of size six. This family is nonextendable and therefore maximal.
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Figure 4.10: Extensions of size 5 of the family depicted in Figure 3.22b.

Proof. The family F4 depicted in Figure 3.22b has three extensions F5, and any extension

of size six selects two of the respective disks labeled C5, so the number of extensions of size

six is bounded above by
(
3
2

)
= 3. Two of these pairs overlap, and the remaining 3− 2 = 1

extension of size six is depicted in Figure 4.11. Any further extension (e.g. to size 7) forces

adjoining a disk that overlaps with the family, so the family is not extendable and therefore

maximal.

With the exhaustive documentation of the maximal, nonextendable touching critical

families complete, we are ready to prove our main results.

Proof of Theorem 4.6. As noted in Remark 3.24, the 17 touching critical families depicted

in Figures 3.21, 3.22, and 3.23 are distinct by Theorem 3.23, and they represent all touch-

ing critical families F4 up to symmetries in the Klein four-group V . Lemma 4.7 through
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Figure 4.11: Extension of size 6 of the family depicted in Figure 3.22b.

Corollary 4.11 establish subsequent results on extendable and nonextendable families. If

an extension F5 = F4 ∪ {C} exists, then it has precisely one touching critical subfamily

which is F4. In particular, Lemma 4.8 and Corollary 4.9 require that two distinct critical

supports of F4 in L12 support disk C and consequently a line supports each of the two

remaining touching subfamilies of size four. Lemma 4.13 shows that the family depicted in

Figure 3.21a is not extendable.

Lemma 4.14 establishes specific criteria to identify precisely when a critical family F4

is extendable. Corollary 4.15 relies on this criteria and states that the 7 families of size

four depicted in Figures 3.21a, 3.21b, 3.21c, 3.22c, 3.22d, 3.22e, 3.22f, and the 6 families

depicted in Figure 3.23 are nonextendable and therefore maximal. Corollary 4.16 states that

the families of size four depicted in Figures 3.21d, 3.21e, 3.22a, and 3.22b are extendable.

In particular, the number of extensions is finite. Lemmas 4.17 through 4.24 explicitly

document the extensions of touching critical families of sizes five, six, and seven, and proves

that the respective maximal families are nonextendable. And in particular, the size of

the largest extension F7 contains seven disks as depicted in Figure 4.12 below (see also

Figure 4.7).
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4.4 Second Helly-Type Theorem on Support Lines

Theorem 4.25. For a nonoverlapping family G of congruent disks in the plane, S(3) =⇒ S

if the family has eight or more members.

Proof. The threshold number for nonoverlapping critical families is the minimum size of a

family that guarantees the implication S(3) =⇒ S holds. Theorem 4.6 guarantees that 7

is the size of the largest touching family that has property S(3) and not property S. Every

touching critical family F7 is nonextendable and therefore maximal (see Lemma 4.20, and

Figure 4.7). The number eight is necessarily a lower bound for the threshold number since

a critical touching family of size seven exists as depicted in Figure 4.12.

ℓdef13L

ℓdef23L

o3

o4

Figure 4.12: A critical touching family F7 of size 7.

To show that 8 is the threshold number it suffices to show that it also functions as an

upper bound. To induce a contradiction, suppose that we can find a nonoverlapping critical

family G that has eight disks. To be explicit, the family G has the property S(3) and not

S, so that at least one line supports each of its critical subfamilies and no line supports all

of its members. Since G is nonoverlapping, it is either disjoint or tangent. If G is disjoint

with more than seven members and the property S(3), then the family has the property S

by the results in Soltan [23]. So the family G is necessarily a touching critical family.
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Since G is a touching critical family, Theorem 2.15 of Chapter 2, the first Helly-type

result of this paper, implies the family does not have property S(4). So the family G

necessarily contains a nonoverlapping critical subfamily F ∈ F of size four by Theorem 4.1.

This means the subfamily F ⊂ G either corresponds to the disjoint critical F4 belonging

to the touching critical F5 depicted in Figure 4.3, or it appears among the 17 families

depicted in the collection of Figures 3.21, 3.22, and 3.23. Since the family of size 5 depicted

in Figure 4.3 is maximal, G is not an extension of this family. So the family F ⊂ G is

touching. The touching critical F4 are nonextendable except for the families depicted in

Figures 3.21d, 3.21e, 3.22a, and 3.22b following Corollary 4.16, so the subfamily F ⊂ G is

necessarily one of these four families.

Since the touching critical families F4 were constructed by exhaustion, no touching

critical family outside of the extensions of these families remains as a candidate for G.

Theorem 4.6 states that the number of nonoverlapping critical families Fk with k ∈ N is

finite, and it follows that the family G necessarily appears among the families documented

in Lemmas 4.17 through 4.24 since the maximal extensions of these families are exhaustively

documented there. In particular, the largest touching critical families are documented in

Lemma 4.20 which describes families F7 of size 7. Since the subfamily F ⊂ G is in F, any

maximal extension of F contains at most seven disks, which contradicts the fact that G

contains F as a subfamily.

By exhaustion, no touching critical family of congruent disks has more than 7 members.

If a finite touching family G has more than 7 members, it is not identical to any finite

touching critical family, so that G is not a critical extension of F ∈ F. The supposition that

G is critical leads to a contradiction. If G has the property S(3) it cannot contain a critical

subfamily F of size four, so that F 6⊂ G. The family G necessarily has the property S(4)

and, by implication, the support property S, so that a line supports each of its members.

It follows that no touching family with 8 or more disks has property S(3) and no common

support line. We conclude that any nonoverlapping family with at least eight members and

the property S(3) is supported by a common line and has the support property S.
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Appendix A: A heuristic counting of 955 minimal support

configurations preserving S(3)

This appendix provides a heuristic lower bound on the number of minimal support config-

urations among the lines in Lij (i 6= j and 1 ≤ i < j ≤ 4) for each touching critical family

F4 that preserve S(3) whenever they inscribe a region in the plane that supports a disk C

of nonzero radius. By minimal, we mean that only one line in Lij supports disk C for each

i 6= j with the one exception documented in Lemma A.4. To preserve S(3) in an extension

F5 = F4 ∪ {C}, specific subsets of supports among the lines in Lij of each F4 necessarily

support disk C. For each support configuration it remains to determine whether any disk C

in an inscribed region is congruent to those of F4. The numbers derived here are referenced

in the introduction to Section 4.3 which begins on page 125.

For each of the 17 touching critical families F4, we heuristically count the number

of support line configurations when precisely N (0 ≤ N ≤ 2) critical support lines of F4

support disk C and preserve S(3). Other configurations of lines preserving S(3) are possible

and are not counted here. The lower bound provided by this heuristic demonstrates that a

direct approach to the problem to determine whether the 17 touching critical families F4

are extendable requires checking a minimum of 955 support configurations of lines.

The 17 families depicted in Figures 3.21, 3.22 and 3.23 are of four combinatorial types

in the distribution of their critical and noncritical support lines. The family depicted in

Figure 3.21a is distinguished by the property that it has a touching critical subfamily in a

slab (Type 1: see Table A.1). The four families depicted in Figures 3.21b through 3.21e

Table A.1: Distribution of the supports of the one Type 1 family

L12 L13 L14 L23 L24 L34
critical 3 3 2 3 2 2
noncritical 0 1 2 1 2 2
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are distinguished by the property that each family has a disjoint critical subfamily in a

slab (Type 2: see Table A.2). The family depicted in Figure 3.23e is distinguished by the

Table A.2: Distribution of the supports of the Type 2 families

L12 L13 L14 L23 L24 L34
critical 2 3 3 2 2 3
noncritical 1 1 1 2 2 1

property that it contains two pairs of touching disks (Type 3: see Table A.3). The 11

Table A.3: Distribution of the supports of the one Type 3 family

L12 L13 L14 L23 L24 L34
critical 2 2 2 2 2 2
noncritical 1 2 2 2 2 1

families depicted in Figures 3.22 and 3.23 excluding the family depicted in Figure 3.23e are

distinguished by the property that each family avoids a critical subfamily in a slab and each

contains a disjoint subfamily of size three (Type 4: see Table A.4).

Table A.4: Distribution of the supports of the Type 4 families

L12 L13 L14 L23 L24 L34
critical 2 2 2 2 2 2
noncritical 1 2 2 2 2 2
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Lemma A.1. If N = 0 critical lines support disk C5 then 384 minimal support configura-

tions preserve S(3) in an extension F5 = F4 ∪ {C} where F4 ∈ F is among the 17 touching

critical families.

Proof. The Type 1 family depicted in Figure 3.21a has the distribution of critical supports

listed in Table A.1. For this family, it is impossible that no critical support (N = 0) supports

disk C and preserves S(3) in an extension since a line must support {C1, C2, C3}, and each

line in L12 is critical. For the remaining 16 families, if no critical support (N = 0) of F4

supports disk C, then to preserve S(3) a minimum of six lines necessarily support C, one

from each set in Lij (i 6= j and 1 ≤ i < j ≤ 4).

Each Type 2 family (Figures 3.21b through 3.21e) has the distribution of critical supports

listed in Table A.2. Since we consecutively select one noncritical support from each set Lij ,

the multiplication principle of counting implies that 1 · 1 · 1 · 2 · 2 · 1 = 4 minimal support

configurations preserve S(3). Over the four Type 2 families a total of 4 · 4 = 16 minimal

support configurations preserve S(3).

The Type 3 family depicted in Figure 3.23e has the distribution of critical supports

listed in Table A.3. If no critical support (N = 0) of F4 supports disk C, we consecutively

select six noncritical supports, one from each Lij , and the multiplication principle confirms

that 1 · 2 · 2 · 2 · 2 · 1 = 16 minimal support configurations preserve S(3).

Each of the 11 Type 4 families depicted in Figures 3.22 and 3.23 excluding the family

depicted in Figure 3.23e has the distribution of critical supports listed in Table A.4. If

no critical support (N = 0) of F4 supports disk C, we consecutively select six noncritical

supports, one from each Lij , and the multiplication principle confirms that 1·2·2·2·2·2 = 32

minimal support configurations preserve S(3). Over the 11 Type 4 families a total of

32 · 11 = 352 relevant configurations preserve S(3).

The total number of minimal support configurations preserving S(3) where precisely no

critical support (N = 0) of F4 supports C is given by the sum 0 + 16 + 16 + 352 = 384.
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Remark A.2. In Tables A.5 through A.12, the six positions in each product correspond

to the supports as listed in Tables A.1 through A.4. The symbol ∗ stands in for a position

where a support from the corresponding set Lij is not needed. To evaluate each product in

the tables, either ignore the symbol ∗ and multiply the numbers, or replace each occurrence

of ∗ with 1 and multiply.

Lemma A.3. If N = 1 critical lines support disk C5 then 350 minimal support configura-

tions preserve S(3) in an extension F5 = F4 ∪ {C} where F4 ∈ F is among the 17 touching

critical families.

Proof. If precisely one (N = 1) critical support of F4 supports disk C, then to preserve S(3)

a minimum of three additional lines support C, one support from each of three corresponding

sets in Lij (i 6= j and 1 ≤ i < j ≤ 4).

The Type 1 family depicted in Figure 3.21a has the distribution of critical supports

listed in Table A.1. For this family, if precisely one (N = 1) critical support ` supports C,

then necessarily ` ∈ L12 since a line supports {C1, C2, C}. Of the lines in L12, precisely 2

support {C1, C2, C3} and 1 supports {C1, C2, C4}. Note that when `1 or `2 supports disk

C, then the disk is not permitted in the slab with C1, C2. For the one Type 1 family with

Table A.5: Counting Type 1 configurations with N = 1

[123] 2 (∗ · ∗ · 2 · ∗ · 2 · 2) = 16
[124] 1 (∗ · 1 · ∗ · 1 · ∗ · 2) = 2

N = 1, a total of 16+2 = 18 minimal support configurations preserve S(3) (see Table A.5).

Each of the 4 Type 2 families depicted in Figures 3.21b through 3.21e has the distribution

of critical supports listed in Table A.2. Precisely 1 critical support of F4 supports each of

{C1, C2, C3}, {C1, C2, C4}, and {C2, C3, C4}. Precisely 2 critical supports of F4 support

{C1, C3, C4}. We consecutively select one critical support from each relevant set Lij . Each
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Table A.6: Counting Type 2 configurations with N = 1

[123] 1 (∗ · ∗ · 1 · ∗ · 2 · 1) = 2
[124] 1 (∗ · 1 · ∗ · 2 · ∗ · 1) = 2
[134] 2 (1 · ∗ · ∗ · 2 · 2 · ∗) = 8
[234] 1 (1 · 1 · 1 · ∗ · ∗ · ∗) = 1

Type 2 family with N = 1, has a total of 2 + 2 + 8 + 1 = 13 relevant configurations (see

Table A.6). Over the 4 families, a total of 52 minimal support configurations preserve S(3).

The Type 3 family depicted in Figure 3.23e has the distribution of critical supports listed

in Table A.3. Precisely 1 critical support of F4 supports each of {C1, C2, C3}, {C1, C2, C4},

{C1, C3, C4}, and {C2, C3, C4}. We consecutively select one critical support from each

relevant family Lij . The one Type 3 family with N = 1, has a total of 4 · 4 = 16 minimal

Table A.7: Counting Type 3 configurations with N = 1

[123] 1 (∗ · ∗ · 2 · ∗ · 2 · 1) = 4
[124] 1 (∗ · 2 · ∗ · 2 · ∗ · 1) = 4
[134] 1 (1 · ∗ · ∗ · 2 · 2 · ∗) = 4
[234] 1 (1 · 2 · 2 · ∗ · ∗ · ∗) = 4

support configurations that preserve S(3) (see Table A.7).

Each Type 4 family depicted in Figures 3.22 and 3.23 excluding the family depicted in

Figure 3.23e has the distribution of critical supports listed in Table A.4. We consecutively

select one critical support from each relevant family Lij . Precisely 1 critical support of F4

supports each of {C1, C2, C3}, {C1, C2, C4}, {C1, C3, C4}, and {C2, C3, C4}. Each Type 4

family with N = 1, has a total of 2 · 8 + 2 · 4 = 24 minimal support configurations (see

Table A.8). Over the 11 families, a total of 24 · 11 = 264 minimal support configurations

preserve S(3).
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Table A.8: Counting Type 4 configurations with N = 1

[123] 1 (∗ · ∗ · 2 · ∗ · 2 · 2) = 8
[124] 1 (∗ · 2 · ∗ · 2 · ∗ · 2) = 8
[134] 2 (1 · ∗ · ∗ · 2 · 2 · ∗) = 4
[234] 1 (1 · 2 · 2 · ∗ · ∗ · ∗) = 4

The total number of minimal support configurations that preserve S(3) where precisely

one critical support (N = 1) of F4 supports C is given by the sum 18 + 52 + 16 + 264 =

350.

Lemma A.4. If N = 2 critical lines support disk C5 then 221 minimal support configura-

tions preserve S(3) in an extension F5 = F4 ∪ {C} where F4 ∈ F is among the 17 touching

critical families.

Proof. If precisely two (N = 2) critical supports of F4 support disk C, then at least one

noncritical support from among the sets of support lines Lij (i 6= j : 1 ≤ i < j ≤ 4) must

support C. Since our heuristic counts minimal support configurations, we only count those

configurations admitting one additional line.

The one Type 1 family depicted in Figure 3.21a has the distribution of critical supports

listed in Table A.1. For this family, if precisely two critical supports (N = 2) support C, then

necessarily one of these lines ` belongs to L12 since a line supports {C1, C2, C} and each line

in L12 is critical. Among the lines in L12, precisely 2 support {C1, C2, C3} and 1 line supports

{C1, C2, C4}. Following the choice of the first critical support, we then select a second critical

support of F4 not in L12. We select the remaining noncritical support line to support C

from the appropriate set Lij . Note that when both critical supports of {C1, C2, C3} support

disk C then disk C lies in the slab with C1, C2 and three additional noncritical supports

necessarily support C. Observe that the support configurations (N = 2) where one critical

support of each of {C1, C3, C4} and {C2, C3, C4} support C is not viable since a line must

support {C1, C2, C}, and this forces three critical supports to support C. The one Type 1
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Table A.9: Counting Type 1 configurations with N = 2

[123] and [123] 1 · 1 (∗ · ∗ · 2 · ∗ · 2 · 2) = 8
[123] and [124] 2 · 1 (∗ · ∗ · ∗ · ∗ · ∗ · 2) = 4
[123] and [134] 2 · 1 (∗ · ∗ · ∗ · ∗ · 2 · ∗) = 4
[123] and [234] 2 · 1 (∗ · ∗ · 2 · ∗ · ∗ · ∗) = 4
[124] and [134] 1 · 1 (∗ · ∗ · ∗ · 1 · ∗ · ∗) = 1
[124] and [234] 1 · 1 (∗ · 1 · ∗ · ∗ · ∗ · ∗) = 1

Table A.10: Counting Type 2 configurations with N = 2

[123] and [124] 1 · 1 (∗ · ∗ · ∗ · ∗ · ∗ · 1) = 1
[123] and [134] 1 · 2 (∗ · ∗ · ∗ · ∗ · 2 · ∗) = 4
[123] and [234] 1 · 1 (∗ · ∗ · 1 · ∗ · ∗ · ∗) = 1
[124] and [134] 1 · 2 (∗ · ∗ · ∗ · 2 · ∗ · ∗) = 4
[124] and [234] 1 · 1 (∗ · 1 · ∗ · ∗ · ∗ · ∗) = 1
[134] and [134] 1 · 1 (1 · ∗ · ∗ · 2 · 2 · ∗) = 4
[134] and [234] 2 · 1 (1 · ∗ · ∗ · ∗ · ∗ · ∗) = 2

family with N = 1, has a total of 8 + 3 · 4 + 2 · 1 = 22 minimal support configurations that

preserve S(3) (see Table A.9).

Each of the four Type 2 families depicted in Figures 3.21b through 3.21e has the dis-

tribution of critical supports listed in Table A.2. If precisely two critical supports (N = 2)

support C, then we consecutively select two critical supports from each relevant family Lij ,

and one additional noncritical line to support C. Precisely 1 critical support of F4 supports

each of {C1, C2, C3}, {C1, C2, C4}, and {C2, C3, C4}. Precisely 2 critical supports support

{C1, C3, C4}. Each Type 2 family with N = 2, has a total of 3 · 4 + 3 · 1 + 2 = 17 configu-

rations (see Table A.10). Over the 4 families, a total of 68 minimal support configurations

preserve S(3).

The Type 3 family depicted in Figure 3.23e has the distribution of critical supports listed

in Table A.3. If precisely two critical supports (N = 2) support C, then we consecutively

select two critical supports from each pair of relevant families Lij . Precisely 1 critical

support of F4 supports each of {C1, C2, C3}, {C1, C2, C4}, {C1, C3, C4}, and {C2, C3, C4}.
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Table A.11: Counting Type 3 configurations with N = 2

[123] and [124] 1 · 1 (∗ · ∗ · ∗ · ∗ · ∗ · 1) = 1
[123] and [134] 1 · 1 (∗ · ∗ · ∗ · ∗ · 2 · ∗) = 2
[123] and [234] 1 · 1 (∗ · ∗ · 2 · ∗ · ∗ · ∗) = 2
[124] and [134] 1 · 1 (∗ · ∗ · ∗ · 2 · ∗ · ∗) = 2
[124] and [234] 1 · 1 (∗ · 2 · ∗ · ∗ · ∗ · ∗) = 2
[134] and [234] 1 · 1 (1 · ∗ · ∗ · ∗ · ∗ · ∗) = 1

Table A.12: Counting Type 4 configurations with N = 2

[123] and [124] 1 · 1 (∗ · ∗ · ∗ · ∗ · ∗ · 2) = 2
[123] and [134] 1 · 1 (∗ · ∗ · ∗ · ∗ · 2 · ∗) = 2
[123] and [234] 1 · 1 (∗ · ∗ · 2 · ∗ · ∗ · ∗) = 2
[124] and [134] 1 · 1 (∗ · ∗ · ∗ · 2 · ∗ · ∗) = 2
[124] and [234] 1 · 1 (∗ · 2 · ∗ · ∗ · ∗ · ∗) = 2
[134] and [234] 1 · 1 (1 · ∗ · ∗ · ∗ · ∗ · ∗) = 1

The one Type 3 family with N = 2, has a total of 4 · 2 + 2 · 1 = 10 minimal support

configurations that preserve S(3) (see Table A.11).

Each of the 11 Type 4 families depicted in Figures 3.22 and 3.23 excluding the family

depicted in Figure 3.23e has the distribution of critical supports listed in Table A.4. If

precisely two critical supports (N = 2) support C, then we consecutively select two critical

supports from each pair of relevant families Lij , and one additional noncritical line to

support C. Precisely 1 critical support of F4 supports each of {C1, C2, C3}, {C1, C2, C4},

{C1, C3, C4}, and {C2, C3, C4}. Each Type 4 family with N = 2, has a total of 5 ·2+1 = 11

configurations (see Table A.12). Over the 11 families, a total of 11 · 11 = 121 minimal

support configurations preserve S(3).

The total number of minimal support configurations that preserve S(3) where two crit-

ical supports (N = 2) of F4 support C is given by the sum 22 + 68 + 10 + 121 = 221.
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The total number of minimal support configurations that preserve S(3) where either

none, one, or two (N = 0, 1, 2) critical supports of F4 support C is given by the sum

384 + 350 + 221 = 955.
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