

AN EXTENSIBLE FRAMEWORK FOR GENERATING ONTOLOGY FROM

VARIOUS DATA MODELS

by

Khalid Albarrak

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

_________________________________ Dr. Edgar H. Sibley, Dissertation Director

_________________________________ Dr. Alexander Brodsky, Committee Member

_________________________________ Dr. David A. Schum, Committee Member

_________________________________ Dr. Kathryn B Laskey, Committee Member

_________________________________ Dr. Mihai Boicu, Committee Member

_________________________________ Dr. Stephen Nash, Senior Associate Dean

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date:_____________________________ Summer Semester 2013

 George Mason University

Fairfax, VA

An Extensible Framework for Generating Ontology from Various Data Models

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Khalid Albarrak

Master of Science in Computer Science

California State University, 2000

Director: Edgar H. Sibley, University Professor & Eminent Scholar

Department of Computer Science

Summer Semester 2013

George Mason University

Fairfax, VA

ii

Copyright 2013 Khalid Albarrak

All Rights Reserved

iii

DEDICATION

To my parents, wife and two sons, Riyadh and Faisal. They all have been very

supportive, encouraging, and most of all, exceptionally patient throughout the program.

iv

ACKNOWLEDGEMENTS

I would like to express my profound gratitude and appreciation to my advisor, Professor

Edgar Sibley, for his patience and invaluable and continuous support throughout the

dissertation. Prof. Sibley’s continued encouragement and guidance is unparalleled. I

would also like to thank SACM for the partial sponsorship.

v

TABLE OF CONTENTS

 Page

LIST OF TABLES ...VIII

LIST OF FIGURES .. IX

ABSTRACT.. X

CHAPTER 1: INTRODUCTION.. 1

1.1. BACKGROUND.. 2

1.2. MOTIVATION.. 6

1.3. PROBLEM STATEMENT ... 8

1.4. THE RESEARCH CHALLENGE.. 10

1.5. SUMMARY OF CONTRIBUTIONS .. 12

1.5.1. Major Contributions ... 12

1.5.2. Additional Contributions .. 16

1.6. THESIS STATEMENT ... 20

1.7. ORGANIZATION OF THE DISSERTATION .. 21

CHAPTER 2: RELATED WORK .. 22

2.1. INTRODUCTION .. 22

2.2. BACKGROUND.. 23

2.3. THE COMPARISON FRAMEWORK .. 27

2.4. STATE-OF-THE-ART IN GENERATING ONTOLOGY FROM DATABASE MODELS........ 30

2.4.1. Stojanovic et al. Approach.. 31

2.4.2. Buccella et al. Approach... 32

2.4.3. Astrova Approach(es) ... 32

2.4.4. Man Li et al. Approach ... 34

2.4.5. Relational.OWL Tool .. 35

2.4.6. RDB2ONT Tool... 35

2.4.7. DB2OWL Tool .. 36

2.4.8. DataMaster Plug-In .. 37

2.4.9. Yan and Changrui Method.. 38

2.4.10. Xu and Li Approach .. 38

2.4.11. Automatic Ontology Generator Tool .. 39

2.4.12. Lubyte and Tessaris Framework... 39

2.4.13. Changjun Hu et al. Method... 40

2.4.14. RDBToOnto Tool .. 41

2.4.15. OWLFROMDB Tool ... 42

vi

2.4.16. RDOL Approach ... 43

2.5. SUMMARY.. 44

CHAPTER 3: AN EXTENSIBLE FRAMEWORK FOR GENERATING

ONTOLOGY MODELS FROM DATA MODELS... 47

3.1. INTRODUCTION .. 47

3.2. DM2ONT ARCHITECTURE .. 48

3.2.1. DM2ONT Controller... 49

3.2.2. The Source Collector .. 50

3.2.3. The Ontology Converter ... 51

3.2.4. The Ontology Generator ... 52

3.3. DM2ONT FOR RDB/ORDB AND OWL MODELS.. 52

3.3.1. The RDB/ORDB Collector Component .. 54

3.3.2. The OWL Converter Component .. 68

3.4. EXAMPLES ... 72

3.4.1. Example I (RDB Schema - Simple) ... 72

3.4.2. Example II (RDB Schema – Bridge Table) ... 73

3.4.3. Example III (ORDB Schema).. 74

3.4.4. Example IV (Sparse-Column Values) ... 77

3.5. SUMMARY.. 79

CHAPTER 4: CANDIDATE SYMMETRIC AND CANDIDATE TRANSITIVE .. 80

BINARY RELATIONS .. 80

4.1. INTRODUCTION .. 80

4.2. EXAMPLES OF SYMMETRIC AND TRANSITIVE BINARY RELATIONS 81

4.3. BASIC DEFINITIONS.. 82

4.4. MOTIVATION.. 83

4.5. ASSUMPTIONS .. 84

4.6. IDENTIFYING CANDIDATE SYMMETRIC AND CANDIDATE TRANSITIVE BINARY

RELATIONS ... 85

4.6.1. Formal Definitions.. 85

4.6.2. Methods to Identify Candidate Symmetric and Candidate Transitive Binary

Relations ... 101

4.7. SUMMARY.. 138

CHAPTER 5: HEURISTIC METHODOLOGY TO MEASURE THE RELATIVE

EXPLICITNESS OF ONTOLOGY MODELS.. 139

5.1. INTRODUCTION .. 139

5.2. RELATED WORK .. 141

5.3. DEFINITION OF AN ONTOLOGY MODEL .. 143

5.4. METHODOLOGY TO MEASURE EXPLICITNESS .. 146

5.4.1. Cleansing Phase.. 147

5.4.2. Matching Phase .. 147

5.4.3. Explicitness Computation Phase... 149

5.5. CASE STUDIES.. 155

vii

5.6. SUMMARY.. 159

CHAPTER 6: VALIDATION AND RESULTS OF TESTING 160

6.1. INTRODUCTION .. 160

6.2. BACKGROUND.. 160

6.3. IMPLEMENTATION OF THE DM2ONT PROTOTYPE ... 162

6.4. VALIDATION OF DM2ONT USING VARIOUS DATABASES INSTANCES 164

6.5. SYNTACTIC EXAMINATION OF THE GENERATED ONTOLOGY MODEL................... 167

6.6. FUNCTIONAL VERIFICATION OF DM2ONT.. 167

6.7. SEMANTIC VALIDATION USING DOMAIN REQUIREMENTS AND COMPARISON WITH

AN EXISTING APPROACH .. 167

6.8. EXPLICITNESS MEASUREMENT AGAINST EXISTING APPROACHES 171

6.9. SUMMARY.. 176

CHAPTER 7: CONCLUSION AND FUTURE RESEARCH 179

7.1. CONCLUSION.. 179

7.2. FUTURE RESEARCH .. 180

APPENDIX A: RESEARCH PUBLICATIONS.. 182

APPENDIX B: SYMMETRY/TRANSITIVITY - SAMPLE RELATIONS 183

B.1 SAMPLE RELATIONS... 183

B.1.1 Pattern 1: .. 183

B.1.2 Pattern 2: .. 184

B.1.3 Pattern 3: .. 186

APPENDIX C: SAMPLE DATABASE SCRIPTS USED IN VALIDATION 187

1. CASE-STUDY ONE:... 187

1.1. DDL Script for IBM DB2 Sample RDB Instance: .. 187

1.2. DML Script for IBM DB2 Sample RDB Instance: .. 193

2. CASE-STUDY TWO: .. 202

2.1. DDL Script for MS SQL Server Sample RDB Instance: 202

2.2. DML Script for MS SQL Server Sample RDB Instance:............................... 207

APPENDIX D: SETTINGS IN DM2ONT AND DATAMASTER........................... 220

1. DM2ONT PROPERTY FILE: ... 220

2. DATAMASTER SETTINGS: .. 221

APPENDIX E: DOMAIN REQUIREMENTS AND RECALL/PRECISION 222

1. CASE-STUDY ONE:... 222

2. CASE-STUDY TWO: .. 228

APPENDIX F: EXPLICITNESS MEASUREMENT METHODOLOGY.............. 238

1. CASE-STUDY ONE:... 238

2. CASE-STUDY TWO: .. 239

BIBLIOGRAPHY... 243

BIOGRAPHY.. 255

viii

LIST OF TABLES

Table Page

Table 1: Dissertation Outline..21

Table 2. General properties for the reviewed methods..45

Table 3. Type of constructs handled..46

Table 4. Type of Information Inferred. ...46

Table 5. Examples of confidence ratio threshold for different cardinalities.63

Table 6. Distribution Ratio (DR) for sparse-column values..66

Table 7: Sample data instances for Person table ...77

Table 8: Examples of binary relations along with their properties and cardinality.................82

Table 9: Abstract representation of domain ontology generated by DM2ONT (om1) 156

Table 10: Abstract representation of domain ontology from DataMaster (om2) 157

Table 11: Weights assigned to the different types of ontology construct.157

Table 12: Summary of explicitness calculations for ontology fragment in case-study 1......158

Table 13 - Characteristics of the sample RDB instances included with major DBMS(s).....165

Table 14 – Various metrics for the semantic validation experiment.....................................171

Table 15 - Explicitness measurement in case-study 1 (IBM DB2 sample RDB)..................174

Table 16 - Explicitness measurement in case-study 2 (MS SQL Server Sample RDB)175

ix

LIST OF FIGURES

Figure Page

Figure 1: Semi-automated ontology-based system integration. ………………………….7

Figure 2: Vertical and horizontal translations. …………………………………………. 25

Figure 3: DM2ONT Framework Architecture..………………………………………….49

Figure 4: DM2ONT for translation from RDB/ORDB to OWL ….…………………….53

Figure 5: OWL Representation for Example I. ………………………….………………73

Figure 6: OWL representation for Example II. ………………………….………………75

Figure 7: OWL representation for Example III. ………………………….……………..76

Figure 8: OWL representation for Example IV. ………………………….……………..78

Figure 9: Identifying candidate symmetric and transitive binary relations - Overall

Process ………………………………………………………...……………..102

Figure 10: Methodology to measure explicitness between two Ontology models …….146

Figure 11: Earlier validation experiment. ……………………….……………………..161

Figure 12: DM2ONT high-level architecture (extensibility view). 163

Figure 13: Semantic validation experiment. ... 169

Figure 14: Measuring Explicitness between ontology models 172

ABSTRACT

AN EXTENSIBLE FRAMEWORK FOR GENERATING ONTOLOGY FROM

VARIOUS DATA MODELS

Khalid Albarrak, Ph.D.

George Mason University, 2013

Dissertation Director: Edgar H. Sibley

In the Information Technology field, Ontology is concerned with the use of formal

representation to describe concepts and relationships in a domain of knowledge. Using

ontologies, organizations can facilitate processes such as integrating heterogeneous

systems, assessing data quality, validating business rules, and discovering hidden facts.

Ontology engineering, however, is not a trivial process. Developing ontologies is highly

dependent on the availability and knowledge of ontology modelers and domain experts.

Moreover, the development process is often lengthy and error-prone.

In this dissertation, I developed an extensible framework for generating

ontologies from data models. For this dissertation, the framework is limited to generating

ontology from two types of data models: the Relational Database (RDB) and Object-

Relational Database (ORDB) models. The framework, however, is extensible to support

the generation of ontologies from other types of data models (e.g. XML). The derived

ontology is expressed in the OWL Web Ontology Language, a W3C recommendation.

For RDB and ORDB models, my framework extracts information about these

models from the metadata maintained by the Database Management System (DBMS),

and from the data instances in certain cases. The extracted metadata includes the integrity

constraints that are typically maintained by a DBMS (e.g. primary/foreign keys, not-null

and unique constraints). In order to obtain more semantics from a data model

implementation, the framework also examines data instances to discover some of the

semantic gaps found in the metadata. Once extracted, the metadata and data instances are

then analyzed to identify classes and their properties, discover explicit and implicit

relationships between classes (including potential class hierarchies), and identify

restrictions related to properties and relationships. This analysis is based on heuristic

database modeling techniques. The analyzed data model is then translated automatically

into an OWL ontology that can be reviewed and/or augmented further with more

semantics by ontology modelers based on input from domain experts.

The proposed framework has been validated by implementing it as a prototype,

and by examining the ontologies it generates from a syntactic and semantic perspective.

For the semantic examination, domain requirements were used to compute the recall and

precision for the ontologies generated by my framework and that of a similar tool.

Moreover, the relative amount of terminological content (which I call the relative

explicitness) of these ontologies was measured as well using a methodology that I

developed in my research. The results showed the ability of my framework to generate

ontologies that are closely aligned with the domain.

 1

CHAPTER 1: Introduction

Semantic Computing attempts to address challenges in information integration and

information finding through the use of technologies that can derive and utilize the

semantics (i.e. meaning) of the information being exchanged [81]. These technologies

rely on the use of ontologies to express the semantics of information [76]. Developing

ontologies and assessing their content, however, are not trivial tasks. While state-of-the-

art ontology engineering includes methods for semi-automating the generation of

ontologies from one type of data model or another, current research lacks a unified and

extensible framework for generating ontologies that represent as much content about the

domain they describe as possible. Furthermore, current ontology evaluation methods do

not provide a formal measure for determining the relative amount of content between two

ontology models or between an ontology model and a reference ontology (i.e. gold

standard); in this context, an ontology model is said to be more explicit about the domain

than another model if the former contains more relevant
1
 axioms. In my research, I not

only developed a unified and extensible framework for generating ontologies from

different types of data models, but I also devised a heuristic methodology for measuring

the relative explicitness of one ontology model in comparison to another.

1
 Generally speaking, relevance of axioms is established using a reference ontology or domain

requirements, and by assigning weights to the different types of axioms; more details in Chapter 5.

 2

In the following sections, I provide a brief background on the research area and

discuss the motivation behind this research. Next, I state the problem addressed by this

research, describe the research challenges, and present my contributions. This is followed

by a formulation of the thesis statement and the validation methods undertaken. Lastly, I

conclude this chapter by outlining the remainder of my dissertation.

1.1. Background

One of the challenges when searching for and integrating information is attributed to the

absence of semantics when exchanging information. By its very nature, information

artifacts typically convey different meaning to different people and systems. This issue

becomes evident when the information being exchanged is meant to be processed by

computer systems without any human intervention.

In natural languages, words and terminologies typically have more than one

meaning (e.g. homonym). For instance, in English, the word “chair” can mean a seat,

president, professorship, etc. [69]. In general, people are able to recognize the meaning

behind words based on the context in which they are used. On the other hand, abstract

information (i.e. data) can be misinterpreted by both people and computer systems. For

example, a value representing the price of an item may not denote the currency, or may

not indicate whether it is the price for acquiring, producing, or selling an item. Without

the meaning clearly and explicitly stated, critical errors can occur.

To enable computer systems to process information effectively, the semantics of

the information must be represented in a clear and formal manner. Recent advances in

 3

knowledge representation languages and tools hold the potential for addressing the

semantics issues encountered in information finding and integration [77] [81]. These

languages not only allow augmenting information with semantics in a formal manner, but

they also enable tools to reason about information and infer new knowledge.

In the field of semantic computing, the semantics of information are addressed

using ontologies. The term Ontology originated from the Philosophy discipline where it is

concerned with the study of existence. In the Information Technology (IT) field, a

commonly used definition for Ontology -- coined by Gruber [43] -- is “an explicit

specification of a conceptualization”. By explicit, it means the specification of concepts

in a domain of knowledge, and the relationships between these concepts, is described in a

formal and unambiguous manner. By specification of conceptualization, it means

identifying the concepts of interest in a domain of knowledge, the properties of these

concepts, and the relationships between these concepts. It is worth noting here that while

Gruber’s definition is widely used, researchers within the IT and other scientific

communities have different understanding of what constitute an ontology [44] [74].

Depending on the purpose for which they are used, ontologies range from a

controlled vocabulary (enumeration of unordered terminologies), taxonomy (tree-like

hierarchies of terminologies), thesaurus (graph-like association among terminologies), to

formal ontology (defines classes, properties, relationships, and possibly axioms) [74] [22].

Moreover, different interpretations exist for the term Ontology and whether it refers to

metadata only (i.e. T-Box) or both metadata and data instances (i.e. T-Box and A-box). In

 4

my research, I use the terms ontology and ontology model interchangeably to refer to a

formal ontology that contains metadata only.

A domain ontology is a formal ontology that describes a specific domain of

knowledge. A domain of knowledge is a subject area such as the Human Resources (HR)

function of an enterprise, the student admissions function of an academic institution, or

the patient care function of a health establishment. Concepts within subject areas vary. In

the HR area for instance, an ontology may contain an Employee concept, a Department

concept, and a Project concept, among others. An ontology also captures the properties

that are typically found within each concept and the relationships between these concepts.

Using the same HR example, an Employee concept may have properties or attributes

such as Employee ID Number and Employee Name, and relationships to other concepts,

such as Department to denote the area in which an employee works, and Project to

indicate in which work stream an employee is assigned.

In order to capture the specification of concepts within a domain of knowledge in

an explicit manner, an expressive and formal language is necessary. Over the years, many

different ontology languages have been proposed and used. These include DAML

(DARPA Agent Markup Language) [29], OIL (Ontology Inference Layer) [36], RDF

(Resource Description Framework) and RDFS (RDF Schema) [8], and, more recently

OWL Web Ontology Language [8] [89].

OWL is not only a prominent ontology language and an international standard,

but it is also viewed as a key enabler of the W3C Semantic Web vision. The W3C

described this vision as “The idea of having data on the Web defined and linked in a way

 5

that it can be used by machines – not just for display purposes – but for automation,

integration and reuse of data across various applications, and thus fully harness the power

of information semantics” [91]. This vision highlights the fact that data on the Web needs

to be structured, not only for people to understand and process, but also for computer

programs to process. These computer programs are often referred to as Intelligent Agents.

An intelligent agent is an autonomous software component that is designed to monitor an

environment and take actions in a proactive and/or reactive manner to achieve its design

objectives [94]. For an intelligent agent to be able to process data efficiently and

effectively, the data has to be augmented with clear and formal semantics. This is

typically achieved using ontology.

Over the past few decades, organizations have invested a great deal of resources

to create and maintain data models that support one or more business applications.

Although different types of data models exist today -- such as the Relational, Object-

Relational, Object-Oriented, and Hierarchical data models -- the main principles in these

models remain the same. Generally speaking, a data model captures both the main data

elements in a subject area and the characteristics of these data elements. Depending on

the type of data model, similar data elements are grouped into data constructs such as

entity sets, which is the case in the Relational model [30] [72], or classes, which is the

case in Object-Relational and Object-Oriented models [60] [72]. Moreover, a data model

captures the relationships between the data constructs. For example, a relational database

model in the HR subject area may contain Employee, Department and Project entity sets

with relationship sets similar to those in the ontology example discussed earlier.

 6

1.2. Motivation

There are various semantic computing solutions in which ontology models can have a

significant role. Using such models, organizations can address the common and recurring

business challenges they typically face such as:

− Integration of Heterogonous Systems: With an ontology model describing each

system, integration of these systems can be semi-automated based on the semantic

mapping and alignment between these models as shown in Figure 1. Currently,

integration between systems is performed either manually, based on input from

domain experts, or semi-automatically, based on syntactic mapping (i.e. table/class

names, or attribute names and domains). With a global/shared ontology (ONT-G in

Figure 1), new applications can be developed to leverage data from heterogonous

systems by using a common vocabulary. These new applications can rely on the

mapping and alignment rules, which are stored in the Mapping & Alignment

Repository component, to perform the translation between the common vocabulary

and the local vocabulary. Note that Figure 1 shows a design-time view, where the

Local Ontology is generated only once (i.e. when a system is to be integrated into

the environment). The use of ontology for system and database integration is the

subject of various research projects (e.g. see [92] for a survey on Ontology-based

integration approaches).

 7

Ontology

Modeler

System 1

Auto Insurance

(RDB1)

Ontology Mapping/Alignment Tool

Local Ontology

(ONT-1)

System 2

Health Insurance

(ORDB2)

Local Ontology

(ONT-2)

System 3

Home

Insurance

Local Ontology

(ONT-3)

Lexical Database

(e.g. WordNet)

Shared Ontology

(ONT-G)

 Ontology Generation Tool

Design-Time View

Mapping &

Alignment

Repository

− Assessment of Data Quality and Validation of Business Rules: Using ontology and

a reasoning engine (a.k.a. Semantic Reasoner and Rule Engine), organizations can

use open-standards technologies to asses the quality of their data and validate their

business rules. At present, many organizations use proprietary technologies for

such purposes.

− Discovery of New Facts or Knowledge: Using ontology and an inference engine,

organizations can infer or derive new facts from existing and known facts.

Inference engines have been in use in Artificial Intelligence (AI) research and

applications for many years. An application of such technology can discover

hidden and indirect relationships between individuals, objects, etc.

Figure 1: Semi-automated ontology-based system integration

 8

With semantic computing solutions relying on the use of ontologies to provide

explicit and formal specification for the domain of knowledge, an acceleration of the

development of ontologies can reduce the deployment time for such solutions. This can

be achieved by reusing existing assets (e.g. data models), and by automating the process

of generating ontologies from these assets rather than developing one from the start.

Lastly, with the relatively recent development and standardization of the ORDB

(e.g. SQL:1999 and SQL:2003) [60], organizations that take advantage of ORDB

facilities can rely on a single and unified framework to generate ontology from ORDB

and RDB models.

1.3. Problem Statement

Developing a new ontology model is not a trivial task. Identifying all of the concepts,

properties, relationships, and restrictions in a domain of knowledge requires expertise in

the subject area, knowledge in ontology modeling, and skills in an ontology language or

ontology editing tool. During the ontology development phase, ontology modelers work

closely with domain experts to gain insight into the subject area. Organizations, however,

tend to avoid engaging their domain experts in long running endeavors, as they are also

expected to perform their primary or day-to-day responsibilities.

Furthermore, over the past few decades, organizations have invested significant

resources to create data models that support one or more business applications. Since

some of the knowledge about the subject area is already encoded in these data model

instances, a practical, inexpensive, and less error-prone approach would be to derive this

 9

knowledge from existing data models. With data models and ontologies capturing similar

information about the domain they model but differing in the way they encode it and the

level of details they include (e.g. detailed cardinality, symmetry in binary relations, etc.),

an effective approach for developing ontology models is to translate existing data models

into an equivalent ontology model. The generated ontology can then serve as a

rudimentary model for ontology modelers, who can further augment it with more

semantics based on consultation with domain experts. In other words, instead of

expecting that a domain expert explains the entire subject area, an ontology modeler can

use the generated ontology to ask specific and targeted questions about the subject area

(e.g. cardinality of specific relationship, restriction on certain property, etc.). Using this

approach, the involvement of domain experts can be limited to activities related to

refining and validating the generated ontology.

In addition, each of the existing methods for generating ontologies from data

models focuses on one data model or another (either RDB or XML). My survey of the

existing approaches also revealed that they merely translate constructs found in the

source data models into their equivalent ontology construct, without analyzing many

aspects of the source data model to recover hidden or lost semantics. To the best of my

knowledge, there is not one current approach that generates ontology from ORDB models

or from more than one type of data model. Although ORDB and Object-Oriented models

have an ontological-like structure (e.g. classes, data members/fields, relationships etc.), a

translation method is still needed to convert this ontological-like structure into a valid

ontology representation such as OWL, RDF and others. Moreover, none of the existing

 10

approaches performs comprehensive translation from RDB to ontology models. For

instance, existing approaches do not identify potential transitive and symmetric relations,

discover different types of generalization and specialization relationships (i.e. IS-A),

determine the cardinality of relationships, detects sparse-column values, or identify

database constraints such as unique and not-null based on both metadata and data

analysis. While these characteristics and others can be set manually by ontology

modelers, automating their recovery will allow generating a richer ontology and reduce

the involvement of domain experts.

Finally, most of the ontology evaluation techniques tend to be subjective and lack

any formal measurement for assessing the amount of terminological content (relative

explicitness) of one ontology model in comparison to another. Given two ontology

models – whether they were developed independently for the same domain or different

versions of the same ontology – there is often a need to measure which of the two models

has more terminological content or is more explicit about the domain. Developing a

methodology that accounts for the different types of ontology constructs and computes a

formal measurement can instill confidence in the ontology models being evaluated.

1.4. The Research Challenge

The ontology engineering process has been the subject of extensive research, as

demonstrated in Chapter 2 of this dissertation. To identify the proper techniques and the

gaps in current approaches, I conducted a thorough review of the literature.

 11

Additionally, in order to generate ontology models from different types of data

models, one has to attain comprehensive knowledge in Ontology, RDB, and ORDB. This

includes a thorough understanding of the semantics of constructs found within these

models (i.e. the meta-model), and the modeling guidelines and patterns for each.

Moreover, advanced expertise is needed in the query language (i.e. SQL) and the various

client interfaces (or Application Programming Interface -- API) available for different

DBMS to enable the efficient retrieval of RDB and ORDB information. Although

standards exist for SQL and certain client interfaces (e.g. JDBC), deviations from these

standards by DBMS vendors have introduced a level of complexity when developing the

prototype for the proposed framework. In addition to addressing the RDB and ORDB as

source data models, and to allow for extensibility, the framework was designed to take

into account other types of source data models.

Lastly, devising a heuristic methodology to measure the relative explicitness

between two ontology models is a considerable challenge. Developing this methodology

required attaining a comprehensive understanding of the ontology meta-model. Such

comprehension was essential for developing a methodology that accounts for various

ontology constructs and computes a meaningful measure. Other challenges include

employing an abstract ontology representation (to provide the flexibility to compare

models that use different ontology representations), cleansing the models to be compared

(to eliminate irrelevant axioms), and mapping and aligning constructs across models.

 12

1.5. Summary of Contributions

The prime objective of this research is to develop an extensible framework for generating

highly explicit ontologies (i.e. containing as much terminological content about the

domain they describe as possible) from various types of data models. This framework is

termed Data Models to Ontologies (DM2ONT). Extensibility in DM2ONT allows for the

translation from various types of data models into different ontology representations. The

target ontology representations (e.g. OWL, RDF) supported by DM2ONT however are

limited to the power of DM2ONT internal object representation as described in Section

3.2. Contributions of this research are classified into major contributions and additional

contributions as discussed below:

1.5.1. Major Contributions

1. Methods to generate ontologies that represent substantial terminological content

about the domains they describe: In this dissertation, I developed methods to analyze

various aspects of RDB data models to enable recovering the semantics embedded in

their implementations. This included retrieving and analyzing both metadata and data

instances. The recovered semantics were expressed – as suggestions – in the ontology

model generated by DM2ONT. Specifically, the following semantics have been

recovered from the source data model and expressed in the generated ontology:

1.1. Transitive Binary Relations: Unlike RDB models, OWL ontologies allow

modelers to identify transitive binary relations between concepts. In my

research, I identified the types of RDB binary relations that have the potential

 13

for being transitive based on design guidelines/patterns and data analysis. The

method used to identify such relations is based on heuristic data modeling

techniques. Once identified, DM2ONT designated these binary relations as

candidate transitive in the generated ontology model. Furthermore, since data in

databases represent the state of an enterprise at a given point in time (i.e. a

snapshot of the system of record), a confidence ratio/factor was calculated and

assigned to findings that are based on data analysis. This confidence ratio was

computed using a formula I developed, which takes into account the total

number of rows supporting the findings. In this dissertation, I formally defined

the method to identify candidate transitive relations. Moreover, the case studies

used in validating DM2ONT contained three transitive binary relations, all of

which were successfully identified by DM2ONT. In this experiment also,

DM2ONT did not erroneously identify non-transitive relations as transitive.

Although the result of this experiment did not yield any false-negatives or false-

positives, it is well understood that this result can not be generalized. Chapter 4

contains more details about this method.

1.2. Symmetric Binary Relations: Unlike RDB models, an OWL ontology allows

modelers to recognize symmetric binary relations between concepts. In order to

discover symmetric binary relations in the source database, I identified various

RDB design guidelines/patterns that are used for such relations. Upon identifying

these relations, DM2ONT performed data analysis in certain cases to confirm the

pattern. Once both tests are passed (i.e. conformed the design and data pattern),

 14

DM2ONT marked these relations as candidate symmetric in the generated

ontology. Moreover, DM2ONT calculated and reported a confidence ratio for

these findings as they are also based on data analysis. Similar to the transitivity

method, the dissertation also included formal definitions for the method to

identify candidate symmetric relations and the algorithms associated with this

method. More details about this method can be found in Chapter 4.

1.3. Relationship Cardinalities: Ontology models such as OWL allow modelers to

assert the minimum, maximum, or exact cardinality as a non-negative integer

when establishing relationships between classes. By setting the cardinality, a

modeler asserts that an individual/instance from one class can be related to at-

least (lower-bound), at-most (upper-bound), or exactly a specific number of

individual(s) from another class. By analyzing data instances in the source

database, DM2ONT was able to suggest the minimum, maximum, and exact

cardinality, and set them in the generated ontology model. Similar to other

findings that are based on the analysis of data instances, a confidence ratio was

computed and assigned to such findings for the modeler to review. From a

validation standpoint, the case studies used in validating this method included

numerous relationships with upper and lower cardinalities. DM2ONT was able to

correctly retrieve almost all cardinalities (true-positives) and did not identify any

incorrectly (i.e. no false-positives); the few that were not retrieved (false-

negatives) are attributed to low row counts, which resulted in a low confidence

ratio. It is worth noting that the results obtained in this experiment can not be

 15

generalized to say that this method will never return false-positives. Furthermore,

my claim in this method covers only the portion pertaining to generating

ontology constructs for relationship cardinalities. Section 3.3.1.5 contains more

details about this method.

1.4. Sparse-Column Values: Some ontology models representations (e.g. OWL)

allow modelers to specify restrictions on the values that a data-type property can

take. In RDB, restrictions on column values are enforced either using database

constraints (e.g. using SQL Check constraint) or using application-level

programming logic. Through the analysis of RDB data instances, DM2ONT

was able to identify such columns and set them in the generated ontology. A

confidence ratio was computed for and assigned to restrictions that are set based

on data analysis. This method was also validated in the case studies that were

used in evaluating DM2ONT. The database instances used in these case studies

included several columns with sparse values, and all were correctly identified

by DM2ONT. On the other hand, the experiment showed few columns

incorrectly identified as having sparse values. A careful review of the data in

these columns however revealed that they had unrealistic data values (e.g. the

start-date column in the project table was identified as sparse because the table

had 20 rows with two distinct values in the start-date). Similar to the previous

methods, the results here can not be generalized. Further, my claim here

includes only the portion pertaining to generating ontology constructs for sparse

columns. Details about this method can be found in Section 3.3.1.5.

 16

1.5.2. Additional Contributions

2. An extensible framework for generating ontologies from different types of data

models: In this research, I developed an extensible framework capable of generating

different ontology representations (target) from various types of data models (source).

DM2ONT accomplishes extensibility by 1) employing an internal intermediary object

representation that is source/target agnostic (i.e. not specific to a source data model or

a target ontology representations) and 2) isolating the logic for analyzing the source

model and converting to the target models into separate software components. It is

worth noting here that the target ontology representations supported by DM2ONT are

limited to the power of DM2ONT’s internal object representation as described in

Section 3.2. Another extensible framework, namely RDBToOnto [24], used an RDB-

based intermediary representation and generates OWL-only representation. Although

not addressed by this research, DM2ONT can be extended to generate ontologies

from sources such as XML and others. Such an extension involves developing a

Source-Collector component that is specific for the type of source being addressed to

populate the internal intermediary object representation of DM2ONT. Currently,

DM2ONT only focuses on two source models: RDB and ORDB; other source models

(e.g. XML) should be considered for future work. Using DM2ONT, organizations

with diverse models can rely on a single and unified system to generate ontologies

from the models they maintain instead of using fragmented tools. Furthermore,

instead of constructing ontologies manually and requiring the continuous involvement

 17

of domain expert, organizations can utilize DM2ONT to automate and facilitate the

generation of ontologies and thus, minimize the involvement of domain experts.

3. Methods to generate an Ontology model from an ORDB data model: In DM2ONT, I

developed methods for translating ORDB models (SQL:1999 [7]) into ontology

models. This translation is based on the metadata and data instances found in the

DBMS where the ORDB models are implemented. The ORDB constructs considered

by DM2ONT include different forms of User-Defined Types (UDTs), Array-Type

columns, and Reference-Type columns. In order to retrieve ORDB metadata and data

instances, I explored different DBMS client interfaces (e.g. ODBC, JDBC,

proprietary clients) to identify the appropriate mechanism for retrieving such

information. Also, given the fact that RDB and ORDB models are interrelated (i.e.

RDB constructs can refer to ORDB constructs and vice versa), DM2ONT combined

the translation logic for these two models into a single Source-Collector component;

namely the RDB/ORDB Collector (section 3.3.1). Unlike another existing method

 [26], which treats ORDB as RDB models composed of tables and columns,

DM2ONT focused on the main constructs found in ORDB models (i.e. UDTs, and

Array and Reference columns). With this contribution, organizations using ORDB

models can rely on DM2ONT to automatically generate ontologies from ORDB

models and thus, facilitate the deployment of their semantic-based solutions.

4. Comprehensive survey of methods that generate ontologies from RDB: In this

research, I conducted a comprehensive survey of the current methods in the literature

for translating RDB into ontology models. This survey, which was published in [4],

 18

covers eighteen different methods. In order to evaluate these methods in a consistent

manner, I developed a framework that allowed comparing these methods across

approximately twenty different criteria. This comparison framework, which was used

in Chapter 2 (Related Work) and in [4], enabled a side-by-side comparison of the

different methods for translating RDB into ontology models.

5. A heuristic methodology to measure the relative amount of terminological content

(relative explicitness) of ontology models: In this research, I devised a heuristic

methodology for measuring the relative explicitness of one ontology model in

comparison to another. This methodology provides a formal measure that can assist in

determining which ontology model is more explicit than another. This is achieved by

computing a weighted sum of the number of concepts, properties, relationships and

restrictions that are found in either ontology. Moreover, the methodology employs an

abstract ontology representation to enable comparing ontology models that use

different representations. To avoid accounting for extraneous and erroneous ontology

constructs in the models being compared, the methodology included a phase that

eliminates invalid and redundant constructs. This methodology allows comparing two

domain ontology models with each other or a domain ontology model with a

reference ontology model. This methodology can aid modelers in assessing the

content of the ontologies being evaluated and quantifying their level of explicitness.

For instance, given two ontology models that were developed independently for the

same domain or two different versions of the same ontology, this methodology can be

used to measure and quantify which of these two models has more terminological

 19

content or is more explicit about the domain. To the best of my knowledge, there is

not a method for quantifying the explicitness between two correct ontology models.

6. A Comprehensive Approach: I developed an approach that allows the generation of an

explicit ontology model by translating various RBD and ORDB constructs and by

recovering hidden semantics in the source models. This was accomplished by

translating most of the RDB/ORDB constructs that have corresponding ontology

constructs. This includes table and UDT schema information, array-type and

reference-type columns, primary and foreign keys, and unique and not-null

constraints. Furthermore, DM2ONT recovered different types of IS-A relationships,

dissolved certain binary many-to-many relationships, determined cardinality of

relationships, detected spares-column values, and identified potential symmetric and

transitive binary relations. As discussed in the Related Work chapter, other

approaches perform only a subset of these features. Devising a comprehensive

approach allowed DM2ONT to generate ontologies with greater terminological

content (i.e., that are more explicit) than those generated by similar approaches. To

the best of my knowledge, existing approaches do not recover all of these semantics.

The Validation and Results chapter shows a comparison between DM2ONT and

another approach. The results obtained demonstrated the ability of DM2ONT to

recover more semantics and generate ontologies that are more explicit than others.

Using these methods, DM2ONT will enable organizations to recover semantics

embedded in their databases and thus, reduce the involvement of domain experts.

 20

As presented in Chapter 2, there have been previous attempts to develop methods

and tools that translate RDB models into ontology models. In my dissertation, however, I

addressed several gaps and shortcomings that were found in existing approaches.

1.6. Thesis Statement

My thesis is two-fold:

− An extensible framework can be developed to automate the generation of highly-

explicit ontologies from different types of data models, and

− A heuristic methodology can be devised to be effective in measuring the relative

explicitness of an ontology model in comparison to another.

My thesis was validated by:

− Developing a software prototype for the proposed framework (DM2ONT),

− Running the software prototype against at least two RDB and ORDB

implementations from various sources (e.g. sample databases that are packaged

with commercial DBMS offerings) in order to validate the ability of DM2ONT to

handle different types of databases, data constructs, data types, integrity constraints,

and data instances,

− Examining the syntax of the generated ontology using two OWL parsers/validators,

− Verifying the generated ontology models manually to confirm that all RDB/ORDB

constructs were properly translated to their equivalent ontology constructs

according to the predefined translation rules,

 21

− Proving the effectiveness of DM2ONT by comparing it to similar approaches. This

is achieved using domain requirements, and by computing the recall and precision

for the ontology models generated by DM2ONT and another method, and finally

− Measuring the relative explicitness for the ontology models generated by DM2ONT

in comparison to that generated by a similar method.

1.7. Organization of the Dissertation

The following table outlines the remainder of this dissertation:

 Table 1: Dissertation Outline

Chapter Chapter Description

1 Introduction: This chapter.

2 Related Work: This chapter provides a survey of the existing approaches

for translating different types of data models into ontology models.

3

An Extensible Framework for Generating Ontology Models from Data
Models: This chapter presents the main components of the DM2ONT

framework, and the rules for translating various RDB/ORDB constructs into

their equivalent ontology constructs.

4

Candidate Symmetric and Candidate Transitive Binary Relations: This

chapter discusses symmetric and transitive binary relations in RDB, and the

methods DM2ONT use to identify them.

5

Heuristic Methodology to Measure the Relative Explicitness of Ontology
Models: This chapter reviews existing ontology evaluation methods, and

describes the methodology I devised for measuring the relative explicitness

of one ontology model in comparison to another.

6

Validation and Results: In this chapter, I discuss the various experiments

attempted for validating this research, and present the results I obtained from

these experiments. This chapter includes methods that were attempted and

proved to be unfeasible and those that were completed successfully.

7 Conclusion and Future Research. In this chapter, I present the conclusion

of my research, and future directions for this research.

 22

CHAPTER 2: Related Work

2.1. Introduction

The use of ontology in semantic computing has led researchers to explore methods that

aid in developing new ontologies. Developing a new ontology for a domain of knowledge

is a lengthy process that involves identifying concepts, properties, relationships and

restriction in a specific domain of knowledge, and validating the resultant model with

domain experts. Such an effort requires expertise in different areas (e.g. domain

knowledge, ontology modeling, and an ontology language or editing tool). Moreover,

developing an ontology can take several months, and may require continuous

involvement of domain experts.

Since some of this knowledge has already been encoded in computer applications

and databases, some researchers have concluded that it might be more practical to derive

this knowledge from existing assets (e.g. data models). As a result, several methods have

been developed for generating ontologies from existing data models. These range from

primitive methods that merely translate constructs to advanced methods that infer

knowledge beyond what is explicitly encoded.

This chapter provides a comprehensive survey of the methods available to (semi-

)automatically generate an ontology model from a data model. Although there are

 23

different types of data models in use today, the translation methods to date have generally

focused on relational data models as the prime source of the information; I therefore

concentrated on this when comparing the various reported methods of translation from

data models to ontology models. These methods generated models using different

ontology representations. The richness (i.e. amount of terminological content) of these

ontologies differed widely also. In my survey, I developed a comparison framework that

allowed evaluating the methods in a consistent manner. This framework was then used to

compare eighteen different reported methods, which, to the best of my knowledge, cover

all the available methods to date for generating ontology models from data models.

2.2. Background

The rapid growth in the use of databases has led researchers to investigate ways of

extracting semantic information about their subject area. This information is embedded in

the data model as implemented by the database, and can be obtained by retrieving and

analyzing the metadata and data instances that are maintained by the database. Once

extracted, the semantic information can be represented using different models including

logical data models (e.g. relational schemas), conceptual data models (e.g. Entity-

Relationship (ER) models) or ontology models. These models can then be used when

maintaining or enhancing existing systems, developing new systems, or integrating

several systems. However, since these models represent constructs and constraints

differently, a non-trivial translation process is needed to obtain one model from another.

 24

From a conceptual standpoint, translation between models can be classified into

one of two types:

− Translation between different abstraction levels within a model type, or

− Translation between different types of models.

The first of these occurs when the source and target models share the same

underlying theory (e.g. both models are based on the concepts of relational data

modeling). This process is often termed reverse-engineering and/or forward-engineering.

For example, in the relational data model, forward engineering is performed to obtain a

logical data model from a conceptual data model (e.g. relational schema from ER model),

while reverse-engineering is performed to obtain a conceptual data model from a logical

data model (e.g. an ER model from a relational schema). Such a translation can be

viewed as Vertical.

On the other hand, the second type of translation takes place when, for example,

translating between relational and hierarchical types of models, or between relational and

ontology types of models. This type of translation can be viewed as Horizontal. Figure 2

illustrates the two translation types; where the y-axis denotes the different abstraction

levels within a particular model (e.g. Model ‘A’ is represented at two different

abstraction levels: Model 1 and Model 2), while the x-axis denotes different types of

models (e.g. Model 2 is based on Model A theory while Model 3 is based on model B

theory).

Over the past few decades, several approaches have been proposed for performing

vertical translation within the Relational Database (RDB) model (e.g. [6,21,27,49]). In

 25

Chiang et al. [27], the authors proposed a semi-automatic and heuristic-based approach to

extract an Extended ER (EER) model from an existing RDB by analyzing the RDB

metadata and data instances. An EER was defined in [6,27] as an ER model that included

aggregation, generalization, and specialization. On the other hand, Alhajj in [6] proposed

a semi-automatic and heuristic-based approach with thorough algorithms for extracting

the EER from an existing legacy RDB by analyzing only the data instances. While

approaches [6,27] focused on reverse-engineering an existing RDB into a higher-

abstraction level (i.e. from a logical to a conceptual data model), other approaches

 [21,49] , which were embedded in commercial software products, exist for reverse-

engineering and forward-engineering RDB models based on analyzing their metadata and

data instances.

Additional approaches exist also for horizontal translations. With ontology

gaining momentum in recent years, a number of approaches were proposed for translating

different types of models into ontology models and vice versa. While some of these

approaches translated from sources such as plain-text [93] and XML [14,37,83,86] to

Figure 2: Vertical and horizontal translations

 26

ontology models, others translated from RDB based data models to ontology models [9-

11,18,24,26,28,41,46,47,52,54,55,57,62,65,80,84,97,98]. On the other hand, other

approaches exist as well for translating from an ontology model to a relational data model

[82,85,87]. However, since the focus in this research is on the translation into ontology

models (i.e. considering the ontology model as a target), I limited the discussion here to

approaches that generate ontology models as a result of the translation.

In [93], an approach was proposed and implemented for translating plain-text data

into OWL ontology. The authors used both domain ontology and HTML pages that were

converted into plain-text as input into their system, and they claimed to have achieved

approximately 90% precision in extracting OWL concepts, properties, and individuals. In

 [37], Ferdinand et al. proposed and implemented two independent translation procedures

for translating XML into ontology: one that translated XML data instances into an RDF

model and another that translated XML schema into an OWL ontology model. Bohring

and Auer in [14] proposed and implemented an XSLT based framework for translating

XML schemas and XML data instances into OWL ontology models and OWL ontology

individuals respectively. Bohring and Auer’s approach differed from Ferdinand et al.

approach in the following aspects: a) XML data instances were converted into OWL

individuals rather than RDF, b) XML schema can be generate from XML data instances

when an XML schema is not present, and c) XSLT-based transformation was used to

generate OWL instead of Java. In [86], Tsinaraki and Christodoulakis proposed and

implemented an XSLT-based model that generated both OWL ontology from XML

Schema and mapping between the generated OWL model and the XML schema; this

 27

mapping could be used later to convert OWL individuals that were inferred from or

added to the knowledge base back into valid XML data instances. An approach that

translate XML Schemas into RDF Schema (RDFS) model was proposed by Thuy et al. in

 [83]. In their approach, an RDFS model can be generated also from XML data when an

XML Schema is not present, though human intervention is required in this case.

Unlike the translation from plain-text and XML to ontology, translations from

RDB models to ontology models have been widely investigated. However, a closer look

into the current methods revealed several shortcomings. The methods found ranged from

theoretical (i.e. never implemented by the authors) to concrete and established (i.e.

implemented and tested by the authors). Moreover, some of the methods were primitive

as they merely translate every table into an ontology class and every attribute into an

ontology property. These methods did not make any attempt to translate database

constraints into ontology restrictions, discover hidden IS-A relationships, or appropriately

handle certain types of many-to-many relationships. On the other hand, some proposed

more sophisticated methods in an attempt to generate a richer ontology. Furthermore, my

survey showed a significant overlap between the methods.

2.3. The Comparison Framework

In order to compare the various translation methods, I developed a framework that can be

used to address their main characteristics in a consistent manner. This framework has six

different dimensions, each of which consists of one or more related elements:

 28

1. The context of the method, which addresses whether the approach serves as a

component within a broader scope (as part of a larger system) or is a stand-alone tool.

2. Implementation of the method, which states whether the method was implemented

and tested by the authors.

3. The type of models, which consists of three elements:

a. The source model type (e.g. relational, object-relational, XML),

b. The formalism of the target model (e.g. OWL, RDF, Frame-Logic.), and

c. Whether the generated model uses an ontology meta-model. Generally speaking,

using a meta-model leads to generating an ontology model that describes and

mirrors the source model rather than the subject area served by the source model.

4. The source of the information, which may include the DBMS metadata, Data

Definition Language (DDL), data instances, XML schema, database-driven HTML

pages, or a combination of them.

5. The type of constructs, which describes the constructs considered when performing

the translation, including table schema information (e.g. table and column names and

data types), primary and foreign keys, and unique and non-null constraints.

6. The type of information inferred, which includes the following elements:

a. IS-A relationships: Identifies the types of IS-A relationships inferred by the

method. In the RDB model, these relationships can be modeled in one of the

following ways:

i. By linking children tables to the parent table via foreign-keys, which we will

refer to as IS-A type 1,

 29

ii. By embedding attributes of the parent entity-set into the children tables and thus

not creating a parent table; we will refer to this as IS-A Type 2,

iii. By using a discriminating attribute in the parent table to distinguish between

children tuples and thus, not creating the children tables; we will refer to this as

IS-A Type 3,

b. Certain many-to-many relationships: States whether the method being reviewed

translates binary many-to-many relationship-sets that do not have descriptive

attributes into ontology relationships (e.g. Object-Properties in OWL) rather than

ontology classes. In RDB, these relationship-sets are converted into tables. In

ontology however, these types of relationship-sets can be created as direct

relationships between classes.

c. Sparse-column values: Indicates whether the method identifies columns that

contain sparse values (e.g. gender, letter grade for courses).

d. Relationship cardinalities: Reports whether the method identifies minimum and

maximum cardinalities for relationships. In both RDB and ontology, relationships

may have a specified minimum and maximum cardinality on each side of the

relationship. In the RDB model, the cardinality may be 0, 1, or unbound. In

ontology models however, the cardinality may be any arbitrary non-negative

integer or unbound.

e. Symmetric relations: Indicates whether the method identifies symmetric relations

(e.g. spouse, sibling).

 30

f. Transitive relations: Indicates whether the method identifies transitive relations

(e.g. manages, part-of).

g. Unique and Not-Null attributes: Rather than relying on unique and not-null

constraints being defined in the metadata only, a method can perform data

analysis to infer these properties.

Since only two of the reviewed methods were available for hands-on evaluation

[24,65], my review could only be based on the published literature for the other methods.

I therefore had to make an assumption in order to compare these methods: the fact that a

method neglected to mention information related to any of the dimensions or elements

was deemed sufficient to consider it as missing or overlooked. For instance, if the

literature for a particular method showed examples of SQL DDL statements and did not

mention that data instances were analyzed, I had to consider that the method only used

SQL DDL statements as a source for the translation. Furthermore, for the type of

constructs considered by any approach, my review assumed that a specific type of

construct was addressed only when it was translated to an ontology axiom correctly. For

example, if a primary key constraint was not translated to axioms that stated both totality

(not null) and uniqueness, I did not consider it addressed; if either axiom was set

correctly, it was considered as partially addressed.

2.4. State-of-the-Art in Generating Ontology from Database Models

In this section, a comprehensive review is provided for eighteen different methods

pertaining to the translation from a Relational Database (RDB) and Object-Relational

 31

Database (ORDB) models to an ontology model. Although other database models exist

such as the Object-Oriented Database (OODB) and hierarchical database, there does not

seem to be any approach in the literature that addresses these models. Lastly, the review

below lists the approaches by the date when it was published (in chronological order). In

cases where the same author(s) has/have published more than one approach, these

approaches will be grouped together under the same section/title.

2.4.1. Stojanovic et al. Approach

In Stojanovic et al. approach [80], the authors focus on enabling database-driven Web

pages for the Semantic Web. The authors proposed and implemented an approach that

creates a Frame-Logic (F-Logic) Ontology model from the SQL Data Definition

Language (DDL) script that was used to create the RDB behind the database-driven Web

pages. The approach uses a set of 10 mapping rules to map tables and attributes in the

DDL script into F-Logic concepts, properties, and axioms. These rules identify and

eliminate tables that were created as a result of many-to-many relationships, and can

recognize IS-A relationships between child and parent tables when both exist and are

related through a foreign-key relationship (ISA Type 1). The metadata considered by this

approach is table schema information, primary and foreign keys, and not-null and unique

constraints. Furthermore, the approach claims to handle relationships’ cardinality such as

one-to-one through the inclusion dependency maintained by the referential integrity

information in the DDL scripts; i.e. it assumes that a one-to-one relationship is modeled

using two foreign keys, one in each table that participate in the relationship to reference

 32

the other table. However, such modeling technique is rare; database text books [30,72]

and database design tools [21,49] model one-to-one relationships using only one foreign

key. This type of cardinality is typically obtained only when the attribute designated as a

foreign key is defined with unique constraint, or by analyzing data.

2.4.2. Buccella et al. Approach

Buccella el al [18] propose a federation system, which is based on the hybrid Ontology

approach for integration [92], to address the need for integrating data from different

sources. In the hybrid Ontology approach for integration, each source system is described

by a local/source Ontology model, which is in turn mapped to a global Ontology model.

In [18], the authors describe in details the procedure used to generate the local Ontology

model for an RDB system. The approach takes SQL DDL script as an input and generates

an OWL Ontology model. The metadata considered by the proposed approach is table

schema information, primary keys (partially addressed; covering totality only) and

foreign keys, and not-null constraints. Moreover, the approach identifies and eliminates

tables that were created as a result of many-to-many relationships. Although the authors

did not discuss whether IS-A relationships or sparse-columns are inferred, they did

clearly state that relationship cardinalities are left to the domain experts (i.e. manually

set). Lastly, the approach described in [18] does not appear to be implemented.

2.4.3. Astrova Approach(es)

In [9,10,11], Astrova proposed three different approaches to translate RDB models into

Ontology models. These approaches differ in the source and target models, source of

 33

information, and type of information considered; therefore, each approach will be

discussed separately.

In [9], Astrova proposed a stand-alone approach to translate an RDB model into a

Frame-Logic Ontology model. The source of information used in [9] is SQL DDL

statements and data instances. The metadata considered in [9] is table schema

information, primary and foreign keys, and unique and not-null constraints. Using the

metadata and by performing correlation analysis, this approach identifies and eliminates

tables that are created as a result of many-to-many relationships, and discovers IS-A

relationships between child and parent tables when both exist and are linked via a

foreign-key relationship (IS-A Type 1). Although the approach was not implemented, it

provided examples on how SQL DDL scripts are translated into Frame-Logic Ontology

models.

The second stand-alone approach that was proposed by Astrova in [10] is targeted

toward database-driven Web pages. In [10], the approach analyzes HTML forms that are

based on RDB models and generates a Frame-Logic Ontology model. Given the limited

type of information available in HTML forms, only table schema information and not-

null constraints are extracted. Moreover, Astrova in [10] did not mention whether any

type of information is inferred, or whether the approach is implemented.

Lastly, a third and more recent approach was proposed by Astrova in [11].

Although the approach has not been implemented as well, it shows examples on how

SQL DDL statements for an RDB model are translated into an OWL Ontology model.

This approach proposes a set of rules to identify and handle the different type of

 34

relationships that exist between tables such as binary many-to-many and IS-A

relationships in a manner similar to that in Astrova’s first approach. The metadata

considered in [11] is table schema information, primary and foreign keys, and not-null

and unique constraints.

2.4.4. Man Li et al. Approach

From the perspective of translating an RDB model into an Ontology model, Man Li et al.

in [54,55] proposed an identical approach. In [55] however, the authors extended the

approach by refining the generated Ontology model using an external lexical knowledge

repository such as WordNet. In the translation approach, Man Li et al. proposed and

implemented a set of twelve rules to translate an RDB model into an OWL Ontology

model based on the metadata and data instances in the database. The metadata addressed

by this approach includes table schema information, primary keys (partially addressed;

covering totality), foreign keys, and not-null constraints. The proposed approach also

identifies IS-A relationships (IS-A Type 1) and attempts to dissolve many-to-many

relationships. However, there are several shortcomings in the proposed approach. First, a

many-to-many relationship, even those with descriptive columns, are dissolved and

replaced by two object properties (per Rule 5). Second, an n-ary relationship is

decomposed into multiple OWL object-properties without creating an OWL class that

corresponds to the n-ary relationship (per Rule 6). Third, an object property that

corresponds to a foreign key is set to minCardinaly=1, which will enforce totality (per

Rule 9). Fourth, a data property that corresponds to a column with the UNIQUE

 35

constraint is set to maxCardinality=1, which denotes atomicity rather than uniqueness

(per Rule 11).

2.4.5. Relational.OWL Tool

Laborda and Conard in [52] propose an approach that aims to ease the integration

between diverse relational databases through the use of Ontology models. In

Relational.OWL, the authors proposed an OWL meta-model that can describe the

characteristics of RDB models, and implemented an approach for translating an RDB

model to an OWL model that is based on their proposed meta-model. The approach uses

the metadata maintained in the DBMS. The type of information considered by

Relational.OWL is table schema information, and primary and foreign keys. Because the

approach uses its proposed OWL meta-model to describe the RDB model, the generated

OWL model mirrors the existing RDB rather than the subject area supported by the RDB

model. For instances, the generated model will not dissolve binary many-to-many

relationships that do not have descriptive columns or discover IS-A relationships.

Furthermore, Relational.OWL does not handle unique and not-null constraints,

relationship cardinality, or sparse-column values. Lastly, the Ontology meta-model

proposed in Relational.OWL is used by DataMaster [65] (discussed in Section 2.4.8).

2.4.6. RDB2ONT Tool

Trinh et al. in [84] proposed a framework to address the semantic interoperability

between relational databases in large-scale environment using the hybrid Ontology

approach for integration [92]. The proposed framework uses the RDB2ONT tool, which

 36

is described in detail in [84], to generate an OWL Ontology model from an RDB model.

Similar to Relational.OWL in [52], RDB2ONT proposed and used an OWL meta-model

to describe RDB models, which leads to generating an OWL Ontology model that

describes the RDB rather than the subject area served by an RDB model. The RDB2ONT

tool uses the metadata that is maintained in the DBMS to retrieve table schema

information, primary and foreign keys, and not-null constraints. Because RDB2ONT is

intended to describe the RDB system, the Ontology model generated by the RDB2ONT

neither dissolves many-to-many relationships nor identifies IS-A relationships. Lastly, a

prototype of RDB2ONT was implemented and discussed in [84].

2.4.7. DB2OWL Tool

In Cullot et al. [28] and Ghawi & Cullot [41], the authors proposed and implemented a

tool, DB2OWL, for translating an RDB model to an OWL Ontology model. The

proposed DB2OWL tool is part of a framework that addresses semantic interoperability

using the hybrid Ontology approach for integration [92]. In DB2OWL, the metadata

maintained in the DBMS is used to classify tables into one of three types: tables created

as a result of many-to-many relationships, tables that participate in IS-A relationship

(ISA Type 1), and tables that are neither in the first or second type. The RDB metadata

retrieved by DB2OWL include table schema information, and primary and foreign keys

information to determine the relationship between tables. The authors however did not

mention whether the generated OWL will have restrictions on the properties that map to

the RDB columns defined as primary key, unique, or not-null. Lastly, the DB2OWL tool

 37

appears to be implemented for specific DBMS implementations (i.e. uses Oracle and

MySQL system catalog tables/views).

2.4.8. DataMaster Plug-In

Nyulas et al. [65] developed a plug-in for Protégé
(2)

 that allows importing an existing

RDB model implementation into either Protégé-OWL or Protégé-Frames projects. Using

Protégé, these projects can later be exported into different Ontology languages including

OWL and RDFS. DataMaster also incorporates the Relational.OWL meta-model [52],

which provides users of the plug-in with the option of generating OWL Ontology models

that mirror the RDB model being translated. In DataMaster, information about the RDB

model is obtained from the metadata maintained in the DBMS. Based on the experiment

we performed, we found that it can handle only table schema information as well as

primary and foreign keys information for the purpose of determining relationships

between tables; in other words, the primary key columns will not be translated into OWL

restrictions that state totality and uniqueness. Although the plug-in is publicly accessible

(i.e. open-source) and intuitive, the generated Ontology model is very limited since it

lacks the support for translating primary keys, and unique and not null constraints into

Ontology axioms. The plug-in also does not infer any type of information (e.g. IS-A,

certain binary many to many, etc.).

2
 Protégé is a free and open-source Ontology Editor from Stanford University (http://protege.stanford.edu/)

 38

2.4.9. Yan and Changrui Method

In Yan and Changrui [98], the authors proposed a method for generating a domain

Ontology model from an RDB model. The authors however did not specify which

Ontology formalism is used (e.g. OWL, RDF(S), etc.), nor did they clearly state what was

the source of information for the translation (e.g. RDB metadata, DDL, data instances).

The proposed method first extracts and analyzes the RDB structure to generate an EER.

The generated EER is then translated into a domain Ontology. The information

considered for translation by this approach is table schema information, and primary and

foreign keys information to determine the relationships between tables. Although this

method clearly stated that primary keys will be omitted from the generated Ontology, it

did not discuss whether unique and not-null constraints are handled. This method also did

not mention whether it is capable of inferring any other type of information. For

relationship cardinalities however, the authors suggest either performing data instances’

analysis, or consulting a domain-expert. Lastly, it is unclear if the proposed method was

implemented.

2.4.10. Xu and Li Approach

In Xu and Li [97], an approach was proposed for translating XML data to OWL Ontology

model using an RDB model as an intermediary model. The proposed approach first

translates XML data to an Entity-Relationship (ER) model. The generated ER model is

then translated into an OWL Ontology model. The approach also uses an OWL meta-

model for RDB models, which has implications on the generated Ontology similar to that

 39

found in Relational.OWL and RDB2ONT. Given the lack of semantic information in

XML data related to identifying primary key, not null and unique constraints, it is unclear

how such information can be obtained automatically. Although the examples given in

 [97] show an OWL ontology fragment with the primary key, not null, and relationships

cardinality axioms set, the authors admit that such information can not be obtained

automatically and requires the input of a domain expert. Lastly, the authors did not

mention whether the approach was implemented.

2.4.11. Automatic Ontology Generator Tool

Mukhopadhyay et al. [62] proposed and implemented an interactive tool that can assist in

constructing an RDF model from an existing RDB model. Using a graphical user

interface, the tool prompts the user to select from a list the tables to be translated into

RDF. The tool also expects the user to establish IS-A relationships between tables

manually. The authors however did not discuss the source of information for translation

(e.g. metadata, DDL, data instances, etc.) or the type of information considered (e.g.

primary/foreign keys, unique and not-null constraints). Furthermore, the authors did not

mention whether the tool can infer any type of information.

2.4.12. Lubyte and Tessaris Framework

Lubyte and Tessaris [57] presented a framework for generating an Ontology model from

an RDB model and for creating views in the DBMS to allow data access using the

generated Ontology model. The framework uses heuristic methods to reverse engineer an

existing RDB model into an Entity-Relationship (ER) model. The derived ER model is

 40

then used to construct a DLR-DB Ontology model; DLR-DB is a variant of DLR-Lite.

The framework relies on extracting information from the DBMS metadata (i.e. table

schema information, primary and foreign keys, constraints on attributes, and

dependencies between tables) to generate the ER. Furthermore, in order generate the ER

model, the framework classifies tables in the RDB into one of four types: base relation,

specific relation (IS-A child relation), relationship relation, and ambiguous relations that

require intervention from the domain expert. Using this classification, the framework is

able to recognize IS-A relationships between child and parent tables when both exist and

are related through a foreign-key relationship (IS-A Type 1). The authors however did

not discuss other type of information that can be inferred. Lastly, it is not clear whether

this approach has been implemented.

2.4.13. Changjun Hu et al. Method

Changjun Hu et al. in [47] proposed and implemented a method for translating an RDB

model into an OWL Ontology model based on the metadata maintained in the DBMS.

The method uses three classification rules to categorize the tables in the RDB model.

Based on this classification, the authors propose six mapping rules to translate the RDB

tables and attributes to the appropriate OWL constructs (i.e. OWL classes and

datatype/object properties). These mapping rules dissolve binary many-to-many

relationships that do not have descriptive columns into two OWL object properties. The

proposed method takes into account metadata related to table schema information, and

primary/foreign keys information to determine the relationship between tables. However,

 41

the method does not translate attributes that are defined as primary keys to OWL data

properties. Moreover, the authors did not mention whether RDB constraints such as

unique and not-null are obtained from the RDB model and set in the generated OWL

model. Other shortcoming of this method include the handling of IS-A relationships and

tables that are split into multiple tables for optimization purposes (Rule 2.1); such tables

are either mapped into OWL IS-A hierarchy classes or merged into an OWL class

respectively. Specifically, the proposed rule for handling these types of tables does not

mention how either option will be taken by the method; typically this is determined either

by performing data inclusion analysis, or based on input from a domain-expert. This

method also does not discover sparse-columns or relationship cardinalities. Lastly, the

method seems to be implemented for a specific DBMS implementation (i.e. Oracle) since

it uses system catalog tables/views to retrieve metadata instead of using a generic

JDBC/ODBC metadata API.

2.4.14. RDBToOnto Tool

Cerbah in [24,25] proposed and implemented a tool for translating RDB models into

OWL ontology models. The proposed tool, termed RDBToOnto, is part of a large project

that aims at facilitating the transition of existing legacy applications to ontologies

(TAO
3
). RDBToOnto uses database metadata and data instances to generate an ontology

model. Specifically, the metadata is used to generate ontology classes and properties

(both data and object properties) while data instances are used to infer class hierarchies.

3
 http://www.tao-project.eu/researchanddevelopment/demosanddownloads/RDBToOnto.html

 42

Based on the experiment I performed, I found that RDBToOnto uses the RDB metadata

to retrieve only table schema information and primary/foreign keys information; the latter

is used to determine relationships between tables only. In RDBToOnto, class hierarchies

(IS-A Type 3) are inferred by using one of two methods: 1) lexical clues in column

names (e.g. column with category or type in the column name), or 2) data mining (e.g.

data diversity and entropy). The experiment I conducted also showed that RDBToOnto

does not a) set OWL restrictions for RDB columns that are defined as primary key,

unique, or not-null, b) dissolve certain binary many-to-many relationships, or c) infer

relationship cardinality, ISA Type 1 and 2, sparse-column, or symmetric/transitive binary

relations. Lastly, RDBToOnto supports only specific types of sources (i.e. Microsoft

Access and Excel, MySQL, and Oracle), though the tool is designed to be extensible;

developers can implement a database reader to translate from database-like sources (e.g.

DB2, Microsoft SQL Server, XML) by populating RDBToOnto internal representation,

which mirrors the relational database model. Extending RDBToOnto to translate from

non-structured sources such as Text corpus or web sources is currently not supported.

Furthermore, RDBToOnto does not document whether it can be extended to translate into

other types of ontology representations (e.g. RDFS).

2.4.15. OWLFROMDB Tool

He-ping et al. in [46] proposed and implemented a tool, OWLFROMDB, to translate an

RDB model into an OWL Ontology model. Similar to some of the other approaches, the

tool first reverse-engineers the existing RDB model into an ER model, then translates the

 43

ER model into an OWL Ontology model. OWLFROMDB uses the metadata maintained

by the DBMS to obtain both table schema information and primary/foreign keys

information; the latter is used only to determine the relationships between tables.

OWLFROMDB recognizes IS-A relationships between child and parent tables when both

exist and are related through a foreign-key relationship (IS-A Type 1). Lastly, the authors

in [46] did not discuss whether unique and not-null constraints are handled, or whether

any other type of information is inferred.

2.4.16. RDOL Approach

Chen et al. in [26] proposed a method for semi-automating the generation of OWL

ontologies from various types of data sources. The method, which they termed Rule

Driven Ontology Learning (RDOL), uses sets of translation rules, each of which is

designed for translating from a specific type of data source. In [26], the authors presented

a set of rules for translating from ORDB type of instances. The proposed rules however

treat ORBD instances as RDB without any regard to the main constructs found in ORDB

(e.g. User-Defined Types, Arrays, etc.); these rules view an ORDB instance as a

collection of relations, where each relation is composed of set of atomic attributes. To

conduct the translation, RDOL uses the metadata and data instances maintained in the

DBMS. Using this information, RDOL is able to identify table schema information,

foreign keys, and IS-A relationships (Type 1). Although the method proposes rules to

handle certain binary many-to-many tables (Rule 5) and transitive relations (Rule 7),

these rules appear to be faulty. Specifically, Rule 5 fails to exclude binary many-to-many

 44

relationships that contain descriptive columns, and Rule 7 declares IS-A relationships as

transitive, which is already implied by OWL semantics for the subclass construct.

2.5. Summary

Given the attention to ontology and its use in a range of applications in recent years,

many researchers have explored automating the development of ontology models by

reusing and inferring information from existing data models. In this chapter, I conducted

a thorough review of the literature that compared eighteen different methods for

translating RDB into ontology models. To compare these methods, I developed a

framework that allows evaluating them in a consistent manner. This framework was then

used in here to compare the different methods found in this area.

While some of these approaches [46,62,98] provided insufficient information

pertaining to the dimensions presented in my comparison framework, another approach

 [97] provided enough information to classify it as primitive. An approach was considered

primitive if it does not translate any RDB constraints. Apart from the aforementioned

approaches, the remaining methods made more effort to extract additional semantics from

the source model [9,10,18,24,26,28,41,47,52,54,55,57,80,84]. Furthermore, out of the

eighteen methods reviewed, only ten clearly stated that their method was implemented

[24,28,46,47,52,54,62,65,80,84].

The review of these methods also shows an overlap between them in what was

considered for translation (e.g. RDB constraints) and how it was translated. Nevertheless,

most methods provided some contribution to the literature. A comparison to determine

 45

which approach is best can be challenging given the fact that some of these methods

either were part of a larger system, were proposed theoretically and were never

implemented, represented the ontology model using different ontology language (e.g.

OWL, RDF, F-Logic, etc.), or used an ontology meta-model (e.g. [52,84,97]), which

leads to describing the RDB model being translated instead of the subject area served by

the RDB model.

Table 2, 3 and 4 summarize the review along the different dimensions presented

in the comparison framework discussed earlier.

Table 2. General properties for the reviewed methods.

Type of Model
Method Name

Stand-

alone
Implemented

Source Target Uses Meta-model

Source of

Information

Stojanovic et al � � RDB F-Logic DDL

Buccella et al RDB OWL DDL

Astrova – 1 � RDB F-Logic DDL and Data

Astrova – 2 � RDB F-Logic HTML Forms

Astrova – 3 � RDB OWL DDL

Man Li et al � � RDB OWL Metadata & Data

Relational.owl � � RDB OWL � Metadata

RDB2ONT � RDB OWL � Metadata

DB2OWL � RDB OWL Metadata

DataMaster � � RDB
OWL

&Frames
�

4
 Metadata

Yan-Changrui � RDB Unknown Unknown Unknown

Xu-Li � XML OWL � XML Data

Automatic Ontology

Generator
� � RDB RDF Unknown

Lubyte/Tessaris � RDB DLR-DB Metadata

Changjun Hu et al � � RDB OWL Metadata

RDBToOnto � RDB OWL Metadata & Data

OWLFROMDB � � RDB OWL Metadata

RDOL � RDB
5
 OWL Metadata & Data

4
 DataMaster can optionally generate ontology models using Relational.owl meta-model.

5
 RDOL claims to translate ORDB but proposes rules that treat ORDB as an RDB.

 46

Table 3. Type of constructs handled.

Type of Constructs
Method Name

Table Schema Primary Key Foreign Key Unique Not-Null

Stojanovic et al � � � � �

Buccella et al � Partial � �

Astrova – 1 � � � � �

Astrova – 2 � �

Astrova – 3 � � � � �

Man Li et al � Partial �

Relational.owl � � � �

RDB2ONT � � �

DB2OWL � �

DataMaster � �

Yan-Changrui � �

Xu-Li �

Automatic Ontology Generator �

Lubyte/Tessaris � � � �

Changjun Hu et al � �

RDBToOnto � �

OWLFROMDB � �

RDOL � �

Table 4. Type of Information Inferred.

Type of Information Inferred

Method Name IS-A Types

1, 2, or 3

Certain many-

to-many

Rel

Card

Sparse

Cols

Symmetric

Rel

Transitive

Rel

Unique &

Not-Null

Stojanovic et al Type 1 �

Buccella et al �

Astrova – 1 Type 1 �

Astrova – 2

Astrova – 3 Type 1 �

Man Li et al Type 1

Relational.owl

RDB2ONT

DB2OWL Type 1 �

DataMaster

Yan-Changrui

Xu-Li

Auto. Ont. Generator

Lubyte/Tessaris Type 1

Changjun Hu et al �

RDBToOnto Type 3

OWLFROMDB Type 1 �

RDOL Type 1

 47

CHAPTER 3: An Extensible Framework for Generating Ontology

Models from Data Models

3.1. Introduction

In this chapter, I describe an extensible framework for translating various types of data

models into different ontology representations. This framework is termed Data Models to

Ontologies (DM2ONT). Given the pervasiveness of the RDB and ORDB models,

DM2ONT initially addresses these two models. However, the framework is intended to

be extensible: it will allow translation from other types of data models in future.

Moreover, while DM2ONT allows the derived ontology to be expressed in different

ontology representations, this research focuses on generating ontologies that are

expressed in Web Ontology Language (OWL) [89].

In the following sections, I discuss DM2ONT from an extensibility perspective

and present its main components. Next, I focus the discussion on DM2ONT as a method

for translating RDB and ORDB data models into OWL ontology models. This chapter

concludes with several examples to demonstrate how RDB and ORDB are translated into

OWL ontologies.

 48

3.2. DM2ONT Architecture

The DM2ONT framework is designed to allow the translation from various types of data

models to different types of ontology representations. In order to allow for extensibility,

DM2ONT employed an intermediate object representation and a componentized

architecture. Using such mechanisms will enable software developers to plug in support

for translating from other types of data models and to other types of ontology

representations.

Unlike other frameworks (e.g. [24]), the intermediate object representation used

in DM2ONT is model-neutral; i.e. DM2ONT does not assume the models to be an RDB

source or OWL target. Furthermore, this intermediate object representation is provided as

Java classes for developers to instantiate and populate with findings from a source model,

and for DM2ONT to use downstream when converting into a target ontology. It is worth

noting here that this intermediate object representation is intended for DM2ONT internal

use only (i.e. not to be serialized externally as an ontology).

The intermediate object representation in DM2ONT allows for the creation of

ontology classes, data-type properties, object properties (binary relations between

instances of classes), and various types of restrictions on classes, data-type and object

properties. Restrictions on classes include generalization/specialization type of

relationships (with multiple inheritance). For data-type properties, restrictions include

cardinalities (minimum, maximum and exact non-negative integers), uniqueness and

restricted domain values. Lastly, restrictions on object properties include cardinalities

(minimum, maximum and exact non-negative integers), transitivity and symmetry.

 49

Source Collector

(e.g. RDB Collector)

Ontology Converter
(e.g. OWL Converter)

Ontology Generator

Ontology Files

DM2ONT

Controller

Settings

Information flow

Ontology
(in-screen)

Source Metadata & Data

From an architectural standpoint, DM2ONT consists of four main components as

depicted in Figure 3: DM2ONT Controller, Source Collector, Ontology Converter, and

Ontology Generator. In this architecture, only the Source Collector and Ontology

Converter components are model dependent; i.e. they need to be developed for each type

of source/target models. The following subsections describe each component in details.

3.2.1. DM2ONT Controller

The Controller component is responsible for orchestrating DM2ONT activities. These

include extracting and analyzing the source data model, populating the intermediate

object representation, and converting and generating the ontology model. The controller

is initiated when a user launches DM2ONT. The user passes input parameters to

Figure 3. DM2ONT framework architecture.

 50

DM2ONT either inline or via a settings file. The parameters include source data model

information (e.g. database/file name, user credentials), environment information (e.g.

type of source/target models, thresholds), and target ontology information (e.g. output file

name/path). The Controller parses the input parameters, and passes them to the Source

Collector, Ontology Converter and Ontology Generator components for validation and

processing. Since the framework is designed to interact with other types of models, each

of which may require different input parameters, validation and processing of the input

parameters are assigned to the Source Collector and Ontology Converter components.

Upon successful validation of the input parameters, the Controller invokes the Source

Collector component to obtain and analyze the source model. Once the extraction and

analysis phase is completed and the intermediate object representation is populated, the

result is forwarded to the Ontology Converter to perform the conversion from DM2ONT

intermediate representation to the target ontology representation. When the ontology

conversion phase concludes, the Controller passes the ontology data to the Ontology

Generator to produce the ontology model as a file or an in-screen display.

3.2.2. The Source Collector

The Collector component provides DM2ONT with an abstraction layer over the specific

characteristics found in each type of source data model. A type of source data model

includes RDB, ORDB or hierarchal types of models. Different instances of a data model

type are handled by a single source collector (e.g. RDB Source Collector handles

different RDB instances). A collector component is responsible for extracting and

 51

analyzing information about source data models and populating DM2ONT intermediate

object representation.

The DM2ONT framework includes a base Java class for the Source Collector

component. Supporting a new type of data model requires extending (i.e. sub-classing in

Java) this base class. Furthermore, the base Java class contains polymorphic methods that

new source collectors are expected to override. These methods are invoked by the

Controller to initialize the Collector, validate input parameters, analyze the source model

and populate the intermediate object representation of DM2ONT, and finally to terminate

activities in the Collector.

3.2.3. The Ontology Converter

This component provides DM2ONT with an abstraction layer over the types of ontology

representations that DM2ONT can translate into. To convert into a specific type of

ontology representation, a new Converter component is needed (e.g. OWL Converter,

RDFS Converter, etc.). The main responsibility of this component is to convert the

DM2ONT intermediate object representation containing the findings from the source data

model into the target ontology representation.

Similar to the Source Collector component, DM2ONT also provides a base Java

class that needs to be extended to support a specific type of ontology representation. A

new converter is expected to override the Java methods found in this base Java class.

These methods are invoked by the Controller to initialize the Converter, validate the input

 52

parameters, convert the intermediate object representation of DM2ONT into the target

ontology representation, and finally to conclude the conversion phase.

3.2.4. The Ontology Generator

The Ontology Generator component produces the ontology representation in the form of

an external file or an in-screen display. The Controller invokes methods in this

component to validate user input parameters (e.g. output file name/path), and to output

the ontology representation produced by the Ontology Converter.

3.3. DM2ONT for RDB/ORDB and OWL Models

Since this research focuses on translating from RDB and ORDB to OWL models,

discussion in the following sections is limited to these types of models. Other data

models (such as hierarchical or object oriented models) and ontology representations (e.g.

RDFS), could be developed and integrated later.

Generally speaking, the RDB/ORDB Collector in DM2ONT extracts information

about RDB and ORDB data models from the metadata maintained by the DBMS and

from the data instances. The extracted metadata includes most of the integrity constraints

that are typically maintained by a DBMS. To add more semantics about the data model,

DM2ONT extracts data instances to fill some of the semantic gaps found in the metadata.

The extracted metadata and data instances are then analyzed to identify ontology

concepts, properties, and explicit relationships, discover bridge tables and implicit

 53

RDB/ORDB Collector

Relational/Object-Relational Database

Database Interface (e.g. JDBC)

Metadata
Extractor

Metadata
Analyzer

OWL Converter

Ontology Generator

Ontology Files

DM2ONT

Controller

Settings

Data
Extractor

Data
Analyzer

Information flow

Ontology
(in-screen)

relationships, and identify restrictions on properties and relationships. The analysis

performed by DM2ONT is based on heuristic database modeling techniques.

The OWL Converter in DM2ONT, on the other hand, automatically translates the

intermediate object representation into an OWL ontology model. This model can be

revised by an ontology modeler based on feedback from domain experts. This derived

ontology model is generated in a way that describes the subject area of the data model

instead of the data model itself.

Figure 4 depicts the architecture of DM2ONT as a method for translating RDB

and ORDB into OWL models.

Figure 4: DM2ONT for translation from RDB/ORDB to OWL

 54

3.3.1. The RDB/ORDB Collector Component

The RDB/ORDB Collector component consists of four main subcomponents: Metadata

Extractor, Metadata Analyzer, Data Extractor, and Data Analyzer. As implied by their

names, the Metadata Extractor and Metadata Analyzer focus on the RDB and ORDB

metadata maintained in the DBMS in which these models are implemented. On the other

hand, the Data Extractor and Data Analyzer focus on RDB and ORDB data instances

that are contained in the DBMS in which these models are implemented. Before

discussing these subcomponents, a preliminary definition of RDB is provided.

3.3.1.1. Preliminary RDB Definitions and Notation:

The underlying model of relational databases is the relational model where relations are

the main constructs for representing data. A relational database is defined as a set of

relations, each of which consists of a relation schema and a relation instance. In turn, a

relation schema consists of a set of attribute-domain pairs, while a relation instance is a

set of tuples. The set of relation schemas for all relations in a relational database is

termed relational database schema. The set of relation instances in a relational database

is termed relational database instance ([72], pp. 59-62). Here, I extend the formal

definition of the relational model to add constructs that are typically used in DBMS and

in RDB implementations, and are relevant to DM2ONT. Formally, let:

− rdbs be a relational database schema with a finite set of relation schemas:

 rdbs = {R1, R2, …, Rn}, where n is the number of relation schemas in rdbs,

 55

− Ri (where 1 ≤ i ≤ n) be a relation schema with a finite set of Attribute-Domain pairs:

 Ri = {(Ai1 : Di1), (Ai2 : Di2), …, (Aimi
: Dimi

)}, where mi is the number of attribute-

domain pairs in Ri,

− ri be a relation instance (or relation in short) that corresponds to (or over) Ri and has a

finite set of tuples: ri = {ti1, ti2, …, tixi
}, where tuple tiz (1 ≤ z ≤ xi) is an element in

Di1 × … × Dimi
,

− attrib(Ri) be a function that returns the set of attributes in Ri (i.e. {Ai1, Ai2, …, Aimi
}),

− pkey(Ri) be a function that returns the set of attributes that are defined as part of the

primary key in Ri, thus pkey(Ri) ⊆ attrib(Ri),

− fkey(Ri) be a function that returns the set of foreign keys that are defined in Ri:

 fkey(Ri) = {fki1, fki2,…, fkiri
}, where fkik (1≤ k ≤ ri) is a set of one or more attributes in

Ri, thus fkik ⊆ attrib(Ri), and attributes in fkik and fkim (where 1≤ m ≤ ri) are disjoint
6

(i.e. fkik ∩ fkim = ∅),

− refpk(fkik) be a function returning the set of primary key attributes referenced by fkik,

− “NULL” be a marker to indicate a missing value for a particular non primary-key

attribute in a tuple,

− is_null(tiz[A]), where tiz[A] is the projection of tuple tiz ∈ ri on attribute(s) A ⊆

attrib(Ri), be a function that returns true if any component in tiz[A] has NULL marker,

and false otherwise,

− is_not_null(tiz[A]), be the inverse of is_null(tiz[A])), and

6
 For referential integrity reasons, renowned database author C.J. Date strongly advice against overlap

of foreign keys. Date, C.J, “Relational Database Writings 1985-1989” pp. 153. Addison Wesley. 1990.

 56

− R1 and R2 be relation schemas (R1 and R2 not necessarily distinct), r1 and r2 be

relation instances over R1 and R2 respectively, pk1 be the primary key of R1 (i.e.

pk1=pkey(R1)), and fk2 be a foreign key in R2 that references pk1 (i.e. fk2 ∈ fkey(R2)

∧ refpk(fk2) = pk1). “For all time, each value of fk2 in r2 either is NULL or is identical

to the value of pk1 in some tuple in r1” ([30], pp. 127].

In SQL and DBMS(s), different terms are used to refer to the constructs found in

the relational model. Since DM2ONT deals with DBMS implementations rather than the

theoretical foundation upon which DBMS(s) are built, the following sections uses the

terms employed in DBMS implementations. Specifically, I use the terms table to refer to

relation (e.g. table schema, table instance), column and data type to refer to attribute and

domain respectively, and row or data instance to refer to tuple.

Furthermore, different terms are used when representing the database design

using an Entity-Relationship (ER) model. As discussed in the Related Work chapter,

widely-accepted guidelines exist for generating a relational database schema from an ER

model [6,27,21,49] . Generally speaking, each entity set is mapped to a relation. For a

relationship set (or relationship in short) and depending on its cardinality, the database

designer can have a choice of mapping it either to a distinct relation or to attributes in one

of the relations that corresponds to the entity-set involved in the relationship. In either

case, ER relationships are maintained in relational databases using foreign keys.

From a relational database standpoint, a binary relation r3 from the domain of

primary keys Dpk1 to Dpk2 (i.e. r3 ⊆ Dpk1 × Dpk2, where Dpk1 = πpk1(r1) and Dpk2 = πpk2(r2),

 57

r1 and r2 are relations over schemas R1 and R2 respectively, pk1 = pkey(R1) and pk2 =

pkey(R2), and r1 and r2 are not necessarily distinct) can have r3 implemented either as a

separate relation/table or as columns in either r1 or r2. Specifically, the database designer

has the choice of implementing r3 either as a distinct relation or as columns in r1 if r3 is

1:1 (One-to-One) or M:1 (Many-to-One). On the other hand, an r3 that is N:M (Many-to-

Many) can be implemented as a distinct relation only. In the former case, and if the

designer elects to merge/embed the attributes/columns of r3 into r1, one can dynamically

(at runtime) compute the binary relation r3 using the following query:

r3 = π pk1, fk1
 (σ

is_not_null (fk1)
 (r1))

where r1 is a relation instance over relation schema R1, pk1 is the primary key

column(s) in R1, fk1 is a foreign key columns(s) in R1, pk1 ∩ fk1 = ∅, and r3 columns are

contained/embedded in r1 as pk1 and fk1.

3.3.1.2. Metadata Extractor

The main responsibility of the Metadata Extractor is to retrieve metadata from the

DBMS system catalog. Using the source data model information obtained as input

parameters, the Metadata Extractor connects to the database using the Database Interface

component (i.e. the database client software). In order to support different DBMS

implementations (e.g. IBM DB2, Oracle, Microsoft SQL Server), and to be able to obtain

ORDB metadata in addition to the RDB metadata, the RDB/ORDB Collector in

DM2ONT uses JDBC 3.0 compliant drivers. Other database interfaces are either DBMS

implementation specific, platform dependent, or lack support for the ORDB model.

 58

DBMSs today maintain different types of metadata. Some of the metadata

maintained by the DBMSs describe the data constructs and their relationships (tables,

User-Defined Types, primary/foreign keys, etc.), while others describe storage aspects

(table-spaces, page/extents size, etc.) and environment/security characteristics (locale,

codepage, permissions, etc.). Since ontology models describe concepts in a subject area,

the Metadata Extractor extracts only metadata that describes both the data constructs and

their relationships. In order to obtain as much of the semantics as possible from the

source data model, the Metadata Extractor retrieves:

−−−− Table Schema Information: This includes table and column names, and column

data types. The data types can be one of the DBMS built-in data types (e.g. Integer,

Character) or User-Defined Types (UDT).

−−−− User-Defined Type (UDT) Schema Information: A UDT, which is an ORDB

construct, can be either a distinct, complex/structured, or array data type. A distinct

data type is a user-defined atomic data type created to allow strong typing. A

complex data type is a user-defined type with an internal structure composed of

multiple attributes, each of which has a name and data type; moreover it can

participate in an IS-A hierarchy. An array data type is discussed below. The UDT

schema information for both distinct and complex data types includes the UDT

name, and either the base-type for the distinct data types or the attribute names and

data types for complex data types.

−−−− Array-Type Columns: An array data type is a UDT that consists of an ordered set

of elements of the same data type. The information obtained includes the column

 59

name, the array cardinality (i.e. number of elements in the array), and the data type

for the elements of the array.

−−−− Reference-Type Columns: Information about these columns is used to identify

how UDT(s) reference one another. The information obtained includes the

reference column name and data type, and the referenced UDT.

−−−− Primary Key Constraints: This includes the primary key constraint name and the

column name(s) that makes up the primary key.

−−−− Foreign Key Constraints: This includes the foreign key constraint name, the local

column(s), and the referenced table and column(s).

−−−− Not-Null and Unique Constraints: Information is obtained about these constraints

for each column.

Upon successful retrieval of this information from the DBMS, the Extractor

forwards this information to the Metadata Analyzer for further analysis.

3.3.1.3. Metadata Analyzer

The Metadata Analyzer performs analysis on the metadata; its main task involves

identifying Bridge Tables and implicit relationships:

Identify Bridge Tables: Tables that were created as a result of many-to-many

relationships between two entity sets and have no descriptive columns are generally

created to overcome a known limitation in modeling binary many-to-many relationships

in RDB(s). This limitation dictates creating tables to capture such relationships. In

DM2ONT, these types of tables are referred to as Bridge Tables. A bridge table is

 60

designated as such if the table has a composite (multi-attribute) primary key, the primary

key attributes are defined as two foreign keys, and the table has no columns other than

those in the primary key.

Definition 3.1: Let rdbs be a relational database schema. R3 is declared as a bridge table

if:

{ R3 | R3 ∈ rdbs ∧ ∃ R1 , R2 ((R1 , R2 ∈ rdbs) ∧

(∃ pk1, pk2, pk3 ((pk1 = pkey(R1))∧ (pk2 = pkey(R2)) ∧ (pk3 = pkey(R3)) ∧

(∃ fk1, fk2 ((fk1∈ fkey(R3)) ∧ (fk2∈ fkey(R3)) ∧ ({fk1, fk2} = fkey(R3)) ∧

(fk1∪ fk2 = pk3) ∧ (pk3 = attrib(R3)) ∧ (refpk(fk1) = pk1) ∧ (refpk(fk2) = pk2)))))) }

In DM2ONT, a bridge table such as R3 is not translated into an ontology class.

Instead, such table is translated as a direct relationship (e.g. object property in OWL)

between the ontology classes that corresponds to R1 and R2. Note that other types of

tables that are created as a result of many-to-many relationships (e.g. n-ary relationships,

binary relationships with descriptive columns) are translated into ontology classes.

Identify IS-A Relationships: A potential IS-A type of relationship is identified when

there is a set of tables that either share a common primary key with foreign keys

referencing one of the tables in the set of tables being examined, or share common

attributes and a common primary key; these two types respectively corresponds to IS-A

type-1 and type-2 that were introduced in Chapter 2. As an example of IS-A type 1, let

R1, R2, and R3 be relation schemas in the relational database schema rdbs with pk1, pk2,

and pk3 as the primary key for R1, R2, and R3 respectively. A potential IS-A relationship is

 61

declared if we have pk1 defined in R1 as a foreign key referencing pk3, and pk2 defined in

R2 as a foreign key referencing pk3. In this case, R3 is declared as a potential super-class

in the generated ontology, and R1 and R2 as subclasses.

Definition 3.2: Let rdbs be a relational database schema. R1, R2 and R3 are declared to

have a potential IS-A type 1 relationship if:

{ R3 | R3 ∈ rdbs ∧ ∃ R1 , R2 ((R1 , R2 ∈ rdbs) ∧

(∃ pk1, pk2, pk3 ((pk1 = pkey(R1)) ∧ (pk2 = pkey(R2)) ∧ (pk3 = pkey(R3)) ∧

(∃ fk1, fk2 ((fk1∈ fkey(R1)) ∧ (fk2∈ fkey(R2)) ∧

(fk1 = pk1) ∧ (fk2 = pk2) ∧ (refpk(fk1) = pk3) ∧ (refpk(fk2) = pk3)))))) }

An example of IS-A type 2 is when we have two relation schemas R1 and R2 with

pk1 and pk2 as the primary key for R1 and R2 respectively. If pk1 and pk2 are syntactically

equivalent (i.e. share the same attribute names and domains), and the intersection of the

attributes in R1 and R2 produces a set of attributes other than pk1 and pk2, a potential IS-A

relationship is declared. In this case, R1 and R2, without the attributes in the intersection

between them, are declared as subclasses and R3, which consists of the attributes found in

the intersection between R1 and R2, is declared a super-class.

Definition 3.3: Let rdbs be a relational database schema. R1 and R2 are declared to have a

potential IS-A type-2 relationship if:

{R1, R2 | R1, R2 ∈ rdbs ∧

∃ pk1, pk2 ((pk1= pkey(R1)) ∧ (pk2=pkey(R2)) ∧ (pk1∉ fkey(R1)) ∧ (pk2∉ fkey(R2)) ∧

 62

(| pk1 | = | pk2 |) ∧ (∀ x ∈ pk1 , ∃ y ∈ pk2 (SYNTAC_EQ
7
(x , y))) ∧

(∃ ca1, ca2 ((ca1 ⊆ attrib(R1)) ∧ (ca2 ⊆ attrib(R2)) ∧ (|ca1| > 1) ∧ (|ca1| = |ca2|) ∧

(ca1 ∩ pk1 = ∅) ∧ (ca2 ∩ pk2 = ∅) ∧ (∀ a∈ca1, ∃ b∈ca2 (SYNTAC_EQ
7
(a , b)))))) }

3.3.1.4. Data Extractor

The main task of the Data Extractor is to issue SQL statements to retrieve information

about data instances for all the tables in the data model being translated. The information

retrieved includes the total number of data instances (i.e. number of rows) for each table,

number of null values for each column, number of distinct values for each column, and

data instances themselves in certain cases. This subcomponent retrieves information

based on requests from the Data Analyzer subcomponent.

3.3.1.5. Data Analyzer

The Data Analyzer performs analysis on information about data instances in order to

recommend – in the generated ontology -- the cardinality of relationships, sparse-column

values, candidate transitive and symmetric binary relations, and not-null and unique

columns (those without null/unique constraints). However, since data instances in an

RDB implementation represent the state of an organization at a given point in time, a

confidence ratio is derived from the data instances information, and provided to the

ontology modeler to assist him/her when reviewing the generated ontology. The formula

for deriving the confidence ratio is shown in Algorithm 1.

7
 SYNTAC_EQ is a Boolean function that returns true if two attributes are syntactically equivalent.

 63

01 Method table-confid-ratio:

02 Input: tab (table instance) , confid_ratio_threshold (0 ≤ decimal value ≤ 1)

03 Output: table_confid_ratio (0 ≤ decimal value ≤ 1), acceptable_ratio (Boolean)

04 Begin-Steps

05 Let table_card = SELECT COUNT (*) FROM tab

06 If (table_card > 10) then

07 Let table_confid_ratio = 1 – (10 / table_card)

08 else

09 Let table_confid_ratio = 0

10 End_If

11 Let acceptable_ratio = table_confid_ratio >= confid_ratio_threshold

12 End-Steps

Table 5 shows the confidence ratio for tables with different number of rows

(table_card) when the Confidence Ratio Threshold (confid_ratio_threshold) is set to 0.9.

Table 5. Examples of confidence ratio threshold for different cardinalities.

Number of Rows Confidence Ratio Accepted?

0 0 False

10 0 False

50 0.80 False

100 0.90 True

200 0.95 True

1,000 0.99 True

In addition to deriving the confidence ratio, the other main responsibilities of the

Data Analyzer are to discover the cardinality of the relationships, detect sparse-column

Algorithm 1: Confidence ratio formula

 64

values, identify candidate symmetric and transitive binary relations, and uncover not-null

and unique columns:

Discover Relationship Cardinality: In ontology models, cardinality restrictions can be

placed on a relationship between classes to state the minimum, maximum, or exact

cardinality between instances of these classes. Some ontology representations (e.g. OWL)

allow modelers to set cardinalities to arbitrary non-negative integer values. In relational

databases however, cardinalities from Entity-Relationship (ER) models are typically

generalized into one-to-many (1:M) to state the maximum cardinality. In order to obtain

and recommend the cardinalities for each relationship in a relational database, and given

this semantic gap, data retrieval and analysis is performed. This includes finding the

minimum and maximum cardinality for all relationships and their inverses. The proposed

cardinalities however are obtained only when the confidence ratio (in algorithm 1) is

above a user-supplied threshold value.

Definition 3.4: Given relation schemas R1 and R2 in a relational database schema rdbs

and integrity constraints pk1 and pk2 as the primary keys of R1 and R2 respectively (i.e. pk1

= pkey(R1) ∧ pk2 = pkey(R2)). For any relation instances r1 over R1 and r2 over R2, let

Dpk1 and Dpk2 be the projection of pk1 and pk2 values respectively (i.e. Dpk1 = πpk1(r1) ∧

Dpk2 = πpk2(r2)), r3 be a binary relation from Dp k1 to Dp k 2 (i.e. r3 ⊆ Dp k 1 × Dp k 2), and R3

be the schema of r3 such that R3 = {(Apk1:Dpk1), (Apk2:Dpk2)}. For R3, the minimum

cardinality denotes the minimum number of pk2 values (Dpk2 elements) a given pk1 value

(a Dpk1 element) must pair with in any r3, maximum cardinality denotes the maximum

 65

number of pk2 values a given pk1 value can pair with in any r3, the inverse minimum

cardinality states the minimum number of pk1 values a given pk2 value must pair with in

any r3, and the inverse maximum cardinality states the maximum number of pk1 values a

given pk2 value can pair with in any r3.

The algorithm below computes the relationship cardinalities for the binary

relation schema R3 as defined in 3.4. This algorithm is given for illustration purposes,

and in practice, more efficient algorithms may be implemented. Note that in the

following algorithm, the binary relation r3 can be given (i.e. r3 exist in the relational

database as a distinct relation) or computed as discussed in section 3.3.1.1 (i.e. r3 columns

are embedded in relation r1):

− Compute rtmp1 : rtmp1 = Select Count (Apk1) As card From r3 Group By (Apk1)

− Set min_card (minimum cardinality) to:

� 0 (zero): if “Select Count(Distinct Apk1) From r3“ < “Select Count(pk1) From r1“, or otherwise

� x : x = Select Min (card) From rtmp1

− Set max_card (maximum cardinality) to:

� x : x = Select Max (card) From rtmp1

− Compute rtmp2 : rtmp2 = Select Count (Apk2) As card From r3 Group By (Apk2)

− Set inv_min_card (inverse minimum cardinality) to:

� 0 (zero): if “Select Count(Distinct Apk2) From r3“ < “Select Count(pk2) From r2“, or otherwise

� x : x = Select Min (card) From rtmp2

− Set inv_max_card (inverse maximum cardinality) to:

� x : x = Select Max (card) From rtmp2.

 66

Detect Sparse-Column Values: A column is proposed as one that has sparse values if

both the number of distinct values and the Sparse Confidence Ratio (SCR) for the column

are within user-specified thresholds. The max_distinct threshold setting allows users to

specify the maximum number of distinct values that a column can have in order to be

considered as such (e.g. maximum of 10 distinct values). The min_SCR threshold setting

enables users to set the minimum acceptable SCR for such columns. SCR is calculated as:

SCR = 1 – (DV / NNV)

where DV is the number of distinct values, and NNV is the number of non-null values.

Furthermore, to allow ontology modelers to make a judgment, the sparse confidence ratio

is reported for columns that DM2ONT propose as sparse columns. An example of a

column with sparse values is a column that contains gender indicator (e.g. M or F), or

course-grades (e.g. A, B, C).

Table 6 shows examples of the sparse confidence ratio for columns with different

number of distinct values and different number of non-null values.

Table 6. Sparse Confidence Ratio (SCR) for sparse-column values.

Number of Non-Null Values Number of Distinct Values Sparse Confidence Ratio

50 50 0

50 10 0.80

50 5 0.90

100 10 0.90

100 5 0.95

1000 10 0.99

1000 5 0.995

 67

Identify Candidate Transitive and Candidate Symmetric Binary Relations: In RDB,

transitive and/or symmetric binary relations can not be annotated as such (i.e. SQL does

not provide constructs to identify them). Using heuristic data modeling techniques and

data instance analysis, such relations can be identified as likely to be transitive and/or

symmetric. For example, based on metadata and data analysis, binary one-to-one and

many-to-many relations may be identified as candidate symmetric (e.g. spouse-of and

friends-with relations in Person’s table). Examples of candidate transitive relations

include binary one-to-one, one-to-many, and many-to-many (e.g. next-in-queue,

manager-of for employee table, or composed-of for a bill-of-materials table). By

analyzing data instances in these types of relations, candidate symmetric and transitive

binary relations can be identified. Chapter 4 provides more details on the RDB design

guidelines/patterns used with such relations and how DM2ONT identifies them.

Uncover Not-Null and Unique Columns: In addition to identifying not-null and unique

columns based on database constraints (by the Metadata Extractor), DM2ONT analyzes

data instances in each table in the database to uncover columns that do not contain null

markers and columns that contain unique values. Such findings are proposed in the

generated ontology if the confidence ratio for the table being analyzed is above a user-

specified threshold.

Upon concluding the data analysis phase, information and control are returned to

DM2ONT Controller.

 68

3.3.2. The OWL Converter Component

This component converts DM2ONT internal object representation of the source data

model into an OWL Full representation. For a source data model that neither contains

primary key nor unique columns, the OWL Converter produces an OWL DL

representation. This component converts the internal representation as follows:

−−−− Table Schema Information: This is converted into OWL classes and properties in

the ontology model. Specifically, and except for tables that were identified by the

Metadata Analyzer as bridge, each table is converted into <owl:Class>.

Furthermore, all non foreign-key, non reference-type, and non UDT columns are

mapped to <owl:DatatypeProperty>. These columns, which use the DBMS built-in

data types, are mapped to their equivalent built-in XML Schema data types using

<rdf:range> in their respective <owl:DatatypeProperty> element. Columns that are

defined as foreign-key, reference-type, or UDT are converted into

<owl:ObjectProperty> with the <rdf:range> set to the referenced table or UDT.

−−−− User-Defined Type (UDT) Schema Information: This information is converted in

a manner similar to the table schema information. In particular, a UDT is converted

into OWL classes <owl:Class>. Attributes within a UDT are converted into

<owl:DatatypeProperty> if these attributes have a type that is neither reference-type

nor UDT. An attributes that is defined as reference-type is handled as a reference-

type column (see below). An attribute that is defined as UDT is handled recursively.

In both cases, reference-type and UDT attributes are converted into

<owl:ObjectProperty> in the class where they are defined.

 69

−−−− Array-Type Columns: An Array-Type column is converted into an

<owl:DatatypeProperty> in the class that maps to the table or UDT where the

Array-Type column is defined. Furthermore, the array cardinality (i.e. number of

elements in the array) is used to set the <owl:maxCardinality> restriction for the

property that maps to the Array-Type column.

−−−− Reference-Type Columns: A column that is defined as Reference-Type is

converted into <owl:ObjectProperty> with the <owl:FunctionalProperty> restriction

set to indicate that this property can have one value at most.

−−−− Primary Key Constraints: A single-column primary key is translated to

<owl:InverseFunctionalProperty> (i.e. unique) [89] and <owl:minCardinality=1>

(i.e. not-null) restrictions in the OWL data property created for the primary key

column. For a multi-column primary key, this information is set as an

<rdfs:comment> in the class that corresponds to the table where this key is defined.

−−−− Foreign Key Constraints: Information about foreign keys is used to identify

relationships between classes in the ontology model. Such columns are converted

into either two <owl:ObjectProperty> or an <rdfs:Subclass> depending on the result

obtained from the metadata analysis phase (e.g. table relationship or IS-A

relationship.) For non-IS-A relationships, two <owl:ObjectProperty> are created

between the classes that participate in the relationship being addressed to capture

the two-way nature of a relationship. Specifically, an <owl:ObjectProperty> is

created in the class that corresponds to the table that has the foreign key(s), with an

<owl:FunctionalProperty> restriction to indicate that this property can have one

 70

value at most; we refer to this relationship as a child relationship. Another

<owl:ObjectProperty> is created in the class that corresponds to the table that is

being referenced by the foreign key, with an <owl:inverseOf> construct to highlight

the relationship between these two <owl:ObjectProperty>; we refer to this

relationship as a parent relationship. Cardinality restrictions for child and parent

relationships are set based on data analysis as described below.

−−−− Not-Null Columns: Information about columns that are identified as Not-Null

based on database constraints or data analysis are translated into

<owl:minCrdinality=1> restriction in the data properties that map to these column.

−−−− Unique Columns: Columns that are identified as unique (based on constraints or

data analysis) are translated into <owl:InverseFunctionalProperty> in the data

properties that map to these columns.

−−−− Relationships Cardinalities: Depending on the relationship cardinality analysis

performed by the Data Analyzer, different cardinality-related constructs might be

set in each of the two <owl:ObjectProperty> that corresponds to the child and/or

parent relationship.

−−−− Sparse-Column Values: Columns identified as having sparse values are translated

into <owl:DatatypeProperty>. The <rdf:range> for this property is set to

<owl:DataRange> with the column’s distinct values specified using the basic list

constructs (i.e. <rdf:first>, <rdf:rest> and <rdf:nil>). To assist the ontology modeler

when reviewing the generated ontology model, the sparse confidence ratio is

 71

reported using <rdfs:comment>. Example IV in Section 3.4 below demonstrates

how the translation is conducted for such columns.

−−−− Transitive and Symmetric Binary Relations: A binary relation that is identified

as a candidate transitive and/or candidate symmetric is translated into

<owl:ObjectProperty> with <rdf:type rdf:resource="&owl;TransitiveProperty"/>

and/or <rdf:type rdf:resource="&owl;SymmetricProperty"/> constructs

respectively. Furthermore, the confidence ratio is provided as an <rdfs:comment> to

assist the modeler when reviewing the generated ontology model.

Upon successfully converting DM2ONT internal object representation of the

source data model into an OWL representation, the OWL Converter returns the OWL

representation to the Controller.

 72

3.4. Examples

We now provide four examples to show how DM2ONT translates RDB and ORDB

models into OWL ontology models. The first example simply highlights how an RDB

table with primary key and not-null constraints is translated into an OWL class. The

second example shows how DM2ONT handles bridge Tables. The third example shows

an ORDB schema and how UDT(s) are translated. Finally, the fourth example shows how

DM2ONT translates sparse-column values.

3.4.1. Example I (RDB Schema - Simple)

Consider the following table (using pseudo syntax):

−−−− TABLE HR.Employee (id CHAR(10) PRIMARY KEY, name CHAR(30) NOT

NULL),

This HR.Employee table has two columns: the ‘id’ column, which is defined as

primary key, and the ‘name’ column, which is defined as a Not-Null. Figure 5 shows the

OWL equivalent description of this table.

A column that is defined as a primary key is treated as though it was defined with

both not-null and unique constraints. In the OWL representation in Figure 5, lines 7 12

and line 23 apply the not-null and the unique constraints on the ‘id’ property using the

<owl:minCardinality> and <owl:InverseFunctionalProperties> restrictions. Similarly,

lines 13 18 show how not-null constraint on the ‘name’ property is handled. Lines 24 and

29 apply the <owl:FunctionalProperty> restrictions on the ‘id’ and ‘name’ properties,

which indicate that these properties can have one value at most. Since database columns

 73

that are not UDT-based can have atomic values only, these columns will always be

defined in the generated OWL model with the <owl:FunctionalProperty> restriction.

3.4.2. Example II (RDB Schema – Bridge Table)

Consider the following table (using pseudo syntax):

01 <?xml version="1.0" encoding="UTF-8"?>

02 <rdf:RDF … >

03 ...
04 <owl:Class rdf:ID=”HR.Employee”>

05 <rdfs:subClassOf rdf:resource=”&owl;Thing”/>

06 <rdfs:comment>HR.Employee table</rdfs:comment>

07 <rdfs:subClassOf>

08 <owl:Restriction>

09 <owl:onProperty rdf:resource="#HR.Employee.id"/>

10 <owl:minCardinality rdf:datatype="&xsd;int"> 1 </owl:minCardinality>

11 </owl:Restriction>

12 </rdfs:subClassOf>

13 <rdfs:subClassOf>

14 <owl:Restriction>

15 <owl:onProperty rdf:resource="#HR.Employee.name"/>

16 <owl:minCardinality rdf:datatype="&xsd;int"> 1 </owl:minCardinality>

17 </owl:Restriction>

18 </rdfs:subClassOf>

19 </owl:Class>

20 <owl:DatatypeProperty rdf:ID="HR.Employee.id">

21 <rdfs:domain rdf:resource="#HR.Employee" />

22 <rdfs:range rdf:resource="&xsd;string"/>

23 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

24 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

25 </owl:DatatypeProperty>

26 <owl:DatatypeProperty rdf:ID="HR.Employee.name">

27 <rdfs:domain rdf:resource="#HR.Employee" />

28 <rdfs:range rdf:resource="&xsd;string"/>

29 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

30 </owl:DatatypeProperty>

31 ...

Figure 5: OWL Representation for Example I.

 74

−−−− TABLE HR.Employee (id CHAR(10) PRIMARY KEY, name CHAR(30) NOT

NULL),

−−−− TABLE HR.Project (p-id CHAR(8) PRIMARY KEY, p-name CHAR(30))

−−−− TABLE HR.Assigned-To (id CHAR(10), p-id CHAR(8), PRIMARY KEY (id, p-id),

FOREIGN KEY id REFERENCES HR.Employee, FOREIGN KEY p-id

REFERENCES HR.Project)

As shown, the Assigned-To table shows a many-to-many binary relation between

the Employee and Project tables. Figure 6 shows the corresponding OWL output.

For clarity and to eliminate repetition, the OWL representation shown in Figure 6

omits the HR.Employee properties and restrictions imposed on these properties (lines 5

and 7) since they are identical to those in Figure 5. Since the Assigned-To table was

created to overcome an RDB limitation related to modeling binary many-to-many

relations (see Identify Bridge Tables in 3.3.1.3), the OWL representation shown in Figure

6 does not create an <owl:Class> that corresponds to the Assigned-To table. Instead, two

<owl:ObjectProperty> properties are created to model the relationship between the

HR.Employee and HR.Project class as seen in lines 8-12 and lines 28-32 respectively.

3.4.3. Example III (ORDB Schema)

Consider the following table (using pseudo syntax):

−−−− TYPE HR.Address AS (line_1 CHAR(30), city CHAR(30)).

−−−− TYPE HR.US_Address UNDER HR.Address AS (state CHAR(2), zip-code

CHAR(10)).

 75

This example shows an ORDB schema with two UDT(s): HR.Address and

HR.US_Address. The schema also shows the UDT HR.Address as a super-class and

UDT HR.US_Address as a subclass, as indicated by the ORDB keyword ‘UNDER’ in the

HR.US_Address UDT definition. Figure 7 illustrates the corresponding OWL

representation for this ORDB schema. Since HR.US_Address is defined as a subclass of

01 <?xml version="1.0" encoding="UTF-8"?>

02 <rdf:RDF … >

03 ...
04 <owl:Class rdf:ID=“HR.Employee”>

05 ...
06 </owl:Class>

07 ...
08 <owl:ObjectProperty rdf:ID="HR.Employee.has-project">

09 <rdfs:domain rdf:resource="#HR.Employee"/>

10 <rdfs:range rdf:resource="#HR.Project"/>

11 </owl:ObjectProperty>

12 <owl:Class rdf:ID=“HR.Project”>

13 <rdfs:subClassOf rdf:resource=“owl;Thing”/>

14 <rdfs:comment>HR.Project table.</rdfs:comment>

15 … <!-- minCardinality for p-id datatype property -->

16 </owl:Class>

17 <owl:DatatypeProperty rdf:ID="HR.Project.p-id">

18 <rdfs:domain rdf:resource="#HR.Project" />

19 <rdfs:range rdf:resource="&xsd;string"/>

20 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

21 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

22 </owl:DatatypeProperty>

23 <owl:DatatypeProperty rdf:ID="HR.Project.p-name">

24 <rdfs:domain rdf:resource="#HR.Project" />

25 <rdfs:range rdf:resource="&xsd;string"/>

26 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

27 </owl:DatatypeProperty>

28 <owl:ObjectProperty rdf:ID="HR.Project.has-employee”>

29 <rdfs:domain rdf:resource="#HR.Project"/>

30 <rdfs:range rdf:resource="#HR.Employee"/>

31 <owl:inverseOf rdf:resource="#HR.Employee.has-project"/>

32 </owl:ObjectProperty>

33 ...

Figure 6: OWL representation for Example II

 76

HR.Address, line 19 uses the <rdfs:subClassOf> construct to denote the

relationship between these two classes.

Figure 7. OWL representation for Example III.

01 <?xml version="1.0" encoding="UTF-8"?>

02 <rdf:RDF … >

03 ...
04 <owl:Class rdf:ID=”Person”>

05 <rdfs:subClassOf rdf:resource=”&owl;Thing”/>

06 <rdfs:comment>Person table</rdfs:comment>

07 </owl:Class>

08 <owl:DatatypeProperty rdf:ID="Person.id">

09 <rdfs:domain rdf:resource="#Person" />

10 <rdfs:range rdf:resource="&xsd;string"/>

11 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

12 </owl:DatatypeProperty>

13 <owl:DatatypeProperty rdf:ID="Person.name">

14 <rdfs:domain rdf:resource="#Person" />

15 <rdfs:range rdf:resource="&xsd;string"/>

16 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

17 </owl:DatatypeProperty>

18 <owl:DatatypeProperty rdf:ID="Person.gender">

19 <rdfs:domain rdf:resource="#Person" />

20 <rdfs:comment>Sparse Confidence Ratio = 0.98 </rdfs:comment>

21 <rdfs:range>

22 <owl:DataRange>

23 <owl:oneOf>

24 <rdf:List>

25 <rdf:first rdf:datatype="&xsd;string">Male</rdf:first>

26 <rdf:rest>

27 <rdf:List>

28 <rdf:first rdf:datatype="&xsd;string">Female</rdf:first>

29 <rdf:rest rdf:resource="&rdf;nil" />

30 </rdf:List>

31 </rdf:rest>

32 </rdf:List>

33 </owl:oneOf>

34 </owl:DataRange>

35 </rdfs:range>

36 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

37 </owl:DatatypeProperty>

38 ...

 77

3.4.4. Example IV (Sparse-Column Values)

Consider the following table definition and data:

−−−− TABLE Person (id CHAR(10), name CHAR(30), gender CHAR(6))

−−−− Sample data instances (i.e. rows) for Person table as shown in Table 7

Table 7: Sample data instances for Person table

Row # id Name Gender

1 A01 Edgar S. Male

2 A02 Khalid A. Male

3 A03 Amirah. A Female

… …

100 A100 Reem A. Female

To avoid repetition, the data instances above shows only the first three rows and

the last row (as indicated by Row #) in a table with 100 rows. Now, assume that the

gender column contains only one of two possible values: Male, Female; although the

gender column can contain Null, we consider Null as “value missing” and thus, treat it as

non-value. Through data analysis, namely the Detect Sparse-Column Values method, the

gender column in the Person table is designated as a sparse-column with a Sparse

Confidence Ratio (SCR) of 0.98; with the “Number of Distinct Values” and “Number of

Non-Null Values” set to 2 and 100 respectively. For this example, we are assuming the

threshold parameters were set to max_distinct=10 and min_SCR=0.9.

 78

Figure 8 shows how sparse-column values are represented in OWL (lines 21-35)

and how SCR is reported (line 20). Based on the SCR value, an ontology modeler can

now accept or reject the definition for the gender property.

Figure 8. OWL representation for Example IV.

01 <?xml version="1.0" encoding="UTF-8"?>

02 <rdf:RDF … >

03 ...
04 <owl:Class rdf:ID=“HR.Address”>

05 <rdfs:subClassOf rdf:resource=“owl;Thing”/>

06 <rdfs:comment>HR.Address UDT.</rdfs:comment>

07 </owl:Class>

08 <owl:DatatypeProperty rdf:ID="HR.Address.line_1">

09 <rdfs:domain rdf:resource="#HR.Address" />

10 <rdfs:range rdf:resource="&xsd;string"/>

11 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

12 </owl:DatatypeProperty>

13 <owl:DatatypeProperty rdf:ID="HR.Address.city">

14 <rdfs:domain rdf:resource="#HR.Address" />

15 <rdfs:range rdf:resource="&xsd;string"/>

16 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

17 </owl:DatatypeProperty>

18 <owl:Class rdf:ID=“HR.US_Address”>

19 <rdfs:subClassOf rdf:resource="#HR.Address"/>

20 <rdfs:comment>HR.US_Address UDT.</rdfs:comment>

21 </owl:Class>

22 <owl:DatatypeProperty rdf:ID="HR.US_Address.state">

23 <rdfs:domain rdf:resource="#HR.US_Address" />

24 <rdfs:range rdf:resource="&xsd;string"/>

25 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

26 </owl:DatatypeProperty>

27 <owl:DatatypeProperty rdf:ID="HR.US_Address.zip-code">

28 <rdfs:domain rdf:resource="#HR.US_Address" />

29 <rdfs:range rdf:resource="&xsd;string"/>

30 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

31 </owl:DatatypeProperty>

32 ...

 79

3.5. Summary

The proliferation of information across various organizations increases the demand for

technologies that can facilitate the integration and sharing of information. One

technology that can address this need is semantic computing, which relies on the use of

ontology models to provide an explicit and formal description for the information being

exchanged. With data models such as the RDB and ORDB models sharing conceptions

similar to those found in ontology models, and with the pervasiveness of the RDB and

ORDB models in organizations today, my approach reuses information already captured

in the RDB and ORDB models by automating the translation of these data models into an

ontology model. Providing a framework to automate the translation of both data models

into OWL ontology models can be of great benefit to organizations deploying semantic

computing based solutions.

 80

CHAPTER 4: Candidate Symmetric and Candidate Transitive

Binary Relations

4.1. Introduction

In the real world, similar distinguished relationships between pairs of objects can be

captured using a binary relation. In its generic form, a pair (or tuple) in such relation

states that one object is associated with another in a unidirectional manner (e.g. object x

depends on object y). Depending on the semantics of the relationship, a binary relation

can have properties that allow inferring additional associations between objects without

having to explicitly state them. Some of the common properties include transitivity and

symmetry [32] [79]. These properties are important because they can have implications on

the manner we interpret and process tuples in these relations.

In information systems, handling of these properties is often delegated to the

(knowledgeable-) user, application logic, or database layer. While the database layer is

the most logical place to handle these properties, current database standards (e.g. SQL)

and DBMS implementations do not provide direct and elegant methods to address them.

Furthermore, database modeling representations, such as Entity-Relationship (ER), do not

provide the constructs (or grammar) to model binary relations that are characterized as

transitive or symmetric [30] [72] [73]. Attentive database modelers and developers

 81

therefore rely on design guidelines and development methods when encountering such

relations [13]. Failing to address these properties properly can lead to storing duplicate

information, which can result in unnecessary storage cost and data inconsistency.

 Unlike data modeling representations, ontology languages such as OWL provide

the constructs for annotating binary relations as symmetric and/or transitive [88].

Identifying such properties in an ontology can lead to a model that is closely aligned with

the subject area it describes and thus, eliminate misinterpretation among stakeholders.

This chapter describes the methods DM2ONT employ when identifying candidate

symmetric and candidate transitive binary relations. These methods are based on heuristic

database modeling techniques and data analysis and are therefore considered as

suggestions, hence the use of the term candidate symmetric and candidate transitive

binary relations. The aim here is to assist ontology modelers by providing them with a

small set of binary relations to review for symmetry and/or transitivity with the domain

experts rather than having them review each and every binary relation in the domain.

4.2. Examples of Symmetric and Transitive Binary Relations

There are plenty of examples in the real world where binary relations (e.g. r on

domain D or more formally r ⊆ D × D) can be symmetric, transitive, both symmetric and

transitive, or neither. Table 8 shows examples of these binary relations along with their

usual properties (i.e. symmetric, transitive, etc.) and cardinalities. Appendix B contains

sample relations (relation schemas and instances).

 82

Table 8: Examples of binary relations along with their properties and cardinality.

Name of the

Binary Relation
Properties of the Binary Relation

Cardinality of the

Binary Relation

Married-to (Person) Symmetric & Non-Transitive One-to-One (1:1)

Next (Queued items) Transitive & Non-Symmetric One-to-One (1:1)

Manages (Staff) Transitive & Non-Symmetric One-to-Many (1:M)

Knows (Person) ,

Follows (Twitter)
Non-Symmetric & Non-Transitive Many-to-Many (N:M)

Borders (Territory) Symmetric & Non-Transitive Many-to-Many (N:M)

Composed-Of (Product),

Dependency (Tasks)
Non-Symmetric & Transitive Many-to-Many (N:M)

Siblings (Person),

Live-with (Person)
Symmetric & Transitive Many-to-Many (N:M)

4.3. Basic Definitions

This chapter relies on the RDB definitions introduced in an earlier section, namely

3.3.1.1 Preliminary RDB Definitions and Notation. In this section, symmetry and

transitivity are defined as properties of a binary relation r on domain D (i.e. r ⊆ D × D).

Definition 4.1: A binary relation r on domain D is symmetric if:

∀ x , y ∈ D, (x , y) ∈ r ⇒ (y , x) ∈ r.

Definition 4.2: A binary relation r on domain D is transitive if:

∀ x , y , z ∈ D, ((x , y) ∈ r) ∧ ((y , z) ∈ r) ⇒ (x , z) ∈ r.

 83

 Generally speaking, binary relations can be represented using a vertex-edge graph

(or graph in short) from the graph theory. In this context, the components in each

tuple/pair are represented using vertices with an edge connecting them. In other words,

the tuple (x , y) in a binary relation r can be represented as a graph with two vertices,

namely x and y, and an edge connecting these two vertices.

4.4. Motivation

Ontologies describe subject areas in an explicit and formal manner with the objective of

facilitating activities such as information discovery and integration (Motivation section in

Chapter 1). In identifying candidate symmetric and candidate transitive binary relations

in relational databases, one can expect the ontologies generated from these databases with

these constructs to be more explicit about and aligned with the subject-area. Such an

ontology can aid in inferring facts about a subject-area beyond those that are clearly

stated in a knowledge-base. These inferred facts can be crucial to solving business

problems or identifying business opportunities.

In the homeland security domain, a typical scenario involves an agent who is

trying to identify all the people who live with a suspect who is under investigation. Using

an ontology that identifies the binary relation (e.g. object property in OWL) lives-with as

both transitive and symmetric, and a knowledge-base that contains instances stating that

Person-1 lives with Person-2 and Person-2 lives with Suspect-1, an application can use

symmetry to infer that Suspect-1 lives-with Person-2 and Person-2 lives-with Person-1,

and use transitivity to infer that Suspect-1 lives with Person-1.

 84

4.5. Assumptions

Generally speaking, the methods used in DM2ONT to identify candidate symmetric and

candidate transitive binary relations expect the source database to conform to the

following two conventions (these are formally defined in section 4.6):

1. The database has been created using common design guidelines/patterns for

symmetric and/or transitive binary relations [13] [31] [32], and

2. The database did not store tuples that are implied by symmetry or transitivity.

Following these conventions in databases not only aids in avoiding data

inconsistency, but also reduces storage cost. Data consistency and storage cost are

affected by storing redundant information such as that implied by symmetric or transitive

binary relations; e.g. storing (y , x) given (x , y) in a symmetric binary relation or (x , z)

given (x , y) and (y , z) in a transitive binary relation. Storing such data can lead to data

inconsistency, which is caused by deleting one tuple and not the other. To overcome this

problem, database modelers and developers rely on both modeling and development

techniques to allow users to retrieve tuples even when they are not explicitly stored in the

database. These techniques range from using views and stored procedures in the database

tier to developing business logic in the application tier. However, since analyzing

programming logic to discover symmetry and transitivity is infeasible -- due to the wide

spectrum of programming languages and paradigms in use nowadays, I opted for

retrieving and analyzing data in databases, which can be accomplished using a

standardized language (i.e. SQL).

 85

It is worth noting though that in some cases, organizations may opt for duplicating

information, thus incurring storage cost, in order to gain better performance. The rules

given here for identifying candidate symmetric and candidate transitive relations would

not be applicable to such cases.

4.6. Identifying Candidate Symmetric and Candidate Transitive Binary

Relations

DM2ONT identifies candidate symmetric and candidate transitive binary relations using

heuristic data modeling and data analysis. This section formally defines the general

assumptions discussed in Section 4.5 and the methods used in DM2ONT to identify

candidate symmetric and candidate transitive binary relations in relational databases.

4.6.1. Formal Definitions

Definition 4.3: Given a binary relation r on domain D and property P, we say that r is

minimal w.r.t. P if the following holds:

(¬ ∃ t ∈ r) (t ∈ (r – {t})
P

+
), where (r –{t})

P

+
 is the P-closure of r without tuple t.

This definition states that the binary relation r is said to be minimal if we can not

find a tuple t in relation r when the P-closure (e.g., symmetric or transitive closure) of r

without t will yield t. In other words, a relation r is considered minimal w.r.t property P if

r does not include any tuple that is implied by P (e.g. symmetry and transitivity).

 86

As discussed in section 3.3.1.1, and for optimization and maintenance reasons, a

database designer might choose to merge a binary relation -- one that maps to a binary

relationship set in the ER model -- with one of the relations/tables that are involved in the

relationship (i.e. its domain or co-domain) if the binary relation is one-to-one (1:1) or

many-to-one (M:1). Nevertheless, these binary relations can still be computed at runtime

using a simple query: r1 = π pk2, fk2
 (σ

is_not_null (fk2)
 (r2)) ,

where r2 is a relation instance over relation schema R2, pk2 is the primary key column(s)

in R2, fk2 is a foreign key columns(s) in R2, pk2 ∩ fk2 = ∅, and r1 columns are

contained/embedded in r2 as pk2 and fk2.

The following section introduces the formal definitions for the common

structural/schema patterns used to represent symmetric and transitive binary relations in

RDB. These are followed by the definitions for the Symmetric Encoding and Transitive

Encoding.

Definition 4.4 - Pattern 1 (P1): Given a relation schema R2, a relation instance r2 over

R2, and integrity constraints pk2 as the primary key of R2 (i.e. pk2 = pkey(R2)) and fk2 as a

foreign key in R2 with reference to pk2 (i.e. fk2 ∈ fkey(R2) and refpk(fk2) = pk2). Let Dpk2

be the projection of pk2 values (i.e. Dpk2 = π pk2
(r2)), r1 be a binary relation on Dpk2 (i.e. r1

⊆ Dpk2 × Dpk2), and R1 be the schema of r1 (i.e. R1={(A1a:Dpk2), (A1b:Dpk2)}). We say r1

conforms to Pattern 1 (P1 in short) if the following holds:

− r1 = π pk2, fk2
 (σ

is_not_null (fk
2
)
 (r2)).

 87

We note Pattern 1 as a structure P1 = (R2, r2, R1, r1, IC1), where IC1= (pk2, fk2) is a

tuple with integrity constraints relevant to P1. Examples of P1 binary relations include

Married-to (Person), Next (Queued Items), and Manage (Staff). This pattern is used with

1:1 or M:1 binary relations. Appendix B contains samples of these relations (both

schemas and instances).

Definition 4.5 - Pattern 2 (P2): Given relation schemas R1 and R2, relation instances r1

over R1 and r2 over R2, and integrity constraints pk1 as the primary key of R1 (i.e. pk1 =

pkey(R1)), pk2 as the primary key of R2 (i.e. pk2 = pkey(R2)), and fk1 and fk2 as foreign

keys in R1 with reference to pk2 (i.e. fk1, fk2 ∈ fkey(R1) and refpk(fk1) = refpk(fk2) = pk2).

Let Dpk2 be the projection of pk2 values (i.e. Dpk2 = π pk2
(r2)), and A1a and A1b be sets of

attributes corresponding to fk1 and fk2 respectively (i.e. A1a = fk1 , A1b = fk2). We say r1 is

a binary relation (on Dpk2) that conforms to Pattern 2 (P2 in short) if the following holds:

i) ({fk1 , fk2} = fkey(R1)) ∧ (fk1 ∪ fk2 = attrib(R1)), and

ii) fk1 ∪ fk2 = pk1.

We note Pattern 2 as a structure: P2 = (R2, r2, R1, r1, IC2), where IC2= (pk1, pk2,

fk1, fk2) is a tuple with integrity constraints relevant to P2. Examples of P2 binary

relations include Follows (Twitter), Boarders (Territory), Composed-of (Products), and

Siblings (Person). This pattern is used mostly with N:M binary relations but can also be

used as an alternative to P1 when property ‘ii’ in Definition 4.5 is adjusted. Appendix B

contains samples of such relations.

 88

Definition 4.6 - Pattern 3 (P3): Given relation schemas R2 and R3, relation instances r2

over R2 and r3 over R3, and integrity constraints pk2 as the primary key of R2 (i.e. pk2 =

pkey(R2)), pk3 as the primary key of R3 (i.e. pk3 = pkey(R3)), and fk2 as a foreign key in R2

with reference to pk3 (i.e. fk2 ∈ fkey(R2) and refpk(fk2) = pk3). Let Dp k 2 and Dp k 3 be the

projections of pk2 and pk3 values respectively, r1 be a binary relation from Dp k 2 to Dp k 3

(i.e. r1 ⊆ Dp k 2 × Dp k 3), and R1 be the schema of r1 (i.e. R1= {(A1a:Dpk2), (A1b:Dpk3)}). We

say r1 conforms to Pattern 3 (P3 in short) if the following holds:

i) fk2 ∩ pk2 = ∅ ,

ii) attrib(R3) – pk3 = ∅, and

iii) r1 = π pk2, fk2
 (σ

is_not_null (fk
2
)
 (r2)).

We note Pattern 3 as a structure: P3 = (R3, r3, R2, r2, R1, r1, IC3), where IC3= (pk2,

pk3, fk2) is a tuple with the integrity constraints relevant to P3. Examples of P3 binary

relations include Siblings and Live-with (Person). Note that this pattern is an alternative

to P2 for N:M binary relations that are both symmetric and transitive. Moreover, it is

worth noting here that Pattern 3 can also be used for a category-like relation (e.g. when

R3 is indexed by a category-name and has no other attributes). While it is uncommon to

have a category-like relation without a category-id as its index in addition to a category-

name attribute, I acknowledge that such relation when encountered will be identified

wrongly as pattern 3 (i.e. a false-positive). Appendix B contains a sample of a valid

Pattern 3 relation.

 89

For some of the patterns we introduced, identifying the schema structure is not

sufficient for classifying the binary relation associated with the pattern as candidate

symmetric and/or candidate transitive. Specifically, P1 and P2 binary relations require

further data analysis to determine whether they are candidate symmetric and/or candidate

transitive. For P3 however, we rely on the schema structure described in various RDB

design sources from the literature when identifying such relation as candidate symmetric

and transitive; data in P3 does not have an identifiable signature that can confirm whether

the relation is candidate symmetric/transitive.

In the rest of this chapter, we focus on the data analysis methods used with P1 and

P2 binary relations. Prior to introducing the methods, we formally establish the

connection between Symmetric and Transitive binary relations in the real-world with

what we term as Symmetric Encoding and Transitive Encoding. These definitions are

followed by lemmas describing properties of RDB binary relations related to P1 and P2.

Definition 4.7 (Symmetric Encoding): Given a real world (original) 1:1 or N:M

symmetric binary relation rrw. We define the Symmetric Encoding of rrw as its

implementation in RDB using a binary relation rrdb that is minimal w.r.t. symmetry and

conforms to pattern P1 or P2.

 A real world binary relation can have various minimal encodings w.r.t. symmetry.

For example, given rrw = {(x,y),(y,x)}, rrw can be encoded in RDB as rrdb1 = {(x,y)} or

rrdb2 = {(y,x)}. We denote the set of all possible symmetric encodings of rrw using pattern

Py (where y ∈ {1, 2}) as Encoding
Symm

 (rrw , Py).

 90

Definition 4.8 (Acyclic Binary Relation): Given a binary relation r on domain D, we

say r is acyclic if for any n > 1, the following holds:

 (¬ ∃ x1,x2,...,xn ∈ D) (((xj, xj+1) ∈ r for all j ∈ {1, .., n-1}) ∧ ((xn, x1) ∈ r))

Definition 4.9 (Non-Trivial Transitive Binary Relation): A transitive binary relation r

on domain D is non-trivial if the following holds:

(∃ x1, x2, x3 ∈ D) ((x1, x2), (x2, x3), (x1, x3) ∈ r)

In definition 4.9, we use the term non-trivial transitive binary relations to exclude

transitive binary relations that contain non-chained vertices/nodes. For instance, while a

binary relation containing only two tuples (x1, x2) and (x3, x4) is considered transitive

from a mathematical standpoint, such relation makes less sense in the real world.

Definition 4.10 (Transitive Encoding): Given a real world acyclic non-trivial transitive

binary relation rrw. We define the Transitive Encoding of rrw as its implementation in

RDB using a binary relation rrdb that is minimal w.r.t. transitivity and conforms to pattern

P1 or P2.

 We denote the set of all possible transitive encodings of rrw using pattern Py

(where y ∈ {1, 2}) as Encoding
Trans

 (rrw , Py).

Lemma 4.1 (Transitive Closure): Given rrw = (r1)
+
Trans

(∀ (x, y) ∈ rrw) ((∃ x1 = x, x2, …, xn-1, xn = y) (n > 1 ∧ (x1, x2), …, (xn-1, xn) ∈ r1)).

The following lemmas (4.2 to 4.11) relate symmetric and transitive encodings to

patterns P1 and P2.

 91

Lemma 4.2 (Pattern 1 & Symmetric Encoding - 1): Given an RDB binary relation r1

that conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4), and given a

real world 1:1 symmetric binary relation rrw from definition 4.7. If r1 ∈ Encoding
Symm

(rrw, P1), then:

i) r1 is 1:1, and

ii) (∀ x, y, z ∈ Dpk2) (((x , y) ∈ r1) ⇒ ((y , x) ∉ r1) ∧ (y , z) ∉ r1)).

Note that property (ii) is necessary to ensure that the binary relation r1 continues

to be 1:1 when its symmetric closure is computed (i.e. rrw is 1:1).

Proof:

To prove lemma 4.2, we have to establish that ‘i’ and ‘ii’ hold given r1 ∈

Encoding
Symm

(rrw, P1).

a) To prove ‘r1 is 1:1’ (‘i’ in lemma 4.2), the following must hold:

((∀ x, y, z ∈ Dpk2) (((x, y) ∈ r1) ∧ (y ≠ z) ⇒ ((x , z) ∉ r1)) ∧ [1]

(∀ x, y, z ∈ Dpk2) (((x, y) ∈ r1) ∧ (x ≠ z) ⇒ ((z , y) ∉ r1))) [2]

- The symmetric relations rrw is 1:1 and r1 conforms to P1 are given in lemma 4.2,

- From definition 4.4 (P1), r1 ⊆ Dpk2 × Dpk2 where Dpk2 = π pk2
(r2),

- For any (x, y) ∈ r1 ⇒ (x, y) , (y, x) ∈ rrw, [3]

⇒ (x, …, y) ∈ r2 with x being a value in pk2 of r2 for some tuple t. Now,

- Assume there is (x, z) ∈ r1 ∧ z ≠ y ⇒ (x, …, z) ∈ r2,

⇒ pk2 column(s) in r2 will contain duplicate values, (x, …, y), (x, …, z), which

 92

is a contradiction to primary key definition,

⇒ (x, z) ∈ r1 is false, ⇒ [1] holds

- assume (z, y) ∈ r1 ⇒ (z, y), (y, z) ∈ rrw

⇒ (z, y), (y, z), (x, y), (y, x) ∈ rrw (from [3] above),

⇒ rrw is N:M, which is false (from lemma 4.2, rrw is 1:1),

⇒ (z, y) ∈ r1 is false, ⇒ [2] holds

∴ ‘r1 is 1:1’ (i.e. ‘i’ in lemma 4.2) holds. [4]

b) To prove ‘ii’ in lemma 4.2, i.e.

 (∀ x, y, z ∈ Dpk2) (((x, y) ∈ r1) ⇒ ((y, x) ∉ r1) ∧ ((y, z) ∉ r1))

- For any (x, y) ∈ r1 ⇒ (x, y) , (y, x) ∈ rrw

- assume there is (y, x) ∈ r1 ⇒ (x, y), (y, x) ∈ r1,

⇒ r1 ∈ Encoding
Symm

 (rrw , P1) is false (i.e. r1 is not minimal) ⇒ Contradiction.

- assume there is (y, z) ∈ r1 ∧ (x ≠ z) ⇒ (y, z) , (z, y) ∈ rrw ∧ (x, y) , (y, x) ∈ rrw

⇒ rrw is not 1:1 ⇒ Contradiction, because rrw is given as 1:1.

∴ ‘ii’ holds. [5]

∴ Lemma 4.2 hold. (from [4] and [5])

- End of Proof.

Lemma 4.3 (Pattern 1 & Symmetric Encoding - 2): Given an RDB binary relation r1

that conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4) and satisfies:

i) r1 is 1:1, and

ii) (∀ x, y, z ∈ Dpk2) (((x , y) ∈ r1) ⇒ ((y , x) ∉ r1) ∧ (y , z) ∉ r1)).

 93

For such r1, we can construct a 1:1 symmetric relation rcon such that r1 ∈

Encoding
Symm

(rcon , P1).

 Unlike a real world binary relation rrw, a binary relation rcon is mathematically

constructed and might not make sense in the real world.

Proof:

In this proof, we need to establish that:

a) rcon is symmetric,

b) r1 ∈ Encoding
Symm

(rcon , P1), and

c) rcon is 1:1.

- By definition, r
+
 is the symmetric closure of binary relation r on S if 1) r

+
 is

symmetric, 2) r ⊆ r
+
 , and 3) r

+
 is a subset of any other symmetric relation on S that

includes r. For any r, we can construct r
+
.

- We construct rcon as the symmetric closure of r1 (i.e. rcon = (r1)
+
Sym

).

- Proof of “rcon is symmetric” is established by definition; i.e. the symmetric closure of

any binary relation is always symmetric.

∴ ‘a’ holds. [1]

- To prove r1 ∈ Encoding
Symm

(rcon , P1), we need to establish that r1 conforms to P1 and

r1 is minimal w.r.t. symmetry (per definition 4.7).

- r1 conforms to P1 is given in Lemma 4.3,

- Assume r1 is not minimal w.r.t. symmetry.

 94

⇒ ∃ (y, x) ∈ r1 | (x, y) ∈ r1. This is false; It contradicts with property ‘ii’ of r1:

(∀ x, y, z ∈ Dpk2) (((x , y) ∈ r1) ⇒ ((y , x) ∉ r1) ∧ (y , z) ∉ r1)).

⇒ r1 is minimal w.r.t. symmetry.

- With r1 conforming to P1, rcon = (r1)
+
Sym

, and r1 is minimal w.r.t. symmetry,

⇒ r1 ∈ Encoding
Symm

(rcon , P1)

∴ ‘b’ holds. [2]

- To prove “rcon is 1:1”,

- It is given that r1 is 1:1, (∀ x, y, z ∈ Dpk2) (((x , y) ∈ r1) ⇒ ((y , x) ∉ r1) ∧ (y , z)

∉ r1)) and rcon is the symmetric closure of r1.

- From proof in the previous step (i.e. proof of ‘b’), r1 is minimal w.r.t. symmetry.

- ∀ (x, y) ∈ r1 , (x, y) , (y, x) ∈ rcon

- Assume rcon is N:M,

⇒ (∃ (x, y), (x, z) ∈ rcon ∧ (y ≠ z)) ∧ [3]

 (∃ (a, c), (b, c)∈ rcon ∧ (a ≠ b)) [4]

⇒ If [3] or [4] is false, rcon can not be N:M. [5]

⇒ For [3], ∃ (x, y), (x, z) ∈ rcon ∧ (y ≠ z) ⇒ (y, x), (z, x) ∈ rcon ,

⇒ Since rcon = (r1)
+
Sym

 and r1 is minimal, r1 will contain one pair from each of

the following sets: {(x, y), (y, x)} and {(x, z), (z, x)}

⇒ r1 ∈ { {(x, y), (x, z)}, {(x, y), (z, x)}, {(y, x), (x, z)}, {(y, x), (z, x)} }

⇒ r1 = {(x, y), (x, z)} is false. It contradicts property ‘i’ of r1,

 95

⇒ r1 = {(x, y), (z, x)} = {(z, x), (x, y)} is false. It contradicts property ‘ii’ of r1,

⇒ r1 = {(y, x), (x, z)} is false. It contradicts property ‘ii’ of r1,

⇒ r1 = {(y, x), (z, x)} is false. It contradicts property ‘i’ of r1,

⇒ [3] is false ⇒ From [5], “rcon is N:M” is false. [6]

- Assume rcon is M:1,

⇒ ∃ (x, y), (z, y) ∈ rcon ∧ (x ≠ z)

⇒ (y, x), (y, z) ∈ rcon (because rcon is symmetric) ⇒ “rcon is N:M”

⇒ “rcon is M:1” is false. [7]

⇒ rcon is not N:M and rcon is not M:1 (from [6] and [7]) ⇒ rcon is 1:1

∴ ‘c’ holds. [8]

∴ Lemma 4.3 hold. (from [1], [2] and [8])

- End of Proof.

Lemma 4.4 (Pattern 1 & Symmetric Encoding - 3): Given an RDB binary relation r1

that is 1;1 and conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4). The

following are equivalent:

i) π A1a (r1) ∩ πA1b (r1) = ∅

ii) (∀ x, y, z ∈ Dpk2) (((x , y) ∈ r1) ⇒ ((y , x) ∉ r1) ∧ (y , z) ∉ r1)).

Proof:

To prove that ‘i’ and ‘ii’ in Lemma 4.4 are equivalent, we need to establish:

a. ‘i’ ⇒ ‘ii’

 96

b. ‘ii’ ⇒ ‘i’

- From definition 4.4, R1={ (A1a : Dpk2) , (A1b : Dpk2) }

- Proof for ‘i’ ⇒ ‘ii’:

- Given ‘i’, we assume ‘ii’ is false.

⇒ ∃ (x, y) ∈ r1 ∧ ∃ (y, x) ∈ r1 , or [1]

 ∃ (x, y) ∈ r1 ∧ ∃ (y, z) ∈ r1 [2]

- For [1], π A1a (r1) = {x, y} and πA1b (r1) = {y, x}

⇒ {x, y} ∩ {y, x} = {x, y} ≠ ∅, which contradicts ‘i’

⇒[1] is false. [3]

- For [2], π A1a (r1) = {x, y} and πA1b (r1) = {y, z}

⇒ {x, y} ∩ {y, z} = {y} ≠ ∅, which contradicts ‘i’

⇒ [2] is false. [4]

∴ ‘i’ ⇒ ‘ii’ holds (from [3] and [4]) [5]

- Proof for ‘ii’ ⇒ ‘i’:

- It is given that r1 is 1:1 (in lemma 4.4)

- Given ‘ii’, we assume ‘i’ is false.

⇒ π A1a (r1) ∩ πA1b (r1) ≠ ∅ [6]

⇒ (∃ y) (y ∈ πA1a (r1)) ∧ (y ∈ πA1b (r1))

⇒ Either ∃ (x, y), (y, x) ∈ r1, or [7]

 ∃ (x, y) , (y, z) ∈ r1 ∧ (x ≠ z) [8]

⇒ (x, y), (y, x) ∈ r1 is false; it contradicts ‘ii’

 97

⇒ [7] is false. [9]

⇒ (x, y) , (y, z) ∈ r1 is false; it contradicts ‘ii’

⇒ [8] is false. [10]

∴ ‘ii’ ⇒ ‘i’ holds (from [9] and [10]) [11]

∴ ‘i’ ⇔ ‘ii’ (from [5] and [11])

- End of Proof.

Lemma 4.5 (Pattern 1 & Transitive Encoding - 1): Given an RDB binary relation r1

that conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4) and a real world

acyclic non-trivial transitive binary relation rrw (definition 4.10). If r1 ∈ Encoding
Trans

 (rrw

, P1), then:

i) r1 is acyclic, and

ii) (∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3))

Proof:

- In this proof, we need to establish that (i) and (ii) are true (given the premise).

- By definition, r
+
 is the transitive closure of binary relation r on S if 1) r

+
 is transitive, 2)

r ⊆ r
+
, and 3) r

+
 is a subset of any other transitive relation on S that includes r. [1]

- rrw is the transitive closure of r1 (i.e. rrw = (r1)
+
Trans

). [2]

- To prove ‘i’,

- It is given that rrw is acyclic and rrw = (r1)
+
Trans

.

- Assume r1 is not acyclic (i.e. r1 has a cycle)

⇒ ∃ (x1, x2), …, (xn-1, xn), (xn, x1) ∈ r1 ∧ n > 1

 98

⇒ ∃ (x1, x2), …, (xn-1, xn), (xn, x1) ∈ rrw (per [1] and [2], r1 ⊆ rrw)

⇒ rrw has a cycle. Contradiction (rrw is given as acyclic in lemma 4.5)

∴ ‘i’ holds [3]

- To prove ‘ii’,

- It is given that rrw is acyclic non-trivial transitive relation and rrw = (r1)
+
Trans

 (in

lemma 4.5) and r1 is acyclic (from [3])

- Assume ‘ii’ is false,

⇒ (¬ ∃ x1, x2, x3 ∈ D pk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)) [4]

⇒ Either (∃ x1,x2, x3 ∈ D pk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 = x3)), or [5]

 (¬ ∃ x1, x2, x3 ∈ D pk2) ((x1, x2), (x2, x3) ∈ r1) [6]

- For [5], ⇒ ∃ (x1, x2), (x2, x1) ∈ r1 ⇒ r1 is acyclic. Contradiction with ‘i’.

- For [6],

- It is given that rrw is non-trivial ⇒ ∃ (x1, x2), (x2, x3) ∈ rrw

- From [6] and Lemma 4.1,

 - (x1, x2) ∈ rrw ⇒ (x1, x2) ∈ r1. [7a]

 - (x2, x3) ∈ rrw ⇒ (x2, x3) ∈ r1. [7b]

 - From [7a] and [7b], (x1, x2), (x2, x3) ∈ r1. Contradiction with [6].

∴ ‘ii’ holds [8]

∴ Lemma 4.5 holds (From [3] and [8])

- End of Proof.

 99

Lemma 4.6 (Pattern 1 & Transitive Encoding - 2): Given an RDB binary relation r1

that conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4) and satisfies:

i) r1 is acyclic and

ii) (∃ x1,x2, x3 ∈ D pk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3))

For such r1, we can construct an acyclic non-trivial transitive relation rcon such that

r1 ∈ Encoding
Trans

(rcon , P1).

 Unlike a real world binary relation rrw, a binary relation rcon is mathematically

constructed and might not make sense in the real world.

Proof:

- In this proof, we need to establish:

a) rcon is transitive,

b) rcon is non-trivial transitive,

c) r1 ∈ Encoding
Trans

(rcon , P1), and

d) rcon is acyclic.

- We construct rcon as the transitive closure of r1 (i.e. rcon = (r1)
+
Trans

) [1]

- Proof of rcon is transitive is established by the definition of transitive closure. i.e., the

transitive closure of a binary relation is always transitive.

∴ ‘a’ holds [2]

- To prove rcon is non-trivial transitive,

- It is given that r1 contains (x1, x2), (x2, x3) tuples in lemma 4.6 and rcon = (r1)
+
Trans

.

⇒ r1 ⊆ rcon (definition of transitive closure)

 100

⇒ (x1, x2), (x2, x3) ∈ rcon ⇒ rcon is non-trivial transitive.

∴ ‘b’ holds [3]

- To prove r1 ∈ Encoding
Trans

(rcon , P1), we need to establish that r1 conforms to P1 and r1

is minimal w.r.t. transitivity (definition 4.10).

- r1 conforms to P1 is given in lemma 4.6.

- For r1 is minimal w.r.t. transitivity,

- Assume r1 is not minimal w.r.t. transitivity.

⇒ (∃ (x, y) ∈ r1) ((r1)
+
Trans

 = (r1 - (x, y)) +
Trans

)

⇒ (x, y) ∈ r1 ⇒ (x, y) ∈ (r1)
+
Trans

 ⇒ (x, y) ∈ (r1 - (x, y)) +
Trans

)

⇒ From Lemma 4.1,

(∃ x1= x, x2, …, xn = y) (n > 2 ∧ (xi, xi+1) ∈ (r1 – (x, y)) ∧ 1 ≤ i < n)

⇒ ∃ (x1, x2) , (x1, xn) ∈ r1

⇒ ∃ (x1, …, x2) ∈ r2 with x1 being a value in pk2 of r2 for some tuple t .

⇒ ∃ (x1, …, xn) ∈ r2. Contradiction. Values in pk2 column(s) in r2 cannot be

duplicate (i.e. ¬ ∃ (x1, …, x2), (x1, …, xn) ∈ r2).

⇒ r1 is minimal w.r.t. transitivity

∴ ‘c’ holds [4]

- To prove rcon is acyclic,

- It is given that r1 is acyclic, rcon = (r1)
+
Trans

.

- Assume rcon is not acyclic (i.e. rcon has a cycle)

 101

⇒ (∃ x1, x2, …, xn) ((n > 1) ∧ ((x1, x2), …, (xn-1, xn), (xn, x1) ∈ rcon))

⇒ (xi, xi+1) ∈ rcon

⇒ (∃ yi_1= xi , …, yi_ni = xi+1) ((ni > 1) ∧ ((yi_j, yi_j+1) ∈ r1))

⇒ ((y1_1, y1_2), …, (y1_n1, y2_1), …, (yn_1, yn_2) …,(yn_nn, y1_1) ∈ r1)

⇒ r1 has a cycle. Contradiction.

∴ ‘d’ holds [5]

∴ From [2], [3], [4] and [5], lemma 4.6 holds

- End of Proof.

4.6.2. Methods to Identify Candidate Symmetric and Candidate

Transitive Binary Relations

Several structural patterns exist for modeling symmetric and/or transitive binary

relations. The use of one or another depends on the cardinality and the design choices

made by the database designer. In DM2ONT, we identified three structural patterns that

are commonly used to encode (implement) real-world symmetric/transitive binary

relations in RDB. These patterns were termed Pattern 1, 2 and 3 (or P1, P2 and P3 for

short). Once DM2ONT detects these structural/schema patterns, it performs data analysis

(if necessary) to classify the binary relations associated with these patterns as candidate

symmetric and/or candidate transitive.

Since data in P3 binary relations do not exhibit any special characteristics, the

schemas associated with P3 binary relations are declared as candidate symmetric solely

based on the schema definition. For P1 and P2 however, we perform further analysis

 102

before declaring a P1/P2 binary relation schema as candidate symmetric and/or candidate

transitive. Figure 9 depicts the overall process for determining candidate symmetry and

candidate transitivity for all three patterns.

The following two subsections present the algorithms used in DM2ONT for

determining if a P1 or P2 binary relation is candidate symmetric or candidate transitive.

Figure 9: Identifying candidate symmetric and transitive binary relations - Overall process

Yes

No

Start

End

Classify Binary Relations According

to Patterns (P1, P2, P3 or neither)

Determine Cardinality (1:1, M:1, etc)

Perform Candidate Symmetry/Transitivity

Tests (Invoke Alg. A1 or A2)

Set Symmetry and/or

Transitivity in Ontology

Yes Is P1, P2,

or P3?

No

Compute Confidence

Ratio for Binary Relation

Above Confid.

Threshold?

No Yes

Is P1

or P2?

 103

4.6.2.1. Identifying Candidate Symmetry and Candidate Transitivity for Pattern 1

This section presents Algorithm A1, which addresses candidate symmetry and

candidate transitivity for binary relations that conform to Pattern 1 (definitions 4.4).

Definition 4.11 (Candidate Symmetric): We say a binary relation r1 is Candidate

Symmetric w.r.t. pattern Py if Algorithm Ay(Py, card(r1)) returns isCandSymm=True,

where y ∈ {1, 2} and Py is a structure conforming to Pattern y.

Definition 4.12 (Candidate Transitive): We say a binary relation r1 is Candidate

Transitive w.r.t. pattern Py if Algorithm Ay(Py, card(r1)) returns isCandTrans=True,

where y ∈ {1, 2} and Py is a structure conforming to Pattern y.

 104

Algorithm A1 (Pattern 1 – Candidate Symmetric/Transitive):

01 Input: P1 (R2, r2, R1, r1, IC), card (r1)

02 Output: isCandSymm (Boolean), isCandTrans (Boolean)

03 Begin-Steps
04 //R1 (from structure P1) has two sets of attributes: A1a and A1b
05 Let isCandSymm = isCandTrans = false
06 If (card = = ‘1:1’) Then

07 Let result_set1 = π A1a (r1) ∩ πA1b (r1)

08 If (result_set1 = = ∅) Then
09 isCandSymm = true
10 End_If
11 End_If
12 If (isCandSymm = = false) Then
13 Let isAcyclic = isTrivial = true

14 Let A1a_set = π A1a (r1)

15 Let ei = GetElement(1) (A1a_set)

16 While (ei ≠ null) and (isAcyclic) Do

17 Let tc_set = π A1b (σA1a = e i (r1))

18 Let ej = GetElement(1) (tc_set)

19 While (ej ≠ null) and (isAcyclic) Do

20 Let c = GetFirstElement (2) (π A1b (σA1a = e j (r1)))

21 If ((c ≠ null) and ((c ∈ tc_set) OR (c = = ei))) Then
22 isAcyclic = false
23 Else If (c ≠ null) Then
24 tc_set = tc_set ∪ {c}
25 isTrivial = false
26 End_If_Else
27 ej = GetElement(1) (tc_set)
28 End_While (ej ≠ null…)
29 A1a_set = A1a_set – tc_set
30 ei = GetElement(1) (A1a_set)
31 End_While (ei ≠ null…)
32 If (isAcyclic) and (isTrivial = = false) Then
33 isCandTrans = true
34 End_If
35 End_If // (isCandSymm = = false)
36 End-Steps

(1) GetElement

(): A function that takes a set as an input and returns an element that has not been

processed or null otherwise. It marks returned element as processed.

(2) GetFirstElement

(): A function that returns the first element in the given set or null if the set is empty.

 105

Theorem A1-T1: Algorithm A1 with input P1(R2, r2, R1, r1, IC1) and card(r1) = “1:1”

terminates and its output satisfies the following properties:

i) (∃ rrw) ((rrw is 1:1) ∧ (rrw is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rrw , P1)) ⇒

r1 is Candidate Symmetric, and

ii) r1 is Candidate Symmetric ⇒

(∃ rcon) ((rcon is 1:1) ∧ (rcon is symmetric) ∧ (r1 ∈ Encoding
Symm

(rcon , P1)).

Note that although rcon may not make sense in real world, rcon can be mathematically

constructed.

Proof A1-T1:

Termination Analysis: Algorithm A1 is composed of two sections: lines 5-11 (first

section) and lines 12-35 (second section). When invoked, one or both sections will be

executed. Thus, asserting that A1 terminates requires a proof that each section terminates.

The first section is executed when r1 is 1:1. It terminates because it is a sequence

of statement without any loop, and the query operators used in line 7 are part of the

DBMS with well defined behavior. Therefore, section one will terminate for all inputs.

The second section is executed only if isCandSymm flag is not set to true by the

first section. The second section terminates only if the outer loop (lines 16-31) and inner

loop (lines 19-28) terminate.

The outer loop is a While loop that terminates either when “ei = null” or

“isAcyclic = False”. The former condition in the outer loop does not involve any risk

because ei obtains values from the finite set A1a_set before the loop (line 15) and within

 106

the loop (line 30) using the GetElement() function, and GetElement() returns only the

A1a_set values that have not been processed in previous iterations; moreover, A1a_set

does not expand inside the loop (i.e. no elements are added to A1a_set inside the loop).

The inner loop terminates either when “ej = null” or “isAcycle = False”. It

terminates as well because ej values are drawn from a finite set (tc_set) using the

GetElement() function in line 18 (before the loop) and line 27 (inside the loop). The

tc_set is populated before and within the inner loop with values from A1b columns in r1,

which is finite. Therefore, algorithm A1 terminates for any given r1.

Correctness Analysis: To prove the correctness of algorithm A1, we need to prove that ‘i’

and ‘ii’ in theorem A1-T1 hold.

1) In algorithm A1, isCandSymm is set to True only in line 9:

“isCandSymm = True” ⇔ If-Cond in line 6 is True and If-Cond in line 8 is True

 ⇔ “r1 is 1:1” and “πA1a(r1) ∩ πA1b(r1) = ∅”

2) From Definition 4.11, “r1 is Candidate Symmetric” is equivalent to algorithm A1

returning isCandSymm=True.

3) From (1) and (2) above, we obtain

“r1 is Candidate Symmetric” ⇔ “r1 is 1:1” and “πA1a(r1) ∩ πA1b(r1) = ∅”

4) From Lemma 4.4, we learned:

(πA1a(r1) ∩ πA1b(r1) = ∅) ⇔ (∀ x,y,z ∈Dpk2) (((x,y) ∈r1) ⇒ ((y,x) ∉r1) ∧ ((y,z) ∉r1)).

 To prove ‘i’:

 107

5) From Lemma 4.2, we learned:

(∃ rrw) ((rrw is 1:1) ∧ (rrw is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rrw , P1)) ⇒

 ((r1 is 1:1) ∧ ((∀ x,y,z ∈Dpk2) (((x,y) ∈ r1) ⇒ ((y,x) ∉r1) ∧ ((y,z) ∉r1))

6) From propositions (4) & (5) above, we obtain:

(∃ rrw) ((rrw is 1:1) ∧ (rrw is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rrw , P1)) ⇒

 ((r1 is 1:1) ∧ (πA1a(r1) ∩ πA1b(r1) = ∅))

7) From (3) and (6):

 (∃ rrw) ((rrw is 1:1) ∧ (rrw is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rrw , P1)) ⇒

 “r1 is Candidate Symmetric”

8) ∴ ‘i’ holds

To prove ‘ii’:

9) From Lemma 4.3, we learned:

(r1 is 1:1) ∧ (∀ x,y,z∈ Dpk2) ((x,y)∈ r1 ⇒ ((y,x)∉ r1 ∧ (y,z)∉ r1)) ⇒

 (∃ rcon) ((rcon is 1:1) ∧ (rcon is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rcon , P1))

10) From propositions (4) & (9) above, we obtain:

((r1 is 1:1) ∧ (πA1a(r1) ∩ πA1b(r1) = ∅)) ⇒

 (∃ rcon) ((rcon is 1:1) ∧ (rcon is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rcon , P1))

11) From (3) and (10), we obtain:

 r1 is Candidate Symmetric ⇒

 (∃ rcon) ((rcon is 1:1) ∧ (rcon is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rcon , P1))

12) ∴ ‘ii’ holds

 108

13) ∴ Algorithm A1 is correct w.r.t. to ‘i’ and ‘ii’ (per 8 and 12)

- End of Proof.

Lemma 4.7a (Pattern 1, Algorithm A1 isAcyclic - 1): Given an RDB binary relation r1

that conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4) and (∃ (x1, x2),

(x2, x3)…, (xn-1, xn), (xn, x1) ∈ r1 ∧ (n > 2)) with x1, x2, …, xn as distinct elements, and

given algorithm A1 with isCandSymm = false in Line 12 and ei = x1 in line 15. We make

the following assertion in the inner While-Loop header (line 19) for iteration step k ∈ {1,

…, n - 2} and n > 2:

ej = x k+1 ∧ tc_set ={x2, …, xk+1} with all elements marked as processed ∧ isAcyclic= true

Proof:

- From definition 4.4, r1 is 1:1 or M:1

 ⇒ (∀ x1, x2, x3 ∈ Dpk2) (((x1, x2) ∈ r1) ∧ (x2 ≠ x3)) ⇒ ((x1, x3) ∉ r1)) [1]

- It is given ∃ (x1, x2), (x2, x3)…, (xn-1, xn) ∈ r1 ∧ (n > 2) [2]

- Basis Step (k=1):

- isAcyclic = true (line 13)

- tc_set = π A1b (σA1a = ei (r1)) (line 17)

⇒ (From [1], (x1, x2) ∈ r1 in [2], and given ei = x1), σA1a = x1 (r1) = {(x1, x2)}

⇒ π A1b{(x1, x2)} ={x2} ⇒ tc_set = {x2} = {xk+1} (line 17)

⇒ ej = GetElement(tc_set) = x2 and mark it as processed (line 18)

⇒ In line 19, ej = x2 = xk+1, tc_set = {x2} = {xk+1} with x2 marked as processed,

 109

isAcyclic = true

∴ Lemma 4.7a holds for step k=1 [3]

- Induction Step: We assume for step k (1 ≤ k < n-2), the following holds:

ej = xk+1 ∧ tc_set ={x2, ..,xk+1} with all elem. marked as processed ∧ isAcyclic = true [4]

- We prove for step k+1:

- tc_set = {x2, …, xk+1}

⇒ (From [1], (xk+1, xk+2) ∈ r1 in [2], and ej= xk+1), σA1a = xk +1 (r1)) = {(xk+1, xk +2)}

⇒ π A1b{(xk+1, xk+2)} ={xk+2}

⇒ c = GetFirstElement({xk+2}) ⇒ c = xk+2 (line 20)

⇒ c = xk+2 ≠ null

⇒ c = xk+2 ∉ tc_set (tc_set = {x2, …, xk+1} and x2, …, xk+1, xk+2 are distinct)

⇒ c = xk+2 ≠ ei (ei = x1 and k ≥ 1 are given, and x1 and xk+2 are distinct)

⇒ “If ((c ≠ null) ∧ ((c ∈ tc_set) ∨ (c = = ei)))” Condition is false. (line 21)

⇒ “(c ≠ null)” is true in IF-Cond. (line 23)

⇒ tc_set = {x2, …, xk+1} ∪ {c} (line24) ⇒ tc_set = {x2, …, xk+1, xk+2}

- (From [4], x2, ..,xk+1 in tc_set are marked as processed but xk+2 is not),

⇒ ej = GetElement (tc_set) = xk+2 and markt it as processed (line27)

⇒ End of inner While-Loop iteration (line 28) with

ej =xk+2 ∧ tc_set ={x2, …,xk+2} with all elem. marked as processed ∧ isAcyclic

remained true.

⇒ In the next iteration (line 19):

 110

ej =x(k+1)+1 ∧ tc_set ={x2, …, x(k+1)+1} with all elem. marked as processed ∧

isAcyclic = true. [5]

∴ Lemma 4.7a holds (from [3] and [5])

- End of Proof.

Lemma 4.7b (Pattern 1, Algorithm A1, isAcyclic – 2): Given an RDB binary relation

r1 that conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4) and given

algorithm A1 with isCandSymm = false in Line 12:

r1 has trivial cycle (∃ (x1, x2), (x2, x1) ∈ r1) ⇒ “isAcyclic = false” in line 32 of A1

Proof:

- From definition 4.4, r1 is 1:1 or M:1

 ⇒ (∀ x1, x2, x3 ∈ Dpk2) (((x1, x2) ∈ r1) ∧ (x2 ≠ x3)) ⇒ ((x1, x3) ∉ r1)) [1]

- It is given that ∃ (x1, x2), (x2, x1) ∈ r1 and isCandSymm = false in Line 12 of A1.

⇒ the IF-Cond block (lines 12-35) will be executed

⇒ isAcyclic = true (Line 13)

⇒ A1a_set = π A1a (r1) (Line 14)

⇒ {x1, x2} ⊆ A1a_set (from (x1, x2), (x2, x1) ∈ r1) [2]

- Outer While-Loop (line 16-31) will end either when:

- “isAcyclic = false”, or [3]

- ei = null [4]

- For [3], ⇒ isAcyclic = false in line 32.

∴ Lemma 4.7b holds for [3] [5]

 111

- For [4],

⇒ All A1a_set elements were processed one by one (including x1, x2 from [2]):

- For x1 ∈ A1a_set, either

- ei = x1 in outer loop (line 15 or 30), or [6]

- x1 ∈ tc_set from a previous iteration (line 29) [7]

⇒ For [6], ∃ ei = x1 in one of the iterations in outer While-Loop block (16-31)

⇒ tc_set = π A1b (σA1a = x1 (r1)) (line 17)

⇒ (From [1] and (x1, x2) ∈ r1 in [2]), σA1a = x1 (r1) = {(x1, x2)}

⇒ π A1b{(x1, x2)} ={x2} ⇒ tc_set = {x2}

⇒ ej = GetElement(tc_set) = x2 (line 18 and in inner Loop block 19-28)

⇒ c = GetFirstElement (π A1b (σA1a = x2 (r1)) (line 20)

⇒ (From [1] and (x2, x1) ∈ r1 in [2]), σA1a = x2 (r1) = {(x2, x1)}

⇒ π A1b{(x2, x1)} ={x1} ⇒ c = x1

⇒ “(c ≠ null) ∧ (c = = ei)” is true in IF-Cond. (line 21)

⇒ isAcyclic = false (line 22).

⇒ Algorithm A1 exits inner While-Loop (Lines 19-28)

⇒ Algorithm A1 exits outer While-Loop (Lines 16-31)

⇒ isAcyclic = false in Line 32.

∴ Lemma 4.7b holds for [6] [8]

⇒ For [7], x1 ∈ tc_set from a previous iteration

⇒ ∃ (y1, y2), …, (yn-1, yn), (yn, x1), (x1, x2), (x2, x1) ∈ r1 ∧ n > 1 [9]

 112

⇒ ∃ ei = y1 in an iterations of the outer While-Loop block (16-31)

⇒ From [9] and Lemma 4.7a, after n+1 iterations in the inner loop (k= n+1),

ej = x2, tc_set = {y2, …, yn, x1, x2} with all elements marked as processed ∧

isAcyclic= true, (line 19)

⇒ c = GetFirstElement (π A1b (σA1a = x2 (r1)) (line 20)

⇒ (From [1] and (x2, x1) ∈ r1 in [9]), c = x1

⇒ “(c ≠ null) ∧ (c ∈ tc_set)” is true in IF-Cond. (line 21)

⇒ isAcyclic = false (line 22).

⇒ Algorithm A1 exits inner While-Loop (Lines 19-28)

⇒ Algorithm A1 exits outer While-Loop (Lines 16-31)

⇒ isAcyclic = false in Line 32.

∴ Lemma 4.7b holds for [7] [10]

∴ Lemma 4.7b holds (from [5], [8] and [10])

- End of Proof.

Lemma 4.7c (Pattern 1, Algorithm A1 isAcyclic - 3): Given an RDB binary relation r1

that conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4) and given

algorithm A1 with isCandSymm = false in Line 12. The following are equivalent:

i) isAcyclic is true in line 32 of A1 given r1, and

ii) r1 is acyclic.

Proof:

To establish that ‘i’ and ‘ii’ in Lemma 4.7c are equivalent, we need to prove:

 113

a. ‘i’ ⇒ ‘ii’

b. ‘ii’ ⇒ ‘i’

- From definition 4.4, R1={ (A1a : Dpk2) , (A1b : Dpk2) }

- From definition 4.4, r1 is 1:1 or M:1

 ⇒ (∀ x1, x2, x3 ∈ Dpk2) (((x1, x2) ∈ r1) ∧ (x2 ≠ x3)) ⇒ ((x1, x3) ∉ r1)) [1]

- Proof for ‘i’ ⇒ ‘ii’:

- Given ‘i’ (i.e. “isAcyclic = True” in line 32 of A1),

- Assume ‘ii’ is false (i.e. r1 has cycle(s))

⇒ ∃ (x1, x2), …, (xn-1, xn), (xn, x1) ∈ r1 ∧ (n > 1) [2]

⇒ Either: ∃ (x1, x2), (x2, x1) ∈ r1, or [3]

 ∃ (x1, x2), (x2, x3)…, (xn-1, xn), (xn, x1) ∈ r1 ∧ (n > 2) ∧ x1, x2, …, xn are distinct [4]

- Initially, isAcyclic = True (line 13 in A1)

- For [3],

- From Lemma 4.7b:

r1 has trivial cycle (∃ (x1, x2), (x2, x1) ∈ r1) ⇒ “isAcyclic = false” in line 32 of A1.

⇒ “isAcyclic = false”. Contradiction. [5]

- For [4],

- It is given in [4] that (x1,x2),…, (xn, x1) ∈ r1 ∧ (n > 2) ∧ x1, x2, …, xn are distinct

⇒ In Algorithm A1, cycle (xn, x1) will be detected either when

- ei = x1, or [6]

- x1 ∈ tc_set (from a previous iteration) [7]

 114

- For [6], let ei = x1 in line 15

- From Lemma 4.7a:

∃ (x1, x2), (x2, x3)…, (xn-1, xn), (xn, x1)∈ r1 ∧ (n > 2) ∧ x1, x2, …, xn are distinct ⇒

ej = x k+1 ∧ tc_set ={x2, …, xk+1} with all elements marked as processed ∧

isAcyclic= true in the inner While-Loop header (line 19-28) for iteration step k ∈

{1, …, n - 2} for n > 2. [8]

- For the last iteration in the inner While-Loop, iteration “n – 1”, let k = n – 1 :

⇒ From [8], ej = x k+1 = x(n-1)+1 = x n (line 19)

⇒ From [8], tc_set = {x2, …, xk+1} ⇒ tc_set = {x2, …, xn} (line 19)

⇒ c = GetFirstElement (π A1b (σA1a = xn (r1)) (line 20)

 ⇒ From [1] and [4], (xn, x1) ∈ r1 ⇒ π A1b (σA1a = xn (r1)) = x1

 ⇒ c = x1 (line 20) ⇒ c ≠ null ∧ c = ei

 ⇒ “((c ≠ null) ∧ ((c ∈ tc_set) ∨ (c = = ei)))” is true in IF-Cond. (line 21)

 ⇒ isAcyclic = false (line 22).

 ⇒ Algorithm A1 exits inner While-Loop (Lines 19-28)

 ⇒ Algorithm A1 exits outer While-Loop (Lines 16-31)

 ⇒ isAcyclic = false in Line 32. Contradiction. [9]

- For [7], x1 ∈ tc_set from a previous iteration

⇒ ∃ (y1, y2), …, (ymy-1, ymy), (ymy, x1), (x1, x2), …, (xnx-1, xnx), (xnx, x1)∈ r1 ∧

 (my > 1) ∧ (nx > 2) ∧ yj and xj are distinct [10]

⇒ ∃ (ay1, ay2), …, (aymy, ax1), (ax1, ax2), …, (axnx-1, axnx), (axnx, ax1)∈ r1

 115

⇒ ∃ (a1, a2), (a2, a3), …, (an-1, an), (an, ai)∈ r1 ∧ (n > 2) ∧ (1 < i < n) [11]

- Assume ∃ ei = a1 in an iterations of the outer While-Loop block (16-31)

⇒ From [8] (Lemma 4.7a) and [11], and ei = a1 :

 (ej = a k+1 ∧ tc_set ={a2,…, ak+1} with all elements marked as processed ∧

isAcyclic= true) in the inner Loop header (line 19) for iteration step

k ∈ {1, …, n - 2} and ∧ n > 2. [12]

⇒ For the last iteration in the inner loop, iteration “n – 1”, let k = n - 1:

⇒ From [12], ej = a k+1 = a(n-1)+1 = a n (line 19)

⇒ From [12], tc_set = {a2, ..., ak+1} = {a2, ..., a(n-1)+1 = an} (line 19)

⇒ c = GetFirstElement (π A1b (σA1a = an (r1)) (line 20)

⇒ From [1] and [11], (an, ai) ∈ r1 ⇒ π A1b (σA1a = an (r1)) = ai (1 < i < n)

⇒ c = ai (line 20) ⇒ c ≠ null ∧ c ∈ tc_set (for a1 < a i < an)

 ⇒ “((c ≠ null) ∧ ((c ∈ tc_set) ∨ (c = = ei)))” is true in IF-Cond. (line 21)

 ⇒ isAcyclic = false (line 22).

 ⇒ Algorithm A1 exits inner While-Loop (Lines 19-28)

 ⇒ Algorithm A1 exits outer While-Loop (Lines 16-31)

 ⇒ isAcyclic = false in Line 32. Contradiction. [13]

∴ ‘i’ ⇒ ‘ii’ holds (from [5], [9] and [13]) [14]

- Proof for ‘ii’ ⇒ ‘i’:

- Given ‘ii’ (i.e. r1 is acyclic),

⇒ ∀ n > 1,

 116

(¬ ∃ x1,x2,..., xn ∈ Dpk2) (((xj, xj+1) ∈ r1 for all j ∈ {1, ..,n-1}) ∧ ((xn,x1) ∈ r1))

⇒ (∀ n > 1) (¬ ∃ (x1, x2), …, (xn-1, xn), (xn, x1) ∈ r1) ∧ [15]

 (∀ n > 2) (¬∃ (x1, x2), (x2, x3), …, (xn-1, xn), (xn, xi) ∈ r1 ∧ (1< i < n) [16]

- Initially, isAcyclic = True (line 13 in A1)

- Assume ‘i’ is false (i.e. “isAcyclic = False” in line 32 in A1)

⇒ Algorithm A1 executed the “IF (isCandSymm = = false) Then” block (lines 12-35)

and A1 reached the “isAcyclic = False” statement (line 22).

- It is given in Lemma 4.7c that “isCandSymm = false” in line 12

- “isAcyclic = False” is reached when: [17]

- The outer While-Loop (lines 16-31) is executed at least once, [17a]

- The inner While-Loop (lines 19-28) is executed at least once, and [17b]

- “If ((c ≠ null) and ((c ∈ tc_set) OR (c = = ei))) Then” is True (line 21) [17c]

- For [17a], A1 iterates over the outer While-Loop at least once if r1 ≠∅.

- For [17b], A1 iterates over the inner While-Loop at least once if r1 ≠∅.

- For [17c], the IF-Cond (line 21) is reached in one or more iterations in inner loop

- Let us consider the step in which we reach the statement in [17]

- ∃ A1a_set = πA1a (r1) (line 14)

- ∃ ei ∈ A1a_set, ∃ tc_set such that A1 (line 15-31)

1) initially sets tc_set to “π A1b (σA1a = e i (r1))”, and (line 17)

2) iteratively adds xj to tc_set for every xi in tc_set, (xi, xj) in r1, xj ∉ tc_set

and xj ≠ ei. (line 19-28)

 117

⇒ tc_set will contain all vertices/nodes directly or indirectly connected to ei until

we reach the last vertex or detect a cycle (e.g. if r1 = {(x1, x2), (x2, x3), (x3, x4),

(x5, x6)}, tc_set for ei=x1 will be {x2, x3, x4})

- (∃ ej, c) ((ej∈ tc_set) ∧ (c = GetFirstElement (π A1b(σA1a = e j(r1)))) (line 20)

- From [17c], “isAcyclic = False” when the following IF-Condition is true:

“((c ≠ null) and ((c ∈ tc_set) OR (c = = ei)))” (line 21)

⇒ either (ei = x1 ∧ ej = xn ∧ c = xi ∧ (x1 ∈ A1a_set) ∧ (xn, xi ∈ tc_set)), or [18]

 (ei = x1 ∧ ej = xn ∧ c = x1 ∧ (x1 ∈ A1a_set) ∧ (xn ∈ tc_set)) [19]

- For [18],

 ⇒ (∃ n, i) ((n > 2) ∧(1 < i < n) ∧ (∃ (x1, x2), (x2, x3), …, (xn-1, xn), (xn, xi) ∈ r1))

 ⇒ Contradiction with [16]. [20]

- For [19],

 ⇒ (∃ n > 1) (∃ (x1, x2), …, (xn-1, xn), (xn, x1) ∈ r1)

 ⇒ Contradiction with [15]. [21]

∴ ‘ii’ ⇒ ‘i’ holds (from [20] and [21]) [22]

∴ ‘i’ ⇔ ‘ii’ (from [14] and [22])

- End of Proof.

Lemma 4.8 (Pattern 1, Algorithm A1 isTrivial): Given an RDB binary relation r1 that

conforms to P1 (i.e. r1 in P1 = (R2, r2, R1, r1, IC1) from definition 4.4) and is acyclic, and

given algorithm A1 with isCandSymm = false in Line 12. The following are equivalent:

i) “isTrivial = false” in line 32 of A1 given r1, and

 118

ii) (∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3))

Proof:

To establish that ‘i’ and ‘ii’ in Lemma 4.8 are equivalent, we need to prove:

a. ‘i’ ⇒ ‘ii’

b. ‘ii’ ⇒ ‘i’

- From definition 4.4, R1={ (A1a : Dpk2) , (A1b : Dpk2) }

- From definition 4.4, r1 is 1:1 or M:1 (i.e. (x1, x2) ∈ r1 ∧ (x2 ≠ x3) ⇒ (x1, x3) ∉ r1) [1]

- Proof for ‘i’ ⇒ ‘ii’:

- Given ‘i’ (i.e. “isTrivial = False” in line 32 of A1),

- isTrivial is set to False only in line 25 in A1.

- Initially, isAcyclic = true and isTrivial = true (line 13 in A1)

- Assume ‘ii’ is false, ⇒ (¬ ∃ x1,x2, x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1 ≠ x3)))

 ⇒ Either (∀ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ⇒ (x1 = x3))), or [2]

 (¬ ∃ (x1, x2), (x2, x3) ∈ r1) [3]

- For [2],

 ⇒ (∀ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ⇒ (x1 = x3))

 ⇒ ∃ (x1, x2), (x2, x1) ∈ r1 ⇒ r1 is acyclic. Contradiction. [4]

- For [3],

⇒ (∀ x, y , z ∈ Dpk2) ((x, y) ∈ r1 ⇒ (y, x) ∉ r1 ∧ (y, z) ∉ r1)

⇒ (x1, y1), …, (xn, yn) ∈ r1 ⇒ (y1, a1), …, (yn, an) ∉ r1 ∧ a1, …, an ∈ Dpk2

⇒ {x1, x2, …, xn} ⊆ A1a_set (line 14)

⇒ Given r1 is acyclic, outer loop iterates over all elem. in A1a_set, including x1

 119

⇒ ei = x1 in an iteration in outer While-Loop (line 16-31) [5]

 ⇒ tc_set = {y1} (line 17)

 ⇒ ej = y1 in iteration 1 in inner While-Loop (line 19-28)

 ⇒ c = null (line 20)

 ⇒ “((c ≠ null) ∧ (c ∈ tc_set ∨ c == ei)” is false in IF-Cond. (line 21-23)

 ⇒ “(c ≠ null)” is false in IF-Cond. (line 23-26)

 ⇒ Exit inner While-Loop (line 19-28) [6]

⇒ Another iteration of outer loop is repeated (steps [5] to [6]) for every xi in

A1a_Set (1 < i ≤ n) with ei = xi, tc_set = {yi}, ej = yi. In every iteration, c = null.

 ⇒ “isTrivial = false” is never reached (line 25)

⇒ Exit outer While-Loop (line 16-31)

⇒ isTrivial = true (line 32). Contradiction. [7]

∴ ‘i’ ⇒ ‘ii’ holds (from [4] and [7]) [8]

- Proof for ‘ii’ ⇒ ‘i’:

- Given ‘ii’ (i.e. (∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)))

- Initially, isAcyclic =True and isTrivial = True outside both loops (line 13 in A1)

- Assume ‘i’ is false (i.e. “isTrivial = True” in line 32 in A1)

- Given r1 is acyclic, outer loop will iterate over all elem. in A1a_set, including x1

- A1a_set ⊇ {x1, x2, …} (line 14)

⇒ ei = x1 in an iteration in outer While-Loop (lines 16-31)

 ⇒ tc_set = {x2} (line 16)

 120

 ⇒ ej = x2 in iteration 1 in inner While-Loop (lines 19-28)

 ⇒ c = x3 (line 20)

 ⇒ “(c ≠ null) ∧ (c ∈ tc_set ∨ c == ei)” is false in IF-Cond. (lines 21-23)

 ⇒ (c ≠ null) is true in Else_IF-Cond (line23-26)

 ⇒ tc_set = {x2, x3} (line 24),

 ⇒ “isTrivial = false”. (line 25)

⇒ Repeat inner while-Loop for every ej in tc_set. (lines 19-28)

⇒ Repeat outer while-Loop for every ei in A1a_set. (lines 16-31)

⇒ We exit outer while-Loop with isTrivial = false. Contradiction

∴ ‘ii’ ⇒ ‘i’ holds [10]

∴ ‘i’ ⇔ ‘ii’ (from [9] and [10])

- End of Proof.

Theorem A1-T2: Algorithm A1 with input P1(R2, r2, R1, r1, IC1) and card(r1) = “1:1” or

“M:1” terminates and its output satisfies the following properties:

i) (∃ rrw) ((rrw is acyclic) ∧ (rrw is non-trivial) ∧ (rrw is transitive) ∧

 (r1 ∈ Encoding
Trans

 (rrw , P1)) ⇒ r1 is Candidate Transitive, and

ii) r1 is Candidate Transitive ⇒

(∃ rcon) ((rcon is acyclic) ∧ (rcon is non-trivial) ∧ (rcon is transitive) ∧

 (r1 ∈ Encoding
Trans

(rcon , P1)).

 121

Note that although rcon may not make sense in real world, rcon can be mathematically

constructed.

Proof A1-T2:

Termination Analysis: See Termination Analysis in Proof A1-T1.

Correctness Analysis: To prove the correctness of algorithm A1 w.r.t. theorem A1-T2, we

need to prove “i” and “ii” in Theorem A1-T2.

1) From Definition 4.12, “r1 is Candidate Transitive” is equivalent to algorithm A1

returning isCandTrans = True.

2) From algorithm A1, isCandTrans is set to True only in line 33. Therefore,

 “isCandTrans = True” ⇔ “isCandSymm=False” (line 12) and

 “isAcyclic = True” (line 32) and “isTrivial = False” (line 32)

3) From (1) and (2) above, we obtain

“r1 is Candidate Transitive” ⇔ “isAcyclic=True” ∧ “isTrivial=false” ∧

 “isCandSymm=False”

4) From Lemma 4.7c, we learned:

“isAcyclic = True” in A1 Line 32 given r1 ⇔ r1 is acyclic.

5) From Lemma 4.8, we learned:

“isTrivial = false” in A1 Line 32 given r1 is Acyclic ⇔

(∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)).

6) From [3], [4] and [5], we obtain:

 122

“r1 is Candidate Transitive” ⇔ “r1 is acyclic” ∧

 ((∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3))) ∧ “isCandSymm=False”.

7) From A1, “isCandSym = False” only if

(r1 is not 1:1) ∨ ((r1 is 1:1) ∧ ((πA1a(r1) ∩ πA1b(r1) ≠ ∅)

8) From Lemma 4.4, we learned:

(πA1a(r1) ∩ πA1b(r1) = ∅) ⇔ (∀ x,y,z ∈Dpk2) (((x,y) ∈ r1) ⇒ ((y,x) ∉ r1) ∧ ((y,z) ∉ r1))

⇒ ((πA1a(r1) ∩ πA1b(r1) ≠ ∅) ⇔ ((∃ x,y,z ∈ Dpk2) ((x,y), (y,x) ∈ r1 ∨ (x,y), (y,z) ∈ r1))

9) From [7] and [8], we obtain “isCandSym = False” if:

(r1 is not 1:1) ∨ ((r1 is 1:1) ∧ ((∃ x,y,z ∈ Dpk2) ((x,y), (y,x) ∈r1 ∨ (x,y), (y,z) ∈r1))

10) From [6] and [9], we obtain

“r1 is Candidate Transitive” ⇔

 (r1 is acyclic) ∧ (∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)) ∧

 ((r1 is not 1:1) ∨ ((r1 is 1:1) ∧ ((∃ x,y,z ∈ Dpk2) ((x,y), (y,x) ∈r1 ∨ (x,y), (y,z) ∈r1))))

⇔

((r1 is acyclic) ∧ (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3)) ∧ (r1 is not 1:1)) ∨

((r1 is acyclic) ∧ (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3)) ∧ (r1 is 1:1) ∧

((∃ x,y,z ∈ Dpk2) ((x,y), (y,x) ∈r1 ∨ (x,y), (y,z) ∈r1)))

11) We assert that (r1 is acyclic) ⇒ ((¬ ∃ x, y ∈ Dpk2) ((x, y), (y, x) ∈r1))

12) We assert that:

(∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3)) ⇔ (∃ x,y,z ∈ Dpk2) ((x,y), (y,z) ∈ r1)

13) From [10], [11] and [12], we obtain:

 123

“r1 is Candidate Transitive” ⇔

((r1 is acyclic) ∧ (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3)) ∧ (r1 is not 1:1)) ∨

((r1 is acyclic) ∧ (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3)) ∧ (r1 is 1:1))

⇔

(r1 is acyclic) ∧ (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3)) ∧

((r1 is not 1:1)∨ (r1 is 1:1))

⇔ (r1 is acyclic) ∧ (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3))

To prove ‘i’:

14) From Lemma 4.5, we learned:

 (∃ rrw) ((rrw is acyc.) ∧ (rrw is non-trivial) ∧ (rrw is trans.) ∧ (r1 ∈ Encoding
Trans

 (rrw , P1))

 ⇒ (r1 is acyclic) ∧ (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3))

15) From [13] and [14], we obtain:

 (∃ rrw) ((rrw is acyc.) ∧ (rrw is non-triv.) ∧ (rrw is trans.) ∧ (r1 ∈ Encoding
Trans

 (rrw , P1))

 ⇒ r1 is Candidate Transitive

 ∴ “i” holds

To prove ‘ii’:

16) From Lemma 4.6, we learned:

 (r1 is acyclic) ∧ (∃ x1,x2, x3 ∈ D pk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)) ⇒

 (∃ rcon) ((rcon is acyc.) ∧(rcon is non-triv.) ∧(rcon is trans.) ∧(r1 ∈ Encoding
Trans

(rcon , P1))

17) From [13] and [16], we obtain:

 “r1 is Candidate Transitive” ⇒

 124

(∃ rcon) ((rcon is acyc.) ∧(rcon is non-triv.) ∧(rcon is trans.) ∧(r1 ∈ Encoding
Trans

(rcon , P1))

 ∴ “ii” holds

18) ∴ Algorithm A1 is correct w.r.t. to ‘i' and ‘ii’ (per [15] and [17])

- End of Proof.

4.6.2.2. Identifying Candidate Symmetry and Candidate Transitivity for Pattern 2

This section presents Algorithm A2, which addresses candidate symmetry and

candidate transitivity for binary relations that conform to Pattern 2 (definitions 4.5).

 125

Algorithm A2 (Pattern 2 – Candidate Symmetric & Transitive):

01 Input: P2 (R2, r2, R1, r1, IC2), card (r1)

02 Output: isCandSymm (Boolean), isCandTrans (Boolean)

03 Begin-Steps
04 //R1 (from Pattern 2) has two sets of attributes: A1a and A1b
05 Let isCandSymm = isCandTrans = false

06 Let result_set = r1 ((r1.A1a = tx.A1b) and (r1.A1b = tx.A1a))
 ρ tx (r1)

07 If (result_set = = ∅) Then
08 isCandSymm = true
09 Let isTransMin = isAcyclic = isTrivial = true
10 isAcyclic = CheckAcyclic(1) (r1)
11 If (isAcyclic) Then

12 Let A1a_set = π A1a (r1)

13 Let ei = GetElement(2) (A1a_set)

14 While (ei ≠ null) and (isTransMin) Do

15 Let processed_tuples = σA1a = ei (r1)

16 Let ei_direct = tc_set = π A1b (processed_tuples)

17 While ((isTransMin) and ((∃ (b,c) ∈ r1) (b ∈ tc_set ∩ A1a_set) and
 ((b, c) ∉ processed_tuples)) Do
18 processed_tuples = processed_tuples ∪ {(b, c)}
19 If (c ∈ ei_direct) Then
20 isTransMin = false
21 Else
22 tc_set = tc_set ∪ {c}
23 isTrivial = false
24 End_If_Else
25 End_While //((isTransMin) and …)
26 ei = GetElement(2) (A1a_set)
27 End_While (ei ≠ null and …)
28 If (isTransMin) and (isTrivial = = false) Then
29 isCandTrans = true
30 End_If
31 End_If //(isAcyclic)
32 End_If //(result_set = = ∅)
33 End-Steps

(1) CheckAcyclic

(): A function that returns true if the given binary relation is acyclic and false otherwise.

(2) GetElement

(): A function that takes a set as an input and returns an element that has not been

processed or null otherwise. It marks returned element as processed.

 126

Lemma 4.9 (Pattern 2 & Transitive Encoding - 1): Given an RDB binary relation r1

that conforms to P2 (i.e. r1 in P2 = (R2, r2, R1, r1, IC2) from definition 4.5) and a real world

acyclic non-trivial transitive binary relation rrw (definition 4.10). If r1 ∈ Encoding
Trans

(rrw, P2), then:

i) r1 is acyclic,

ii) (∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)), and

iii) r1 is minimal w.r.t. transitivity.

Proof:

- The proof for (i) and (ii) is similar to the proof presented for Lemma 4.5.

- For (iii), r1 is minimal w.r.t. transitivity by the definition of Transitive Encoding

(definition 4.10).

Lemma 4.10 (Pattern 2 & Transitive Encoding - 2): Given an RDB binary relation r1

that conforms to P2 (i.e. r1 in P2 = (R2, r2, R1, r1, IC2)) and satisfies:

i) r1 is acyclic,

ii) (∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)), and

iii) r1 is minimal w.r.t. transitivity.

For such r1, we can construct an acyclic non-trivial transitive relation rcon such that

r1 ∈ Encoding
Trans

(rcon , P2).

 Unlike a real world binary relation rrw, a binary relation rcon is mathematically

constructed and might not make sense in the real world.

Proof:

- We construct rcon as the transitive closure of r1 (i.e. rcon = (r1)
+
Trans

)

- The proof for (i) and (ii) is similar to the proof presented for Lemma 4.6.

 127

- For (iii) and by the definition of Transitive Encoding, r1 is minimal w.r.t. transitivity.

Lemma 4.11a (Pattern 2, Algorithm A2, isTransMin - 1): Given an RDB binary

relation r1 that conforms to P2 (i.e. r1 in P2 = (R2, r2, R1, r1, IC2) from definition 4.5) and

(∃ x1, …, xn ∈ Dpk2 ∧ n > 2) ((x1, x2), …, (xn-1, xn) ∈ r1 ∧ (x1, xn) ∈ r1) with x1, …, xn as

distinct elements, and given algorithm A2 with “result_set = ∅” in Line 7, “isAcyclic =

True” in Line 11 and ei = x1 in Line 13. We make the following assertions in the inner

While-Loop header (line 17):

i. isTransMin ⇔ (¬ ∃ (x1 = ei,x2),…,(xn-1,xn), (x1,xn) ∈ processed_tuples ∧ n > 2)

ii. (∀ b ∈ tc_set) (∃ x1=ei, x2, …, xn = b ∈ Dpk2 ∧ n ≥ 2)

((x1, x2),…,(xn-1, xn) ∈ processed_tuples ∧ x2, …, xn ∈ tc_set)

Proof:

- It is given (∃ x1, …, xn ∈ Dpk2 ∧ n > 2) ((x1,x2), …, (xn-1,xn), (x1, xn) ∈ r1) ∧ ei = x1 [1]

- IsTransMin = True (line 9 in A2)

- From [1], ei = x1 (line 13)

- From isTransMin = True and ei ≠ null, A2 enters outer While-Loop (lines 14-27)

⇒ From processed_tuples = σA1a = x1 (r1) (line 15)

⇒ From ∃ (x1,x2), (x1, xn) ∈ r1 in [1], processed_tuples ≠ null.

- Let us assume processed_tuples = {(ei, yk)}, where (ei, yk) ∈ r1 ∧ 1 ≤ k ≤ m

⇒ ei_dir = tc_set = {y1, …, ym} (line 16)

- Initialization Step:

- isTransMin = True (line 9)

 128

- processed_tuples = {(ei, yk)}, k = 1, …, m (line 15)

- From isAscyclic=true (given) and processed_tuples = {(ei, yk)}, ei ∉ {yk}

⇒ ¬ ∃ (x1,x2),…,(xn-1,xn), (x1,xn) ∈ processed_tuples ∧ n > 2

⇒ ‘i’ holds

- ∀ b ∈ tc_set ⇒ b ∈ {yk} ⇒ ∃ (x1=ei, x2= yk) ∈ processed_tuples

⇒ ‘ii’ holds

∴ Lemma 4.11a holds for initialization step [2]

- Induction Step:

- Assume at step k, ‘i’ and ‘ii’ hold at line 17.

- If isTransMin = false or (¬ ∃ (b, c) ∈ r1) (b ∈ (tc_set ∩ A1a_set) ∧

 (b, c) ∉ processed_tuple), inner while loop ends

- If isTransMin = True and (∃ (b, c) ∈ r1) (b ∈ (tc_set ∩ A1a_set) ∧

 (b, c) ∉ processed_tuple), A2 executes inner while-loop (lines 17-25) [3]

- processed_tuplesk+1 = processed_tuples k ∪ {(b, c)} (line 18)

- if (c ∈ ei_direct) (lines 19-21) ⇒ (x1, c) ∈ processed_tuplesk+1

⇒ isTransMin = False (line 20)

⇒ End of inner while-loop (line 25)

⇒ tc_setk+1 = tc_setk

⇒ From [3] and tc_setk+1 = tc_setk ,

⇒ b ∈ tc_setk+1 ∧ (∃ x1 = ei, x2, …, xn = b ∈ Dpk2 ∧n ≥ 2) ((x2, …, xn ∈ tc_setk+1) ∧

 (x1=ei, x2),…,(xn-1,xn=b), (b, c) ∈ processed_tuplesk+1 ∧

 129

 (x1, c) ∈ processed_tuplesk+1) ∧ isTransMin = False

⇒ ‘i’ is true [4]

- From tc_setk+1 = tc_setk,

⇒ ∀ b ∈ tc_setk+1, b ∈ tc_setk

⇒ (∃ x1=ei, x2, …, xn = b ∈ Dpk2 ∧ n ≥ 2) ((x1, x2),…,(xn-1, xn) ∈ processed_tuplesk+1 ∧

 x2, …, xn ∈ tc_setk+1)

⇒ ‘ii’ is true [5]

- if (c ∉ ei_direct) (lines 21-24)

 ⇒ (x1, c) ∉ processed_tuplesk+1 ⇒ From Initialization step, (x1, c) ∉ r1

⇒ From loop header, (b,c) ∉ processed_tuplek ⇒ (b, c) ≠ (x1, c)

- tc_setk+1 = tc_setk ∪ {(c)} (line 22)

⇒ End of inner while-loop (line 25)

- From [3],

isTransMin=True and (∃ (b,c) ∈r1) (b ∈ (tc_set ∩ A1a_set) ∧ (b,c) ∉ processed_tuple)

⇒ From step k, (b ∈ tc_setk) ∧ (∀ b ∈ tc_setk) (∃ x1=ei, x2, …, xn = b ∈ Dpk2 ∧ n ≥ 2)

(∃ (x1, x2),…, (xn-1, xn) ∈ processed_tuplesk ∧ x2, …, xn= b ∈ tc_setk)

⇒ For next iteration (line 17)

 - isTransMin = True ∧ c ∈ tc_setk+1 ∧ (b,c) ∈ processed_tuplesk+1 ∧

 (x1,c) ∉ processed_tuplesk+1 [6]

 ⇒(¬ ∃ (x1=ei, x2), …, (xn-1, xn=b), (xn, c), (x1, c) ∈ processed_tuplesk+1 ∧ n > 2)

 ⇒ ‘i’ is true [7]

 130

⇒ ∀ b ∈ tc_setk+1, (∃ x1=ei, x2,…, xn=b ∈ Dpk2 ∧ n ≥ 2)

 ((x1, x2),…,(xn-1, xn=b) ∈ processed_tuplesk+1 ∧ x2, …, xn ∈ tc_setk+1)

⇒ ‘ii’ is true [8]

∴ Lemma 4.11a holds (from [4], [5], [7] and [8])

- End of Proof.

Lemma 4.11b (Pattern 2, Algorithm A2, isTransMin - 2): Given an RDB binary

relation r1 that conforms to P2 (i.e. r1 in P2 = (R2, r2, R1, r1, IC2) from definition 4.5) and

given algorithm A2 with “result_set = ∅” in line 7 and “isAcyclic = True” in Line 11.

The following are equivalent:

i) isTransMin is True in line 28 of A2 given r1, and

ii) r1 is minimum w.r.t. transitivity.

Proof:

To establish that ‘i’ and ‘ii’ in Lemma 4.11b are equivalent, we need to prove:

a. ‘i’ ⇒ ‘ii’

b. ‘ii’ ⇒ ‘i’

- From definition 4.5, R1={ (A1a : Dpk2) , (A1b : Dpk2) }

- Proof for ‘i’ ⇒ ‘ii’:

- Given ‘i’ (i.e. “isTransMin = True” in line 28 of A2),

- Assume ‘ii’ is false (i.e. r1 is not minimum w.r.t. transitivity)

⇒ (∃ (xi, xj) ∈ r1) ((r1 – {(xi, xj)}) +
Trans

= (r1)
+
Trans

)

 131

⇒ (∃ x1,…,xn∈Dpk2 ∧ n >2) ((x1,x2),…,(xn-1,xn),(x1,xn)∈ r1) ∧ x1,…, xn are distinct [1]

- It is given that “result_set = ∅” in line 7

⇒ isTransMin = True (line 9 in A2)

- It is given that “isAcyclic = True” in line 11

- From [1], { x1,…,xn-1} ⊆ π A1a (r1)

⇒ {x1,…,xn-1} ⊆ A1a_set (line 12)

⇒ ei = getElement (A1a_set) ⇒ ei ∈ {x1,…,xn-1} ⇒ ei ≠ null (line 13)

- From isTransMin = True and ei ≠ null,

⇒ A2 outer while-loop will execute at least once (lines 14-27)

⇒ The outer while-loop will exit when either:

 - isTransMin = False ⇒ Contradiction [2]

 - we iterate over all ei ∈ A1a_set, including ei = x1 [3]

- For [3] and ei = x1,

- From Lemma 4.11a, we proved that the following assertions in line 17 hold:

- isTransMin ⇔ (¬∃ (x1=ei,x2),…,(xn-1,xn), (x1,xn) ∈ processed_tuples ∧ n >2) [4]

 - (∀ b ∈ tc_set) (∃ x1=ei, x2, …, xn = b ∈ Dpk2 ∧ n ≥ 2)

 ((x1, x2),…,(xn-1, xn) ∈ processed_tuples ∧ x2, …, xn ∈ tc_set)) [5]

- Given [1], [4] and ei = x1, isTransMin = False

⇒ Algorithm A2 exits inner While-Loop with isTransMin = False (Lines 17-25)

⇒ Algorithm A2 exits outer While-Loop with isTransMin = False (Lines 14-27)

⇒ isTransMin = False in Line 28. Contradiction. [6]

 132

∴ ‘i’ ⇒ ‘ii’ holds (from [2] and [6]) [7]

- Proof for ‘ii’ ⇒ ‘i’:

- Given ‘ii’ (i.e. r1 is minimum w.r.t. transitivity),

⇒ (¬ ∃ (xi, xj) ∈ r1) ((r1 – {(xi, xj)}) +
Trans

= (r1)
+
Trans

)

⇒ (∀ n > 2) (¬ ∃ (x1, x2), …, (xn-1, xn), (x1, xn) ∈ r1 [8]

- Assume ‘i’ is false (i.e. “isTransMin = False” in line 28 in A2)

- In A2, isTransMin is set to False in line 20

⇒ Execution reached the statement “isTransMin = False” in line (20).

⇒ From [4] and given [8], isTransMin = True. Contradiction.

∴ ‘ii’ ⇒ ‘i’ holds [9]

∴ ‘i’ ⇔ ‘ii’ (from [7] and [9])

- End of Proof.

Theorem A2-T3: Algorithm A2 with input P2(R2, r2, R1, r1, IC2) and card(r1) = “N:M”

terminates and its output satisfies the following properties:

i) (∃ rrw) ((rrw is N:M) ∧ (rrw is symmetric) ∧ (r1 ∈ Encoding
Symm

 (rrw , P2))) ⇒

r1 is Candidate Symmetric, and

ii) r1 is Candidate Symmetric ⇒

(∃ rcon) ((rcon is N:M) ∧ (rcon is symmetric) ∧ (r1 ∈ Encoding
Symm

(rcon , P2))).

Note that although rcon may not make sense in real world, rcon can be mathematically

constructed.

 133

Proof A2-T3:

Termination Analysis: Algorithm A2 is composed of two sections: lines 5-6 (first section)

and lines 7-32 (second section). When A2 is invoked, it executes the first section and

optionally executes the second section depending on the outcome from the first. Thus,

asserting that A2 terminates requires a proof that each section terminates.

The first section terminates because it is a sequence of statement without any

loop, and the query operators used in line 6 are part of the DBMS with well defined and

tested behavior. Therefore, section one will terminate for any given input.

The second section is processed only if the result_set computed in the first section

(line 6) is empty. The second section terminates only if the external function isAcyclic()

(line 10), outer loop (lines 14-27) and inner loop (lines 17-25) terminate. We assert that

the external isAsyclic() function is implemented to terminate for any given input.

The outer loop is a While loop that terminates either when “ei = null” or

“isTransMin = False”. The former condition in the outer loop does not involve any risk

because ei obtains values from a finite set (A1a_set) before the loop (line 13) and within

the loop (line 26) using the GetElement() function; moreover, GetElement() returns only

the A1a_set values that have not been processed. A1a_set is populated with values from

column A1a in r1 before the loop and does not expand within the loop.

The inner loop terminates either when “isTransMin = False”, or when A2 iterates

over all tuples (b, c) in r1 such that b is a value in both tc_set and A1a sets and (b, c) has

not been processed in the inner loop for the given ei value. The latter condition deals with

3 sets: A1a, tc_set, and processed_tuples, all of which are finite; A1a is a set of values

 134

from A1a column in r1, tc_set contains elements (from A1b in r1) that are directly or

indirectly connected to the given ei value (from the outer loop), and processed_tuples

contains tuples (b, c) that have been processed for the given ei value. Therefore,

algorithm A2 terminates regardless of the given input.

Correctness Analysis: To prove the correctness of algorithm A2 w.r.t. theorem A2-T3, we

need to prove “i” and “ii” in Theorem A2-T3:

1) In algorithm A2, isCandSymm is set to True only in line 8:

“isCandSymm = True” ⇔ If-Cond in line 7 is True

 ⇔ “r1 ((r1.A1a = tx.A1b) and (r1.A1b = tx.A1a))
 ρ tx (r1) = ∅”

2) From Definition 4.11, “r1 is Candidate Symmetric” is equivalent to algorithm A2

returning isCandSymm=True.

3) From (1) and (2) above, we obtain

‘r1 is Candidate Symmetric’ ⇔ ‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
 ρ tx (r1) = ∅’

4) The query ‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
 ρ tx (r1)’ in line 6 uses a theta

join to find tuples that violate the symmetric minimality principle (i.e. it finds if ∃

(x,y), (y, x) ∈ r1). An empty result set returned by this query indicates that there are

no such tuples (i.e. ¬ ∃ (x,y), (y, x) ∈ r1). The existence of at least one tuple in the

result set is deemed sufficient to declare r1 as not minimal w.r.t. symmetry.

5) From (4), we assert:

 135

‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
ρ tx(r1) = ∅’ ⇔ r1 is minimal w.r.t. symmetry

- To prove ‘i’,

A.1) Given (∃ rrw) ((rrw is N:M) ∧ (rrw is symmetric) ∧ (r1∈ Encoding
Symm

(rrw , P2))),

A.2) Assume ‘r1 is Candidate Symmetric’ is false (i.e. algorithm A2 did not return

isCandSym = True per definition 4.11),

A.3) ⇒ ‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
ρ tx(r1) = ∅’ is false (line 7),

A.4) ⇒ From (5), r1 is not minimal w.r.t. symmetry.

A.5) ⇒ Per definition 4.7, r1∉ Encoding
Symm

(rrw , P2). Contradiction.

A.6) ∴ ‘i’ holds

- To prove ‘ii’,

B.1) Given “r1 is Candidate Symmetric”, assume

“(∃ rcon) ((rcon is N:M) ∧ (rcon is symm.) ∧ (r1 ∈ Encoding
Symm

(rcon , P2)))” is false.

B.2) We construct rcon as the symmetric closure of r1 (i.e. rcon = (r1)
+

Symm)

B.3) ⇒ “rcon is N:M” is true (from r1 is N:M and r1 ⊆ rcon).

B.4) ⇒ “rcon is symmetric” is true (from rcon = (r1)
+

Symm).

B.5) ⇒ For “r1 ∈ Encoding
Symm

(rcon , P2)” is false,

B.6) ⇒ r1 is not minimal w.r.t. symmetry and P2,

B.7) ⇒ ‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
ρ tx(r1) = ∅’ is false.

B.8) ⇒ IF-Condition block (lines 7-32) is not executed

B.9) ⇒ The statement “isCandSymm = True” (line 8) is not reached

B.10) ⇒ isCandSymm remains False.

B.11) ⇒ “r1 is Candidate Symmetric” is false (from (2) and B.10). Contradiction.

B.12) ∴ ‘ii’ holds

- ∴ Algorithm A2 is correct w.r.t. to ‘i' and ‘ii’ (per A.6 and B.12)

- End of Proof.

 136

Theorem A2-T4: Algorithm A2 with input P2(R2, r2, R1, r1, IC2) and card(r1) = “N:M”

terminates and its output satisfies the following properties:

i) (∃ rrw) ((rrw is acyclic) ∧ (rrw is non-trivial) ∧ (rrw is transitive) ∧

 (r1 ∈ Encoding
Trans

 (rrw , P2)) ⇒ r1 is Candidate Transitive, and

ii) r1 is Candidate Transitive ⇒

(∃ rcon) ((rcon is acyclic) ∧ (rcon is non-trivial) ∧ (rcon is transitive) ∧

 (r1 ∈ Encoding
Trans

(rcon , P2)).

Although rcon may not make sense in real world, rcon can be mathematically constructed.

Proof A2-T4:

Termination Analysis: See Termination Analysis in Proof A2-T3.

Correctness Analysis: To prove the correctness of algorithm A2 w.r.t. theorem A2-T4, we

need to prove “i” and “ii” in Theorem A2-T4:

1) From Definition 4.12, “r1 is Candidate Transitive” is equivalent to algorithm A2

returning isCandTrans = True.

2) From algorithm A2, isCandTrans is set to True (line 29) only when

‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
ρ tx(r1) = ∅’ is true (lines 06-07), isAcyclic is

true (line 11), isTransMin is true (line 28) and isTrivial is False (line 28). Otherwise,

isCandTrans is False (line 05).

3) From (1) and (2) above, we obtain

“r1 is Candidate Transitive” ⇔ “isAcyclic=True” ∧ “isTransMin=True” ∧

“isTrivial=False” ∧ “ ‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
ρ tx(r1) = ∅’ is true”

 137

4) We assert that the external checkAcyclic() function returns true if r1 is acyclic (line

10). The flag/variable isAcyclic holds the output from checkAcyclic(). Therefore,

“isAcyclic = True” in A2 Line 10 given r1 ⇔ r1 is acyclic.

5) We assert that

r1 is Acyclic ⇒ ‘r1 ((r1.A1a=tx.A1b) and (r1.A1b=tx.A1a))
ρ tx(r1) = ∅’ is true”

6) From [3], [4] and [5], we obtain:

“r1 is Candidate Transitive” ⇔ “r1 is acyclic” ∧ “isTransMin=True” ∧ “isTrivial=False”

7) From Lemma 4.11b, we learned:

“isTransMin = True” in A2 Line 28 given r1 ⇔ r1 is minimal w.r.t. transitivity.

8) Similar to Lemma 4.8, we assert

“isTrivial = False” in A2 Line 28 given r1 ⇔

(∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)).

9) From [6], [7] and [8], we obtain:

“r1 is Candidate Transitive” ⇔ “r1 is acyclic” ∧ “r1 is minimal w.r.t. transitivity” ∧

 ((∃ x1,x2, x3 ∈ Dpk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)))

10) From Lemma 4.9, we learned:

r1 ∈ Encoding
Trans

 (rrw , P2) ⇒ (r1 is acyclic) ∧ (r1 is minimal w.r.t. transitivity) ∧

 (∃ x1,x2,x3 ∈ Dpk2) ((x1,x2), (x2,x3) ∈ r1 ∧ (x1≠ x3))

11) From [9] and [10], we obtain:

 r1 ∈ Encoding
Trans

 (rrw , P2) ⇒ “r1 is Candidate Transitive”

 ∴ “i” holds

12) From Lemma 4.10, we learned:

 138

(r1 is acyclic) ∧ (∃ x1,x2, x3 ∈ D pk2) ((x1, x2), (x2, x3) ∈ r1 ∧ (x1 ≠ x3)) ∧

 (r1 is minimal w.r.t. transitivity) ⇒ r1 ∈ Encoding
Trans

(rcon , P2).

13) From [9] and [12], we obtain:

 “r1 is Candidate Transitive” ⇒ r1 ∈ Encoding
Trans

(rcon , P2)

 ∴ “ii” holds

14) ∴ Algorithm A2 is correct w.r.t. to ‘i' and ‘ii’ (per [11] and [13])

- End of Proof.

4.7. Summary

Binary relations exist in various real-life scenarios. Some of these relations exhibit

characteristics such as symmetry and/or transitivity. With DBMS(s) lacking the explicit

support for symmetric and transitive binary relations, database designers typically rely on

data modeling patterns to capture them. Using these patterns, such databases can avoid

common modeling pitfalls associated with data inconsistency and storage overage.

Since ontology languages (e.g. OWL) provide the grammar to annotate binary

relations as symmetric and/or transitive, and given the business value for semi-

automating the generation of explicit ontology models, I investigated in this research

methods to identify binary relations in relational databases that are likely to be symmetric

or transitive. Identifying such relations required detecting certain structural patterns, and

in some cases analyzing data instances. Similar to other data analysis methods in

DM2ONT, the identification methods here take into account the number of data instances

supporting the finding and process only those that pass a confidence threshold.

 139

CHAPTER 5: Heuristic Methodology to Measure the Relative

Explicitness of Ontology Models

5.1. Introduction

Ontology evaluation addresses the problem of assessing ontology models from the

standpoint of a particular criterion, typically to determine which model better suits a

specific purpose [15]. Given the rapid progress in ontologies development and their use

in information systems in recent years, several approaches have been proposed to

evaluate them. Generally speaking, these approaches evaluate ontologies by assessing the

formal properties of the knowledge representation language, reviewing the ontology

against application use cases or domain requirements, examining the ontology using

design guidelines, or aligning the ontology with other models (e.g. a reference ontology

model) [15] [66]. In order to gain a better sense of the ontology’s content, and depending

on the context and availability of resources, one or more evaluation criteria can be used.

Although some of the existing methods produce formal measurements, apparently none

has measured the explicitness of one ontology model in comparison to another. In this

context, an ontology model is considered relatively more explicit about the domain if it

contains more relevant axioms than the other model.

 140

When evaluating similar ontology models -- whether two ontology models

produced by different agents to describe the same subject-area or different versions of the

same ontology model -- there is often a need to measure the explicitness of one model

compared to another. This measure can be used in conjunction with other evaluation

methods to assess the ontology models, say to select which one is more suited for the

domain. For the explicitness evaluation to be meaningful, it needs to take into account

only the axioms that are relevant; i.e. those that are both valid and valuable for the

domain. The validity of axioms can be established by comparing them against a reference

ontology, domain requirements, or ontology design guidelines. On the other hand, the

value added by an axiom can be determined by assigning weights to the different types of

axioms depending on their significance in the domain.

Unlike other ontology evaluation approaches, this methodology expects the

ontology entities that are being compared to represent the same real-world entity but

differ only in their characteristics. Therefore, our aim is to provide a formal measure that

could assist in determining the degree by which these similar entities differ or match one

another. In our methodology, we therefore establish correspondence between entities

before measuring the explicitness.

Here, we present a heuristic methodology that measures the relative explicitness

of an ontology model in comparison to another. The methodology in its general form

allows comparing the explicitness of two domain ontology models, or it can be

specialized to measure the explicitness of a domain ontology model against a reference

ontology. Although there is not formal and widely accepted definition for what

 141

constitutes reference ontology, here we adapt Burgun’s definition in [19] and view

reference ontology as one that i) represents knowledge about a particular domain, ii) is

independent from specific purpose, and iii) describes the domain in comprehensive and

adequate manner.

In the next section, we will discuss related work. Next, we will formally define

ontology models for our methodology, and follow it by describing the main phases

involved in the methodology. Subsequently, we present a case study using a fragment of

simple ontology models generated by two tools that translate Relational Database (RDB)

models into ontology models [3] [65].

5.2. Related Work

Over the years, various authors have investigated ontology evaluation in an attempt to

provide a means to assess the quality of ontologies. Obrst et al [66] and Brank et al [15]

provided surveys on existing evaluation methods. Both authors advocated advancing the

field in a sound and systematic manner in order to transform ontology engineering into a

scientific discipline. Obrst et al discussed five different criteria for evaluating ontologies:

1) assessing the expressivity and other formal properties of the ontology representation

language, 2) evaluating the ontology against use cases and domain requirements, 3)

measuring semantic agreement among domain experts, 4) comparing ontologies using

semantic similarity and distance methods, and 5) performing alignment with other

ontologies. Similarly, Brank et al classified existing methods into one of four categories:

1) methods that compare the ontology against “gold-standard”, 2) methods that use the

 142

ontology in an application context and evaluate the result, 3) methods that evaluate the

ontology using domain data (e.g. corpus), and 4) methods that rely on human assessing

the ontology using predefined criteria, requirements, etc.

Measuring similarity among ontologies is often considered part of evaluating

ontologies. In Maedche and Staab [59], the authors focused on evaluating the vocabulary

in the new ontology with that in a reference model, where the emphasis is on the lexical

similarities between the terms found in these models. However, Maedche and Staab’s

method neither takes into account certain axioms (e.g. restrictions) nor measures the

difference in explicitness between ontologies. Euzenat and Valtchev [35], on the other

hand, measured similarity between two OWL-Lite ontologies using ontology alignment

techniques (e.g. finding equivalence/subsumption relationships between models).

Although they considered most of the features in OWL-Lite when conducting the

comparison, their method is better suited for comparing ontologies when the match

between constructs is unknown. Unlike their method, our methodology establishes

correspondence between a pair of ontology entities in the matching step before measuring

the difference in explicitness between the pair of matched entities.

A method which evaluates one or more ontology models by comparing them

using domain data was proposed by Brewster et al [16]. In their method, they proposed a

three-step process to address the evaluation: 1) identify keywords/terms in the ontologies

and a corpus using clustering techniques, 2) perform term expansions using a lexical

database (e.g. WordNet), 3) conduct mapping between terms. Unlike our method

however, they focused only on classes and relationships names.

 143

More comprehensive methods were proposed by Burton-Jones et al [20] and most

recently by Park et al [67]. In Burton-Jones et al, the authors proposed a suite of metrics

for evaluating the overall quality of ontologies based on semiotic theory. The suite

consists of several criteria: Syntactic, Semantic, Pragmatic, and Social. In their method,

they measured the overall quality by summing the weighted scale of each metric. Park et

al [67] proposed a method based on Burton-Jones framework. Park et al, however,

disregarded the Social aspect; moreover, they validated their method using four different

tools, and concluded that these tools lacked the ability to automate the knowledge

extraction process. Although these methods assessed the overall quality of one or more

ontologies, neither measured the explicitness of one ontology entity over another.

5.3. Definition of an Ontology Model

The methodology to measure explicitness adheres to the ontology model definition

presented in this section. This definition provides a layer of abstraction over ontology

representation languages (e.g. OWL, RDFS, etc.), which will allow the methodology to

be applied to ontology models even when they use different representation languages.

Here, an ontology model is defined as a set of ontology classes. Formally, let m be

an ontology model: m = {c1, c2, …, cn}, where ci (1 ≤ i ≤ n) is an ontology class.

An ontology class is defined as a structure that has a name/label, a set of data-type

properties, a set of object properties, and a set of super-class names (to identify the super-

classes to which this class is a specialization of). Formally, let ci be an ontology class in

 144

the ontology model m: ci = (nci , DP(ci), OP(ci), SC(ci)), where nci is a name that

uniquely identifies class ci (e.g. URI) within ontology model m.

A set of data-type properties is defined formally as follows: Let DP(ci) be the set

of data-type properties attached to class ci: DP(ci) = {dpi-1, dpi-2, … , dpi-ni }, where dpi-j

(1 ≤ j ≤ ni) is a data-type property in the class ci. Similarly, a set of object properties is

defined as follows: Let OP(ci) be the set of object properties that are attached to class ci:

OP(ci) = {opi-1, opi-2, … , opi-mi
 }, where opi-j (1 ≤ j ≤ mi) is an object property in the class

ci. Also, a set of super-classes is defined as a collection of names for the classes identified

as super-classes of a particular class. Formally, let SC(ci) be the set of super-class names

for class ci: SC(ci) = {nc1,nc2,…,ncqi
 }, where ncj (1 ≤ j ≤ qi) is a name of another

ontology class (say cj) that serves as a super-class for class ci -- whose name is nci -- and

ncj ≠ nci (to prevent direct circular references).

A data-type property is defined as a structure that has a name/label, a data-type,

and a set of data-type property restrictions. Formally, let dpi-j be a data-type property in

the set DP(ci): dpi-j = (ndpi-j , dti-j , DPR(dpi-j)), where ndpi-j is a unique name within the

ontology model m, dti-j is the data type for dpi-j (drawn from a finite set of data types; e.g.

XML Schema simple types), and DPR(dpi-j) is a set of data-type property restrictions as

defined later in this section. In a similar manner, an object property is defined as a

structure that has a name, a target ontology class, and a set of object property restrictions.

Formally, let opi-j be an object property in the set OP(ci): opi-j =(nopi-j ,t-nci-j ,OPR(opi-j)),

where nopi-j is a unique name in the ontology model m, t-nci-j is the name of the target

 145

class where t-nci-j =nck (nck is the name of class ck) or t-nci-j =nci (i.e. recursive relation),

and OPR (opi-j) is a set of object property restrictions as defined later in this section.

A data-type property restriction set is defined as a collection of restrictions that

applies to a specific data-type property in a class. Formally, let DPR(dpi-j) be the set of

data-type property restrictions for data-type property dpi-j : DPR(dpi-j) = {dpri-j-1 , dpri-j-2,

… , dpri-j-ni-j
}, where dpri-j-k (1 ≤ k ≤ ni-j) is a data-type property restriction in data-type

property dpi-j. Similarly, an object property restriction set is defined as follows: Let

OPR(opi-j) be the set of object property restrictions for object property opi-j: OPR(opi-j) =

{opri-j-1 , opri-j-2 , … , opri-j-mi-j
}, where opri-j-k (1 ≤ k ≤ mi-j) is an object property

restriction in object property opi-j.

A data-type property restriction is defined as a structure that has a restriction type

and possibly restriction value(s). Formally, let dpri-j-k be a data-type property restriction

in the data-type property restriction set DPR(dpi-j): dpri-j-k = (dprti-j-k , dprvi-j-k), where

dprti-j-k ∈ {restricted-values, lower-bound-cardinality, upper-bound-cardinality,

functional, inverse-functional}, and dprvi-j-k is either null or value(s) suitable for the

associated restriction type.

Finally, an object property restriction is defined as a structure that has an object

property restriction type and possibly restriction value(s). Formally, let opri-j-k be an

object property restriction in the set of object property restrictions OPR(opi-j): opri-j-k =

(oprti-j-k , oprvi-j-k), where oprti-j-k ∈ {transitive, symmetric, lower-bound-cardinality,

upper-bound-cardinality, functional}, and oprvi-j-k is either null or a value suitable for the

associated restriction type.

 146

5.4. Methodology to Measure Explicitness

In this heuristic methodology, we measure the relative explicitness of two ontology

models that describe the same subject-area by 1) eliminating erroneous and extraneous

axioms from both models, 2) matching axioms across models, and 3) computing the

difference. Figure 10 depicts the phases and artifacts in the methodology.

In this methodology, we compute the difference in explicitness between two

ontology entities by designating one of them as an anchor and computing a real-valued

measure ranging between positive/negative one inclusive [-1 … 1]. An ontology entity

can be an ontology model, class, or property. The anchor entity is considered relatively

more explicit than the non-anchor entity when the computed measure is positive, equally

explicit when the measure is zero, and less explicit when negative. The higher the value,

the more explicit the anchor entity is. In the general form of the methodology, the two

ontology entities can be from two domain ontology models generated by different agents.

In the specialized form, the explicitness of an ontology entity from a domain ontology

Cleansing Matching

Ontology –

Model-2

Ontology-

Model-1

Explicitness

Computation

Lexical DB

(e.g. WordNet)

Explicitness

Measure
Enterprise

Dictionary
Reference Ontology /

Domain Requirements

Design

Guidelines

Figure 10: Methodology to measure explicitness between two Ontology models

 147

model can be compared against an entity from a reference ontology by designating the

latter as the anchor.

5.4.1. Cleansing Phase

In this phase, the input ontology models for which explicitness is to be measured will be

compared against a reference ontology, domain requirements, or ontology design

guidelines. The aim here is to eliminate all invalid or redundant axioms (i.e. false-

positives) from the input models. Intuitively, the reference ontology and domain

requirements are considered the gold-standard containing all the true-positive axioms.

Axioms in the input models are discarded if they do not have a corresponding axiom in

the reference ontology or domain requirements. In the absence of a reference ontology or

domain requirements, design guidelines can be used to purge any axioms that are deemed

invalid or redundant. Design guidelines may include eliminating data-type properties if

the same facts are conveyed by object properties, or purging axioms if they are invalid

(e.g. upper-bound-cardinality < 1, lower-bound-cardinality < 0) or redundant (e.g.

removing upper-bound-cardinality=1 when a property is also set as functional). The result

of this phase will be two semantically valid ontology models.

5.4.2. Matching Phase

Ontology matching, which is also known as ontology mapping, is part of an active

research area called Ontology Integration [51] [92]. In ontology matching, the aim is to

relate ontology entities that have the same or closest intended meaning. Over the years,

 148

researchers have proposed various approaches to (semi-) automate the process by

matching entities using shared ontology (e.g. reference ontology), heuristic techniques

(e.g. lexical and feature –based), or machine learning [64].

In the matching phase of this methodology, correspondence between entities is

established either manually or using an existing (external) approach. The input to this

phase is two semantically valid ontology models (the result of the previous phase). On

the other hand, the output is sets of matched class pairs, data-type property pairs, and

object property pairs. In cases where an ontology entity does not have a match, the pair

will contain a null value to denote the lack of correspondence.

In this research, we adapted a lexical and feature based technique [35] to match

entities according to the type, membership, and name of the entity using a top-down

approach. Moreover, the matching generated is one-to-one at most, with an entity on one

side having either a one or zero match to an entity on the other side. The matching

process occurs as follows:

1. Entities of type class in the anchor model are matched with classes in the other

model using the class name, which may be matched through an edit-distance

technique [53]. If the result of this step for a particular class falls under a certain

threshold, a lexical database (e.g. WordNet) and/or an enterprise dictionary

(corporate/business dictionary) can be used to enhance the matching. The output from

this step will be a set of matched class-pairs of the form:

MC (m1 , m2) = {(c1-1 , c2-1),(null , c2-2),(c1-2 , null), … } ,

 149

where m1 and m2 are ontology models with m1 as an anchor, and c1-i and c2-j are

classes in models m1 and m2 respectively. In the matched class-pair set MC, an

element in a pair may be null if a class from one model does not have a corresponding

class in the other model.

2. Next, for every pair of classes in the matched class-pair set MC, elements of the

data-type and object property sets within one class in the pair are matched with

elements of the same type in the other class. These elements are matched using the

element name and their characteristics. For instance, data-type property elements are

matched using their names and data-type while object property elements are matched

using their names and the name of the target class. Similar to the class matching step,

if the result of the name matching for any element falls under a certain threshold, a

lexical database and/or enterprise dictionary can be explored. The result of this step

are sets of matched data-type property pairs and object property pairs:

Matched Data-Property MDP(c1-i ,c2-j) ={(dp1-i-1,dp2-j-1),(null,dp2-j-2),(dp1-i-2 ,null), … },

Matched Object-Property MOP(c1-i ,c2-j) ={(op1-i-1,op2-j-1),(null, op2-j-2),(op1-i-2,null),…},

where c1-i and ,c2-j are pair of matched classes and c1-i is an anchor class.

5.4.3. Explicitness Computation Phase

Using the sets of matched pairs of classes, and data-type and object properties, the

difference in explicitness between two entities is computed using the explicitness

measurement method as defined in this section. In this method, two similar ontology

entities are compared in order to measure which ontology entity is more explicit than the

 150

other. This method is flexible enough to measure the explicitness at different levels of

granularity by comparing two models, two classes, or two properties, and taking into

account only the constructs that make up the entities being measured. Furthermore, to

measure the explicitness, the method allows assigning different weight to the different

types of ontology constructs.

Definition 5.1 (Ontology Explicitness Measure): Given an entity of category E and two

ontology entities ei and ej, explicitness of ei (anchor entity) with respect to ej is computed

using the following real-valued family of functions:

explicitness
entity-cat

 (ei , ej): E
2
� [-1 ... 1],

where entity-cat ∈ {M, C, SCS, DPS, OPS, DP, OP, DT, DPRS}, ei ∈ {mi , ci , dpi , opi},

ej ∈ {mj , cj , dpj , opj}, and ei and ej are of the same entity category (i.e. both are models,

classes, etc.).

The explicitness
entity-cat

 functions are characterized as being both reflexive and

symmetric:

For all ontology entities ei and ej :

i) explicitness
entity-cat

(ei , ei) = 0 (reflexivity)

ii) |explicitness
entity-cat

(ei , ej)| = |explicitness
entity-cat

(ej , ei)| (symmetry on absolute values)

5.4.3.1. Explicitness for Ontology Models: To determine the explicitness of one

ontology model over the other, we use the explicitness
M

 function as defined below:

 151

Definition 5.2 (Explicitness Measure for Ontology Models): Given two ontology

models m1 and m2 and the matched classes set MC, explicitness of m1 (the anchor model)

with respect to m2 is computed as:

explicitness
M

 (m1 , m2) =
 |MC|

)),((ssexplicitne
||

1
21∑

=
−−

MC

k
kC ji

cc

,

where (c1-i, c2-j)k is the k-th matched class-pair in MC for models m1 and m2 , and |MC| is

the number of class-pairs in MC (from the matching phase).

5.4.3.2. Explicitness for Ontology Classes: The explicitness measure for a pair of

matched classes is computed using the explicitness
C
 function:

Definition 5.3 (Explicitness Measure for Ontology Classes): Given a pair of ontology

classes c1 and c2, explicitness of c1 (the anchor class) with respect to c2 is computed as:

explicitness
C

(c1 ,c2) =)c,(cssexplicitne 21SCS×SCSω +)c,(cssexplicitne 21DPS×DPSω

+)c,(cssexplicitne 21OPS×OPSω

where xω is the weight for ontology category x, the weights xω are normalized (i.e.

SCSOPSDPS ωωω ++ = 1), and explicitness
SCS

, explicitness
DPS

 and explicitness
OPS

 are as

defined in the next sections.

5.4.3.3. Explicitness for Super-Class Set: Computing the explicitness of the super-

class set in classes c1 and c2 is achieved using the explicitness
SCS

 (c1 , c2) function:

Definition 5.4 (Explicitness Measure for Super-Class Set): Given the super-class sets

SC(c1) in class c1 and SC(c2) in class c2, the explicitness
SCS

 function is computed as:

 152

explicitness
SCS

 (c1 , c2) =
)1,|))(|,|)(|((

|)(||)(|

21

21

cSCcSCMaxMax

cSCcSC −
 ,

where |)(| xcSC is the number of elements in the SC(cx) set, and Max(m , n) is a function

that returns the greater of the two values: m and n.

5.4.3.4. Explicitness for Data-Type Properties: Explicitness of all data-type properties

in classes ci and cj is measured using the explicitness
DPS

(c1 ,c2) function, which requires

summation of the explicitness for each data-type property pair in the matched data-type

property set MDP.

Definition 5.5 (Explicitness Measure for Data-Type Property Sets): Given the two

matched ontology classes c1 and c2 and their matched data-type property set MDP, the

explicitness
DPS

 function is computed as:

explicitness
DPS

 (c1 , c2) =
 ||

)),((ssexplicitne
||

1
21

MDP

dpdp
MDP

k
kyxDP∑

=
−−

where (dp1-x , dp2-y)k is the k-th pair of matched data-type properties in MDP for classes

c1 and c2, and |MDP| is the number of pairs in MDP.

Definition 5.6 (Explicitness Measure for Data-Type Properties): Given a pair of

matched data-type properties dp1 and dp2, explicitness of dp1 (the anchor property) with

respect to dp2 is computed as:

explicitness
DP

(dp1 ,dp2)=)dp,(dpssexplicitne 21DT×DTω +)dp,(dpssexplicitne 21DPRS×DPRSω

 153

where DTω is the weight assigned to data-type form of axioms, DPRSω is the weight

assigned to data-type property restriction sets, and the weights xω are normalized (i.e.

DPRSDT ωω + =1).

Definition 5.7 (Explicitness Measure for Data-Type Axioms): Given the two data-

types dt1 and dt2 in data-type properties dp1 and dp2 respectively, explicitness of dt1 (the

anchor data-type) with respect to dt2 is computed as:

explicitness
DT

(dp1 ,dp2) =








≠∧=−

=∧=∨≠∧≠

=∧≠

)()(;1

))()(())()((;0

)()(;1

21

2121

21

nulldtnulldt

nulldtnulldtnulldtnulldt

nulldtnulldt

Definition 5.8 (Explicitness Measure for Data-Type Property Restriction Sets):

Given two data-type property restriction sets DPR(dp1) and DPR(dp2) in data-type

properties dp1 and dp2 respectively, explicitness of DPR(dp1) (the anchor) with respect to

DPR(dp2) is computed as:

explicitness
DPRS

(dp1 ,dp2) =)),DPR(dp(1 kFind
DPRTk

k∑ ×
∈

ω -)),DPR(dp(2 kFind
DPRTk

k∑ ×
∈

ω ,

where DPRT is the set of data-type property restriction types, kω is the weight assigned

to data-type property restriction of type k, and Find(DPR(dpx), k) is a binary-valued

function that returns 1 if restriction k exists in DPR(dpx) and 0 otherwise. Note that the

weights kω are normalized (i.e. ∑
∈DPRTk

kω = 1).

5.4.3.5. Explicitness for Object-Type Properties: The explicitness for the object

properties in the pair of matched classes c1 and c2 is measured using the

 154

explicitness
OPS

(c1,c2) function. This is computed by summing the explicitness for each

object property pair in the matched object property set MOP.

Definition 5.9 (Explicitness Measure for Object Property Sets): Given the two

matched ontology classes c1 and c2 with their matched object property set MOP, the

explicitness
OPS

 function is computed as:

explicitness
OPS

 (c1 , c2) =
 |MOP|

)),((ssexplicitne
||

1
21∑

=
−−

MOP

k
kyxOP opop

where (op1-x , op2-y)k is the k-th pair of matched object properties in MOP for classes c1

and c2, and |MOP| is the cardinality of the MOP set.

Definition 5.10 (Explicitness Measure for Object Properties): Given a pair of matched

object properties op1 and op2 from the matched object property set MOP, and the two

object property restriction sets OPR(op1) and OPR(op2) in op1 and op2 respectively,

explicitness of op1 (the anchor) with respect to op2 is computed as:

explicitness
OP

(op1 ,op2)=),)OPR(op(1 kFind
OPRTk

k∑ ×
∈

ω -),)((2 kopOPRFind
OPRTk

k∑ ×
∈

ω

where OPRT is the set of object property restriction types, kω is the weight assigned to

object property restriction of type k, and Find(OPR(opx), k) is a binary-valued function

returning 1 if the restriction of type k exists in OPR(opx) and 0 otherwise. Note that the

weights kω are normalized as well.

 155

5.5. Case Studies

Using this methodology, we conducted two case studies to measure the relative

explicitness of ontology models. In these, we used tools that automatically translate

relational databases into ontology models [3] [65]. In the first case study, each tool

generated a domain ontology model from a sample database instance provided by IBM

DB2 [48]; one which models employee project assignment. In the second case study, we

used the same tools to generate domain ontology models from a sample database instance

provided by Microsoft SQL Server [61], one which models an e-commerce business. In

each case study, we used domain requirements and ontology design guidelines to cleanse

the generated domain ontology models. Next, we manually matched entities across the

domain models. Last, we performed the explicitness computation using the result from

the cleansing and matching phases.

In the first case study, each domain ontology model had approximately eight

classes and sixty properties (both data-type and object). With the domain ontology model

generated by [3] set as an anchor, we computed the explicitness at the model level. The

result from the explicitnessM function was 0.24, which indicates that the anchor model is

more explicit about the domain (i.e. contains more relevant axioms) than the model

generated by [65]. The second case study dealt with approximately fourteen classes and

ninety properties. Similar to the first case-study, we set the model generated by [3] as an

anchor, and computed the explicitness for the model. The explicitnessM result was 0.26.

Due to space limitations here, we will present in this chapter a fragment of the first case

study; complete results for both case studies are included in Appendix F.

 156

Table 9 and Table 10 show, in abstract form, a part of the domain ontology

models generated by these tools. A value of “Y” under a restriction-type (column)

indicates that the ontology model has a restriction set for a particular property (row).

Moreover, a struck-through value (e.g. XYZ) indicates that the value is determined to be

invalid or redundant based on the cleansing phase, and as such, the value will not be

considered in the computation phase. To conserve space, we combined the data-type and

object properties restriction types since some are common in both types of properties

(e.g. lower-card, upper-card, functional).

Table 9: Abstract representation of domain ontology generated by DM2ONT (om1) [3].

 Property Restrictions

Class Type Name Range
Restricted-

Values

Lower

Card

Upper

Card
functional

Inverse-

Functional
Transitive Symmetric

Data Emp-ID String Y Y Y

Data Emp-Name String Y Y

Data Gender String Y Y Y

Employee

(Emp)

Object WorksIn Dept Y Y

Data Dept-ID String Y Y Y

Data Dept-Name String Y Y Y

Object Admin Dept Y Y Y

Object Admin-Inv Dept Y

Department

(Dept)

Object WorksIn-Inv Emp Y

 157

 Table 10: Abstract representation of domain ontology from DataMaster (om2) [65].

 Property Restrictions

Class Type Name Range
Restricted-

Values

Lower

Card

Upper

Card
functional

Inverse-

Functional
Transitive Symmetric

Data Emp-ID-2 String Y

Data Emp-Name-2 String Y

Data Gender-2 String Y

Data WorksIn-D-2 String Y

Employee

(Emp-2)

Object WorksIn-O-2 Dept-2 Y

Data Dept-ID-2 String Y

Data Dept-Name-2 String Y

Data Admin-D-2 String Y

Department

(Dept-2)

Object Admin-O-2 Dept-2 Y

In the matching phase, we set the ontology model in Table 9 as an anchor before

performing the matching. The result of this phase was the following sets of matched

class-pairs (MC), data-type property pairs (MDP) and object property pairs (MOP):

− MC(om1,om2) ={(Emp, Emp-2),(Dept, Dept-2)},

− MDP(Emp,Emp-2) ={(Emp-ID, Emp-ID-2),(Emp-Name, Emp-Name-2),(Gender, Gender-2)},

− MOP(Emp, Emp-2) ={(WorksIn, WorksIn-O-2},

− MDP(Dept, Dept-2) ={(Dept-ID, Dept-ID-2), (Dept-Name, Dept-Name-2)},

− MOP(Dept, Dept-2) ={ (Admin, Admin-O-2), (Admin-Inv, null), (WorksIn-Inv, null)}.

In the explicitness computation phase, we used the weights shown in Table 11 to

calculate the explicitness of model om1 (shown in Table 9) in relation to om2 (Table 10).

Table 11: Weights assigned to the different types of ontology construct.

 Class-Level-Weights Data-Type-Property-Level-Weights Object-Property-Level-Weights

Var DPSω OPSω

SCSω

DTω

DPRSω

rstValω

lowerω

upperω

funcω

invFω

tranω symω lowerω

upperω

funcω

Value 0.45 0.45 0.1 0.05 0.95 0.25 0.25 0.0 0.2 0.3 0.3 0.25 0.25 0.0 0.2

 158

Using the formula presented in section 5.4.3 and the weights in Table 11, the

overall explicitness of om1 compared to om2 was 0.35, which means that om1 is more

explicit than om2. This result is inline with our expectation and explanation of what

constitute explicitness at the model level since om1 (shown in Table 9) clearly contains

more relevant axioms than om2 (shown in Table 10). Furthermore, we swapped the

entities in the explicitness functions to have those from om2 as an anchor, and re-

computed the explicitness functions. The result of the explicitness
M

 with om2 as an anchor

was -0.35 (negative), which confirms the symmetry property stated in section 5.4.3.

Table 12 summarizes the result from each formula for the employee/employee-2

classes, and the overall explicitness for the two models.

Table 12: Summary of explicitness calculations for ontology fragment in case-study 1

Functions Expression Result

explicitness
DPRS

 (Emp-ID,Emp-ID-2) 0.75 – 0.2 0.55

explicitness
DP

 (Emp-ID,Emp-ID-2) (0.05 * 0) + (0.95 * 0.55) 0.523

explicitness
DPRS

 (Emp-Name,Emp-Name-2) 0.45 – 0.2 0.25

explicitness
DP

 (Emp-Name,Emp-Name-2) (0.05 * 0) + (0.95 * 0.25) 0.238

explicitness
DPRS

 (Gender,Gender-2) 0.7 – 0.2 0.5

explicitness
DP

 (Gender,Gender-2) (0.05 * 1) + (0.95 * 0.5) 0.475

explicitness
OP

(WorksIn,WorksIn-O-2) 0.45 – 0.2 0.25

explicitness
DPS

(Emp, Emp-2) (0.5225 + 0.2375 + 0.475) / 3 0.412

explicitness
OPS

(Emp, Emp-2) (0.25) / 1 0.25

explicitness
SCS

(Emp, Emp-2) (0 – 0) / 1 0

explicitness
C
 (Emp, Emp-2) (0.1 * 0) + (0.45 * 0.4117) + (0.45 * 0.25) 0.298

explicitness
C
 (Dept, Dept-2) (0.1 * 0) + (0.45 * 0.5225) + (0.45 * 0.35) 0.393

explicitness
M

 (om1, om2) (0.32025 + 0.41513) / 2 0.345

 159

5.6. Summary

Given the increased interest in the use of ontologies, many researches have investigated

means to assess the content of ontologies. Although there are several alternatives

available, to the best of our knowledge, none of them attempts to measure how explicit

one ontology entity is compared to another. We believe that explicitness should be one of

the criteria on which ontology can be judged.

Here, we presented a heuristic methodology to measure the relative explicitness

between two similar ontology entities (i.e. describing the same real-world entity). Using

this methodology, a formal measure was computed to identify which entity was more/less

explicit about the domain. This methodology takes into account only axioms that are

relevant to the domain and by weighing them according to their type and significance in

the domain. Two case studies were conducted using ontologies generated by tools that

translate RDB into ontology models.

 160

CHAPTER 6: Validation and Results of Testing

6.1. Introduction

Validation of every aspect of the DM2ONT framework requires resources that are

beyond the scope of my thesis. For instance, validating the ability of DM2ONT to

perform all the RDB/ORDB translation rules outlined in Chapter 3 requires access to

large production RDB/ORDB database instances that contain many tables, all types of

constructs and relationships supported by DM2ONT, and thousands of rows. Moreover,

validating the correctness of the translation requires the involvement of several ontology

modelers or access to reference ontology models, tools to translate between ontology and

RDB models, and a tool to compare ontology models to the reference ontology. To bring

the scope to a realistic size, I focused on validating several aspects of the framework.

6.2. Background

In order to compare the validity and explicitness of an ontology model generated

by DM2ONT with that of similar tools, I explored setting up an experiment where the

ontology models generated by DM2ONT and similar tools are compared with the

reference ontology model used to generate the source database. Formally, let rom be a

reference ontology model, owl2rdb be an existing tool that translates ontology models

 161

into RDB models, rdb be a relational database generated from rom using the owl2rdb

tool, om1 be an ontology model generated from rdb using the DM2ONT framework, omi

(where i � {2, 3}) be ontology models generated from rdb using rdb2owli (where i � {2,

3}) methods, and oc be an ontology comparison tool. The experiment was then to use oc

to compare both om1 and omi to rom and prove that om1 is more explicit than omi.

Figure11 depicts the evaluation method originally envisioned. By conducting this type of

experiment, we can be assured that DM2ONT managed to a) retrieve the correct ontology

axioms, and b) retrieve more axioms that are correct than similar tools.

Upon careful review of the relevant methods and tools available in the literature, I

encountered the following (sorted by steps shown in Figure 11):

− Translating Reference Ontology into Relational Database (Step 1): There are

several methods to translate from an ontology model to an RDB model [80,83,85].

Among these methods, only one performs the translation from an OWL-based

Figure 11: Earlier validation experiment.

Step 1

(owl2rdb)

Step 2

(DM2ONT)

Step 4.a (oc)

Step 3

(rdb2owl i)

Step 4.b (oc)

Ontology Model

(om1)

Ontology Model

(omi)

Relational

Database

(rdb)

Reference

Ontology Model

(rom)

 162

ontology model to an RDB model [87]. Unfortunately, this method has not been

implemented. Because conducting manual translation using the methods’ description

in the literature is likely to be considered subjective (e.g. understanding of readers,

details withheld by authors), this path has not been pursued.

− Relational database to OWL-based Ontology models (Step 3): Although the

literature review (Chapter 2) found eighteen different methods for translating RDB

models into ontology models, only ten were found to have been implemented. Among

these ten methods, only six generate OWL-based ontology models that describe the

subject-area [24,28,46,47,54,65], and only two of these six methods are publicly

available [24,65]. In order to obtain access to the implementation of more methods, I

made multiple attempts to contact the authors of the remaining four OWL-based

methods, both directly and through Prof. Sibley’s personal contacts in the regions

where the authors are located. Unfortunately, I was unable to obtain access to the

implementation of any of the four OWL-based methods. For the same subjectivity

reason, performing the translation manually was not considered.

− OWL-Based Ontology Comparison Tools (Step 4): Due to the challenges

encountered in Step 1 (i.e. the lack of an automated OWL-based method for

translating Ontology to RDB), this path was not explored.

6.3. Implementation of the DM2ONT Prototype

In this research, I implemented a software prototype for the DM2ONT framework. The

implementation of DM2ONT is composed of several components (as outlined in Chapter

 163

3). Moreover, the framework was implemented with extensibility, interoperability, and

maintainability in mind.

To provide extensibility, DM2ONT uses an abstract ontology representation

internally; i.e. intermediate object representation. Using such representation allows the

translation from different source models and to different target ontology representations;

this is illustrated in Figure 12. This made it possible to isolate the source and target

representations in their own components. Extending the prototype to support translation

from a new type of source data model, such as XML, would require developing only one

source component. This new source component would have to obtain information about

the source model and populate the intermediate object representation. To support

different ontology representations, such as RDFS, a target component would be needed to

translate from the intermediate object representation to the desired target representation.

Figure 12: DM2ONT high-level architecture (extensibility view).

For portability and interoperability purposes, the prototype was implemented

using Java and JDBC. Portability was achieved by using Java, which eliminates the need

to rebuild (i.e. re-compile and re-link) the code when running the prototype in different

platforms. To allow interoperating with different types of DBMS(s), DM2ONT used the

RDB/ORDB

Representation

(Source)

Abstract Ontology

Representation

(Intermediate)

OWL

Representation

(Target)

 164

JDBC interface instead of the native API clients provided by DBMS vendors. While

native API clients typically provide better performance and support for features, the

testing performed with the JDBC interface yielded an acceptable level of performance,

and provided coverage for all the RDB/ORDB features of interest in DM2ONT.

In order to provide maintainability, the prototype included comments explaining

the rationale behind certain implementation decisions in the code. Furthermore, to allow

changing certain parameters without changing the code, DM2ONT used a property file to

control certain aspects of framework including connectivity to the source DBMS, type of

analysis to perform, threshold values, and name and location of the target ontology file.

Lastly, there are various software metrics in use nowadays to measure the size and

complexity of a software development effort, such as the Source Lines Of Code (SLOC),

and number of classes, etc. In this respect, DM2ONT prototype had approximately 6000

SLOC and 25 Java classes.

6.4. Validation of DM2ONT using Various Databases Instances

In addition to the complex RDB and ORDB instances that I developed and used for unit

and functional testing, and to avoid validating DM2ONT using biased database instances

that I personally develop, I used two different public-domain RDB instances for a larger

validation effort. The choice of using RDB-based instances – rather than both RDB and

ORDB -- in the validation phase was made to allow comparison between DM2ONT and

other tools, which are capable of translating only RDB-based instances. Furthermore, in

 165

order to conduct the validation in a realistic manner, I needed to use substantial samples

of RDB instances, both in terms of schema definition and data volume.

 After reviewing popular database text books [30] [72], I found that they contain

only “toy examples”, which are typically composed of only two to three tables and

relationships with relatively few rows per table. Next, I reviewed the sample database

instances that are packaged with major commercial DBMS(s) such as IBM DB2,

Microsoft SQL Server, and Oracle Database. The samples included by these vendors

contained RDB instances with an acceptable level of sophistication. Table 13 shows

various characteristics of these sample databases.

Table 13 - Characteristics of the sample RDB instances included with major DBMS(s)

Metrics IBM DB2 Oracle Database Microsoft SQL Server

Number of Tables 8 7 14

Number of Relationships 12 8 15

Number of Columns 48 35 72

Primary & Foreign Keys Yes Yes Yes

Unique Constraint No No No

Not Null Constraint Yes Yes Yes

n:m Relationships No No Yes

ISA (Type 1 & Type 2) No No No

Transitive Relations Yes Yes Yes

Symmetric Relations No No No

Enumrated Values Yes Yes Yes

First, I downloaded and configured the sample RDB database provided by IBM

DB2 [48], and executed both DM2ONT and one of publicly-available methods that I

 166

have been able to obtain -- DataMaster [65] -- against this sample database. The result of

executing DM2ONT and DataMaster were ontology models. These models were

validated both syntactically and semantically (see sections 6.5 and 6.7).

Second, I reviewed the sample RDB database packaged with Oracle and found

that it was structurally similar to the IBM DB2 sample database as shown in Table 13. In

fact, the Oracle sample database appeared to be less sophisticated than the IBM DB2

sample database and therefore, I did not explore the Oracle sample database further.

Third, I obtained and reviewed one of the sample RDB databases that was

packaged with MS SQL Server [61]. As shown in Table 13, the MS SQL Server sample

database was more sophisticated than the IBM DB2 sample database. Accordingly, I

downloaded the MS SQL Server script for creating the sample database and setup the

database instance in an IBM DB2 environment; the choice of using only the IBM DB2

environment was to avoid having to obtain, install and configure MS SQL Server

software. With the database instance created and configured, I executed both DM2ONT

and DataMaster against this database. The ontology models generated by these two

methods were also validated syntactically and semantically.

Lastly, the two sample database instances obtained from IBM DB2 and MS SQL

Server constituted the base for the two case studies used in the validation I conducted.

Specifically, the first case-study used the sample RDB instance from IBM DB2, while the

second case-study used that from MS SQL Server. Appendix C contains the scripts used

to create the two database instances.

 167

6.5. Syntactic Examination of the Generated Ontology Model

To validate the syntax of the OWL ontology models generated by DM2ONT, I used two

publicly-available syntactic validation tools [90] [96]; these tools are also known as

ontology validators. Using these tools, I confirmed that the two ontology models

produced by DM2ONT in both case studies were valid from a syntactic standpoint.

6.6. Functional Verification of DM2ONT

DM2ONT translates RDB and ORDB models into OWL ontologies based on translation

methods/rules discussed in Chapter 3. These rules stated the type of RDB/ORDB

constructs and patterns for which DM2ONT looks, the type of analysis and inference

DM2ONT performs, and the type of ontology constructs that DM2ONT generates. Using

this information, and the generated OWL ontology models, I manually examined and

traced back all of the generated OWL constructs to the source RDB/ORDB instances, and

thus, functionally verified that DM2ONT generated models according to the rules

presented in Chapter 3.

6.7. Semantic Validation using Domain Requirements and Comparison

with an Existing Approach

In order to validate the ontology models generated by DM2ONT from a semantic

standpoint, and to verify the effectiveness and efficiency of DM2ONT in comparison to

similar tools, I conducted an experiment that validated the models generated by

DM2ONT and DataMaster [65] against domain requirements. The aim of this experiment

 168

was to validate whether DM2ONT generated ontology models that a) satisfied most of

the domain requirements (e.g. high recall), b) contained minimum invalid axioms (e.g.

high precision), and c) were better than models generated by similar tools in terms of

recall and precision.

 In this experiment, I used the recall and precision measurement from the

Information Retrieval (IR) field [12]. These two measurements have been widely used as

means to measure the effectiveness and efficiency of IR methods. By using domain

requirements, I was able to measure both the comprehensiveness and accuracy (i.e. recall

and precision respectively) of the domain ontology models generated by DM2ONT and

DataMaster. Intuitively, the set of domain requirements for each case study was assumed

to contain all the axioms that were relevant to the domain. These axioms included both

the True-Positive (TP) axioms that a domain ontology model contains and False-Negative

(FN) axioms that a domain ontology neglects. Using the domain requirements, axioms in

domain ontology models that were generated by DM2ONT and DataMaster were

classified as either True-Positive (TP) or False-Positive (FP). Using this classification,

the recall and precision were calculated using the formulas:

Recall =
FNTP

TP

+
 (1)

Precision =
FPTP

TP

+
 (2)

 where TP represents the total number of valid axioms found in a domain ontology

model, FN is the total number of valid axioms expected, but not found, in the domain

 169

ontology model, and FP is the total number of invalid axioms found in the domain

ontology model.

Figure 13 illustrates the experiment and steps involved. This experiment was

performed on the two case-studies: first case-study with the IBM DB2 sample RDB

instance as a source and the second case-study with the MS SQL Server sample RDB

instance as a source.

Figure 13: Semantic validation experiment.

− Step 1: Locate and create RDB: As discussed in section 6.4, I used the sample RDB

instances that were packaged with IBM DB2 and MS SQL Server. Appendix C

contains the scripts used to create these RDB instances in an IBM DB2 environment.

− Step 2: Run DM2ONT: In this step, I executed DM2ONT against the relational

database rdb and as a result, DM2ONT generated the ontology model om1. Appendix

D shows the DM2ONT property file used to controls the behavior of DM2ONT.

Step 5:

Semantic

Validation Relational

Database (rdb)

Ontology

Model

(om1)

Ontology

Model

(om2)

Domain

Requirements

(drs)

Step 2:

Run

DM2ONT

Step 3:

Run

DataMaster

Step 1:

Locate & Create RDB

Step 4:

Generate Domain Requirements

Recall &

Precision

 170

− Step 3: Run DataMaster: Similar to Step 2, I executed DataMaster against the

relational database rdb, which generated the ontology model om2. Appendix D

includes a screen-shot showing the settings used when running DataMaster.

− Step 4: Generate Domain Requirements: In this step, I reviewed the relational

database instance rdb and manually extracted the domain requirements addressed by

this database. Granted this step might be considered subjective, I believe the error rate

in retrieving these requirements is minimal given the size of the databases used in this

experiment. In the first case-study with the IBM DB2 sample RDB instance as the

source, approximately 180 domain requirement statements were retrieved. On the

other hand, the second case-study with the MS SQL Server sample RDB instance as

the source yielded approximately 280 domain requirement statements. Appendix E

includes the set of domain requirements for each case study.

− Step 5: Semantic Validation: In this step, I compared the domain ontology models

generated by DM2ONT and DataMaster with the domain requirements of the

databases that were translated by these tools. The aim in this comparison was to

classify the ontology axioms found in the domain ontology models into one of two

types: axioms that have corresponding domain requirements (i.e. True-Positive (TP))

and axioms that do not (i.e. False-Positive (FP)). Using this classification, I was able

to compute the recall and precision – as defined in formulas 1 and 2 -- for the

ontology models generated by DM2ONT and DataMaster. Table 14 provides a

summary of the result from this step for both case studies. Appendix E shows all of

the ontology axioms along with their classification.

 171

The results shown in Table 14 suggest that the ontology models generated by

DM2ONT were superior compared to that of DataMaster. Furthermore, the recall and

precision for the ontology models generated by DM2ONT were significantly higher than

that of the ontology models generated by DataMaster. The result of this experiment also

demonstrated not only the ability of DM2ONT to retrieve almost all of the correct

axioms, but also its tendency to return fewer incorrect axioms.

Table 14 – Various metrics for the semantic validation experiment.

Case Study 1 Case Study 2

Domain

Req.

DM2ONT DataMaster Domain

Reqs.

DM2ONT DataMaster

Total number of valid

axioms (TP)

180 173 97 277 263 151

Total number of missed

axioms (FN)

n/a 7 83 n/a 14 126

Total number of invalid

axioms (FP)

n/a 2 32 n/a 1 37

Recall n/a 0.961 0.539 n/a 0.949 0.545

Precision n/a 0.989 0.752 n/a 0.996 0.803

6.8. Explicitness Measurement against Existing Approaches

To determine the relative explicitness of the ontology models generated by DM2ONT in

comparison to that of DataMaster, I used the explicitness measurement methodology that

I developed in this research (Chapter 5). These ontology models are considered similar

because they were created from the same source database instance, and are likely to

 172

contain similar classes and properties. Figure 14 depicts this experiment and shows

artifacts that were generated, and the tools that were used.

Figure 14: Measuring Explicitness between ontology models

Similar to the Semantic Validation experiment presented in Section 6.7, the

explicitness measurement experiment was performed once for each of the two case

studies (i.e. Case-Study 1 with IBM DB2 sample RDB instance as a source and Case-

Study 2 with MS SQL Server sample RDB instance as a source). Moreover, this

experiment could reuse most of the artifacts generated by the semantic validation

experiment since the latter has already been conducted. Specifically, when the semantic

validation experiment presented in Section 6.7 has already been conducted, only Step 5 in

the explicitness measurement experiment needs to be performed. Therefore, in this

dissertation, I used the ontology models and domain requirements generated in the

Step 5:

Measure

Explicitness Relational

Database (rdb)

Ontology

Model

(om1)

Ontology

Model

(om2)

Domain

Requirements

(drs)

Step 2:

Run

DM2ONT

Step 3:

Run

DataMaster

Step 1:

Locate & Create RDB

Step 4:

Generate Domain Requirements

Ontology

Guidelines (og)

Explicitness

Measure

 173

previous experiment and advanced directly to step-5 in the explicitness measurement

experiment. Below is a description of the steps involved in this experiment:

− Step 1 to Step 4: See section 6.7.

− Step 5: Explicitness Measurement Methodology: The final step in this

experiment was performed using the methodology presented in Chapter 5. In each

case-study, the inputs to this methodology were a pair of ontology models

generated by DM2ONT and DataMaster and the domain requirements served by

the source database instance. The output was a real-value in the range of [-1 … 1],

indicating which model is relatively more explicit about the domain. As discussed

in Chapter 5, the methodology is composed of three phases:

Step 5.1 - Cleansing Phase: Using the domain requirements, the two ontology

models generated by DM2ONT and DataMaster were cleared of all invalid

axioms (i.e. False-Positives). The results of this phase are domain ontology

models that contain valid axioms only (i.e. True-Positive axioms).

Step 5.2 - Matching Phase: Using the results from the step 5.1, I established

correspondence between entities (i.e. classes, data-type and object properties) of

the same type across the two cleansed ontology models. In this experiment, the

cleansed ontology model from DM2ONT was designated as an anchor. Appendix

F contains the sets of matched class-pairs, data-type property pairs, and object-

pairs for each case-study.

Step 5.3 - Explicitness Computation Phase: Using an MS Excel spreadsheet

specifically designed to compute the explicitness (see Chapter 5), I populated it

 174

with data from the previous two phases. The result was an explicitness measure

indicating whether the anchor entity was more/less explicit than the other.

With the ontology model generated by DM2ONT in Case-Study 1 designated as

the anchor model, the computed explicitness measure was 0.24. This indicated that

DM2ONT generated a model that was more explicit than that generated by DataMaster.

In Case-Study 2, and with the ontology model generated by DM2ONT also designated as

the anchor model, the explicitness measure was 0.26. This result also denoted that

DM2ONT generated a model that was more explicit than that generated by DataMaster.

Table 15 and Table 16 illustrate the explicit measurement in case studies 1 and 2

respectively, at the model and class levels. In these tables, ontology entity e1 (the anchor)

corresponds to an entity generated by DM2ONT and e2 corresponding to an entity

generated by DataMaster.

Table 15 - Explicitness measurement in case-study 1 (IBM DB2 sample RDB)

explicitness
entity-cat

 (e
1
 , e

2
) Explicitness Measure

explicitness
M

 (DM2ONT-om
1
 , DataMaster-om

2
) 0.24

explicitness
C
 (activity

1
 , activity

2
) 0.35

explicitness
C
 (department

1
 , department

2
) 0.30

explicitness
C
 (employee

1
 , employee

2
) 0.21

explicitness
C
 (empprojact

1
 , empprojact

 2
) 0.27

explicitness
C
 (emp_photo

1
 , emp_photo

 2
) 0.17

 175

explicitness
entity-cat

 (e
1
 , e

2
) Explicitness Measure

explicitness
C
 (emp_resume

1
 , emp_resume

 2
) 0.17

explicitness
C
 (project

1
 , project

 2
) 0.30

explicitness
C
 (project_activity

1
 , project_activity

 2
) 0.15

Table 16 - Explicitness measurement in case-study 2 (MS SQL Server Sample RDB)

explicitness
entity-cat

 (e
1
 , e

2
) Explicitness

Measure

explicitness
M

 (DM2ONT-om
1
 , DataMaster-om

2
) 0.26

explicitness
C
 (Customers

1
 , Customers

2
) 0.22

explicitness
C
 (Customer_Payment_Methods

1
 , Customer_Payment_Methods

2
) 0.23

explicitness
C
 (Invoices

1
 ,Invoices

2
) 0.26

explicitness
C
 (Orders

1
 ,Orders

2
) 0.26

explicitness
C
 (Order_Items

1
 ,Order_Items

2
) 0.25

explicitness
C
 (Payments

1
 ,Payments

2
) 0.26

explicitness
C
 (Products

1
 , Products

2
) 0.24

explicitness
C
 (Ref_Invoice_Status_Codes

1
 , Ref_Invoice_Status_Codes

2
) 0.35

explicitness
C
(Ref_Order_Item_Status_Codes

1
,Ref_Order__Item_Status_Codes

2
) 0.23

explicitness
C
 (Ref_Order_Status_Codes

1
 , Ref_Order_Status_Codes

2
) 0.23

explicitness
C
 (Ref_Payment_Methods

1
 , Ref_Payment_Methods

2
) 0.23

explicitness
C
 (Ref_Product_Types

1
 , Ref_Product_Types

2
) 0.39

explicitness
C
 (Shipments

1
 , Shipments

2
) 0.26

 176

The explicitness measurements shown in Table 15 and Table 16 for the classes

and the overall models generated by DM2ONT demonstrate the ability of DM2ONT to

generate classes and models that are more explicit about the domain than those generated

by a similar tool. In cases where the explicitness measurements are low (e.g. less than

0.20), it can be noted that these were tables with less than 15 rows. Modifying the source

database by adding more rows can significantly increase the explicitness measurement

for classes, and thus increase the overall explicitness for the model.

6.9. Summary

The main objective of this dissertation was to develop an extensible framework for

translating different types of data models into ontology models that are explicit about the

domain they describe. In order to validate this framework, and based on the availability

of resources, I employed different types of techniques to validate different aspects of the

framework and its output.

First, DM2ONT was validated by implementing it as prototype using Java and

JDBC. The prototype covered all the methods discussed in Chapter 3. Moreover, the

implementation of DM2ONT provided features such as extensibility, interoperability and

maintainability.

Second, the ontology models generated by DM2ONT were validated syntactically

using tools that were publicly available. Using these validation tools, I confirmed that

DM2ONT generated ontologies that conformed to the OWL specifications.

 177

Third, I used various database models to validate the framework from a functional

standpoint. To validate all the translation rules in the framework, I manually created

various RDB and ORDB database instances – both schema and data – that covered all of

the RDB/ORDB constructs and patterns handled by the framework. The framework was

manually validated to confirm that all ontology constructs were generated according to

the translation rules discussed in Chapter 3.

Fourth, using two sample RDB instances that were packaged with commercial

DBMS(s) and sets of domain requirements covered by these RDB instances, I computed

the recall and precision on the ontology models generated by DM2ONT and another

similar tool. The results of the recall and precision from this experiment demonstrated the

comprehensiveness and accuracy of the ontology models generated DM2ONT. Such

results should raise the confidence of ontology modelers in the ontologies generated by

DM2ONT. Although the recall and precision for the ontologies generated by DM2ONT

were significantly high, I still maintain that these should be reviewed manually by the

modelers and validated by domain experts.

Fifth, using the explicitness measurement methodology developed in this

dissertation, I conducted an experiment to compute the explicitness of the ontology

models generated by DM2ONT against that of a similar tool (i.e. DataMaster). The result

from this experiment showed that DM2ONT was able to generate ontology models that

are more explicit about the domain than those generated by DataMaster.

Lastly, it is worth noting that the results from the semantic validation and

explicitness measurement experiments were highly dependent on the data models used as

 178

a source. For instance, the source data models were constrained to have only RDB

constructs and to limit the changes to the RDB instance used. The use of ORDB

constructs will tip the scale to the side of DM2ONT because none of the tools similar to

DM2ONT support ORDB constructs. Moreover, adjusting the sample RDB instances to

include IS-A and symmetric binary relations, more transitive binary relations, or simply

adding more rows to small tables will drastically give an advantage to DM2ONT. In

these two experiments, I limited the changes to the sample RDB instances to avoid using

biased data sets.

 179

CHAPTER 7: Conclusion and Future Research

This chapter provides a summary of the research I conducted in this dissertation and

proposes directions for future research.

7.1. Conclusion

In this dissertation, I developed an extensible framework for generating ontologies from

various types of data models and concurrently devised a heuristic methodology for

measuring the relative explicitness (i.e., relative amount of terminological content) of one

ontology model in comparison to another. Both the framework and the methodology

developed are practical as they facilitate the development and evaluation of ontologies,

which are essential components in any semantic-based solution.

In order to ascertain the viability and effectiveness of the DM2ONT framework, I

implemented it as a prototype and conducted various experiments. The prototype I

implemented took into account characteristics such as extensibility, interoperability and

maintainability (see Section 6.3). The experiments I conducted demonstrated not only the

ability of DM2ONT to generate ontologies that are syntactically and semantically correct,

but also its ability to generate ontologies that are more explicit than those generated by

any similar tools that have been published. To assess the ontologies generated by

DM2ONT, I conducted two experiments. Each experiment was executed using two

 180

different case-studies, which were based on public-domain data. The first experiment

used domain requirements and computed the recall and precision from the Information

Retrieval field. The second experiment employed the methodology I devised for

measuring the explicitness of ontologies. The results of these experiments demonstrated

the superiority of DM2ONT in comparison to another method (which was one of the only

two ontology translation approach that I was able to access from prior researchers).

 Lastly, this research resulted in four peer-reviewed papers that my dissertation

director and I co-authored and published in various scholarly avenues (see Appendix A).

Conducting this research and contributing to the literature required knowledge in several

disciplines including databases, artificial intelligence, and software engineering.

Moreover, this research addressed several gaps in the literature related to building

ontologies from data models and evaluating similar ontologies.

7.2. Future Research

The aim in my research was to facilitate the development and evaluation of ontologies.

Advancing this objective requires further research in two primary areas: the DM2ONT

framework and the explicitness methodology.

The DM2ONT framework was designed with extensibility in mind: thus it would

be relatively simple to extend it to allow the generation of ontologies from other

prevalent data models such as XML. With many organizations adopting XML as a means

for exchanging information within and across organizational boundaries, these

organizations can leverage their existing XML data and schema when developing

 181

ontologies for new fields. For the RDB/ORDB models, data mining techniques can be

explored in an attempt to allow the inference of more IS-A relationships by adopting

clustering techniques. The overall framework could also be extended to utilize a lexical

database (such as WordNet), which would allow refining the classes and properties

names in the generated ontologies. Furthermore, the framework could be enhanced to

maintain a library of ontology components that would be used to guide the construction

of new ontologies. Such an enhancement would allow the incorporation of existing

components into the process of building new ontologies and thus benefit from past

experience when building similar or new ontologies.

 In the explicitness measurement methodology, the matching and explicitness

computation phases could also be extended further. Currently, the matching phase

performs a top-down one-to-one matching between ontology entities. An enhancement to

the matching phase could incorporate one-to-many and/or bottom-up matching between

entities. This would allow greater flexibility when measuring the explicitness between

entities that differ in structure (e.g. data property for person’s full-name matched with

multiple data properties such as first-name, middle-initials, and last-name). Additionally,

the computations phase could be semi-automated by developing an XSLT style-sheet that

could transform the ontologies to be evaluated into the abstract/formal model used by the

methodology, and in a format that can be ingested easily by a spreadsheet processor such

as Microsoft Excel.

 Pursuing such directions would ultimately improve the ontology engineering and

evaluation processes and thus, accelerate the deployment of semantic-based solutions.

 182

APPENDIX A: Research Publications

This research has resulted in the following publications:

1. Albarrak, Khalid M. and Sibley, Edgar H. 2009. Translating Relational & Object-

Relational Database Models into OWL Models. Proceedings of the IEEE

International Conference on Information Reuse and Integration, IRI 2009, 10-12

August 2009, Las Vegas, Nevada, USA. pp. 336-341

2. Albarrak, Khalid M. and Sibley, Edgar H. 2010. An Extensible Framework for

Generating Ontology Models from Data Models, International Transactions on

System Science and Applications (ITSSA), Vol. 6, No. 2/3, August 2010,. pp. 97-

112.

3. Albarrak, Khalid M. and Sibley, Edgar H. 2011. A survey of methods that transform

data models into Ontology models. Proceedings of the IEEE International Conference

on Information Reuse and Integration, IRI 2011, 3-5 August 2011, Las Vegas,

Nevada, USA. pp. 58-65

4. Albarrak, Khalid M. and Sibley, Edgar H. 2012. Methodology to Measure

Expressivity between Ontology Models. To appear in <TBD> 2012.

 183

APPENDIX B: Symmetry/Transitivity - Sample Relations

This appendix contains sample relations for the three patterns discussed in Chapter 4.

B.1 Sample Relations

This section contains samples of various relations -- both relation schemas and relation

instances -- for the different patterns that were introduced in Chapter 4.

B.1.1 Pattern 1:

This pattern is used with one-to-one binary relations that are Symmetric or Transitive,

and with one-to-many binary relations that are Transitive:

One-to-one - Symmetric:

- Table Schema: Person = (id (PK), name, gender, spouse-id (FK ref Person (id)))

- Table Instance:

Id Name gender Spouse-id

1 John M 2

2 Jane F

3 Riyadh M

4 Faisal M

5 Tami F 6

6 Tom M

One-to-one - Transitive:

- Table Schema: Next-in-queue = (id (PK), name, next-id (FK ref Next-in-queue (id)))

- Table Instance:

Id Name next-id

1 Item 1 2

2 Item 2 3

3 Item 3

 184

One-to-many - Transitive:

- Table Schema: Employee = (id (PK), name, mgr-id (FK ref Employee (id)))

- Table Instance:

Id Name Mgr-id

1 Edgar

2 Khalid 1

3 Jane 1

4 Faisal K. 2

5 Riyadh K. 2

B.1.2 Pattern 2:

This pattern is mostly used with many-to-many relations that are Symmetric, Transitive,

both Symmetric and Transitive, or neither:

Many-to-many - Non-Symmetric and Non-Transitive:

- Table Schema: Person = (id (PK), name, gender)

 Knows = (id1 (FK ref Person (id)), id2 (FK ref Person (id)), PK(id1,

id2))

- Table Instance:

Person Knows

Id Name id1 id2

1 Person 1 1 2

2 Person 2 1 3

3 Person 3 2 1

4 Person 4 3 4

 4 1

Many-to-many - Symmetric and Non-Transitive:

- Table Schema: Country = (id (PK), name)

 Border-with = (id1 (FK ref Country (id)), id2 (FK ref Country (id)) ,

PK(id1, id2))

 185

- Table Instance:

Country Border-with

Id Name id1 id2

1 Jordan 1 2

2 Saudi 1 3

3 Iraq 2 3

4 Kuwait 3 4

 4 2

Many-to-many Non-Symmetric and Transitive:

- Table Schema: Product = (id (PK), name)

 Composed-of = (id1 (FK ref Product (id)), id2 (FK ref Product (id)),

PK(id1, id2))

- Table Instance:

Product Composed-of

Id Name id1 id2

1 Product 1 1 A

2 Product 2 1 B

A Product 3 2 A

B Product 4 2 C

C Product 5 A D

D Product 6 B D

E Product 7 B E

Many-to-many Symmetric and Transitive:

- Table Schema: Person = (id (PK), name)

 Sibling = (id1 (FK ref Person (id)), id2 (FK ref Person (id)) , PK(id1,

id2))

 186

- Table Instance:

Person Sibling

Id Name id1 id2

1 Khalid 1 2

2 Sami 2 3

3 Faris 4 5

4 Riyadh

5 Faisal

B.1.3 Pattern 3:

This pattern is used with many-to-many binary relations that are both Symmetric and

Transitive. This pattern is considered an alternative to Pattern 2 for binary relations that

are both Symmetric and Transitive.

Many-to-many Symmetric and Transitive:

- Table Schema: Person = (id (PK), name, sibling-set-id (FK ref Sibling-set (set-id)))

 Sibling-set = (set-id (PK))

- Table Instance:

Person Sibling-set

Id Name sibling-set-id Set-id

1 Khalid S1 S1

2 Sami S1 S2

3 Faris S1

4 Riyadh S2

5 Faisal S2

 187

APPENDIX C: Sample database scripts used in validation

This appendix contains the sample SQL scripts used to setup the source RBD instances in

Case-Study One and Case-Study Two. These scripts contain the Data Definition

Language (DDL) and Data Manipulation Language (DML) statements needed to create

the RDB schemas and populate them with data. Note that these scripts were slightly

modified to correct some of the data and enable setting up the schemas in an IBM DB2

environment.

1. Case-Study One:

In this case-study, I used a source RDB instance that was packaged with IBM DB2. This

sample RDB instance models employees’ project assignment in an enterprise. Below are

the DDL and DML scripts used:

1.1. DDL Script for IBM DB2 Sample RDB Instance:

-- Clean up

ALTER TABLE "HR"."DEPARTMENT" DROP CONSTRAINT "RDE";

ALTER TABLE "HR"."DEPARTMENT" DROP CONSTRAINT "ROD";

ALTER TABLE "HR"."EMPLOYEE" DROP CONSTRAINT "RED";

ALTER TABLE "HR"."EMPPROJACT" DROP CONSTRAINT

"EMPPROJACT_EMPLOYEE_FK1";

ALTER TABLE "HR"."EMPPROJACT" DROP CONSTRAINT "REPAPA";

ALTER TABLE "HR"."EMP_PHOTO" DROP CONSTRAINT "FK_EMP_PHOTO";

ALTER TABLE "HR"."EMP_RESUME" DROP CONSTRAINT

"FK_EMP_RESUME";

ALTER TABLE "HR"."PROJECT" DROP CONSTRAINT "FK_PROJECT_1";

ALTER TABLE "HR"."PROJECT" DROP CONSTRAINT "FK_PROJECT_2";

ALTER TABLE "HR"."PROJECT" DROP CONSTRAINT "RPP";

ALTER TABLE "HR"."PROJECT_ACTIVITY" DROP CONSTRAINT

"PROJACT_ACT_FK";

ALTER TABLE "HR"."PROJECT_ACTIVITY" DROP CONSTRAINT "RPAP";

 188

ALTER TABLE "HR"."ACTIVITY" DROP CONSTRAINT

"ACTIVITY_ACTKWD_UN";

ALTER TABLE "HR"."ACTIVITY" DROP CONSTRAINT "PK_ACT";

ALTER TABLE "HR"."DEPARTMENT" DROP CONSTRAINT

"DEPARTMENT_DEPTNAME_UN";

ALTER TABLE "HR"."DEPARTMENT" DROP CONSTRAINT

"PK_DEPARTMENT";

ALTER TABLE "HR"."EMPLOYEE" DROP CONSTRAINT "NUMBER";

ALTER TABLE "HR"."EMPLOYEE" DROP CONSTRAINT "PK_EMPLOYEE";

ALTER TABLE "HR"."EMPPROJACT" DROP CONSTRAINT "EMPPROJACT_PK";

ALTER TABLE "HR"."EMP_PHOTO" DROP CONSTRAINT "PK_EMP_PHOTO";

ALTER TABLE "HR"."EMP_RESUME" DROP CONSTRAINT

"PK_EMP_RESUME";

ALTER TABLE "HR"."PROJECT" DROP CONSTRAINT "PK_PROJECT";

ALTER TABLE "HR"."PROJECT_ACTIVITY" DROP CONSTRAINT

"PK_PROJACT";

DROP INDEX "HR"."XDEPT2";

DROP INDEX "HR"."XDEPT3";

DROP INDEX "HR"."XEMP2";

DROP INDEX "HR"."XPROJ2";

DROP TABLE "HR"."ACTIVITY";

DROP TABLE "HR"."DEPARTMENT";

DROP TABLE "HR"."EMPLOYEE";

DROP TABLE "HR"."EMPPROJACT";

DROP TABLE "HR"."EMP_PHOTO";

DROP TABLE "HR"."EMP_RESUME";

DROP TABLE "HR"."PROJECT";

DROP TABLE "HR"."PROJECT_ACTIVITY";

DROP SCHEMA "HR" RESTRICT;

-- ----------------------

-- CREATE SCHEMA & TABLES

CREATE SCHEMA "HR";

CREATE TABLE "HR"."ACTIVITY" (

 "ACTNO" SMALLINT NOT NULL,

 "ACTKWD" CHAR(6) NOT NULL,

 "ACTDESC" VARCHAR(20) NOT NULL

);

CREATE TABLE "HR"."DEPARTMENT" (

 "DEPTNO" CHAR(3) NOT NULL,

 "DEPTNAME" VARCHAR(36) NOT NULL,

 "MGRNO" CHAR(6),

 "ADMRDEPT" CHAR(3) NOT NULL,

 "LOCATION" CHAR(16)

);

 189

CREATE TABLE "HR"."EMPLOYEE" (

 "EMPNO" CHAR(6) NOT NULL,

 "FIRSTNAME" VARCHAR(12) NOT NULL,

 "MIDINIT" CHAR(1),

 "LASTNAME" VARCHAR(15) NOT NULL,

 "WORKDEPT" CHAR(3),

 "PHONENO" CHAR(4),

 "HIREDATE" DATE,

 "JOB" CHAR(8),

 "EDLEVEL" SMALLINT NOT NULL,

 "SEX" CHAR(1),

 "BIRTHDATE" DATE,

 "SALARY" DECIMAL(9 , 2),

 "BONUS" DECIMAL(9 , 2),

 "COMM" DECIMAL(9 , 2)

);

CREATE TABLE "HR"."EMPPROJACT" (

 "EMPNO" CHAR(6) NOT NULL,

 "PROJNO" CHAR(6) NOT NULL,

 "ACTNO" SMALLINT NOT NULL,

 "EMPTIME" DECIMAL(5 , 2),

 "EMSTDATE" VARCHAR(10) NOT NULL,

 "EMENDATE" VARCHAR(10)

);

CREATE TABLE "HR"."EMP_PHOTO" (

 "EMPNO" CHAR(6) NOT NULL,

 "PHOTO_FORMAT" VARCHAR(10) NOT NULL,

 "PICTURE" BLOB(102400) INLINE LENGTH 140

);

CREATE TABLE "HR"."EMP_RESUME" (

 "EMPNO" CHAR(6) NOT NULL,

 "RESUME_FORMAT" VARCHAR(10) NOT NULL,

 "RESUME" CLOB(5120) INLINE LENGTH 92

);

CREATE TABLE "HR"."PROJECT" (

 "PROJNO" CHAR(6) NOT NULL,

 "PROJNAME" VARCHAR(24) NOT NULL DEFAULT '',

 "DEPTNO" CHAR(3) NOT NULL,

 "RESPEMP" CHAR(6) NOT NULL,

 "PRSTAFF" DECIMAL(5 , 2),

 "PRSTDATE" VARCHAR(10),

 "PRENDATE" VARCHAR(10),

 "MAJPROJ" CHAR(6)

);

 190

CREATE TABLE "HR"."PROJECT_ACTIVITY" (

 "PROJNO" CHAR(6) NOT NULL,

 "ACTNO" SMALLINT NOT NULL,

 "ACSTAFF" DECIMAL(5 , 2),

 "ACSTDATE" VARCHAR(10) NOT NULL,

 "ACENDATE" VARCHAR(10)

);

CREATE INDEX "HR"."XDEPT2"

 ON "HR"."DEPARTMENT"

 ("MGRNO" ASC)

 PCTFREE 10

 ALLOW REVERSE SCANS;

CREATE INDEX "HR"."XDEPT3"

 ON "HR"."DEPARTMENT"

 ("ADMRDEPT" ASC)

 PCTFREE 10

 ALLOW REVERSE SCANS;

CREATE INDEX "HR"."XEMP2"

 ON "HR"."EMPLOYEE"

 ("WORKDEPT" ASC)

 PCTFREE 10

 ALLOW REVERSE SCANS;

CREATE INDEX "HR"."XPROJ2"

 ON "HR"."PROJECT"

 ("RESPEMP" ASC)

 PCTFREE 10

 ALLOW REVERSE SCANS;

-- ----------------------

ALTER TABLE "HR"."ACTIVITY" ADD CONSTRAINT

"ACTIVITY_ACTKWD_UN" UNIQUE

 ("ACTKWD");

ALTER TABLE "HR"."ACTIVITY" ADD CONSTRAINT "PK_ACT" PRIMARY KEY

 ("ACTNO");

ALTER TABLE "HR"."DEPARTMENT" ADD CONSTRAINT

"DEPARTMENT_DEPTNAME_UN" UNIQUE

 ("DEPTNAME");

ALTER TABLE "HR"."DEPARTMENT" ADD CONSTRAINT "PK_DEPARTMENT"

PRIMARY KEY

 ("DEPTNO");

ALTER TABLE "HR"."EMPLOYEE" ADD CONSTRAINT "NUMBER" CHECK

(PHONENO >= '0000' AND PHONENO <= '9999');

ALTER TABLE "HR"."EMPLOYEE" ADD CONSTRAINT "PK_EMPLOYEE"

PRIMARY KEY

 ("EMPNO");

 191

ALTER TABLE "HR"."EMPPROJACT" ADD CONSTRAINT "EMPPROJACT_PK"

PRIMARY KEY

 ("EMPNO",

 "PROJNO",

 "ACTNO",

 "EMSTDATE");

ALTER TABLE "HR"."EMP_PHOTO" ADD CONSTRAINT "PK_EMP_PHOTO"

PRIMARY KEY

 ("EMPNO",

 "PHOTO_FORMAT");

ALTER TABLE "HR"."EMP_RESUME" ADD CONSTRAINT "PK_EMP_RESUME"

PRIMARY KEY

 ("EMPNO",

 "RESUME_FORMAT");

ALTER TABLE "HR"."PROJECT" ADD CONSTRAINT "PK_PROJECT" PRIMARY

KEY

 ("PROJNO");

ALTER TABLE "HR"."PROJECT_ACTIVITY" ADD CONSTRAINT "PK_PROJACT"

PRIMARY KEY

 ("PROJNO",

 "ACTNO",

 "ACSTDATE");

ALTER TABLE "HR"."DEPARTMENT" ADD CONSTRAINT "RDE" FOREIGN KEY

 ("MGRNO")

 REFERENCES "HR"."EMPLOYEE"

 ("EMPNO")

 ON DELETE SET NULL;

ALTER TABLE "HR"."DEPARTMENT" ADD CONSTRAINT "ROD" FOREIGN

KEY

 ("ADMRDEPT")

 REFERENCES "HR"."DEPARTMENT"

 ("DEPTNO")

 ON DELETE CASCADE;

ALTER TABLE "HR"."EMPLOYEE" ADD CONSTRAINT "RED" FOREIGN KEY

 ("WORKDEPT")

 REFERENCES "HR"."DEPARTMENT"

 ("DEPTNO")

 ON DELETE SET NULL;

ALTER TABLE "HR"."EMPPROJACT" ADD CONSTRAINT

"EMPPROJACT_EMPLOYEE_FK1" FOREIGN KEY

 ("EMPNO")

 REFERENCES "HR"."EMPLOYEE"

 ("EMPNO")

 ON DELETE CASCADE;

 192

ALTER TABLE "HR"."EMPPROJACT" ADD CONSTRAINT "REPAPA" FOREIGN

KEY

 ("PROJNO",

 "ACTNO",

 "EMSTDATE")

 REFERENCES "HR"."PROJECT_ACTIVITY"

 ("PROJNO",

 "ACTNO",

 "ACSTDATE")

 ON DELETE RESTRICT;

ALTER TABLE "HR"."EMP_PHOTO" ADD CONSTRAINT "FK_EMP_PHOTO"

FOREIGN KEY

 ("EMPNO")

 REFERENCES "HR"."EMPLOYEE"

 ("EMPNO")

 ON DELETE RESTRICT;

ALTER TABLE "HR"."EMP_RESUME" ADD CONSTRAINT "FK_EMP_RESUME"

FOREIGN KEY

 ("EMPNO")

 REFERENCES "HR"."EMPLOYEE"

 ("EMPNO")

 ON DELETE RESTRICT;

ALTER TABLE "HR"."PROJECT" ADD CONSTRAINT "FK_PROJECT_1"

FOREIGN KEY

 ("DEPTNO")

 REFERENCES "HR"."DEPARTMENT"

 ("DEPTNO")

 ON DELETE RESTRICT;

ALTER TABLE "HR"."PROJECT" ADD CONSTRAINT "FK_PROJECT_2"

FOREIGN KEY

 ("RESPEMP")

 REFERENCES "HR"."EMPLOYEE"

 ("EMPNO")

 ON DELETE RESTRICT;

ALTER TABLE "HR"."PROJECT" ADD CONSTRAINT "RPP" FOREIGN KEY

 ("MAJPROJ")

 REFERENCES "HR"."PROJECT"

 ("PROJNO")

 ON DELETE CASCADE;

ALTER TABLE "HR"."PROJECT_ACTIVITY" ADD CONSTRAINT

"PROJACT_ACT_FK" FOREIGN KEY

 ("ACTNO")

 REFERENCES "HR"."ACTIVITY"

 ("ACTNO")

 193

 ON DELETE CASCADE;

ALTER TABLE "HR"."PROJECT_ACTIVITY" ADD CONSTRAINT "RPAP"

FOREIGN KEY

 ("PROJNO")

 REFERENCES "HR"."PROJECT"

 ("PROJNO")

 ON DELETE RESTRICT;

COMMENT ON TABLE "HR"."ACTIVITY" IS

'Activities carried out in projects';

COMMENT ON TABLE "HR"."DEPARTMENT" IS

'Departments in this enterprise';

COMMENT ON TABLE "HR"."EMPLOYEE" IS

'Employees in this enterprise';

COMMENT ON TABLE "HR"."EMPPROJACT" IS

'Activities performed by an employee in a project on a given start date.';

COMMENT ON TABLE "HR"."EMP_PHOTO" IS

'Employee Photos. An Employee can have at most one photo of the same format. ';

COMMENT ON TABLE "HR"."EMP_RESUME" IS

'Employee Resumes. An employee can have at most one resume of the same format';

COMMENT ON TABLE "HR"."PROJECT" IS

'Projects carried out by this enterprise. A project can be part of a larger project.';

COMMENT ON TABLE "HR"."PROJECT_ACTIVITY" IS

'Activities performed in a project with a given start/end date';

1.2. DML Script for IBM DB2 Sample RDB Instance:

SET SCHEMA HR;

-- clean up

ALTER TABLE department ALTER FOREIGN KEY rde NOT ENFORCED;

ALTER TABLE department ALTER FOREIGN KEY rod NOT ENFORCED;

ALTER TABLE employee ALTER FOREIGN KEY red NOT ENFORCED;

ALTER TABLE empprojact ALTER FOREIGN KEY empprojact_employee_fk1 NOT

ENFORCED;

ALTER TABLE empprojact ALTER FOREIGN KEY repapa NOT ENFORCED;

ALTER TABLE emp_photo ALTER FOREIGN KEY fk_emp_photo NOT ENFORCED;

ALTER TABLE emp_resume ALTER FOREIGN KEY fk_emp_resume NOT ENFORCED;

ALTER TABLE project ALTER FOREIGN KEY fk_project_1 NOT ENFORCED;

ALTER TABLE project ALTER FOREIGN KEY fk_project_2 NOT ENFORCED;

ALTER TABLE project ALTER FOREIGN KEY rpp NOT ENFORCED;

ALTER TABLE project_activity ALTER FOREIGN KEY projact_act_fk NOT ENFORCED;

ALTER TABLE project_activity ALTER FOREIGN KEY rpap NOT ENFORCED;

 194

DELETE FROM activity;

DELETE FROM department;

DELETE FROM employee;

DELETE FROM empprojact;

DELETE FROM emp_photo;

DELETE FROM emp_resume;

DELETE FROM project;

DELETE FROM project_activity;

-- Table: Activity

INSERT INTO activity (actno, actkwd, actdesc) VALUES

(10,'MANAGE','MANAGE/ADVISE'),

(20,'ECOST ','ESTIMATE COST'),

(30,'DEFINE','DEFINE SPECS'),

(40,'LEADPR','LEAD PROGRAM/DESIGN'),

(50,'SPECS ','WRITE SPECS'),

(60,'LOGIC ','DESCRIBE LOGIC'),

(70,'CODE ','CODE PROGRAMS'),

(80,'TEST ','TEST PROGRAMS'),

(90,'ADMQS ','ADM QUERY SYSTEM'),

(100,'TEACH ','TEACH CLASSES'),

(110,'COURSE','DEVELOP COURSES'),

(120,'STAFF ','PERS AND STAFFING'),

(130,'OPERAT','OPER COMPUTER SYS'),

(140,'MAINT ','MAINT SOFTWARE SYS'),

(150,'ADMSYS','ADM OPERATING SYS'),

(160,'ADMDB ','ADM DATA BASES'),

(170,'ADMDC ','ADM DATA COMM'),

(180,'DOC ','DOCUMENT'),

--

(190,'INFRA ','INFRASRUCTURE SUPORT'),

(200,'ENABLE','ENABLEMENT SUPPORT')

;

-- Table: DEPARTMENT

INSERT INTO department (deptno, deptname, mgrno, admrdept, location) VALUES

('A00','SPIFFY COMPUTER SERVICE DIV.','000010','A00',NULL),

('B01','PLANNING','000020','A00',NULL),

('C01','INFORMATION CENTER','000030','A00',NULL),

('D01','DEVELOPMENT CENTER', '300010','A00',NULL),

('D11','MANUFACTURING SYSTEMS','000060','D01',NULL),

('D21','ADMINISTRATION SYSTEMS','000070','D01',NULL),

('E01','SUPPORT SERVICES','000050','A00',NULL),

('E11','OPERATIONS','000090','E01',NULL),

('E21','SOFTWARE SUPPORT','000100','E01',NULL),

('F22','BRANCH OFFICE F2', '300080','E01',NULL),

('G22','BRANCH OFFICE G2', '300090','E01',NULL),

('H22','BRANCH OFFICE H2', NULL,'E01',NULL),

('I22','BRANCH OFFICE I2', NULL,'E01',NULL),

 195

('J22','BRANCH OFFICE J2', NULL,'E01',NULL),

--

('B11','INFORMATION PLANNING', '300020','B01',NULL),

('B21','DEVELOPMENT PLANNING', '300030','B01',NULL),

('B31','SUPPORT PLANNING', '300040','B01',NULL),

('C11','INFRASTRUCTURE', '300050','C01',NULL),

('C21','DATA STORAGE', '300060','C01',NULL),

('C31','DATA PRESENTATION', '300070','C01',NULL)

;

-- Table: EMPLOYEE

INSERT INTO employee (empno, firstname, midinit, lastname, workdept, phoneno, hiredate, job,

edlevel, sex, birthdate, salary, bonus, comm) VALUES

('000010','CHRISTINE','I','HAAS','A00','3978',to_date ('19950101','YYYYMMDD'),'PRES

',18,'F',to_date ('19630824','YYYYMMDD'),+0152750.00,+0001000.00,+0004220.00),

('000020','MICHAEL' ,'L','THOMPSON','B01','3476',to_date

('20031010','YYYYMMDD'),'MANAGER ',18,'M',to_date

('19780202','YYYYMMDD'),+0094250.00,+0000800.00,+0003300.00),

('000030','SALLY' ,'A','KWAN','C01','4738',to_date ('20050405','YYYYMMDD'),'MANAGER

',20,'F',to_date ('19710511','YYYYMMDD'),+0098250.00,+0000800.00,+0003060.00),

('000050','JOHN' ,'B','GEYER','E01','6789',to_date ('19790817','YYYYMMDD'),'MANAGER

',16,'M',to_date ('19550915','YYYYMMDD'),+0080175.00,+0000800.00,+0003214.00),

('000060','IRVING' ,'F','STERN','D11','6423',to_date ('20030914','YYYYMMDD'),'MANAGER

',16,'M',to_date ('19750707','YYYYMMDD'),+0072250.00,+0000500.00,+0002580.00),

('000070','EVA' ,'D','PULASKI','D21','7831',to_date

('20050930','YYYYMMDD'),'MANAGER ',16,'F',to_date

('20030526','YYYYMMDD'),+0096170.00,+0000700.00,+0002893.00),

('000090','EILEEN' ,'W','HENDERSON','E11','5498',to_date

('20000815','YYYYMMDD'),'MANAGER ',16,'F',to_date

('19710515','YYYYMMDD'),+0089750.00,+0000600.00,+0002380.00),

('000100','THEODORE' ,'Q','SPENSER','E21','0972',to_date

('20000619','YYYYMMDD'),'MANAGER ',14,'M',to_date

('19801218','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('000110','VINCENZO' ,'G','LUCCHESSI','A00','3490',to_date

('19880516','YYYYMMDD'),'SALESREP',19,'M',to_date

('19591105','YYYYMMDD'),+0066500.00,+0000900.00,+0003720.00),

('000120','SEAN' ,NULL,'OCONNELL','A00','2167',to_date

('19931205','YYYYMMDD'),'CLERK ',14,'M',to_date

('19721018','YYYYMMDD'),+0049250.00,+0000600.00,+0002340.00),

('000130','DELORES' ,'M','QUINTANA','C01','4578',to_date

('20010728','YYYYMMDD'),'ANALYST ',16,'F',to_date

('19550915','YYYYMMDD'),+0073800.00,+0000500.00,+0001904.00),

('000140','HEATHER' ,'A','NICHOLLS','C01','1793',to_date

('20061215','YYYYMMDD'),'ANALYST ',18,'F',to_date

('19760119','YYYYMMDD'),+0068420.00,+0000600.00,+0002274.00),

('000150','BRUCE' ,NULL,'ADAMSON','D11','4510',to_date

('20020212','YYYYMMDD'),'DESIGNER',16,'M',to_date

('19770517','YYYYMMDD'),+0055280.00,+0000500.00,+0002022.00),

 196

('000160','ELIZABETH','R','PIANKA','D11','3782',to_date

('20061011','YYYYMMDD'),'DESIGNER',17,'F',to_date

('19800412','YYYYMMDD'),+0062250.00,+0000400.00,+0001780.00),

('000170','MASATOSHI','J','YOSHIMURA','D11','2890',to_date

('19990915','YYYYMMDD'),'DESIGNER',16,'M',to_date

('19810105','YYYYMMDD'),+0044680.00,+0000500.00,+0001974.00),

('000180','MARILYN' ,'S','SCOUTTEN','D11','1682',to_date

('20030707','YYYYMMDD'),'DESIGNER',17,'F',to_date

('19790221','YYYYMMDD'),+0051340.00,+0000500.00,+0001707.00),

('000190','JAMES' ,'H','WALKER','D11','2986',to_date

('20040726','YYYYMMDD'),'DESIGNER',16,'M',to_date

('19820625','YYYYMMDD'),+0050450.00,+0000400.00,+0001636.00),

('000200','DAVID' ,NULL,'BROWN','D11','4501',to_date

('20020303','YYYYMMDD'),'DESIGNER',16,'M',to_date

('19710529','YYYYMMDD'),+0057740.00,+0000600.00,+0002217.00),

('000210','WILLIAM' ,'T','JONES','D11','0942',to_date

('19980411','YYYYMMDD'),'DESIGNER',17,'M',to_date

('20030223','YYYYMMDD'),+0068270.00,+0000400.00,+0001462.00),

('000220','JENNIFER' ,'K','LUTZ','D11','0672',to_date

('19980829','YYYYMMDD'),'DESIGNER',18,'F',to_date

('19780319','YYYYMMDD'),+0049840.00,+0000600.00,+0002387.00),

('000230','JAMES' ,'J','JEFFERSON','D21','2094',to_date

('19961121','YYYYMMDD'),'CLERK ',14,'M',to_date

('19800530','YYYYMMDD'),+0042180.00,+0000400.00,+0001774.00),

('000240','SALVATORE','M','MARINO','D21','3780',to_date

('20041205','YYYYMMDD'),'CLERK ',17,'M',to_date

('20020331','YYYYMMDD'),+0048760.00,+0000600.00,+0002301.00),

('000250','DANIEL' ,'S','SMITH','D21','0961',to_date ('19991030','YYYYMMDD'),'CLERK

',15,'M',to_date ('19691112','YYYYMMDD'),+0049180.00,+0000400.00,+0001534.00),

('000260','SYBIL' ,'P','JOHNSON','D21','8953',to_date ('20050911','YYYYMMDD'),'CLERK

',16,'F',to_date ('19761005','YYYYMMDD'),+0047250.00,+0000300.00,+0001380.00),

('000270','MARIA' ,'L','PEREZ','D21','9001',to_date ('20060930','YYYYMMDD'),'CLERK

',15,'F',to_date ('20030526','YYYYMMDD'),+0037380.00,+0000500.00,+0002190.00),

('000280','ETHEL' ,'R','SCHNEIDER','E11','8997',to_date

('19970324','YYYYMMDD'),'OPERATOR',17,'F',to_date

('19760328','YYYYMMDD'),+0036250.00,+0000500.00,+0002100.00),

('000290','JOHN' ,'R','PARKER','E11','4502',to_date

('20060530','YYYYMMDD'),'OPERATOR',12,'M',to_date

('19850709','YYYYMMDD'),+0035340.00,+0000300.00,+0001227.00),

('000300','PHILIP' ,NULL,'SMITH','E11','2095',to_date

('20020619','YYYYMMDD'),'OPERATOR',14,'M',to_date

('19761027','YYYYMMDD'),+0037750.00,+0000400.00,+0001420.00),

('000310','MAUDE' ,'F','SETRIGHT','E11','3332',to_date

('19940912','YYYYMMDD'),'OPERATOR',12,'F',to_date

('19610421','YYYYMMDD'),+0035900.00,+0000300.00,+0001272.00),

('000320','RAMLAL' ,'V','MEHTA','E21','9990',to_date

('19950707','YYYYMMDD'),'FIELDREP',16,'M',to_date

('19620811','YYYYMMDD'),+0039950.00,+0000400.00,+0001596.00),

 197

('000330','WING' ,NULL,'LEE','E21','2103',to_date

('20060223','YYYYMMDD'),'FIELDREP',14,'M',to_date

('19710718','YYYYMMDD'),+0045370.00,+0000500.00,+0002030.00),

('000340','JASON' ,'R','GOUNOT','E21','5698',to_date

('19770505','YYYYMMDD'),'FIELDREP',16,'M',to_date

('19560517','YYYYMMDD'),+0043840.00,+0000500.00,+0001907.00),

('200010','DIAN' ,'J','HEMMINGER','A00','3978',to_date

('19950101','YYYYMMDD'),'SALESREP',18,'F',to_date

('19730814','YYYYMMDD'),+0046500.00,+0001000.00,+0004220.00),

('200120','GREG' ,NULL,'ORLANDO','A00','2167',to_date

('20020505','YYYYMMDD'),'CLERK ',14,'M',to_date

('19721018','YYYYMMDD'),+0039250.00,+0000600.00,+0002340.00),

('200140','KIM' ,'N','NATZ','C01','1793',to_date ('20061215','YYYYMMDD'),'ANALYST

',18,'F',to_date ('19760119','YYYYMMDD'),+0068420.00,+0000600.00,+0002274.00),

('200170','KIYOSHI' ,NULL,'YAMAMOTO','D11','2890',to_date

('20050915','YYYYMMDD'),'DESIGNER',16,'M',to_date

('19810105','YYYYMMDD'),+0064680.00,+0000500.00,+0001974.00),

('200220','REBA' ,'K','JOHN','D11','0672',to_date

('20050829','YYYYMMDD'),'DESIGNER',18,'F',to_date

('19780319','YYYYMMDD'),+0069840.00,+0000600.00,+0002387.00),

('200240','ROBERT' ,'M','MONTEVERDE','D21','3780',to_date

('20041205','YYYYMMDD'),'CLERK ',17,'M',to_date

('19840331','YYYYMMDD'),+0037760.00,+0000600.00,+0002301.00),

('200280','EILEEN' ,'R','SCHWARTZ','E11','8997',to_date

('19970324','YYYYMMDD'),'OPERATOR',17,'F',to_date

('19660328','YYYYMMDD'),+0046250.00,+0000500.00,+0002100.00),

('200310','MICHELLE' ,'F','SPRINGER','E11','3332',to_date

('19940912','YYYYMMDD'),'OPERATOR',12,'F',to_date

('19610421','YYYYMMDD'),+0035900.00,+0000300.00,+0001272.00),

('200330','HELENA' ,NULL,'WONG','E21','2103',to_date

('20060223','YYYYMMDD'),'FIELDREP',14,'F',to_date

('19710718','YYYYMMDD'),+0035370.00,+0000500.00,+0002030.00),

('200340','ROY' ,'R','ALONZO','E21','5698',to_date

('19970705','YYYYMMDD'),'FIELDREP',16,'M',to_date

('19560517','YYYYMMDD'),+0031840.00,+0000500.00,+0001907.00),

--

('300010','DAVE' ,'A','TBD','D01','1001',to_date ('20110501','YYYYMMDD'),'MANAGER

',20,'M',to_date ('19800101','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('300020','MAVE' ,'B','TBD','B11','1002',to_date ('20110502','YYYYMMDD'),'MANAGER

',20,'F',to_date ('19800102','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('300030','SALLY','C','TBD','B21','1003',to_date ('20110503','YYYYMMDD'),'MANAGER

',20,'F',to_date ('19800103','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('300040','MOLLY','D','TBD','B31','1004',to_date ('20110504','YYYYMMDD'),'MANAGER

',20,'F',to_date ('19800104','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('300050','KALLY','E','TBD','C11','1005',to_date ('20110505','YYYYMMDD'),'MANAGER

',20,'F',to_date ('19800105','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('300060','JIM' ,'F','TBD','C21','1006',to_date ('20110506','YYYYMMDD'),'MANAGER

',20,'M',to_date ('19800106','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

 198

('300070','KIM' ,'G','TBD','C31','1007',to_date ('20110507','YYYYMMDD'),'MANAGER

',20,'F',to_date ('19800107','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('300080','SIM' ,'H','TBD','F22','1008',to_date ('20110508','YYYYMMDD'),'MANAGER

',20,'M',to_date ('19800108','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00),

('300090','TIM' ,'I','TBD','G22','1009',to_date ('20110509','YYYYMMDD'),'MANAGER

',20,'M',to_date ('19800109','YYYYMMDD'),+0086150.00,+0000500.00,+0002092.00)

;

-- Table: EMPPROJACT

INSERT INTO empprojact (empno, projno, actno, emptime, emstdate, emendate) VALUES

('000010','AD3100',10,+000.50,'20020101','20020701'),

('000070','AD3110',10,+001.00,'20020101','20030201'),

('000230','AD3111',60,+001.00,'20020101','20020315'),

('000230','AD3111',60,+000.50,'20020315','20020415'),

('000230','AD3111',70,+000.50,'20020315','20021015'),

('000230','AD3111',80,+000.50,'20020415','20021015'),

('000230','AD3111',180,+000.50,'20021015','20030101'),

('000240','AD3111',70,+001.00,'20020215','20020915'),

('000240','AD3111',80,+001.00,'20020915','20030101'),

('000250','AD3112',60,+001.00,'20020101','20020201'),

('000250','AD3112',60,+000.50,'20020201','20020315'),

('000250','AD3112',60,+001.00,'20030101','20030201'),

('000250','AD3112',70,+000.50,'20020201','20020315'),

('000250','AD3112',70,+001.00,'20020315','20020815'),

('000250','AD3112',70,+000.25,'20020815','20021015'),

('000250','AD3112',80,+000.25,'20020815','20021015'),

('000250','AD3112',80,+000.50,'20021015','20021201'),

('000250','AD3112',180,+000.50,'20020815','20030101'),

('000260','AD3113',70,+000.50,'20020615','20020701'),

('000260','AD3113',70,+001.00,'20020701','20030201'),

('000260','AD3113',80,+001.00,'20020101','20020301'),

('000260','AD3113',80,+000.50,'20020301','20020415'),

('000260','AD3113',180,+000.50,'20020301','20020415'),

('000260','AD3113',180,+001.00,'20020415','20020601'),

('000260','AD3113',180,+001.00,'20020601','20020701'),

('000270','AD3113',60,+000.50,'20020301','20020401'),

('000270','AD3113',60,+001.00,'20020401','20020901'),

('000270','AD3113',60,+000.25,'20020901','20021015'),

('000270','AD3113',70,+000.75,'20020901','20021015'),

('000270','AD3113',70,+001.00,'20021015','20030201'),

('000270','AD3113',80,+001.00,'20020101','20020301'),

('000270','AD3113',80,+000.50,'20020301','20020401'),

('000030','IF1000',10,+000.50,'20020601','20030101'),

('000130','IF1000',90,+001.00,'20021001','20030101'),

('000130','IF1000',100,+000.50,'20021001','20030101'),

('000140','IF1000',90,+000.50,'20021001','20030101'),

('000030','IF2000',10,+000.50,'20020101','20030101'),

('000140','IF2000',100,+001.00,'20020101','20020301'),

('000140','IF2000',100,+000.50,'20020301','20020701'),

 199

('000140','IF2000',110,+000.50,'20020301','20020701'),

('000140','IF2000',110,+000.50,'20021001','20030101'),

('000010','MA2100',10,+000.50,'20020101','20021101'),

('000110','MA2100',20,+001.00,'20020101','20030301'),

('000010','MA2110',10,+001.00,'20020101','20030201'),

('000200','MA2111',50,+001.00,'20020101','20020615'),

('000200','MA2111',60,+001.00,'20020615','20030201'),

('000220','MA2111',40,+001.00,'20020101','20030201'),

('000150','MA2112',60,+001.00,'20020101','20020715'),

('000150','MA2112',180,+001.00,'20020715','20030201'),

('000170','MA2112',60,+001.00,'20020101','20030601'),

('000170','MA2112',70,+001.00,'20020601','20030201'),

('000190','MA2112',70,+001.00,'20020101','20021001'),

('000190','MA2112',80,+001.00,'20021001','20031001'),

('000160','MA2113',60,+001.00,'20020715','20030201'),

('000170','MA2113',80,+001.00,'20020101','20030201'),

('000180','MA2113',70,+001.00,'20020401','20020615'),

('000210','MA2113',80,+000.50,'20021001','20030201'),

('000210','MA2113',180,+000.50,'20021001','20030201'),

('000050','OP1000',10,+000.25,'20020101','20030201'),

('000090','OP1010',10,+001.00,'20020101','20030201'),

('000280','OP1010',130,+001.00,'20020101','20030201'),

('000290','OP1010',130,+001.00,'20020101','20030201'),

('000300','OP1010',130,+001.00,'20020101','20030201'),

('000310','OP1010',130,+001.00,'20020101','20030201'),

('000050','OP2010',10,+000.75,'20020101','20030201'),

('000100','OP2010',10,+001.00,'20020101','20030201'),

('000320','OP2011',140,+000.75,'20020101','20030201'),

('000320','OP2011',150,+000.25,'20020101','20030201'),

('000330','OP2012',140,+000.25,'20020101','20030201'),

('000330','OP2012',160,+000.75,'20020101','20030201'),

('000340','OP2013',140,+000.50,'20020101','20030201'),

('000340','OP2013',170,+000.50,'20020101','20030201'),

('000020','PL2100',30,+001.00,'20020101','20020915')

;

-- Table: EMP_PHOTO

INSERT INTO emp_photo (empno, photo_format) VALUES

('000130','bitmap'),

('000130','gif'),

('000140','bitmap'),

('000140','gif'),

('000150','bitmap'),

('000150','gif'),

('000190','bitmap'),

('000190','gif')

;

-- Table: EMP_RESUME

INSERT INTO emp_resume (empno, resume_format) VALUES

 200

('000130','ascii'),

('000130','html'),

('000140','ascii'),

('000140','html'),

('000150','ascii'),

('000150','html'),

('000190','ascii'),

('000190','html')

;

-- Table: PROJECT

INSERT INTO project (projno, projname, deptno, respemp, prstaff, prstdate, prendate, majproj)

VALUES

('AD3100','ADMIN SERVICES','D01','000010',+006.50,'20020101','20030201',NULL),

('AD3110','GENERAL ADMIN

SYSTEMS','D21','000070',+006.00,'20020101','20030201','AD3100'),

('AD3111','PAYROLL

PROGRAMMING','D21','000230',+002.00,'20020101','20030201','AD3110'),

('AD3112','PERSONNEL

PROGRAMMING','D21','000250',+001.00,'20020101','20030201','AD3110'),

('AD3113','ACCOUNT

PROGRAMMING','D21','000270',+002.00,'20020101','20030201','AD3110'),

('IF1000','QUERY SERVICES','C01','000030',+002.00,'20020101','20030201',NULL),

('IF2000','USER EDUCATION','C01','000030',+001.00,'20020101','20030201',NULL),

('MA2100','WELD LINE

AUTOMATION','D01','000010',+012.00,'20020101','20030201',NULL),

('MA2110','W L PROGRAMMING','D11','000060',+009.00,'20020101','20030201','MA2100'),

('MA2111','W L PROGRAM

DESIGN','D11','000220',+002.00,'20020101','19821201','MA2110'),

('MA2112','W L ROBOT DESIGN','D11','000150',+003.00,'20020101','19821201','MA2110'),

('MA2113','W L PROD CONT

PROGS','D11','000160',+003.00,'20020215','19821201','MA2110'),

('OP1000','OPERATION SUPPORT','E01','000050',+006.00,'20020101','20030201',NULL),

('OP1010','OPERATION','E11','000090',+005.00,'20020101','20030201','OP1000'),

('OP2000','GEN SYSTEMS SERVICES','E01','000050',+005.00,'20020101','20030201',NULL),

('OP2010','SYSTEMS SUPPORT','E21','000100',+004.00,'20020101','20030201','OP2000'),

('OP2011','SCP SYSTEMS SUPPORT','E21','000320',+001.00,'20020101','20030201','OP2010'),

('OP2012','APPLICATIONS

SUPPORT','E21','000330',+001.00,'20020101','20030201','OP2010'),

('OP2013','DB/DC SUPPORT','E21','000340',+001.00,'20020101','20030201','OP2010'),

('PL2100','WELD LINE PLANNING','B01','000020',+001.00,'20020101','20020915','MA2100')

;

-- Table: PROJECT_ACTIVITY

INSERT INTO project_activity(projno, actno, acstaff,acstdate, acendate) VALUES

('AD3100',10, NULL,'20020101',NULL),

('AD3110',10, NULL,'20020101',NULL),

('AD3111',60, NULL,'20020101',NULL),

('AD3111',60, NULL,'20020315',NULL),

('AD3111',70, NULL,'20020315',NULL),

 201

('AD3111',80, NULL,'20020415',NULL),

('AD3111',180, NULL,'20021015',NULL),

('AD3111',70, NULL,'20020215',NULL),

('AD3111',80, NULL,'20020915',NULL),

('AD3112',60, NULL,'20020101',NULL),

('AD3112',60, NULL,'20020201',NULL),

('AD3112',60, NULL,'20030101',NULL),

('AD3112',70, NULL,'20020201',NULL),

('AD3112',70, NULL,'20020315',NULL),

('AD3112',70, NULL,'20020815',NULL),

('AD3112',80, NULL,'20020815',NULL),

('AD3112',80, NULL,'20021015',NULL),

('AD3112',180, NULL,'20020815',NULL),

('AD3113',70, NULL,'20020615',NULL),

('AD3113',70, NULL,'20020701',NULL),

('AD3113',80, NULL,'20020101',NULL),

('AD3113',80, NULL,'20020301',NULL),

('AD3113',180, NULL,'20020301',NULL),

('AD3113',180, NULL,'20020415',NULL),

('AD3113',180, NULL,'20020601',NULL),

('AD3113',60, NULL,'20020301',NULL),

('AD3113',60, NULL,'20020401',NULL),

('AD3113',60, NULL,'20020901',NULL),

('AD3113',70, NULL,'20020901',NULL),

('AD3113',70, NULL,'20021015',NULL),

('IF1000',10, NULL,'20020601',NULL),

('IF1000',90, NULL,'20021001',NULL),

('IF1000',100, NULL,'20021001',NULL),

('IF2000',10, NULL,'20020101',NULL),

('IF2000',100, NULL,'20020101',NULL),

('IF2000',100, NULL,'20020301',NULL),

('IF2000',110, NULL,'20020301',NULL),

('IF2000',110, NULL,'20021001',NULL),

('MA2100',10, NULL,'20020101',NULL),

('MA2100',20, NULL,'20020101',NULL),

('MA2110',10, NULL,'20020101',NULL),

('MA2111',50, NULL,'20020101',NULL),

('MA2111',60, NULL,'20020615',NULL),

('MA2111',40, NULL,'20020101',NULL),

('MA2112',60, NULL,'20020101',NULL),

('MA2112',180, NULL,'20020715',NULL),

('MA2112',70, NULL,'20020601',NULL),

('MA2112',70, NULL,'20020101',NULL),

('MA2112',80, NULL,'20021001',NULL),

('MA2113',60, NULL,'20020715',NULL),

('MA2113',80, NULL,'20020101',NULL),

('MA2113',70, NULL,'20020401',NULL),

('MA2113',80, NULL,'20021001',NULL),

 202

('MA2113',180, NULL,'20021001',NULL),

('OP1000',10, NULL,'20020101',NULL),

('OP1010',10, NULL,'20020101',NULL),

('OP1010',130, NULL,'20020101',NULL),

('OP2010',10, NULL,'20020101',NULL),

('OP2011',140, NULL,'20020101',NULL),

('OP2011',150, NULL,'20020101',NULL),

('OP2012',140, NULL,'20020101',NULL),

('OP2012',160, NULL,'20020101',NULL),

('OP2013',140, NULL,'20020101',NULL),

('OP2013',170, NULL,'20020101',NULL),

('PL2100',30, NULL,'20020101',NULL)

;

ALTER TABLE department ALTER FOREIGN KEY rde ENFORCED;

ALTER TABLE department ALTER FOREIGN KEY rod ENFORCED;

ALTER TABLE employee ALTER FOREIGN KEY red ENFORCED;

ALTER TABLE empprojact ALTER FOREIGN KEY empprojact_employee_fk1 ENFORCED;

ALTER TABLE empprojact ALTER FOREIGN KEY repapa ENFORCED;

ALTER TABLE emp_photo ALTER FOREIGN KEY fk_emp_photo ENFORCED;

ALTER TABLE emp_resume ALTER FOREIGN KEY fk_emp_resume ENFORCED;

ALTER TABLE project ALTER FOREIGN KEY fk_project_1 ENFORCED;

ALTER TABLE project ALTER FOREIGN KEY fk_project_2 ENFORCED;

ALTER TABLE project ALTER FOREIGN KEY rpp ENFORCED;

ALTER TABLE project_activity ALTER FOREIGN KEY projact_act_fk ENFORCED;

ALTER TABLE project_activity ALTER FOREIGN KEY rpap ENFORCED;

2. Case-Study Two:

In this case-study, I used as a source the RDB instance that was packaged with MS SQL

Server. This sample RDB instance models an e-commerce business. Below are the DDL

and DML scripts used:

2.1. DDL Script for MS SQL Server Sample RDB Instance:

SET SCHEMA ECOMM;

-- Clean up

ALTER TABLE Invoices DROP CONSTRAINT Invoice_Status_Codes_Invoices;

ALTER TABLE Invoices DROP CONSTRAINT Orders_Invoices;

ALTER TABLE Orders DROP CONSTRAINT Order_Status_Codes_Orders;

ALTER TABLE Orders DROP CONSTRAINT Customers_1_Orders;

ALTER TABLE Shipments DROP CONSTRAINT Orders_Shipments;

ALTER TABLE Shipments DROP CONSTRAINT Invoices_Shipments;

ALTER TABLE Shipment_Items DROP CONSTRAINT Shipments_Shipment_Items;

 203

ALTER TABLE Shipment_Items DROP CONSTRAINT Order_Items_Shipment_Items;

ALTER TABLE Order_Items DROP CONSTRAINT Order_Item_Status_Order_Items;

ALTER TABLE Order_Items DROP CONSTRAINT Products_Order_Items;

ALTER TABLE Order_Items DROP CONSTRAINT Orders_Order_Items;

ALTER TABLE Products DROP CONSTRAINT Ref_Product_Types_Products;

ALTER TABLE Customer_Payment_Methods DROP CONSTRAINT

Customers_Customer_Payment_Methods;

ALTER TABLE Customer_Payment_Methods DROP CONSTRAINT

Ref_Payment_Methods_Customer_Payment_Methods;

ALTER TABLE Payments DROP CONSTRAINT Invoices_Payments;

ALTER TABLE Ref_Product_Types DROP CONSTRAINT

Ref_Product_Types_Ref_Product_Types;

DROP TABLE Invoices;

DROP TABLE Orders;

DROP TABLE Ref_Order_Status_Codes ;

DROP TABLE Ref_Order_Item_Status_Codes ;

DROP TABLE Shipments ;

DROP TABLE Shipment_Items ;

DROP TABLE Order_Items;

DROP TABLE Products;

DROP TABLE Customers;

DROP TABLE Ref_Payment_Methods;

DROP TABLE Customer_Payment_Methods;

DROP TABLE Ref_Invoice_Status_Codes;

DROP TABLE Payments;

DROP TABLE Ref_Product_Types ;

-- ----------------------

-- CREATE TABLES

-- ----------------------

CREATE TABLE Invoices (

 invoice_number INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)" with

GENERATED ...

 order_id INTEGER NOT NULL,

 invoice_status_code CHAR(10) NOT NULL,

 invoice_date DATE, -- KA: was DATETIME

 invoice_details VARCHAR(255),

 CONSTRAINT PK_Invoices PRIMARY KEY (invoice_number)

);

CREATE TABLE Orders (

 order_id INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)" with

GENERATED ...

 204

 customer_id INTEGER NOT NULL,

 order_status_code CHAR(10) NOT NULL,

 date_order_placed DATE NOT NULL, -- KA: was DATETIME

 order_details VARCHAR(255),

 CONSTRAINT PK_Orders PRIMARY KEY (order_id)

);

CREATE TABLE Ref_Order_Status_Codes (

 order_status_code CHAR(10) NOT NULL,

 order_status_description VARCHAR(80), -- eg. Cancelled, Completed

 CONSTRAINT PK_Ref_Order_Status_Codes PRIMARY KEY (order_status_code)

);

CREATE TABLE Ref_Order_Item_Status_Codes (

 order_item_status_code CHAR(10) NOT NULL,

 order_item_status_description VARCHAR(80), -- eg Delivered, Out of Stock

 CONSTRAINT PK_Ref_Order_Item_Status_Codes PRIMARY KEY

(order_item_status_code)

);

CREATE TABLE Shipments (

 shipment_id INTEGER NOT NULL GENERATED ALWAYS AS

IDENTITY (START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)"

with GENERATED ...

 order_id INTEGER NOT NULL,

 invoice_number INTEGER NOT NULL,

 shipment_tracking_number VARCHAR(80),

 shipment_date DATE, -- KA: was DATETIME

 other_shipment_details VARCHAR(255),

 CONSTRAINT PK_Shipments PRIMARY KEY (shipment_id)

);

CREATE TABLE Shipment_Items (

 shipment_id INTEGER NOT NULL,

 order_item_id INTEGER NOT NULL,

 CONSTRAINT PK_Shipment_Items PRIMARY KEY (shipment_id, order_item_id)

);

CREATE TABLE Order_Items (

 order_item_id INTEGER NOT NULL GENERATED ALWAYS AS

IDENTITY (START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)"

with GENERATED ...

 product_id INTEGER NOT NULL,

 order_id INTEGER NOT NULL,

 order_item_status_code CHAR(10) NOT NULL,

 order_item_quantity VARCHAR(50),

 order_item_price DECIMAL, -- KA: was MONEY

 other_order_item_details VARCHAR(255),

 CONSTRAINT PK_Order_Items PRIMARY KEY (order_item_id)

 205

);

CREATE TABLE Products (

 product_id INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)" with

GENERATED ...

 product_type_code CHAR(15) NOT NULL,

 product_name VARCHAR(80),

 product_price DECIMAL, -- KA: was MONEY,

 product_color VARCHAR(20),

 product_size VARCHAR(20),

 product_description VARCHAR(255),

 other_product_details VARCHAR(255),

 CONSTRAINT PK_Products PRIMARY KEY (product_id)

);

CREATE TABLE Customers (

 customer_id INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)" with

GENERATED ...

 organisation_or_person CHAR(20),

 organisation_name VARCHAR(40),

 gender CHAR(1),

 first_name VARCHAR(50),

 middle_initial CHAR(1),

 last_name VARCHAR(50),

 email_address VARCHAR(255),

 login_name VARCHAR(80),

 login_password VARCHAR(20),

 phone_number VARCHAR(255),

 address_line_1 VARCHAR(255),

 address_line_2 VARCHAR(255),

 address_line_3 VARCHAR(255),

 address_line_4 VARCHAR(80),

 town_city VARCHAR(50),

 county VARCHAR(50),

 country VARCHAR(50),

 CONSTRAINT PK_Customers PRIMARY KEY (customer_id)

);

CREATE TABLE Ref_Payment_Methods (

 payment_method_code CHAR(10) NOT NULL,

 payment_method_description VARCHAR(80), -- eg CC=Credit Card.

 CONSTRAINT PK_Ref_Payment_Methods PRIMARY KEY

(payment_method_code)

);

CREATE TABLE Customer_Payment_Methods (

 206

 customer_payment_id INTEGER NOT NULL GENERATED ALWAYS AS

IDENTITY (START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)"

with GENERATED ...

 customer_id INTEGER NOT NULL,

 payment_method_code CHAR(10) NOT NULL,

 credit_card_number VARCHAR(40),

 payment_method_details CHAR(50) NULL,

 CONSTRAINT PK_Customer_Payment_Methods PRIMARY KEY

(customer_payment_id)

);

CREATE TABLE Ref_Invoice_Status_Codes (

 invoice_status_code CHAR(10) NOT NULL,

 invoice_status_description VARCHAR(80), -- eg Issued, Paid.

 CONSTRAINT PK_Ref_Invoice_Status_Codes PRIMARY KEY

(invoice_status_code)

);

CREATE TABLE Payments (

 payment_id INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 1, INCREMENT BY 1), -- KA: Replaced "IDENTITY(1,1)" with

GENERATED ...

 invoice_number INTEGER NOT NULL,

 payment_date DATE, -- KA: Was DATETIME,

 payment_amount DECIMAL, -- KA: Was MONEY,

 CONSTRAINT PK_Payments PRIMARY KEY (payment_id)

);

CREATE TABLE Ref_Product_Types (

 product_type_code CHAR(15) NOT NULL,

 parent_product_type_code CHAR(15),

 product_type_description VARCHAR(80), --e.g. Book, CD

 CONSTRAINT PK_Ref_Product_Types PRIMARY KEY (product_type_code)

);

--

-- Foreign key constraints

--

ALTER TABLE Invoices ADD CONSTRAINT Invoice_Status_Codes_Invoices

 FOREIGN KEY (invoice_status_code) REFERENCES Ref_Invoice_Status_Codes

(invoice_status_code);

ALTER TABLE Invoices ADD CONSTRAINT Orders_Invoices

 FOREIGN KEY (order_id) REFERENCES Orders (order_id);

ALTER TABLE Orders ADD CONSTRAINT Order_Status_Codes_Orders

 FOREIGN KEY (order_status_code) REFERENCES Ref_Order_Status_Codes

(order_status_code);

ALTER TABLE Orders ADD CONSTRAINT Customers_1_Orders

 FOREIGN KEY (customer_id) REFERENCES Customers (customer_id);

 207

ALTER TABLE Shipments ADD CONSTRAINT Orders_Shipments

 FOREIGN KEY (order_id) REFERENCES Orders (order_id);

ALTER TABLE Shipments ADD CONSTRAINT Invoices_Shipments

 FOREIGN KEY (invoice_number) REFERENCES Invoices (invoice_number);

ALTER TABLE Shipment_Items ADD CONSTRAINT Shipments_Shipment_Items

 FOREIGN KEY (shipment_id) REFERENCES Shipments (shipment_id);

ALTER TABLE Shipment_Items ADD CONSTRAINT Order_Items_Shipment_Items

 FOREIGN KEY (order_item_id) REFERENCES Order_Items (order_item_id);

ALTER TABLE Order_Items ADD CONSTRAINT Order_Item_Status_Order_Items

 FOREIGN KEY (order_item_status_code) REFERENCES

Ref_Order_Item_Status_Codes (order_item_status_code);

ALTER TABLE Order_Items ADD CONSTRAINT Products_Order_Items

 FOREIGN KEY (product_id) REFERENCES Products (product_id);

ALTER TABLE Order_Items ADD CONSTRAINT Orders_Order_Items

 FOREIGN KEY (order_id) REFERENCES Orders (order_id);

ALTER TABLE Products ADD CONSTRAINT Ref_Product_Types_Products

 FOREIGN KEY (product_type_code) REFERENCES Ref_Product_Types

(product_type_code);

ALTER TABLE Customer_Payment_Methods ADD CONSTRAINT

Customers_Customer_Payment_Methods

 FOREIGN KEY (customer_id) REFERENCES Customers (customer_id);

ALTER TABLE Customer_Payment_Methods ADD CONSTRAINT

Ref_Payment_Methods_Customer_Payment_Methods

 FOREIGN KEY (payment_method_code) REFERENCES Ref_Payment_Methods

(payment_method_code);

ALTER TABLE Payments ADD CONSTRAINT Invoices_Payments

 FOREIGN KEY (invoice_number) REFERENCES Invoices (invoice_number);

ALTER TABLE Ref_Product_Types ADD CONSTRAINT

Ref_Product_Types_Ref_Product_Types

 FOREIGN KEY (parent_product_type_code) REFERENCES Ref_Product_Types

(product_type_code);

2.2. DML Script for MS SQL Server Sample RDB Instance:

SET SCHEMA ECOMM;

--

-- Clean up

--

ALTER TABLE Invoices ALTER FOREIGN KEY Invoice_Status_Codes_Invoices NOT

ENFORCED;

ALTER TABLE Invoices ALTER FOREIGN KEY Orders_Invoices NOT ENFORCED;

ALTER TABLE Orders ALTER FOREIGN KEY Order_Status_Codes_Orders NOT

ENFORCED;

 208

ALTER TABLE Orders ALTER FOREIGN KEY Customers_1_Orders NOT ENFORCED;

ALTER TABLE Shipments ALTER FOREIGN KEY Orders_Shipments NOT ENFORCED;

ALTER TABLE Shipments ALTER FOREIGN KEY Invoices_Shipments NOT ENFORCED;

ALTER TABLE Shipment_Items ALTER FOREIGN KEY Shipments_Shipment_Items NOT

ENFORCED;

ALTER TABLE Shipment_Items ALTER FOREIGN KEY Order_Items_Shipment_Items NOT

ENFORCED;

ALTER TABLE Order_Items ALTER FOREIGN KEY Order_Item_Status_Order_Items NOT

ENFORCED;

ALTER TABLE Order_Items ALTER FOREIGN KEY Products_Order_Items NOT

ENFORCED;

ALTER TABLE Order_Items ALTER FOREIGN KEY Orders_Order_Items NOT ENFORCED;

ALTER TABLE Products ALTER FOREIGN KEY Ref_Product_Types_Products NOT

ENFORCED;

ALTER TABLE Customer_Payment_Methods ALTER FOREIGN KEY

Customers_Customer_Payment_Methods NOT ENFORCED;

ALTER TABLE Customer_Payment_Methods ALTER FOREIGN KEY

Ref_Payment_Methods_Customer_Payment_Methods NOT ENFORCED;

ALTER TABLE Payments ALTER FOREIGN KEY Invoices_Payments NOT ENFORCED;

ALTER TABLE Ref_Product_Types ALTER FOREIGN KEY

Ref_Product_Types_Ref_Product_Types NOT ENFORCED;

DELETE FROM Invoices;

DELETE FROM Orders;

DELETE FROM Ref_Order_Status_Codes ;

DELETE FROM Ref_Order_Item_Status_Codes ;

DELETE FROM Shipments ;

DELETE FROM Shipment_Items ;

DELETE FROM Order_Items;

DELETE FROM Products;

DELETE FROM Customers;

DELETE FROM Ref_Payment_Methods;

DELETE FROM Customer_Payment_Methods;

DELETE FROM Ref_Invoice_Status_Codes;

DELETE FROM Payments;

DELETE FROM Ref_Product_Types ;

-- Restart IDENTITY Cols

ALTER TABLE Invoices ALTER COLUMN invoice_number RESTART with 1;

ALTER TABLE Orders ALTER COLUMN order_id RESTART with 1;

ALTER TABLE Shipments ALTER COLUMN shipment_id RESTART with 1;

ALTER TABLE Order_Items ALTER COLUMN order_item_id RESTART with 1;

ALTER TABLE Products ALTER COLUMN product_id RESTART with 1;

ALTER TABLE Customers ALTER COLUMN customer_id RESTART with 1;

ALTER TABLE Customer_Payment_Methods ALTER COLUMN customer_payment_id

RESTART with 1;

ALTER TABLE Payments ALTER COLUMN payment_id RESTART with 1;

--

 209

-- Insert data in tables

--

INSERT INTO Ref_Invoice_Status_Codes

 (invoice_status_code,invoice_status_description) VALUES

 ('Issued' ,'Issued')

,('Paid' ,'Paid')

--

,('Pre-Issue' ,'Pre-Issue State')

,('Sent1' ,'Sent for the 1st time')

,('Sent2' ,'Sent for the 2nd time - 2nd notice')

,('Sent3' ,'Sent for the 3ed time - 3ed and final notice')

,('Contested' ,'Contensted by the client')

,('Under-Rev' ,'Under-Review after being contested')

,('Reviewed' ,'Review Completed')

,('Re-issued' ,'Re-issued after review')

,('Re-sent1' ,'Re-sent for the 1st time')

,('Re-sent2' ,'Re-sent for the 2nd time - 2nd notice')

,('Re-sent3' ,'Re-sent for the 3ed time - 3ed and final notice')

,('Collection' ,'Went to collection')

,('Collected' ,'Payment collected through collection')

,('Canceled' ,'Invoce Canceled')

,('OTHER' ,'None of the above.')

;

INSERT INTO Ref_Order_Item_Status_Codes

 (order_Item_status_code,order_Item_status_description) VALUES

 ('DEL' ,'Delivered')

,('OUT' ,'Out of Stock')

,('ROUTE' ,'En Route')

,('WAIT' ,'Waiting')

--

,('READY' ,'Ready to be shipped')

,('BACK-ORDER' ,'Back-Order')

,('RETURNED' ,'Retruned')

,('LOST' ,'Declared Lost')

,('UNKNOWN' ,'Currently Unknown')

,('CANCELED' ,'Cancelded')

;

INSERT INTO Ref_Order_Status_Codes

 (order_status_code,order_status_description) VALUES

 ('CANC' ,'Cancelled')

,('COMPL' ,'Completed')

,('OPEN' ,'Open - eg just placed')

,('PROV' ,'Provisional')

;

INSERT INTO Ref_Payment_Methods

 (payment_method_code,payment_method_description) VALUES

 ('AMEX' ,'American Express')

,('CASH' ,'Cash')

 210

,('DD' ,'Direct Debit')

--

,('VISA' ,'Visa')

,('MC' ,'Master-Card')

,('DISC' ,'Discover')

,('DINERS' ,'Diners Club Card')

,('CHECK' ,'Check')

,('MONEY-ORD' ,'Money Order')

;

INSERT INTO Ref_Product_Types

 (product_type_code,parent_product_type_code,product_type_description) VALUES

 ('Book' ,NULL ,'Book')

,('Camera' ,NULL ,'Camera')

,('Digital Camera' ,'Camera' ,'Digital Camera')

,('CD' ,NULL ,'CD')

--

,('EBook' ,'Book' ,'Electronic Book')

,('Tape' ,NULL ,'TAPE')

,('DVD' ,NULL ,'DVD')

,('Phone' ,NULL ,'Phone')

,('Cell-Phone' ,'Phone' ,'Cell Phone')

,('Smart-Phone' ,'Phone' ,'Smart Phone')

,('PDA' ,NULL ,'PDA')

,('Computer' ,NULL ,'Computer')

,('Notebook' ,'Computer' ,'Notebook')

,('Netbook' ,'Computer' ,'Netbook')

,('Desktop' ,'Computer' ,'Desktop')

,('Server' ,'Computer' ,'Server')

,('Storage' ,NULL ,'Storage Device')

,('IHD' ,'Storage' ,'Internal Hard Disk')

,('EHD' ,'Storage' ,'External Hard Disk')

,('FLASH' ,'Storage' ,'USB Flash Drive')

,('SAN' ,'Storage' ,'SAN Box')

,('Toy' ,NULL ,'Toys Category')

,('Toy1' ,'Toy' ,'Toy 001')

,('Toy2' ,'Toy' ,'Toy 002')

,('Toy3' ,'Toy' ,'Toy 003')

,('Toy4' ,'Toy' ,'Toy 004')

,('Toy5' ,'Toy' ,'Toy 005')

,('Toy6' ,'Toy' ,'Toy 006')

;

INSERT INTO Products

(product_type_code,product_name

,product_price,product_color,product_size,product_description ,other_product_details)

VALUES

 ('Digital Camera' ,'Olympus Camedia C-170' ,64.97 ,'Silver' ,NULL ,'Olympus C-170

Digital Camera' ,NULL)

 211

,('Digital Camera' ,'Pentax Opto 50L' ,89.97 ,'Rose' ,NULL ,'Pentax Opto 50L

Digital Camera',NULL)

,('Digital Camera' ,'Nikon Coolpix L3 Black',99.99 ,'Black' ,NULL ,'Nikon Coolpix

L3 Black' ,NULL)

--

,('Book' ,'Book Name1' ,09.99 ,'N/A' ,'50 Pages' ,'Book Name1 Desc.'

,NULL)

,('Book' ,'Book Name2' ,19.99 ,'N/A' ,'100 Pages' ,'Book Name2 Desc.'

,NULL)

,('Book' ,'Book Name3' ,29.99 ,'N/A' ,'150 Pages' ,'Book Name3 Desc.'

,NULL)

,('EBook' ,'EBook Name1' ,09.99 ,'N/A' ,'50 MB' ,'Book Name1 Desc.'

,NULL)

,('EBook' ,'EBook Name2' ,19.99 ,'N/A' ,'100 MB' ,'Book Name2 Desc.'

,NULL)

,('EBook' ,'EBook Name3' ,29.99 ,'N/A' ,'150 MB' ,'Book Name3 Desc.'

,NULL)

,('Tape' ,'Tape Name1' ,09.99 ,'N/A' ,'90 Min' ,'Tape Name1 Desc.'

,NULL)

,('DVD' ,'DVD Name1' ,19.99 ,'N/A' ,'90 Min' ,'DVD Name1 Desc.'

,NULL)

,('Phone' ,'Phone Name1' ,19.99 ,'White' ,'10x6 inches','Phone Name1 Desc.'

,NULL)

,('Phone' ,'Phone Name2' ,29.99 ,'Black' ,'7x7 inches','Phone Name2 Desc.'

,NULL)

,('Cell-Phone' ,'Cell Phone Name1' ,99.99 ,'White' ,'Slim' ,'Cell Phone Name1

Desc.' ,NULL)

,('Cell-Phone' ,'Cell Phone Name2' ,99.99 ,'Silver' ,'Slim' ,'Cell Phone Name2

Desc.' ,NULL)

,('Cell-Phone' ,'Cell Phone Name3' ,99.99 ,'Black' ,'Slim' ,'Cell Phone Name3

Desc.' ,NULL)

,('Smart-Phone' ,'Smart Phone Name1' ,199.99 ,'White' ,'Slim' ,'Smart Phone

Name1 Desc.' ,NULL)

,('Smart-Phone' ,'Smart Phone Name2' ,299.99 ,'Silver' ,'Slim' ,'Smart Phone Name2

Desc.' ,NULL)

,('Smart-Phone' ,'Smart Phone Name3' ,399.99 ,'Black' ,'Slim' ,'Smart Phone Name3

Desc.' ,NULL)

,('PDA' ,'PDA Name1' ,99.99 ,'Black' ,'Slim' ,'PDA Name1 Desc.'

,NULL)

,('Notebook' ,'Notebook Name1' ,399.99 ,'White' ,'Slim' ,'Notebook Name1

Desc.' ,NULL)

,('Notebook' ,'Notebook Name2' ,499.99 ,'Black' ,'Slim' ,'Notebook Name2

Desc.' ,NULL)

,('Netbook' ,'Netbook Name1' ,399.99 ,'White' ,'Slim' ,'Notebook Name1

Desc.' ,NULL)

,('Netbook' ,'Netbook Name2' ,499.99 ,'Black' ,'Slim' ,'Notebook Name2 Desc.'

,NULL)

 212

,('Desktop' ,'Desktop Name1' ,399.99 ,'White' ,'Slim' ,'Desktop Name1 Desc.'

,NULL)

,('Desktop' ,'Desktop Name2' ,499.99 ,'Black' ,'Slim' ,'Desktop Name2 Desc.'

,NULL)

,('IHD' ,'Internal HD Name1' ,99.99 ,'N/A' ,'1 TB' ,'Internal HD Name1

Desc.' ,NULL)

,('EHD' ,'External HD Name1' ,99.99 ,'N/A' ,'1 TB' ,'External HD Name1

Desc.' ,NULL)

,('FLASH' ,'FLASH Name1' ,49.99 ,'Red' ,'10 GB' ,'Flash Name1 Desc.'

,NULL)

;

INSERT INTO Customers

 --(first_name, middle_initial, last_name, email_address , address_line_1 ,

address_line_2 , address_line_3, address_line_4, town_city, county, country) VALUES

 --('John' , NULL , 'Doe' , 'john.doe@fictitiousmail.com' , '1500 E MAIN AVE STE

201' , 'SPRINGFIELD VA 22162-1010', NULL , NULL , NULL , NULL , NULL

)

 --('Joe ' , NULL , 'Bloggs' , 'joe.bloggs@fictitiousmail.com' , '1776 New Cavendish

Street', 'Marylebone' , NULL , 'W11X 5BY' , 'London' , 'Greater London',

'UK')

 (organisation_or_person, organisation_name, gender, first_name, middle_initial, last_name ,

email_address , login_name, login_password, address_line_1 , address_line_2

, address_line_3, address_line_4, town_city, county, country) VALUES

 ('Person' , NULL , 'M' , 'John' , NULL , 'Doe' ,

'john.doe@fictitiousmail.com' , 'user01' , 'john_pwd' , '1500 E MAIN AVE STE 201' , ' VA

22162-1010' , NULL , NULL , 'SPRING' , NULL , 'USA')

,('Person' , NULL , 'M' , 'Joe ' , NULL , 'Bloggs' ,

'joe.bloggs@fictitiousmail.com', 'user02' , 'joe_pwd' , '1776 New Cavendish Street',

'Marylebone' , NULL , 'W11X 5BY' , 'London' , 'G.L.', 'UK')

,('Person' , NULL , 'M' , 'F-Name1' , 'A' , 'L-Name-A',

'fname1@fictitiousmail.com' , 'user03' , 'fname01_pwd' , 'F-Name01 address_line1' , 'F-Name1

address_line2' , NULL , NULL , 'City1' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name2' , 'B' , 'L-Name-B',

'fname2@fictitiousmail.com' , 'user04' , 'fname02_pwd' , 'F-Name02 address_line1' , 'F-Name2

address_line2' , NULL , NULL , 'City2' , NULL , 'USA')

,('Person' , NULL , 'M' , 'F-Name3' , 'C' , 'L-Name-C',

'fname3@fictitiousmail.com' , 'user05' , 'fname03_pwd' , 'F-Name03 address_line1' , 'F-Name3

address_line2' , NULL , NULL , 'City3' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name4' , 'D' , 'L-Name-D',

'fname4@fictitiousmail.com' , 'user06' , 'fname04_pwd' , 'F-Name04 address_line1' , 'F-Name4

address_line2' , NULL , NULL , 'City4' , NULL , 'USA')

,('Person' , NULL , 'M' , 'F-Name5' , 'E' , 'L-Name-E',

'fname5@fictitiousmail.com' , 'user07' , 'fname05_pwd' , 'F-Name05 address_line1' , 'F-Name5

address_line2' , NULL , NULL , 'City5' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name6' , 'F' , 'L-Name-F',

'fname6@fictitiousmail.com' , 'user08' , 'fname06_pwd' , 'F-Name06 address_line1' , 'F-Name6

address_line2' , NULL , NULL , 'City6' , NULL , 'USA')

 213

,('Person' , NULL , 'M' , 'F-Name7' , 'G' , 'L-Name-G',

'fname7@fictitiousmail.com' , 'user09' , 'fname07_pwd' , 'F-Name07 address_line1' , 'F-Name7

address_line2' , NULL , NULL , 'City7' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name8' , 'H' , 'L-Name=H',

'fname8@fictitiousmail.com' , 'user10' , 'fname08_pwd' , 'F-Name08 address_line1' , 'F-Name8

address_line2' , NULL , NULL , 'City8' , NULL , 'USA')

,('Person' , NULL , 'M' , 'F-Name9' , 'I' , 'L-Name-I',

'fname9@fictitiousmail.com' , 'user11' , 'fname09_pwd' , 'F-Name09 address_line1' , 'F-Name9

address_line2' , NULL , NULL , 'City9' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name10', 'J' , 'L-Name-J',

'fname10@fictitiousmail.com' , 'user12' , 'fname10_pwd' , 'F-Name10 address_line1' , 'F-

Name10 address_line2' , NULL , NULL , 'City10' , NULL , 'USA')

,('Person' , NULL , 'M' , 'F-Name10', 'A' , 'L-Name-A',

'fname11@fictitiousmail.com' , 'user13' , 'fname10_pwd' , 'F-Name10 address_line1' , 'F-

Name10 address_line2' , NULL , NULL , 'City11' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name9' , 'B' , 'L-Name-B',

'fname12@fictitiousmail.com' , 'user14' , 'fname09_pwd' , 'F-Name09 address_line1' , 'F-

Name09 address_line2' , NULL , NULL , 'City12' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name8' , 'C' , 'L-Name-C',

'fname13@fictitiousmail.com' , 'user15' , 'fname09_pwd' , 'F-Name08 address_line1' , 'F-

Name08 address_line2' , NULL , NULL , 'City13' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name7' , 'D' , 'L-Name-D',

'fname14@fictitiousmail.com' , 'user16' , 'fname07_pwd' , 'F-Name07 address_line1' , 'F-

Name07 address_line2' , NULL , NULL , 'City14' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name6' , 'E' , 'L-Name-E',

'fname15@fictitiousmail.com' , 'user17' , 'fname06_pwd' , 'F-Name06 address_line1' , 'F-

Name06 address_line2' , NULL , NULL , 'City15' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name5' , 'F' , 'L-Name-F',

'fname16@fictitiousmail.com' , 'user18' , 'fname05_pwd' , 'F-Name05 address_line1' , 'F-

Name05 address_line2' , NULL , NULL , 'City16' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name4' , 'G' , 'L-Name-G',

'fname17@fictitiousmail.com' , 'user19' , 'fname04_pwd' , 'F-Name04 address_line1' , 'F-

Name04 address_line2' , NULL , NULL , 'City17' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name3' , 'H' , 'L-Name-H',

'fname18@fictitiousmail.com' , 'user20' , 'fname03_pwd' , 'F-Name03 address_line1' , 'F-

Name03 address_line2' , NULL , NULL , 'City18' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name3' , 'I' , 'L-Name-I',

'fname19@fictitiousmail.com' , 'user21' , 'fname02_pwd' , 'F-Name02 address_line1' , 'F-

Name02 address_line2' , NULL , NULL , 'City19' , NULL , 'USA')

,('Person' , NULL , 'F' , 'F-Name1' , 'J' , 'L-Name-J',

'fname20@fictitiousmail.com' , 'user22' , 'fname01_pwd' , 'F-Name01 address_line1' , 'F-

Name01 address_line2' , NULL , NULL , 'City20' , NULL , 'USA')

,('Org.' , 'Org Name1' , NULL , NULL , NULL , NULL ,

'sales1@fictitiousmail.com' , 'user23' , 'org01_pwd' , 'Org Name1 address_line1', 'Org Name1

address_line2' , NULL , NULL , 'City1' , NULL , 'USA')

,('Org.' , 'Org Name2' , NULL , NULL , NULL , NULL ,

'sales2@fictitiousmail.com' , 'user24' , 'org02_pwd' , 'Org Name2 address_line1', 'Org Name2

address_line2' , NULL , NULL , 'City2' , NULL , 'USA')

 214

;

INSERT INTO Customer_Payment_Methods

 (customer_id,payment_method_code,credit_card_number,payment_method_details)

VALUES

 (1 ,'AMEX' ,'123456' ,'From 01/01/2004 to 01/01/2008')

,(2 ,'CASH' ,NULL ,NULL)

--

,(1 ,'DD' ,NULL ,'From 01/01/2008 to 01/01/2011')

,(2 ,'AMEX' ,'0123' ,'From 01/01/2009 to 01/01/2011')

,(3 ,'CASH' ,NULL ,NULL)

,(4 ,'DD' ,NULL ,'From 01/01/2010 to 01/01/2011')

,(5 ,'VISA' ,'1234' ,NULL)

,(6 ,'MC' ,'2345' ,'From 01/01/2010 to 01/01/2011')

,(7 ,'DISC' ,'3456' ,'From 01/07/2009 to 01/01/2011')

,(8 ,'DINERS' ,'4567' ,'From 01/07/2009 to 01/01/2011')

,(9 ,'CHECK' ,NULL ,NULL)

,(10 ,'MONEY-ORD' ,NULL ,NULL)

,(11 ,'DD' ,NULL ,'From 01/07/2008 to 01/01/2011')

,(12 ,'AMEX' ,'0124' ,'From 01/07/2008 to 01/01/2011')

,(13 ,'CASH' ,NULL ,NULL)

,(14 ,'DD' ,NULL ,'From 01/07/2010 to 01/01/2011')

,(15 ,'VISA' ,'1235' ,NULL)

,(16 ,'MC' ,'2346' ,'From 01/01/2010 to 01/01/2011')

,(17 ,'DISC' ,'3457' ,'From 01/01/2009 to 01/01/2010')

,(18 ,'DINERS' ,'4568' ,'From 01/07/2009 to 01/01/2010')

,(19 ,'CHECK' ,NULL ,NULL)

,(20 ,'MONEY-ORD' ,NULL ,NULL)

;

INSERT INTO Orders

 (customer_id,order_status_code,date_order_placed,order_details) VALUES

 (1 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 --

 ,(1 ,'CANC' ,'01/01/2007' ,'Duplicate Order from a new Customer')

 ,(2 ,'COMPL' ,'01/01/2006' ,'Completed Order from a new Customer')

 ,(2 ,'OPEN' ,'01/01/2007' ,'Order from an existing Customer')

 ,(3 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(4 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(5 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(6 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(7 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(8 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(9 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(10 ,'OPEN' ,'01/01/2007' ,'First Order from a new Customer')

 ,(11 ,'CANC' ,'01/06/2006' ,'Canceled Order from a new Customer')

 ,(12 ,'CANC' ,'01/07/2006' ,'Canceled Order from an existing Customer')

 ,(13 ,'COMPL' ,'01/08/2006' ,'Completed Order from a new Customer')

 ,(14 ,'PROV' ,'12/31/2006' ,'Completed Order from a new Customer')

 ,(15 ,'PROV' ,'12/31/2006' ,'Prov. Order from an existing Customer')

 215

 ,(16 ,'PROV' ,'12/31/2006' ,'Prov. Order from an existing Customer')

 ,(17 ,'PROV' ,'12/31/2006' ,'Prov. Order from an existing Customer')

 ,(18 ,'PROV' ,'12/31/2006' ,'Prov. Order from an existing Customer')

 ,(19 ,'PROV' ,'12/31/2006' ,'Prov. Order from an existing Customer')

 ,(20 ,'PROV' ,'12/31/2006' ,'Prov. Order from an existing Customer')

 ,(21 ,'OPEN' ,'01/01/2007' ,'Order from an existing Customer')

 ,(22 ,'OPEN' ,'01/01/2007' ,'Order from an existing Customer')

 ,(23 ,'OPEN' ,'01/01/2007' ,'Order from an existing Customer')

 ,(24 ,'CANC' ,'01/01/2006' ,'Canceled Order from an existing Customer')

 ;

INSERT INTO Order_Items

 (product_id,order_id,

order_item_status_code,order_item_quantity,order_item_price,other_order_item_details)

VALUES

 (1 ,1 ,'DEL' ,1 ,100.00 ,NULL)

,(2 ,1 ,'ROUTE' ,2 ,200.00 ,'A Rare Groove')

,(3 ,1 ,'WAIT' ,3 ,300.00 ,'The usual Order')

--

,(1 ,2 ,'CANCELED' ,1 ,100.00 ,NULL)

,(2 ,2 ,'CANCELED' ,2 ,200.00 ,'A Rare Groove')

,(3 ,2 ,'CANCELED' ,3 ,300.00 ,'The usual Order')

,(4 ,3 ,'DEL' ,5 ,100.00 ,'Something 1')

,(5 ,3 ,'DEL' ,5 ,200.00 ,'Something 2')

,(6 ,4 ,'WAIT' ,2 ,300.00 ,'Something 1 again')

,(7 ,4 ,'READY' ,2 ,200.00 ,'Something 2 again')

,(8 ,5 ,'OUT' ,4 ,500.00 ,'Something 1')

,(9 ,6 ,'BACK-ORDER' ,6 ,600.00 ,'Something 1')

,(10 ,6 ,'RETURNED' ,8 ,800.00 ,'Something 2')

,(11 ,7 ,'LOST' ,4 ,400.00 ,'Something 1')

,(12 ,8 ,'UNKNOWN' ,1 ,100.00 ,'Something 1')

,(13 ,9 ,'ROUTE' ,1 ,100.00 ,'Something 1')

,(14 ,10 ,'ROUTE' ,2 ,100.00 ,'Something 1')

,(15 ,11 ,'ROUTE' ,2 ,100.00 ,'Something 1')

,(16 ,12 ,'ROUTE' ,2 ,100.00 ,'Something 1')

,(17 ,13 ,'READY' ,1 ,100.00 ,'Something 1')

,(18 ,14 ,'READY' ,1 ,100.00 ,'Something 1')

,(19 ,15 ,'DEL' ,1 ,100.00 ,'Something 1')

,(20 ,16 ,'DEL' ,1 ,100.00 ,'Something 1')

,(21 ,16 ,'DEL' ,1 ,100.00 ,'Something 2')

,(20 ,17 ,'RETURNED' ,8 ,300.00 ,'Something 1')

,(21 ,18 ,'LOST' ,4 ,200.00 ,'Something 1')

,(22 ,19 ,'UNKNOWN' ,1 ,100.00 ,'Something 1')

,(23 ,20 ,'ROUTE' ,1 ,100.00 ,'Something 1')

,(24 ,21 ,'ROUTE' ,2 ,100.00 ,'Something 1')

,(25 ,22 ,'ROUTE' ,2 ,100.00 ,'Something 1')

,(26 ,23 ,'ROUTE' ,2 ,100.00 ,'Something 1')

,(27 ,24 ,'ROUTE' ,1 ,100.00 ,'Something 1')

,(28 ,25 ,'ROUTE' ,1 ,100.00 ,'Something 1')

 216

,(28 ,26 ,'CANCELED' ,1 ,100.00 ,'Something 1')

,(29 ,26 ,'CANCELED' ,1 ,100.00 ,'Something 2')

;

INSERT INTO Invoices

 (order_id, invoice_status_code, invoice_date, invoice_details) VALUES

 (1 ,'Paid' ,'01/01/2007' , 'Single Invoice for the complete Order')

 --

 ,(1 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(1 ,'Sent1' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(2 ,'Canceled' ,'01/01/2007' , 'Canceled Invoice for the canceled Order')

 ,(3 ,'Issued' ,'01/01/2007' , 'Combined Invoice for the complete Order')

 ,(3 ,'Sent1' ,'01/01/2007' , 'Combined Invoice for the complete Order')

 ,(3 ,'Paid' ,'01/01/2007' , 'Combined Invoice for the complete Order')

 ,(4 ,'Pre-Issue' ,'01/01/2007' , 'Partial Invoice for the complete Order')

 ,(5 ,'Issued' ,'01/01/2007' , 'Partial Invoice for the complete Order')

 ,(5 ,'Sent1' ,'01/01/2007' , 'Partial Invoice for the complete Order')

 ,(5 ,'Paid' ,'01/10/2007' , 'Partial Invoice for the complete Order')

 ,(6 ,'Pre-Issue' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(7 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(7 ,'Sent1' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(7 ,'Sent2' ,'02/01/2007' , 'Single Invoice for the complete Order')

 ,(7 ,'Sent3' ,'03/01/2007' , 'Single Invoice for the complete Order')

 ,(7 ,'Paid' ,'03/15/2007' , 'Single Invoice for the complete Order')

 ,(8 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(9 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(10 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(10 ,'Sent1' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(10 ,'Contested' ,'01/15/2007' , 'Contested Invoice for the complete Order')

 ,(11 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(11 ,'Sent1' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(11 ,'Contested' ,'01/15/2007' , 'Contested Invoice for the complete Order')

 ,(11 ,'Under-Rev' ,'02/01/2007' , 'Under Review Invoice for the complete Order')

 ,(11 ,'Reviewed' ,'02/15/2007' , 'Reviewed Invoice for the complete Order')

 ,(11 ,'Re-issued' ,'02/15/2007' , 'Re-issued new Invoice for the complete Order')

 ,(11 ,'Re-sent1' ,'02/15/2007' , 'Re-sent Invoice for the complete Order')

 ,(11 ,'Paid' ,'03/10/2007' , 'Re-sent Invoice for the complete Order')

 ,(12 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(13 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(14 ,'Pre-Issue' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(15 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(16 ,'Pre-Issue' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(17 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(18 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(19 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(20 ,'Pre-Issue' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(21 ,'Pre-Issue' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(22 ,'Pre-Issue' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(23 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 217

 ,(23 ,'Sent1' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(23 ,'Paid' ,'01/05/2007' , 'Single Invoice for the complete Order')

 ,(24 ,'Pre-Issue' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(25 ,'OTHER' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(26 ,'Issued' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(26 ,'Sent1' ,'01/01/2007' , 'Single Invoice for the complete Order')

 ,(26 ,'Contested' ,'01/15/2007' , 'Contested Invoice for the complete Order')

 ,(26 ,'Under-Rev' ,'02/01/2007' , 'Under Review Invoice for the complete Order')

 ,(26 ,'Reviewed' ,'02/15/2007' , 'Reviewed Invoice for the complete Order')

 ,(26 ,'Re-issued' ,'02/15/2007' , 'Re-issued new Invoice for the complete Order')

 ,(26 ,'Re-sent1' ,'02/15/2007' , 'Re-sent (1st attempt) Invoice for the complete Order')

 ,(26 ,'Re-sent2' ,'03/15/2007' , 'Re-sent (2nd attempt) Invoice for the complete Order')

 ,(26 ,'Re-sent3' ,'04/15/2007' , 'Re-sent (3ed attempt) Invoice for the complete Order')

 ,(26 ,'Collection' ,'05/15/2007' , 'Collection-Action for Invoice for the complete Order')

 ,(26 ,'Collected' ,'06/01/2007' , 'Collected invoice for the complete Order')

;

INSERT INTO Payments

 (invoice_number, payment_date, payment_amount) VALUES

 (1 ,'01/01/2007' , 600.00)

--

,(7 ,'01/01/2007' , 50.00)

,(7 ,'01/02/2007' , 100.00)

,(7 ,'01/03/2007' , 100.00)

,(7 ,'01/04/2007' , 50.00)

,(11 ,'01/01/2007' , 100.00)

,(11 ,'01/02/2007' , 200.00)

,(11 ,'01/03/2007' , 75.00)

,(11 ,'01/04/2007' , 75.00)

,(17 ,'01/15/2007' , 100.00)

,(17 ,'01/25/2007' , 200.00)

,(17 ,'01/30/2007' , 75.00)

,(33 ,'01/01/2007' , 10.00)

,(33 ,'01/02/2007' , 20.00)

,(33 ,'01/03/2007' , 7.50)

,(33 ,'01/04/2007' , 7.50)

,(44 ,'02/01/2007' , 100.00)

,(44 ,'02/02/2007' , 200.00)

,(44 ,'02/03/2007' , 75.00)

,(44 ,'02/04/2007' , 75.00)

;

INSERT INTO Shipments

 (order_id, invoice_number, shipment_tracking_number, shipment_date,other_shipment_details)

VALUES

 (1 , 1 ,'123456' , '01/01/2007' , NULL)

--

,(3 , 5 ,'3-123457' , '01/01/2007' , NULL)

,(6 , 12 ,'6-123457' , '01/01/2007' , NULL)

,(7 , 13 ,'7-123457' , '01/02/2007' , NULL)

 218

,(9 , 19 ,'9-123457' , '01/02/2007' , NULL)

,(10 , 20 ,'10-123457' , '01/03/2007' , NULL)

,(11 , 23 ,'11-123457' , '01/03/2007' , NULL)

,(12 , 31 ,'12-123457' , '01/04/2007' , NULL)

,(15 , 34 ,'15-123457' , '01/04/2007' , NULL)

,(16 , 35 ,'16-123457' , '01/05/2007' , NULL)

,(16 , 35 ,'16-123457-1' , '02/05/2007' , NULL)

,(17 , 36 ,'17-123457' , '01/06/2007' , NULL)

,(18 , 37 ,'18-123457' , '01/07/2007' , NULL)

,(19 , 38 ,'19-123457' , '01/08/2007' , NULL)

,(20 , 39 ,'20-123457' , '01/09/2007' , NULL)

,(21 , 40 ,'21-123457' , '01/10/2007' , NULL)

,(22 , 41 ,'22-123457' , '01/11/2007' , NULL)

,(23 , 42 ,'23-123457' , '01/12/2007' , NULL)

,(24 , 45 ,'24-123457' , '01/13/2007' , NULL)

,(25 , 46 ,'25-123457' , '01/14/2007' , NULL)

;

INSERT INTO Shipment_Items

 (shipment_id,order_item_id) VALUES

 (1 ,1)

,(1 ,2)

--

,(2 ,7) -- order_id: 3

,(2 ,8) -- order_id: 3

,(3 ,13) -- order_id: 6

,(4 ,14) -- order_id: 7

,(5 ,16) -- order_id: 9

,(6 ,17) -- order_id: 10

,(7 ,18) -- order_id: 11

,(8 ,19) -- order_id: 12

,(9 ,22) -- order_id: 15

,(10 ,13) -- order_id: 16

,(11 ,14) -- order_id: 16

,(12 ,25) -- order_id: 17

,(13 ,26) -- order_id: 18

,(14 ,27) -- order_id: 19

,(15 ,28) -- order_id: 20

,(16 ,29) -- order_id: 21

,(17 ,30) -- order_id: 22

,(18 ,31) -- order_id: 23

,(19 ,32) -- order_id: 24

,(20 ,33) -- order_id: 25

;

--

-- Re-enable FKs

--

ALTER TABLE Invoices ALTER FOREIGN KEY Invoice_Status_Codes_Invoices

ENFORCED;

 219

ALTER TABLE Invoices ALTER FOREIGN KEY Orders_Invoices ENFORCED;

ALTER TABLE Orders ALTER FOREIGN KEY Order_Status_Codes_Orders ENFORCED;

ALTER TABLE Orders ALTER FOREIGN KEY Customers_1_Orders ENFORCED;

ALTER TABLE Shipments ALTER FOREIGN KEY Orders_Shipments ENFORCED;

ALTER TABLE Shipments ALTER FOREIGN KEY Invoices_Shipments ENFORCED;

ALTER TABLE Shipment_Items ALTER FOREIGN KEY Shipments_Shipment_Items

ENFORCED;

ALTER TABLE Shipment_Items ALTER FOREIGN KEY Order_Items_Shipment_Items

ENFORCED;

ALTER TABLE Order_Items ALTER FOREIGN KEY Order_Item_Status_Order_Items

ENFORCED;

ALTER TABLE Order_Items ALTER FOREIGN KEY Products_Order_Items ENFORCED;

ALTER TABLE Order_Items ALTER FOREIGN KEY Orders_Order_Items ENFORCED;

ALTER TABLE Products ALTER FOREIGN KEY Ref_Product_Types_Products ENFORCED;

ALTER TABLE Customer_Payment_Methods ALTER FOREIGN KEY

Customers_Customer_Payment_Methods ENFORCED;

ALTER TABLE Customer_Payment_Methods ALTER FOREIGN KEY

Ref_Payment_Methods_Customer_Payment_Methods ENFORCED;

ALTER TABLE Payments ALTER FOREIGN KEY Invoices_Payments ENFORCED;

-- ALTER TABLE Product_Prices ALTER FOREIGN KEY Products_Product_Prices

ENFORCED;

-- ALTER TABLE Product_Prices ALTER FOREIGN KEY Ref_Art_Types_Product_Prices

ENFORCED;

ALTER TABLE Ref_Product_Types ALTER FOREIGN KEY

Ref_Product_Types_Ref_Product_Types ENFORCED;

 220

APPENDIX D: Settings in DM2ONT and DataMaster

This appendix contains the property file used to control DM2ONT behavior, and the

settings used when running DataMaster.

1. DM2ONT Property File:

[DM2ONT GENERAL INPUT PROPERTIES]
trace_on=true
[RDB_ORDB INPUT PROPERTIES]
 [DB2 SETTINGS]
jdbc_string=jdbc:db2://localhost:53000/PHD
db_username=<BLOCKED>
db_password=<BLOCKED>
db_schema=ECOMM
 [RDB_ORDB - GENERAL SETTINGS]
isa_type1=true
isa_type1_threshold=0.6
isa_type2=true
isa_type2_threshold=0.6
isa_type2_common_cols=3
 [RDB_ORDB - DATA ANALYSIS SETTINGS]
data_analysis=true
null_data_analysis=true
unique_data_analysis=true
sparse_data_analysis=true
rel_cardinality_data_analysis=true
rel_symmetric_data_analysis=true
rel_transitive_data_analysis=true
sparse_value_threshold=5
confidence_threshold=0.2

[OWLConvertor INPUT PROPERTIES]

[Ontology Generator INPUT PROPERTIES]
-output_file_name=C:\\khalid\\java\\phd\\output_files\\validation\\owl_model_ecomm.owl
--owl_model_namespace=dm

 221

2. DataMaster Settings:

 222

APPENDIX E: Domain Requirements and Recall/Precision

This appendix shows the domain requirements used in case-study one and case-study

two, and how the ontology axioms generated by DM2ONT and DataMaster map to these

requirements. A value of “1” in the tools’ column indicates that the ontology model

generated by the tool addressed the requirement listed in the row under the Domain

Requirements column (i.e. true-positive). A value of “0” indicates that the tool missed the

requirement (i.e. false-negative). Axioms that are generated by the tool without

corresponding domain requirements (i.e. false-positive) are listed below as well. The

information in the tables below is the base for the recall/precision computation conducted

in my validation.

1. Case-Study One:

Domain Requirements (DRS)
DRS.

(Count)
DM2ONT DataMaster

A class describing the activities carried out in the organization. Has

the following properties 1 1 1

Activity ID/Number (Data Property). 1 1 1

Uniquely identifies an activity 1 1 0

Has one value at least (not null) 1 1 0
ACTNO

Has one value at most (atomic) 1 1 1

Activity Keyword (Data Property). 1 1 1

Uniquely identifies an activity 1 1 0

Has one value at least (not null) 1 1 0
ACTKWD

Has one value at most (atomic) 1 1 1

Activity Description (Data Property). 1 1 0

Uniquely identifies an activity 1 1 0

Has one value at least (not null) 1 1 0
ACTDESC

Has one value at most (atomic) 1 1 1

Identifies the projects associated with an activity

(Object Property). 1 1 0

Class:

Activity

Associated Projects

May have 0 or more projects 1 1 0

Class:

Department

A class describing the departments found in the organization. Has the

following properties 1 1 1

 223

Department ID/Number (Data Property). 1 1 1

Uniquely identifies a Department 1 1 0

Has one value at least (not null) 1 1 0
DEPTNO

Has one value at most (atomic) 1 1 1

Department Name (Data Property). 1 1 1

Uniquely identifies a Department 1 1 0

Has one value at least (not null) 1 1 0
DEPTNAME

Has one value at most (atomic) 1 1 1

Department Location (Data Property). 1 1 1

May not have a value (null-able) 1 0 0 LOCATION

Has one value at most (atomic) 1 1 1

Identifies the department to which this

department reports to (Object Property). 1 1 1

This relationships is transitive 1 1 0

Each department must report to another

deprtment (at least 1) 1 1 0

ROD

Each department can report to one department at

most 1 1 1

Identifies the departments reporting into this

department (Object Property). 1 1 0
ROD.Inverse

A department might not have other deprtments

reporting into it 1 1 0

Identifies the manager (an employee) of this

department (Object Property). 1 1 1

A department might not have a manager (null-

able) 1 1 0
RDE

Can have one value at most 1 1 1

Identifies the employees working for this

department (Object Property). 1 1 0
RED.Inverse

A department might not have employees

reporting to it (null-able) 1 1 0

Identifies the projects this department is

responsible for (Object Property). 1 1 0 FK_PROJECT_1_I

nverse A department might not have projects assigned

to it (null-able) 1 1 0

A class describing the employees working in the organization. Has the

following properties 1 1 1

Employee ID/Number (Data Property). 1 1 1

Uniquely identifies an employee 1 1 0

Has one value at least (not null) 1 1 0
EMPNO

Has one value at most (atomic) 1 1 1

Employee First-Name (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 FIRSTNAME

Has one value at most (atomic) 1 1 1

Employee Middle-Initials (Data Property). 1 1 1

May not have a value (null-able) 1 1 0 MIDINIT

Has one value at most (atomic) 1 1 1

Employee Last Name (Data Property). 1 1 1

Class:

Employee

LASTNAME

Has one value at least (not null) 1 1 0

 224

Has one value at most (atomic) 1 1 1

Employee Phone Number (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 PHONENO

Has one value at most (atomic) 1 1 1

Employee Hire Date (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 HIREDATE

Has one value at most (atomic) 1 1 1

Employee Job Name (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 JOB

Has one value at most (atomic) 1 1 1

Employee Education Level (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 EDLEVEL

Has one value at most (atomic) 1 1 1

Employee Sex/Gender (Data Property). 1 1 1

Has one value at least (not null) 1 1 0

Has one value at most (atomic) 1 1 1
SEX

Can have one of two values only: either 'M' for

Male or 'F' for Female 1 1 0

Employee Birth Date (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 BIRTHDATE

Has one value at most (atomic) 1 1 1

Employee Salary (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 SALARY

Has one value at most (atomic) 1 1 1

Employee Bonus (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 BOUNS

Has one value at most (atomic) 1 1 1

Employee Commission (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 COMM

Has one value at most (atomic) 1 1 1

Identifies the department managed by this

employee 1 1 0

Each employee may manage a department (at

least 0) 1 1 0
RDE.Inverse

Each employee can manage one department at

most 1 1 0

Identifies the department an employee works in 1 1 1

An employee must works in a department (at

least 1) 1 1 0 RED

An employee can work for one department at

most 1 1 1

Project-Activities this employee worked on 1 1 0 EMPPROJACT_E

MPLOYEE_FK1.In

verse
An employee may work in 0 or more project

activity (at least 0) 1 1 0

Photos associated with this employee 1 1 0 FK_EMP_PHOTO.

Inverse An employee may have 0 or more photos (at

least 0) 1 0 0

 225

Resumes associated with this employee 1 1 0 FK_EMP_RESUM

E.Inverse An employee may have 0 or more resume (at

least 0) 1 0 0

Projects this employee is responsible for 1 1 0 FK_PROJECT_2.In

verse An employee can be responsible for 0 or more

projects (at least 0) 1 1 0

A class describing employees' project activities. Has the following

properties 1 1 1

Employee Time Allocated (Data Property). 1 1 1

Has one value at least (not null) 1 1 0

Has one value at most (atomic) 1 1 1
EMPTIME

Can have one of 4 values only: either '0.25', '0.5',

'0.75', or '1.0'. 1 1 0

Emp Assignment End Date (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 EMPENDATE

Has one value at most (atomic) 1 1 1

The employee assigned to this project activity 1 1 1

Must have one employee at least 1 1 0
EMPPROJACT_E

MPLOYEE_FK1

Must have one employee at most 1 1 1

The project activity assigned to this emp 1 1 1

Must have one project activity at least 1 1 0

Class:

EmpProjAc

t

REPAPA

Must have one project activity at most 1 1 1

A class containing employees' photos. Has the following properties 1 1 1

Format of the picture (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 PHOTO_FORMAT

Has one value at most (atomic) 1 1 1

Employee Picture/Image (Data Property). 1 1 1

Has one value at least (not null) 1 0 0 PICTURE

Has one value at most (atomic) 1 1 1

The employee associated with this photo 1 1 1

Must have one employee at least 1 1 0

Class:

Emp_Photo

FK_EMP_PHOTO

Must have one employee at most 1 1 1

A class containing employees' resumes. Has the following properties 1 1 1

Format of the Resume (Data Property). 1 1 1

Has one value at least (not null) 1 1 0
RESUME_FORMA

T

Has one value at most (atomic) 1 1 1

Employee Resume (Data Property). 1 1 1

Has one value at least (not null) 1 0 0 RESUME

Has one value at most (atomic) 1 1 1

The employee associated with this resume 1 1 1

Must have one employee at least 1 1 0

Class:

Emp_Resu

me

FK_EMP_RESUM

E

Must have one employee at most 1 1 1

A class describing the projects in the organization. Has the following

properties 1 1 1

Class:

PROJECT

PROJNO Project Number (Data Property). 1 1 1

 226

Uniquely identifies a Project 1 1 0

Has one value at least (not null) 1 1 0

Has one value at most (atomic) 1 1 1

Project Name (Data Property). 1 1 1

Uniquely identifies a Project 1 1 0

Has one value at least (not null) 1 1 0
PROJNAME

Has one value at most (atomic) 1 1 1

Project Staffing Requirement (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 PRSTAFF

Has one value at most (atomic) 1 1 1

Project Start Date (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 PRSTDATE

Has one value at most (atomic) 1 1 1

Project End Date (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 PRENDATE

Has one value at most (atomic) 1 1 1

The department responsible for this project 1 1 1

Each project must have a department responsible

for it (at least 1) 1 1 0 FK_PROJECT_1

Each project can have only one department

responsible for it (at most 1) 1 1 1

The employee responsible for this project 1 1 1

Each project must have an employee responsible

for it (at least 1) 1 1 0 FK_PROJECT_2

Each project can have only one employee

responsible for it (at most 1) 1 1 1

The major project to which this project belong to 1 1 1

A project can be part of a major project (at least

0) 1 1 0

A project can be part of only one major project

(at most 1) 1 1 1

RPP

The project to major-project relationship is

transitive 1 1 0

The sub-project of this project (inverse of major

project relationship) 1 1 0 RPP.Inverse

A project can have sub-projects (at least 0) 1 1 0

Activities associated with this project 1 1 0
RPAP.Inverse A project can be associated with 0 or more

projects (at least 0) 1 1 0

A class describing the activities associated with the projects. Has the

following properties 1 1 1

Project/Activity Staffing Needs (Data Property) 1 1 1

May not have a value (null-able) 1 0 0 ACSTAFF

Has one value at most (atomic) 1 1 1

Project/Activity start date (Data Property) 1 1 1

Has one value at least (not null) 1 1 0 ACSTDATE

Has one value at most (atomic) 1 1 1

Class:

Project_Ac

tivity

ACENDATE Project/Activity end date (Data Property) 1 1 1

 227

May not have a value (null-able) 1 0 0

Has one value at most (atomic) 1 1 1

Employees associated with this project-activity 1 1 0
REPAPA.Inverse Each project/activity pair can have 1 or more

employees (at least 1) 1 1 0

Activity associated with this project/activity pair 1 1 1

Each project/activity pair must have an activity

associated with it (at least 1) 1 1 0
PROJACT_ACT_F

K
A project/activity pair can have one activity at

most 1 1 1

Project associated with this project/activity pair 1 1 1

Each project/activity pair must have a project

associated with it (at least 1) 1 1 0 RPAP

A project/activity pair can have one project at

most 1 1 1

Total # of Relevant/Valid Statements 180 173 97

Recall (relv axioms retrieved / relv axioms in ref Onto) n/a 0.961 0.539

Invalid assertions by DM2ONT and DataMaster

DM2ONT

PRSTDATE Project Start Date has sparse values 0 1 0 Class:

PROJECT PRENDATE Project End Date has sparse values 0 1 0

DataMaster

Department Manager (Data Property). 0 0 1
MGRNO

Has one value at most (atomic) 0 0 1

Department to which this department reports to

(Data Property) 0 0 1

Class:

Department
ADMRDEPT

Has one value at most (atomic) 0 0 1

Identifies the department an employee works in

(Data Property) 0 0 1 Class:

Employee
WORKDEPT

Has one value at most (atomic) 0 0 1

Employee Number/ID (Data Property). 0 0 1
EMPNO

Has one value at most (atomic) 0 0 1

Activity Number/ID (Data Property). 0 0 1
ACTNO

Has one value at most (atomic) 0 0 1

Employee Project-Activity Start Date (Data

Property) 0 0 1

EMSTDATE Has one value at most (atomic) 0 0 1

Project Number (Data Property). 0 0 1
PROJNO

Has one value at most (atomic) 0 0 1

A 2nd relationship to Project-Activity class 0 0 1 EMSTDATE_IN

STANCE Has one value at most (atomic) 0 0 1

A 3ed relationship to Project-Activity class 0 0 1

Class:

EmpProjAct

PROJNO_INSTA

NCE Has one value at most (atomic) 0 0 1

Class: EMPNO Employee Number/ID (Data Property). 0 0 1

 228

Emp_Photo Has one value at most (atomic) 0 0 1

Employee Number/ID (Data Property). 0 0 1 Class:

Emp_Resume
EMPNO

Has one value at most (atomic) 0 0 1

Department ID/Number (Data Property). 0 0 1
DEPTNO

Has one value at most (atomic) 0 0 1

Major project to which this project is part of

(Data Propery) 0 0 1 MAJPROJ

Has one value at most (atomic) 0 0 1

Employee responsible for this project (Data

Property) 0 0 1

Class:

PROJECT

RESPEMP

Has one value at most (atomic) 0 0 1

Activity Number/ID (Data Property). 0 0 1
ACTNO

Has one value at most (atomic) 0 0 1

Project Number (Data Property). 0 0 1

Class:

Project_Activ

ity PROJNO
Has one value at most (atomic) 0 0 1

Total # of invalid Statements n/a 2 32

Precision (relv axioms retrieved / retrieved axioms) 0.989 0.752

2. Case-Study Two:

Domain Requirements (DRS)
DRS

(Count)
DM2ONT DataMaster

A class describing the customers transacting with the organization.

Has the following properties 1 1 1

Customer ID (Data Property). 1 1 1

Uniquely identifies a customer 1 1 0

Has one value at least (not null) 1 1 0
CUSTOMER_ID

Has one value at most (atomic) 1 1 1

Indicates whether the customer is an

Organization or a Person (Data Property). 1 1 1

Has one value at least (not null) 1 1 0

Has one value at most (atomic) 1 1 1

ORGANIZATION

_OR_CUSTOME

R

can have one of two values: "Org" or "Person". 1 1 0

Identifies the Organization's name 1 1 1

May not have a value (null-able) 1 0 0
ORGANIZATION

_NAME
Has one value at most (atomic) 1 1 1

Indicates whether the customer is Female or

Male (Data Property). 1 1 1

May not have a value (null-able) 1 1 0

Has one value at most (atomic) 1 1 1
GENDER

Can have one of two values: "F" for Female or

"M" for Male 1 1 0

Customer First-Name (Data Property). 1 1 1

May not have a value (null-able) 1 1 0 FIRST_NAME

Has one value at most (atomic) 1 1 1

Customer Middle-Initials (Data Property). 1 1 1

Class:

CUSTOME

RS

MIDDLE_INITIA

L May not have a value (null-able) 1 1 0

 229

Has one value at most (atomic) 1 1 1

Customer Last Name (Data Property). 1 1 1

May not have a value (null-able) 1 1 0 LAST_NAME

Has one value at most (atomic) 1 1 1

Customer email address (Data Property). 1 1 1

Uniquely identifies a customer 1 1 0

Has one value at least (not null) 1 1 0

EMAIL_ADDRE

SS

Has one value at most (atomic) 1 1 1

Customer login name (Data Property). 1 1 1

Uniquely identifies a customer 1 1 0

Has one value at least (not null) 1 1 0
LOGIN_NAME

Has one value at most (atomic) 1 1 1

Customer login password (Data Property). 1 1 1

Has one value at least (not null) 1 1 0
LOGIN_PASSW

ORD

Has one value at most (atomic) 1 1 1

Customer Phone Number (Data Property). 1 1 1

May not have a value (null-able) 1 0 0
PHONE_NUMBE

R

Has one value at most (atomic) 1 1 1

Customer address line 1 (Data Property). 1 1 1

Has one value at least (not null) 1 1 0
ADDRESS_LINE

_1

Has one value at most (atomic) 1 1 1

Customer address line 2 (Data Property). 1 1 1

Has one value at least (not null) 1 1 0
ADDRESS_LINE

_2

Has one value at most (atomic) 1 1 1

Customer address line 3 (Data Property). 1 1 1

May not have a value (null-able) 1 0 0
ADDRESS_LINE

_3

Has one value at most (atomic) 1 1 1

Customer address line 4 (Data Property). 1 1 1

May not have a value (null-able) 1 0 0
ADDRESS_LINE

_4

Has one value at most (atomic) 1 1 1

Customer Town/City (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 TOWN_CITY

Has one value at most (atomic) 1 1 1

Customer County (Data Property). 1 1 1

May not have a value (null-able) 1 0 0 COUNTY

Has one value at most (atomic) 1 1 1

Customer Country (Data Property). 1 1 1

Has one value at least (not null) 1 1 0 COUNTRY

Has one value at most (atomic) 1 1 1

The payment methods used by this customer

(Object Property) 1 1 0

CUSTOMERS_C

USTOMER_PAY

MENT_METHOD

S.Inverse May have 0 or more payment methods 1 1 0

CUSTOMERS_1_

ORDERS.Inverse

The orders placed by this customer (Object

Property) 1 1 0

 230

Each customer must have one order at least 1 1 0

A class describing the payment methods associate with (made by) a

customer. Has the following properties 1 1 1

Customer Payment ID (Data Property) 1 1 1

Uniquely identifies a payment method for a

customer 1 1 0

Has one value at least (not null) 1 1 0

CUSTOMER_PA

YMENT_ID

Has one value at most (atomic) 1 1 1

Customer Credit Card Number (Data Property) 1 1 1

May not have a value (null-able) 1 0 0
CREDIT_CARD_

NUMBER
Has one value at most (atomic) 1 1 1

Details/Description for payment method (Data

Property) 1 1 1

May not have a value (null-able) 1 1 0

PAYMENT_MET

HOD_DETAILS

Has one value at most (atomic) 1 1 1

The customer associated with this payment

method (Object Property) 1 1 1

A customer payment method must be associated

with a customer (at least 1) 1 1 0

CUSTOMERS_C

USTOMER_PAY

MENT_METHOD

S
Can have one value at most 1 1 1

The reference payment method associated with

this customer payment method (Object Property) 1 1 1

A customer payment method must be associated

with a ref payment method (at least 1) 1 1 0

Class:

CUSTOME

R_PAYME

NT_METH

ODS

REF_PAYMENT

_METHODS_CU

STOMER_PAYM

ENT_METHODS
Can have one value at most 1 1 1

A class describing all the invoices issued by the organization for

every order. Has the following properties 1 1 1

Invoice Number (Data Property) 1 1 1

Uniquely identifies an invoice 1 1 0

Has one value at least (not null) 1 1 0

INVOICE_NUMB

ER

Has one value at most (atomic) 1 1 1

The date the invoice was issued in (Data

Property) 1 1 1

Has one value at least (not null) 1 1 0
INVOICE_DATE

Has one value at most (atomic) 1 1 1

Invoice Details (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
INVOICE_DETAI

LS
Has one value at most (atomic) 1 1 1

The order associated with this invoice (Object

Property) 1 1 1

Each invoice is associaed with one order at least 1 1 0

ORDERS_INVOI

CES

Each invoice is associaed with one order at most 1 1 1

The status code associated with this invoice

(Object Property) 1 1 1

Each invoice is associaed with one invoice

status code at least 1 1 0

INVOICE_STAT

US_CODES_INV

OICES
Each invoice is associaed with one invoice

status code at most 1 1 1

The payments associated with this invoice

(Object Property) 1 1 0
INVOICES_PAY

MENTS.Inverse
May have 0 or more payments (at least 0) 1 1 0

Class:INVOI

CES

INVOICES_SHIP

The shipments associated with this invoice 1 1 0

 231

(Object Property)
MENTS.Inverse

May have 0 or more shipments (at least 0) 1 1 0

A class describing the orders placed by customers in the

origanization. Has the following properties 1 1 1

Order ID (Data Property) 1 1 1

Uniquely identifies an order within the

organization 1 1 0

Has one value at least (not null) 1 1 0

ORDER_ID

Has one value at most (atomic) 1 1 1

Date the order was placed (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
DATE_ORDER_P

LACED
Has one value at most (atomic) 1 1 1

Details pertaining to the order (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
ORDER_DETAIL

S
Has one value at most (atomic) 1 1 1

The invoices associated with this order (Object

Property) 1 1 0 ORDERS_INVOI

CES.Inverse Each order must have one invoice associated

with it (at least 1) 1 1 0

The customer associated with this order (Object

Property) 1 1 1

Each order must have at least one customer

associated with it 1 1 0

CUSTOMERS_1_

ORDERS

Each order must have at most one customer

associated with it 1 1 1

The order status code associated with this order

(Object Property) 1 1 1

Each order must have at least one order status

code associated with it 1 1 0

ORDER_STATU

S_CODES_ORDE

RS
Each order must have at most one order status

code associated with it 1 1 1

The order items associated with this order

(Object Property) 1 1 0 ORDERS_ORDE

R_ITEMS.Inverse Each order must have at least one order item

associated with it 1 1 0

The shipments associated with this order (Object

Property) 1 1 0

Class:

ORDERS

ORDERS_SHIPM

ENTS.Inverse An order may have 0 or more shipments

associated with it (at least 0) 1 1 0

A class describing the order items within an order. Has the

following properties 1 1 1

Order Item ID (Data Property) 1 1 1

Uniquely identifies an order item within the

organization 1 1 0

Has one value at least (not null) 1 1 0

ORDER_ITEM_I

D

Has one value at most (atomic) 1 1 1

Quantity requested for the order item (Data

Property) 1 1 1

Has one value at least (not null) 1 1 0

ORDER_ITEM_Q

UANTITY

Has one value at most (atomic) 1 1 1

Order Item Price (Data Property) 1 1 1

Has one value at least (not null) 1 1 0

Class:

ORDER_IT

EMS

ORDER_ITEM_P

RICE
Has one value at most (atomic) 1 1 1

 232

Order Item Details (Data Property) 1 1 1

May have a value (null-ablel) 1 1 0
OTHER_ORDER

_ITEM_DETAILS
Has one value at most (atomic) 1 1 1

The order associated with this order item

(Object Property) 1 1 1

Each order item is associated with at least one

order 1 1 0

ORDERS_ORDE

R_ITEMS

Each order item is associated with at most one

order 1 1 1

The product associated with this order item

(Object Property) 1 1 1

Each order item is associated with at least one

product 1 1 0

PRODUCTS_OR

DER_ITEMS

Each order item is associated with at most one

product 1 1 1

The order item status associated with this order

item (Object Property) 1 1 1

Each order item is associated with at least one

order item status 1 1 0

ORDER_ITEM_S

TATUS_ORDER_

ITEMS
Each order item is associated with at most one

order item status 1 1 1

The shipments associated with this order item

(Object Property) 1 1 0 SHIPMENTS_SH

IPMENT_ITEMS Each order item is associated with at least one

shipment 1 1 0

A class describing the payments associated with an invoice. Has the

following properties 1 1 1

Payment ID (Data Property) 1 1 1

Uniquely identifies a payment within the

organization 1 1 0

Has one value at least (not null) 1 1 0

PAYMENT_ID

Has one value at most (atomic) 1 1 1

The date the payment was made (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
PAYMENT_DAT

E
Has one value at most (atomic) 1 1 1

The amount associated with this payment (Data

Property) 1 1 1

Has one value at least (not null) 1 1 0

PAYMENT_AM

OUNT

Has one value at most (atomic) 1 1 1

The invoices associated with this payment

(Object Property) 1 1 1

Each payment is associated with at least one

invoice 1 1 0

Class:

PAYMENT

S

INVOICES_PAY

MENTS

Each payment is associated with at most one

invoice 1 1 1

A class describing the products carried out by the organization. Has

the following properties 1 1 1

Product ID (Data Property) 1 1 1

Uniquely identifies a product within the

organization 1 1 0

Has one value at least (not null) 1 1 0

PRODUCT_ID

Has one value at most (atomic) 1 1 1

Product Name (Data Property) 1 1 1

Class:

PRODUCTS

PRODUCT_NAM

E

Uniquely identifies a product within the 1 1 0

 233

organization

Has one value at least (not null) 1 1 0

Has one value at most (atomic) 1 1 1

Product Price (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
PRODUCT_PRIC

E
Has one value at most (atomic) 1 1 1

Product Color (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
PRODUCT_COL

OR
Has one value at most (atomic) 1 1 1

Product size (Data Property) 1 1 1

May have a value (null-able) 1 1 0 PRODUCT_SIZE

Has one value at most (atomic) 1 1 1

Product Description (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
PRODUCT_DES

CRIPTION
Has one value at most (atomic) 1 1 1

Other Product Details (Data Property) 1 1 1

May have a value (null-able) 1 0 0
OTHER_PRODU

CT_DETAILS
Has one value at most (atomic) 1 1 1

The order items associated with this product

(Object Property) 1 1 0
PRODUCTS_OR

DER_ITEMS.Inve

rse
Each product is associated with at least one

order item 1 1 0

The product type associated with this product

(Object Property) 1 1 1

Each product is associated with at least one

product type 1 1 0

REF_PRODUCT_

TYPES_PRODUC

TS
Each product is associated with at most one

product type 1 1 1

A class desribing the Invoice Status Codes found in the

organization. Has the following properties 1 1 1

Invoice Status Code (Data Property) 1 1 1

Uniquely identifies an invoice status within the

organization 1 1 0

Has one value at least (not null) 1 1 0

INVOICE_STAT

US_CODE

Has one value at most (atomic) 1 1 1

Invoice Status Description (Data Property) 1 1 1

Uniquely identifies an invoice status within the

organization 1 1 0

Has one value at least (not null) 1 1 0

INVOICE_STAT

US_DESCRIPTIO

N

Has one value at most (atomic) 1 1 1

The invoices associated with this invoice status

(Object Property) 1 1 0

Class:

REF_INVOI

CE_STATU

S_CODES

INVOICE_STAT

US_CODES_INV

OICES.Inverse Each invoice status is associated with at least

one invoice 1 1 0

A class desribing the Order Item Status Codes found in the

organization. Has the following properties 1 1 1

Order Item Status Code (Data Property) 1 1 1

Uniquely identifies an order item status within

the organization 1 1 0

Has one value at least (not null) 1 1 0

ORDER_ITEM_S

TATUS_CODE

Has one value at most (atomic) 1 1 1

Class:

REF_ORDE

R_ITEM_ST

ATUS_COD

ES

ORDER_ITEM_S Order Item Status Description (Data Property) 1 1 1

 234

Uniquely identifies an order item status within

the organization 1 0 0

Has one value at least (not null) 1 0 0

TATUS_DESCRI

PTION

Has one value at most (atomic) 1 1 1

The order items associated with this order item

status (Object Property) 1 1 0
ORDER_ITEM_S

TATUS_ORDER_

ITEMS.Inverse Each order item status is associated with at least

one order item 1 1 0

A class desribing the Order Status Codes found in the organization.

Has the following properties 1 1 1

Order Status Code (Data Property) 1 1 1

Uniquely identifies an order status within the

organization 1 1 0

Has one value at least (not null) 1 1 0

ORDER_STATU

S_CODE

Has one value at most (atomic) 1 1 1

Order Status Description (Data Property) 1 1 1

Uniquely identifies an order status within the

organization 1 0 0

Has one value at least (not null) 1 0 0

ORDER_ITEM_D

ESCRIPTION

Has one value at most (atomic) 1 1 1

The orders associated with this order status

(Object Property) 1 1 0

Class:

REF_ORDE

R_STATUS

_CODES

ORDER_STATU

S_CODES_ORDE

RS.Inverse Each order status is associated with at least one

order 1 1 0

A class describing the payment methods accpeted by the

organization.Has the following properties 1 1 1

Payment Method Code (Data Property) 1 1 1

Uniquely identifies a payment method within the

organization 1 1 0

Has one value at least (not null) 1 1 0

PAYMENT_MET

HOD_CODE

Has one value at most (atomic) 1 1 1

Payment Method Description (Data Property) 1 1 1

Uniquely identifies a payment method within the

organization 1 0 0

Has one value at least (not null) 1 0 0

PAYMENT_MET

HOD_DESCRIPT

ION

Has one value at most (atomic) 1 1 1

Identifies the customer payment methods

associated with this payment method (Object

Property) 1 1 0

Class:

REF_PAYM

ENT_METH

ODS

REF_PAYMENT

_METHODS_CU

STOMER_PAYM

ENT_METHODS.

Inverse
Each ref payment method is associated with at

least one customer payment method 1 1 0

A class describing the product types found in the organization. Has

the following properties 1 1 1

Product Type Code (Data Property) 1 1 1

Uniquely identifies a product type within the

organization 1 1 0

Has one value at least (not null) 1 1 0

PRODUCT_TYP

E_CODE

Has one value at most (atomic) 1 1 1

Product Type Description (Data Property) 1 1 1

Uniquely identifies a product type within the

organization 1 1 0

Class:

REF_PROD

UCT_TYPE

S

PRODUCT_TYP

E_DESCRIPTION

Has one value at least (not null) 1 1 0

 235

Has one value at most (atomic) 1 1 1

Identifies the products associated with this

product type (Object Property) 1 1 0
REF_PRODUCT_

TYPES_PRODUC

TS.Inverse Each product type is associated with zero or

more products (at least 0) 1 1 0

Identifies the product (super-)type associated

with this product type (Object Property) 1 1 1

This relationships is transitive 1 1 0

Each product type might be associated with 0 or

more product type (at least 0) 1 1 0

REF_PRODUCT_

TYPES_REF_PR

ODUCT_TYPES

Each product type can be associated with at

most 1 product type 1 1 1

Identifies the product (sub-)types associated

with this product type (Object Property) 1 1 0

REF_PRODUCT_

TYPES_REF_PR

ODUCT_TYPES.I

nverse
Each product type is associated with 0 or more

sub-types (at least 0) 1 1 0

A class describing the shipments made by the organization. Has the

following properties 1 1 1

SHIPMENT ID (Data Property) 1 1 1

Uniquely identifies a shipment within the

organization 1 1 0

Has one value at least (not null) 1 1 0

SHIPMENT_ID

Has one value at most (atomic) 1 1 1

Shipment tracking number for a specific

shipment (Data Property) 1 1 1

Uniquely identifies a shipment within the

organization 1 1 0

Has one value at least (not null) 1 1 0

SHIPMENT_TRA

CKING_NUMBE

R

Has one value at most (atomic) 1 1 1

The date the shipment was made (Data Property) 1 1 1

Has one value at least (not null) 1 1 0
SHIPMENT_DAT

E
Has one value at most (atomic) 1 1 1

Additional Shipment Details (Data Property) 1 1 1

May have a value (null-ablel) 1 0 0
OTHER_SHIPME

NT_DETAILS
Has one value at most (atomic) 1 1 1

The invoice associated with this shipment

(Object Property) 1 1 1

Each shipment is assoc. with at least 1 invoice 1 1 0

INVOICES_SHIP

MENTS

Each shipment is assoc. with at most 1 invoice 1 1 1

The order associated with this shipment (Object

Property) 1 1 1

Each shipment is associated with at least 1 order 1 1 0

ORDERS_SHIPM

ENTS

Each shipment is associated with at most 1 order 1 1 1

The order items associated with this shipment

(Object Property) 1 1 0

Class:

SHIPMENT

S

ORDER_ITEMS_

SHIPMENT_ITE

MS
Each shipment is associated with at least one

order item 1 1 0

Total # of Relevant/Valid Statements 277 263 151

Recall (relv axioms retrieved / relv axioms in ref Onto) n/a 0.949 0.545

Invalid assertions by DM2ONT and DataMaster

 236

DM2ONT

Class:

CUSTOME

RS

COUNTRY

Can have one of two values: "USA" or "UK". 0 1 0

DataMaster

Customer ID (Data Property) 0 0 1
CUSTOMER_ID

Has one value at most (atomic) 0 0 1

Payment Method Code (Data Property) 0 0 1

Class:

CUSTOME

R_PAYME

NT_METH

ODS

PAYMENT_MET

HOD_CODE Has one value at most (atomic) 0 0 1

Invoice Status Code (Data Property) 0 0 1 INVOICE_STAT

US_CODE Has one value at most (atomic) 0 0 1

Order ID (Data Property) 0 0 1

Class:

INVOICES
ORDER_ID

Has one value at most (atomic) 0 0 1

Customer ID (Data Property) 0 0 1
CUSTOMER_ID

Has one value at most (atomic) 0 0 1

Order Status Code (Data Property) 0 0 1

Class:

ORDERS ORDER_STATUS

_CODE Has one value at most (atomic) 0 0 1

Order ID (Data Property) 0 0 1

ORDER_ID Has one value at most (atomic) 0 0 1

Order Item Status Code (Data Property) 0 0 1 ORDER_ITEM_S

TATUS_CODE Has one value at most (atomic) 0 0 1

Product ID (Data Property) 0 0 1

Class:

ORDER_IT

EMS

PRODUCT_ID
Has one value at most (atomic) 0 0 1

Invoice Number/ID (Data Property) 0 0 1 Class:

PAYMENT

S

INVOICE_NUMB

ER
Has one value at most (atomic) 0 0 1

Product Type Code (Data Property) 0 0 1 Class:

PRODUCTS

PRODUCT_TYPE

_CODE Has one value at most (atomic) 0 0 1

Parent Product Type Code (Data Property) 0 0 1

Class:

REF_PROD

UCT_TYPE

PARENT_PROD

UCT_TYPE_COD

E
Has one value at most (atomic) 0 0 1

Invoice Number/ID (Data Property) 0 0 1 INVOICE_NUMB

ER Has one value at most (atomic) 0 0 1

Order ID (Data Property) 0 0 1

Class:

SHIPMENT

S ORDER_ID
Has one value at most (atomic) 0 0 1

Class associating the shipments with the order items they contain (a

many-to-many rel). Has the following properties 0 0 1

Order Item ID (Data Property) 0 1 ORDER_ITEM_I

D Has one value at most (atomic) 0 0 1

Shipment ID (Data Property) 0 0 1
SHIPMENT_ID

Has one value at most (atomic) 0 0 1

Order Item associated with a shipment (Object

Property) 0 0 1 ORDER_ITEM_I

D_INSTANCE
Has one value at most (atomic) 0 0 1

Class:

SHIPMENT

_ITEMS

SHIPMENT_ID_I

Shipment associated with an order item (Object 0 0 1

 237

Property)
NSTANCE

Has one value at most (atomic) 0 0 1

Total # of invalid Statements n/a 1 37

Precision (relv axioms retrieved / retrieved axioms) 0.996 0.803

 238

APPENDIX F: Explicitness Measurement Methodology

For each case-study, the results from the matching phase of the explicitness measurement

methodology were sets of Matched Class Pairs (MCP), Matched Data-type property Pairs

(MDP), and Matched Object property Pairs (MOP). This appendix lists the sets generated

in each case-study with entities from DM2ONT designated as anchors. Since most of the

entities generated by DM2ONT and DataMaster share the same name, and to avoid

ambiguity and preserve space, entities from DM2ONT were suffixed with “1” below (e.g.

Name1) while those generated by DataMaster were suffixed with 2 (e.g. Name2).

1. Case-Study One:

− MCP(om1 ,om2) = { (Activity1, Activity2), (Department1, Department2),

(Employee1, Employee2), (EmpProjAct1, EmpProjAct2),

(Emp_Photo1, Emp_Photo2), (Emp_Resume1, Emp_Resume2),

(Project1, Project2), (Project_Activity1, Project_Activity2) }

− MDP(Activity1, Activity2) = {(ACTNO1, ACTNO2), (ACTKWD1, ACTKWD2),

(ACTDESC1, ACTDESC2)}

− MOP(Activity1, Activity2) = {(PROJACT_ACT_FK.Inverse1, null)}

− MDP(Department1, Department2) = { (DEPTNO1, DEPTNO2) ,

(DEPTNAME1, DEPTNAME2), (LOCATION1, LOCATION2)}

− MOP(Department1, Department2) = { (ROD1, ADMR_DEPT_INST2),

(ROD.Inverse1, null), (RDE1, MGRNO_INST2), (RED.Inverse1, null),

 (FK.PROJECT_1.Inverse1, null) }

− MDP(Employee1, Employee2) = { (EMPNO1, EMPNO2),

(FIRSTNAME1, FIRSTNAME2), (MIDINIT1, MIDINIT2),

(LASTNAME1, LASTNAME2), (PHONENO1, PHONENO2),

(HIREDATE1, HIREDATE2), (JOB1, JOB2), (EDLEVEL1, EDLEVEL2),

(SEX1, SEX2), (BIRTHDATE1, BIRTHDATE2), (SALARY1, SALARY2),

(BONUS1, BONUS2), (COMM1, COMM2)}

− MOP(Employee1, Employee2) = {(RDE.Inverse1, null),

(RED1, WORKDEPT_INSTANCE2),

(EMPPROJACT_EMPLOYEE_FK1.Inverse1, null),

 239

(FK_EMP_PHOTO.Inverse1, null), (FK_EMP_RESUME.Inverse1, null),

(FK_PROJECT_2.Inverse1, null)}

− MDP(EmpProjAct1, EmpProjAct2) = { (EMPTIME1, EMPTIME2),

(EMPENDATE1, EMPENDATE2)}

− MOP(EmpProjAct1, EmpProjAct2) = {

(EMPPROJACT_EMPLOYEE_FK11, EMPNO_INSTANCE2)

(REPAPA1, <ACTNO,…>_INSTANCE2)}

− MDP(Emp_Photo1, Emp_Photo2) = { (PHOTO_FORMAT1, PHOTO_FORMAT2),

(PICTURE1, PICTURE2)}

− MOP(Emp_Photo1, Emp_Photo2) = {(FK_EMP_PHOTO1, EMPNO_INSTANCE2)}

− MDP(Emp_Resume1, Emp_Resume2) = {

(RESUME_FORMAT1, RESUME_FORMAT2) ,

(RESUME1, RESUME2)}

− MOP(Emp_Resume1, Emp_Resume2) = {

(FK_EMP_RESUME1, EMPNO_INSTANCE2)}

− MDP(Project1, Project2) = { (PROJNO1, PROJNO2) , (PROJNAME1, PROJNAME2),

(PRSTAFF1, PRSTAFF2), (PRSTDATE1, PRSTDATE2),

(PRENDATE1, PRENDATE2)}

− MOP(Project1, Project2) = {(FK_PROJECT_11, DEPTNO_INSTANCE2),

(FK_PROJECT_21, RESPEMP_INSTANCE2),

(RPP1, MAJPROJ_INSTANCE2), (RPP.Inverse1, null),

(RPAP.Inverse1, null)}

− MDP(Project_Activity1, Project_Activity2) = { (ACSTAFF1, ACSTAFF2),

(ACSTDATE1, ACSTDATE2), (ACENDATE1, ACENDATE2)}

− MOP(Project_Activity1, Project_Activity2) = {(REPAPA.Inverse1, null),

(PROJACT_ACT_FK1, ACTNO_INSTANCE2),

(RPAP1, PROJNO_INSTANCE2)}

2. Case-Study Two:

− MCP(om1 ,om2) = { (Customers1, Customers2),

(Customer_Payment_Methods1, Customer_Payment_Methods2),

(Invoices1 ,Invoices2), (Orders1 ,Orders2), (Order_Items1 ,Order_Items2),

(Payments1 ,Payments2), (Products1 , Products2),

(Ref_Invoice_Status_Codes1 , Ref_Invoice_Status_Codes2),

(Ref_Order_Item_Status_Codes1, Ref_Order__Item_Status_Codes2),

(Ref_Order_Status_Codes1, Ref_Order_Status_Codes2),

(Ref_Payment_Methods1, Ref_Payment_Methods2),

(Ref_Product_Types1, Ref_Product_Types2), (Shipments1, Shipments2) }

− MDP(Customers1, Customers2) = { (CUSTOMER_ID1, CUSTOMER_ID2),

 (ORGANIZATION_OR_CUSTOMER1, ORGANIZATION_OR_CUSTOMER2),

 240

 (ORGANIZATION_NAME1, ORGANIZATION_NAME2),

 (GENDER1, GENDER2), (FIRST_NAME1, FIRST_NAME2),

 (MIDDLE_INITIAL1, MIDDLE_INITIAL2), (LAST_NAME1, LAST_NAME2),

 (EMAIL_ADDRESS1, EMAIL_ADDRESS2),

 (LOGIN_NAME1, LOGIN_NAME2),

 (LOGIN_PASSWORD1, LOGIN_PASSWORD2),

 (PHONE_NUMBER1, PHONE_NUMBER2),

 (ADDRESS_LINE_11, ADDRESS_LINE_12),

 (ADDRESS_LINE_21, ADDRESS_LINE_22),

 (ADDRESS_LINE_31, ADDRESS_LINE_32),

 (ADDRESS_LINE_41, ADDRESS_LINE_42),

 (TOWN_CITY1, TOWN_CITY2), (COUNTY1, COUNTY2),

 (COUNTRY1, COUNTRY2) }

− MOP(Customers1, Customers2) = {

 (CUSTOMERS_CUSTOMER_PAYMENT_METHODS.Inverse1, null),

 (CUSTOMERS_1_ORDERS.Inverse1, null) }

− MDP(Customer_Payment_Methods1, Customer_Payment_Methods2) = {

 (CUSTOMER_PAYMENT_ID1, CUSTOMER_PAYMENT_ID2),

 (CREDIT_CARD_NUMBER1, CREDIT_CARD_NUMBER2),

 (PAYMENT_METHOD_DETAILS1, PAYMENT_METHOD_DETAILS2) }

− MOP(Customer_Payment_Methods1, Customer_Payment_Methods2) = {

 (CUSTOMERS_CUSTOMER_PAYMENT_METHODS1,

 CUSTOMER_ID_INSTANCE2),

 (REF_PAYMENT_METHODS_CUSTOMER_PAYMENT_METHODS1,

 PAYMENT_METHOD_CODE_INSTANCE2) }

− MDP(Invoices1 ,Invoices2) = { (INVOICE_NUMBER1, INVOICE_NUMBER2),

 (INVOICE_DATE1, INVOICE_DATE2),

 (INVOICE_DETAILS1, INVOICE_DETAILS2) }

− MOP(Invoices1 ,Invoices2) = { (ORDERS_INVOICES1, ORDER_ID_INSTANCE2),

 (INVOICE_STATUS_CODES_INVOICES1,

 INVOICE_STATUS_CODE_INSTANCE2),

 (INVOICES_PAYMENTS.Inverse1, null),

 (INVOICES_SHIPMENTS.Inverse1, null) }

− MDP(Orders1 ,Orders2) = { (ORDER_ID1, ORDER_ID2),

 (DATE_ORDER_PLACED1, DATE_ORDER_PLACED2),

 (ORDER_DETAILS1, ORDER_DETAILS2) }

− MOP(Orders1 ,Orders2) = { (ORDERS_INVOICES.Inverse1, null),

 (CUSTOMERS_1_ORDERS1, CUSTOMER_ID_INSTANCE2),

 241

 (ORDER_STATUS_CODES_ORDERS1,

 ORDER_STATUS_CODE_INSTANCE2),

 (ORDERS_ORDER_ITEMS.Inverse1, null),

 (ORDERS_SHIPMENTS.Inverse1, null) }

− MDP(Order_Items1 ,Order_Items2) = { (ORDER_ITEM_ID1, ORDER_ITEM_ID2),

 (ORDER_ITEM_QUANTITY1, ORDER_ITEM_QUANTITY2),

 (ORDER_ITEM_PRICE1, ORDER_ITEM_PRICE2),

 (OTHER_ORDER_ITEM_DETAILS1, OTHER_ORDER_ITEM_DETAILS2) }

− MOP(Order_Items1 ,Order_Items2) = {

 (ORDERS_ORDER_ITEMS1, ORDER_ID_INSTANCE2),

 (PRODUCTS_ORDER_ITEMS1, PRODUCT_ID_INSTANCE2),

 (ORDER_ITEM_STATUS_ORDER_ITEMS1,

 ORDER_ITEM_STATUS_CODE_INSTANCE2),

 (SHIPMENTS_SHIPMENT_ITEMS1, null) }

− MDP(Payments1 ,Payments2) = { (PAYMENT_ID1, PAYMENT_ID2),

 (PAYMENT_DATE1, PAYMENT_DATE2),

 (PAYMENT_AMOUNT1, PAYMENT_AMOUNT2)}

− MOP(Payments1 ,Payments2) = {

 (INVOICES_PAYMENTS1, INVOICE_NUMBER_INSTANCE2) }

− MDP(Products1 , Products2) = { (PRODUCT_ID1, PRODUCT_ID2),

 (PRODUCT_NAME1, PRODUCT_NAME2),

 (PRODUCT_PRICE1, PRODUCT_PRICE2),

 (PRODUCT_COLOR1, PRODUCT_COLOR2),

 (PRODUCT_SIZE1, PRODUCT_SIZE2),

 (PRODUCT_DESCRIPTION1, PRODUCT_DESCRIPTION2),

 (OTHER_PRODUCT_DETAILS1, OTHER_PRODUCT_DETAILS2) }

− MOP(Products1 , Products2) = { (PRODUCTS_ORDER_ITEMS.Inverse1, null),

 (REF_PRODUCT_TYPES_PRODUCTS1,

 PRODUCT_TYPE_CODE_INSTANCE2) }

− MDP(Ref_Invoice_Status_Codes1 , Ref_Invoice_Status_Codes2) = {

 (INVOICE_STATUS_CODE1, INVOICE_STATUS_CODE2),

 (INVOICE_STATUS_DESCRIPTION1,

 INVOICE_STATUS_DESCRIPTION2) }

− MOP(Ref_Invoice_Status_Codes1 , Ref_Invoice_Status_Codes2) = {

 (INVOICE_STATUS_CODES_INVOICES.Inverse1, null)}

− MDP(Ref_Order_Item_Status_Codes1, Ref_Order__Item_Status_Codes2) = {

 (ORDER_ITEM_STATUS_CODE1, ORDER_ITEM_STATUS_CODE2),

 (ORDER_ITEM_STATUS_DESCRIPTION1,

 242

 ORDER_ITEM_STATUS_DESCRIPTION2) }

− MOP(Ref_Order_Item_Status_Codes1, Ref_Order__Item_Status_Codes2) = {

 (ORDER_ITEM_STATUS_ORDER_ITEMS.Inverse1, null) }

− MDP(Ref_Order_Status_Codes1, Ref_Order_Status_Codes2) = {

 (ORDER_STATUS_CODE1, ORDER_STATUS_CODE2),

 (ORDER_STATUS_DESCRIPTION1, ORDER_STATUS_DESCRIPTION2) }

− MOP(Ref_Order_Status_Codes1, Ref_Order_Status_Codes2) = {

 (ORDER_STATUS_CODES_ORDERS.Inverse1, null) }

− MDP(Ref_Payment_Methods1, Ref_Payment_Methods2) = {

 (PAYMENT_METHOD_CODE1, PAYMENT_METHOD_CODE2),

 (PAYMENT_METHOD_DESCRIPTION1,

 PAYMENT_METHOD_DESCRIPTION2) }

− MOP(Ref_Payment_Methods1, Ref_Payment_Methods2) = {

 (REF_PAYMENT_METHODS_CUSTOMER_PAYMENT_METHODS.Inverse1,

 null) }

− MDP(Ref_Product_Types1, Ref_Product_Types2) = {

 (PRODUCT_TYPE_CODE1, PRODUCT_TYPE_CODE2),

 (PRODUCT_TYPE_DESCRIPTION1, PRODUCT_TYPE_DESCRIPTION2) }

− MOP(Ref_Product_Types1, Ref_Product_Types2) = {

 (REF_PRODUCT_TYPES_PRODUCTS.Inverse1, null),

 (REF_PRODUCT_TYPES_REF_PRODUCT_TYPES1,

 PARENT_PRODUCT_TYPE_CODE_INSTANCE2),

 (REF_PRODUCT_TYPES_REF_PRODUCT_TYPES.Inverse1, null) }

− MDP(Shipments1, Shipments2) = { (SHIPMENT_ID1, SHIPMENT_ID2),

 (SHIPMENT_TRACKING_NUMBER1,

 SHIPMENT_TRACKING_NUMBER2),

 (SHIPMENT_DATE1, SHIPMENT_DATE2),

 (OTHER_SHIPMENT_DETAILS1, OTHER_SHIPMENT_DETAILS2) }

− MOP(Shipments1, Shipments2) = {

 (INVOICES_SHIPMENTS1, INVOICE_NUMBER_INSTANCE2),

 (ORDERS_SHIPMENTS1, ORDER_ID_INSTANCE2)

 (ORDER_ITEMS_SHIPMENT_ITEMS1, null) }

 243

BIBLIOGRAPHY

 244

BIBLIOGRAPHY

[1] Agrawal, Rakesh et al. 1989. Efficient management of transitive relationships in

large data and knowledge bases. ACM.

[2] Albarrak, Khalid and Sibley, Edgar. 2009. Translating relational & object-relational

database models into OWL models. Proceedings of the 10th IEEE international

conference on Information Reuse & Integration (IRI 2009). Las Vegas, Nevada,

USA. August 10-12, 2009.

[3] Albarrak, Khalid and Sibley, Edgar. 2010. An Extensible Framework for

Generating Ontology Models from Data Models. Journal of the International

Transactions on Systems Science and Applications (ITSSA), Vol. 6, No. 2/3,

August 2010, pp. 97-112.

[4] Albarrak, Khalid and Sibley, Edgar. 2011. A survey of methods that transform data

models into Ontology models. Proceedings of the 12th IEEE international

conference on Information Reuse & Integration (IRI 2011). Las Vegas, Nevada,

USA. August 3-5, 2011.

[5] Albarrak, Khalid and Sibley, Edgar. 2012. Measuring Expressivity between

Ontology Models. Proceedings of the 11th WSEAS International Conference on

Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED ’12).

[6] Alhajj, Reda. 2003. Extracting the extended entity-relationship model from a

legacy relational database. Information Systems, v.28 n.6, p.597-618. Elsevier

Science.

[7] ANSI/ISO/IEC International Standard. 1999. ISO/IEC 9075-2:1999 - Database

Language SQL - Part 2: Foundation (SQL/Foundation). September 1999.

 245

[8] Antoniou, Grigoris and Van Harmelen, Frank. 2008. A Semantic Web Premier, 2
nd

Edition. The MIT Press.

[9] Astrova, Irina. 2004. Reverse Engineering of Relational Databases to Ontologies.

The Semantic Web: Research and Applications; Volume 3053/2004. Springer

Berlin/Heidelberg.

[10] Astrova, Irina. 2005. Toward the Semantic Web - An Approach to Reverse

Engineering of Relational Databases to Ontologies. Communications of the Ninth

East-European Conference on Advances in Databases and Information Systems,

ADBIS-2005. Tallinn, Estonia, September 12-15, 2005. pp. 111-122

[11] Astrova, Irina. 2008. Rules for Mapping SQL Relational Databases to OWL

Ontologies. Metadata and Semantics. Springer US.

[12] Baeza-Yates, Ricardo and Ribeiro-Neto, Berthier. 1999. Modern Information

Retrieval. ACM Press, New York, 1999.

[13] Blaha, Michael. 2010. Patterns of Data Modeling. CRC Press.

[14] Bohring, Hannes and Auer, Sören 2005. Mapping XML to OWL Ontologies.

Leipziger Informatik-Tage, volume 72 of LNI (2005), pp. 147-156

[15] Brank, Janez et al. 2005. A Survey of Ontology Evaluation Techniques. In Proc. Of

the Conf. on Data Mining and Data Warehouses (SiKDD 2005), Ljubljana,

Slovenia

[16] Brewster, Christopher et al. 2004. Data Driven Ontology Evaluation. Proceedings

of Int. Conf. on Language Resources and Evaluation, Lisbon, Portugal.

[17] Bruijn, Jos de. 2003. Enabling Knowledge Sharing and Reuse on the Semantic

Web. Digital Enterprise Research Institute (DERI) Technical Report DERI-2003-

10-29.

 246

[18] Buccella, Agustina et al. 2004. From Relational Databases to OWL Ontologies.

Proceeding of the 6th National Russian Conference on Digital Libraries (RCDL),

Pushchino, Russia, September 29
th

 - October 1
st
, 2004.

[19] Burgun, Anita. 2006. Desiderata for domain reference ontologies in biomedicine.

Journal of Biomedical Informatics, 39 (2006) 307-313. Elsevie

[20] Burton-Jones, Andrew et al. 2005. A semiotic Metrics Suite for Assessing the

Quality of Ontologies. Data Knowledge & Engineering 55 (2005) 84-102. Elsevier.

[21] CA, Inc. Database Design & Modeling; CA ERwin Data Modeler.

http://www.ca.com/us/database-design (accessed March 2011).

[22] Cardoso, Jorge. 2007. Semantic Web Services: Theory, Tools and Applications.

Idea Group. e-Book:978-1-59904-047-9.

[23] Castano, S. et al. 1998. Conceptual Schema Analysis- Techniques and

Applications. ACM Transactions on Database Systems (TODS). Volume 23, Issue

3, September 1998.

[24] Cerbah, Farid. 2008. Mining the Content of Relational Databases to Learn

Ontologies with Deeper Taxonomies. IEEE/WIC/ACM International Conference

on Web Intelligence and Intelligent Agent Technology (WI’08 & IAT’08). Sydney,

Australia. December 9-12, 2008.

[25] Cerbah, Farid. 2008. Learning Highly Structured Semantic Repositories from

Relational Databases: The RDBToOnto Tool. The Semantic Web: Research and

Applications, Volume 5021/2008, pp 777-781. Springer Berlin/Heidelberg.

[26] Chen, Jia et al. 2009. Rules Driven Object-Relational Databases Ontology

Learning. IEEE.

[27] Chiang, Roger H.L. et al. 1994. Reverse engineering of relational databases:

extraction of an EER model from a relational database. Data Knowledge Eng. 12, 2

(Mar. 1994). Elsevier Science.

 247

[28] Cullot, Nadine et al. 2007. DB2OWL: A Tool for Automatic Database-to-Ontology

Mapping. In Proceedings of the 15th Italian Symposium on Advanced Database

Systems (SEBD 2007). Torre Canne di Fasano (BR), Italy, June 2007.

[29] DAML. 2003. About the DAML Language. http://www.daml.org/about.html

(accessed on Dec. 22, 2011)

[30] Date, Chris J. 1995. Introduction to Database Systems, 6
th

 edition. Addison-Wesley

[31] Date, Chris J. 2003. On Various Types of Relations.

http://www.dbdebunk.com/page/page/622108.htm (accessed on Dec 5
th

, 2011)

[32] Dey, Debabrata et al. 1999. Improving database design through the analysis of

relationships. ACM Transactions on Database Systems (TODS), Volume 24 Issue

4, Dec. 1999.

[33] Doan, AnHai and Halevy, Alon. 2005. Semantic Integration Research in the

Database Community: A Brief Survey. AI Magazine

[34] Doan, AnHai. 2002. Learning to Map between Structured Representations of Data.

PhD Thesis. Chapters 1 and 5. http://pages.cs.wisc.edu/~anhai/thesis/anhai-

thesis.pdf (accessed on April 28, 2010).

[35] Euzenat, Jerome and Valtchev, Petko. 2004. Similarity-based Ontology Alignment

in OWL-Lite. In The 16th European Conf. on Artificial Intelligence (ECAI-04),

Valencia, Spain.

[36] Fensel, Dieter et al. 2001. OIL: An Ontology Infrastructure for the Semantic Web.

IEEE Intelligent Systems, March/April 2001, Vol. 16, no. 2.

[37] Ferdinand, Matthias et al. 2004. Lifting XML Schema to OWL. Web Engineering.

Volume 3140/2004. Springer Berlin / Heidelberg.

[38] Fisher, Maydene, Jon Ellis and Jonathan Bruce. 2004. JDBC API Tutorial and

Reference, Third Edition. Addison-Wesley. Chapter 1 and 2 (Pages 3-112)

 248

[39] Fonseca, Frederico and Martin, James. 2007. Learning the Differences Between

Ontologies and Conceptual Schemas Through Ontology-Driven Information

Systems. Journal of the Association for Information Systems (JAIS); Special Issue

on Ontologies in the Context of IS. Volume 8, Issue 2. pp. 129–142,

[40] Formica, Anna. 2009. Concept Similarity by Evaluating Information Contents and

Feature Vectors: A Combined Approach. Communication of the ACM. Volume 52,

Issue 3, March 2009.

[41] Ghawi, Raji and Cullot, Nadine. 2007. Database-to-Ontology Mapping Generation

for Semantic Interoperability. The 3rd International Workshop on Database

Interoperability (InterDB); Held in conjunction with VLDB 2007. Vienna, Austria.

September 24, 2007.

[42] Gillenson, Mark L. et al. 2007. Introduction to Database Management. Wiley.

[43] Gruber, Thomas R. 1993. A Translation Approach to Portable Ontology.

Specifications. Knowledge Acquisition, Vol. 5, Issue 2, June 1993, pp 199-220.

[44] Guarino, Nicola and Giaretta, Pierdaniele. 1995. Ontologies and Knowledge Bases:

Towards a Terminological Clarification. In Towards Very Large Knowledge Bases.

N. J. I. Mars, Ed., IOS Press: 25-32

[45] Halpin, Terry. 2008. Information Modeling and Relational Databases, Second

Edition. Morgan Kaufmann Publishers. Books24x7 version.

[46] He-ping, Chen et al. 2008. Research and Implementation of Ontology Automatic

Construction Based on Relational Database. IEEE; International Conference on

Computer Science and Software Engineering. Wuhan, Hubei, China, December 12-

14, 2008.

[47] Hu, Changjun et al. 2008. Research and Implementation of Domain-Specific

Ontology Building from Relational Database. IEEE; The Third ChinaGrid Annual

Conference 2008 (ChinaGrid '08). August 20-22, 2008.

 249

[48] IBM. DB2 for Linux, UNIX, and Windows – The SAMPLE database.

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv

.samptop.doc/doc/r0001094.html (accessed on Sept. 26, 2011).

[49] IBM. IBM InfoSphere Data Architect. http://www-

01.ibm.com/software/data/optim/data-architect/ (accessed March 2011)

[50] ISRD Group. 2006. Introduction to Database Management Systems. Tata McGraw-

Hill.

[51] Kalfoglou, Yannis and Schorlemmer, Marco. 2003. Ontology mapping: the state of

the art. The knowledge Engineering Review, Vol. 18:1, 1-31. Cambridge Univ

Press.

[52] Laborda, Cristian and Conrad, Stefan. 2005. Relational.OWL - A Data and Schema

Representation Format Based on OWL. ACM; Proceedings of the 2nd Asia-Pacific

conference on Conceptual modelling - Volume 43; 2005; Newcastle, New South

Wales, Australia. pp. 89-96

[53] Levenshtein, V. I. 1966. Binary Codes capable of correcting deletions, insertions,

and reversals. Cybernetics and Control Theory. Soviet Physics-Doklady. Vol 10,

No. 8. 10(8):707–710, 1966.

[54] Li, Man et al. 2005. Learning Ontology From Relational Database. IEEE;

Proceedings of the 4th International Conference on Machine Learning and

Cybernetics. Guangzhou, China, August 18-21, 2005.

[55] Li, Man et al. 2005. A Semi-automatic Ontology Acquisition Method for the

Semantic Web. Advances in Web-Age Information Management; Volume

3739/2005. Springer Berlin / Heidelberg.

[56] Lin, Dekang. 1998. An information-theoretic definition of similarity. Proceedings

of the 15th International Conference on Machine Learning (ICML), Madison,

Wisconsin, USA. July 24–27, 1998. Morgan Kaufmann. pp. 296–304.

 250

[57] Lubyte, Lina and Tessaris, Sergio. 2007. Extracting Ontologies from Relational

Databases. Technical Report, KRDB group – Free University of Bozen-Bolzano.

www.inf.unibz.it/krdb/pub/TR/KRDB07-4.pdf (accessed March 2011).

[58] Lubyte, Lina. 2007. Reusing Relational Sources for Semantic Information Access.

Proceedings of the ACM first Ph.D. workshop in Conference on Information and

Knowledge Management (CIKM), Lisbon, Portugal, 9/11/2007, pp. 9-16

[59] Maedche, Alexander and Staab, Steffen. 2002. Measuring Similarity between

Ontologies. Proc CIKM 2-2. LNAI vol 2473.

[60] Melton, Jim. 2003. Advanced SQL: 1999 - Understanding Object-Relational and

Other Advanced Features. Morgan Kaufmann.

[61] Microsoft. SQL Server – Starter Database Schemas. http://msdn.microsoft.com/en-

us/express/bb403186#5 (accessed on Sept. 26, 2011).

[62] Mukhopadhyay, Debajyoti et al. 2007. A Technique for Automatic Construction of

Ontology from Existing Database to Facilitate Semantic Web. IEEE; 10th

International Conference on Information Technology (ICIT 2007). Rourkela, India,

December 17-20, 2007.

[63] Noy, Natalya F. and McGuinness Deborah L. 2001. Ontology Development 101: A

Guide to Creating Your First Ontology. Online. Available at

http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-

mcguinness.pdf (accessed March 29, 2009)

[64] Noy, Natalya. 2004. Sematic Integration: A Survey of Ontology-Based

Approaches. SIGMOD Vol 33, No. 4. ACM.

[65] Nyulas, Csongor et al. 2007. DataMaster – a Plug-in for Importing Schemas and

Data from Relational Databases into Protégé. 10th International Protégé

Conference. Budapest, Hungary, July 15-18, 2007.

[66] Obrst, Leo et al. 2007. The Evaluation of Ontologies - Toward Improved Semantic

Interoperability. Semantic Web, Part II, 139-158, Springer US.

 251

[67] Park, Jinsoo et al. 2010. Evaluating Ontology Extraction Tools Using a

Comprehinsive Evaluation Framework. Data Knowledge & Engineering 69 (2010)

1043-1061. Elsevier.

[68] Pfeiffer, Daniel and Gehlert, Andreas. 2005. A framework for comparing

conceptual models. Proceedings of the Workshop on Enterprise Modelling and

Information Systems Architectures (EMISA 2005), Klagenfurt, Austria. pp. 108-

122.

[69] Princeton University. WordNet Search - 3.0.

http://wordnet.princeton.edu/perl/webwn?s=chair (accessed on Sept. 1
st
, 2008)

[70] Qu, Z. and Tang, S. 2008. Research on Transforming Relational Database into

Enriched Ontology. International Conference on Advanced Computer Theory and

Engineering (ICACTE), Phuket, Thailand, 20-22/12/2008, pp. 749-753.

[71] Rahimi, Saeed K. and Haug, Frank S. 2010. Distributed Database Management

Systems; A Practical Approach. Wiley.

[72] Ramakrishnan, Raghu and Gehrke, Johannes. 2003. Database Management

Systems, 3ed edition. McGraw-Hill.

[73] Ross, Kenneth A and Stoyanovich, Julia. 2004. Symmetric Relations and

Cardinality-Bounded Multisets in Database Systems. The 30th VLDB Conference,

Toronto, Canada, 2004.

[74] Rzhetsky A, Evans JA. 2011. War of Ontology Worlds: Mathematics, Computer

Code, or Esperanto? PLoS Computational Biology 7(9): e1002191.

doi:10.1371/journal.pcbi.1002191

[75] Shanks, Graeme et al. 2003. Using ontology to validate conceptual models.

Communications of the ACM. Volume 46, Issue 10, October 2003.

[76] Sheu, Phillip et al. 2010. Semantic Computing. Wiley-IEEE Press. pp 1-10

 252

[77] Sheu, Phillip. 2010. Semantic Computing and Semantic Web. Institute of Semantic

Computing. http://isc2010.wordpress.com/2010/03/05/semantic-computing-and-

semantic-web/ (accessed on Dec 26
th

, 2011).

[78] Silverston, Len and Agnew, Paul. 2009. The Data Model Resource Book: Universal

Patterns for Data Modeling, Volume 3. John Wiley & Sons

[79] Simsion, Graeme C. & Witt, Graham C. 2005. Data Modeling Essentials, 3
ed

edition. Morgan Kaufmann Publishers; Books24x7 version.

[80] Stojanovic, Ljiljana et al. 2002 - Migrating data-intensive Web Sites into the

Semantic Web. ACM; Proceedings of the 2002 ACM Symposium on Applied

Computing. Madrid, Spain, March 11-14, 2002. pp. 1100-1107

[81] Stuckenschmidt, Heiner and Van Harmelen, Frank. 2005. Information Sharing on

the Semantic Web; Advanced Information and Knowledge Processing. Springer.

[82] Sugumaran, Vijayan and Storey, Veda. 2006. The role of domain ontologies in

database design: An ontology management and conceptual modeling environment.

ACM Transactions on Database Systems (TODS). Volume 31, Issue 3, September

2006.

[83] Thuy, Pham Thi Thu et al. 2008. Exploiting XML Schema for Interpreting XML

Document as RDF. 2008 IEEE International Conference on Services Computing

(SCC 2008). Honolulu, Hawaii, USA, July 8-11, 2008.

[84] Trinh, Quang et al. 2006. RDB2ONT - A Tool for Generating OWL Ontologies

From Relational Database Systems. IEEE; Proceedings of the Advanced

International Conference on Telecommunications and International Conference on

Internet and Web Applications and Services (AICT/ICIW 2006). Guadeloupe,

French Caribbean, February 19-25, 2006. pp. 170

[85] Trinkunas, Justas and Vasilecas, Olegas 2007. Building ontologies from relational

databases using reverse engineering methods. ACM; In Proceedings of the 2007

international Conference on Computer Systems and Technologies. Bulgaria, June

14-15, 2007.

 253

[86] Tsinaraki, Chrisa and Christodoulakis, Stavros. 2007. XS2OWL: A Formal Model

and a System for Enabling XML Schema Applications to Interoperate with OWL-

DL Domain Knowledge and Semantic Web Tools. Digital Libraries: Research and

Development. Volume 4877/2007. Springer Berlin / Heidelberg.

[87] Vysniauskas, Ernestas and Nemuraite, Lina. 2006. Transforming Ontology

Representation from OWL to Relational Database. Informaion technology and

Control. Vol. 35, No 3A.

[88] W3C, OWL Web Ontology Language, Guide, W3C Recommendation 10 February

2004. ed. Michael Smith et al. http://www.w3.org/TR/owl-guide/

[89] W3C, OWL Web Ontology Language, Overview, W3C Recommendation 10

February 2004. ed. D McGuinness and F van Harmelen.

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.3

[90] W3C. RDF Validation Service. Eric Prud'hommeaux.

http://www.w3.org/RDF/Validator/. Accessed on July 9th, 2011.

[91] W3C. W3C Semantic Web Activity http://www.w3.org/2001/sw and

http://www.w3.org/2001/sw/Activity (accessed on September 1st, 2008)

[92] Wache, H., et al. 2001. Ontology-based Integration of Information - A Survey of

Existing Approaches. In Proceedings of IJCAI-01 Workshop: Ontologies and

Information Sharing, Seattle, WA.

[93] Wang, HongSheng et al. 2008. Text Information Extraction Based on OWL

Ontologies. IEEE; Fifth International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD ‘08). Jinan, Shandong, China, October 18-20, 2008.

[94] Weiss, Gerhard (ed), Gerhard, Michael. 1999. Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence; Chapter 1 - Intelligent Agents. The

MIT Press. Books24x7

[95] Wolfram Research. Mathematica 8. http://www.wolfram.com/mathematica/

(accessed on Dec 5
th

, 2011)

 254

[96] WonderWeb OWL Ontology Validator. http://www.mygrid.org.uk/OWL/Validator.

© University of Manchester, 2003 & © University of Karlsruhe, 2003. Accessed on

July 9th, 2011.

[97] Xu, Jiuyun and Li, Weichong. 2007. Using Relational Database to Build OWL

Ontology from XML Data Sources. IEEE; International Conference on

Computational Intelligence and Security Workshops (CISW 2007). December 15-

19, 2007.

[98] Yan, Luo and Changrui, Yu. 2007. Development Method of Domain Ontology

Based on Reverse Engineering. IEEE International Conference on Service

Operations and Logistics, and Informatics (SOLI 2007). Philadelphia, PA, USA,

Aug. 27-29, 2007.

[99] Zhao, Shuxin and Chang, Elizabeth. 2007. From Database to Semantic Web

Ontology: An Overview. On the Move to Meaningful Internet Systems 2007: OTM

2007 Workshops. Volume 4806/2007. Springer Berlin / Heidelberg.

 255

BIOGRAPHY

Khalid Al-Barrak received his Bachelor of Science in Computer Information Science

from King Saud University, Riyadh, Saudi Arabia. Three years later, he relocated to the

United States to pursue higher education. In 2000, Khalid obtained his Master of Science

in Computer Science from California State University, Chico, California.

Khalid has over 16 years of experience in the IT field, 13 of which is with IBM

Corporation. In 2000, he joined IBM’s leading database and software lab, Santa Teresa

Lab, as a Software Engineer. Four years later, Khalid transitioned to a solution

architecture role serving as an IBM World-Wide (WW) Information Integration subject

matter-expert for various IBM technologies where he was brought in to solve integration

challenges facing Fortune-100 US companies, government entities and foreign

companies. Most recently, Khalid joined the Channels Sales organization where he

supports IBM business partners.

