
DEFENSE AGAINST CACHE BASED MICRO-ARCHITECTURAL
SIDE CHANNEL ATTACKS

by

Sahil Bhat
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Computer Engineering

Committee:

Dr. Houman Homayoun, Thesis Director

Dr. Jens Peter Kaps, Committee Member

Dr. Jim Jones, Committee Member

Dr. Monson Hayes, Chairman, Department
of Electrical and Computer Engineering

Dr. Kenneth Ball, Dean
Volgenau School of Engineering

Date: Spring Semester 2019
George Mason University
Fairfax, VA

Defense Against Cache Based Micro-architectural Side Channel Attacks

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Sahil Bhat
Master of Science

Savitribai Phule Pune University, 2016

Director: Dr. Houman Homayoun, Associate Professor
Department of Electrical and Computer Engineering

Spring Semester 2019
George Mason University

Fairfax, VA

Copyright c© 2019 by Sahil Bhat
All Rights Reserved

ii

Dedication

I dedicate this thesis to my loving parents Mr. Vinod Kumar Bhat and Mrs. Veena Koul.
I would also love to thank my brother Mr. Mohit Bhat and my friends for their constant
love, support and encouragement.

iii

Acknowledgments

During my graduate study years, I have come across people who played a crucial role in
my life. I would like to take this moment to thank them wholeheartedly for their guidance
and having strong belief in me. I would especially thank Dr. Houman Homayoun and Dr.
Sai Manoj PD, with your encouragement I have achieved all the results and accomplished
my research. I would also thank my friend and my colleague Mr. Abhijitt Dhavlle for his
motivation and all the help throughout the research. A very big thank goes to my family
and my roommates.

iv

Table of Contents

Page

List of Tables . vi

List of Figures . vii

Abstract . ix

Introduction . 1

1.0.1 Hardware Security . 1

1.0.2 Side Channel Attack . 4

Background . 9

2.0.1 Hardware Malware Detectors (HMD) 9

2.0.2 Flush + Reload Attack . 11

2.0.3 Prime+Probe Attack . 12

2.0.4 Flush+Flush Attack . 13

Recent Works . 16

Our Work . 20

4.0.1 Reverse Engineering of HMD . 20

4.0.2 Adversarial HPC Sample Prediction 21

4.0.3 Adversarial HPC Generator . 23

Entropy Shield . 27

Evaluation and Results . 31

6.0.1 Experimental Setup and Data Collection 31

6.0.2 Impact of Adversarial Attack on HPCs 33

6.0.3 Transferability Analysis . 34

6.0.4 Perturbation Analysis . 37

Conclusion . 38

Bibliography . 39

v

List of Tables

Table Page

6.1 Architectural details of HMD . 33

6.2 Impact of adversarial attack on HMD . 34

6.3 Key Perturbation Table . 37

vi

List of Figures

Figure Page

1.1 Hardware Security . 2

1.2 Cache Side Channel Attack . 6

2.1 Process of detecting malware by employing low-level microarchitectural events 10

2.2 Flush+Reload Operation (a) Victim Does not Access; (b)Attack with Victim

Access; (c) Victim multi-Access . 12

2.3 Execution time of operation with reference to threshold time 14

4.1 (a) Process of reverse engineering HMD; (b) Testing Performance of Reverse-

Engineered Detector . 21

4.2 (a) Process of utilizing low-level micro-architectural events (HPCs) with ML

for malware detection; (b) Determining parameter of adversarial code gen-

erator with the aid of adversarial HPC predictor; (c) process of adversarial

HPC generator embedded into original application yet spawned as separate

thread leading to adversarial output (misclassification) 22

5.1 (a) Traditional Flush+Reload attack on encryption algorithm where all the

data leaked via side-channel is accessible to the attacker; (b) Victim is

wrapped with Entropy-Shield that injects perturbation code in the victim

during run-time to reduce and perturb the sensitive information leaked thereby

making SCAs laborious and time-consuming. 28

6.1 (a)LLC load miss HPC trace of an application; (b) LLC load miss HPC

trace of the application predicted by adversarial sample predictor; and (c)

LLC load miss HPC trace of the application predicted by adversarial sample

generator . 32

6.2 (a) Branch miss HPC trace of an application; (b) Branch miss HPC trace

of the application predicted by adversarial sample predictor; and (c) Branch

miss HPC trace of the application predicted by adversarial sample generator 35

6.3 Key interpretation without perturbation . 36

vii

6.4 Key interpretation with perturbation . 36

viii

Abstract

DEFENSE AGAINST CACHE BASED MICRO-ARCHITECTURAL SIDE CHANNEL
ATTACKS

Sahil Bhat

George Mason University, 2019

Thesis Director: Dr. Houman Homayoun

To overcome the performance overheads incurred by the traditional software-based malware

detection techniques, Hardware-assisted Malware Detection (HMD) using machine learning

(ML) classifiers has emerged as a panacea to detect malicious applications and se-cure the

systems. To classify benign and malicious applications, HMD primarily relies on the gener-

ated low-level micro-architectural events captured through Hardware Performance Counters

(HPCs). Moreover, the hardware security domain in recent years has seen many state-of-

the-art cache based side channel attacks (SCAs) which have posed and continue to pose

threats to the integrity of our data. These attacks function by exploiting the side-channels

which invariably leak important data during various operations of its (application) execu-

tion. These attacks have been successful to steal the private keys from RSA encryption

by observing the sequence of operations. Shutting down the side channels is not a feasible

approach due to various restrictions it would pose to system performance, hence it is neces-

sary to reduce the entropy of the side channels to reduce the leakage and thus, thwart such

attacks.

This work creates an adversarial attack on the HMD systems to tamper the security by intro-

ducing the perturbations in the HPC traces with the aid of an adversarial sample generator

application. To craft the attack, we first deploy an adversarial sample predictor to predict

the adversarial HPC pattern for a given application to be misclassified by the deployed

ML classifier in the HMD. Further, as the attacker has no direct access to manipulate the

HPCs generated during runtime, based on the output of the adversarial sample predictor,

we devise an adversarial sample generator wrapped around a normal application to produce

HPC patterns similar to the adversarial predictor HPC trace. As the crafted adversarial

sample generator application does not have any malicious operations, it is not detectable

with traditional signature-based malware detection solutions. With the proposed attack,

malware detection accuracy has been reduced to 18.04% from 82.76%. We also propose a

method to minimize the side channel leakage thus thwarting the attack. A wrapper code

adds perturbations to the data leaked by the victim application thereby reducing entropy

which makes the data on the attacker’s side resemble leaked secret data but with perturba-

tions added which makes it arduous to retrieve the original secret data. The wrapper code

’Entropy Shield’ can be implemented to protect any encryption algorithm with only a few

tweaks.

Introduction

1.0.1 Hardware Security

The ever-increasing complexity of modern computing systems result in the growth of se-

curity vulnerabilities, making such systems an appealing target for sophisticated attacks.

The attackers take the advantage of existing vulnerabilities to compromise the systems and

deploy malware. Malware, also known as malicious software, is a program or application

designed by the attackers to infect the computing systems without the user agreement for

serving harmful purposes such as stealing sensitive information, unauthorized data access,

destroying files, running intrusive programs on devices to perform Denial-of-Service (DoS)

attack, and disrupting essential services to carry out financial fraud.

To overcome the shortcomings such as latency and computational complexity of traditional

malware detection techniques including signature and semantics-based software-driven tech-

niques [1, 2], hardware-assisted malware detection (HMD) approaches are proposed [3].

HMD refers to utilizing the low-level micro-architectural hardware events and logs for de-

tecting and classifying the malware from benign applications. The HMD enjoys the benefit

of reduced malware detection latency by orders of magnitude with smaller hardware cost

[3]. Recent works [3–10] have shown that by deploying Machine Learning (ML) techniques

fed with the low-level micro-architectural events (features) captured by Hardware Perfor-

mance Counters (HPCs) can aid in differentiating benign and malware applications. The

HPCs are a set of special-purpose registers built into modern microprocessors to capture

the trace of hardware-related events such as LLC load misses, branch instructions, branch

1

Figure 1.1: Hardware Security

misses, and executed instructions while executing an application (benign or malware).

The work in [3] was one of the preliminary works that has proposed to utilize the HPC data

for malware detection and demonstrated the effectiveness of offline ML algorithms in mal-

ware classification. They showed high detection accuracy results for Android malware by

applying multiple ML algorithms, namely Artificial Neural Network (ANN) and K-Nearest

Neighbor (KNN). The researchers in [11] and [4] discussed the feasibility of employing un-

supervised learning method on low-level features to detect Return-oriented programming

(ROP) and buffer overflow attacks by finding an anomaly in the hardware performance

counters’ information. Although unsupervised algorithms are more effective in detecting

new malware and attacker evolution, they are complex in nature demanding more sophis-

ticated analysis and computational overheads. The work in [12] uses logistic regression to

classify malware into multiple classes and train a specialized classifier for detecting malware

class. They further used specialized ensemble learning to improve the accuracy of logistic

regression. To enhance the performance, the work in [6, 12] proposes use of ensemble ML

based solutions for effective malware detection using low-level micro-architectural features.

These ML based malware detectors (HMD) can be implemented in microprocessor hardware

2

with significantly low overhead as compared to the software-based methods, as detection

inside the hardware is very fast (few clock cycles) [2, 5]. As a whole, it can be seen that

recently a large body of works have been dedicated to employ low-level micro-architectural

events fed to ML classifiers to make the systems secure.

On the other hand, despite the ML classifiers being deployed in numerous applications and

shown robustness against random noises, the exposed vulnerabilities have shown that the

outcome of ML classifiers can be modified or controlled by adding specially crafted per-

turbations to the input data [13–16], often referred as Adversarial samples. A plethora

of works on adversarial attacks exist, focusing specifically on computer vision applications

[13–16], where the number of features are often large. Recently, a few works on crafting

adversarial malware are as well proposed in [17]. However, the works such as [17] consider

the application features in a binary format (feature exist or not) for showcasing the attack

and defense. Though the application features (in binary format) are manipulated, tradi-

tional techniques such as semantic and signature analysis based methods can detect these

adversaries [18]. Similarly, in [19] authors talks about the efficiency of detecting malware

through HPCs. Though the presented experimental results in [19] are in-favor of efficient

malware detection through HPCs, they claim that if HPC traces of malware and benign

applications are similar, it is hard to detect malware. However, no details on crafting nor

feasibility to create such malware is provided, which limits the efficacy. In contrast to the

existing works, this work proposes an adversarial attack on HMDs in which the adversarial

samples are generated through a benign code that is wrapped around a benign or malware

application to produce a desired output class from the embedded ML-based malware detector.

One of the main challenges to address is that the attacker or user has no direct access

to modify the HPC and furthermore, manipulation of HPCs is highly complex to perform

despite employing techniques like code obfuscation for executing malware [3, 20].

Firstly, we assume the victim’s defense system to be a black box and perform reverse

engineering to mimic the behavior of the embedded HMD or other security system and

3

build a ML classifier. In order to determine the required number of HPCs to be generated

through the application to be misclassified, we employ an ‘adversarial sample predictor ’

which predicts the number of HPCs to be generated to misclassify an application by the

HMD. As aforementioned, the HPCs cannot be modified directly by the attacker, as such we

craft an ‘adversarial HPC generator ’ application (code) that generates the required number

of HPCs. The crafting of adversarial HPC generator is performed by employing a linear

model that relates the HPC events and the parameters of the adversarial generator code.

This adversarial HPC generator application is wrapped around the application that needs

to be misclassified. To the best of our knowledge, this is the first work that is capable of

generating adversarial HPCs through a benign application and proposes a methodology how

to craft such an application and obtain adversarial behavior. The main focus of this work

is create false alarms (malware classified as benign and benign classified as malware) in

order to weaken the trust on the embedded defenses, which increases the scope for attacks.

The proposed work benefits from the following: a) no need to tamper or modify the source

code of the application around which the proposed adversarial sample generator code will

be wrapped (i.e., executed in parallel); b) the crafted application has no malicious features

embedded, thus not detectable by ML malware detectors; and c) scalable and flexible i.e.,

the crafted application can generate events as required to generate powerful adversary. All

the above propose work has been published in our DAC 2019 paper [21].

1.0.2 Side Channel Attack

In addition to malware threats, the design complexity also attracted attackers and exposed

some of the security vulnerabilities eventually leading to side channel attacks. Despite

enhanced performance achieved with advanced features such as cache-sharing, speculative

execution, they have been exploited for crafting security attacks. These security threats

utilize side-channels to obtain secret information from the system and are passive in nature.

Side-channel attacks are a class of attacks that primarily exploit security of computing

4

systems based on the obtained side-channel information as a result of design vulnerabilities

rather than the exploits in the application. Side-channels are inherent in any computing

system and the foremost challenge in defending against side-channel attacks is that they

cannot be completely terminated. The obtained side-channel information such as be timing

information, power analysis, speculative executions, electromagnetic analysis, and cache-

access patterns can be employed to craft side-channel attack. In the recent times, the

cache-based side-channel attacks have gained attention in terms of crafting the attacks

as well as defenses. This has been further exacerbated with the features introduced in

modern computing systems such as memory-sharing, co-location of applications, which were

introduced for an efficient resource management and higher throughput. However, a large

number of cache-based side-channel attacks rely on the timing information to determine the

cache-access (hit or miss) patterns in order to obtain the accessed address and eventually

the secret key from the cache. For instance, Flush+Reload [22] depends on the assumption

that the victim and the attacker share the same memory space and utilizes the cache-access

timing information to retrieve the secret key from system. Attacks such as Prime+Probe

[23] supersedes the Flush+Reload attack by not requiring any shared memory space with

the victim to extract sensitive information.

To address the challenges of cache side-channel attacks, techniques such as static cache

partitioning, partition locked cache, non-monopolizable (nomo) cache architectures are pro-

posed. These techniques can tremendously reduce the interference between the attacker

and victim’s memory access, thus providing a better defense. However, adopting such tech-

niques require alterations in the cache design and also leads to performance degradation.

To overcome the limitations of the cache-partitioning, randomization of cache architectures

are introduced. Conventional fully associate cache is one of the preliminary randomization

based cache in which a memory line can be mapped to any of the existing cache lines, and

similarly any of the cache lines can be evicted in random. Thus, preventing the leakage

of cache-access information. Despite the achieved security benefits, this technique incurs

large delays and is power hungry. In similar vein, random permutation cache, newcache,

5

AATTACKER VICTIMVV

c

CACHE

c

OBSERVATION

Figure 1.2: Cache Side Channel Attack

random fill cache, and random eviction cache strategies are implemented. Compared to the

cache-partitioning, the randomization based solutions have shown higher robustness, yet

the challenge of performance degradation is not addressed.

Hardware-assisted security has gained interest among industry as well as researchers due

to its low overhead, faster and efficient attack detection capabilities. For instance, the

cloud radar [24] discusses the side-channel attack detection by utilizing the on-chip hard-

ware performance counters (HPCs) techniques to monitor different virtual machines (VMs)

and further deploy defense through techniques such as VM relocation to thwart the at-

tack. Despite the advancements in defending against the side-channel attacks, most of the

aforementioned defenses require significant modifications to the hardware architecture or

software such as disabling some of the features such as using ’clflush’ instruction to dissuade

6

the attacker, which is not practical to be deployed and also lead to performance degrada-

tion. Previously proposed defenses are confined to a specific attack which makes it difficult

to defend against a set of attacks. As a summary, the unsolved challenges and limitations of

the existing defenses can be outlined as follows: a) side-channels are inevitable; b) hardware

or software modifications can lead to enhanced security, but result in performance degra-

dation and not practical to adapt; and c) assumptions on the attacker side (for example

required timing information).

In this work, we introduce defense for timing based side-channel attacks such as Flush+Reload

and Prime+Probe. In contrast to the existing techniques that focuses on architectural

changes or perturbing cache lines, the proposed defence mechanism primarily focuses on

minimizing the entropy of the side-channel information obtained by the attacker without

interfering with the original functionality of the victim application. The original appli-

cation is wrapped with a protective application that is able to facilitate the perturbation

of the cache-access timing information obtained by the attacker under the constraints of

the achieved information looking similar to the normal timing information, yet leading to

a wrong key. The proposed method introduces perturbations in the sequence (timing in-

formation) by executing dummy functions that do not affect the result of the key for the

victim, but scrambling patterns observed by the attacker thereby reducing entropy and

dissuading the attack. Furthermore, we provide the shield application with multiple tuning

knobs that provides the options of how many bits in the key needs to be perturbed and

how frequently the perturbation across different executions of an application should hap-

pen. The proposed technique is evaluated against Flush+Reload and Prime+Probe with

different keys and the technique is found to be successful in defending against the attacks

without any assumptions on the attacker capabilities.

The contributions of this work are outlined in a three-fold manner as follows:

• an adversarial attack on microarchitectural event based malware detection systems

i.e., HMD systems.These HMD systems utilize the underlying hardware performance

7

counters to capture the microarchitectural events and provide them to ML classifier

for detecting and classifying malware

• The proposed defense against cache-based side-channel attacks by minimizing the

entropy in the leaked side-channel information, yet ensuring the information is similar

to a high entropy information.

• With the aid of proposed technique, users can determine the required level of security

i.e., can control the perturbations performed for one execution 1 as well as determine

the frequency at which the perturbation across multiple runs2 can happen.

• The proposed technique here is independent of the victim application and can defend

against timing-based side-channel attacks, and demonstrated against Flush+Reload

attack with different victim applications in this work.

1For a key of m-bits, the user can determine how many bits (k) to perturb. For instance, for a 128-bit
key, user can fix 10-bits to perturb and location will be random.

2The location of perturbed keys will change after every n iterations of executing the application, thus
introducing randomization within the key and across the keys.

8

Background

A cache side-channel attack works by monitoring security critical operations such as AES

T-table entry or modular exponentiation multiplicand accesses. Attacker is able to recover

the secret key depending on the accesses made (or not made) by the victim, deducing the

encryption key. Also, unlike some of the other side-channel attacks, this method does not

create a fault in the ongoing cryptographic operation and is invisible to the victim. There

exist numerous cache-based side-channel attacks, which utilizes the cache-access information

to retrieve the secret key. Here, we describe some of those attacks on which we deploy the

proposed defense as a proof-of-concept.

2.0.1 Hardware Malware Detectors (HMD)

Hardware based detectors offer fast online detection, efficiency in resource utilization, and

invulnerability from getting infected by attackers which make them suitable for mitigating

newer threats. However, there are several design challenges with hardware based detec-

tors including having the capability of online monitoring of HPC, low false positives, small

logic area and power overhead for implementation on processor, and small detection latency

which includes reading HPC and running ML classifiers.They have recently been proposed

as a defense against the proliferation of malware. These detectors use low-level features,

that can be collected by the hardware performance monitoring units on modern CPUs to

detect malware as a computational anomaly. Several aspects of the detector construction

have been explored, leading to detectors with high accuracy.Detection of malicious software

at the hardware level is emerging as an effective solution to increasing security threats.

9

Malware

Bengin

Low-level micro-

architectural events

Machine learning

classifier

Malware

Bengin

Collected using

perf tool

... ...
Application

Figure 2.1: Process of detecting malware by employing low-level microarchitectural events

Hardware based detectors rely on Machine Learning(ML) classifiers to detect malware-like

execution pattern based on Hardware Performance Counters(HPC) information at run-time.

The effectiveness of these learning methods mainly relies on the information provided by

expensive-to-implement limited number of HPC.

Hardware Performance Counters(HPC) are special purpose registers available in modern

microprocessors which keep track of different micro-architectural events. The main pur-

pose of HPC is to analyze and tune architectural level performance of running applications.

While HPC are finding their ways in various processor platforms from high-performance to

low power embedded, they are limited in the number of micro-architectural events that can

be captured simultaneously. This is mainly due to limited number of physical registers on

the processor chip which are expensive to implement.We are using HPC to collect execu-

tion traces for all available micro-architectural events by executing collected malware and

benign applications in an isolated environment. If two different programs are executed on

CPU, they generate different performance counter traces. In HMD, when an application

is executed, the low-level micro-architectural events are captured with the aid of HPCs.

These low-level micro-architectural events are utilized to train ML classifiers to classify the

malware from benign applications.

10

For detecting malware during run time, the HPCs are collected and provided to the ML

classifier to determine whether the executing application is malware or benign [3]. Similarly,

[2] proposed a single-stage ML-based HMD and analyzed impact of different ML classifiers

on area and power overheads. The work in [25] employed HPC values to construct support

vector machine (SVM) detectors to identify malicious programs. Similar works are reported

in [6,12]. Figure 2.1 illustrates the process of using low-level micro-architectural events for

malware detection and classification from benign applications.

2.0.2 Flush + Reload Attack

For a successful side-channel attack to happen, the attacker needs to monitor the victim

application’s operations, and is done mostly though shared resources such as library or

data with the victim application. Flush+Reload []is one of the earliest cache-access based

side-channel attacks that utilizes the cache-access timing information to retrieve the key.

The process of Flush+Reload attack can be explained as follows:

Step 1: The attacker (spy) flushes a memory line in the (shared) cache. Step 2: Spy waits

for a certain time to let the victim access the cache. Step 3: After the timeout, the spy

reloads the data into the cache and observes the access time to retrieve the key. This can be

inferred as follows: if there was a cache hit for the spy application, it indicates that cache

line (data) was accessed (and fetched) by the victim application, else the data is not utilized

by the victim. In this manner, the attacker can eavesdrop into security-critical operations

of legitimate applications and steal the confidential data. In the Flush+Reload attack,

depending on the cache hit/miss and the sequence of the Square, Reduce and Multiply

operations, the spy deduces if the bit in key was a logical ’1’ or ’0’. By continuously

repeating the above process the attacker can retrieve the entire private key. The process of

Flush+Reload attack is depicted in Figure 2.2

11

(a)

(b)

Victim

Victim

Attacker

Victim

Attacker
(c)

Flush
Waiting for

Victim Reload Access

Attacker

Figure 2.2: Flush+Reload Operation (a) Victim Does not Access; (b)Attack with Victim
Access; (c) Victim multi-Access

2.0.3 Prime+Probe Attack

Prime+Probe [23] is another kind of cache-access based side-channel attack, In contrast to

the Flush+Reload attack, to perform a side-channel attack, there is no need for the spy and

victim applications to share the memory or library or data pages. In this attack, the spy

application primes the cache i.e., loads a set of memory lines in the cache with it’s own data

and then waits for some time until the victim application executes. If the victim application

happens to utilize the same memory lines of the cache that were previously primed by the

attacker, the primed memory lines will be replaced by the victim’s data. Further, the spy

application tries to access it’s own memory lines (primed previously), it will result in a

cache miss if the victim utilizes and replaces the primed memory lines with the information

required by the victim application and resulting in longer access time. In this manner, by

utilizing the Prime+Probe attack, the secret key can be obtained by the attacker.

12

2.0.4 Flush+Flush Attack

The Flush+Flush attack is also a relatively new attack which supersedes the above men-

tioned cache based attacks both in terms of speed and stealth. Unlike the Flush+Reload

attack, it works only by executing ’clflush’ instruction in an infinite loop. Since it does not

access any data - as Flush+Reload does- the number of cache misses thus created are zero.

When the ’clflush’ instruction is issued, data that is cached takes more time to be flushed

out completely from all cache levels compared to non-cached data which takes less time.

Based on the execution time the Flush+Flush concludes if the cache line was cached or not

cached. The attack does not load any memory line in to the cache and hence if clflush takes

more time to execute would imply that the victim accessed the data.

Referring to Figure 2.2 we have explained three different scenarios for the victim and at-

tacker (spy) accesses, where Figure 2.2a shows spy application running without any victim

accesses and hence the flush and reload action by the spy will result in cache misses since

the victim does not access any probe cache line. Figure 2.2b shows victim access during the

waiting phase of the spy where the spy allows some time expecting the victim to execute

and access probed cache line and Figure 2.2c shows multiple accesses by the victim during

the waiting phase of the spy where multiple accesses cannot be distinguished by the spy -

hence the attacker probes functions or parts of code that are accessed frequently to increase

the probability of detection and improve resolution of the attack. Another possible scenario

would be the reload phase of the spy and the victim’s access to memory are overlapped and

in such a case the victim will benefit from the data already brought in to the cache by the

spy. Based on the above mentioned Flush+Reload attack mechanism, we will see in later

sections how the side-channel data is extrapolated to the actual bits in the secret-key.

All the aforementioned attacks have been successful in attacking AES, GnuPGs RSA, DSA

and Elgamal, web browsers,etc.In this work, we demonstrate how the attacker exploits the

cache-access time to determine the operations performed by the victim and deduce the

corresponding key. We consider an example of GnuPG RSA as the victim application and

13

Flush+Reload as the spy application. The GnuPG RSA utilizes square, reduce and multiply

operations to encrypt and decrypt the data. The attacker has the knowledge of locations

of these operations in the victim application and probes them accordingly to determine the

sequence of operations to decrypt the employed secret key.

0

5

10

15

20

25

0 5 10 15 20 25

P
R

O
B

E
TI

M
E

SLOT NUMBER

FLUSH + RELOAD Square Reduce

Multiply Threshlod

Figure 2.3: Execution time of operation with reference to threshold time

Figure 2.3 shows the sequence of operations that the victim makes along with the cache-hit

and cache-miss during the reload phase, which is exploited by the spy application to deduce

the sensitive information via the side-channel. As described in Flush + Reload [22], that the

threshold value of particular system configuration and running application is a determining

factor between the data hit and data miss for the the spy to infer the sequence of operations

made by the victim application

For the performed experiment with Gnupg Elgamal key generation as victim and Flush +

Reload attack as the spy application, one can observe from Figure 2.3, some operation are

executed in less than threshold time,while some of them execute in longer time. All the

sequence of operations corresponding to the region above the threshold values are inferred

14

as cache-miss for the spy i.e., the higher probe time indicates that the victim did not access

the flushed data from the memory, eventually resulting in a long reload time for the spy.

As seen from the Figure 2.3, operations (Square, Reduce and Multiply) above the threshold

are not used to capture the secret key, whereas the operations below the threshold refers

to those sequences captured by the spy that were accessed by the victim during the wait

phase of the spy. Figure 2.3 also explains the sequence of operations based on which the

Flush+Reload spy decides whether the private key bit was a logic ’1’ or ’0’. The operations

Square-Reduce-Multiply-Reduce that are below the threshold implying it was a logic ’1’ bit

of the secret key and Square-Reduce not followed by Multiply indicates a logic ’0’ bit of the

secret key.

15

Recent Works

In order to secure the hardware systems against cache side channel attacks, various defense

techniques have been proposed that use different strategies. They seek to provide built-in

defenses against side-channel attacks. They are not limited to specific attacks and rule out

many possible unknown attacks. We discuss the most prominent ones here:

Isolation by Cache Partitioning: Two processes that do not share a cache cannot snoop

on each others cache activity. One approach is to assign to a sensitive operation its own

cache set, and not to let any other programs share that part. As the mapping from to a

cache set involves the physical memory address, this can be done by the operating system

by organizing physical memory into non-overlapping cache set groups, also called colors,

and enforcing an isolation policy.

Access Randomization: To randomize the side channel information, making the attack

much harder, even impossible. It uses random memory-to-cache mappings. There is a

permutation table for each process, which enables a dynamic memory address to cache

set mappings. This makes the attacker hard to evict a specific memory line of the victim

process. It can also use software based Compiler assisted approach to transform applications

to randomize its memory access patterns.

In addition to these general defense techniques, there are many recent works in progress to

minimize the cache side channel attacks. For example Vladimir Kiriansky proposed DAWG

in [26], Dynamically Allocated Way Guard , a generic mechanism for secure way partition-

ing of set associative structures including memory caches. DAWG endows a set associative

structure with a notion of protection domains to provide strong isolation. When applied

16

to a cache, unlike existing quality of service mechanisms such as Intels Cache Allocation

Technology (CAT), DAWG fully isolates hits, misses, and metadata updates across pro-

tection domains. DAWG enforces isolation of exclusive protection domains among cache

tags and replacement metadata, as long as: 1) victim selection is restricted to the ways

allocated to the protection domain (an invariant maintained by system software), and 2)

metadata updates as a result of an access in one domain do not affect victim selection in

another domain (are requirement on DAWGs cache replacement policy). DAWG protects

against attacks that rely on a cache state based channel, which are commonly referred to as

cache-timing attacks, on speculative execution processors with reasonable overheads. The

same policies can be applied to any set associative structure, e.g., TLB or branch history ta-

bles. DAWG has its limitations and additional techniques are required to block exfiltration

channels different from the cache channel.

In [27] Oleksii Oleksenko proposed Varys, a system that protects unmodified programs run-

ning in SGX enclaves from cache timing and page table side-channel attacks. Varys takes

a pragmatic approach of strict reservation of physical cores to security-sensitive threads,

thereby preventing the attacker from accessing shared CPU resources during enclave exe-

cution. This execution environment ensures that neither time-sliced nor concurrent cache

timing attacks can succeed. Due to the lack of appropriate hardware support in todays

SGX hardware, Varys remains vulnerable to timing attacks on Last Level Cache (LLC).

The paper also proposes a set of minor hardware extensions that hold the potential to

extend Varys security guarantees to L3 cache and further improve its performance. This

approach has certain drawbacks: it requires the application to monitor the SSA value, thus

increasing the overhead and it introduces a window of vulnerability.

Stephen Crane in [25] explore software diversity as a defense against side-channel attacks

by dynamically and systematically randomizing the control flow of programs. Existing soft-

ware diversity techniques transform each program trace identically. This diversity based

technique instead transforms programs to make each program trace unique. This approach

17

offers probabilistic protection against both online and off-line side-channel attacks. It ex-

tends previous, mostly static software diversification approaches by dynamically randomiz-

ing the control flow of the program while it is running. Rather than statically executing a

single variant each time a program unit is executed, they created a program consisting of

replicated code fragments with randomized control flow to switch between alternative code

replicas at runtime dynamic control-flow diversity and diversifying transformations create

binaries with randomized program traces, without requiring hardware assistance.

Chongxi Bao work in [28] shows that 3D integration also offers inherent security benefits

and enables many new defense mechanisms that would not be practical in 2D. The work is

compatible with the ongoing trend of transition from 2D to 3D and enables designers to take

security into account when designing future cache using 3D integration technology. Exper-

imental results show that using our cache design, the side-channel leakage is significantly

reduced while still achieving performance gains over a conventional 2D system.

Xiaowan Dong in [29] presents indefenses against page table and last-level cache (LLC)

side-channel attacks launched by a compromised OS kernel. They prototyped the solution

in a system call Apparition, building on an optimized version of Virtual Ghost. To thwart

LLC side-channel attacks, it leverage Intels Cache Allocation Technology (CAT) in concert

with techniques that prevent physical memory sharing. Apparitions control over privileged

hardware state can partition the LLC to defeat cache side-channel attacks. Their defense

combines Intels CAT feature (which cannot securely partition the cache by itself) with

existing memory protections from Virtual Ghost to prevent applications from sharing cache

lines with other applications or the OS kernel.

Additionally, malware detection is an area that has attracted extensive research and com-

mercial interest over the past decade. In general, malware detection techniques are either

static (focusing on the structure of a program or system) or dynamic (analyzing the behavior

during execution). Detection approaches are also classified as signature-based (looking for

signatures of known malware) or anomaly-based (modeling the normal structure/behavior

18

of programs or systems and detecting deviations from this model). Static approaches includ-

ing virus and spyware scanners are the first line of defense in malware detection. Originally,

these scanners are operated using pattern matching to look for signatures of known mal-

ware. However, these approaches can be easily evaded using program obfuscation or simple

code transformations that preserve the function of the malware but make it not match the

patterns known to the scanner. More advanced detectors based on semantic signatures

have been proposed, and significantly improved the performance of static scanners. Static

approaches are limited and can be bypassed by sophisticated attackers. In particular, code

obfuscation techniques (polymorphic malware), and malware encryption (packing or meta-

morphic malware) are both sufficient to hide even from these more advanced detectors.

Dynamic detection observes the behavior of the program (or the system) as it runs and

interacts with the environment. A large number of software malware detectors have been

investigated that vary in terms of the monitored events, the normal behavior model, and the

detection algorithm. The advantage of dynamic detection is that it is resilient to metamor-

phic and polymorphic malware; it can even detect previously unknown malware. However,

disadvantages include a typically high false positive rate, and the high cost of monitoring

during run-time. Moreover, since detection is a one time (or periodic) process, malware

can evade detection either probabilistically or by recognizing that it is being observed and

acting normally for that period. The software implementation is not an effective solution

to detect malware at run-time, due to large latency to compute the complex algorithms.

19

Our Work

4.0.1 Reverse Engineering of HMD

Considering the worst case scenario, where the victim malware detector (defense) is un-

known, we perform a reverse engineering to mimic the functionality of the victim HMD.

Thus, as a first step to craft adversarial malware, we perform reverse engineering of the vic-

tim’s HMD similar to that proposed in [18]. The performed reverse engineering is described

in Figure 4.1.

In order to reverse engineer the victim’s HMD, we first create a training dataset that

comprises of benign and malware applications. Nearly 12,000 benign and 12,000 malware

applications are used in the reverse engineering process. The victim’s HMD (Original HMD)

is fed with all the applications and the responses are recorded. These responses are utilized

to train different ML classifiers in order to mimic the functionality of the victim’s HMD, as

shown in Figure 4.1(a). Further, it is tested by comparing the outputs from victim’s HMD

response and the reverse engineered ML classifier’s response, as shown in Figure 4.1(b).

Reverse engineering is non-trivial as the adversaries generated on a closely functional model

will be highly effective compared to a weakly generated adversary. To ensure the reverse

engineering is performed in an efficient way, we train multiple ML classifiers and choose the

classifier that yields high performance i.e., mimics the victim’s HMD with high accuracy.

20

Original
Detector

Reverse
Engineered
Detector

Testing Data Set

Response Response

Comparator

Accuracy

(b)

Original
Detector

Machine
Learning
Algorithm

Reverse
Engineered
Detector

Training Data Set

Response

(a)

Figure 4.1: (a) Process of reverse engineering HMD; (b) Testing Performance of Reverse-
Engineered Detector

4.0.2 Adversarial HPC Sample Prediction

Once the reverse engineered HMD is built i.e., neural network’s hyper parameters are deter-

mined, to launch and craft an adversarial malware, it is non-trivial to determine the level

of perturbations that need to be injected into HPC patterns in order to get the applications

misclassified. To determine the number of such HPC events to be generated, we deploy

(offline) an adversarial sample predictor. As the ML classifiers are robust to random noises,

one needs to perturb the HPC patterns in more sophisticated manner. To perturb the HPC

patterns, we employ a low-complex gradient loss based approach, similar to Fast-Gradient

Sign Method (FGSM) which is widely employed in image processing. The advantage of

such an approach is its low complexity and low computational overheads. Additionally, it

has been observed from our experiments that the HPC samples follow a continuous distri-

bution, and as such a gradient loss based approach is feasible and beneficial to determine

the required perturbation in HPC features to be misclassified.

21

.EXE

.TAR

HPCs

ML Classifier

Benign /

Malware

Adversarial

HPC

Generator

Original

Application

HPCs from

Adversary

Application

HPCs from

Original

Application

- Benign classified as Malware

- Malware classified as Benign

HPCs from

Adversary

Application

HPCs from

Original

Application

Overall HPCs

Observed by the

System

HPCs for

Normal

Code

Adversarial

Sample

Predictor

LLC_Misses = f (# Elements Flushed)

Branch_Misses = f (# of Loop elements and # of loops)

Linear Model

(a) (b)

(c)

.EXE

.TAR

HPCs

ML Classifier

Malware/

Benign

(Benign / Malware)

#Cache

Misses

, #

Branch

Misses

.

.

.

HMD

HMD

LLC_Misses = f (# Elements Flushed)

Branch_Misses = f (# of Loop elements

and # of loops)

Adversarial

application

Normal

application

(Benign / Malware)

+ +

+

=

Figure 4.2: (a) Process of utilizing low-level micro-architectural events (HPCs) with ML for
malware detection; (b) Determining parameter of adversarial code generator with the aid of
adversarial HPC predictor; (c) process of adversarial HPC generator embedded into original
application yet spawned as separate thread leading to adversarial output (misclassification)

In order to craft the adversarial perturbations, we consider the reverse engineered ML

classifier i.e., neural network with θ as the hyper parameters, x being the input to the

model (HPC trace), and y is the output for a given input x, and L(θ, x, y) be the cost

function used to train the neural network. Then the perturbation required to misclassify

the HPC trace is determined based on the cost function gradient of the neural network (in

this case). The adversarial perturbation generated based on the gradient loss, similar to

the FGSM [14] is given by

xadv = x+ εsign(∇xL(θ, x, y)) (4.1)

where ε is a scaling constant ranging between 0.0 to 1.0 is set to be very small such that

the variation in x (δx) is undetectable. In case of FGSM the input x is perturbed along

each dimension in the direction of gradient by a perturbation magnitude of ε.Considering a

22

small ε leads to well-disguised adversarial samples that successfully fool the machine learning

model. In contrast to the images where the number of features are large, the number of

features i.e., HPCs are limited, thus the perturbations need to be crafted carefully and also

be made sure it can be generated during runtime by the applications. For instance, a HPC

of value ‘−1’ cannot be generated by an application. Hence, we provided lower bound on

the adversary values that can be predicted.

In contrast to works that assume the application features to be binary such as [17], this

work aims to predict and determine the adversaries for the low-level microarchitectural

event patterns i.e., HPC patterns to generate during runtime with the aid of a benign code,

which is one of the primary distinctions from existing works. It needs to be noted that

determining the required perturbation for a given application is done offline. The process of

crafting the adversarial application to generate the perturbations in the HPC trace during

runtime is presented in the following section.

4.0.3 Adversarial HPC Generator

In order to generate the required number of HPCs, we craft an application (benign) that

spawns as a separate thread and generates the additional number of HPC events that makes

the overall HPC count similar to the predicted HPC count by the adversarial HPC predictor

discussed previously.

Adversarial HPC Generation

A pseudocode depicting the process of creating adversarial HPC is shown in Algorithm 1.

In Algorithm 1, we show the pseudo code to create adversarial LLC load misses and branch

misses. The LLC load misses and branch misses are some of the pivotal micro-architectural

events that malicious applications [2] or even side-channel attacks affect.Hence, we showcase

a simple example of perturbing those in Algorithm 1, however, other events can also be

perturbed.

23

Algorithm 1 Pseudocode for generating adversarial HPCs

Require: Application ‘App()’
Ensure: Adversarial microarchitectural events

1: cache miss function() {Sample pseudo code that generates required number of ad-
versarial LLC misses}

2: #define array[n] % Size of array and loop define amount of variation in HPCs
3: load i #0
4: Loop 1: cmp i #n {Compare i with n}
5: array[i]=i
6: jump Loop1

7: end
8: load i #0
9: Loop 2: cmp i #k {k <= n}

10: ld rax &array[i] # load array address in register rax
11: cflush (rax) {Clflush instruction as a function of array size and loop size}
12: jump Loop2
13: end
14: branch misses function() {Code that generates required number of adversarial

branch instructions and branch misses}
15: #define int a, b, c, d
16: a<b<c<d<n
17: Loop 3: cmp i #a { · · · function · · · }
18: Loop 4: cmp i #b { · · · function · · · }
19: Loop 5: cmp i #c { · · · function · · · }
20: Loop 6: cmp i #d { · · · function · · · }
21: Loop 7: cmp i #n { · · · function · · · }
22: jump Loop 3; end ;
23: {Similar functions to generate other HPCs as predicted by adversarial sample predictor}
24: APP() {User/Attacker’s application to be executed}

In order to generate LLC load misses, an array of size n is initially loaded from the memory

and flushed to generate LLC load misses. This is outlined in Line 2-12 of Algorithm 1. The

experiments are repeated multiple times with different array sizes (n) and different number

of elements flushed (k) to determine the number of LLC load misses generated. Further,

a linear model is built to find the dependency of n and k on number of LLC load misses.

As such, once the adversarial sample predictor predicts the number of LLC load misses

to be generated to craft an adversarial sample, the n and k are accordingly determined.

The rationale to employ a linear model is its low complexity, yet yielding high accuracy

(<3% error) to determine the dependency between n and k for our experiments. It needs

24

to be noted that as the LLC misses are dependent on the system, and random in nature,

hence, we execute the application multiple times (100) with same n, and k and average the

obtained LLC load misses to alleviate any errors caused.

Example: For instance, the crafted application similar to that depicted in Line 2-12 of

Algorithm 1 with n and k set to 100K leads to an LLC load miss of 73K, whereas when

n and k is set to 500K, around 287K LLC load misses are generated. The experiment is

performed on Intel Core i7-8700K running Ubuntu 18.4, having GCC 7.3 version. The Perf

tool available on Linux is utilized to obtain the HPC events. The flushing of the data has

been verified by executing the attack code with and without flushing the cache lines - the

execution time is around 1.5× when the data is flushed compared to the case when data is

not flushed.

In similar manner, branch misses and branch instructions are generated as shown in Line

15-22 of Algorithm 1. To increase the branch misses, a set of conditional statements i.e.,

comparison statements are embedded into the application to create branch misses, as the

number of branch instructions depend on the number of conditions to be checked. In the

presented pseudo code, we have five conditional statements for generating branch-misses as

show in (Line 15-22).

For the attack code on branch miss events, with a loop size of 20K and integer values

assigned to a, b, c and d based on the number of loops, as in Line 15-22 of Algorithm 1,

the number of branch misses is around 255K. An increase in number of branch misses is

observed with the addition of dummy loops that are designed not to satisfy the condition.

All these adversarial sample generators are spawned as separate threads along with the

user or attacker’s application that needs to be misclassified. In this manner, the adversarial

HPC generator does not interfere with the original application’s source code, yet is able to

mislead the embedded defense mechanism. Figure 4.2(a) shows the HPC trace of a normal

application, and the HPC trace predicted by the adversarial sample predictor to misclassify

the ML classifier is depicted in Figure 4.2(b). The process of adversarial HPC generation

25

during runtime is depicted in Figure 4.2(c). If the predicted HPC values are smaller than

that generated by original applications, we insert the delay elements to smoothen the HPC

trace and reduce the HPC values. It needs to be noted using this process, we generate

adversaries to classify benign as malware as well as malware as benign applications.

Summary

The proposed adversarial attack on micro-architectural events comprises of three phases.

Firstly, we perform reverse engineering to build a ML classifier that mimics the functionality

of the victim’s HMD or malware detectors. Further, with the aid of adversarial sample

predictor, the required number of HPC events required to misclassify the applications is

determined. To determine the parameters of adversarial generator application, a linear

model relating different features of the application and the HPC events is built. Thus, based

on the derived linear model and the required number of adversarial HPCs, the parameters of

the adversarial HPC generator application (for instance variables i,k,n in Line 4 and Line 2

of Algorithm 1) are determined. Lastly, this crafted HPC generator application is spawned

as separate thread together with normal (malware or benign) application, leading to overall

HPCs generated by the modified application close to those predicted by the adversarial

sample predictor, eventually leading to misclassification.

26

Entropy Shield

Cache based side-channel attacks generically work on the fundamental principle of observing

cache lines of the victim with what they call as probes. To determine if the victim was/is

using a particular data from the cache, the attacker/spy inserts probe in to the cache space,

which is shared with the victim as is the case for Flush+Reload- and then flushes the data

and waits for the victim to execute. If the victim accessed the data, the spy gets a cache

hit during the reload phase and cache miss otherwise. The Flush+Reload attack [22] based

on the sequences of operations deduces the bits of the secret information. But only a few

bits can be captured with few runs of the spy and victim; only by repeatedly executing

the attack, all the bits of the secret information can be captured. There are a plethora of

works that have been successful in detecting and mitigating SCAs, but, all of them have

their respective downsides which makes them difficult to deploy. Hence, we here propose

a defense mechanism that protects the victim application by reducing the entropy of the

side-channel. We support our claim by giving a detailed analysis of the results obtained.

The basic assumption in successfully probing the victim’s critical operations is the attacker

has knowledge of the addresses of the code sections which carry out sensitive operations.

In order to protect sensitive information, we designed Entropy-Shield. The Entropy-Shield

will be deployed as a wrapper that encompasses the victim without modifying the victim.

The shield has similar knowledge as the attacker where it knows which sections of the victim

code need to be monitored and protected.

The spy interprets the key bits based on the sequence of the operations executed by the

victim. In the encryption algorithm, the secret key bits are computed by the sequence of

27

Figure 5.1: (a) Traditional Flush+Reload attack on encryption algorithm where all the data
leaked via side-channel is accessible to the attacker; (b) Victim is wrapped with Entropy-
Shield that injects perturbation code in the victim during run-time to reduce and perturb
the sensitive information leaked thereby making SCAs laborious and time-consuming.

square, multiply and reduce operations respectively. If the victim executes the operation

in the sequence: square reduce and multiply reduce, then the key computes to be ’1’, and

if the sequence is square reduce and not followed by multiply reduce, the key comes out to

be ’0’. The spy insert probes in the functions of the victim code respectively, to obtain the

sequence of operation. We created a wrapper code around the victim code in such a way

that it does not alter the secret key computation operation on the victim side but tricks

the spy in showing how the key was calculated(as shown in the psuedocode).

In the Algorithm 2 (representing standard Flush + Reload Attack) psuedocode, the func-

tions are well defined and based on the sequence of their execution the probes inside the

functions get triggered. The attacker, while the victim executes the operations, flushes

the address(every probe) from the cache memory, waits for the victim to execute and the

reloads the address. The attacker calculates the time victim takes to reload the data and

then compares it with the threshold time(th). If the reloading time t is less than ’th’ (Cache

Hit), that implies that data was earlier used by the victim while the spy was waiting for

it to execute, and if t is greater ’th’ (Cache Miss), that means while reloading the data

28

Algorithm 2 Pseudocode illustrating generation and stealing of private key(Original Flush
+ Reload)

Require: Private Encryption Key
Ensure: Decoded Original Encryption Key

1: Victim Program() {Victim pseudo code that generates encryption secret key}
2: Square func()
3: { - - - - - - - - - - -
4: Probe1
5: - - - - - - - - - }
6: Multiply func()
7: { - - - - - - - - - - -
8: Probe2
9: - - - - - - - - - }

10: Reduce func()
11: { - - - - - - - - - - -
12: Probe3
13: - - - - - - - - - }
14: Attacker Program() {Sample pseudo code that decodes the secret key}
15: Loop 1: load i ¡ n
16: clflush(Probe 1)
17: clflush(Probe 2)
18: clflush(Probe 3)
19: Reloading time(t)

20: jump Loop1

21: end
22: cmp t # threshold time(th)
23: if(t more than th) = Cache miss
24: if(t less than th) = Cache hit
25: Based on sequence of Cache hit operation, Secret Key is Deduced

was called from main memory, and was not in the cache. Performing such flush and reload

operation multiple times, the spy is able to deduce which address were used by the victim

to calculate the key.

In the algorithm 3, most of operation remains the same with a minor but significant change,

that leads to incorrect key value interpretation by spy. Our wrapper creates a dummy

function inside an already existing standard function, for example a dummy square function

inside a multiply function. From the victim end, this dummy function calls and executes

the square function but does not include its output while calculating the key, whereas the

spy while tracing the sequence of operations, gets tricked into believing that the square

29

Algorithm 3 Pseudocode illustrating generation and stealing of private key

Require: Private Encryption Key
Ensure: Decoded Incorrect Encryption Key

1: Victim Program() {Victim pseudo code that steals incorrect secret key}
2: Square func()
3: { - - - - - - - - - - -
4: Probe 1
5: - - - - - - - - - }
6: Multiply func()
7: { - - - - - - - - - - -
8: Probe 2
9: - - Dummy call to Square func() - -

10: - - - - - - - - - }
11: Reduce func()
12: { - - - - - - - - - - -
13: Probe 3
14: - - - - - - - - - }
15: Attacker Program() {Sample pseudo code that decodes the secret key}
16: Loop 1: load i ¡ n
17: clflush (Probe 1)
18: clflush (Probe 2)
19: clflush (Probe 1)
20: Reloading time(t)

21: jump Loop1

22: end
23: cmp t # threshold time(th)
24: if(t more than th) = Cache miss
25: if(t less than th) = Cache hit
26: Based on perturbed sequence of Cache hit operation, Incorrect Secret Key is

Deduced

function was actually expected and therefore interprets the key incorrectly.

The two further advancements that can be made in this procedure is controlling the fre-

quency and location of perturbation induced. For example how many times can we call

the dummy functions. Based on the frequency of the dummy function being called, the

key interpretation by spy changes significantly. The other important point to keep in the

mind is that where do we want to place the dummy loop, particularly in which function.

Depending on its placement, whether in one function or in multiple, the key interpretation

by spy is affected

30

Evaluation and Results

6.0.1 Experimental Setup and Data Collection

This section provides the details of the experimental setup and data collection process.

The applications (both malware and benign) are executed on an Intel Xeon X5550 machine

running Ubuntu 14.04 with Linux 4.4 Kernel. In order to extract the HPC information,

we used Perf tool available under Linux. Perf provides rich generalized abstractions over

hardware specific capabilities. It exploits perf-event-open function call in the background

which can measure multiple events simultaneously. We executed more than 3000 benign

and malware applications for HPC data collection. Benign applications include MiBench

benchmark suite [30], Linux system programs, browsers, text editors, and word proces-

sor. For malware applications, Linux malware is collected from virustotal.com [31] and

virusshare.com [32]. Malware applications include five classes of malware comprising 607

Backdoor, 532 Rootkit, 2739 Virus, 1264 Worm and 7221 Trojan samples. The adversarial

sample predictor is implemented in Python using the Cleverhans library. The linear model

is derived using the traditional statistical curve fitting technique. The adversarial sample

generator is implemented using C and executed on a Linux terminal as a shell script that

facilitates to execute the user/attacker’s application in parallel. The hyper parameters of

the neural network mimicing the victim’s HMD or security defense and the parameters used

for adversarial sample predictor are outlined in Table 6.1.

31

(a) HPC trace of branch misses from a normal program

(b) HPC trace predicted by adversarial sample generator

(c) HPC trace from crafted adversarial code

0

5

10

15

20

25

30

35

40

45

50

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

B
ra

nc
h

M
is

se
s

(x
1

0
5
)

Time (x10 ms)

0

10

20

30

40

50

60

70

1 5 9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3
7

7
8

1
8

5
8

9
9

3
9

7
1

0
1

1
0
5

1
0
9

1
1
3

B
ra

n
ch

 M
is

se
s

(x
1
0

5
)

Time (x10 ms)

0

10

20

30

40

50

60

70

1 5 9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3
7

7
8

1
8

5
8

9
9

3
9

7
1

0
1

1
0
5

1
0
9

1
1
3

B
ra

n
ch

 M
is

se
s

(x
1
0

5
)

Time (x10 ms)

Figure 6.1: (a)LLC load miss HPC trace of an application; (b) LLC load miss HPC trace
of the application predicted by adversarial sample predictor; and (c) LLC load miss HPC
trace of the application predicted by adversarial sample generator

32

Table 6.1: Architectural details of HMD

Parameters of ML classifier in HMD

Input 16 features Optimization ADAM
hidden layers 1 Batch size 128
Hidden layer 1 (ReLu) 250 neurons Epochs 100
Dropout 0.2 Learning rate 0.001

Adversarial Sample Predictor Parameters
Attack type FGSM

Adversarial perturbation 0.3

6.0.2 Impact of Adversarial Attack on HPCs

We depict the impact of adversarial sample generator (application) on the generated HPC

events in Figure 6.1 and 6.2. Figure 6.1 shows the LLC load misses of a benign application

(notepad++). The Figure 6.1(a) shows the LLC load misses in normal case. For this

HPC pattern, the adversarial HPC pattern predicted by the adversarial sample predictor

(implemented in Python) is shown in Figure 6.1(b). One can observe that there exist

some spikes in the pattern compared to the normal HPC pattern, as marked by circle.

Figure 6.1(c) shows the HPC pattern generated when the application is integrated with the

adversarial HPC generator. On an average, there is an error of 2.23% between the trace

predicted by the adversarial sample predictor and the trace generated by the adversarial

sample generator.

In a similar manner, we depict the branch misses in Figure 6.2. Figure 6.2(a) shows the

HPC pattern of branch misses for a normal application (notepad++). The adversarial pat-

tern predicted and generated by adversarial sample generator for branch misses is shown

in Figure 6.2(a), and 6.2(b) respectively. One can observe that pattern predicted by the

adversarial sample predictor and generator are similar. An average error of 2.15% is ob-

served for branch misses, and 0.91% for branch instructions. A 2.23% error is observed for

33

branch miss instruction. This indicates that adversarial generator can efficiently generate

the required number of HPCs without being detected by the malware detectors.

The neural network based HMD achieves an accuracy of 82.76% with normal samples. How-

ever, when the applications are integrated with the proposed adversarial sample generator

application, the accuracy reduces to 18.04%. Similarly, a drastic reduction in precision,

F1-score and recall are observed with the proposed attack on different applications. This is

outlined in Table 6.2.

Table 6.2: Impact of adversarial attack on HMD

Accuracy Precision F1-score Recall

Before 82.7% 80.0% 80.0% 83.0%
After 18.3% 45.0% 10.0% 18.0%

6.0.3 Transferability Analysis

Though the reverse engineering results in building ML classifier that mimics the victim’s

HMD, they might not be same. For instance, victim’s HMD might be using a logistic

regression (LR) and the reverse engineered solution is a neural network. To showcase the

robustness of proposed adversarial malware crafting, we perform a transferability analysis.

As stated in [18], LR and neural network achieves good performance. Hence, we perform

the transferability analysis of the generated adversarial malware on the LR based HMD.

Thus, adversarial malware generated is applied to a HMD using logistic regression, whose

functionality is mimicked through reverse engineering. The results show that the malware

detection accuracy falls to 5.10% with prevision, F1-score, and recall to 16.0%, 7.0% and

5.0% respectively with the adversarial malware. This indicates that ML classifier used to

craft adversarial malware is transferable to other systems until we can mimic the victim’s

malware detector functionality.

34

(a) HPC trace of branch misses from a normal program

(b) HPC trace predicted by adversarial sample generator

(c) HPC trace from crafted adversarial code

0

5

10

15

20

25

30

35

40

45

50

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

B
ra

nc
h

M
is

se
s

(x
1

0
5
)

Time (x10 ms)

0

10

20

30

40

50

60

70

1 5 9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3
7

7
8

1
8

5
8

9
9

3
9

7
1

0
1

1
0
5

1
0
9

1
1
3

B
ra

n
ch

 M
is

se
s

(x
1
0

5
)

Time (x10 ms)

0

10

20

30

40

50

60

70

1 5 9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3
7

7
8

1
8

5
8

9
9

3
9

7
1

0
1

1
0
5

1
0
9

1
1
3

B
ra

n
ch

 M
is

se
s

(x
1
0

5
)

Time (x10 ms)

Figure 6.2: (a) Branch miss HPC trace of an application; (b) Branch miss HPC trace of
the application predicted by adversarial sample predictor; and (c) Branch miss HPC trace
of the application predicted by adversarial sample generator

35

Without Perturbation:

89534643144880: Cache Hit Phase for Event square (122 cycles) after a pause of 2 cycles

89534643155936: Cache Hit Phase for Event reduce (122 cycles) after a pause of 4 cycles

89534643196640: Cache Hit Phase for Event multiply (118 cycles) after a pause of 5 cycles

89534643218556: Cache Hit Phase for Event reduce (120 cycles) after a pause of 1 cycles

89534643275176: Cache Hit Phase for Event square (116 cycles) after a pause of 36 cycles

89534643277050: Cache Hit Phase for Event multiply (106 cycles) after a pause of 1 cycles

89534643285304: Cache Hit Phase for Event reduce (120 cycles) after a pause of 3 cycles

89534643298214: Cache Hit Phase for Event square (114 cycles) after a pause of 7 cycles

89534643303444: Cache Hit Phase for Event reduce (120 cycles) after a pause of 3 cycles

89534643427722: Cache Hit Phase for Event square (118 cycles) after a pause of 44 cycles

89534643433524: Cache Hit Phase for Event multiply (108 cycles) after a pause of 3 cycles

89534643443146: Cache Hit Phase for Event reduce (126 cycles) after a pause of 4 cycles

89534643479530: Cache Hit Phase for Event multiply (108 cycles) after a pause of 5 cycles

Based on the sequence of operations = Key : 10

B1

B0

Figure 6.3: Key interpretation without perturbation

With Perturbation

89534643144880: Cache Hit Phase for Event multiply (122 cycles) after a pause of 2 cycles

89534643155936: Cache Hit Phase for Event reduce (122 cycles) after a pause of 4 cycles

89534643196640: Cache Hit Phase for Event square (118 cycles) after a pause of 5 cycles

89534643218556: Cache Hit Phase for Event reduce (120 cycles) after a pause of 1 cycles

89534643275176: Cache Hit Phase for Event square (116 cycles) after a pause of 36 cycles

89534643277050: Cache Hit Phase for Event multiply (106 cycles) after a pause of 1 cycles

89534643285304: Cache Hit Phase for Event reduce (120 cycles) after a pause of 3 cycles

89534643298214: Cache Hit Phase for Event square (114 cycles) after a pause of 7 cycles

89534643303444: Cache Hit Phase for Event reduce (120 cycles) after a pause of 3 cycles

89534643427722: Cache Hit Phase for Event square (118 cycles) after a pause of 44 cycles

89534643443146: Cache Hit Phase for Event reduce (126 cycles) after a pause of 4 cycles

89534643479530: Cache Hit Phase for Event multiply (108 cycles) after a pause of 5 cycles

89534643443146: Cache Hit Phase for Event reduce (126 cycles) after a pause of 4 cycles

Based on the sequence of operations = Key : 01

B0

B1

Figure 6.4: Key interpretation with perturbation

36

6.0.4 Perturbation Analysis

For the perturbation, we executed the applications (spy and victim) on Intel core i7 8th Gen

processor, Ubuntu 14.04 with Linux 4.4 Kernel. Using the wrapper technique as discussed

above we found that its possible to fool the spy in decoding the key by misleading it while

interpreting the sequence of operations as shown in Figure 6.3 and Figure 6.4. We did

the experiment using Flush + Reload cache side channel attack as a spy and different

combinations of Gnupg generated public and private keys as victim as shown in Table 6.3.

During the normal execution i.e without any perturbation in the code, almost 95 percent

of the key were interpreted by the spy correctly as observed by the original Flush + Reload

authors. With the wrapper added around the victim code, the key interpreted by the spy

comes out to be incorrect (based on the incorrect sequence of the operation interpreted by

the spy). Table 6.3 also represents the difference in key observation (from spy side) with

and without adding the perturbation to the victim. The modification shown is just for the

32-bit key print of the actual 1024 bit or 4096 bit key.

Table 6.3: Key Perturbation Table

Flush+Reload Attack Without Perturbation With Perturbation

RSA and RSA F9D2EDC5 F1D2ADC7
DSA and Elgamal 3DA77005 3FA7710D

37

Conclusion

In this work, we propose an adversarial attack on micro-architectural event based malware

detection systems i.e., HMD systems. These HMD systems utilize the underlying hardware

performance counters to capture the micro-architectural events and provide them to ML

classifier for detecting and classifying malware. This work employs an adversarial sample

predictor to determine the HPC count required to get misclassified. Post determining

the required number of HPC count, using the proposed adversarial sample generator the

required number of additional HPC count is generated without intervening with the original

application and eventually leading to misclassification. An error of < 3% in predicted and

generated HPC events to create adversary is observed. Furthermore, the malware detection

accuracy is reduced from 82.7% to 18.04%. We also evaluated how timing based side channel

attacks can be minimized by reducing the entropy using a wrapper code around victim. For

the future work, we will be working on changing the perturbation in a much more controlled

way, that can lead to further wrong key interpretation by the spy, thus providing enhanced

security against side channel attacks.

38

Bibliography

[1] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from a survey
towards an established taxonomy,” Journal in Computer Virology, vol. 4, no. 3, pp.
251–266, Aug 2008.

[2] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based malware detectors,”
in Design Automation Conf., 2017.

[3] J. Demme and et al., “On the feasibility of online malware detection with performance
counters,” SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 559–570, Jun 2013.

[4] A. Tang, S. Sethumadhavan, and S. Stolfo, “Unsupervised anomaly-based malware
detection using hardware features,” in Research in Attacks, Intrusions and Defenses,
2014.

[5] X. Wang and et al., “ConFirm: Detecting firmware modifications in embedded systems
using hardware performance counters,” in IEEE/ACM International Conference on
Computer-Aided Design, 2015.

[6] H. Sayadi and et al., “Ensemble learning for effective run-time hardware-based mal-
ware detection: A comprehensive analysis and classification,” in Design Automation
Conference, 2018.

[7] ——, “Comprehensive assessment of run-time hardware-supported malware detection
using general and ensemble learning,” in ACM Computing Frontiers, 2018.

[8] F. Brasser and et al., “Advances and throwbacks in hardware-assisted security: Special
session,” in Int. Conf. on CASES, 2018.

[9] S. Dinakarrao and et al., “Lightweight node-level malware detection and network-level
malware confinement in iot networks,” in Design Automation and Test Con. in Europe,
2019.

[10] H. Sayadi and et al., “2SMaRT: A two-stage machine learning-based approach for run-
time specialized hardware-assisted malware detection,” in Design Automation and Test
Con. in Europe, 2019.

[11] A. Garcia-Serrano, “Anomaly detection for malware identification using hardware per-
formance counters,” CoRR, vol. abs/1508.07482, 2015.

[12] K. Khasawneh and et al., “EnsembleHMD: Accurate hardware malware detectors with
specialized ensemble classifiers,” IEEE Trans. on Dependable and Secure Computing,
2018.

39

[13] C. Szegedy and et al., “Intriguing properties of neural networks,” in Int. Conf. on
Learning Representations, 2014.

[14] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial ex-
amples,” in International Conference on Learning Representations, 2015.

[15] N. Papernot and et al., “The limitations of deep learning in adversarial settings,” in
IEEE European Symp. on Security and Privacy, 2016.

[16] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples
and black-box attacks,” in Int. Conf. on Learning Representations, 2017.

[17] A. Huang and et al., “Adversarial deep learning for robust detection of binary encoded
malware,” CoRR, vol. abs/1801.02950, 2018.

[18] K. Khasawneh and et al., “RHMD: Evasion-resilient hardware malware detectors,” in
IEEE/ACM Int. Symp. on Microarchitecture, 2017.

[19] B. Zhou and et al., “Hardware performance counters can detect malware: Myth or
fact?” ser. ACM Asia Conf. on Computer and Communications Security, 2018.

[20] Kaspersky, “Advanced threat defense and targeted attack risk migration,”
White Paper, pp. 1–12, 2017, https://media.kaspersky.com/en/business-
security/enterprise/KL KATA Whitepaper OG.pdf.

[21] S. B. A. D. H. S. A. S. H. H. Sai Manoj Pudukotai Dinakarrao, Sairaj Amberkar and
S. Rafatirad, “Adversarial attack on microarchitectural events based malwaredetec-
tors,” in Design Automation Conference, 2019.

[22] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, l3 cache
side-channel attack,” in Proceedings of the 23rd USENIX Conference on Security
Symposium, ser. SEC’14. Berkeley, CA, USA: USENIX Association, 2014, pp.
719–732. [Online]. Available: http://dl.acm.org/citation.cfm?id=2671225.2671271

[23] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in Proceedings of the 2015 IEEE Symposium on Security and
Privacy, ser. SP ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp.
605–622. [Online]. Available: https://doi.org/10.1109/SP.2015.43

[24] S. Bleikertz, C. Vogel, and T. Groß, “Cloud radar: Near real-time detection
of security failures in dynamic virtualized infrastructures,” in Proceedings of
the 30th Annual Computer Security Applications Conference, ser. ACSAC
’14. New York, NY, USA: ACM, 2014, pp. 26–35. [Online]. Available:
http://doi.acm.org/10.1145/2664243.2664274

[25] M. B. Bahador, M. Abadi, and A. Tajoddin, “HPCMalHunter: Behavioral malware
detection using hardware performance counters and singular value decomposition,” in
Int. Conf. on Computer and Knowledge Engineering, 2014.

[26] V. Kiriansky, H. Xu, M. Rinard, and S. P. Amarasinghe, “Cimple: instruction and
memory level parallelism: a DSL for uncovering ILP and MLP,” in Proceedings of the
27th International Conference on Parallel Architectures and Compilation Techniques,

40

PACT 2018, Limassol, Cyprus, November 01-04, 2018, 2018, pp. 30:1–30:16. [Online].
Available: https://doi.org/10.1145/3243176.3243185

[27] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer,
“Varys: Protecting SGX enclaves from practical side-channel attacks,” in
2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018., 2018, pp. 227–240. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/oleksenko

[28] Y. Liu, Y. Xie, C. Bao, and A. Srivastava, “A combined optimization-theoretic and side-
channel approach for attacking strong physical unclonable functions,” IEEE Trans.
VLSI Syst., vol. 26, no. 1, pp. 73–81, 2018.

[29] C. W. Fletcher, R. Harding, O. Khan, and S. Devadas, “A low-overhead
dynamic optimization framework for multicores,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’12. New York, NY, USA: ACM, 2012, pp. 467–468. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370899

[30] M. R. Guthaus and et al., “MiBench: A free, commercially representative embedded
benchmark suite,” in IEEE Int. W. on Workload Characterization, 2001.

[31] (2019) Virustotal intelligence service. Last accessed: 04-May-2019. [Online]. Available:
www.virustotal.com/intelligence

[32] (2019) Virusshare team. Last accessed: 04-May-2019. [Online]. Available:
www.virusshare.com

41

Curriculum Vitae

SAHIL BHAT is a computer engineering masters student at George Mason University in
Electrical andComputer Engineering department. He graduated from Pune University in
2016. His research interest are in hardware security and side channel attacks.

42

