
FOUNDATIONS OF ADAPTIVE CYBER DEFENSE
AGAINST ADVANCED PERSISTENT THREATS

by

Luan Huy Pham
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

Dr. Massimiliano Albanese, Dissertation
Director

Dr. Sushil Jajodia, Committee Member

Dr. Emanuela Marasco, Committee Member

Dr. Kai Zeng, Committee Member

Dr. Deborah Goodings, Associate Dean

Dr. Kenneth S. Ball, Dean, Volgenau
School of Engineering

Date: Spring Semester 2020
George Mason University
Fairfax, VA

Foundations of Adaptive Cyber Defense Against Advanced Persistent Threats

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Luan Huy Pham
Master of Science

George Mason University, 2010
Bachelor of Science

George Mason University, 2007

Director: Dr. Massimiliano Albanese, Associate Professor
Department of Information Science and Technology

Spring Semester 2020
George Mason University

Fairfax, VA

Copyright © 2020 by Luan Huy Pham
All Rights Reserved

ii

Dedication

For my dad;
always been

always will be
my hero

iii

Acknowledgments

I would like to thank my dissertation director, Dr. Albanese, for his time and immense
patience over the years. I would also like to thank my co-authors, friends and other loved
ones throughout the years who have supported me. I would not have made it without you.

The work presented in this thesis, was supported in part by the National Science Foun-
dation under award CNS-1822094 and by the Army Research Office under award W911NF-
13-1-0421.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . x

Abstract . xi

1 Introduction . 1

1.1 Research Approach and Thesis . 3

1.2 Organization . 5

2 Background and Related Work . 7

2.1 APT Malware Characteristics . 7

2.1.1 Data Exfiltration . 7

2.1.2 Cyber Evasion . 8

2.1.3 Cost . 8

2.2 APT Taxonomy . 9

2.2.1 Component(s) Exploited . 11

2.2.2 Payload Feature(s) . 13

2.2.3 Propagation Method(s) . 14

2.2.4 Stealth Mechanism(s) . 16

2.2.5 Other Notable Feature(s) . 19

2.3 Selected Notable APT Malware . 20

2.3.1 Stuxnet . 21

2.3.2 Duqu . 28

2.3.3 Sednit . 33

2.4 Adaptive Cyber Defense and Moving Target Defense 36

2.4.1 Dynamic Runtime Environments . 37

2.4.2 Dynamic Platforms . 38

2.4.3 Dynamic Software . 39

2.4.4 Dynamic Data . 39

2.4.5 Dynamic Networks . 40

3 Preliminary Definitions and Problem Statement 42

v

3.1 Assumptions . 42

3.2 Cost . 43

3.3 Reward . 46

3.4 Tree Formation Problem . 48

3.5 Summary . 50

4 Problem Solution . 51

4.1 Greedy Algorithm . 51

4.2 Simulations . 53

4.3 Defender Model . 57

4.3.1 Betweenness strategy . 60

4.4 Summary . 62

5 Framework Evolution . 64

5.1 Attacker and Defender Views . 64

5.2 Reward Model Refinements . 66

5.2.1 Reward Decay . 66

5.2.2 Reward Fluctuations . 69

5.3 Formal Reward Model . 70

5.4 Defender’s Model . 72

5.5 Evaluation . 73

5.5.1 Experimental Setting . 74

5.5.2 Refined Model Experimental Setup 74

5.5.3 Metrics . 75

5.5.4 Reward Decay . 75

5.5.5 Probabilistic vs Dynamic Route Selection 77

5.5.6 Evaluation of Defended Networks . 77

5.6 Summary . 80

6 Concurrent MTDs . 81

6.1 Attack Model . 82

6.2 Defender Model . 84

6.3 Quantitative Analysis . 87

6.3.1 Definitions and Assumptions . 88

6.3.2 Availability . 89

6.3.3 Attacker Success Rate . 90

6.4 Experimental Framework . 91

6.4.1 Experimental Environment . 92

6.5 Experimental Results . 92

vi

6.5.1 Service Reconfiguration . 93

6.5.2 IP Reconfiguration . 93

6.5.3 Combined Effects . 95

6.5.4 MTD Protection Against Multiple Targets 97

6.5.5 Computing Utility . 100

6.6 Summary . 102

7 High-Fidelity Testing . 104

7.1 Network Topology Discovery . 104

7.1.1 Reward . 105

7.1.2 Cost . 106

7.1.3 Attacker’s Dynamics . 108

7.2 Estimating Reward and Cost . 109

7.3 Evaluation . 112

7.3.1 Experimental Setup . 112

7.3.2 Simple Example . 115

7.3.3 Experimental Results . 116

7.4 Summary . 118

8 Conclusions and Future Work . 119

8.1 Conclusions . 119

8.2 Future Work . 120

Bibliography . 122

vii

List of Tables

Table Page

2.1 Malware Attributes . 9

2.2 Component(s) Exploited . 11

2.3 Payload Feature(s) . 13

2.4 Propagation Method(s) . 14

2.5 Stealth Mechanism(s) . 16

2.6 Other Notable Features . 19

2.7 Stuxnet Malware Attributes . 22

2.8 Stuxnet Payload Features . 23

2.9 Stuxnet Propagation Methods . 25

2.10 Stuxnet Stealth Mechanisms . 26

2.11 Other Stuxnet Features . 27

2.12 Stuxnet Zero-Day Exploits (5) . 28

2.13 Duqu Malware Attributes . 29

2.14 Duqu Payload Features . 30

2.15 Duqu Propagation Methods . 30

2.16 Duqu Stealth Mechanisms . 31

2.17 Other Duqu Features . 32

2.18 Duqu Zero-Day Exploit (1) . 33

2.19 Sednit Attributes . 33

2.20 Sednit Payload Feature . 34

2.21 Sednit Propagation Methods . 34

2.22 Sednit Stealth Mechanisms . 35

2.23 Other Notable Sednit Features . 36

2.24 Sednit Zero-Day Exploits (5) . 36

6.1 Average Attack and Reconfiguration Times 93

6.2 Attacker’s Success Rate . 97

6.3 Attacker’s Success Rate (Predicted Values) 97

6.4 Availability . 98

viii

6.5 Availability (Predicted Values) . 98

6.6 Attacker’s Success Rate (Multiple Targets) 100

6.7 Utility Values . 102

ix

List of Figures

Figure Page

3.1 Basic example of APT malware footprint for different values of the budget . 49

4.1 Malware footprint evolution . 54

4.2 Rewards vs. Network Size . 55

4.3 Footprint vs. Network Size . 56

4.4 Runtime vs. Network Size . 57

4.5 Conservative vs. dynamic approach . 57

4.6 Conservative vs. dynamic approach . 58

4.7 Approximation ratio . 59

4.8 Impact of defensive action on malware . 62

5.1 Compromise Reward Decay Example (λ = 0.4) 66

5.2 Effects of Reward Decay . 76

5.3 Effects of Route Selection . 78

5.4 Effects of Various Defender Models vs No Defender 79

6.1 Attack Model . 84

6.2 Service Randomization . 86

6.3 IP Randomization . 87

6.4 Probability of Attacker Success for Varying Service Reconfiguration Interar-

rival Rates . 94

6.5 Availability for Varying Service Reconfiguration Interarrival Rates 94

6.6 Probability of Attack Success for Varying IP Reconfiguration Interarrival Rates 95

6.7 Availability for Varying IP Reconfiguration Interarrival Rates 96

6.8 Histograms Showing Frequency of Numbers of Successful Attacks for Varying

Service Reconfiguration Interarrival rates 99

6.9 Timing Windows for Attacks on Multiple Targets 100

7.1 Example target network . 113

7.2 Progression of network topology discovery 113

7.3 Simulation results . 117

x

Abstract

FOUNDATIONS OF ADAPTIVE CYBER DEFENSE AGAINST ADVANCED PERSIS-
TENT THREATS

Luan Huy Pham, PhD

George Mason University, 2020

Dissertation Director: Dr. Massimiliano Albanese

The term Advanced Persistent Threats (APTs) refers both to highly-sophisticated, of-

ten nation-state attackers with tremendous resources and to the malware they employ to

compromise their target to which no organization has proven immune. Dynamic and

deception-based defense techniques offer a possible solution. Such techniques, including

Moving Target Defense (MTD) and Adaptive Cyber Defense(ACD) techniques, prevent or

delay attacks against computer networks by dynamically altering characteristics of the sys-

tems or network in a manner to present attackers with a variable, possibly deceptive attack

surface and disrupt the planning or execution of cyber-attacks.

To better leverage these techniques, this work proposes a novel model to capture how

advanced, stealthy adversaries, including APT actors, acquire knowledge about the target

network and establish and expand their foothold within the system. This model quantifies

the cost and reward, from the adversary’s perspective, of compromising and maintaining

control over targets within the network. With this foundational understanding of attacker

incentives and deterrents, as well as their predicted position in the network, existing defenses

can be refined and innovative defenses can be built specifically to counteract the threat posed

by APTs.

Chapter 1: Introduction

“APTs are the most sophisticated form of cyber weapon that exist” [1]

The term Advanced Persistent Threat is used to designate both a highly-motivated, so-

phisticated adversary and the cutting-edge cyber malware which they often employ. APTs

(the adversary) are often either strongly affiliated with - or a directly-funded cyber branch

of - nation states. While known for their cyber expertise, these adversaries leverage multiple

avenues of attack to accomplish their objectives, including psychological operations involv-

ing social media as well as traditional intelligence operations [1][2]. Their overall objectives

often include exfiltrating information or otherwise undermining or impeding critical aspects

of a mission, program, or organization. The United States National Institute of Standards

and Technology (NIST) [3] recognizes APTs by 1) the repeated pursuit of objectives over an

extended period of time, 2) adaptation to defender efforts, and 3) determination to maintain

interaction to execute their objectives.

Perhaps the most reknown example of an APT is captured in the high-profile “APT1”

report [4] by Mandiant (now a part of FireEye). This report described a cyber-focused

branch of the Chinese People’s Liberation Army (PLA), which became collectively known as

APT1. APT1’s objective was apparently to conduct espionage. To this end, the researchers

who authored the report observed APT1 compromising 141 companies spanning 20 major

industries employing advanced malware platforms. In one instance, APT1 exfiltrated 6.5

terabytes of compressed data from a compromised target, over a ten-month time period.

In another case APT1 maintained access in a compromised networks for a period of four

years and ten months - demonstrating both patience and persistence which are defining

characteristics of APTs. In the report, Mandiant acknowledged it was very likely that its

1

observations represented only a small portion of APT1’s total activities, indicating that the

overall scope was likely much larger.

As a whole, China has been reported to possess the world’s second-most powerful cyber

arsenal overall and the largest number of APT groups directly attributed to the state [2].

Furthermore, these groups have also demonstrated a willingness to deploy their capabilities

broadly, monitoring opposing political groups in Tibet, Taiwan and Hong Kong; conducting

worldwide industrial espionage (as in the case of APT1), and even infiltrating the infras-

tructure of other nation-states. In relation to the United States, Chinese state-sponsored

groups have been linked to cyber operations to gather highly detailed intelligence, including

high-profile breaches of the US Office of Personnel and Management (OPM) and the US

Department of Defense (DOD) NIPRNET. As a result, these groups have obtained infor-

mation as varied as biometric data for 5.6 million US Federal employees and the technical

data for the advanced F-35 fighter aircraft. China has likely implanted various forms of

malicious code into critical American systems, presumably to be leveraged in the event of

conflict [1].

China is not the only nation which has leveraged cyber capabilities. The threat of

APTs is widespread. Iranian-affiliated groups have conducted regional operations against

oil-producing rivals in Saudi Arabia. India and Pakistan routinely engage in cyber conflict.

Similarly, North Korean and South Korea spar in the cyber domain; with North Korea

also implicated in the highly-publicized Sony Pictures hack. Russian-affliated groups have

conducted their own wiper attacks to destabilize Ukraine [2]. More notably, the breach of the

US Democratic National Committee by these Russian-affliated groups and the subsequent

release of politically-damaging documents arguably influenced the outcome of the 2016

United States Presidential Election [1][2]. It is conceivable that APTs have influenced the

course of history and will do so again in the future.

The repeated compromises of nation-states make it evident that no entity is invulner-

able to the threat of APTs. In addition, the techniques pioneered by APTs have become

increasingly deployed by criminal organizations. The MalwareBytes Labs 2019 State of

2

Malware Report [5], noted the use of zero-day exploits which were publicly-leaked by the

ShadowBrokers hacking group and were originally developed by the the Equation Group

APT. Instead of geopolitical gain, these criminal organizations aim to benefit financially,

most often through ransom demands or through sale of information obtained during a data

breach. Early detection of these breaches is critical. The Ponemon Institute has conducted

yearly studies on the cost of organizational data breaches for 14 years. The studies have

concluded that earlier detection of malicious activity has tangible economic benefits for

an organization. In 2019, organizations which required over 200 days to identify that a

breach had occurred faced 36% higher costs compared to organizations which identified

breaches in under 200 days [6]. The delay in detecting malicious activity can result in

adversaries having the opportunity to gain control of a larger portion of the network and

exfiltrate larger amounts of sensitive information – which may include critical trade secrets

or closely-guarded strategic data.

Given these considerations, mitigating the threat of APTs has indisputable value and

the work presented in this thesis represent an important step in that direction.

1.1 Research Approach and Thesis

APTs are able to penetrate networks inaccessible to other threats through commitment of

both extraordinary resources and effort. Once a foothold is established, they maneuver and

spread through the target’s network, pilfering information or committing acts of sabotage

as they see fit. Contending against such threats is a daunting challenge, one that has

victimized organizations large and small. However, though formidable, these attackers are

also not infallible.

While certainly a growing threat, APTs are not yet ubiquitous. Attacker resources,

while intimidating, are not inexhaustible. Attackers must make calculated decisions involv-

ing tradeoffs based upon considerable, but not unlimited knowledge. Therefore, one may

conclude that there exist avenues for defenders to deter attackers. To develop such coun-

termeasures, a strong understanding of how APTs operate, as well as their strengths and

3

weaknesses is required.

This work establishes a framework to model attacker behavior as well as incentives and

deterrents to serve as a foundation upon which to build future safeguards against APTs,

particularly dynamic defenses. Dynamic - as opposed to static - defenses seek to alter

components of the target system over time to deny APT advantages and mitigate their

impact.

In developing this work, a comprehensive analysis of the unique characteristics of the

APT malware was required, including their objectives, means of operation, and the factors

which make them far more effective than traditional cyber attacks. This required an exhaus-

tive review of industry technical reports, summary analysis and the current state-of-the-art.

A major focus of this analysis was to determine common limitations which constrain APTs,

which also provides an explanation for their relative rarity.

In examining the available reports and research regarding APTs, it became clear that

conventional graph-based attack modeling does not accurately portray APT behavior.

These prior efforts tended to model networks with relatively few target devices. These

target devices were often critical databases or other high-value objective. APTs challenge

this traditional paradigm. While prior models assume relatively few targets of value, in

practice APTs have shown that they can seize value from nearly every device throughout

the network. Thus, I sought to develop a more accurate model which accounts for APT

reward incentives as well as the cost deterrents. This initial model also considered how the

APT may shift and slowly grow its presence within the network over time.

Once an initial framework was developed, it was quickly leveraged in a testbed lab

environment across networks of varying sizes. Furthermore, the framework accounted for

the effect of notional defenses, both static and dynamic - quantitatively measuring the

difference in effectiveness.

Afterwards, I evolved the framework, imparting additional granularity to capture how

reward values may change due to the effect of the attacker as well as common activity

within the network. In a significant improvement, the framework differentiated the views

4

of the attacker and defender - opening the possibility for suboptimal decisions due to in-

complete knowledge. Such a step is necessary to model the effects of cyber deception upon

an adversary - which would not be possible against an omniscient attacker.

I then tested the impact of multiple MTDs techniques, implemented concurrently,

against a simulated persistent attacker. For these simulations, the attacker employed real-

world exploits to compromise vulnerable software platforms and operations in a testbed

environment. This testing demonstrated that MTDs used in concert, when properly con-

figured, disrupted attackers with greater success than each MTD implemented individually.

However, doing so incurred additional service disruption; the extent of which was dependent

upon how each MTDs was configured both independently, and in relation to other imple-

mented MTDs. This served as evidence that dynamic defenses require careful consideration

and tuning to provide the the greatest benefit while minimizing tradeoffs. Without proper

understanding of the adversary and their capabilities, informed decisions regarding the

configuration of dynamic defenses and the selection of techniques to deploy are impossible.

As the final step in developing this dissertation, I grounded the abstract theory of the

framework in metrics collected from a high-fidelity testbed which is used to conduct public

and commercial cybersecurity research.

1.2 Organization

This dissertation is organized as follows. Chapter 2 covers background information regarding

APT malware and adaptive cyber defense. Chapter 3 establishes preliminaries, underlying

assumptions, the attacker reward/cost model of incentives and deterrents, as well as the

problem statement. Chapter 4 describes the initial solution, a greedy algorithm to construct

an attacker’s malware footprint within a network. Chapter 5 extends the model and the

solution, relaxing assumptions regarding defender vs attacker knowledge and capturing

additional granularity for how node values can change over time. Chapter 6 examines the

use of multiple MTDs used in concert at differing settings to demonstrate the need to

customize their use against threats. Chapter 7 further grounds the model by associating

5

rewards and costs to measurable values extracted from simulated networks in a high-fidelity

testbed environment against an attacker which minimizes activity to maximize stealth.

The dissertation concludes with a summary of findings and discussion of future work.

6

Chapter 2: Background and Related Work

The framework proposed in this dissertation is built upon a prior body of research regarding

the unique characteristics of APT malware, an overview of their primary objectives, and

the level of resources which an APT actor is willing to expend to develop and maintain

the APT malware. A taxonomy of APT characteristics is presented and several notable

APTs are selected and examined leveraging the taxonomy. Mechanisms by which they

bypass even state-of-the-art cyber defenses while also evading detection. Finally, categories

of ACD/MTD are discussed, accentuating properties which uniquely counter the strengths

of APTs.

2.1 APT Malware Characteristics

APT malware exhibits unique characteristics compared to other malware. The most evident

is their relative size and complexity compared to other contemporary malware. This section

discusses other features which are critical considerations.

2.1.1 Data Exfiltration

Of the 66 APTs identified by the Kaspersky Global Research and Analysis Team, 61 are

classified as having the primary function of exfiltrating data, including credential theft,

and cyber espionage [7]. The remaining APTs generally fall under the category of cyber

sabotage, as it is the case for the renown Stuxnet APT. While perhaps not a primary

function, it has been shown that many of these threats (e.g., Shamoon) also include some

form of reporting function to transmit data to attacker-operated command and control

(C&C) servers. Even Stuxnet, known primarily for sabotaging Iranian nuclear centrifuges,

incorporated extensive features to transmit system information to the C&C infrastructure

7

2.1.2 Cyber Evasion

A defining characteristic of APT malware is their ability to evade detection versus tra-

ditional intrusion detection systems (IDS). APT actors spend considerable resources to

develop stealth features. Arguably the most well-known example of an APT campaign,

Operation Olympic Games purportedly involved the development and deployment of the

Stuxnet malware to degrade the progression of the Iranian nuclear program.

Furthermore, the APT actors deployed Stuxnet in a manner which would further pro-

mote stealth. While the malware possessed the capability to catastrophically damage all

affected centrifuges at any given time, instead, the centrifuges were subtly degraded in

a manner which would not be immediately evident. In effect, this allowed the malware

to delay the overall progress of the Iranian nuclear program to an extent greater than a

conventional military strike.

2.1.3 Cost

Development of APT malware is a considerable endeavor. Nation-states commit mas-

sive resources to the development of APT malware and supporting related operations. In

the aforementioned ”APT1” report [4], the it was estimated that thousands of personnel

were employed, including malware authors, industry experts, translators, IT support staff,

and other associated logistical/overhead personnel. Despite these costs, an analysis of the

Stuxnet malware, determined that as much as 50% of the development cost was allocated

to stealth-related features [8].

One of the most well-known characteristics of APT malware is the usage of zero-day

exploits, which are exploits which are not generally known to the public or to the security

community at large. By definition, no IDS signature exists for the exploit, nor has the a

software vendor provided a specific patch for the exploit. These properties make zero-days

extremely valuable for APT threat actors who strive for stealthy operations and can devote

the resources to either discover or otherwise procure the exploits. Even so, a recent study [9]

conducted by the RAND corporation over 14 years from 2002-2016 concluded that the costs

8

to acquire zero-day exploits are considerable.

Merely discovering a vulnerability often requires months of expert time as well as poten-

tial capital expenditures, if specialized hardware is required. Even after the vulnerability is

discovered, additional time and expertise is required to develop and test a working exploit

- which the authors estimate to cost $29.914.95. Purchasing an exploit can involve expen-

ditures of hundreds of thousands to millions of U.S. dollars. While such a cost may seem

achievable for many large organizations, also consider that many APTs leverage multiple

zero-day exploits. Furthermore, these costs do not include other expenditures involved in

developing other aspects of the malware, including the payload. Furthermore, there are

other costs to consider as well. Insertion of the malware into the target environment may

require traditional intelligence or covert operation, which requires a high degree of sophis-

tication and a class of expertise outside of exploit development or operation of the malware

itself, which must also be considered.

2.2 APT Taxonomy

Table 2.1 below identifies attributes of APT malware and provides definitions of each. Fur-

thermore, we provide taxonomies and accompanying definitions in the following subsections.

Table 2.1: Malware Attributes

Attribute Description

Alternative Name(s) APT malware often can be referenced via several names

due to independent discovery and/or other factors. While

this survey references the name of the APT malware

by its most well-recognized name, we include alternative

names for completeness.

9

Discovery Date the initial date of discovery as identified by the security

community at-large. Discoveries made privately and not

disclosed are excluded.

Suspected Target(s) The primary target entities of the threat agent as deter-

mined by the security community at-large. APT malware

often is detected as a result of it spreading beyond its pri-

mary target.

Suspected Objectives(s) The primary goal of the suspected threat agent based on

the analysis of the the security community at-large.

Suspected APT Actor(s) The actor which the the security community at-large sus-

pects is the most likely entity to deploy the APT malware.

Component(s) Exploited Components which are specifically exploited by APT

malware.

Payload Feature(s) Features utilized to complete the primary objective of the

APT malware.

Propagation Method(s) Methods which APT malware has been demonstrated to

spread.

Stealth Mechanism(s) The primary goal of the suspected threat agent based on

the analysis of the the security community at-large.

Zero-Day Exploit(s) APT malware is often associated by the use of zero-day

exploits which were not known publicly prior to their use

in the APT malware. As such, no antivirus signature

for the exploit existed prior to the discovery of the APT

malware. We list the known zero-day exploits of the APT

malware by their MITRE CVE number and description.

10

2.2.1 Component(s) Exploited

Table 2.2 below describes a taxonomy of components which are specifically exploited by

APT malware. APT malware tends to exploit similar components as general malware.

Furthermore, software targeted for exploitation typically have a significant install base. If

the components exploited are very limited, this typically indicates a more targeted attack

with a specific objective in mind. Analysis of this attribute is often a factor in how the

security community-at-large determines both Suspected Target Entities, the Suspected Ob-

jective(s), as well as the Suspected APT Actor(s). For example, if the malware targets

only a specific type of industrial hardware, this significantly narrows the range of potential

targets. Furthermore, if the specific hardware requires specialized expertise, then the range

of potential APT Actor(s) is limited to those which has access to such expertise.

Table 2.2: Component(s) Exploited

Component Description

Industrial Control Systems

(ICS) / Supervisory Con-

trol and Data Acquisition

(SCADA)

Various systems which control industrial infrastructure

are often highly specialized to reflect the highly special-

ized equipment they control. As a result, flaws which are

present in these system often remain undiscovered for ex-

tended lengths of time.

Office Applications / Docu-

ments

While the Microsoft Office Suite may represent the most

well-known office suite, different countries and industries

often utilize unique office applications. APT actors have

many incentives to compromise such applications. As the

products generally have a wide user and install base, any

developed exploits would affect a larger . Users devote

significant portions of their time with these products and

may overlook suspicious signs or behavior.

11

Multimedia Software Plat-

forms

These software platforms add rich media capabilities, in-

cluding animations and video across many operating sys-

tems and are often embedded into major web browsers.

The most common example, Adobe Flash, was installed

on 96.3 percent of all Windows PCs [10]. This wide user

base, rich functionality, and relatively low level of con-

cern for security during its initial development has made

such platforms an enticing target for exploitation. From

November 2015 to November 2016, an examination of 144

exploit kits by Recorded Futures showed that Flash vul-

nerabilities comprised 6 of the top 10 kits [11].

Operating System Kernel Compromise of the core, built-in functionality of the op-

erating system. While many operating systems have in-

corporated security features and practices as a major por-

tion of the development lifecycle, malware authors are

incentivized to develop exploits to compromise the oper-

ating system directly as such exploits would not require

other platforms to be installed. Furthermore, kernel-level

exploits operate with permissions at the highest allowed

level, making them particularly enticing.

Software Frameworks This category includes the Java and .Net Frameworks.

This category is A Bit9 (now Carbon Black) report iden-

tifies Java as the most targeted endpoint technology, with

Java-related vulnerabilities in the top ten of all NIST

CVE vulnerabilities and over 90% of enterprises running

versions at least 5 years old [12].

12

Internet of Things (IOT) This is a broad category encompassing devices embedded

with electronics and networked. This category includes

sensors, appliances, implants, small home office devices,

network storage devices and other devices of similar na-

ture.

2.2.2 Payload Feature(s)

Table 2.3 below describes a taxonomy of features utilized by the APT malware to accomplish

their primary objective once resident within the target network.

Table 2.3: Payload Feature(s)

Feature Description

Backdoor Allows the threat agent access to the target entity sys-

tems, typically for the purposes of data gathering and

espionage.

Beaconing Activity in which the APT malware maps out the net-

work of the target entity, potentially compiling statistics

and report back to the actor.

Infostealer A generic term for specialized APT malware soft-

ware/modules to exfiltrate data. These modules are often

tailored for the individual target and the types of exfil-

trated information/data.

13

Keylogger The APT malware includes software that records user

keystrokes. Typically, not all traffic is captured. Instead,

the keylogger may only be activated, for instance, upon

the user visiting logins to websites, enabling credential

theft.

Packet Sniffer The APT Malware will capture traffic which traverses the

network and report back to the APT actor. Typically, not

all traffic is captured. Instead, traffic for certain applica-

tions may be monitored and reported back to the APT

actor.

Sabotage/Destructive Code The APT malware contains code intended to inflict de-

structive harm to the target entity. This is

Remote Access Trojan (RAT) Also known as a Remote Administration Tool, this is a

software tool installed on compromised systems to enable

the threat agent to remotely control the victims systems

in real time without the victims knowledge.

Wiper A software tool used to erase bulk amounts of data. This

feature is employed in cases where the APT malware’s

primary goal is sabotage.

2.2.3 Propagation Method(s)

Table 2.4 below identifies methods which the APT malware employs to spread.

Table 2.4: Propagation Method(s)

Feature Definition

14

Compromised Files The APT malware propagates via execution of compro-

mised files when loaded

Local Network Compromise Encompasses any method of propagation from a com-

promised endpoint directly communicating via the local

network to other, uninfected endpoints.

Shared Network Resources Encompasses any propagation method from a compro-

mised endpoint compromising a shared network resource

which would then consequently infect other endpoint

which would also utilize that resource.

Phishing A form of social engineering attack where internal users

are targeted and encouraged to either open mail or mail

attachments which execute malware. This technique is

not exclusive to APT malware and has been shown to

both be effective and low-cost compared other vectors.

This propagation method includes spear phishing, where

emails are customized for specific organizations and whal-

ing, where specific high-value persons (such as corpo-

rate executives) are specifically targeted. Attackers often

carefully select themes and topics used in attacks, us-

ing actual news stories which copy the text directly from

the news websites. Other attacks can appeal to personal

hobbies.

Removable File Storage This propagation method specifically relates to malware

which spreads through some form of auto-run feature typ-

ically employed by operating systems handling remov-

able media such as USB drives, as opposed to manual file

transfer.

15

2.2.4 Stealth Mechanism(s)

Table 2.5 below identifies mechanisms which APT malware utilize to maintain stealth before,

during and after compromise of a target system. Arguably, APT malware has demonstrated

advanced techniques to evade detection compared to general malware [13][14]. Several of

these techniques reduce the traffic volume of the APT malware. Per Jafarian, detectabil-

ity [15] is affected by the rate of committing illegitimate actions during an attack. Intuitively,

APT malware which reduces its traffic volume also reduces its detectability.

Table 2.5: Stealth Mechanism(s)

Feature Definition

Automated Self-Destruct The APT malware includes the ability to wipe itself from

the compromised system in order to prevent both detec-

tion and forensic analysis. This feature can be triggered

via system clock - once a date is passed, the malware will

automatically remove itself.

Compromised Certificates The APT malware uses certificates which are fraudu-

lently signed by a trust authority to allow elevated ex-

ecution permissions for binaries.

Compromised Credentials The APT malware uses previously-compromised creden-

tials to enable use of privileged functions.

16

Compromised Third-Party A third party is compromised to facilitate attacks on the

primary target by exploiting an existing trust relationship

between the target and the third party.

• Compromised Third-Party Credential: The APT

malware employs the use of credentials which are

nominally considered private to a third party.

• Compromised Third-Party Network: The APT

malware routes traffic through the third party web-

site or network to defeat reputation-based scoring

defenses [16].

• Compromised Third-Party Security Prod-

uct/Service: The Target Entity employs a

security product or service from a third party.

Thus, the APT compromises the Product/Service,

enabling the malware.

Antivirus Tampering The APT malware searches for antivirus products on the

compromised system and either disables them or other-

wise renders them ineffective.

Crypter As antivirus and intrusion detection systems often rely

on signature-based methods of detection, encryption of

either the binary and/or C&C traffic encryption intro-

duces an impediment to both initial discovery, forensic

analysis and ongoing detection efforts as well.

17

Fileless The APT malware avoids leaving files on the hard disk

of the system, running exclusively in system memory. As

memory is volatile, a shutdown or reboot of the system

will also erase the evidence of the malware activity.

Packer Compresses the malware file, reducing the effectiveness

of signature-based detection.

Polymorphic Code The APT malware mutates its code, but maintains iden-

tical functionality.

Rootkit The APT malware directly manipulates the operating

system of of the target system to mask activity. For ex-

ample, CPU utilization may be reported as less than its

actual usage to hide the computational processing em-

ployed by the APT malware.

Selective Targeting While the APT malware does infect a variety of systems,

it is relatively dormant on systems which do not match its

target profile. Malware with this attribute often spread

through networks to target SCADA systems.

Service Injection The APT malware .

Suspended Operation After certain criteria is met, the malware ceases opera-

tion, though remains on the compromised system. Often,

the malware retains a backdoor for the APT actor to is-

sue commands at a later date.

Threshold Propagation The APT malware limits the number of times it may

spread it order to restrict its overall propagation.

Wiper Similar to the payload feature mentioned above, a wiper

employed as a stealth feature is used to remove evidence

of the APT malware’s presence and evade detection.

18

2.2.5 Other Notable Feature(s)

Table 2.6 below describes other features of APTs which are otherwise notable, but do not

fall within the prior aforementioned categories.

Table 2.6: Other Notable Features

Attribute Description

Bootkit The APT malware modifies the master boot record of

the compromised system, allowing the malware to survive

operating system reboots.

Command and Control

(C&C) Server Communica-

tion

Typically used in conjunction with a Backdoor or RAT,

C&C communication often serves as a ”dead-drop” for

APT malware performing data extraction. Furthermore,

the a connection with a C&C infrastructure allows APT

malware to be periodically updated to add new fea-

tures, or, in the case of discovery, manually initiated self-

destruct to prevent forensic analysis.

Peer-to-Peer (P2P) Commu-

nication

The APT malware communicates within the local LAN.

This feature allows the APT malware to reduce the out-

bound communication volume when performing data ex-

filtration or inbound traffic receiving upgrades or com-

mands.

19

Modular/Plugin Architecture The APT malware is designed with an extensible plugin

architecture. This often allows the malware to download

relevant plugins as necessary. This reduces the overall

footprint of the malware as unnecessary plugins are not

downloaded, and allows for modular updates as individ-

ual plugins can be updated independently, without hav-

ing to re-download an entire binary.

2.3 Selected Notable APT Malware

Present discussion of APT malware must acknowledge a considerable amount of uncertainty.

Attribution of cyber attacks is a notoriously difficult problem [17][18][19][20]. However,

speculative analysis performed by intelligence agencies, cybersecurity-based firms and other

similar organizations will often implicate a certain entity or multiple entities as the primary

threat agent. The threat agent(s) deploy the APT malware against the target(s) and may

also be involved with the development effort as well.

Organizations based their analysis on various Tactics, Techniques and Procedures

(TTPs) required to develop, test, operate the APT malware. This may eliminate enti-

ties which clearly lack the available resources to ultimately deploy the malware. Direct

examination of the APT malware code or behavior also can suggest particular authors,

such as through examination of metadata keyboard languages or with compile times that

correspond to typical working hours in particular time zones. Furthermore, the analysis

also examines the potential motivating factor which would drive the use of the malware.

Actors without a direct motivating factor are regarded as less likely than more actors with

a direct motivating factor.

This approach does lead to some obvious flaws. Nation-states typically disguise their

full capabilities as national security concern. Malware authors will attempt to obfuscate, as

20

part of general best practices [21][22]. Furthermore, techniques used to obfuscate the threat

agent could be used to deliberately masquerade as another entity entirely in what are known

as ”false flag” attacks. This could spark retaliatory action against the falsely implicated

entity, which may have been the primary objective of the threat agent. Analysis of motives

is similarly fraught with potential errors. This analysis is based largely on public and

known sources of information, whereas most organizations retain vast troves of non-public

information.

Analysis of malware in general, and the more sophisticated APT malware in particular,

is an uncertain endeavor. However, this intends to convey the consensus of the security

community at-large.

2.3.1 Stuxnet

The Stuxnet [23][20][24][25][26][27] worm, recognized as the first cyber weapon, was em-

ployed to sabotage the Iranian nuclear program. According to David Sanger[28], a NY

Times journalist, Stuxnet was a joint United States and Israeli effort which began as re-

connaissance malware under the second Bush administration. At that time, the United

States had mistakenly accused Iraq of seeking nuclear capability and committed its mili-

tary strength to topple the Iraqi government. When no such weapons were found, it would

become politically damaging for the United States to accuse yet another nation of devel-

oping nuclear weapons. As a result, Iran seized the opportunity to accelerate their own

nuclear ambitions. The Israeli government, seeking to prevent the development of an Ira-

nian nuclear bomb, considered a conventional strike which could potentially embroil the

entire region into war. Stuxnet posed an alternative.

Noted Stuxnet expert Ralph Langer contends that the malware was relatively ”low-

yield” by design, intending on slowing the development of the Iran nuclear program rather

than destroy all of of the centrifuges [8] at once. While Stuxnet retained the capability,

Langer’s analysis shows that even catastrophic destruction of all the centrifuges at any

given point would not have significantly slowed the Iranian nuclear development compared

21

to the employed approach, which hampered the Iranian efforts over a longer period of time.

Langer postulates that Stuxnet delayed the Iranian nuclear development by roughly two

years.

Table 2.7: Stuxnet Malware Attributes

Attribute Description

Alternative Names Operation Olympic Games

Discovery Date June 2010

Suspected Objectives Sabotage of the Iranian uranium enrichment facility at

Natanz; and the overall Iranian nuclear development pro-

gram.

Suspected Threat Agent United States National Security Agency (NSA) and Is-

raeli Unit 8200 (Israeli equivalent to the US CIA).

Components Exploited - Industrial Control Systems (ICS)/Supervisory Control

and Data Acquisition (SCADA)

- Cascade Protection System

- Centrifuge Drive System

Table 2.8 below describes payload features of Stuxnet:

22

Table 2.8: Stuxnet Payload Features

Feature Description

Backdoor If possible, upon newly infecting a system, Stuxnet at-

tempted to reach out to C&C servers. The C&C servers

would presumably register the system and maintain a

RPC backdoor for external commands [24].

Beaconing Stuxnet recorded the information regarding the system’s

name, IP address, domain, OS version and whether it

had PLC-related files installed in a ”Configuration Data

Block” which was preserved upon each infection. This

preserved a history of the infection, allowing the opera-

tor to map the highly restricted environments where it

was inserted. Furthermore, this feature would allow the

discovery of additional facilities and previously-unknown

contractor relationships. Later, this feature also allowed

the security community to trace the path of the malware

and determine the original point of infection [24][26].

23

Sabotage Module Stuxnet featured two separate means of sabotage among

its multiple variants. Both targeted the Siemens PLCs

which controlled the centrifuges enriching uranium for

the the Iranian nuclear program. The lesser-known first

method, was through an overpressure attack against gas

centrifuges, which are sensitive to increased process pres-

sure and would cause a variety of issues. The Natanz

facility design featured a unique system which addressed

the excess gas pressure. An earlier variant of Stuxnet

interfered with this system [8].

The second, more renown method was to cause the cen-

trifuge rotor fans to rapidly accelerate and decelerate

causing physical stress on relatively delicate components

[29].

Both variants operated once a month to evade discovery.

Table 2.9 below describes propagation methods of Stuxnet:

24

Table 2.9: Stuxnet Propagation Methods

Method Description

Compromised Files Stuxnet would install itself into Step7 project directory

used by Siemens software. The entire directory would

often be copied from system to system to facilitate con-

figuration. Whenever the files would be loaded, Stuxnet

would execute [24].

Local Network Compromise Stuxnet spread through Windows Print Spooler and SMB

vulnerabilities [24][25][26]

Shared Network Resources Stuxnet infected both windows shares and Siemens

WinCC servers. Vulnerable systems connecting to these

shared resources would also be infected.

Removable File Storage Stuxnet infects USB drives and will infect vulnerable sys-

tems through the use of the Windows AutoRun feature.

Table 2.10 below describes stealth mechanisms of Stuxnet:

25

Table 2.10: Stuxnet Stealth Mechanisms

Method Description

Compromised Certificates Stuxnet employed drivers digitally signed by Realtek

Semiconductor and JMicron Technology. With the signed

driver, compromised systems allowed to allowed the

drivers to execute silently at an elevated permission level.

As Realtek and JMicron have facilities which are physi-

cally located in proximity to one another, it was specu-

lated that the certificates where physically stolen [24][30].

Crypter Stuxnet would perform XOR-based encryption with a

static 31-byte string on many of its files, including the

main payload, communications, along with data, config-

uration and log files [24].

Rootkit One of Stuxnet’s most significant features was the use

of rootkits, both to mask its activities on compromised

Windows systems and more uniquely, the Siemens PLCs.

For both attacks which directly damaged the centrifuges,

Stuxnet masked the operation of the attack from the op-

erators. During the overpressure attack, process input

signals are record for 21 seconds and replayed for the du-

ration of the attack. During the rotor fan attack, the

user-configured rotor speed is displayed to the user, de-

spite the actual rotor speed being manipulated by the

attack code [8]. The attack would still be detected via

direct observation of the audible centrifuge noise, which

would change drastically based on the rotor speed.

26

Selective Targeting On systems without files related to PLC software,

Stuxnet is relatively dormant, only seeking to further

spread.

Suspended Operation Stuxnet had hard-coded dates in which the variant was to

cease either all or various aspects of its operation [31].[25].

This included several of its propagation methods, which

would be dependent on particular exploits. This may

have been an effort to prevent detection of Stuxnet should

a leveraged vulnerability be discovered.

Threshold Propagation For each USB drive infected, Stuxnet’s code would at-

tempt to spread for only 21 days, allowing only 3 infec-

tions, restricting its dispersion and reducing the chance

of detection outside of its intended targets [30].

Table 2.11 below describes other notable features of Stuxnet:

Table 2.11: Other Stuxnet Features

Feature Description

Command and Control

(C&C) Server Communica-

tion

Whenever Stuxnet compromised a new system, it

would attempt to report back to C&C servers at

http://www.mypremierfutbol.com. The server was used

for data exfiltration, upgrades, and the execution of ar-

bitrary commands. In August 2010, the Iranian primary

telecom provider blocked communications to the domain,

severing the C&C communication [24].

27

Peer-to-Peer (P2P) Commu-

nication

Stuxnet communicated among peers via a RPC

client/server architecture. The Symantec technical anal-

ysis on Stuxnet concludes that the primary objective of

the P2P communication was to allow systems which did

not have external connectivity to receive updates and

commands from other peers which would have external

connectivity [30][24].

Table 2.12 below describes Stuxnet Zero-Day Exploits:

Table 2.12: Stuxnet Zero-Day Exploits (5)

CVE Number Description

CVE-2010-2568 Windows Shortcut 'LNK/PIF' Files Automatic File Execution

CVE-2010-2729 Windows Print Spooler Service Remote Code Execution

CVE-2010-2743 Windows Kernel Win32K.sys Keyboard Layout Privilege Escalation

CVE-2010-2772 Siemens Simatic WinCC Default Password Security Bypass

CVE-2010-3888 Windows Task Scheduler Privilege Escalation

2.3.2 Duqu

Analysis of Duqu revealed that Stuxnet and Duqu shared not only binaries, but source code.

Thus, the the security community at-large has deduced that both malware originated from

either the same source, or affiliated sources. As Duqu appears to have compromised similar

targets as Stuxnet, it is suspected that both malware are both part of greater effort. While

in abstract, Duqu is a simple information-stealing malware; it is a notable early example of

several features: operating in system memory to avoid leaving remnants on the compromised

28

system, employing a peer-to-peer system to both spread and exfiltrate traffic through the

network, and using a self-destruct mechanism to remove itself from compromised systems.

Many of these techniques have become more broadly utilized [32][33].

Table 2.13: Duqu Malware Attributes

Feature Description

Alternative names Stars virus

Discovery date October 14, 2011 by the Laboratory of Cryptography

and System Security (CrySys) at Budapest University of

Technology and Economics. [27]

Suspected Threat Agent United States-government entities or affiliated organiza-

tions

Components Exploited Operating System Kernel: Duqu uses a specially-crafted

Microsoft Word document which executes a 0-day Win-

dows kernel exploit.

Table 2.14 below describes the payload feature of Duqu:

29

Table 2.14: Duqu Payload Features

Feature Description

Keylogger Duqu recorded keystrokes (primarily related to account

access) and relayed them to the C&C server.

Infostealer Duqu employed several variants of infostealers. Most

commonly, exfiltrated information included network in-

formation (such as interfaces, routing tables, list of net-

work shares, etc), system information, account informa-

tion, and screenshots.

Remote Access Trojan (RAT) The Duqu malware installs a trojan which allowed the

malware operator to invoke root-level commands on com-

promised systems.

Table 2.15 below describes the propagation methods of Duqu:

Table 2.15: Duqu Propagation Methods

Method Description

Office Documents Duqu uses a specially-crafted Microsoft Word document

which executes shellcode containing a 0-day Windows

kernel exploit.

Shared Network Resources Duqu would replicate through network shares to addi-

tional computers on the network.

Table 2.16 below describes stealth mechanisms of Duqu:

30

Table 2.16: Duqu Stealth Mechanisms

Feature Description

Antivirus Tampering Duqu specifically checks for Kaspersky, McAfee, AntiVir,

Bitdefender, Etrust, Symantex, ESET, Trend and Rising

antivirus products and injects itself into their memory

processes to interfere with them

Automated Self-Destruct Duqu will delete itself by default after 30 to 36 days,

depending on the variant. However, additional commu-

nication form the C&C servers can extend the lifetime of

Duqu on target machines.

Compromised Certificates In a manner very similar to Stuxnet, Duqu employed

the use of compromised signed certificates from JMicron

Technology and Realtek Semiconductor to bypass default

restrictions on unknown drivers. Duqu also employed

drivers digitally signed by Verisign [34].

Compromised Third Party Credentials stolen from JMicron Technology and Realtek

Semiconductor were likely employed to generate certifi-

cates employed by Duqu.

Crypter The configuration file uses AES-CBC encryption.

Fileless Potentially Duqu’s most notable feature, the APT mal-

ware operates almost solely in the system memory, min-

imizing its footprint upon the compromised system. At

the time of discovery, relatively few malware employed

this technique [32][33].

Table 2.17 below describes other notable features of Duqu:

31

Table 2.17: Other Duqu Features

Feature Description

Command and Control

(C&C) Server Communica-

tion

Duqu exfiltrated information attached as to dummy

JPEG files to C&C servers located at specific IP ad-

dresses over HTTP or HTTPS. The C&C servers at those

addresses were distributed across nations, including In-

dia, Vietnam and Belgium. The C&C servers redirected

traffic to other servers likely to prevent identification of

the threat actor. JPEG and HTTP/S are common files

and protocols which were presumably employed to obfus-

cate the communications.

Peer-to-Peer (P2P) Commu-

nication

After establishing a foothold within the target network,

Duqu spread primarily through a peer-to-peer mecha-

nism. Subsequent infections would update a configura-

tion file which contained a path from the initial point

of compromise. The malware would employ this path

to proxy traffic back through the network to the C&C

Server.

Modular/Plugin Architecture Duqu employed several variants of infostealer and other

modules customized for the individual compromised sys-

tem.

Table 2.18 below describes the Duqu Zero-Day Exploit:

32

Table 2.18: Duqu Zero-Day Exploit (1)

CVE Number Description

CVE-2011-3402 TrueType Font Parsing Vulnerability

2.3.3 Sednit

Sednit [35][36] is primarily a data exfiltration APT. It is suspected that the APT has ties

to Russian intelligence as the malware has been utilized against organizations with Russian

interest including the Ukraine during the 2016 border disputes involving Crimea. This group

has also been linked to compromise of the American Democratic National Committee prior

to and during the 2016 American presidential election campaign. American intelligence

agencies have concluded that Russia operatives have been sought to influence the American

political process though the use of Sednit and other means.

Table 2.19: Sednit Attributes

Attribute Description

Alternative Names Operation Pawn Storm, Sofacy, STRONTIUM, Tsar

Team

Discovery Date October 2014

Suspected Objective Military/Defense and Political Espionage. Notable tar-

gets have been the American Democratic National Com-

mittee, the German parliament and the French television

network TV5Monde

Suspected Threat Agent Russian-based intelligence organizations

33

Component(s) Exploited Sednit primarily spreads through phishing emails with

compromised attachments of Microsoft Word and Excel.

Some of Sednit’s early versions included compromised

versions of Adobe Reader which would deploy the mal-

ware upon opening the compromised file.

Table 2.20 below describes the payload feature of Sednit:

Table 2.20: Sednit Payload Feature

Feature Description

Backdoor The Sednit toolkit includes two backdoor malware tools,

Sedreco and Xagent. XAgent is often an initial data-

gathering tool, and Sedreco is used for more continuous,

long-term monitoring.

Table 2.21 below describes propagation methods of Sednit:

Table 2.21: Sednit Propagation Methods

Method Description

Phishing By far the most common method used to insert Sednit

into a network is to use spear phishing/whaling tech-

niques. This was true in the case of the compromise of

the American Democratic National Committee.

34

Watering Hole Several emails directed users to click on links which lead

to carefully-crafted websites

Table 2.22 below describes stealth mechanisms of Sednit:

Table 2.22: Sednit Stealth Mechanisms

Mechanism Description

Crypter Various Sednit tools employ encryption. For example,

3DES encryption is used in the Sedreco tool in its out-

bound file format.

Peer-to-Peer Communication Sednit incorporates a dedicated tool, known as Xtun-

nel to which converts compromised systems into network

proxies which can allow the malware operator to access

portions of the network which are otherwise inaccessible.

Rootkit The Downdelph tool is rootkit which intercepts operating

system commands and disguises malware activity.

Table 2.23 below describes other notable features of Sednit:

35

Table 2.23: Other Notable Sednit Features

Feature Description

Bootkit As a part of the Sednit collection of tools, the

bootkit/rootkit known as Downdelph is included. As a

bootkit, the system master boot record is compromised

and survives system reboots.

Command & Control Com-

munication

As a primarily espionage-focused APT, communication

with external servers is critical to the success of Sednit.

Table 2.24 below describes Sednit zero-day exploits:

Table 2.24: Sednit Zero-Day Exploits (5)

CVE Number Description

CVE-2016-7855 Use-after-free vulnerability in Adobe Flash Player

CVE-2015-3043 Flash

CVE-2015-1701 Windows LPE

CVE-2015-2590 Java

CVE-2015-4902 Java click-to-play bypass

CVE-2015-2424 Office RCE

CVE-2015-7645 Flash

2.4 Adaptive Cyber Defense and Moving Target Defense

Moving Target Defense was first introduced in a series of papers that modeled a system’s

security as a function of its exposed attack surface and showed how MTDs increased diversity

based on software and network transformations [37].

36

Since its introduction, a myriad of Adaptive Cyber Defense and MTD techniques have

been developed in the literature, each targeting different aspects of a system. They have

been generally organized by type according to a taxonomy published by Lincoln Labs [38][39]

into the following categories:

• Dynamic Runtime Environments

• Dynamic Platforms

• Dynamic Software

• Dynamic Data

• Dynamic Networks

However, it has been clear that in recent years MTD techniques have flourished as

evidenced by the addition of new surveys by Lei [40], Zheng[41], Sengupta [42] and Cho [43].

Moving Target Defense was first introduced in a series of papers that modeled a system’s

security as a function of its exposed attack surface and showed how MTDs increased diversity

based on software and network transformations [37]. Later papers expanded on this concept,

incorporating aspects of game theory, where an attacker or defender may adopt different

strategies based on the actions of the other [44] or introduce machine learning into MTD

behavior [45].

Although the MTD taxonomy described covers most MTDs as they apply to conven-

tional computer systems, MTD techniques have also been applied on several other plat-

forms that don’t fall neatly into those categories. For example, MTDs have been studied in

resource-constrained environments such as tactical network devices or FPGAs [46], cyber-

physical systems [47], and wireless sensor networks [48][49].

2.4.1 Dynamic Runtime Environments

Dynamic Runtime Environments operate by dynamically changing the environment pre-

sented to an application. Generally implemented at a low level fairly close to hardware,

37

there are two major categories: Address Space Layout Randomization (ASLR) and Instruc-

tion Set Randomization (ISR). ASLR is one of most mature and widely-adopted forms of

MTD in conventional usage and protects against buffer overflow attacks by randomizing

key locations of memory [50]. Since first being introduced, many improvements have been

proposed, such as changing the focus of the MTD from preventing invalid memory accesses

to offering unpredictable results [51] or by randomizing instructions while in operation to

improve entropy [52]. Another technique that incorporates aspects of address randomiza-

tion in its protection is DieHard [53] [54], which also protects against heap buffer overflows

by increasing space between elements and maintaining multiple replicas of the heap and

using voting to prevent subversion of control.

ISR works to mitigate Return-Oriented Programming (ROP) and code injection attacks.

These attacks are generally not protected by the use of ASLR [55]. ISR operates by ensuring

injected code is not immediately compatible with the target, often by performing simple

encryption or adding some additional required label to each opcode. This can be done at

compile time [56], or performed at run-time in an emulator [57][58]. Is it noted that ISR

techniques can often be used in conjunction with ASLR techniques to supplement each

other [38].

2.4.2 Dynamic Platforms

MTDs which fall under the classification of Dynamic Platform operate at a slightly higher

level of abstraction than Dynamic Runtime Environments by dynamically changing plat-

forms such as OS version, OS instance, or CPU architecture. To implement these techniques,

various forms of virtualization is commonly employed. One method would be to operate

by rotating between multiple variants of the Linux OS [59], or by designating roles for each

VM and shuffling them between hosts [60].

38

Dynamic platforms could also be implemented using multivariant systems, where mul-

tiple variations of an OS are run at the same time and monitored for divergence diver-

gence [61]. While potentially introducing significant operational overhead, a malicious at-

tacker attempting to divert control would only do so one one of the variants, which would

then be detected. Subsequently, the afflicted variant would be reverted to a known good

state.

Making OS changes on a regular interval can be disruptive to running applications but an

MTD can accomplish this by first taking a snapshot of the current state, execution state,

open files, and network sockets [62]. Other MTDs use similar methods of snapshotting

system images and replacing them with known good copies if tampering is detected or to

disrupt attacker’s persistence on a system [63][64][65].

2.4.3 Dynamic Software

MTDs classified as Dynamic Software often operate in a similar manner as Dynamic Plat-

forms; but operating instead at the application level as opposed to the OS level. The

grouping, order, format, or the actual instructions within an application’s code can be

changed dynamically. This includes Multivariant approaches that run several different ver-

sions of software to prevent all machines being compromised by the same exploit [66]. A

simpler implementation of this approach uses a single replica compiled with the stack work-

ing in the opposite direction so that an exploit cannot work on both [67]. Another Dynamic

Software Method would to be implement some sort of shuffling or rotation between software

that is currently being executed [68], which can potentially cause operational concerns and

often requires coordination for practical implementation. One software approach would be

to generalize DieHard for individual applications as opposed to OS use [69].

2.4.4 Dynamic Data

Dynamic Data MTDs are implemented primarily via some form of continuous transfor-

mation to the format, syntax, encoding, or representation of an application’s data. For

39

example, alterations to common protocols, such as manipulating HTML tags from a web

server to thwart bots (but allowing legitimate users to render them correctly) [70] or adding

additional keywords to SQL commands and table names which are required to run the

commands may prevent SQL Injection attacks [71].

2.4.5 Dynamic Networks

Dynamic Networks involves changing network addresses or other network properties dy-

namically. Dynamic Networks are one of the most widely studied areas of Moving Target

Defense, as many cyber attackers leverage computer networks as an attack vector and net-

work MTDs. Furthermore this form of MTD can be implemented at a level of abstraction

above individual systems or applications, in theory making the implementation of the de-

fense transparent to the application itself. This form of protection is desirable to prevent

an attacker from accessing the system altogether.

Perhaps the earliest and most oft-cited example of a Dynamic Network MTD would be

the various IP hopping schemes [72][73]. For example, a scheme could include decoy nodes

and shuffle them regularly along with actual nodes to further delay attackers [74]. Instead

of changing the target system IP addresses directly, an MTD can implemented instead by

a series of rotating proxies which act an intermediaries to the defended system [75]. These

intermediary proxies will transparently pass traffic, but can shift IP addresses with more

ease than the defended application.

An improvement on the IP-hopping scheme is Random Host Mutation [76][77] which is

implemented at a centralized DNS server and maps ephemeral IP addresses (eIP) to real

IP addresses rIP). This technique randomizes host-to IP bindings based on source identity

and time [78] and is able to maintain connection states. The technique also has the ability

to adapt to an attacker probes by moving hosts to addresses with a lower probability of

being scanned or moving nodes to addresses that have already been scanned [79].

Instead of centralizing operation of the MTD, it is possible to implement it across an en-

tire network by using a hypervisor to rewrite packets at each node to make each network hop

40

dynamic. The Self-Shielding Dynamic Network (SDNA) protocol also allows for encryption,

authentication, and redirection to a honeypot for unauthenticated users [80][81][82].

Besides actually changing IP addresses, a network MTD can also take other actions

to virtually affect the network and disrupt attackers. For example, an MTD might only

manipulate an attacker’s view of the network, using some sort of protocol scrubber [83] or the

dynamic defense could come in the form of lightweight sensors that are able to move around

the network and swarm around any areas where there are potential discrepancies [84].

It is worth noting that network MTDs also take advantage of evolving technology. IPv6

offers a vastly larger address space as opposed to IPv4 and therefore greater entropy to

techniques that use it. MT6D uses the IPv6 address space to create an encrypted tunnel

that uses a range of addresses and ensures protection as well as privacy [85][86]. This

technique is also applicable to embedded systems on the smart grid using IPv6 [87] or as

part of a hybrid approach with a mix of static and dynamic IP addresses [88] to protect

mobile-enabled systems.

41

Chapter 3: Preliminary Definitions and Problem Statement

This chapter defines incentives and deterrents that APT actors may weigh when evaluating

which nodes to target and how to move within a network. This system of incentives and

deterrents is at the basis of the proposed quantitative framework.

3.1 Assumptions

The value an APT actor gains from a target network during a given time interval depends

on the number and nature of the compromised nodes. The malware footprint within the

network is modeled as an overlay tree, rooted at the attacker’s entry point into the network.

The choice of using a tree overlay is justified by the following reasoning. As mentioned

previously, APT actors are highly determined to ensure that their actions are stealthy

in order to maintain persistence and accrue more value over time. To achieve this goal,

they seek to avoid detection by minimizing the number of communication channels, as

observed in several instances of existing malware [34, 89]. This behavior can be captured

by modeling communication links as the edges of an overlay tree. However, there are other

means an attacker can use to minimize detectability. Jafarian et al. introduce the notion

of quantifying detectability by measuring malware activity during a given time window [15].

Leveraging this concept, it is assumed that the need to maintain stealth constrains attackers

to minimize detectability. The constraint is modeled as a detectability budget B, representing

the attacker’s level of risk tolerance within any time interval ∆ti.

The network is represented as a graph G = (V,E), where V is a set of network elements

– such as routers and end hosts – and E captures the connectivity between them. As

mentioned earlier, APT actors continue to accrue value as they persist within the target

network. To capture the temporal dynamics of APTs, and without loss of generality, I

42

discretize time as a a finite sequence of integers T = 〈t0, t1, . . . , tm〉 ⊆ Nm, with m ∈ N and

ti < ti+1 for each i ∈ [1,m]. I then define reward(ti), with i ∈ [1,m], as the value accrued

by an APT actor at time ti, or, more precisely, during the time interval ∆ti = [ti−1, ti].

Therefore, the value accrued by the attacker over the entire time horizon T can be simply

defined as Reward =
∑m

k=1 reward(ti).

Due to the sophisticated nature of APTs, the amount of resources that threat actors

invest in researching their targets, and the potential exploitation of zero-day vulnerabilities,

it is reasonable to assume that APTs are always successful in compromising a target node.

Additionally, a strong adversarial model is assumed in which attackers have full knowledge

of the network topology, the location of various assets – including data items – and their

respective value. APTs are known for being able to bring to bear considerable resources,

including the use of traditional intelligence and covert operations. In the case of Stuxnet,

as mentioned in Chapter 2, the APT actor possessed specific intelligence regarding the

Iranian industrial control devices. This knowledge allowed the actor to specifically target

surreptitiously target and sabotage the specific device.

3.2 Cost

Attacker interactions with network nodes incur a detectability cost, which quantifies the risk

of those interactions being detected. As mentioned earlier, the cost an attacker is willing to

incur during any time interval ∆ti is bounded by B. Detectability costs for individual nodes

can be determined based on several characteristics of those nodes, as described below.

• Role: Intuitively, nodes with more mission-critical roles, such as a database server,

would undergo more scrutiny and would be more heavily monitored than typical user

workstations. For example, staff may routinely check the status of a critical database,

whereas a user workstation may only be examined when there is an apparent issue.

43

• Operating System: Newer operating systems inherently incorporate additional pro-

tection mechanisms which render attacks designed for older systems ineffective. Fur-

thermore, security monitoring options are typically more robust and diversified on

these operating systems, resulting in more effective detection of malicious activity. As

a result, newer operating systems generally force attackers to resort to noisier attacks,

which defenders can more readily detect.

• Deployed Services and Applications: Services and applications inherently expose

an attack surface which attackers may employ to exploit the overall system. This is

particularly the case for services and applications which require network connectivity

to operate. Common examples may include web, mail and database servers.

• Deployed Defense Mechanisms: Defenders often install additional defense mecha-

nisms to provide another layer of defense on top of baseline operating system features.

These may include host-based antivirus software, host-bases intrusion detection sys-

tems, file integrity monitoring systems, and other similar defenses.

The detectability cost of a node is also affected by the level of attacker’s effort necessary

to compromise the node and maintain it in the malware footprint. The attacker’s effort

includes activities that can be broadly classified in the following two categories:

• Compromise and acquisition: activities performed to establish the attacker’s pres-

ence and control on the target node, including activities such as scanning and recon-

naissance, initial compromise, and privilege escalation.

• Operation-on-target and maintenance: activities performed to carry out the

attacker’s objectives on a compromised node, including activities such as exfiltrating

information, downloading malware updates, and routing attack traffic.

Another important consideration is that the malware footprint within a network may

not be composed solely of compromised nodes. An attacker may leverage standard network

mechanisms to forward malicious traffic through several nodes – such as routers – without

44

necessarily compromise them. If such nodes are on the path between two compromised

nodes, they can be considered part of the malware footprint. Compromising every node

within the malware footprint is impractical for a variety of reasons. Assuming that the at-

tacker has the capability to do so, leveraging such capability may not be cost-effective. For

instance, compromising a router may give the attacker additional rewards, but the risk of

detection would also be much higher. In this case, it may be more cost-effective for the at-

tacker to compromise nodes hosting sensitive data and use the router to forward exfiltration

traffic originating at the compromised nodes. Intuitively, including non-compromised nodes

in the malware footprint enables APT actors to more efficiently allocate their detectability

budget and gain more rewards from the target network by using the budget to compromise

more desirable and cost-effective nodes.

To account for this type of scenario, two types of nodes are consider in the overlay model,

namely compromised nodes and traffic-forwarding nodes. The latter are nodes which pass

malicious traffic, but are not compromised by the attacker. Since these nodes are used

only passively to forward traffic, the attacker incurs a lower cost to maintain them in

the malware footprint. However, there is still a small risk associated with these nodes,

as malicious traffic passing through them can be potentially detected, thus revealing the

presence of the attacker. Thus, the notion of APT Malware Footprint is defined as follows.

Definition 1 (APT Malware Footprint). The footprint of an APT malware in a network

G = (V,E) is a tree T = (C ∩ F, root), where

• C ⊆ V is a set of compromised nodes

• F ⊆ V is a set of non-compromised non-leaf traffic-forwarding nodes

• root ∈ C is the root of the tree.

Detectability is modeled as two separate cost functions, namely costc : V × T → R and

costf : V × T → R. Specifically, costc(v, ti) is the detectability cost incurred by the APT

malware for compromising node v and maintaining the compromise at time ti. Similarly,

costf (v, ti) is the detectability cost incurred by the APT malware for forwarding traffic

45

through node v at time ti. As discussed previously, the detectability cost of compromis-

ing a node is higher than the cost of forwarding traffic through the same node, therefore

∀v ∈ V,∀ti ∈ T , costc(v, ti) ≥ costf (v, ti). Additionally, ∀v ∈ V , costc(v, t0) = 0 and

costf (v, t0) = 0 by definition. The total cost at time ti can be computed as

cost(ti) =
∑
v∈C

costc(v, ti) +
∑
v∈F

costf (v, ti),∀i ∈ [1,m]

It must be noted that, once a node v has been compromised at time tj , the cost for the

attacker to maintain v in its footprint during subsequent time intervals is lower than the

cost sustained for the initial compromise. Formally, the cost function costc for a node v

compromised at time tj can be defined as

costc(v, ti)


= 0 if ti < tj

= cv if ti = tj

< cv if ti > tj

(3.1)

where cv is a constant representing the one-time cost sustained by the attacker to compro-

mise node v.

3.3 Reward

APT malware gains value from information extracted from target systems. Many prior

approaches use the concept of one or more target nodes [90,91], which an attacker seeks to

compromise. In these approaches, target nodes may represent crown jewels, such as critical

databases or email servers, which would severely impact an organization, if compromised.

While these targets are undoubtedly critical, these approaches do not account for other

valuable information which may reside on other nodes within the network, nor for the

intrinsic value those nodes may have for an attacker who seeks to maintain persistence

46

within the network.

An attacker may choose to forgo these targets entirely in favor of more lightly-defended

options. This approach may be especially enticing if the network defenses are densely con-

centrated around critical resources and relatively sparse in other regions of the network. In

such a situation, an attacker can compromise a larger proportion of the network without

exceeding its detectability budget. Accruing value in a more incremental fashion may in

fact be a more effective strategy for an attacker aiming to evade detection. For example,

an attacker may forgo an organization’s heavily-guarded email server and instead compro-

mise the organization’s lightly-secured user workstations. Depending on the organizational

security policy, the attacker may be able to extract not only email messages that could

have been otherwise retrieved from the server at a much higher risk, but also additional

locally-stored information.

Two separate reward functions are used to model the value of nodes throughout the net-

work, namely rewardc : V ×T → R and rewardf : V ×T → R. Specifically, rewardc(v, ti) is

the reward gained by the APT malware for compromising node v or controlling the compro-

mised node at time ti. Similarly, rewardf (v, ti) is the reward gained by the APT malware

for forwarding traffic through node v at time ti. As discussed previously, the reward gained

from a compromised node is higher than the reward from a non-compromised node used

solely for forwarding traffic, therefore ∀v ∈ V,∀ti ∈ T , rewardc(v, ti) ≥ rewardf (v, ti). Ad-

ditionally, ∀v ∈ V , rewardc(v, t0) = 0 and rewardf (v, t0) = 0 by definition. Finally, the

total reward at time ti, with i ∈ [1,m], which was introduced earlier in Section 3, can be

computed as

reward(ti) =
∑
v∈C

rewardc(v, ti) +
∑
v∈F

rewardf (v, ti)

47

3.4 Tree Formation Problem

The long-term attacker’s objective is to construct and overlay tree T = (C ∩F) that maxi-

mizes total rewards over the time horizon T = 〈t0, t1, . . . , tm〉, subject to cost constraints.

maximize
T

m∑
i=1

reward(ti)

subject to cost(ti) ≤ B, ∀i ∈ [1,m]

However, as the above optimization problem would be unpractical for the attacker to

solve, it is reasonable to assume that a more realistic objective is to construct, during each

time interval ∆ti, a partial tree Ti = (Ci ∩Fi) that reuses – either partially or totally – the

tree Ti−1 generated during the previous time interval and maximizes the rewards, subject

to the detectability budget B.

maximize
Ti

∑
v∈Ci

rewardc(v, ti) +
∑
v∈Fi

rewardf (v, ti)

subject to
∑
v∈Ci

costc(v, ti) +
∑
v∈Fi

costf (v, ti) ≤ B

As formulated, this problem is closely related to the class of Steiner Tree Prob-

lems [92, 93]. In particular, this problem closely models the Prize-Collecting Steiner Tree

Problem (PCST) and, more specifically, the Node-Weighted Prize-Collecting Steiner-Tree

Problem (NW-PCST), for which a number of approximation algorithms exist [94,95]. These

approximation algorithms include rooted variations, where a specific root node is required

to exist in the tree. These variations would accurately model an entry or extraction point

for the malware. However, all variants of this problem are generally considered NP-Hard,

and the budgeted variants are shown to be at least as hard to approximate as the maximum

coverage problem [96].

48

Budget, B

reward

40

20

V3

r:0
c:10

V6

r:10
c:10

V5

r:90
c:100

V8

r:40
c:10

V7

r:50
c:30

V9

r:20
c:10

V2

r:0
c:10

V1

r:0
c:10

V4

r:20
c:10

cost 40

(a) t = 1

Budget, B

reward

50

30

V3

r:0
c:10

V5

r:90
c:100

V4

r:20
c:10

V6

r:10
c:10

Budget now
allows

including this
node

V2

r:0
c:10

V1

r:0
c:10

V7

r:50
c:30

V8

r:40
c:10

V9

r:20
c:10

cost 50

(b) t = 2

V4

r:20
c:10

Budget, B

reward

70

60

At this budget
level, including V4
does not maximize

reward

V3

r:0
c:10

V6

r:10
c:10

V5

r:90
c:100

V2

r:0
c:10

V1

r:0
c:10

V7

r:50
c:30

V9

r:20
c:10

V8

r:40
c:10

cost 70

(c) t = 3

Budget, B

reward

130

140

V5 has the highest
value and it is

within budget, but
does not maximize

reward

V3

r:0
c:10

V6

r:10
c:10

V8

r:40
c:10

V5

r:90
c:100

V7

r:50
c:30

V9

r:20
c:10

V2

r:0
c:10

V1

r:0
c:10

V4

r:20
c:10

cost 100

(d) t = 4

Figure 3.1: Basic example of APT malware footprint for different values of the budget

Example 1 (APT Malware Footprint). Figure 3.1 illustrates the concept of APT Malware

Footprint using a simple network and different values, ranging from 40 to 130, for the

attacker’s detectability budget. In this example, it is assumed that all nodes in the malware

footprint, denoted with a bold red outline, are compromised. In these figures, which capture

a snapshot of the network at time t1, each node v is labeled with its respective reward

r = rewardc(v, t1) and cost c = costc(v, t1). In this example, V1 is the root node, that is the

entry/exit point for the attacker. Note that this model intuitively reflects that an increased

detectability budget allows the attacker to access a larger proportion of the target network

49

and accrue a larger reward. Also note that, in Figures 3.1a and 3.1b, the attacker selects V4

as the budget does not allow compromising other more rewarding nodes. However, as shown

in Figure 3.1c, with a larger budget, the attacker chooses to forgo V 4 in favor of V7, which

allows more efficient use of the available budget and leads to a larger overall reward. In

Figure 3.1d, the attacker budget is so large that nearly the entire network is compromised.

However, it should be noted that the one node which is not compromised, V5, has the single

highest value in the entire graph. However, due to also having the highest associated cost

– indicating the presence of more sophisticated defense mechanisms – including this node

would not lead to the highest possible aggregate reward for this budget level. Other threat

modeling approaches focusing on target nodes would likely designate V5 as a primary target

for the attacker, thus steering even more defensive resources towards it. This example

demonstrates that an attacker does not necessarily need to compromise the node with the

highest value within the network in order to maximize the reward.

3.5 Summary

In this chapter, a novel model for organizational networks is detailed as well as its real-world

underpinnings. In contrast to prior work, this model accounts for the reward APTs gain

from compromising any arbitrary node within the organization’s network - though at the

cost of potentially revealing their presence. Given this model, this chapter also presents

the attacker problem of building a footprint to maximize the reward from the network; and

implicitly, the defender’s problem of minimizing the attacker’s reward. The next chapter

addresses both problems.

50

Chapter 4: Problem Solution

In the previous chapter, a model was introduced which allows attackers to quantify reward

gained from organizational networks. Attackers seek to maximize this reward gained over

time, whereas defenders seek to minimize it. This chapter describes practical approaches

to addressing both problems and evaluations of both.

4.1 Greedy Algorithm

In this section, an algorithm is described to model how an APT actor may build its footprint

in the target network. To ensure practical runtimes and to scale to large networks, an

iterative, greedy approach is proposed. At a conceptual level, the algorithm starts from a

root node, which represents the attacker’s entry point into the network, and, during each

time interval ∆ti, the attacker enumerates routes to potential target nodes originating from

any of the current leaf nodes. Each route includes a target node, which the attacker seeks

to compromise, and possibly a number of intermediate forwarding nodes. Note that, for

each such routes to be added to the malware footprint, the route’s terminal node must be

compromised for the attacker to be able to control that route. The length of the routes is

controlled by the parameter hopmax. Each route has an associate reward and cost, which

correspond to the aggregated reward and cost of all nodes that comprise the route.

When the attacker selects a route, the route is added to the malware footprint and

the attacker may enumerate new routes originating from any of the currently compromised

nodes. The attacker selects routes in this iterative manner until the the budget B is ex-

hausted or there are no more viable routes to consider. Different strategies may be employed

by the attacker to select a route amongst the available ones. Three possible route selec-

tion strategies are proposed: (i) Greatest Reward, which selects the route that maximizes

51

reward; (ii) Lowest Cost, which chooses the route that minimizes cost; (iii) Cost Effective,

which chooses the route that optimizes the cost/reward ratio.

Two different tree evolution approaches are considered. In the conservative approach,

the attacker maintains any node that was compromised during previous time intervals. In

this case, a fraction of the budget B for the current time interval goes toward maintaining

the compromised nodes. As discussed earlier, the maintenance cost is lower than the cost of

compromising, so the remaining portion of the budget can be used to expand the tree. In the

dynamic strategy, the attacker may forgo maintaining some of the previously compromised

nodes and have a larger portion of the budget B available to compromise new nodes if this

choice leads to better values of the chosen objective function.

The pseudo-code of the proposed treeConstruction algorithm is shown in Algorithm 1,

and the pseudo-code of the findRoutes algorithm is shown in Algorithm 2.

Algorithm 1 treeConstruction(G,T,B, hopmax)

Require: Graph G = (V,E), current tree T = (C ∩ F, root), budget B, and parameter hopmax.
Ensure: An updated tree T .
1: . Initialize
2: R← ∅
3: runningBudget← 0
4: r ← ∅
5: . Bootstrap R with root
6: findRoutes(G, T, r, root, R, runningBudget, 0, B, hopmax)

7: while R 6= ∅ do
8: . selectRoute selects route depending on route selection strategy, e.g. Greatest Reward
9: r ← selectRoute(R)

10: . final destination node is compromised, other nodes in the route are traffic-forwarding nodes
11: T ← r
12: for all routes ∈ R do
13: . manage R:
14: . remove invalid routes (routes with the final destination not compromised)

15: . update costs and rewards for remaining routes which share nodes with r
16: end for
17: . Find routes using the newly compromised node
18: findRoutes(G,T, finalDest, r, R,B, runningBudget, rCost, rReward, hopmax)

19: end whilereturn T

Example 2 (Malware Footprint Evolution). To illustrate how the malware footprint evolves

over time, consider again the simple example discussed earlier. In this example, the bud-

get remains constant through time (B = 55 for each time interval). However, as shown

in Figure 4.1, during each time interval, the attacker compromises a larger proportion of

the network due to cost of maintaining compromised nodes being lower than the cost of

52

Algorithm 2 findRoutes(G,T, v, r, R,B, runningBudget, rCost, rReward, hopmax)

Require: Graph G = (V,E), current tree T = (C ∩ F, root), node v, node list r, current set of viable routes R,
budget B, runningBudget, rCost, rReward, and parameter hopmax

Ensure: The set of viable routes, R, is updated.
1: . Determines if v is suitable for serving as final route destination (compromised node)

2: nodeInfectCost← detectability cost for malware to compromise v
3: if v /∈ C then
4: if runningBudget+ rCost+ nodeInfectCost < B then
5: . Update the r with node data and add to R
6: newRCost← rCost+ nodeInfectCost
7: nodeInfectReward← malware reward from the compromise of v
8: newRReward← rReward+ nodeInfectReward
9: newRoute← deep copy of r, v

10: newRouteOption
+← newRoutw, newRCost, newRReward

11: R
+← newRouteOption

12: end if
13: end if
14: //Determines if v could be a forwarding node

15: rLen← length of r
16: if rLen < hopmax then
17: neighbors← neighbors of n
18: for all neighbor ∈ neighbors do
19: . check to ensure neighbor not already in r
20: if neighbor /∈ routeOptions then
21: nodeForwardCost← detectability cost for malware to forward traffic though v
22: if runningBudget+ routeCost+ nodeForwardCost < B then
23: newRouteCost← routeCost+ nodeForwardCost
24: nodeForwardReward← any malware reward when forwarding traffic through v
25: newRouteReward← routeReward+ nodeForwardReward
26: newRouteList← deep copy of routeList, v
27: findRoutes (G,T, neighbor, newRouteList, routeOptions,B, runningBudget,

28: newRouteCost, newRouteReward, hopmax)

29: end if
30: end if
31: end for
32: end if

the original compromise. In this example, node detectability costs are reduced by one-half

in the time interval after initial compromise. By incorporating the temporal dynamics of

detectability cost, the threat model reflects the progressive nature of APT malware behavior,

slowly expanding through the network to avoid detection.

4.2 Simulations

In this section, performance of the algorithm for large networks is presented. For each net-

work size, 30 different network topologies are generated and the results were averaged over

different network settings. There is a lack of existing models that capture the connectivity

53

Budget, B

reward

55

30

Δ𝑡1 [0,1]

V3

r:0
c:10

V2

r:0
c:10

V1

r:0
c:10

V4

r:20
c:10

V9

r:20
c:10

V6

r:10
c:10

V7

r:50
c:30

V8

r:40
c:10

V5

r:90
c:100

cost 50

(a) t = 1

V7

r:50
c:30

Budget, B

reward

55

80

Δ𝑡2 [1,2]

Maintaining nodes
compromised

during Δ𝑡1 incurs
reduced costs

V7 now in
budget

V5

r:90
c:100

V8

r:40
c:10

V6

r:10
c:5

V9

r:20
c:10

V3

r:0
c:5

V2

r:0
c:5

V4

r:20
c:5

V1

r:0
c:5cost 55

(b) t = 2

V2

r:0
c:5

V6

r:10
c:5

V7

r:50
c:15

V9

r:20
c:10

Budget, B

reward

55

120

Δ𝑡3 [2,3]

Note: V7

now incurs
reduced

costs

V3

r:0
c:5

V4

r:20
c:5

V8

r:40
c:10

V1

r:0
c:5

V5

r:90
c:100

cost 50

(c) t = 3

V1

r:0
c:5

V4

r:20
c:5

Budget, B

reward

55

140

Δ𝑡4 [3,4]

V3

r:0
c:5

V8

r:40
c:5

V6

r:10
c:5

V7

r:50
c:15

V9

r:20
c:10

V2

r:0
c:5

V5

r:90
c:100

cost 55

(d) t = 4

Figure 4.1: Malware footprint evolution

of an enterprise network at both layer 2 and layer 3. Therefore, in order to generate differ-

ent network topologies, scale-free networks were used and synthesized enterprise network

topologies of different sizes. Such networks are known to accurately capture the connectiv-

ity in ISP networks at router level [97]. The NetworkX 2.0 library was used to generate

these networks in an incremental fashion, using the Holme and Kim algorithm, a variant of

Barabási-Albert (BA) model. In the BA model, new nodes are added to the network one

at a time and each new node is connected to one of the existing nodes with a probability

that is proportional to the current degree of that node. Therefore, a node with a higher

54

degree has a higher probability of becoming the new node’s neighbor. The Holme and Kim

algorithm tends to generate networks with more clusters than typical BA networks, which

is intended to more closely model enterprise networks.

Rewards. Figure 4.2 reports the total rewards accrued by the attacker over a time horizon

T = {t1, . . . , tm}, with m = 10, and for all three route selection strategies, when using the

dynamic approach. As expected, the malware gains more rewards from larger networks,

and the cost-effective strategy yields the best results among all the strategies considered.

0

5000

10000

15000

20000

25000

30000

35000

100 200 300 400 500

R
ew

ar
d

Network Size

Cost Effective Greatest Prize Lowest Cost

Figure 4.2: Rewards vs. Network Size

Malware Footprint. Figure 4.3 reports the percentage of the total number of nodes that

are compromised by the malware for different network sizes at time tm. The Lowest Cost

strategy achieves the better results because it tends to compromise a large number of low-

cost but low-reward nodes, whereas the Greatest Reward tends to include high-reward, but

also high cost, nodes, thus exhausting its budget sooner.

Runtime. Fig. 4.4 illustrates the average runtime for different network sizes. It can be seen

that the total runtime increases linearly with the network size. Instead, Figure 4.5 compares

the runtime of the dynamic and conservative approaches at different network sizes. The

55

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500

Fo
o

tp
ri

n
t

Si
ze

 (
%

)

Network Size

Cost Effective Greatest Reward Lowest Cost

Figure 4.3: Footprint vs. Network Size

dynamic approach requires roughly twice as much time to compute.

Conservative vs. dynamic approach. Figure 4.6 shows the reward accrued by the

malware over time as a percentage of the total value of all network assets. The chart

compares the dynamic and conservative approaches, and reports values averaged over of

all network sizes considered (100,200,300,400,500). During the first time interval, the two

approaches yield the same reward, but then they start to diverge. As the dynamic approach

may reconsider the choice of target nodes made in previous time intervals, it is likely to

achieve results that are closer to optimal.

Approximation Ratio. To evaluate the approximation ratio of the proposed algorithm,

the rewards gained over time using the three route selection strategies were compared with

the rewards corresponding to the optimal solution, which was computed by exhaustively

exploring the search space with a brute-force approach. Figures 4.7a and 4.7b show how the

approximation ratio – for the conservative and the dynamic approach respectively – con-

verges to 100% as the route length increases. As expected, the dynamic approach converges

more rapidly than the conservative. Results presented here are generated using networks

of 25 nodes, as computation of the optimal solution for larger graphs is prohibitive.

56

0

100

200

300

400

500

600

100 200 300 400 500

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Network Size

Cost Effective Greatest Prize Lowest Cost

Figure 4.4: Runtime vs. Network Size

0

200

400

600

800

1000

1200

1400

1600

1800

100 200 300 400 500

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Network Size

Dynamic Conservative

Figure 4.5: Conservative vs. dynamic approach

4.3 Defender Model

The goal of the defender is to minimize the attacker’s reward. As the attacker is invested in

solving the rooted tree problem discussed above, and success during earlier time intervals

57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

R
ew

ar
d

 (
%

)

Time

Dynamic Conservative

Figure 4.6: Conservative vs. dynamic approach

implies an increased effective budget for the current interval, a maximally effective defender

will be one that disrupts the attacker’s effort to maintain a tree, thus forcing the attacker

to continually compromise new nodes, which results in inefficient use of the detectability

budget.

It is assumed that the defender has sufficient resources to actively defend k < n nodes,

where n = |V | is the number of network nodes. In real world scenarios, such nodes might

receive more frequent security upgrades or be more heavily monitored. The parameter k

reflects the organization’s capacity for processing alerts and allocating analyst time. Such

actively defended nodes are noted as watched, and the process by which the defender selects

a k-element subset S ⊆ V is designated as the defender’s strategy. A watched node’s cost

increases by a multiplicative factor α > 1. This increase in cost reflects the additional work

and risk an attacker assumes by trying to compromise a node that is subject to patching and

increased monitoring. In each interval ∆ti, the defender selects a set Si ⊆ V according to

one of a family of strategies. Let nodes Si−1 be the set of watched nodes from the previous

interval. For each v ∈ Si \ Si−1 – the newly watched nodes – costc(v, ti) is increased by a

factor of α. For each node v ∈ Si−1 \ Si, costc(v, ti) is decreased by a factor of α, bringing

58

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4

%
 o

f
O

p
ti

m
al

 R
ew

ar
d

Max Hops

Cost Effective Greatest Reward Lowest Cost

(a) Conservative approach

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4

%
 o

f
O

p
ti

m
al

 R
ew

ar
d

Max Hops

Cost Effective Greatest Reward Lowest Cost

(b) Dynamic approach

Figure 4.7: Approximation ratio

the cost back to its normal value. These nodes are no longer watched. The costs of nodes

v ∈ Si ∪ Si−1 is unchanged, as they continue to be watched.

Several defender strategies were considered. Two simple strategies are the uniform and

the cost-effective strategy. A defender using the uniform strategy selects a set of k nodes

59

uniformly at random from V during each interval. This is a very simple, low-overhead

strategy that does not consider any structural properties of the graph, nor any of the node

weights.

The cost-effectiveness of a node v ∈ V is defined as e(v, ti) = rewardc(v, ti)/costc(v, ti).

Very cost-effective nodes are those who offer great rewards at a relatively low cost. A

defender adopting the cost-effective strategy selects a set Si ⊆ V of k nodes, where each

node v ∈ Si is sampled with probability proportional to e(v, ti)/
∑

u∈V e(u, ti). The cost-

effective strategy is a generalization of the uniform strategy that maintains its simplicity.

However, the cost-effective strategy takes more information into account when deciding the

allocation of resources. A more sophisticated strategy is the betweenness strategy, which is

described in the following subsection.

4.3.1 Betweenness strategy

Betweenness centrality is a fundamental measure of node importance that is well-studied in

network analysis. The betweenness centrality of a node is defined in terms of the proportion

of shortest paths that pass through it. Thus, a node with high betweenness is one that

connects many other nodes to one another – such as a boundary node connecting tightly-

clustered subgraphs. This property – the connection between clusters – is a natural measure

of importance in many types of networks, including power, communication, and disease

transition networks [98]. For u, v, w ∈ V , suppose that λv,w is the number of shortest paths

from v to w, and λv,w(u) is the number of such paths that include u. Then the betweenness

centrality of u is calculated as

C(u) =
∑

u/∈{v,w}
λv,w 6=0

λv,w(u)

λv,w
.

Selecting the highest betweenness nodes can sometimes backfire when there is a great

overlap in the shortest paths that contribute to a pair or more selected nodes. In that case,

60

the coverage with respect to shortest paths provided by these nodes is largely redundant.

Consequently, in practice one computes the list of top k nodes with respect to betweenness

adaptively, removing all edges incident to a selected node and recomputing before selecting

a subsequent node. This method of finding the top k betweenness nodes is designated as

adaptive-k betweenness. Fortunately, there exist online polynomial time exact and approx-

imate algorithms for computing the betweenness centrality of a graph that is subject to the

addition and removal of nodes [99]. Furthermore, there exist online approximate adaptive

betweenness centrality algorithms intended to scale to very large graphs [100].

A defender implementing the betweenness strategy interprets the undirected, unweighted

graph G = (V,E) as a directed, weighted graph G′ = (V,E′, w), where (u, v), (v, u) ∈ E′

for every (u, v) ∈ E and for every (u, v) ∈ E′, w(u, v) = costc(v)/rewardc(v). In this

graph, the weight of an edge connecting nodes u to v has weight which is the inverse of

the cost-efficiency of v. That is, the more cost-effective (and therefore attractive to the

attacker) v is, the more likely shortest paths are to go through it due to the weighting

on the nodes. Hence, the more cost-effective a node, the more likely it is to have high

betweenness centrality. This disproportionately skews in favor of cost-effective nodes that

have high betweenness centrality in the unweighted version of the problem. Hence, the

defender computes the adaptive betweenness centrality of the graph G′ and selects the top

k nodes in each time interval.

Figure 4.8a compares the malware footprint before and after the deployment of a de-

fender’s strategy. In this example, the attacker is employing the cost-effective strategy,

whereas the defender is selecting k nodes to watch using the adaptive-k betweenness strat-

egy, where k is set to 10% of the number of nodes in the network. These nodes increase

their cost for a time interval by a factor α = 10, resulting in a 20% reduction in the number

of compromised nodes, and a 15% reduction in attacker’s reward across all network sizes.

61

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500

Fo
o

tp
ri

n
t

Si
ze

 (
R

aw
)

Network Size

Defended No Defense

(a) Comparison of number of compromised nodes

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

100 200 300 400 500

R
ew

ar
d

 R
ed

u
ct

io
n

 (
%

)

Network Size

(b) Reduction in attacker’s reward

Figure 4.8: Impact of defensive action on malware

4.4 Summary

This chapter describes a practical solution for the attacker’s problem of building a malware

footprint, as posed in the prior chapter, while also addressing the implicit corresponding

problem defender’s problem of mitigating this threat using a dynamic defense. Further-

more, the model and algorithm quantitatively considers (i) cost incurred by APT actors to

62

compromise and persist within a target system; (ii) value gained by persisting in the sys-

tem over time; (iii) how the malware footprint evolves over time when, to maintain stealth,

the attackers have constraints on the amount of potentially detectable activity they can

perform.

63

Chapter 5: Framework Evolution

This section discusses several important refinements to the basic framework presented in

Chapter 4. In particular, the improvements include (i) differentiating the views of the

attacker and defender; (ii) capturing how reward values can change over time due to attacker

action and normal network activity; and (iii) accounting for non-deterministic attackers.

5.1 Attacker and Defender Views

In the previous chapter, attacker and defender shared a common view of the target network.

This common view included not only knowledge of endpoints and the connectivity between

them – represented by the graph G = (V, S) – but also the reward and cost values for each

node in the network. However, a more accurate and realistic representation requires to

model attacker and defender separately, as their respective views of the network are likely

to differ. For example, given that the intent of this work is to address stealthy attackers, it

is assumed that the defender has no knowledge of the attacker’s position within network.

As shown in the Ponemon research [6], the defender is unlikely to be aware of the attacker’s

presence at all. However, the attacker is fully aware of its own position.

The attacker’s view is modeled as a graph GA and the defender’s view as a graph GD.

For the purposes of the work presented here, the two graphs have the same nodes and edges

– i.e., the attacker, as stated earlier, has full knowledge of the network topology – but the

values of each node’s cost and reward may differ. The attacker and defender views were

modeled as two separate graphs – rather than simply introducing different cost and reward

functions for attacker and defender – to facilitate further research beyond the scope of this

article. For instance, an attacker may initially have only partial knowledge of the network

topology, resulting in graphs with different sets of nodes and edges.

64

Modeling asymmetrical attacker and defender views as described above has significant

implications for the model. It is reasonable to assume that an APT actor has memory of its

own actions during an extended intrusion. For instance, the attacker, hypothetically, would

recall compromising and exfiltrating information from a database during the initial stages

of a persistent intrusion. In such an instance, in subsequent time intervals, this database

would be presumably be less appealing to the attacker, given that information has already

been partially exfiltrated. A similar consideration holds for attackers seeking to sabotage

or otherwise degrade the integrity of a system. Hypothetically, if the attacker has degraded

the capabilities of a given device, then the attacker would likely perceive that device as

having less value.

Given the lack of knowledge about the attacker’s actions and perceived costs and re-

wards, defenders may be allocating defensive resources in an non-optimal manner. For

instance, consider the aforementioned database residing in a network, particularly if the

database were to contain sensitive or otherwise valuable information. Intuitively, the de-

fender recognizes the relative value of the database and allocates significant resources to

defend it throughout the time horizon. However, consider the implications should the at-

tacker manage to compromise the database and successfully exfiltrate its data undetected.

Presumably, maintaining the foothold on the high-value target would be difficult, consider-

ing the defender resources allocated to it. Having exhausted the value on the database, the

attacker has now an incentive to abandon the database and allocate resources to compro-

mise other nodes in the network instead. A defender which overtly concentrates defensive

resources on a limited segment of the network (even though regarded as high-value) would

be unlikely to detect or deter the attacker which may otherwise devote the majority of its

resources and time compromising other network assets.

Therefore, when modeling the differences between the two views, the actions of the APT

actor only affect GA and not GD. If the defender does not employ dynamic defenses, the

defender’s view is nearly static with the exception of minor network fluctuations, which are

discussed later in this paper. Thus, the defender’s view will not account for the reduction

65

in the cost associated with nodes that have been already been compromised, as described

in the prior work. Nor will the defender be privy to the Compromise Reward Decay, which

is described in the next section as part of several refinements of the original reward model.

5.2 Reward Model Refinements

In this section, several important refinements of the reward model that was presented as

part of the earlier model of the quantification framework [101] are described.

V4

r:80
c:20

V3

r:0
c:10

V5

r:20
c:40

V2

r:0
c:10

V1

r:0
c:10

Budget, B 70

Δti [ti-1, ti]

reward 80

cost 50

(a) ∆ti

V4

r:43.9
c:20

V3

r:0
c:10

V5

r:20
c:40

V2

r:0
c:10

V1

r:0
c:10

Budget, B 70

Δti+1 [ti, ti+1]

reward 43.9

cost 50

V4 reward
decreases over
time compromised

(b) ∆ti+1

V4

r:24.1
c:20

V3

r:0
c:10

V5

r:20
c:40

V2

r:0
c:10

V1

r:0
c:10

Budget, B 70

Δti+2 [ti+1, ti+2]

reward 24.1

cost 50

V4 reward
decreases over
time compromised

(c) ∆ti+2

V4

r:13.2
c:20

V3

r:0
c:10

V5

r:20
c:40

V2

r:0
c:10

V1

r:0
c:10

Budget, B 70

Δti+3 [ti+2, ti+3]

reward 20

cost 70

Dynamic Attacker
abandons depleted V4

Dynamic Attacker
reallocates Budget
to compromise V5

(d) ∆ti+3

Figure 5.1: Compromise Reward Decay Example (λ = 0.4)

5.2.1 Reward Decay

After compromising a node in the target network, an APT actor can perform various ac-

tions on objectives according to its original goals, which may include data exfiltration or

sabotage. As the attacker accomplishes its objectives, the node may become less valuable.

66

For instance, if the attacker’s objective is to exfiltrate data from a node, the residual value

of that node decreases as fewer data items of interest are left to exfiltrate. This can be

modeled by introducing a decay function that captures how the value of a node decreases

over time. Depending on the specific circumstances the decay could be linear or exponen-

tial. Without loss of generality, the model assumes an exponential decay for the purpose of

illustration. An exponential decay function can model scenarios in which the attacker gains

diminishing returns by maintaining a node over time, whereas a linear decay function can

model scenarios like data exfiltration at a constant rate (i.e., the same amount of data is

exfiltrated during each time interval).

This refinement of the model can capture the attacker’s attempt to dynamically prioritize

targets while exfiltrating data or conducting other actions on objectives. For example, if

a banking system were to be compromised, the attacker could prioritize exfiltration of the

most recent records first – which presumably are more valuable than older records. An

actor with other objectives, such as manipulation or destruction of data (as seen with

the Shamoon APT) could also prioritize information or services to disrupt. Once these

initial, high-priority goals are met, the attacker could proceed to pursue lower-priority (and

presumably lower-value) objectives. The rate at which the decay occurs is controlled by the

exponential decay constant λ. Ignoring other factors, ∀v ∈ C, the reward associated with

node v at time ti (i.e., during the time interval ∆ti) can be computed as follows:

reward(v, ti) =

 reward(v, t0), if ti ≤ tc

reward(v, t0) · e−λ·(ti−tc), if ti > tc

(5.1)

where tc is the time at which v is compromised. In other words, the reward remains constant

until the compromise, and then starts decreasing. Equation 5.1 assumes that the decay

constant λ is the same for every node in the network, but in real-world scenarios the rate of

decay may be different for different assets. Dropping this assumption and generalizing the

model would be straightforward, therefore, for the sake of presentation, it is assumed that

67

all assets have the same decay constant.

Figure 5.1 depicts a simple example from the perspective of the attacker (i.e., the figure

shows various snapshots of graph GA) and illustrates how the reward associated with a

compromised node decreases over time, triggering changes in the overall APT footprint

when APT actors employ the dynamic approach described earlier. In this example, at a

time ti, the APT malware has established a foothold within the target network, comprising

the nodes highlighted with a bold red outline in Figure 5.1. At this time, v4 is the only

node within the footprint with a non-zero reward value. In subsequent time intervals, the

reward value decreases exponentially according to Equation 5.1, with λ = 0.6. Eventually,

the decay causes the value of the node to drop to the point that the attacker, consistently

with the dynamic approach, abandons the node and compromises v5 instead in order to

maximize the reward within the next time interval.

The value of a node starts to decay in the first time interval following its compromise.

Thus, if a node was compromised at time ti, then the effect of the decay will start manifesting

at time ti+1. Also, in cases where the attacker abandons a node, the decay process halts, as

the APT actor is no longer directly impacting the node. In the example, during the time

interval ∆ti+4 (not shown in the figure), the value of node v4 would not further decrease as

the attacker is no longer actively operating on that node.

Therefore, based on Equation 5.1, the Compromise Reward Decay for a node v ∈ V at

time ti ∈ T can be defined as

decay(v, ti) =

 0, if ti ≤ tc

reward(v, t0) ·
(
1− e−λ·(ti−tc)

)
, if ti > tc

(5.2)

where tc is the time at which v is compromised. This distinction is significant for proper

calculation of reward fluctuations, which were alluded to previously, and are detailed in the

next section.

68

5.2.2 Reward Fluctuations

Operational networks change over time, fluctuating for a variety of reasons, even without

the intervention of a third party. In our previous model, the reward an attacker gains from

compromising nodes remains static throughout T . However, operational networks are rarely

static. Thus, to model networks in a more realistic fashion, the reward value of individual

nodes should be modeled dynamically as well. A node may accrue value over time for any

of the following reasons:

• New data is stored on the node

• New data is generated on the node

• External or environmental circumstances increase the value of the node

A node may lose value over time for any of the following reasons:

• Data is removed from the node

• Data becomes obsolete

• External or environmental circumstances decrease the value of the node

Outside circumstances can influence reward values, even if the affected nodes do not

directly change. For example, if a politician formally announces candidacy for an elected

office, the value of records related to that politician would become more valuable for rivals,

though the records may actually be static. Correspondingly, data may become less valuable

for a variety of reasons. For example, records pertaining to supply or development of a

specific pharmaceutical may become less valuable if similar or superior competitors enter

the market. However, these specific examples are somewhat extreme and are outside of the

more typical day-to-day fluctuations which this work considers.

Intuitively, these fluctuations impact every node in the network – for both the attacker

and the defender – as opposed to the previously-discussed Compromise Reward Decay, which

only impacts compromised nodes in the attacker’s view. Thus, these fluctuations apply

69

equally to both GA and GD. We chose to model this phenomenon using a random variable

fluct following a normal distribution with a mean of µfluct and standard deviation of σfluct.

As a result of these shifting reward values, the APT actor may be further incentivized to

dynamically alter the malware footprint over time in order to to maximize the rewards. We

assume that, through its extensive reconnaissance efforts, the APT actor is aware of the

specific interactions of the target network and thus will be able to predict the value of data

residing on the nodes.

We denote the cumulative effects of these factors on a node v ∈ V at time ti (with

i ∈ [0,m]) as fluct(v, ti), with fluct(v, t0) = 0. Reward fluctuations at time ti can be

thought of as the difference in reward between two consecutive time points ti−1 and ti, i.e.,

the variation over time interval ∆ti, when no decay due to attacker’s activity is considered.

However, we need to define constraints to account for the fact that, intuitively, neither

reward fluctuations nor decay can render the reward of a node negative. Thus, in the

defender’s view GD, ∀v ∈ V , the reward fluctuation over a time interval ∆ti is bound by

the following equation:

reward(v, ti) = reward(v, ti−1) + fluct(v, ti) ≥ 0, (5.3)

thus, fluct(v, ti) ≥ −reward(v, ti−1) must hold. Similarly, in the attacker’s view GA, the

reward fluctuation over a time interval ∆ti is bound by the following equation:

reward(v, ti) = reward(v, ti−1)− decay(v, ti) + fluct(v, ti) ≥ 0, (5.4)

thus, fluct(v, ti) ≥ −reward(v, ti−1) + decay(v, ti) must hold.

5.3 Formal Reward Model

In summary, the revised reward model can be summarized as follows.

70

Defender’s view GD. The defender has no knowledge about data that may have al-

ready been exfiltrated by the attacker, therefore the reward of a node from the defender’s

perspective is not affected by the attacker’s actions.

∀v ∈ V,∀i ∈ [1,m], reward(v, ti) = reward(v, t0) +
i∑

k=1

fluct(v, ti) (5.5)

Attacker’s view GA. The attacker is aware of which nodes have already been depleted,

so it can adjust its perceived value of nodes accordingly.

∀v ∈ V,∀i ∈ [1,m], reward(v, ti) = reward(v, t0)− decay(v, ti) +

i∑
k=1

fluct(v, ti) (5.6)

Probabilistic Route Selection

Within each time interval, the attacker iteratively enumerates potential reachable targets

and determines routes to such targets. These routes are scored in terms of reward and

cost, similarly to our previous model, and then optimal routes are chosen based on one

of the route selection strategies discussed earlier, namely Greatest Reward, Lowest Cost, and

Cost Effective. However, this approach results in malware footprints which are deterministic

in nature and thus highly predictable. More sophisticated attackers may try to be less

predictable by introducing some randomness in the route selection process. To model this

behavior, we introduce the notion of Probabilistic Route Selection. As usual, each route is

ranked with respect to the chosen objective function. However, instead of selecting the

highest-ranking routes, a probability proportional to the metric to be optimized is assigned

to each route, and routes are selected based on such probability distribution. Later in the

paper we compare this probabilistic approach against its deterministic counterpart.

71

5.4 Defender’s Model

As mentioned earlier, we assume that the defender is not aware of the attacker’s actions,

which we model using asymmetrical attacker and defender views of the target network. In

our previous model, the defender would select k nodes during each time interval and deploy

detectors on those nodes, thus increasing the attacker’s cost to compromise and maintain

those nodes in its footprint during that time interval. A determined and persistent attacker,

if allocating sufficient resources (budget), could still compromise such nodes and bypass

detectors, using a variety of tools and capabilities, including zero-day exploits. However,

allocating a substantial portion of their budget to compromise a few heavily-guarded nodes

would force the attacker to make tradeoffs, such as dedicating significantly more time to

evade the detectors. As a result, the attacker may ultimately forgo compromising more

desirable portions of the network.

This defensive approach present clear advantages. Most notably, dynamically shifting

detector placement over time forces the stealthy attacker to constantly reassess the network

and shifting its own position over time as well. This abandoning and recapturing nodes

detracts from the attacker’s objectives, whether it be exfiltration, sabotage or some combi-

nation of both. However, this defensive approach also has limitations. Our prior approach

probabilistically placed detectors with weights calculated using Adaptive Betweenness Cen-

trality. This approach used only the structure of the graph and the reward/cost values from

the defender’s perspective. With the refinements to our model, the attacker’s view can differ

significantly from the defender’s view. Furthermore, the previous defensive approach was

agnostic to the understanding of the attacker. In this paper, we propose two new defender

models in which the defender simulates the behavior of an attacker.

For each time step, the defender takes its view of the network and simulates an attack

using the attack model for sim future time steps. For example, at time t1, the defender

will simulate an attacker at times t1 and t2. At time t2 the defender will pick another

random node and simulate an attack at times t2 and t3). For each time step, the output of

this process is the Defender Simulated Malware Network (DSMN) and Defender Simulated

72

Malware Footprint (DSMF).

The defender uses the DSMN and DSMF to calculate a set of weights which are then

employed by the defense to probabilistically place detectors in the network. The two new

defensive models proposed differ in the means by which they employ the DSMN and DSMF

to calculate the weights.

1. Simple Cumulative Weighted Probabilistic - During each time interval, the Defender

selects k nodes using a simple frequency tally of infected nodes in the DSMFs as

weights. For example, a given node is infected in 3 DSMFs, then that node has a

value of 3. Hypothetically if the sum tally were 100, then that node would have a 3%

chance of being selected when the defender determines detector placement.

2. Percolation Centrality Cumulative Weighted Probabilistic - Percolation Centrality is

a measure employed in a number of contexts, perhaps most prominently in disease

research to model the spread of epidemics [102][103]. The concept is similar to Be-

tweenness Centrality, but incorporates a ”percolation” value to model the level of by

which a given node is infected. If all nodes in the network have the same percolation

value, Percolation Centrality reduces to Betweenness Centrality. In the context of this

work, during each time interval, the Defender calculates the Percolation Centrality

of the DSMN. The cumulative average of these Percolation Centrality calculation are

used as weights for detector placement. We employ a open-source library to calculate

Percolation Centrality, as we will discuss in a later section.

5.5 Evaluation

In this section, both the refinements to the original Attacker Model and the two new De-

fender Models are tested.

73

5.5.1 Experimental Setting

In this section, the refined model is studied using similar settings employed in prior work.

The algorithm across networks of various sizes - 100, 200, 300, 400 and 500 nodes. For each

network size, 30 different network topologies were generated and simulation results were

averaged over different network settings. There is a lack of existing models that capture the

connectivity of an enterprise network at both layer 2 and layer 3, as most research concen-

trates on ISP-level networks. Therefore, in order to generate different network topologies,

scale-free networks, known to accurately capture the connectivity in ISP networks at router

level [97], were used to synthesize enterprise network topologies of different sizes.

The Python-based NetworkX 2.3 library was leveraged to generate these networks using

the built-in Holme and Kim algorithm, which is a variant of Barabási-Albert (BA) model.

In the BA model, new nodes are incrementally added to the network. Each new node is

connected to one of the existing nodes in the graph. The probability that a new node is

connected to any given existing node is proportional to the degree of the existing node.

Therefore, a node with a higher degree has a higher probability of becoming the new node’s

neighbor, imparting the scale-free property. The Holme and Kim algorithm tends to gener-

ate networks with more clusters than typical BA networks, to more closely model enterprise

networks.

The NetworkX library is also employed to calculate the network’s Percolation Centrality

for the purposes of implementing Percolation Cumulative Weighted Probabilistic defense

model mentioned previously.

5.5.2 Refined Model Experimental Setup

In the experiments, both Compromise Reward Decay and Route Selection were implemented

and their effects noted with regard to various metrics detailed below.

74

5.5.3 Metrics

The metrics captured during the experiments are described and shown in the following

sections.

• Reward - Reward values are presented as the percentage of the reward in the Malware

Footprint (and thus captured by the attacker) each time step vs the total reward

available in G. This facilitates comparisons across networks of different sizes.

• Footprint Size - Similarly to above, footprint sizes are presented as the percentage of

the nodes in the Malware Footprint (and thus captured by the attacker) each time

step vs the V/inG. This facilitates comparisons across networks of different sizes.

• Jaccard Distance - For the purposes of this paper, Jaccard Distance is employed as new

metric to measure the volatility of the Malware Footprint over time. Jaccard distance

measures the difference between two sets on a scale of 0 to 1, with 0 indicating no

change between sets and 1 indicating that the sets share no members. The set of

nodes comprising the Malware Footprint across time intervals is compared. At a

given t, the Jaccard Distance is calculated using the Malware Footprint at t and t−1.

Thus, the Jaccard Distance calculated at t1 represents the change in the Malware

Footprint between t0 and t1. In all cases, the Jaccard Distance at t1 1, as the malware

has compromised no nodes at t0 and compromised some nodes by t1. The Jaccard

Distance at t2 is the difference in the Malware Footprint between t2 and t1 and so on.

• Runtime - The runtime presented is the cumulative runtime over the time horizon. In

comparison to the prior work, simulation runtimes are vastly more efficient.

5.5.4 Reward Decay

When considering the effect of varying levels of reward decay, one should expect that higher

rates of decay should result in decreased reward for the attacker over time. This intuition

is shown to be true as shown in Figure 5.2, which presents the aforementioned metrics for

75

an attacker employing a Cost-Effective Strategy and Dynamic Approach with Compromise

Reward Decay calculated with λ values of 0%, 20%, 40%, 60% and 80%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

R
ew

ar
d

 (
%

)

Time

λ=0% λ=20% λ=40% λ=60% λ=80%

(a) Reward

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Fo
o

tp
ri

n
t

Si
ze

 (
%

)

Time

λ=0% λ=20% λ=40% λ=60% λ=80%

(b) Footprint Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

Ja
cc

ar
d

 D
is

ta
n

ce

Time

λ=0% λ=20% λ=40% λ=60% λ=80%

(c) Jaccard Distance

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

 (
s)

Time

λ=0% λ=20% λ=40% λ=60% λ=80%

(d) Runtime

Figure 5.2: Effects of Reward Decay

Of note, Figure 5.2b shows that the reward decreases at the lower rates of Compromise

Reward Decay despite the Malware Footprint Size retaining the same number of nodes.

At higher rates of Compromise Reward Decay, it is apparent that the Dynamic attacker

is abandoning nodes which have lost their value and allocating resources to compromising

”new” nodes instead as indicated in Figure 5.2c. However, as compromising these new nodes

is more costly than simply maintaining previously-compromised nodes, the total number of

76

nodes compromised is severely limited at higher rates of Compromise Reward Decay.

5.5.5 Probabilistic vs Dynamic Route Selection

The aim of modeling an attacker which employs Probabilistic Route Selection (as opposed

to Deterministic Route Selection) was to add an element of unpredictability to the attacker

model. In employing Probabilistic Route Selection, it is expected that the attacker is less

effective at extracting value from the network (due to employing non-optimal decisions),

but has a more volatile footprint. In reviewing the results shown in Figure 5.3, which also

features an attacker employing a Cost-Effective Strategy and Dynamic Approach, these

expectations hold mostly true. Curiously, Figure 5.3a shows that while Deterministic Route

Selection is initially more effective at accruing reward on a per time interval basis, this is

not true by the end of time horizon.

This is the result of the Deterministic attacker compromising the most optimal nodes

first leaving only suboptimal nodes left by the end of the time horizon once the node value

decayed. Results were calculated across all aforementioned tested values of Compromise

Reward Decay. This allows us to postulate that over longer time horizons, the difference

between attackers employing Probabilistic Route Selection vs Deterministic Route Selection

on the basis of reward is negligible. However, an attacker employing Probabilistic Route

Selection would maintain a smaller and more volatile and more unpredictable Malware

Footprint, both are traits which are desirable to avoid detection.

5.5.6 Evaluation of Defended Networks

In this section, the new Defender Models are examined in comparison to both the Adaptive

Betweenness Centrality described in the prior work and a comparison no defense. For these

results, the parameter k is a 10% of the network size and SIM is 2 time steps to reduce

computation time. Results are averaged across all route selection strategies, tree evolution

approaches, and both Probabilistic and Deterministic Route Selection.

77

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

R
ew

ar
d

 (
%

)

Time

DETERMINISTIC PROBABILISTIC

(a) Reward

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Fo
o

tp
ri

n
t

Si
ze

 (
%

)

Time

DETERMINISTIC PROBABILISTIC

(b) Footprint Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

Ja
cc

ar
d

 D
is

ta
n

ce

Time

DETERMINISTIC PROBABILISTIC

(c) Jaccard Distance

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

 (
s)

Time

DETERMINISTIC PROBABILISTIC

(d) Runtime

Figure 5.3: Effects of Route Selection

It is shown that in all cases, the Defender reduces the reward value gained by the at-

tacker with the previously-developed Adaptive Betweenness Centrality (BC ADAPTIVE)

slightly outperforming the simple and percolation centrality-based simulated defenses

(SIM SIMPLE and SIM PERC respectively).

The defenses also causes the attacker to forego nodes, reducing the Malware Footprint

size. Appropriately, the Jaccard Distance overall across the time horizon is also reduced, as

the malware has increase difficultly spreading through the network. The Jaccard Distance

between an empty set (the t0 case) and any non-empty set (the case at t1) is always 1. Thus,

the difference in Jaccard Distance at t1 between the defended and non-defended scenarios

78

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9 10

R
ew

ar
d

 R
e

d
u

ct
io

n
 (

%
)

Defense

BC_ADAPTIVE SIM_SIMPLE SIM_PERC

(a) Reward

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Fo
o

tp
ri

n
t

R
e

d
u

ct
io

n
 (

%
)

Defense

BC_ADAPTIVE SIM_SIMPLE SIM_PERC

(b) Footprint Size

-25%

-20%

-15%

-10%

-5%

0%

1 2 3 4 5 6 7 8 9 10

Ja
cc

ar
d

 D
is

ta
n

ce

D
if

fe
re

n
ce

 (
%

)

Defense

BC_ADAPTIVE SIM_SIMPLE SIM_PERC

(c) Jaccard Distance

0%

2000%

4000%

6000%

8000%

10000%

12000%

14000%

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

 D
if

fe
re

n
ce

 (
%

)

Defense

BC_ADAPTIVE SIM_SIMPLE SIM_PERC

(d) Runtime

Figure 5.4: Effects of Various Defender Models vs No Defender

is 0.

Of greater note, while the simulated defenses have similar effectiveness against the at-

tacker, it is clear in Figure 5.4d that the Adaptive Betweenness Centrality requires by far

the most computational time. Scalability across long time horizons is a more considerable

concern compared to the simulated approaches proposed in this paper.

79

5.6 Summary

This chapter builds upon the framework detailed in the previous chapter. In addition to

the improvements to the defender model, the three major contributions for the attacker

are considerations for (i) how reward values may shift over time due to natural fluctation

and attacker activity, (ii) non-deterministic attackers and (iii) separation of attacker and

defender views. This last contribution is particularly critical for development of defenses

which incorporate cyber deception.

80

Chapter 6: Concurrent MTDs

MTD defenses also have disadvantages. Nearly all MTDs incur a performance cost [104].

During reconfiguration, the full capabilities of the system are rarely available. Increasing

the rate of reconfiguration further increases this overhead cost and reduces the availability

of resources, negatively impacting system performance. This effect can be compounded

by the implementation of multiple MTDs. Decisions regarding the deployment of MTDs

must balance the security benefits with the corresponding MTD overhead and implementa-

tion costs. As another contribution, a method to predict availability with multiple MTDs

operating concurrently is also offered.

Real-world problems, such as those posed by APTs, and limitations that exist outside the

theoretical realm, require implementation and testing of MTDs against a realistic attack

model. Doing so will validate the model and identify important implementation details

that might otherwise be overlooked. The chapter presents an experimental framework

which models multiple MTDs and an automated attacker to validate the analysis. Then,

the results are applied to a utility function to determine the reconfiguration parameters

that offer the best tradeoff of security and availability for the system based on the user’s

objectives.

The attack model employed in this paper adheres closely to the expected behavior

described in literature through the aforementioned Cyber Kill Chain [105] which is also

employed by APTs. The attack consists of multiple steps including several successive re-

connaissance steps to identify a vulnerable target, followed by an attack against that target.

MTDs can disrupt this attack at several points in the kill chain and are chosen accordingly.

The attack model and the corresponding defender model are described in more detail in the

following sections.

81

6.1 Attack Model

The attacker searches the environment for vulnerable operating systems, then searches

those targets for vulnerable services, and then finally launches a corresponding exploit to

establish control when such a service is discovered. The simulated attacker, operated by an

automation script, performs the following actions, in order:

1. Target Scan: The attacker employs the Nmap Network Mapper tool to scan the

environment. During this initial reconnaissance step, an attacker is simulated which

has configured Nmap to perform a relatively non-intrusive scan. This models the

behavior of an attacker which wishes to maintain stealth while probing the network

for weaknesses.

This initial scan process first attempts to detect whether a node is active on a given

IP address and the operating system it is running by analyzing the pattern of open

ports. Based on the response, the attacker identifies targets for further reconnaissance

efforts. Unresponsive targets or those not considered to be vulnerable are not scanned

further. The attacker does not attempt to perform more invasive scans such as service

detection because the attacker seeks to minimize interaction to avoid detection during

this step.

For the purposes of this paper, the simulated attacker has identified the characteristics

of the Metasploitable virtual machines as promising targets. Further actions would

only be performed against those targets.

2. Service Detection: In this step, the simulated attacker has identified promising targets

with active services and seeks to probe these targets further, performing a service scan

to determine the name and version of the services operating on the node.

Continuing the example, the Metasploitable VMs are running web services on port

80. Web services were selected due to their prevalence as a common avenue of attack.

However, it is plausible that a real-world attacker may wish to target other services

82

based on any number of factors, such as the availability of exploits, impact of compro-

mising the alternative service, or the belief that the compromise of such an alternative

service would be more likely to be unnoticed.

If the service running is not considered to be vulnerable, the attacker proceeds to the

next target previously identified during the target scan. If the attacker finds that the

service running is vulnerable, it proceeds to the next step.

3. Launch Exploit: If a vulnerable service is discovered, the attacker will launch an

exploit against the service. In the example, this results in a reverse connection back to

the attacker. If it is not successful, the attacker proceeds to the next target identified

by the target scan.

4. Attacker Success: The phase represents the end state where the now-compromised host

has established a reverse connection back to the attacker. This closely corresponds

to an attacker which has established full command and control over the target host.

In this end state, data can be exfiltrated and other arbitrary actions undertaken. At

this point, the overall attack is considered to a success.

Figure 6.1 depicts these steps in a process flow as performed against a single target

IP address. After an attack is complete, if there were other hosts using the target OS

found during the initial scan, these hosts are subsequently scanned and attacked in a serial

fashion. This models realistic scenarios of attacker/defender behavior. An attacker would

be discouraged from launching attacks indiscriminately for several reasons. Indiscriminate

attacks against the network space would likely result in more rapid detection of attacker

activities. More rapid identification of data breaches has been shown to result in significantly

reduced costs to the defender [106].

During the attack process, reconfigurations may occur (described in the following sec-

tion) which interrupt services to the attacker. In these cases, the attack is considered to be

a failure, as discussed in greater detail below.

83

Target
Scan

Attacker
Start

Attacker
Success

Service
Detection

Launch
Exploit

Success

Not Target
OS

Failure

Target OS
Vulnerable

Service

No Vulnerable
Service

Figure 6.1: Attack Model

6.2 Defender Model

The attacker model requires the attacker to obtain several pieces of information before an

attack can commence. This allows for several opportunities for deploy a MTD to disrupt

the attacker. The attacker must find a vulnerable service running and must also have an

IP address to attack. If the attacker does not obtain both of these, it will move on to the

next potential target, if possible. If the attacker does not detect a vulnerable target, then

the attack halts and is considered a failure.

Therefore, a reconfiguration which occurs during reconnaissance is likely to cause the

attack to fail. Reconfigurations from each MTD occur randomly with interarrival times

following an exponential distribution, which is commonly used when determining defender

actions because of its memoryless property which prevents the attacker from predicting

defender behavior [107, 108]. This property is leveraged during analysis. The average

interarrival time for reconfigurations is denoted by µ, which may vary between MTDs. In

this work also references the reconfiguration rate, which is inversely proportional to the

interarrival time and is denoted by λ = 1
µ .

Service Reconfiguration

For the purposes of Service Reconfiguration, a simple service randomization scheme was

developed, very similar to existing dynamic platform-based MTDs [38]. The MTD periodi-

cally changes the underlying implementation of the service in a manner transparent to the

84

typical user.

A target node employing the MTD has multiple implementations of a service available.

Upon startup, the MTD randomly chooses one of the available services to run. The service

remains active until the automation script randomly initiates a reconfiguration with average

interarrival time µS . As a part of reconfiguration, the previously-running service is stopped

and a new random service started. To increase randomness and prevent an attacker from

predicting patterns in the service changes, the MTD may select the same service multiple

times in sequence.

All web services were run on the Metasploitable VM. By default, Metasploitable contains

a version of Apache containing a PHP vulnerability susceptible to a specific exploit. Then

two other web services were installed which are not vulnerable to that exploit. The following

web services were employed:

1. Apache (containing an unpatched PHP vulnerability)

2. Nginx

3. Lighttpd

This particular scheme is heavily influenced the MTD originally proposed by

Huang [109], utilizing many of the same web services Huang selected in his own work.

A diagram showing the relationship between the attacker and this MTD is shown in Figure

6.2.

IP Reconfiguration

For the second MTD evaluated, IP Reconfiguration was implemented using a simple IP ran-

domization technique similar to other known dynamic network-based MTDs [38]. As with

the Service Reconfiguration MTD, IP Reconfiguration is accomplished via an automation

script. In this scheme, the VM changes its IP address with reconfigurations occurring with

an average interarrival time of µIP . The pool of available IP addresses is equal to that

85

Attack Failure

Attack Success

Figure 6.2: Service Randomization

of a Class C network (256), minus a small set of reserved IP addresses for the hardware

environment.

Concurrent MTDs

The two MTDs must be capable of operating without interference. If the IP were to change

while the service is being reconfigured, the service may not restart properly, resulting in

additional loss of service. This scenario becomes increasingly likely as the reconfigura-

tion rates increase. To ensure MTD compatibility, the two MTDs are implemented in a

multi-threaded application with mutual exclusion (mutex) locks around the reconfiguration

operations. This prevents the two MTDs from reconfiguring at the same time. The im-

plementation of the MTDs working in conjunction with each other is shown in Algorithm

3.

It should be noted that these MTD defenses, as implemented, may not be practical

for all web applications. In particular, web applications which require a stable, persistent

connection would likely be disrupted. However, there exists a broad use case for applica-

tions employing stateless frameworks, such as the popular Representational State Transfer

(REST). Authors of previously proposed MTDs [109] have developed MTDs with similar

86

Future
IP Address

(eg. 192.168.1.56)

Current
IP Address

(eg. 192.168.1.28)

Previous
IP Address

(eg. 192.168.1.201)

Attack Failure

Attack Success

IP Change

Figure 6.3: IP Randomization

operational restrictions.

6.3 Quantitative Analysis

Based on the attacker and defender model, the attacker’s success rate can be determined.

Individually, the MTDs might be analyzed in a manner similar to [110], where an attacker

is assumed to win if they are in control for a certain period of time before a reconfiguration

occurs. Likewise, an attacker in the attack model wins if can complete the attack sequence

to find a vulnerable node and compromise it before being interrupted by a reconfiguration.

The availability of the system with MTD(s) in operation can also be computed. This

represents the momentary loss of service caused by changing services or IP addresses and

affects the attacker’s success rate as well as benign users.

87

Algorithm 3 Concurrent MTD Implementation

1: s← Service reconfiguration rate
2: i← IP reconfiguration rate
3:
4: function ServiceThread()

5: while (currentT ime− startT ime > duration) do

6: serviceWait← random(s) . Exponentially distributed

7: sleep(serviceWait)

8: lock(mutex)

9: reconfigureService()

10: unlock(mutex)

11: end while
12: end function
13:
14: function IPThread()

15: while (currentT ime− startT ime > duration) do

16: IPWait← random(i) . Exponentially distributed

17: sleep(IPWait)

18: lock(mutex)

19: reconfigureIP ()

20: unlock(mutex)

21: end while
22: end function
23:
24: function main()

25: init(mutex) . Mutex lock for threads

26: if s > 0 then
27: threadCreate(serviceThread)

28: end if
29: if i > 0 then
30: threadCreate(IPThread)

31: end if . Create threads
32: if s > 0 then
33: threadJoin(serviceThread)

34: end if
35: if i > 0 then
36: threadJoin(IPThread)

37: end if . Re-join threads
38: end function

6.3.1 Definitions and Assumptions

Because attacker and defender models are based on real-world constraints, the parameters

of those models are defined and summarized below:

• Ta: The average time required to successfully complete an attack from start to finish,

• µS : The average interarrival time for service reconfigurations

• µIP : The average interarrival time for IP reconfigurations

• tS : The average time required to complete a service reconfiguration

88

• tIP : The average time required to complete an IP reconfiguration

• s: The total number of possible configuration states

• sv: The number of vulnerable configuration states

Ta also includes reconnaissance steps required to perform an attack if they are also disrupted

by the reconfiguration. However, some MTDs might not disrupt certain reconnaissance

actions. µS and µIP are the parameters for interarrival times for reconfiguration, which

are exponentially distributed. tS includes the time required to stop the previous service,

wait for all processes to shut down, start processes for the new service, and verify that

the newly-started service is running. Likewise, tIP includes the time required to bring the

interface down and back up again with a new IP address. Because of the additional steps

and requirement to connect externally to obtain the new IP address, verify it and ensure

that the change is propagated to users, tIP can be an order of magnitude larger then tS . s

represents the total number of possible states the system can be in between reconfigurations,

with sv being the number of those states that are vulnerable to an exploit.

6.3.2 Availability

Availability A is determined first, as this also affects attacker success rate. For MTDs op-

erating individually, availability is calculated as the expected uptime per reconfiguration

cycle (µS or µIP) divided by the total expected uptime plus expected downtime per re-

configuration cycle (tS or tIP , as appropriate), leading to the availability due to service

reconfigurations:

AS =
µS

tS + µS
(6.1)

and availability due to IP reconfigurations as:

AIP =
µIP

tIP + µIP
(6.2)

89

Because the MTDs utilize mutual exclusion, the downtime from one MTD must occur

during the other MTD’s uptime. Therefore, overall availability is computed as the product

of the two availability values:

A = AS ·AIP (6.3)

6.3.3 Attacker Success Rate

Next, attacker’s success rate is computed based on the expected attack time and reconfig-

uration rates. The defender model assumes that in order for an attack to be successful,

it must be uninterrupted by a reconfiguration. Because of the memoryless property of the

exponential distribution, as long as the system is not currently undergoing a reconfigura-

tion, the expected time before the next configuration is equal to the respective value of

µ, regardless of when the last reconfiguration occurred. Using the exponential distribution

with λ = 1
µ , the base probability that the attack is successful is determined by finding the

probability that the random variable X , which represents the time before the next recon-

figuration, is greater than the time required to execute the attack, or P (X > Ta). Solving

using the probability distribution for the exponential function:

psS = P (x > Ta) = 1− P (x ≤ Ta) = 1− (1− Fx(Ta)) = e−λSTa (6.4)

With the base probability that no reconfiguration occurred now calculated, the value

based on the probability sv
s that it was already in a vulnerable state is adjusted, where sv

is the number of vulnerable states and s is the total number of states. In the case of service

reconfiguration with three different services, svs = 1
3 . In the case of IP reconfiguration, each

state is considered to be equally vulnerable. If different states share common weaknesses,

it would be reflected in sv.

Using this methodology to determine attacker success rate also assumes the service is

90

already running at the time the attack begins. It is already established that there is an

impact to availability by using MTDs, which is adjusted for by multiplying the attacker’s

chance of success by the availability. This further reduces the attacker’s success rate and

gives us an unintended benefit from an otherwise undesirable side effect of MTDs. The

probabilities of attacker success for each MTD are thus:

psS = e−λSTa · sv
s
·AS (6.5)

psIP = e−λIPTa ·AIP (6.6)

When both MTDs are operating at the same time, a similar method is used to determine

the attacker’s success rate. If no reconfigurations are currently taking place at the time the

attack starts, the attacker’s probability of success is equal to the probability that both

random variables Xs and XIP are greater than the attack time Ta, adjusted as previously

to account for number of vulnerable states and overall availability, or:

ps = e−λSTa · e−λIPTa · sv
s
·As ·AIP = e−Ta(λS+λIP) · sv

s
·A (6.7)

If necessary, this method could also be further generalized for three or more MTDs.

6.4 Experimental Framework

In this section, the experimental framework used to demonstrate the analysis shown in

Section 6.3 is detailed. This includes a description of the testbed environment with specific

hardware and software configurations.

91

6.4.1 Experimental Environment

Experimental testing was performed using the Center for Secure Information Systems

(CSIS) testbed environment located at George Mason University (GMU). This testbed en-

vironment is managed using XenServer 7 to quickly deploy virtual machines and associated

networking services, such as DHCP, to allow the VMs to communicate.

As indicated previously, a target VM was developed with an OS image adapted from the

freely-available Metasploitable and provided by Rapid7. This image is commonly used in

security testing. The base VM was modified, enabling various web services for the simulated

attacker to compromise.

The attacker is represented by a VM on the network which is adapted from the Rolling

release version of Kali Linux, a Linux distribution developed specifically for security test-

ing. The attacker VM was deployed with Nmap 7.50 and version 4.14.28-dev of Metas-

ploit, a widely available security penetration testing tool. Attacks are launched using

the php cgi arg injection Metasploit exploit. The exploit targets unpatched versions of

the Apache 2.2.8 HTTP Server, which was originally released in 2008 [111]. The exploit

php cgi arg injection specifically targets CVE-2012-1823 [112], an argument injection vul-

nerability. The vulnerability was exploited in the wild in June of 2013.

For each set of configuration parameters, 500 independent trials were conducted, consist-

ing of a complete attack from the Metasploit node. Another process emulated a legitimate

user, consistently trying to connect to the web server to perform small stateless transactions

to monitor effect on availability.

6.5 Experimental Results

Results from the experiments performed are presented in this section. In addition to mea-

suring attacker’s success rate and availability, the time Ta required from start to finish of

the attack where the target must undergo no reconfigurations, the average time ts required

to reconfigure a service, and the average time tIP required to reconfigure an IP address

92

were also measured. These values are shown in Table 6.1 and are used to along with the

methods in Section 6.3 to predict the attacker’s success rate and availability and compare

them to the collected results.

Table 6.1: Average Attack and Reconfiguration Times

Variable Observed Value (seconds)

Ta 28.01

tS 0.635

tIP 9.59

6.5.1 Service Reconfiguration

As seen in Figure 6.4, adding service reconfigurations greatly decreased the attacker’s chance

of success. In the case where service is static, it is assumed a worst-case scenario where the

only service is the vulnerable Apache service. Therefore, the largest decrease in attacker

success rate came from the diversity introduced by the initial introduction of the MTD.

However, as the reconfiguration rate increases, the service randomization MTD was able to

prevent more than the expected 33.3% of the attacks directed against it, and these values

match with the predictions.

Service reconfiguration also reduced the availability slightly, as seen in Figure 6.5. Avail-

ability decreases up to 3.3% compared to the static case at the highest reconfiguration rate.

6.5.2 IP Reconfiguration

As expected, Figure 6.6 shows adding IP randomization also decreased the attacker’s suc-

cess rate, although not to the same extent as the diversity-based service reconfigurations.

However, the observed values follow the downward trend, as predicted.

93

0.00

0.20

0.40

0.60

0.80

1.00

Static 120 60 30 20

A
tt

a
ck

e
r

S
u

cc
e

ss
 R

a
te

Reconfiguration Interarrival Time

Predicted Actual

Figure 6.4: Probability of Attacker Success for Varying Service Reconfiguration Interarrival
Rates

0.90

0.92

0.94

0.96

0.98

1.00

Static 120 60 30 20

A
v

a
il

a
b

il
it

y

Reconfiguration Interarrival Time

Predicted Actual

Figure 6.5: Availability for Varying Service Reconfiguration Interarrival Rates

94

0.00

0.20

0.40

0.60

0.80

1.00

Static 120 60 30

A
tt

a
ck

e
r

S
u

cc
e

ss
 R

a
te

Reconfiguration Interarrival Time

Predicted Actual

Figure 6.6: Probability of Attack Success for Varying IP Reconfiguration Interarrival Rates

Figure 6.7 shows the impact to availability when using IP reconfigurations. A much

larger decrease in availability when using the IP randomization scheme is observed compared

to service reconfiguration. This is due to the fact that as implemented, changing the IP

address requires sending an external request for an IP address to the MTD controller and

receiving a reply back. The connection to the monitor must also be rebuilt, which required

a total of 9.59 seconds on average. This reduction in availability of 25% or more could mean

that this method with higher reconfiguration rates may not be acceptable to users.

6.5.3 Combined Effects

The effects on attacker success rate for each combination of settings for the two MTDs is

shown in Table 6.2. As service and IP reconfiguration rates increase, the attacker’s success

rate tends to decrease monotonically.

Using the measurements obtained for Ta, tS , and tIP during the experiments, results

to the values predicted by the analysis are compared in Section 6.3, as seen in Table 6.3.

95

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Static 120 60 30

A
v

a
il

a
b

il
it

y

Reconfiguration Interarrival Time

Predicted Actual

Figure 6.7: Availability for Varying IP Reconfiguration Interarrival Rates

The results are similar to the ones observed, with some larger errors present with lower

interarrival times, but generally predict the behavior of the pair of MTDs.

236 1+0

Likewise, service availability for each combination of settings was measured and obtained

similar results. As the interarrival time for IP reconfigurations decreases, the availability

decreases. However, as the service reconfiguration interarrival time decreases and IP re-

configuration is held at a some constant rate, it was observed that the availability actually

increases at particular values. For example, when IP reconfiguration interarrival time = 60

sec, as service reconfiguration interarrival time goes from 60 seconds to 30 seconds, avail-

ability increases from 0.782 to 0.832. This may be because the IP reconfigurations take so

much longer relative to service reconfigurations and the two are mutually exclusive. This

means that lengthy IP reconfigurations are delayed somewhat compared to service reconfig-

urations, resulting in the system behaving more similarly to that of service reconfiguration

and that the two MTDs are still not wholly independent from one another.

96

Table 6.2: Attacker’s Success Rate

IP Reconfig
Static 120 60 30

S
e
rv

ic
e

R
e
c
o
n
fi
g Static 1.000± 0.000 0.780± 0.036 0.644± 0.042 0.396± 0.043

120 0.206± 0.035 0.102± 0.027 0.074± 0.023 0.054± 0.020
60 0.188± 0.034 0.086± 0.025 0.078± 0.024 0.046± 0.018
30 0.152± 0.031 0.086± 0.025 0.056± 0.020 0.044± 0.018
20 0.118± 0.028 0.034± 0.016 0.034± 0.016 0.022± 0.013

Table 6.3: Attacker’s Success Rate (Predicted Values)

IP Reconfig
Static 120 60 30

S
e
rv

ic
e

R
e
c
o
n
fi
g Static 1.000 0.733 0.541 0.298

120 0.263 0.193 0.142 0.078
60 0.207 0.152 0.112 0.062
30 0.128 0.094 0.069 0.038
20 0.080 0.058 0.043 0.024

6.5.4 MTD Protection Against Multiple Targets

The original set of experiments focused on a protecting a single target. However, most en-

terprises have multiple nodes that might require protection. This also matches more closely

with a real-world example, as attackers probe a network and obtain a list of possible targets

before attempting to probe further. With the virtual environment, multiple instances of

MTD-protected nodes were created and results were analyzed.

The experiments were repeated using a total of six nodes in the virtual environment.

Each node had identical MTD settings but ran independently. The attack script did a target

scan against the entire network, followed by a more invasive scan to determine service and an

attack on vulnerable target. Scans and attacks were performed sequentially on each node

found during the initial scan to model an attacker not opening connections to multiple

targets at the same time to maintain a stealthy presence on the network, with a total of 100

trials performed for each combination of settings due to the increased number of targets.

The effect of service reconfiguration were observed in Figure 6.8 which contains a series

of histograms showing the number of times that a certain number of attacks were successful

97

Table 6.4: Availability

IP Reconfig
Static 120 60 30

S
e
rv

ic
e

R
e
c
o
n
fi
g Static 1.000± 0.000 0.916± 0.003 0.819± 0.005 0.743± 0.005

120 0.997± 0.000 0.909± 0.002 0.838± 0.003 0.692± 0.003
60 0.986± 0.001 0.793± 0.003 0.782± 0.003 0.647± 0.003
30 0.981± 0.001 0.692± 0.003 0.832± 0.003 0.711± 0.003
20 0.967± 0.001 0.914± 0.002 0.794± 0.003 0.677± 0.003

Table 6.5: Availability (Predicted Values)

IP Reconfig
Static 120 60 30

S
e
rv

ic
e

R
e
c
o
n
fi
g Static 1.000 0.926 0.862 0.758

120 0.995 0.921 0.858 0.754
60 0.990 0.916 0.853 0.750
30 0.979 0.907 0.844 0.742
20 0.969 0.898 0.836 0.734

for multiple service reconfiguration settings. For these values, all IP addresses remained

static.

For example, with an service reconfiguration interarrival time of 120 seconds, a large

number of trials where two or more out of six attacks were successful. However, as the

interarrival time between service reconfigurations decreases, the histograms’ distributions

shift to the left. When the average interarrival time between reconfigurations is 20 seconds,

the majority of trials resulted in zero or one out of the six available VMs compromised.

With multiple nodes, the criteria for success as the attacker or defender must be re-

examined. It is assumed that an attack is considered a success if any nodes are able to be

compromised. If attacks against each target are independent, the overall chance of attacker

success p̂s would be 1, minus the probability that the individual attack with success rate

ps on each of n different nodes all failed, or p̂s = 1− (1− ps)n. This constitutes an upper

bound on attacker’s success rate.

However, even more attacks may fail over time because the attacks are scripted to

98

0

5

10

15

20

25

30

35

40

120 60 30 20

N
u

m
b

e
r

o
f

O
cc

u
re

n
ce

s

Service Reconfiguration Interarrival Time (sec)

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 6.8: Histograms Showing Frequency of Numbers of Successful Attacks for Varying
Service Reconfiguration Interarrival rates

be performed in a sequential manner. By the time a likely target is probed further and

exploited, the higher the likelihood of it being reconfigured already. This is illustrated in

Figure 6.9.

ps for the single target case is the likelihood a reconfiguration takes place within time

period Ta; However, due to the sequential nature of the attacker probing and attempting

attacks, the individual attack success probability psi against node i will vary due to the

total time elapsed. Using the example in Figure 6.9 and Equation 6.7:

psi = e−Tai(λS+λIP) · sv
s
·A (6.8)

As Tai increases on each subsequent vulnerable node found, psi approaches zero, as the

node must remain unchanged for a longer period of time for an attack to be successful. The

overall success rate p̂s is then:

99

Single

Target

Target

Scan

Service

Detection

Perform

Attack

Multiple

Target

Target

Scan

Service

Detection

Perform

Attack

Service

Detection

Perform

Attack
. . .

T
a1

T
a2

T
a

Figure 6.9: Timing Windows for Attacks on Multiple Targets

p̂s = 1−

(
n∏
i=1

(1− psi)

)
(6.9)

which converges to a lower value than 1− (1− ps)n as psi → 0.

The complete observed results showing attacker’s success rate are shown in Table 6.6.

Table 6.6: Attacker’s Success Rate (Multiple Targets)

IP Reconfiguration
Static 120 60 30

S
e
rv

ic
e

R
e
c
o
n

fi
g Static 1.00± 0.000 0.88± 0.064 0.61± 0.096 0.29± 0.093

120 0.86± 0.068 0.64± 0.094 0.55± 0.098 0.22± 0.081
60 0.80± 0.078 0.55± 0.098 0.43± 0.097 0.14± 0.068
30 0.84± 0.072 0.55± 0.098 0.49± 0.098 0.15± 0.070
20 0.63± 0.095 0.41± 0.096 0.29± 0.089 0.22± 0.081

6.5.5 Computing Utility

The analytic model presented in Sections 6.3 allows one to predict the attacker’s success

rate and availability. Using these results, one can answer questions such as “given the user’s

100

objectives for security and availability, what combination of MTDs and settings maximize

overall utility?”

This can be addressed by assigning utility values to the attacker’s likelihood of success

and availability using the following sigmoid functions:

UP (ps) =
eσ(−ps+βP)

1 + eσ(−ps+βP)
(6.10)

UA(A) =
1

1 + eσ(−A+βA)
(6.11)

where A is the availability, βA is the availability objective, ps is the attacker’s probability of

success, βP is the attacker’s success probability objective, and σ is a steepness parameter for

the sigmoid. Two different forms of the sigmoid function are used because a solution with

optimal utility seeks to minimize the attacker’s chance of success and maximize availability.

Based on the utility values derived security and availability, a global utility function,

UG, is computed as:

UG = wP · UP (ps) + wA · UA(A) (6.12)

where wP and wA are weight factors chosen such that wP + wA = 1. Different values of

wP and wA influence the optimal choice of MTDs and reconfiguration rates. Table 6.7

shows utility values of all settings for values of βP = 0.2 , βA = 0.99, σ = 10, wP = 0.25,

and wA = 0.75. These values correspond to both the defender security risk appetite and

tolerance for service disruption. For example, a defender which favors availability would

also favor more time between reconfigurations to limit service disruption (and promote

higher availability) as opposed to preventing attacks. These weight factors are assumed to

be known to - or other otherwise can be determined by - defenders via means outside the

scope of this work. The values chosen represent this high availability use case, reflecting

many service providers, which are contractually-obligated to maintain service uptime at

levels exceeding 99%.

101

Table 6.7: Utility Values

IP Reconfig
Static 120 60 30

S
e
rv

ic
e

R
e
c
o
n

fi
g Static 0.394 0.241 0.118 0.089

120 0.509 0.413 0.329 0.239
60 0.500 0.290 0.293 0.236
30 0.513 0.344 0.330 0.250
20 0.505 0.344 0.303 0.245

Out of the settings evaluated, the optimal utility occurs with a service reconfiguration in-

terarrival time is an average of 30 seconds and IP address reconfigurations is not employed

at all. In the implementation, IP reconfiguration offered relatively little security benefit

and relatively large loss of availability compared to the service reconfiguration technique.

However, the results align with the conclusions of other researchers regarding network ran-

domization [113], which also demonstrate relatively minor security benefits. Other pairings

of MTDs might offer a more balanced result if their performance profiles were more com-

parable. In summary, a decision-maker presented with similar results may initiate efforts

to implement service reconfiguration and also conclude that IP reconfiguration is not worth

pursuing altogether; avoiding costly, but ineffective investments.

6.6 Summary

Individually, MTDs have demonstrated effectiveness against a variety of threats and attack

vectors. Collectively, they offer potential of a more secure future. As one step in achieving

that potential, this paper continues prior work in evaluation and performance modeling of

MTDs and provides further contributions to the field. However, more research must be

performed to fully realize the potential of MTDs.

The analytic work and implementation might be improved with a higher level of fidelity.

More work could be done to understand specific interactions between the attacker and

defender within the implementation to improve its accuracy. For example, edge cases and

race conditions may exist between the attacker and defender that cause a reconfiguration

102

to be unsuccessful in preventing an attack.

Likewise, while the MTDs utilized would ideally be fully independent, the implementa-

tion does contain interactions between them. It is expected that other practical implemen-

tations would not be fully independent. Further work could involve development of a metric

to measure the level of dependence between two or more implemented MTDs. Such a met-

ric would allow decision makers to avoid combinations of MTDs that are highly dependent

upon each other and may have undesirable interactions.

Conversely, the analysis and defender model can also be further generalized to apply to

more MTDs. As different MTD techniques affect attackers in different phases of the Cyber

Kill Chain, a MTD that prevents an attack earlier in the process might be more effective

overall in preventing attacks. A MTD that takes effect later in the kill chain might instead

provide defense by delaying the attack, ensuring the service remains protected long enough

to accomplish its mission, or simply reducing the number of attempts an attacker is able to

make against the system.

For example, while the attack model features an attacker which simulates nearly the

entire Cyber Kill Chain, additional steps may be performed. The attacker established com-

mand and control on its target, but progressed no further. Realistic attackers leverage their

control over compromised hosts over time to accomplish a range of objectives. These actions

on objectives, such as data exfiltration, is already the focus of research [114]. Furthermore,

there are known refresh MTD techniques [115] which may may be relatively ineffective at

preventing initial compromise, but return compromised hosts to a safe state, theoretically

mitigating the long-term impact of these attacks. Such an extension would likely require the

development of additional attacker success metrics. As the goal of this research is determin-

ing the concurrent effectiveness of MTDs, evaluating the effectiveness of these varied MTD

techniques, in combination, against the entire Cyber Kill Chain is a promising direction for

future research.

103

Chapter 7: High-Fidelity Testing

In this section, practical underpinnings are provided to the framework by utilizing a high-

fidelity cyber testbed environment to simulate attackers seeking to minimize activity on the

network in order to maintain stealth.

7.1 Network Topology Discovery

It was assumed that, through privilege escalation, an attacker can gain root privileges on any

compromised node, and execute local commands, including diagnostic commands, without

alerting the defender. In fact, an attacker who has gained elevated privileges can potentially

obfuscate local command execution or directly compromise the integrity of local logs. In

contrast, the attacker seeks to minimize interactions with the network itself, as obfuscating

malicious activity on the network would prove more difficult.

While some perturbation of the network is unavoidable (especially during compromise

and any exfiltration activities), stealthy attackers seek to minimize this traffic. Many con-

ventional tools and commands, such as traceroute/tracert and active scanning tools such

as Nmap, generate network traffic. These tools are well-known and their usage could alert a

vigilant defender employing a Network-Based Intrusion Detection System (NIDS). Although

passive techniques might potentially limit the adversary’s reconnaissance capabilities, this

work demonstrates how a trove of information on compromised nodes may be used to map

out parts of the network. Specifically, it is assumed that the attacker is able to access the

following information:

• Host Configuration. Accessible through the ipconfig and ifconfig commands on

Windows and Linux-based operating systems respectively, host configuration includes

IP address, hostname, and gateway information.

104

• Address Resolution Protocol (ARP) Cache. The ARP cache maintains a map-

ping between network and physical addresses of hosts within the same Layer 2 broad-

cast domain.

• Routing Tables. Routing tables allow an attacker to discover new targets by looking

at destination and next hop IP addresses.

There are many examples of advanced, stealthy malware gathering and transmitting sim-

ilar information to the threat actor. As mentioned previously in Chapter 2, both Stuxnet [8]

and Shamoon [116] attempt to transmit local host and network information, even though

their primary objective is considered to be sabotage as opposed to espionage.

It is also assumed that the attacker is able to eavesdrop on network interfaces to collect,

monitor, and capture packets which traverse compromised nodes. Using the information in

the packet headers, the attacker is able to infer a network topology graph which represents its

view of the network. Techniques for inferring network topologies through passive mapping

with packet captures, and associated limitations, have been investigated by Hosmer [117]

and Akande [118]. To address some of these limitations, and differently from previous work,

in the attacker’s model leverages additional sources of information, beyond network packets,

to derive a more accurate and complete view of the target network.

7.1.1 Reward

Earlier chapters defined reward(ti, v), with i ∈ [1,m] and v ∈ V , as the value gained by an

adversary during the time interval ∆ti = [ti−1, ti] by controlling node v. Accordingly, the

total attacker’s reward at time ti can be computed as the sum of the rewards gained from

all the nodes v ∈ V ∗ in the malware’s footprint, i.e.,

reward(ti) =
∑
v∈V ∗

reward(ti, v), ∀i ∈ [1,m]. (7.1)

Finally, the value accrued by an adversary over the entire time horizon T can be simply

105

computed as

Reward =

m∑
i=1

reward(ti). (7.2)

The reward function reward : T × V → R+ is intended to capture the attacker’s

perceived value of each network asset v ∈ V . As different adversaries may have different

objectives, one may consider reward(ti, v) as a normally distributed random variable with

mean µti,v and standard deviation σti,v. In fact, the value of each network asset could

be determined by averaging over multiple different reward functions, each representing a

different attacker. Under such conditions, if this experiment is repeated many times, the

central limit theorem implies that the distribution of the average will closely approximate

a normal distribution. If one assumes independence between different network assets, then

one can conclude that reward(ti) and Reward are also normally distributed, i.e.,

reward(ti) ∼ N

(∑
v∈V ∗

µti,v,
∑
v∈V ∗

σ2
ti,v

)
(7.3)

Reward ∼ N

(
m∑
i=1

∑
v∈V ∗

µti,v,

m∑
i=1

∑
v∈V ∗

σ2
ti,v

)
(7.4)

In fact, the sum of two independent normally distributed random variables is normally

distributed, with its mean being the sum of the two means, and its variance being the sum

of the two variances.

7.1.2 Cost

As described in [101], detectability costs for individual nodes can be determined based on

node characteristics that affect the level of attacker’s effort required to compromise an asset

and maintain it in the malware footprint, which in turn is directly related, as shown in [119],

106

to the risk of being detected.

cost(ti, v) is used to denote the cost for the attacker to compromise or maintain node v

at time ti. The total cost at time ti can then be computed as

cost(ti) =
∑
v∈V ∗

cost(ti, v), ∀i ∈ [1,m]. (7.5)

where V ∗ is the set of nodes in the attacker’s footprint.

Once a node v has been compromised at time t∗v, the cost for the attacker to maintain

v in its footprint during subsequent time intervals might be lower than the cost sustained

for the initial compromise, due to less detectable activity on that node. Formally, the cost

function cost for a node v compromised at time t∗v can be defined as

cost(ti, v)


= 0 if ti < t∗v

= cv if ti = t∗v

< cv if ti > t∗v

(7.6)

where cv is a constant representing the one-time cost sustained by the attacker to compro-

mise node v.

Similarly to the prior discussion w.r.t. to the reward function, one may think of cost(ti, v)

as a normally distributed random variable with mean µti,v and standard deviation σti,v.

Assuming that the risk of the attacker being detected when compromising a network asset is

independent of the risk of being detected when compromising other network assets, cost(ti)

is also normally distributed, i.e.,

cost(ti) ∼ N

(∑
v∈V ∗

µti,v,
∑
v∈V ∗

σ2
ti,v

)
. (7.7)

The independence assumption is particularly valid when intrusion detection is primar-

ily host-based. When detection relies on a combination of host-based and network-based

107

mechanisms, such assumption may not strictly hold and Equation 7.7 would provide a rough

approximation of the cost. Due to the sophisticated nature of the adversaries considered

here, it is reasonable to assume that they are always successful in compromising a target

node, if they choose to do so. Advanced threat actors [2] maintain stockpiles of exploits such

that when a given exploit becomes publicly known and it is rendered ineffective, another

exploit is used instead.

7.1.3 Attacker’s Dynamics

It is assumed that the attacker maintains a view of the target network’s topology and

services running on each node, and updates this view as more information is gathered

through probing or traffic analysis. A typical attack by an APT actor may iteratively

unfold as follows:

• Reconnaissance. At a time ti, starting from previously compromised nodes, the

adversary analyzes data passively gathered from the target network (as described in

detail in Section 7.1) and identifies a set S ⊆ V of newly reachable assets.

• Target evaluation. For each v ∈ S, the adversary computes reward(ti, v) and

cost(ti, v).

• Target selection. The adversary selects a subset S
′ ⊆ S, such that∑

v∈S′ cost(ti, v) ≤ B and one of several possible objective functions is optimized

(e.g., maximize reward or reward-to-cost ratio).

• Compromise. The adversary compromises nodes in S
′

and adds them to its foot-

print.

The steps discussed above broadly correspond to the first five steps of the cyber kill

chain, i.e., reconnaissance, weaponization, delivery, exploitation, and installation [105]. A

possible deceptive defensive strategy building upon this model could aim at creating and

108

Algorithm 4 genNodeV iew(v, pcapv, routesv, domainv)

1: v is a node, pcapv the pcap capture from v, routesv are the network routes of v, domainv is the set of IP addresses
belonging to nodes within the broadcast domain of v

2: Graph Gv = (V,E) representing the attacker’s view of the network from node v

3: . Initialize
4: Gv ← ({v}, ∅)

. Add nodes to graph from domain
5: V ← V ∪ nodesFromIPs(domainv)

. Extract packets
6: p← getNextPacket(pcapv)

7: while p 6= ∅ do . Extract source IP (src), destination IP (dst), and packet length (vol)

8: srcp, dstp, volp ← extractPacketData(p)

9: vsrc ← nodesFromIPs(srcp)

10: vdst ← nodesFromIPs(dstp)

11: if vsrc /∈ (V) then

12: V ← V ∪ vsrc
13: end if
14: if vdst /∈ (V) then

15: V ← V ∪ vdst
16: vip ← getIPs(v)

17: else if (srcp ∈ vip ∧ dstp ∈ domainv)
∨

(dstp ∈ vip ∧ srcp ∈ domainv) then . v and the packet src/dst are

within the same domain, add edge between v and the src/dst

18: addEdge(Gv , srcp, dstp, volp)

19: else . packet src or dst are not within the same domain as v, create edges through next hop address
20: if dstp 6= vip then

21: nextHop← getNextHop(routesv , dstp)

22: addEdge(Gv , v, nextHop, volp)

23: addEdge(Gv , nextHop, dstp, volp)

24: end if
25: if srcp 6= vip then

26: nextHop← getNextHop(routesv , srcp)

27: addEdge(Gv , srcp, nextHop, volp)

28: addEdge(Gv , nextHop, v, volp)

29: end if
30: end if
31: p← getNextPacket(pcapv)

32: end while
return Gv

deploying honeypots with characteristics such that the likelihood of them being included in

the set S
′

is higher than for real network assets.

Algorithm 4 generates a partial view of the network from a node v, whereas Algorithm 5

updates the attacker’s view of the entire network as new information becomes available by

executing Algorithm 4 over newly compromised nodes.

7.2 Estimating Reward and Cost

This work is intended to provide a framework to reason about a stealthy attacker’s re-

connaissance behavior, incentives and deterrents. As such, the specific reward(ti, v) and

109

Algorithm 5 updateGraph(G, vc, Gc)

1: Graph G = (V,E) the attacker’s existing model of the target network, node vc the newly compromised node,

Graph Gc = (Vc, Ec) the attacker’s view of the network from vc
2: Graph G′

. nodes the attacker discovers after compromising vc (not already in G)

3: newNodes← Vc − V
4: V ← V ∪ Vc

. replace edges in G which include vc
5: for e ∈ E do
6: if vc ∈ e then
7: removeEdge(e)

8: end if
9: end for
10: for ec ∈ Ec do . Extract edge source (src), destination (dst), and packet length (vol)

11: srce, dste, vole ← extractEdgeData(ec)

. Add edge in G if edge source/destination is vc or the source/destination is a ”new node”

12: if srce == vc
∨
dste == vc

∨
srce ∈ newNodes

∨
dste ∈ newNodes then

13: addEdge(G, srce, dste, vole)

14: end if
15: end for

cost(ti, v) calculation for individual nodes may differ across organizations and operational

contexts. With this caveat, the next section provides a practical estimation of reward and

cost for both attackers and defenders for the purpose of this work.

Estimating Reward. For the purposes of this work, the attacker determines the reward

of a node as a function of the observed volume of traffic originating from or destined to

that node. Ground truth reward values would likely be determined on an organizational

level through a comprehensive risk assessment. In lieu of such a risk assessment, this work

employs a method similar to the one employed by the attacker – based on observed traffic

in a simulated environment and other reconnaissance which minimizes network interaction.

However, while the attacker calculates values of nodes within its footprint, the defender can

calculate values ∀v ∈ V . Furthermore, the defender can calculate reward values based on

all legitimate traffic. In contrast, the attacker utilizes only traffic observed on nodes within

its footprint.

Estimating Cost. For the purpose of this work, the relationship between detectability cost

and the notion of attack surface, which has been formally defined by Manadhata et al. [120],

is considered. Systems with a greater attack surface provide more potential attack vectors

to exploit the system. While a thorough, formal attack surface determination is infeasible

for attackers, Manadhata’s work also discusses alternate methodologies to determine attack

110

surface. One option is to count the number of vulnerabilities found in the system’s software

(including operating systems) according to public vulnerability databases. Though an ap-

proximation of a system’s security posture, an attacker could be likely to employ a similar

approach due to expediency.

Let be CV E(ti, v) denote the set of vulnerabilities on v at time ti published in the

MITRE CVE database. A vulnerability detectability score is computed, vd : CV E → R+,

using the CVSS Exploitability score and the set of public Intrusion Detection System (IDS)

rules associated with the vulnerability, denoted as IDS(cve). Individual organizations may

employ one or more IDS according to organizational preference. For the purposes of this

work, both SNORT and Suricata, two well-known, open source network intrusion detection

systems that publish open repositories of publicly available rules are employed. vd(cve) is

defined as follows:

vd(cve) =
|IDS(cve)|

Exploitability(cve)
. (7.8)

Intuitively, the more IDS rules available for a given vulnerability, the easier it is for

the attacker to be detected when attempting to exploit that vulnerability. Additionally, a

higher CVE Exploitability score for a given vulnerability indicates that attackers attackers

are better able to utilize the vulnerability in a stealthy manner. This is due to how the CVE

Exploitability score is calculated, which incorporates several subscores linked to detectabil-

ity. For example, the Attack Vector (AV) subscore measures how easily an attacker can

leverage a vulnerability (e.g., remote exploit possible vs. physical access required). Thus, an

attacker leveraging a vulnerability with a higher Exploitability score will have more options

(more attack vectors per Manadhata), and will select a vector which the attacker believes

to offer the highest chance of remaining undetected.

Based on the definition above, detectability cost associated with a node v is defined as

either the average detectability cost across all vulnerabilities on v, i.e.,

111

cost(ti, v) =

∑
cve∈CV E(ti,v) vd(cve)

|CV E(ti, v)|
(7.9)

or as the minimum detectability cost of all the vulnerabilities on v, i.e.,

cost(ti, v) = min
cve∈CV E(ti,v)

vd(cve) (7.10)

To leverage this approach, the attacker must be able to identify software operating on

potential targets. An attacker may accomplish this objective through passively collecting

and processing packet captures. There exist a number of tools, such as the publicly-available

pOf, which are capable of performing OS and service identification based on packet capture.

7.3 Evaluation

In this section, the evaluation of the proposed framework is described. This includes both

a description of the experimental setup; as well as a simple example in Section 7.3.2 which

illustrates how a stealthy attacker views the network we aim to defend. Finally, we report

on numerical results over larger networks in Section 7.3.3.

7.3.1 Experimental Setup

The experimental setup consists of simulated enterprise environments hosted on the Cy-

berVAN testbed [121], which was designed to support high-fidelity cyber security research.

In a CyberVAN scenario, the end hosts (such as workstations and servers) are realized

through VMs running real applications while the network elements (such as routers and

switches) are simulated using NS3. Experiment scenarios may run an exact replica of the

target network by using an identical set of OS VMs. Human users interacting with the

112

WK2

R1

WK1

R2

R3

Internet

DB1

SW2

SW1

WK3

Figure 7.1: Example target network

applications on VMs are modeled by a tool called ConsoleUser, which mimics human user

activities by controlling mouse and keyboard input. A sequence of user actions, such as

typing a URL in a browser followed by clicking a link on the returned web page, will result

in the generation of realistic network traffic. Both CyberVAN and ConsoleUser have been

employed extensively for the purpose of published cyber research [122–124]. In this work,

(a) Example target network
(graph)

(b) ti = 1;S′ = {R3}

(c) ti = 2;S′ = {R3, R1}

Figure 7.2: Progression of network topology discovery

113

ConsoleUser is also leveraged to simulate human users performing various tasks.

There is a lack of existing models that capture the connectivity of an enterprise network

at both layer 2 and layer 3. Therefore, in order to generate different network topologies, this

work employed synthesized enterprise network topologies of different sizes with scale-free

networks properties. Such networks are known to accurately capture the connectivity in

ISP networks at router level [97]. The NetworkX 2.4 library was utilized to generate these

networks in an incremental fashion, using the Holme and Kim algorithm, a variant of the

Barabási-Albert (BA) model. In the BA model, new nodes are added to the network one

at a time. Each new node is connected to an existing node with a probability proportional

to the node’s current degree. Therefore, new nodes added to the network has a higher

probability of becoming the neighbor of existing nodes which already have a higher degree,

relative to other nodes in the network. The Holme and Kim BA variant tends to generate

networks with more clusters than typical BA networks, which is intended to more closely

model enterprise networks.

The networks generated and simulated in CyberVAN for the purposes of this work

consist of user workstations (where ConsoleUser operates), databases, switches, routers

and the external internet. Nodes with a degree greater than 1 are designated as network

elements (routers/switches). The betweenness centrality of these nodes was computed. Half

with higher centrality were assigned as routers and the half with lower centrality as switches

to better approximate enterprise network structure. Network practices dictate that the

internal network be structurally separated as much as possible from the external internet to

promote defense-in-depth security, particularly with sensitive/high-value network resources.

To reflect this practice, the router with the lowest centrality is designated as the internet

router and the external internet is represented as a leaf node of this router. Then the longest

paths were computed from the internet node. The leaf node with the longest path to the

internet node is designated as a database node. Thus, this structure approximates the

aforementioned network design principles to shield and isolate sensitive targets (such as a

critical database) from potential external attack and offers a higher probability of detecting

114

exfiltration activity which must traverse a greater proportion of the overall network. Other

leaf nodes are designated as user workstations. These user workstations employ ConsoleUser

to communicate with either the internet node or the database and generate packet traffic

accordingly.

Attackers originate from the internet node and employ the iterative decision and op-

erating model described in Section 7.1.3 to compromise nodes in the network, building a

footprint over time. The process an adversary can adopt to build a view of the network

based on information collected on a single compromised node v – including captured traffic

and information from other sources discussed in Section 7.1 – is described by Algorithm 4.

However, utilizing any single compromised node limits the capability of the adversary to

infer a topology for non-trivial networks. Thus, if multiple nodes have been compromised,

the adversary aggregates data from all nodes within its footprint into an overall network

topology, as described by Algorithm 5. The attacker leverages this view of the network

as a primary input for the decision making process, determining which nodes to target in

successive rounds. Next, a simple example was provided to illustrate both the networks

generated and the the resulting progression of the attacker’s network view.

7.3.2 Simple Example

Fig. 7.2a depicts a simple network generated with the methodology described in Sec-

tion 7.3.1, with routers (R1, R2, R3), switches (SW1, SW2), user workstations (WK1,

WK2, WK3) and a database (DB1). Fig. 7.2b and Fig. 7.2c represent the progression of

the attacker-inferred network topology, as generated by the algorithm. At the beginning,

in Fig. 7.2b, the attacker, originating from the internet, initially compromises the internet

router/firewall (R3). In this example, the attacker is able to reason about nodes which are

not directly connected to the compromised node by understanding networking relationships.

For example, while R3 is not directly connected to WK1 and WK2, the attacker is able to

infer that both nodes reside in the network beyond R1, assuming that the attacker has ac-

cess to both the pcap data from R3 as well as R3’s network configuration, including routing

115

tables. As the adversary progresses through the network – thus adding more compromised

nodes from which to gather data – a more complete and accurate view of network topology

can be developed. Fig. 7.2c depicts how the attacker’s view evolves after compromising

R1. Of note, after compromising R1, the attacker becomes aware that WK2 resides be-

hind a previously-unknown networking element, router R2. Therefore, the attacker adjusts

its model accordingly. Additionally, through traffic traversing R1 from WK1 to DB1, the

attacker discovers the existence of the internal database, DB1. This traffic from WK1 to

DB1 would not typically traverse R3, as R3 does not lie on the shortest path from WK1

to DB1. This illustrates the importance for the attacker to compose its view from multiple

sources. Furthermore, the attacker’s view of the network is complete (with the exception

of switches, which act as simple repeaters in CyberVAN simulations), even with a small

proportion of the overall network being compromised.

7.3.3 Experimental Results

In this section, the performance of the algorithm was examined for varying network sizes.

Synthetic network topologies of different sizes (100, 200, 300, 400 and 500 nodes) were

generated by scaling up smaller, real network topologies. For each network size, 30 different

network topologies were generated and the results were averaged over different network

settings with a 95% confidence interval. Fig. 7.3a shows the processing time for building

a view of the network over 25 time intervals. When the cumulative processing time is

smaller than the time horizon, the algorithm’s performance can be considered real-time.

For instance, the cumulative runtime for a network of 100 nodes is less than 500 seconds,

or 20 seconds per time interval on average. Due to the nature of stealthy attackers, a time

interval is likely to be significantly longer than the 20 seconds needed to update the view

of the network and select the next target.

Fig. 7.3a shows the reward the attacker gains during each time interval. As mentioned

previously, a number of methodologies may be use to estimate reward values, and they

116

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 7 9 11 13 15 17 19 21 23 25

C
u

m
u

la
ti

ve
 R

u
n

ti
m

e
 (

s)

Time Intervals

100 Nodes 200 Nodes 300 Nodes 400 Nodes 500 Nodes

(a) Runtime

0

500

1000

1500

2000

2500

3000

R
e

w
ar

d

Time Intervals

100 Nodes 200 Nodes 300 Nodes 400 Nodes 500 Nodes

(b) Reward

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 3 5 7 9 11 13 15 17 19 21 23 25

C
u

m
u

la
ti

ve
 R

ew
ar

d

Time Interval

100 Nodes 200 Nodes 300 Nodes 400 Nodes 500 Nodes

(c) Cumulative Reward

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25
N

et
w

o
rk

 D
is

co
ve

re
d

 (
%

)
Time Intervals

100 Nodes 200 Nodes 300 Nodes 400 Nodes 500 Nodes

(d) Percentage of network nodes discovered

Figure 7.3: Simulation results

would differ depending on the characteristics of the target network and the potential goals

of the attacker. For the purposes of the work and without loss of generality, the reward

of a node is assumed to be proportional to the amount of traffic observed through that

node, and normalized with respect to the node with the smallest amount of traffic across

all network sizes considered in the experiments. Thus, higher reward values correspond

to increased exposure of target network information to the attacker. Fig. 7.3c shows the

cumulative results over the time interval.

Finally, Fig. 7.3d shows how the percentage of nodes discovered by the adversary in-

creases over time. For the purpose of this simulation and without loss of generality, a cost

function was assumed in accordance with Section 7.1.2 calculated using the CyberVAN

device specifications. Costs were normalized with respect to workstations, which are the

most insecure. Taking this into account, databases and routers have a computed cost of

117

1.036924976 and 3.417790698, respectively. The chart shows that, after a number of itera-

tions equal to 5% of the number of nodes, the attacker has discovered between 65 and 75%

of the target network.

7.4 Summary

This chapter grounds the work of the previous chapters using the high-fidelity CyberVAN

testbed as a proving ground, transitioning theory to practice. The work in this chap-

ter served as a critical proof-of-concept for an attacker leveraging passive techniques to

nonetheless effectively recon the network. APTs, which prioritize stealth, may use similar

techniques as part of their standard operating procedure to evade detection. Understanding

how this may be accomplished allows the development of defenses to interfere with these

processes and hamper the overall efforts of the APT.

118

Chapter 8: Conclusions and Future Work

“If you know your enemies and know yourself, you will not be imperiled in a hundred

battles” - Sun Tzu

8.1 Conclusions

APTs represent the pinnacle of cyber threat. In recent years, the tactics and very tools

they pioneered have been copied and utilized by other entities, becoming more prevalent.

Defense against these attackers thus is no longer the concern of nation-states alone, but also

of businesses and other organizations which impact the daily lives of the public. Nation-

states, even with all their resources, have proven to be vulnerable as well. When nation-

states are affected, the flow of history shifts. Therefore, developing defenses against these

threats is a critical and widespread concern. In order to develop such defenses, one must

better understand the adversary.

This dissertation defines a quantitative framework to accomplish this goal of understand-

ing the adversary - including incentives, deterrents and other factors which may influence

their behavior. This framework challenges the notion in previous research which assumes

that attackers are primarily focused upon relatively few “crown jewel” nodes in the net-

work. Instead, the attacker is able to accrue some value from compromising nearly any

node within the network. Coupled with the ability of these APTs to leverage vast resources

and deep expertise to reconnoiter organizations and persist within their networks over time,

effective defense requires new approaches and techniques.

In recent years, Adaptive Cyber Defense (ACD) and Moving Target Defense (MTD)

techniques have emerged as potentially paradigm-shifting advances in cybersecurity. Thus

119

far, the cyber domain has been an equalizer among traditional powers, but favoring at-

tackers [1]. ACD/MTD offer potential to shift this paradigm in favor of the defender.

Thus, researchers have devoted significant effort in both developing ACD/MTD tech-

niques [38][40][41][42][125] as well as understanding and quantifying them [126]. ACD/MTD

techniques are particularly well-suited to defend against APTs by shifting configurations

over time - rendering advanced reconnaissance ineffective and refreshing systems should

a compromise occur - mitigating the ability to persistently perform actions-on-objectives.

This work also provides notional examples of how such dynamic defenses may operate to

deter the APT threat.

The quantitative framework allows defenders to (i) assess the cost incurred by APT

actors to compromise and persist within a target system; (ii) estimate the value they gain

by persisting in the system over time; (iii) simulate how the footprint of an APT evolves

over time while constrained by limits on detectable activity to maintain stealth. Using

this framework, defenders can leverage their understanding of their individual networks to

make informed decisions, selecting appropriate MTDs and configuring them accordingly to

provide the most effective tradeoffs to address threats.

8.2 Future Work

This work is intended to serve as a foundation upon which future defenses can be built.

Although it presents a significant step towards mitigating the threat of APTs, more work

is required. However, the foundation built is broad and flexible enough to be developed in

numerous approaches. Several such approaches are immediately evident:

• Refine variables and relationships: As a quantitative framework, the conclusions

provided are sensitive and dependent on input values for a variety of factors, including

accurate valuations of reward and cost. Future work may refine the values to more

accurately reflect real-world determinations and relationships. While this work has

already been accomplished for this dissertation regarding testing and experimentation

120

within high-fidelity cybersecurity testbeds, more can be done to refine the framework

within environments which mimic real-world scenarios as closely as possible.

• Integrate framework with established ACD/MTD techniques: As mentioned

previously, there are now numerous ACD/MTD techniques available. As shown in

Chapter 6, the effectiveness of these MTDs can be improved by adjusting a variety

of parameters. A full integration of an existing ACD/MTD techniques with this

quantitative framework would be a considerable next step. Developing an entirely

new defense based on ACD/MTD principles which leverages this framework would be

an even greater achievement.

• Model to capture additional game-theoretic and adversarial considerations:

Cybersecurity research with game-theoretic considerations between attackers and de-

fenders is both an established and growing area of research. In particular, this work

may find commonality with concepts such as Stackelberg games.

This foundation offers a platform upon which a defense can be erected to withstand

the threat posed by APTs. However, the final test remains deployment in the real world,

against actual APT malware and the APT actors which employ them.

121

Bibliography

[1] M. R. DeVore and S. Lee, “APT (advanced persistent threat) s and influence: Cyber
weapons and the changing calculus of conflict,” The Journal of East Asian Affairs,
pp. 39–64, 2017.

[2] A. Lemay, J. Calvet, F. Menet, and J. M. Fernandez, “Survey of publicly available
reports on advanced persistent threat actors,” Computers & Security, vol. 72, pp.
26–59, 2018.

[3] R. Kissel, “Glossary of key information security terms,” NIST Interagency Reports
NIST IR, vol. 7298, no. 3, 2013.

[4] M. I. Center, “Apt1: Exposing one of chinas cyber espionage units,” FireEye Mandi-
ant, Tech. Rep., February 2013.

[5] “2020 state of malware,” Malwarebytes Labs, Tech. Rep., February 2020.

[6] “2019 cost of a data breach study,” Ponemon Institute, IBM Security, Tech. Rep.,
June 2019.

[7] “Targeted cyberattacks logbook,” 2018, [Online; accessed 5-March-2018]. [Online].
Available: https://apt.securelist.com/#!/threats/

[8] R. Langner, “To kill a centrifuge : a technical analysis of what stuxnets creators tried
to achieve,” Tech. Rep., 2013.

[9] L. Ablon and A. Bogart, Zero days, thousands of nights: The life and times of zero-day
vulnerabilities and their exploits. Rand Corporation, 2017.

[10] T. Kristensen, “Flash 0-days,” April 2011. [Online]. Available: http://blogs.
flexerasoftware.com/vulnerability-management/2011/04/flash-0-days.html

[11] RFSID, “New kit, same player: Top 10 vulnerabilities used by exploit kits
in 2016,” December 2016. [Online]. Available: https://www.recordedfuture.com/
top-vulnerabilities-2016/

[12] B. Research, “Java vulnerabilities: Write once, pwn anywhere,” Bit9, Tech. Rep.,
August 2013.

[13] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” in Broad-
band, Wireless Computing, Communication and Applications (BWCCA), 2010 Inter-
national Conference on. IEEE, 2010, pp. 297–300.

122

[14] J. A. Marpaung, M. Sain, and H.-J. Lee, “Survey on malware evasion techniques:
State of the art and challenges,” in Advanced Communication Technology (ICACT),
2012 14th International Conference on. IEEE, 2012, pp. 744–749.

[15] J. H. H. Jafarian, E. Al-Shaer, and Q. Duan, “Spatio-temporal address mutation for
proactive cyber agility against sophisticated attackers,” in Proceedings of the First
ACM Workshop on Moving Target Defense. ACM, 2014, pp. 69–78.

[16] Mandiant, “M-trends 2017: a view from the front lines,” FireEye, Tech. Rep., March
2017.

[17] J. Hunker, B. Hutchinson, and J. Margulies, “Role and challenges for sufficient cyber-
attack attribution,” Institute for Information Infrastructure Protection, pp. 5–10,
2008.

[18] E. M. Mudrinich, “Cyber 3.0: The department of defense strategy for operating in
cyberspace and the attribution problem,” AFL Rev., vol. 68, p. 167, 2012.

[19] N. Tsagourias, “Cyber attacks, self-defence and the problem of attribution,” Journal
of Conflict and Security Law, vol. 17, no. 2, pp. 229–244, 2012.

[20] S. M, Reverse Deception. McGraw-Hill Education, July 2017.

[21] B. Schneier, “The cia’s ”development tradecraft dos and don’ts”,” March
2017. [Online]. Available: https://www.schneier.com/blog/archives/2017/03/the
cias develo.html

[22] S. Gallagher, “Helpful(?) coding tips from the cias school of hacks,” March
2017. [Online]. Available: https://arstechnica.com/information-technology/2017/03/
malware-101-the-cias-dos-and-donts-for-tool-developers/

[23] K. Ziolkowski, “Stuxnet - legal considerations,” Tech. Rep., 2012.

[24] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” Tech. Rep. 6, 2011.

[25] G. McDonald, L. O. Murchu, S. Doherty, and E. Chien, “Stuxnet 0.5 the missing
link,” Tech. Rep., 2013.

[26] M. De Falco, “Stuxnet facts report : a technical and strategic analysis,” Tech. Rep.,
2012.

[27] N. Virvilis and D. Gritzalis, “The big four-what we did wrong in advanced persis-
tent threat detection?” in Availability, Reliability and Security (ARES), 2013 Eighth
International Conference on. IEEE, 2013, pp. 248–254.

[28] D. Sanger, Confront and Conceal: Obama’s Secret Wars and Surprising Use of Amer-
ican Power. Crown Publishing, 2014.

[29] R. Langner, “Stuxnet’s secret twin,” Nov 2013. [Online]. Available: http:
//foreignpolicy.com/2013/11/19/stuxnets-secret-twin/

[30] T. M. Chen and A.-N. Saeed, “Lessons from stuxnet,” Computer, vol. 44, no. 4, pp.
91–93, 2011.

123

[31] C. Raiu, “The day the stuxnet died,” June 2012. [Online]. Available:
https://securelist.com/the-day-the-stuxnet-died-27/33206/

[32] D. Goodlin, “A rash of invisible, fileless malware is infecting banks around the globe,”
Feb 2017. [Online]. Available: https://arstechnica.com/information-technology/
2017/02/a-rash-of-invisible-fileless-malware-is-infecting-banks-around-the-globe/

[33] B. Schneier, “Duqu malware techniques used by cybercriminals,” Feb 2017. [Online].
Available: https://www.schneier.com/blog/archives/2017/02/duqu malware te.html

[34] S. S. Response, “W32. duqu: the precursor to the next stuxnet,” Tech. Rep. 6, Novem-
ber 2011.

[35] F. Hacquebord, “Two years of pawn storm: examining an increasingly relevant
threat,” TrendLabs Forward-Looking Threat Research (FTR) Team, Tech. Rep., 2017.

[36] ESET, “Dissection of sednit espionage group,” Tech. Rep., 2016.
[Online]. Available: https://www.eset.com/int/about/newsroom/research/
dissection-of-sednit-espionage-group/

[37] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, 1st ed. Springer
Publishing Company, Incorporated, 2011.

[38] H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson, D. Bigelow, and
W. Streilein, “Survey of cyber moving target techniques,” DTIC Document, Tech.
Rep., 2013.

[39] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in the blur of
moving-target techniques,” Security & Privacy, IEEE, vol. 12, no. 2, pp. 16–26, 2014.

[40] C. Lei, H.-Q. Zhang, J.-L. Tan, Y.-C. Zhang, and X.-H. Liu, “Moving target defense
techniques: A survey,” Security and Communication Networks, vol. 2018, 2018.

[41] J. Zheng and A. S. Namin, “A survey on the moving target defense strategies: An ar-
chitectural perspective,” Journal of Computer Science and Technology, vol. 34, no. 1,
pp. 207–233, 2019.

[42] S. Sengupta, A. Chowdhary, A. Sabur, D. Huang, A. Alshamrani, and S. Kamb-
hampati, “A survey of moving target defenses for network security,” arXiv preprint
arXiv:1905.00964, 2019.

[43] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher, T. J. Moore, D. S.
Kim, H. Lim, and F. F. Nelson, “Toward proactive, adaptive defense: A survey on
moving target defense,” IEEE Communications Surveys & Tutorials, 2020.

[44] S. Jajodia, A. K. Ghosh, V. Subrahmanian, V. Swarup, C. Wang, and X. S. Wang,
“Moving target defense ii,” Application of Game Theory and Adversarial Modeling.
Series: Advances in Information Security, vol. 100, p. 203, 2013.

124

[45] R. Colbaugh and K. Glass, “Moving target defense for adaptive adversaries,” in Intel-
ligence and Security Informatics (ISI), 2013 IEEE International Conference on, June
2013, pp. 50–55.

[46] M. I. Husain, K. Courtright, and R. Sridhar, “Lightweight reconfigurable encryp-
tion architecture for moving target defense,” in Military Communications Conference,
MILCOM 2013 - 2013 IEEE, Nov 2013, pp. 214–219.

[47] Y. Li, R. Dai, and J. Zhang, “Morphing communications of cyber-physical systems
towards moving-target defense,” in Communications (ICC), 2014 IEEE International
Conference on, June 2014, pp. 592–598.

[48] V. Casola, A. D. Benedictis, and M. Albanese, “A moving target defense approach
for protecting resource-constrained distributed devices,” in Information Reuse and
Integration (IRI), 2013 IEEE 14th International Conference on, Aug 2013, pp. 22–
29.

[49] M. Albanese, A. D. Benedictis, S. Jajodia, and K. Sun, “A moving target defense
mechanism for manets based on identity virtualization,” in Communications and Net-
work Security (CNS), 2013 IEEE Conference on, Oct 2013, pp. 278–286.

[50] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the
effectiveness of address-space randomization,” in Proceedings of the 11th ACM con-
ference on Computer and communications security. ACM, 2004, pp. 298–307.

[51] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for comprehensive
protection from memory error exploits.” in Usenix Security, 2005.

[52] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge me if you
can: Secure and efficient ad-hoc instruction-level randomization for x86 and arm,”
in Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ser. ASIA CCS ’13. New York, NY, USA: ACM, 2013,
pp. 299–310. [Online]. Available: http://doi.acm.org/10.1145/2484313.2484351

[53] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety for unsafe
languages,” in Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’06. New York, NY, USA: ACM,
2006, pp. 158–168. [Online]. Available: http://doi.acm.org/10.1145/1133981.1134000

[54] G. Novark and E. D. Berger, “Dieharder: Securing the heap,” in Proceedings
of the 17th ACM Conference on Computer and Communications Security, ser.
CCS ’10. New York, NY, USA: ACM, 2010, pp. 573–584. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866371

[55] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-injection attacks
with instruction-set randomization,” in Proceedings of the 10th ACM Conference on
Computer and Communications Security, ser. CCS ’03. New York, NY, USA: ACM,
2003, pp. 272–280. [Online]. Available: http://doi.acm.org/10.1145/948109.948146

125

[56] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-free:
Defeating return-oriented programming through gadget-less binaries,” in Proceedings
of the 26th Annual Computer Security Applications Conference, ser. ACSAC
’10. New York, NY, USA: ACM, 2010, pp. 49–58. [Online]. Available:
http://doi.acm.org/10.1145/1920261.1920269

[57] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi,
“Randomized instruction set emulation to disrupt binary code injection attacks,”
in Proceedings of the 10th ACM Conference on Computer and Communications
Security, ser. CCS ’03. New York, NY, USA: ACM, 2003, pp. 281–289. [Online].
Available: http://doi.acm.org/10.1145/948109.948147

[58] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović, “Randomized
instruction set emulation,” ACM Trans. Inf. Syst. Secur., vol. 8, no. 1, pp. 3–40,
Feb. 2005. [Online]. Available: http://doi.acm.org/10.1145/1053283.1053286

[59] M. Thompson, N. Evans, and V. Kisekka, “Multiple os rotational environment an
implemented moving target defense,” in Resilient Control Systems (ISRCS), 2014 7th
International Symposium on, Aug 2014, pp. 1–6.

[60] R. Zhuang, S. Zhang, A. Bardas, S. A. DeLoach, X. Ou, and A. Singhal, “Investigating
the application of moving target defenses to network security,” in Resilient Control
Systems (ISRCS), 2013 6th International Symposium on, Aug 2013, pp. 162–169.

[61] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, and J. Hiser, “N-variant systems: A secretless framework for security through
diversity,” in Proceedings of the 15th Conference on USENIX Security Symposium -
Volume 15, ser. USENIX-SS’06. Berkeley, CA, USA: USENIX Association, 2006.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267336.1267344

[62] H. Okhravi, A. Comella, E. Robinson, and J. Haines, “Creating a cyber moving target
for critical infrastructure applications using platform diversity,” International Journal
of Critical Infrastructure Protection, vol. 5, no. 1, pp. 30–39, 2012.

[63] D. Arsenault, A. Sood, and Y. Huang, “Secure, resilient computing clusters:
Self-cleansing intrusion tolerance with hardware enforced security (scit/hes),” in
Proceedings of the The Second International Conference on Availability, Reliability
and Security, ser. ARES ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 343–350. [Online]. Available: http://dx.doi.org/10.1109/ARES.2007.134

[64] A. K. Bangalore and A. K. Sood, “Securing web servers using self cleansing intru-
sion tolerance (scit),” in Dependability, 2009. DEPEND ’09. Second International
Conference on, June 2009, pp. 60–65.

[65] Y. Huang, D. Arsenault, and A. Sood, “Incorruptible system self-cleansing for intru-
sion tolerance,” in 2006 IEEE International Performance Computing and Communi-
cations Conference, April 2006, pp. 4 pp.–496.

[66] A. J. O’Donnell and H. Sethu, “On achieving software diversity for improved
network security using distributed coloring algorithms,” in Proceedings of the

126

11th ACM Conference on Computer and Communications Security, ser. CCS
’04. New York, NY, USA: ACM, 2004, pp. 121–131. [Online]. Available:
http://doi.acm.org/10.1145/1030083.1030101

[67] B. Salamat, A. Gal, and M. Franz, “Reverse stack execution in a multi-variant ex-
ecution environment,” in Workshop on Compiler and Architectural Techniques for
Application Reliability and Security, 2008, pp. 1–7.

[68] M. Azab, R. Hassan, and M. Eltoweissy, “Chameleonsoft: A moving target defense
system,” in Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), 2011 7th International Conference on, Oct 2011, pp. 241–250.

[69] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans. Comput.
Syst., vol. 28, no. 2, pp. 4:1–4:54, Jul. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1813654.1813655

[70] S. Vikram, C. Yang, and G. Gu, “Nomad: Towards non-intrusive moving-target de-
fense against web bots,” in Communications and Network Security (CNS), 2013 IEEE
Conference on, Oct 2013, pp. 55–63.

[71] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL injection attacks,” in
International Conference on Applied Cryptography and Network Security. Springer,
2004, pp. 292–302.

[72] K. Trovato, “IP hopping for secure data transfer,” Apr. 10 2003, uS Patent App.
09/973,311. [Online]. Available: https://www.google.com/patents/US20030069981

[73] M. Carvalho and R. Ford, “Moving-target defenses for computer networks,” IEEE
Security Privacy, vol. 12, no. 2, pp. 73–76, Mar 2014.

[74] A. Clark, K. Sun, and R. Poovendran, “Effectiveness of ip address randomization
in decoy-based moving target defense,” in Decision and Control (CDC), 2013 IEEE
52nd Annual Conference on, Dec 2013, pp. 678–685.

[75] Q. Jia, K. Sun, and A. Stavrou, “MOTAG: Moving target defense against internet
denial of service attacks,” in Computer Communications and Networks (ICCCN),
2013 22nd International Conference on, July 2013, pp. 1–9.

[76] E. Al-Shaer, Q. Duan, and J. H. Jafarian, “Random host mutation for moving target
defense,” in International Conference on Security and Privacy in Communication
Systems. Springer, 2012, pp. 310–327.

[77] J. Jafarian, E. Al-Shaer, and Q. Duan, “An effective address mutation approach
for disrupting reconnaissance attacks,” Information Forensics and Security, IEEE
Transactions on, vol. 10, no. 12, pp. 2562–2577, Dec 2015.

[78] J. H. H. Jafarian, E. Al-Shaer, and Q. Duan, “Spatio-temporal address
mutation for proactive cyber agility against sophisticated attackers,” in Proceedings
of the First ACM Workshop on Moving Target Defense, ser. MTD ’14.
New York, NY, USA: ACM, 2014, pp. 69–78. [Online]. Available: http:
//doi.acm.org/10.1145/2663474.2663483

127

[79] J. Jafarian, E. Al-Shaer, and Q. Duan, “Adversary-aware ip address randomization
for proactive agility against sophisticated attackers,” in Computer Communications
(INFOCOM), 2015 IEEE Conference on, April 2015, pp. 738–746.

[80] J. Yackoski, P. Xie, H. Bullen, J. Li, and K. Sun, “A self-shielding dynamic network
architecture,” in 2011 - MILCOM 2011 Military Communications Conference, Nov
2011, pp. 1381–1386.

[81] J. Yackoski, J. Li, S. A. DeLoach, and X. Ou, “Mission-oriented moving target
defense based on cryptographically strong network dynamics,” in Proceedings of the
Eighth Annual Cyber Security and Information Intelligence Research Workshop, ser.
CSIIRW ’13. New York, NY, USA: ACM, 2013, pp. 57:1–57:4. [Online]. Available:
http://doi.acm.org/10.1145/2459976.2460040

[82] J. Yackoski, H. Bullen, X. Yu, and J. Li, Moving Target Defense II: Application of
Game Theory and Adversarial Modeling. New York, NY: Springer New York, 2013,
ch. Applying Self-Shielding Dynamics to the Network Architecture, pp. 97–115.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4614-5416-8 6

[83] M. Albanese, E. Battista, S. Jajodia, and V. Casola, “Manipulating the attacker’s
view of a system’s attack surface,” in Communications and Network Security (CNS),
2014 IEEE Conference on, Oct 2014, pp. 472–480.

[84] G. A. Fink, J. N. Haack, A. D. McKinnon, and E. W. Fulp, “Defense on the move:
Ant-based cyber defense,” IEEE Security Privacy, vol. 12, no. 2, pp. 36–43, Mar 2014.

[85] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “Mt6d: A moving
target ipv6 defense,” in MILITARY COMMUNICATIONS CONFERENCE, 2011 -
MILCOM 2011, Nov 2011, pp. 1321–1326.

[86] O. Hardman, S. Groat, R. Marchany, and J. Tront, “Optimizing a network layer
moving target defense for specific system architectures,” in Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ser. ANCS ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 117–118.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2537857.2537877

[87] S. Groat, M. Dunlop, W. Urbanksi, R. Marchany, and J. Tront, “Using an ipv6 moving
target defense to protect the smart grid,” in 2012 IEEE PES Innovative Smart Grid
Technologies (ISGT), Jan 2012, pp. 1–7.

[88] S. Groat, R. Moore, R. Marchany, and J. Tront, “Securing static nodes in mobile-
enabled systems using a network-layer moving target defense,” in Engineering of
Mobile-Enabled Systems (MOBS), 2013 1st International Workshop on the, May 2013,
pp. 42–47.

[89] Symantec Security Response, “Regin: Top-tier espionage tool enables stealthy surveil-
lance,” Symantec Corporation, Tech. Rep., August 2015.

[90] M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-effective network hard-
ening using attack graphs,” in Dependable Systems and Networks (DSN), 2012 42nd
Annual IEEE/IFIP International Conference on. IEEE, 2012, pp. 1–12.

128

[91] M. Albanese and S. Jajodia, “A graphical model to assess the impact of multi-step
attacks,” The Journal of Defense Modeling and Simulation, p. 1548512917706043,
2017.

[92] D. S. Johnson, M. Minkoff, and S. Phillips, “The prize collecting steiner tree problem:
theory and practice,” in SODA, vol. 1, no. 0.6, 2000, p. 4.

[93] D. Du and X. Hu, Steiner tree problems in computer communication networks. World
Scientific, 2008.

[94] M. Bateni, M. Hajiaghayi, and V. Liaghat, “Improved approximation algorithms
for (budgeted) node-weighted steiner problems,” in International Colloquium on Au-
tomata, Languages, and Programming. Springer, 2013, pp. 81–92.

[95] S. Sadeghian Sadeghabad, “Node-weighted prize collecting steiner tree and applica-
tions,” Master’s thesis, University of Waterloo, 2013.

[96] A. Moss and Y. Rabani, “Approximation algorithms for constrained node weighted
steiner tree problems,” SIAM Journal on Computing, vol. 37, no. 2, pp. 460–481,
2007.

[97] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rock-
etfuel,” SIGCOMM Computer Communication Review, vol. 32, no. 4, pp. 133–145,
October 2002.

[98] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathematical
sociology, vol. 25, no. 2, pp. 163–177, 2001.

[99] N. Kourtellis, G. D. F. Morales, and F. Bonchi, “Scalable online betweenness centrality
in evolving graphs,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 9, pp. 2494–2506, 2015.

[100] Y. Yoshida, “Almost linear-time algorithms for adaptive betweenness centrality us-
ing hypergraph sketches,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2014, pp. 1416–1425.

[101] L. H. Pham, M. Albanese, and B. W. Priest, “A quantitative framework to model
advanced persistent threats,” in Proceedings of the 15th International Conference on
Security and Cryptography (SECRYPT 2018). Porto, Portugal: SciTePress, July
2018, pp. 282–293, - Best Paper Award.

[102] M. Piraveenan, M. Prokopenko, and L. Hossain, “Percolation centrality: Quantifying
graph-theoretic impact of nodes during percolation in networks,” PloS one, vol. 8,
no. 1, p. e53095, 2013.

[103] L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and T. Zhou, “Vital nodes
identification in complex networks,” Physics Reports, vol. 650, pp. 1–63, 2016.

[104] D. A. Menascé, “Security performance,” IEEE Internet Computing, vol. 7, no. 3, pp.
84–87, May/June 2003.

129

[105] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion kill chains,”
Lockheed Martin Corporation, 2010.

[106] “2017 cost of data breach study,” Ponemon Institute, Tech. Rep., June 2017.

[107] H. Maleki, S. Valizadeh, W. Koch, A. Bestavros, and M. van Dijk, “Markov model-
ing of moving target defense games,” in Proceedings of the 2016 ACM Workshop on
Moving Target Defense. ACM, 2016, pp. 81–92.

[108] N. Nasiriani, Y. Shan, G. Kesidis, D. Fleck, and A. Stavrou, “Changing proxy-server
identities as a proactive moving-target defense against reconnaissance for ddos at-
tacks,” Dec 2017.

[109] Y. Huang and A. K. Ghosh, “Introducing diversity and uncertainty to create moving
attack surfaces for web services,” in Moving target defense. Springer, 2011, pp.
131–151.

[110] H. Okhravi, J. Riordan, and K. Carter, “Quantitative evaluation of dynamic platform
techniques as a defensive mechanism,” in International Workshop on Recent Advances
in Intrusion Detection. Springer, 2014, pp. 405–425.

[111] Apache Software Foundation, “Apache,” 2008. [Online]. Available: https:
//archive.apache.org/dist/httpd/

[112] U. S. C. E. R. Team, “CVE-2014-0160.” Available from MITRE, CVE-ID
CVE-2012-1823, Dec. 3 2012. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2012-1823

[113] K. A. Farris and G. Cybenko, “Quantification of moving target cyber defenses,” in
SPIE Defense+ Security. International Society for Optics and Photonics, 2015, pp.
94 560L–94 560L.

[114] S. Venkatesan, M. Albanese, G. Cybenko, and S. Jajodia, “A moving target defense
approach to disrupting stealthy botnets,” in Proceedings of the 2016 ACM Workshop
on Moving Target Defense. ACM, 2016, pp. 37–46.

[115] A. K. Bangalore and A. K. Sood, “Securing web servers using self cleansing intru-
sion tolerance (SCIT),” in Dependability, 2009. DEPEND’09. Second International
Conference on. IEEE, 2009, pp. 60–65.

[116] C. Morales, Feb 2017. [Online]. Available: https://blog.vectra.ai/blog/
an-analysis-of-the-shamoon-2-malware-attack

[117] C. Hosmer, Python passive network mapping: P2NMAP. Syngress, 2015.

[118] A. J. Akande, C. Fidge, and E. Foo, “Limitations of passively mapping logical network
topologies,” Intl. Journal of Computer Network and Information Security, vol. 9, no. 2,
pp. 1–11, February 2017.

130

[119] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Spatio-temporal address mutation for
proactive cyber agility against sophisticated attackers,” in Proc. of the 1st ACM
Workshop on Moving Target Defense (MTD 2014). Scottsdale, AZ, USA: ACM,
November 2014, pp. 69–78.

[120] P. Manadhata and J. M. Wing, “Measuring a system’s attack surface,” CARNEGIE-
MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, Tech.
Rep., 2004.

[121] R. Chadha, T. Bowen, C.-Y. J. Chiang, Y. M. Gottlieb, A. Poylisher, A. Sapello,
C. Serban, S. Sugrim, G. Walther, L. M. Marvel, E. A. Newcomb, and J. Santos,
“CyberVAN: A cyber security virtual assured network testbed,” in Proc. of the 2016
IEEE Military Communications Conference (MILCOM 2016). Baltimore, MD, USA:
IEEE, November 2016, pp. 1125–1130.

[122] T. Bowen, A. Poylisher, C. Serban, R. Chadha, C.-Y. J. Chiang, and L. M. Marvel,
“Enabling reproducible cyber research - four labeled datasets,” in Proc. of the 2016
IEEE Military Communications Conference (MILCOM 2016). Baltimore, MD, USA:
IEEE, November 2016, pp. 539–544.

[123] J. Glasser and B. Lindauer, “Bridging the gap: A pragmatic approach to generating
insider threat data,” in Proc. of the 2013 IEEE Security and Privacy Workshops
(SPW). San Francisco, CA, USA: IEEE, May 2013, pp. 98–104.

[124] B. Lindauer, J. Glasser, M. Rosen, and K. Wallnau, “Generating test data for insider
threat detectors,” Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, vol. 5, no. 2, pp. 80–94, June 2014.

[125] S. Venkatesan, M. Albanese, K. Amin, S. Jajodia, and M. Wright, “A moving target
defense approach to mitigate ddos attacks against proxy-based architectures,” in 2016
IEEE conference on communications and network security (CNS). IEEE, 2016, pp.
198–206.

[126] W. Connell, M. Albanese, and S. Venkatesan, “A framework for moving target de-
fense quantification,” in IFIP International Conference on ICT Systems Security and
Privacy Protection. Springer, 2017, pp. 124–138.

131

Curriculum Vitae

Luan ”Keith” Pham is a cybersecurity professional with experience serving as a U.S. federal
contractor with the U.S. Department of Defense (DoD), U.S. Department of Homeland
Security (DHS), and the U.S. Intelligence Community. He received two prior degrees from
George Mason University: a Bachelor of Science in Information Technology and Master of
Science in Information Security and Assurance in 2007 and 2010, respectively. His career
assignments has led him to travel throughout the continental United States conducting
various forms of security assessments. At the conclusion of his studies, completing the
Doctor of Philosophy in Information Technology at George Mason in 2020, he is scheduled
to return to federal contracting in the service of the U.S. Department of State and U.S.
Agency for International Development (USAID).

132

