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ABSTRACT

This paper addresses the problem of GA-based attribute selection. Previous work in this
direction considered only how to represent a problem so that a genetic algorithm could work on
it and then search for a satisfactory attribute subset. Even though good experimental results
were reported, they were usually acquired at the cost of time. This paper presents a novel
approach to this problem. In particular, it introduces attribute information during genetic
evolution in order to make some promising attributes more likely appear in a new generation.
In this way, the evolution process is faster and satisfactory results can be achieved with less
time. Preliminary experimental results in image interpretation show that this approach is
promising.
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1 INTRODUCTION

Image interpretation is a subarea of machine vision and refers to those methodologies that
exploit computer technologies and automatically interpret, fully or in part, images which are
black/white, color or in other forms taken on the ground, by airplanes or satellites. It has
important military and civil applications. Methodologies differ from each other in theories and
techniques, but their very beginning step is the same: defining a set of attributes and selecting a
satisfactory subset from it. The quality of selected attributes is crucial to the performance of a
1mage interpretation system.

How to define atfributes is beyond the scope of this paper. Selection of a satisfactory subset
from available attributes is of much interest to researchers because normally there is nonlinear
interaction among atiributes and not any attribute subset has the same discriminating power and



simply adding an attribute could degrade performance of a system [Kreithen, 1993]. From the
perspective of machine learning, selecting a good subset of attributes is actually finding a good
representation space which is crucial for any learning or classification task. Another benefit
from attribute selection is that it conld make a system work faster due to fewer attributes.

Many researchers contributed to this field [e.g., John et al., 1993; Koller and Sahami, 1996;
Vafaie and DeJong, 1993; Bala et al., 1995]. Recently, GA-based approach to this problem
attracted many researchers [e.g., Vafaie and DeJong, 1993; Bala et al., 1995]. This direction
seems promising and some good results were reported [Bala et al., 1995]. However, previous
GA-based work usually achieved its results at the expense of time. This paper presents a novel
way of using genetic algorithms to address attribute selection, that is, achieving good results
without consuming much time. We inserted easily available attribute information into GA
evolution to speed the process of searching for a satisfactory subset from candidate attributes.
This idea is demonstrated in a multistrategy learning system which combines the genetic
algorithm [De Jong, 1996] and AQI15c [Michalski et al., 1986, Wnek et al, 1993].
Specifically, it starts with statistical analysis of available attributes and selects some potentially
promising ones and makes them more likely appear in the first generation of genetic evolution.
As for an evolved attribute subset, AQ15c is called to perform learning and testing upon actual
examples. The testing accuracy is taken as the fitness value of this given subset and is also
assigned, in a statistical way, to those attributes appearing in the subset. Statistically good
attributes have more chances of being selected into an attribute subset of the next generation.
This process ends while a satisfactory subset is found or the maximal number of generations is
reached. Preliminary experiments done in attribute selection for interpretation of natural scene
images [Michalski et al., 1996] showed an pronounced speeding of GA-based search for a
good attribute subset.

2 BACKGROUND

The attribute is the basis of interpretation, classification or recognition. Without attributes, no
man or machine could interpret, classify or recognize scenes or objects from images. However,
it is known that usually not any subset of available attributes can bring the same performance to
a system due to the nonlinear interaction among attributes and so simply adding an attribute
would probably result in the performance degradation of a system [Kreithen et al.,, 1993].
Thus, the goal of attribute selection is to select the best subset or a satisfactory one according to
some criterion. Image interpretation is a good application domain for attribute selection because
often many numerical attributes are available and the amount of data is huge and so it is hard to
find out, at a glance or by a simple computation, which subset could lead to better or the best
performance.

A question arises naturally: what is the meaning of "good" when attributes being referred to?
The authors observe that there are two kinds of “good” attributes: individually good and
collectively good. A attribute is considered to be individually good if it itself satisfies some
requirements based on analysis of its properties and given data. For example, orthogonality is
a requirement whose definition is like "must measure different attributes of ..." [Kreithen et al.,
1993]. Here by different Kreithen et al. meant different aspects or properties of data. Another
example of such requirements is separability that can be defined as an attribute's ability of



separating different object classes. However, there is a problem with selecting attributes
directly according to these requirements: though finding such a set of attributes could often lead
to satisfactory results, it is not guaranteed because of nonlinear interaction among attributes.
The other problem is that on one hand requirements like orthogonality are not or hardly
operational even by a human being and on the other hand requirements like separability seem to
be operational but unable to be determined in reality because of the large number of attributes
and object classes and noise in data. A attribute is considered to be collectively good if the set
of attributes in which this attribute appears brings to a system good performance. This concept
of “good” captures the cooperation and nonlinear interaction among attributes and is often the
goal of so-called attribute selection. The relationship between this two kinds of good attributes
is that an individually good attribute usually appears in the best or satisfactory attribute subset
but a collectively good attribute is not necessarily individually good. The reason for the authors
to introduce the concepts of individually good and collectively good is that their relationship
has not drawn enough attention.

For attribute selection, a very naive method is to generate each possible subset of attributes and
then test the performance. Clearly, the best subset could be determined because it is an
exhaustive search. However its time cost is exponentially proportional to the number of
attributes and it is almost never used in reality. Another method is ranking a candidate attribute
based on some criterion followed by deleting some attributes with lower ranks {e.g., Baim,
1982]. This method ignores the nonlinear interactions among attributes. Soine researchers
[e.g., Imam and Vafaie, 1994] used heuristic search in attribute selection. They viewed the best
or a satisfactory subset as a goal of a search process. This methed usually runs fast; however,
it often ends up with a very locally optimal attribute subset. Same as the ranking method, this
approach is unable to capture nonlinear interaction among attributes and when the number of
attributes is large, it is hard or impossible to find effective heuristics that could be used to guide
a search process. Forsburg [1976] used an adaptive random search method which increased
the probabilities of being selected of those attributes which appeared in generated knowledge
descriptions (i.e., they are relevant attributes) to make them more likely be selected in the next
subset.

Recently, genetic algorithms attracted many researchers working on this problem [e.g., Vafaie
and DeJong, 1993; Bala et al., 1995]. This method takes advantage of the explorative power of
genetic algorithms to search for a satisfactory attribute subset without exhaustive search.
Compared to other methods, it usually provides better results, esp., in the case of a lot of
attributes. Bala et al. (1995) was a good example of this direction and good experimental
results were reported there. However, previous work in this area considered only how to
represent a problem so that a genetic algorithm could work on it. It should be pointed out that
such a GA-based search normally consumes much time, and it becomes even worse when the
number of attributes is large, the amount of training data is huge and the testing method itself
needs some time. This situation is often true in image interpretation and makes GA-based
attribute selection impractical. This paper describes a new way of addressing this problem by
introducing attribute information into genetic evolution.

3 ATTRIBUTE INFORMATION



The above observation of two kinds of good attributes and their relationship is the basis of this
paper. A individually good attribute normally appears in an attribute subset which is the best or
satisfactory; in other words, the best subset or a satisfactory subset usually can not exist
without containing individually good attributes. So during genetic evolution, it may be better to
let individually good attributes to more likely appear in generations. Based on this idea, the
authors try to determine which attributes are individually good and increase their probabilities
of appearing in an individual of a generation. In contrast, previous GA-based dealt with each
attribute randomly or in an equally fair way. Even though in this way could the explorative
power be strong, many individuals in a generation probably contain no or few individually
good attributes and so the whole evolution 1s likely to consume more time before acquiring a
satisfactory subset.

There are two places where attribute information can be introduced into GA evolution: forming
the first generation and mutating within one individual of a population during evolution. The
authors refer to these two sorts of information as static and dynamic respectively in this paper.

Static information is acquired from analysis of attributes based on training data. Separability 1s
one property that could be evaluated from training data and thus we use it for static
information. Other properties like orthogonality cannot be directly computed and must be
determined by the designer and so they are not considered in this paper for the time of being.
For each attribute, we try to determine its separability and assign a heuristic value to it.
Attributes with high heuristics are considered individually good. We increase their probabilities
of appearing in the individuals (each individual is an attribute subset) of the first generation of
evolution. Notice that these attributes are not guaranteed to exist in the individuals of the first
generation. The specific definition is the following:

Static information: Suppose that C is a class set and that i, j rtepresent two classes

respectively (i, j € C ). For an atiribute £, calculate the average and standard deviation of each
class in this attribute from training data, say x; and o;. Then the static information of f is:

s Qm-‘[ (xa— xp) }

LilcCicj & 100004 *C i+ €

In the above, only one of{i, j } and {j, i } is counted; € is a very small number preventing the
denominator from being zero.

Dynamic information is calculated in the evolution process. If an attribute subset, i.e., an
individual in a population, results in high performance on testing data, then every attribute in
this subset would get some credit. If averagely one attribute has high credit, then this attribute's
probability of surviving the mutation in order to appear in a new individual in the next
generation is increased. The dynamic information tries to capture both the concept of

individually good and the concept of collectively good. Note that static information is from
training data while dynamic information is from testing data.



Dynamic information: For an attribute f, add the testing accuracies of all the previous
individuals (i.e., attribute subsets) since the first generation where f appeared and divide this
sum by the number of such individuals. The result is defined as the dynamic information of
attribute f .

In fact, there could be many ways to calculate static or dynamic information for attributes, if
reasonable. For example, PROMISE [Baim, 1982] can be used for static information. The key
idea here is to let potentially promising attributes have higher probabilities to appear in
individuals.

4 METHODOLOGY

4.1 Application Domain

We applied a combination of GA and AQIlSc for aftribute selection in natural scene
interpretation [Michalski et al., 1996], in which the system is asked to label the class of each
area in a natural scene image (see Fig. 1).

Fig. 1 A natural scene image.

4.2 Attribute Definitions

For each pixel in a image, it is taken as the pixel of interest and a set of attributes can be
extracted. A total of 17 attributes were used in experiments. The first nine are computed
according to some properties of the pixel itself: (1) red value; (2) green value; (3) blue value;
(4) intensity; (5) saturation; (6) hue; (7) relative value of red = red - min(red, green, blue); (8)
relative value of green = green - min(red, green, blue); (9) relative value of blue = blue -
min(red, green, blue).

The other eight attributes in Fig. 2 are computed from the surrounding area of the pixel of
interest and the area size is the size of each matrix in Fig. 2. Each matrix is also called a Laws
mask [Laws, 1980]. Each matrix is used to detect some information around the pixel of



interest, For instance, horizontal line operator is for detecting whether there are lines around the
pixei of interest and this operator usually produces high values for grass pixels. The usage of
each matrix is such: let the center of a matrix positioned at the pixel of interest, multiply each
value in the matrix by the gray value of the pixel in the corresponding position, add all the
products and the sum is the attribute value of the pixel of interest.

-1 -4 -6 -4 -1 -1 0 2 0 -1
0 0 0 0 0 -4 0 8 0 -4
2 8 12 8 2 -6 0 12 0 -6
0 0 0 0 0 -4 0 8 0 -4

-1 ~4 -6 -4 -1 -1 0 2 0 -1

(10) horizontal line operator (11) vertical line operator

-1 4 -6 -4 -1 -1 -2 0 2 1

2 .8 12 -8 0 -4 8§ 0 8 4
0 0 0 0 0 -6 -12 0 12 6
2 8 12 8 2 -4 -8 0 8 4
1 4 6 4 1 -1 -2 0 2 1

(12) horizontal edge operator

-1 0 2 0 -1 -1 -2 0 2 1
-2 0 4 0 -2 0 0 0 0 0
0 0 0 0 0 2 4 0 -4 2
2 0 -4 0 2 0 0 0 0 0
i 0 ~2 0 1 -1 -2 0 2 1

(14) horizontal V-shape operator

(13) vertical edge operator

(15) vertical V-shape operator

1 4 6 -4 1

4 16 24 16 -4

6 24 36 24 6 1 22 1

4 16 24 16 -4 2 4 2
1 4 6 -4 1 1 2 1

(16) frequency spot operator

(17) Laplacian operator

Fig. 2 Law masks for generating attributes.

4.3 Training Data, Testing Data and Discretization

fl 2 3 4 {5 f6 {7 8 {9 f10 f11 {12 f13 f14 fi5 fl6f17

6 6 5 6 2 6 1t O 0 5 5 5§ 3 2 9 1 35

g8 7 6 7 2 6 2 1 0 6 5 5§ 3 4 9 1 5

8 7 6 7 2 6 2 1 0 6 6 5 5 7 6 2 6
Fig. 3. 17 attribute values of three selected rock pixels.



A 20 x 20 area from each kind of natural scene is selected from Fig. 1 (boxes) and 17 attributes
are computed for each pixel in the selected areas. Fig. 3 gives some examples of training data.

60% of all the selected data are randomly taken for leamning and the other 40% for testing
[Weiss and Kulikowski, 1992]. Note that before learning rules for describing pixels by vsing
AQ15c on training data and testing on testing data, each attribute is linearly discretized to one of
fifteen levels for the experiments in this paper. Actually any other discretization scheme 1s
applicable here. Since the purpose of the work presented is testing the effect of introducing
attribute information on GA-based attribute selection, only the equal-interval scheme was
adopted here. A learned pixel description (i.e. rule) by AQ15c¢ is exemplified in Fig. 4.

Rock <:: [x1=5..14] [x5=0..4] [x13=3..10] [x14=1..7] [x15=9..12]

Fig. 4. One of the learned descriptions about rock pixels.
4.4 Acquisition of Attributes' Static Information

According to the definition above, calculate static information for every attribute from selected
training data. See Fig. 3.

f1 f2 3 4 f5 {6 f7 {8 o
8.390 5.324 8.328 4.76% 5.116 11.122 9,591 12.456 5.000
fi0 fi1  f12 13 f14 f15 f16 {17
6.661 8912 8.199 7.536 8.075 6.582 8.967 3.957

Fig. 5 Static attribute information

4.5 Genetic Evolution for Attribute Selection

The genetic evolution proceeds according to the following steps. An individual in a generation
could be considered as an array of 1s and Os, in which 1 indicates the attribute is used in this
individual and O not.

Step 1: Select the top 5 attributes according to static information, and then increase their
probabilities of appearing in the first generation.

Step 2: Generate the first generation.

Step 3: For each individual in a generation, use AQ15c¢ to learn pixel descriptions from training
data and then do test on the testing data. The testing accuracy represents the fitness of
an individual. Assign the testing accuracy to attributes in the individual and calculate
attributes' dynamic information.

Step 4: Do fitness proportional selection and uniform crossover to generate new individuals.

Step 5: Mutate within each new individual. Two ways: (1} standard mutation, i.e., every
attribute has 1/l probability of being mutated (L. is the number of attributes); (2)
dynamic information enhanced mutation, specifically, select the top 5 attributes
according to dynamic information, and increase their probabilities of appearing in
children.



Step 6: Go to Step 3 to continue the evolution from the new generation.

In step 1, when creating individuals in the first generation, an attribute is usually selected based
on a uniform random number within 0.0 to 1.0 and the probability of selecting itis 0.5. Due to
static information, the probabilities of those selected attributes which have high static
information are increased (in our experiments, 0.75) and so they are more likely to appear in
the first generation. In step 5, when doing mutation in an individual, usually an attribute has a
probability of 0.5 being mutated. In this work, if an attribute has high dynamic information,
then its probability of being mutated is decreased (0.7 in our experiments) if it already appears
in the individual and is increased (0.3 in our experiments) if it dose not appear in this
individual. The evolution stops when a predefined number of generation are produced or a
predefined accuracy is achieved.

5 EXPERIMENTAL RESULTS AND DISCUSSION
5.1 Experimental Results

The genetic algorithm in the experiments was built upon [De Jong, 1996]. The population size
is 20 and the experiments were done on a Sun 4.

Three kinds of experiments were done: “traditional” means the way [Bala et. al., 1995] would
do; “static” means only static information was introduced into genetic evolution;
“static+dynamic” means both static and dynamic information were used. 10 runs were
performed for every kind of experiment. The average testing accuracy is plotted as best-so-far
in the Y axis against the number of births in the X axis. Results are given in Fig. 6.

92
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88 4
86 4
84
82 +
80 1
78 4
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74 -
72

Best-So-Far

—&@— Traditional
i Static

—h— Static+Dynamic

t 1 I 1 : t i 1 i |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Births

Fig. 6. The comparison of evolution speeds. Best-So-Far is testing accuracy.
5.2 Discussion

Fig. 6 shows a significant speeding effect due to introduced attribute quality information.
Dynamic quality information did not result in much improvement at the early phase of
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evolution, because a few generations are not able to capture the statistical goodness of each
attribute. When there were enough generations created, dynamic quality information worked to
some degree. Note that both static and dynamic attribute information had a strong positive
effect on evolution speed. It is possible to gain better performance if we do not give credit to
each attribute in an individual during evolution but rather only these attributes which were
actually used in obtained knowledge descriptions because only they contributed to acquired
testing accuracy (Forsburg, 1976).

For the success of attribute quality information, the design of formulas of quality information
seems crucial. We tried another formula for static quality information (not shown in this paper)
but the speeding effect was not good. We set parameters 1, and rin the above methodology to
3. We also tried selection of the top 3, 4, 6 attributes for probabilities to be increased. The
results showed that the top 5 were the best for this given problem. We consider this issue to be
problem-dependent and very important. If a system itself knows too much about the properties
of candidate attributes, it could simply select them, and this way would clearly produce very
good results quickly. Obviously, this is not always true. It is the case that only some of them
may be selected. If too many attributes’ probabilities are increased without well-founded
understanding of them, then the evolution process i1s subject to going to and staying at some
local optimum or spending more time in finding a satisfactory subset than without attribute
quality information. On the other hand, selecting too few attributes may not produce the desired
speeding effect. Thus selection of a appropriate number of attributes for probability increase is
important.

Note that our methodology is similar to the work by Forsburg (1976) but different in many
aspects. Attribute quality information is like information content value mentioned there;
nonetheless the latter did not touch upon the concept of static quality information. Even though
Forsburg adopted a random search, its theoretical properties were unclear. To some degree, the
work there can be considered as a special case of our methodology with population size being
one (no crossover, no mutation) and thus its search is not so powerful and systematic as
genetic algorithms are. Further, we cannot evaluate its performance in terms of accuracy and
speeding effect since they were not reported there.

6 CONCLUSION AND FUTURE WORK

This paper describes a promising way of speeding the GA-based atiribute selection by
introducing attribute information, It combines GA and AQIlSc into a multistrategy learning
system. Information of an attribute is introduced to determine whether to increase its survival
probability. Experimental results are presented to show the feasibility of this new method. The
preliminary results indicate the improvement in time in comparison with previous GA-based
work in which the main focus was representing a problem so that a genetic algorithm could
work on it.

There are some aspects which needs further work. Among them, selection of a appropriate
number of attributes whose probabilities of survival are going to be increased is of special
interest, The authors are going to find an automatic and adaptive way of determining this
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number so that the system could run more independently of the designer. Another work is to
take as testbed more attributes and more application domains, esp. in the case of large number
of attributes, to see the speeding effect because of the introduction of attribute information.
Now the experimental results are still preliminary. Further, it is of interest to us to design other
effective formulas to calculate attributes' information (esp., dynamic information) and capture
more attribute properties in these formulas.

The authors believe that in application domains with a lot of numerical data like image
interpretation, introduction of attribute information is a promising way to speeding GA-based
attribute selection.
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