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Abstract

ZERO-DAY WEB ATTACK DETECTION USING COLLABORATIVE AND TRANSDUCTION-
BASED ANOMALY DETECTORS

Sharath Hiremagalore, PhD

George Mason University, 2015

Dissertation Director: Dr. Angelos Stavrou

Web applications have emerged as the primary means of access to vital and sensitive

services such as online payment systems and databases storing personally identifiable in-

formation. Unfortunately, the need for ubiquitous and often anonymous access exposes

web servers to adversaries. Indeed, network-borne zero-day attacks pose a critical and

widespread threat to web servers that cannot be mitigated by the use of signature-based

intrusion detection systems.

Content-based Anomaly Detection (AD) techniques are regarded as a promising mecha-

nism to detect ‘zero-day’ attacks. AD sensors have also been shown to perform better than

signature-based systems in detecting polymorphic attacks. However, the False Positive

Rates (FPRs) produced by current AD sensors have been a cause of concern.

In the first part of this work, we present a collaborative approach to quickly detect zero-

day attacks. To detect previously unseen attacks, we correlate web requests containing user-

submitted content across multiple web servers that is deemed abnormal by local Content

Anomaly Detection (CAD) sensors. We are the first to propose the exchange of suspicious

(abnormal) request content between sites, which significantly reduces false positives.



The cross-site information exchange happens in real-time leveraging privacy preserving

data structures. Moreover, we automatically filter out high entropy and rarely seen legit-

imate requests, reducing the amount of data and time an operator has to spend sifting

through alerts. Our results come from a fully working prototype using eleven weeks of

real-world data from production web servers. During that period, we identify at least three

application-specific attacks not belonging to an existing class of web attacks as well as a

wide range of traditional classes of attacks, including SQL injection, directory traversal,

and code inclusion without using human-specified knowledge or input.

In the second part of this work, we introduce and evaluate transAD, a system of payload

inspection AD sensors that are based on Transductive Confidence Machines (TCM). Exist-

ing TCM-based implementations have very high false positive rates and are not suitable for

use as NIDS.

Our approach leverages an unsupervised machine learning algorithm to identify anoma-

lous packets; unlike most AD sensors, ours does not require manually labeled data. Also,

transAD uses an ensemble of TCM sensors to achieve better detection rates and lower

FPRs than single sensor implementations. Therefore, transAD presents a hardened defense

against poisoning attacks.

We evaluated our prototype implementation using two real-world data sets collected

from a public university’s network. Approximately 1.1 million packets containing real at-

tacks were processed by our AD sensor. To compute the ground truth, we manually labeled

18,500 alerts. In the course of scanning millions of packets, our sensor’s low false positive

rate would significantly reduce the number of false alerts that need to be inspected by an

operator while maintaining a high detection rate.



Chapter 1: Introduction

1.1 Motivation

Web-based solutions are one of the most popular and convenient technologies to provide

any type of service to consumers, businesses, and governments alike. Web-based products

are ubiquitous and have been driving the e-commerce industry since the tech boom in the

late 1990s [1]. As web services have become increasingly popular and play an important

role in carrying personally identifiable information, securing these services has become a

paramount priority for the industry. Signature-based Network Intrusion Detection Systems

(NIDSs) is one solution that has been typically used to protect web servers from attacks.

However, these systems are unable to detect new attacks that have never been seen before,

known as “zero-day” attacks.

Anomaly Detection (AD) systems work by learning the baseline network traffic being

monitored. Any deviation from this baseline network traffic is flagged as an alert by an AD

system. This gives AD systems an edge over other NIDSs that rely on known signatures for

detecting attacks. Therefore, AD systems present a promising solution to identify zero-day

attacks and are also able to detect polymorphic attacks to web-based services. Polymorphic

attacks are variants of existing attacks for which signatures are not yet available.

Although AD systems have existed for years and have the advantage of detecting zero-

day and polymorphic attacks, they have not been widely adopted by the industry for pro-

duction use as NIDSs. This is because current AD systems have high False Positive Rates

(FPRs). As each alert needs to be manually processed by an IDS operator, high FPR makes

them less practical. Another drawback of current implementations of AD systems is that

they require supervised training data. This requires labor-intensive labeling of the training

dataset. Finally, Anomaly Detection-based Intrusion Detection Systems are susceptible to

1



poisoning attacks. These attacks can deceive the learning algorithm as they slowly inject

malicious traffic that resembles baseline traffic.

1.2 Contributions

In this dissertation, we try to alleviate the shortcomings of the current Anomaly Detection-

based Intrusion Detection Systems. We present a collaborative web-based intrusion detec-

tion system approach to quickly identify zero-day and polymorphic attacks and reduce the

number of false positives an operator manually inspects. We also present novel Anomaly

Detection-based IDS for the web. The main contributions made by this work are summa-

rized below:

• We propose and deploy a collaborative Anomaly Detection system that exchanges and

correlates alerts generated by individual AD systems at each site.

• We show and analyze empirical evidence supporting the benefits of collaborative

Anomaly Detection-based NIDS. The collaborating systems are exchange content

alerts generated at each site. From our experiments, we are able to achieve zero-

day attack detection with a very small false positive rate.

• Next, we expand the collaborative Anomaly Detection-based NIDS to three sites and

demonstrate the ability to detect zero-day and polymorphic attacks while further

decreasing the false positive rate at every collaborating site.

• We developed a novel Anomaly Detection-based Network Intrusion Detection system

for the web that is based on unsupervised learning and does not require any labeled

training data.

• We applied a novel combination of our hash-based distance metric, unsupervised AD

system, and ensemble-based techniques to produce outstandingly low false positive

rates.

2



• Furthermore, our novel AD system is able to detect never-before-seen zero-day at-

tacks. Our experiments use real-world datasets to show that the system successfully

detects the following class of attacks: Buffer Overflow, Code Injection, File Inclusion,

Directory Traversal, Script and Polymorphic Attacks, and others.

1.3 Organization

In the first part of this dissertation, we present a collaborative approach of Anomaly-based

Intrusion Detection system to quickly detect widespread zero-day attacks. In Chapter 2

we describe the experimental results of exchanging content alerts across two domains. We

present our results and analysis of the common alerts produced at the two sites. In Chapter 3

we extend the previous study of collaborative intrusion detection to three sites and present

results over a larger dataset. In the second part of this dissertation (Chapter 4), we present

our novel Anomaly Detection-based intrusion detection technique for the web and discuss

our conclusions and future work.

3



Chapter 2: Experimental Results of Cross-Site Exchange of

Web Content Anomaly Detector Alerts1

2.1 Introduction

Automated zero-day and polymorphic attacks pose a critical widespread threat to web

servers. Network-based Anomaly Detection (AD) is regarded as a potential defense to this

very difficult-to-identify threat. However, AD sensors often suffer excessive false positive

rates that require an unacceptable amount of human effort to properly resolve. When an

alert is generated, the operator does not have a well-defined “attack signature” to analyze

—she must drill down to packet content in order to understand the nature and validity of

the alert. Therefore, to distinguish a true attack from a legitimate but anomalous packet,

operators have to manually sift through the alerts and offending packet content. On the

other hand, any attempt to reduce the rate of false positives by modifying the sensitivity

of the AD sensor may reduce the true positive detection rate.

In this chapter, we present results using a working alert exchange architecture with an

extensive section on model comparisons over an extended period of time. Currently, to limit

the false positives, AD sensor outputs are typically correlated with other evidence to dis-

tinguish true attacks from false alarms. For instance, see shadow servers in [2]. We propose

a large-scale network of AD sensors distributed across disjoint domains that exchange and

correlate web server content alerts to identify widespread zero-day attacks in real time. This

network would analyze ingress traffic to some sample of collaborating web servers. Sensors

could be deployed at each domain or at a common peering point. The zero-day attacks

found could then be communicated broadly.

1This work was done in collaboration with Nathaniel Boggs and Salvatore Stolfo, Department of Computer
Science, Columbia University, N.Y.
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The results from an initial deployment of the system across two administrative domains

on the Internet support the feasibility and accuracy of such a system. Additionally, we

present a method of comparing normal models between sites to potentially identify sites

with distinct normal traffic flows. We conjecture that each administrative domain may

detect zero-day attack vectors as abnormal content since, by definition, zero-day attacks

are data delivered to a service that have not been seen before and are not contained in

a signature database. Each site will also classify some legitimate traffic as abnormal thus

generating false positives. However, it is likely that this traffic will only be seen at a single

site: errors of this nature are not likely to be similar at different domains because normal

traffic flows will be different. The same (or nearly the same) abnormal packet content seen

at two or more sites is most likely a widespread attack vector rather than a false positive.

Hence, correlating abnormal data across two or more sites in real-time may detect and

accurately identify zero-day attacks. In the presented results, we manually confirm the

attack vectors in our correlated alerts. The number of zero-day attacks specifically depends

on which signature engine the attacks are compared to. Furthermore, we claim that real-

time filtering of zero-day attacks against web servers is feasible with essentially no human

intervention by automatically filtering common abnormal content.

The strategy to correlate common abnormal content will detect zero-day attacks that do

not use sophisticated polymorphic engines. In the case of polymorphic attacks, where each

infection produces an entirely new version of the attack for each propagation attempt [3],

it is unlikely that this cross-domain correlation strategy will work. One should not expect

to see any common attack vectors. In those cases, correlating AD alerts with host-based

instrumented shadow servers is likely a better strategy to detect zero-days and reduce false

positives. However, as it stands today, most of the web-based attacks we have detected

deliver their payload as relatively short PHP arguments and do not contain polymorphic

attack engines nor have we seen code attempting to download polymorphic variants. Hence,

we posit that the cross-domain correlation strategy is effective against the large class of zero-

day attacks targeting web-based applications and services.

5



To validate our claims, we study the outcome of two weeks of real network data capture

and an automated exchange of AD alerts between Columbia University and George Mason

University over the Internet. Our empirical results confirm our theory: the more distinct

each normal model may be, the more likely it is for common AD alerts to identify and filter

true zero-day attacks. Indeed, by comparing the normal models from different domains we

establish that each site has a distinct model of normal content. Moreover, throughout the

two-week study, we found 11,787 common alerts. Furthermore, we analyze the time between

each site first detecting each attack and verify that real-time exchange is feasible. With this

baseline of common content-based web server Anomaly Detector alerts composed almost

entirely of attacks, the few false positives can be quickly identified and shared to reduce

the human workload. These experimental results support our conjecture that cross-domain

content-based AD correlation deployed at a large scale could effectively detect and mitigate

zero-day web attacks.

2.2 Related Work

Previous work on distributed intrusion detection has focused mainly on the exchange of data

within a single organization. Much of the early work, e.g., [4, 5] focused on limited distri-

bution within an enclave. In [6], the authors discuss methods for cooperatively correlating

alerts from different types of intrusion detection systems. Krugel et al. [7,8] concluded that

only a relatively small number of messages (seldom more than two) need to be exchanged

to determine an attack is in progress, making decentralized intrusion detection feasible and

appropriate. DShield [9] is the most active volunteer-based DIDS project on the Internet

that we are aware of, focusing on “top 10”-style reports and blacklists; however, it uses a

centralized model, relies on reports from volunteers, and generally scrubs data. In [10, 11]

the authors describe more general mechanisms for node “cooperation” during attacks.

DOMINO [12] is probably the closest decentralized framework in this scope to ours.

The paper measured, using DShield alert logs, the notion of information gain; however,

6



DOMINO does not incorporate alerts generated by Anomaly Detectors. In addition, Far-

roukh et al. proposed a distributed and collaborative intrusion detection system called

DaCID [13] based on the Dempster Shafer theory of evidence of fusing data. Additionally,

in [14] the authors used a decentralized analyzer. Tian et al. introduced an alert correlation

model based on hierarchical architecture [15].

The AD system we employ is based on STAND by Cretu et al., [2] a derivative of an

earlier system called Worminator [16]. A collaborative technique where the sites exchange

abnormal models to improve detection was presented in [2]. In [17], the authors completely

automated the process of determining the optimal AD sensor parameters for a single sensor.

As user interactions with systems change over time, the current model becomes stale and

may incorrectly classify new traffic patterns [18]. However, in all of the above systems, the

authors did not explore the benefits and caveats of exchanging anomaly detector content

alerts. This paper provides the novel contribution that cross-domain AD alert exchange

can identify zero-day attack vectors.

2.3 Experiment Architecture

We call our complete system AutoSense (Figure 2.1), which consists of an expanded Wormi-

nator [16] alert exchange and storage system integrated with deployed local AD sensors to

exchange alerts and abnormal models in real time. Using a client-server architecture, each

administrative domain has a Worminator client install that receives the raw alerts and

models from a sensor. Each client then encodes alerts by inserting the n-grams of the con-

tent into Bloom filters [19] as needed before sending the alerts and models to the server

over an encrypted channel. On the Worminator server, alerts and models are stored in a

database. Separate threads perform correlation on the stored alerts, continuously matching

all non-private content from the host domain to all Bloom filter representations of private

alerts.

We use the combination of STAND [17], an automated training and sanitizing process,
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Figure 2.1: Architecture

with the Anagram sensor [20] as our network-based Anomaly Detection sensors. We have

sensors deployed at Columbia University and George Mason University inspecting inbound

network traffic. To allow a proper training period and still have time for the data exchange

to reveal common alerts, we collected traffic over the period of two weeks. The sensors’

automated training process requires around 50-60 hours. For testing, we ran our sensors on

TCP port 80 traffic inbound to two web servers: www.cs.columbia.edu and www.gmu.edu.

For the collection, aggregation, and correlation of the HTTP data, we used VMWare virtual

machines running Ubuntu Server 9 64bit. Each virtual machine was equipped with 16GB

ram and 2-4 CPUs. The AD sensors are designed to sample a subset of packet traffic by

parsing and normalizing TCP port 80 GET request URIs. In order to reduce variability, we

strip the URI down to just the string of arguments and then remove numbers and decode

hex characters. The resulting normalized argument strings that are fewer than 17 characters

are dropped as attack vectors and are much longer. This subset of packet content allows

our machines to still see a wide range of potential attacks as numerous applications have a

web service front-end. For each alert we log the IP address, timestamp, and content string.
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After each site ran the sensor on its two weeks, of data from the same time period, we

correlated the resulting alert content strings.

2.4 Model Comparison

We theorize that correlating AD content alerts between sites with distinct normal traffic

flows will reduce the false positive rate since legitimate requests will be less likely to be

similar. For a large-scale system, we will want to minimize the alert comparisons between

similar sites to prevent more false positives. Therefore, a method to quickly compare the

similarity of normal traffic between sites will be vitally important. In this section, we

use each site’s normal model as an approximation of its normal traffic flow for cross-site

comparisons.

Figure 2.2: Normal Models Compared across Site and Time
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In order to explain our model comparison results, here is a brief explanation of the model

generation process. For a complete description, please see previous work on STAND [2].

STAND has a sanitizing process where small micro-models are continuously created on

small sets of data once little new traffic is seen, generally around 3 hours depending on

data volatility. After 25 of these micro-models are created, they use a voting process to test

all the data the micro-models used. All the data is then voted on by micro-models. Data

that passes the vote is added to a Bloom filter to create a now sanitized, normal Anagram

model. Once the first sanitized model is created, then the process is repeated each time a

new micro-model is made. The new micro-model replaces the oldest one so that the latest

25 micro-models are always used to create a new sanitized Anagram model.

Each Anagram model is a Bloom filter with a 228-long bit array initialized to 0s. Data

is added to the model by hashing n-grams from the data into the bit array, setting some

bits to 1. While not an exact measurement, we believe, since the same hash functions are

used for all models, that directly comparing the bits that are set in each Bloom filter gives

a general idea of how similar two models are. In all our comparisons we find the number of

1 bits that both Bloom filters share and divide by the total number of 1 bits in the Bloom

filter. This comparison operation C is represented below:

Let B1, B2 be Bloom filters from Anagram models with bits {1...i...228}.

C(B1,B2) = (Number of bits i such that B1[i] = 1 and B2[i] = 1) / (Number of bits i such

that B1[i] = 1)

Each AD sensor computes models of normal data for consecutive epochs at each site,

producing a set of time-ordered models. Fig. 2.2 displays each individual normal model

compared against other normal models, both of which are from the same and collaborating

site. The top quadrant shows Columbia University models compared to one another, while

the bottom quadrant shows George Mason University models compared to one another.

The models are placed in time order from top to bottom. Notice that the content flows at

each site slowly change over time. The comparison of the time-ordered models computed

at the same site shared 49% of set bits. Furthermore, the left side of the graphic in Fig. 2.2
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shows George Mason University models compared to Columbia University models, and the

right side shows Columbia University models compared to George Mason University models.

Notice that the content flows at each site are truly distinct. The important lesson is that

the CU and GMU anomaly detectors have learned entirely different “normal” models at

each site.

With an average of 5% rate of common bits set between models from separate sites, we

show that both sites are quite diverse. This confirms the intuition that distinct sites have

radically different models of normal data and supports the ability of Anomaly Detectors

to recognize attack traffic from distinct domains. With distinct models, traffic detected as

abnormal at separate sites is much more likely to be an attack. Attackers attempting to

put together a mimicry attack against multiple sites likely face an impossible task. They

would have to target it specifically to one site since the sites have diverse normal content

flows.

2.5 Alert Correlation

The initial correlation process began with 41,232 alerts observed at Columbia University

and 20,678 at George Mason University. We compare each local alert to each Bloom filter

encoded alert from the remote site until we find a match. To account for simple poly-

morphism that could exist in the alerts, we consider a match to be 80% of n-grams from

the local alert being present in the Bloom filter and the alert lengths to be within 80% of

one another. We found 11,787 common alerts, 7,989 at Columbia University and 3,798 at

George Mason University.

We confirm our online results from the Bloom filter comparisons with an offline study

using the Levenshtein string distance [21]. We normalized this distance by the length of the

longer string to find equivalent alerts. The Levenshtein algorithm is a simple and effective

way to correlate content alerts offline. For more information on suitable algorithms for

content correlation see [22]. After testing, we set the threshold for matching at 0.2. This

means that we allow for up to two changes in every 10 characters. In addition, the unique
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Figure 2.3: Time gap between Common Alerts at CU and GMU for 40 shortest time gap
clusters.
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sets of alert content strings from each site were clustered using the normalized Levenshtein

distance to obtain the common alerts. This correlation results in 96 common content alert

string clusters representing 12,353 total alerts, 8,570 at Columbia University and 3,783 at

George Mason University. Using these two different methods and seeing similar results

confirms that encoding the alerts in Bloom filters still allows for accurate correlation.

Using manual inspection, we see that all but four of the attack clusters are indeed true

attacks in both correlation methods. An Internet Explorer automated browser request re-

lated to an office toolbar made up 2,554 alerts. This alert is caused by an IE browser

extension and will likely be seen as an anomalous request by all web servers. This distinct

but highly repetitive alert should be identified as a false positive once upon its first occur-

rence and subsequently ignored by simply filtering it as “noise.” Since it is so common,

the false positive rate drops precipitously after filtering this specific alert. Three additional

clusters of false positives produces a net false positive rate of 0.69% out of common alerts

and 1.2 ∗ 10−5% (68 of 549 millions packets) out of total incoming packets to the web

servers. For this dataset, covering a two-week period, a human operator would have had

to manually inspect 96 clusters to identify the three false positives. This is strong evidence

that cross-domain alert exchange is a valuable security measure with minimal amounts of

human interaction needed. Out of the 3 false positives, two are iframe tags and the other is

related to a Twitter feed. This makes intuitive sense as one of the only ways that legitimate

traffic would appear at both sites would be from a generic request with never-before-seen

parameters. Nevertheless, manual inspection of a false positive cluster from one operator

could save all other sites from having to identify the alert. We believe that other false

positives will most likely also be fairly generic mistakes. Therefore, the limited number

of these generic argument strings will be identified as false positives, and then any future

results will have an even lower false positive rate.

Now that we have the alerts common to both sites clustered, we analyze the timing of

alerts. An interesting measurement is the time lag between each cluster’s first detection at

each site. Fig. 2.3 shows the time lag, which varied widely from the shortest delay being
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37 seconds to attacks being seen at the second site after 8 days. Without information from

a third site, we cannot directly estimate the utility of broadcasting “filters” to many other

collaborating sites. Nor can we measure the impact of filters on reducing the infection rate

of a large-scale attack. Hence, with additional collaborating sites we may directly measure

the response time needed to provide wide-area protection against an attack. Extrapolating

the data from the two sites, we hypothesize that a real-time exchange of a watch list with

confirmed attack signatures would be able to filter even more rapid attacks. Given that the

large number of attacks fit into a small number of clusters, generating a signature for each

cluster seems feasible. We also measured the duration of each alert cluster. Our results show

that some attacks persist beyond the time that both sites have seen them. This suggests

14



that a watch list still benefits the sites that first identify a new attack.

Furthermore, we compute the frequency distribution of the common alert clusters for

Columbia University and George Mason University. In Fig. 2.4 we can see that the presented

distribution of alerts follows an exponentially decreasing trend, indicating that a small

fraction of the alert clusters are responsible for the majority of the total alerts. This favors

our collaborative approach because we can mark only a small number of dense clusters at

one of the sites to sift through the majority of the alerts. The rest of the small frequency

clusters can be vetted over time since their rate of appearance is also small, thus manageable.

Currently, our collaborative architecture is applied on feeds at two sites. This makes it

difficult to estimate how the alert clustering and frequency distribution would change with

the addition of other collaborating sites.

AutoSense can be employed as a means of extracting zero-day attacks from web appli-

cation streams at a peering point or any set of distributed sensors across enterprises. The

entire set of packet streams need not be analyzed, but rather an AD model may be computed

from a sample of ingress packets destined to a selected web server. By comparing the mod-

els, a group of “collaborating” servers may then be chosen, from which a pool of correlated

common anomalous web requests would then be extracted by AutoSense. Those are likely

zero-day attacks as evidenced by the Columbia University and George Mason University

experiments. With the addition of more peers, the process of exchanging and marking alert

clusters is going to require a more comprehensive approach for operator synchronization

and prioritization. This warrants further investigation in our future work.

But where do these alerts come from? Are they also clustered in terms of network

location? In order to answer the above questions, we tried to identify the origin of the

common alerts. To that end, we computed the frequency of common alerts by country of

origin. Initially, we mapped each IP address to the country of registration using the IP geo-

location tool [23]. Then, we computed the frequency distribution of IP addresses causing

alerts. The map in Fig. 2.5 shows the frequency distribution of alerts at Columbia University

and George Mason University from IP addresses common to both sites. The United States
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Figure 2.5: Frequency of Common Alerts by Country

account for the majority of the common alerts, totaling 4,475 attacks followed by South

Korea at 2,581 alerts. The alerts common to both Columbia University and George Mason

University originate from 27 different countries. Thus, the sources of the common alerts are

concentrated in a limited number of high-density countries.

2.6 Conclusions

We present and analyze empirical evidence supporting the benefits from deploying a dis-

tributed content-based Anomaly Detection system. Our findings demonstrate the potential

for efficient large-scale mitigation of the zero-day attacks and false positives by real-time

filtering of common attacks. Indeed, a total of 11,787 alerts were confirmed by both AD

systems over a period of two weeks. Our correlation of real alerts between distinct sites
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demonstrated that, in most cases, we can boost the detection performance by identifying

attack clusters and false positives in one of the sites ahead of time. With this number of

alerts between only two sites, we posit that, if our system is expanded to a large-scale, a

significant portion of zero-day web attacks could be identified and mitigated. Our findings

support our theory that collaborative cross-domain content-based AD correlation might be

a potential solution to the web-based zero-day attacks.
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Chapter 3: Cross-domain Collaborative Anomaly Detection:

So Far Yet So Close1

3.1 Introduction

Web applications are the primary means of access to the majority of popular Internet ser-

vices including commerce, search, and information retrieval. Indeed, online web portals have

become a crucial part of our everyday activities with usage ranging from bank transactions

and access to web-based email to social networking, entertainment, and news. However,

this reliance on ubiquitous and, in most cases, anonymous access has turned web services

into prime targets for attacks of different levels of sophistication. Newly crafted attacks,

often termed “zero-day,” pose a hard-to-address challenge compromising thousands of web

servers before signature-based defenses are able to recognize them [24]. Although recent

research indicates that Anomaly Detection (AD) sensors can detect a class of zero-day at-

tacks, currently, AD systems experience limitations that prevent them from becoming a

practical intrusion detection tool.

In this paper, we propose a new defense framework where Content Anomaly Detection

(CAD) sensors, rather than traditional IDS systems, share content alerts with the aim of

detecting widespread, zero-day attacks. Contrary to pure alert correlation and fusion [25],

we exchange abnormal content across sites as a means to reduce the inherent high false

positive rate of local CAD systems. To that end, we show how local CAD sensors can be

leveraged to generate an accurate, reliable alert stream where false positives are consumed

through a process of alert validation; false positives rarely make their way to a human oper-

ator. Further, we implement information exchange mechanisms, enabling the collaborative

1This work was done in collaboration with Nathaniel Boggs and Salvatore Stolfo, Department of Computer
Science, Columbia University, N.Y.
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detection of attacks across administrative domains. We believe such collaboration, if done

in a controlled and privacy-preserving manner, will significantly elevate costs for attackers

at a low cost for defenders. Our system has a number of core capabilities: high-quality, veri-

fied alert streams that focus on detecting the presence of and learning from zero-day attacks

and previously unseen attack instances; scalable alert processing; and modular multi-stage

correlation. Figure 3.1 illustrates the overall architecture.

Intuitively, inbound web requests fall into three categories: legitimate low-entropy re-

quests, legitimate high-entropy or rarely seen requests, and malicious requests. Legitimate

low-entropy requests are the most accurately modeled by CAD systems. Therefore, each

individual CAD sensor will label previously seen, low-entropy requests as normal and will

not exchange them with other CAD sensors. Legitimate high-entropy or rare requests will

often show up as abnormal to the local CAD sensor and will therefore be exchanged. Since

remote sites do not have similar content due to the high entropy nature or rarity of these

requests, no matches will be identified, and thus no alerts will be raised. On the other hand,

malicious requests will appear as abnormal in many local CAD models. Therefore, when

exchanged, they will match other sites and alerts will be raised. The more sites participat-

ing, the better the coverage and faster the response to widespread web attacks. Space and

structural constraints due to HTTP protocol and specific web application parsing limit the

ability for an attacker to fully exploit polymorphism techniques, analyzed in [26], so each

zero-day attack should exhibit similar content across the attacked web services.

In our experimental evaluation, we use 11 weeks of traffic captured from real-world

production web servers located in different physical and network locations. We do not inject

any artificial or additional data. All attacks and statistics described are observed on live

networks. We measure the detection and false positive changes from adding an additional

server in the sharing system. Most interestingly, we confirm the theory presented by [27]

that false positives tend to repeat across sites. Additionally, as most of the false positives

occur early and often, we show that CAD systems can benefit greatly from a reasonable

cross-site training period. This reduces the number of false positives to 0.03% of all the
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Figure 3.1: Architecture

normalized web requests. Furthermore, we quantify the similarity of the produced CAD

models from each site over long periods of time. Using these models, we provide an analysis

of how aggregate normal and abnormal data flows compare between sites and change over

time. Additionally, we furnish results regarding the threshold of the matching content and

the effects of increasing the set of participating collaborating sites. Finally, we are the first

to present a real-world study of the average number of alerts a human operator has to

process per day. Moreover, we show that the alert sharing and correlation of alerts reduces

the human workload by at least an order of magnitude.

3.2 Related Work

Anomaly Detection techniques have been employed in the past with promising results.

Alexsander Lazarevic et al. compares several AD systems in Network Intrusion Detec-

tion [28]. For our analysis, we use the STAND [2] method and Anagram [20] CAD sensor

as our base CAD system. The STAND process shows improved results for CAD sensors

by introducing a sanitization phase to scrub training data. Automated sensor parameter

20



tuning has been shown to work well with STAND in [17]. Furthermore, the authors in [18]

observe that replacing outdated CAD models with newer models helps improve the perfor-

mance of the sensor as the newer models accurately represent the changes in network usage

over time. In all of the above works, due to limited resources within the domain, a global

picture of the network attack is never examined. Additionally, to achieve manageable false

positives rates, a single site AD sensors could be used at best as a filter to reduce the load

to an additional computationally expensive shadow server that performs dynamic execution

of suspicious data as proposed in [20].

Intrusion Detection Systems that leverage both matching or even machine-learning tech-

niques suffer from well-known limitations [29]. In the past, there has been a lot of criticism

for Anomaly Detection techniques [30] especially focusing on the high volume of the false

positives they generate. With our work, we dispel some of this criticism and we show that

we can improve the performance of CAD systems by sharing content information across

sites and correlating the content alerts.

Initially, Distributed Intrusion Detection Systems (DIDS) dealt with data aggregated

across several systems and analyzed them at a central location within a single organization.

EMERALD [4] and GrIDS [5] are examples of these early scalable DIDS. Recent DIDS

systems dealt with collaborative intrusion detection systems across organizations. Krügel

et al. developed a scalable peer-to-peer DIDS, Quicksand [7, 8], and showed that no more

messages than twice the number of events are generated to detect an attack in progress.

DShield [9] is a collaborative alert log correlation system. Volunteers provide their logs to

DShield where they are centrally correlated, and an early-warning system provides “top

10”-style reports and blacklists to the public free of charge. With the rise of botnets, IP

address black lists become less and less useful as attacks can originate from multiple sources.

Our work differs in that we rely on the actual user-submitted content of the web request

rather than the source IP. More general mechanisms for node “cooperation” during attacks

are described in [10,11].
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DOMINO [12], a closely related DIDS, is an overlay network that distributes alert in-

formation based on hash of the source IP address. DShield logs are used to measure the

information gain. DOMINO differs from our technique as it does not use AD to generate

alerts. DaCID [13] is another collaborative intrusion detection system based on the Demp-

ster Shafer theory of evidence of fusing data. Another DIDS with a decentralized analyzer

is described by authors in [14].

Centralized and decentralized alert correlation techniques have been studied in the past.

The authors in [15] introduce a hierarchical alert correlation architecture. In addition to

scalability in a DIDS, privacy preservation of data send across organizations is a concern.

Privacy preservation techniques that do not affect the correlation results have been studied.

A privacy preserving alert correlation technique, also based on the hierarchical architec-

ture [31], scrubs the alert strings based on entropy. We expand Worminator [16], a privacy-

preserving alert exchange mechanism based on Bloom filters, which had previously been

used for IP alerts. Furthermore, Carrie Gates et al. [32] used a distributed sensor system

to detect network scans albeit showing limited success. Finally, there has been extensive

work in signature-based intrusion detection schemes [33, 34]. These systems make use of

packet payload identification techniques that are based on string and regular expression

matching for NIDS [35–37]. This type of matching is only useful against attacks for which

some pattern is already known. Our system is capable of detecting a much wider range of

zero-day attacks as we do not rely on prior knowledge.

3.3 System Evaluation

3.3.1 Data Sets

We collected contiguous eight weeks of traffic between October and November 2010 of

incoming HTTP requests to two popular university web servers: www.cs.columbia.edu and

www.gmu.edu. In addition, to measure the effects of scaling to multiple sites, we added

a third collaborating server, www.cs.gmu.edu. This results in a second dataset with an

22



additional three weeks in December 2010 of data from all three servers. The second data

set allows us to analyze the effects of an additional web site to the overall detection rate and

network load. To that end, we are able to show the change in the amount of alert parsing

a human operator would have to deal with in a real-world setting and analyze models

of web server request content. All attacks detected are actual attacks coming from the

Internet to our web servers and are confirmed independently using either IDS signatures [34,

38] developed weeks after the actual attacks occurred and manual inspection when such

signatures were not available. However, that does not preclude false negatives that could

have been missed by both signature-based IDS and our approach. The number of processed

packets across all of our datasets are over 180 million incoming HTTP packets. Only 4

million of them are deemed potentially suspicious because our normalization process drops

simple web requests with no user submitted variables.

Figure 3.2: A normalization example from a confirmed attack. The first line of the original GET
request is shown. We use the output of the normalization function for all future operations.

3.3.2 Normalized Content

Our system inspects normalized content rather than other common attributes such as fre-

quency or source IP address. In practice, repeated attacks from the same IP address can

easily expose the attacker. This is why sophisticated attackers that want to remain stealthy
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employ botnets that offer multiple IP addresses to perform large-scale attacks. We focus

our attention to this class of sophisticated adversaries and their attacks web applications

using specially crafted user content.

To that end, we process all HTTP GET requests and extract all user-defined content

(i.e. user specified parameters) from the URI across all request packets. Putting aside

serious HTTP protocol or server flaws, the user-specified argument string appears to be

the primary source of web attacks. We use these user-specified argument strings to derive

requests that are deemed abnormal and can be used for correlating data across servers

serving different pages. Additionally, we normalize these strings in order to more accurately

compare them [27, 39]. In addition, we decode any hex-encoded characters to identify

potential encoding and polymorphic attacks. Any numeric characters are inspected but not

retained in the normality model to prevent overtraining from legitimate but high-entropy

requests. Also, we convert all the letters to lowercase to allow for accurate comparisons and

drop content fewer than five characters long to avoid modeling issues. Figure 3.2 illustrates

this process.

Beyond GET requests, we perform tests analyzing POST request data as well. POST

requests are approximately 0.34% of the total requests. However, our experiments show

that the current CAD sensor does not accurately train with data that exhibits large entropy

typical in most POST requests. We leave the development of a new CAD sensor that can

accurately model POST requests for future work and focus on analyzing GET requests,

which dominate the web traffic we observe (99.7%).

3.3.3 Content Anomaly Detector and Models

In cross-site content correlation, each site builds a local model of its incoming requests

using a Content Anomaly Detection (CAD) sensor. In our experiments, we leverage the

STAND [2] optimizations of the Anagram [20] CAD sensor although any CAD sensor with

a high detection rate could be used with our approach. However, we apply the CAD sensors

on normalized input instead of full packet content as they originally operated on in order to
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obtain more accurate results. Additionally, we fully utilize all of the automatic calibration

described in [17], including the abnormal model exchange to exclude repeated attacks from

poisoning the training data. The Anagram normal models are, as described in [20], Bloom

filters [19] containing the n-gram representation of packets voted as normal by the STAND

micro-models. A Bloom filter is a one-way data structure where an item is added by tak-

ing multiple hashes and setting those indices of a bit array to one. This provides space

efficiency and incredible speed suitable for high-speed networks since adding an element or

checking if one is already present are constant time operations. Each normalized content is

split into 5-gram sections as in [2] using a sliding window of five characters. See Figure 3.3

for an example. Requests can then be easily tested as to how many of the n-grams from

their argument string are present in the model. N-grams give us a granular view of content

allowing partial matches as opposed to hashing full content while maintaining enough struc-

ture of the content to be much more accurate than character frequency models. Previous

work [16] calibrated Bloom filters to have an almost non-existent false positive rate and

shows that extracting the content is infeasible, which allows for the preservation of privacy.

The models we use are 228 bits long and compress to about 10-80KB, a size that is easily

exchanged as needed. The Anagram models test whether new content is similar to previous

content by comparing how many of the n-grams exist in the model already. New unseen

content is then always considered abnormal.

3.3.4 Alert Exchange

We use a modular design for our content alert and abnormal model exchange system. We

leverage the initial work of Worminator [16], an alert exchange system that we heavily

extend to meet the needs of our system. A content exchange client instance runs at each

site and receives content alerts and abnormal models. We use a common format so that

any CAD sensor can easily be adapted to work with the exchange system. In our case, each

site’s local STAND/Anagram sensor sends the content alert packet to the Worminator client

as soon as it tests a packet and finds it abnormal. The Worminator client then encodes the
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Figure 3.3: Each string is broken up into n-grams to be hashed into a Bloom filter as part of a
model of traffic or in order to preserve privacy. The n-gram representation allows for partial matches
instead of having to rely on exact string comparisons.

content alerts as Bloom filters if at a remote site and then sends the content alerts and any

abnormal models through a secure channel over the Internet to the Worminator server. The

bandwidth usage with this alert exchange turns out to be minimal since we only look at GET

requests with argument strings and then further narrow down content by only exchanging

the abnormal content alerts. It turns out that each alert encoded in a Bloom filter takes

about 2KB to transmit on average. For our eight-week experiment, this translates into an

average of 0.9Kb/sec bandwidth needed per site for a real-time system, leaving plenty of

room to scale up to a large set of collaborators before running into bandwidth constraints.

A back-end process on the server performs the correlation of content alerts by comparing

the local unencoded alerts to the Bloom filter representation of alerts from remote sites. We

perform all our experiments faster than real-time while exchanging encoded content alerts

securely over the Internet.

By exchanging content alerts from remote sites only in their Bloom filter form, our sys-

tem can protect the privacy of legitimate web requests. During the Bloom filter correlation

process, only the fact that a match occurs can be determined —not any specific content. If

a match occurs then this is a piece of content that a site has already seen coming to their

server, so the only new information revealed is that the other site also had this content
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Figure 3.4: Each n-gram of the input string is hashed into the Bloom filter setting a number of
bits to true. Future n-grams can be hashed, and then the bits are checked to see if all are true. If
so, then the n-gram is assumed to have been previously added.

incoming. In this way we can gain information about the content we have in common,

which most likely represents attacks, while keeping the remaining content private in case

there is sensitive information in the web requests.

3.3.5 Scaling to Multiple Sites

Our initial system deployment consists of three web servers. However, to be even more effec-

tive at quickly detecting widespread attacks, we envision a larger-scale system deployment

consisting of many collaborating sensors monitoring servers positioned in different locations

on the Internet. Of course, for the system to scale up to include more sites, the correlation

and alert comparison process must scale accordingly. Indeed, if we consider the pair-wise

comparison of local alerts with each remote alert, it appears to grow asymptotically: O(n2).

This can quickly become a problem; however, we can bound this total computation under

a constant K by varying the amount of time duplicate alerts that are stored in the system.

In practice, we did not observe problems during our experiments, even keeping eight
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weeks of data for correlation, because indexing of alerts can be done using existing compu-

tationally efficient algorithms. Moreover, we only have to operate on unique alerts which

are much smaller in size. Additionally, if a longer time frame is desirable, we can employ

compression to the remote site alerts into a small number of Bloom filters by trading off

some accuracy and turning the scaling into order O(n), allowing many more alerts to be

stored before running into any scaling issues. In that case, each time a new site joins the

collaboration, our local site must compare its alerts to the Bloom filters of those from the

new site. Therefore, the overall computational complexity scales linearly with the number

of remote sites participating. Since we can bound the local comparison with a remote site

under K, the total computational cost scales linearly as well, and each site has optional

tradeoffs in time alerts kept and Bloom filter aggregation if local resources are limited. In

practice, based on our numbers even with an unoptimized prototype, we could scale to

around 100 similar servers operating in real-time and comparing all alerts over a few weeks’

time. If additional utility is derived from having even more participating servers, then op-

timizing the code, time alerts kept, and trading off accuracy in Bloom filter aggregation

should easily allow additional magnitudes of scaling.

3.4 Model Comparison

Figure 3.5: Each model is stored in a Bloom filter. We count the number of set bits in
common and then divide by the total number of set bits.

Each normal model is a Bloom filter with all the n-grams of each normal normalized

request added to it. By comparing Bloom filters as bit-arrays, we are able to estimate how

28



much content models share. We test how many set bits each pair of models have in common

and divide by the total number of set bits to get a percentage of set bits in common. The

generated Bloom filters are quite sparse; therefore, the overlap of bits between content

should be small as observed in Figure 3.5. We use this model comparison metric to measure

server distinctness and change in normal flows over time; whether servers in the same

domain share additional commonality; and how much abnormal data we see in common

across servers.

Figure 3.6: Model comparison: The higher the figure, the higher percentage of set bits the
models had in common. The top and bottom quadrant are intra-site comparisons. The
sides represent the comparison across sites which, as expected, appear to have differences.
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We first use this comparison to observe the differences in models from distinct sites with

one another. We took every fifth model from our runs and compared the ones from the

same runs to their counterparts at the other location. For normal models in our eight-week

run, we see on average 3.00% of bits set in common. Compare this to the over 40% of bits

in common on average comparing models at the same site. See Table 3.1. This shows that

there is some overlap, indicating that not filtering out normal content before performing the

content alert correlation could lead to increased false positives, but that for the most part,

each site maintains a distinct core of content over time. While we do not have enough sites

to measure how important this distinctness is to the accuracy achieved via correlation of

alerts, we do confirm that at least for distinct web servers, our correlation process achieves

effective results. See Figure 3.6 for a visual of the model comparison results. We find that

models across long periods seem to keep a core of commonality but differ more than models

close together in time. A product of this gradual change appears even with only five weeks

difference in our datasets’; averaged over eight weeks, both sites keep more than 40% of

bits in common while in the three-week run this is closer to 50%. This reinforces existing

work [2] showing that traffic patterns do evolve over time, indicating that updating normal

models periodically should increase effectiveness.

Comparison
Normal Abnormal
Models Models

Oct.-Nov. Oct.-Nov.

Columbia CS 41.45% 52.69%

GMU Main 41.82% 38.51%

Cross site 3.00% 10.14%

Table 3.1: Commonality of normal and abnormal models.
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With our three-week dataset, we also have an additional web server from one admin-

istrative domain. With two web servers from the same Autonomous System, we compare

them to each other to see if our work has the potential to help a large organization that

may have many separate web servers, even if collaboration with other organizations proves

too difficult. See Table 3.2 and Table 3.3 for empirical details. Interestingly, we find no

more commonality among normal models in the same domain than across domains. The

fact that abnormal models at these web servers share about as much in common with the

server from another domain as one another suggests that attackers likely do not specifically

target similar IP ranges with the same attacks. This suggests that web server administra-

tion and location may not play a factor in the effectiveness of using a particular web server

for collaboration. An organization with sufficiently distinct web servers might be able to

achieve good results without having to overcome the obstacles related to exchanging data

between organizations.

Comparison -
Columbia CS GMU Main GMU CS

Normal Models

Columbia CS 44.89% 3.89% 4.08%

GMU Main 48.39% 2.41%

GMU CS 56.80%

Table 3.2: Comparison of normal models between three sites. (Percentages of set bits in
common shown.)

The abnormal models from different sites show some similarity with close to 10% set

bits matching, while models from the same site show more similarity. The high amount of

common abnormal data between models at the same site may be influenced by legitimate

requests classified as abnormal. More interesting is the commonality across sites. These

shared bits most likely represent the attack data that we have found in common. There is an
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irregularity where some of the abnormal models are empty and could not be compared. We

remove these empty models before computing the averages to avoid divide-by-zero issues.

Multiple runs with the data confirm the strange behavior, so our best guess is that a strange

convergence of the STAND micro-models simply voted to include all the data from that time

period into the normal models, leaving the abnormal models empty.

Comparison -
Columbia CS GMU Main GMU CS

Abnormal Models

Columbia CS 53.05% 9.46% 9.32%

GMU Main 48.39% 8.55%

GMU CS 70.77%

Table 3.3: Comparison of abnormal models between three sites. (Percentages of set bits in
common shown.)

Overall, our model comparisons provide quite interesting results. We find that each site

has normal traffic flows that are distinct although changing somewhat over long periods of

time. We see no major distinctions in comparison of same domain servers versus servers on

separate domains, which indicates that our system could be deployed by a large organization

to protect itself without having to rely on outside collaborators. Finally, our measurements

of abnormal data validate the idea that separate servers will receive similar attacks.

3.5 Correlation Results

The correlation process compares each unique content alert from the local sensors against

the Bloom filter representation of each unique content alert from other sites. If at least 80%

of the n-grams match the Bloom filter and the length of content before encoding, which is

also exchanged, is within 80% of the raw content, then we note it as a match. The number
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cx=:cjygsheid&cof=forid:&ie=utf-&q=machine+learning+seminar&sa=go

o=-&id=&s=uhkf&k=hsbihtpzbrxvgi&c=kg

Table 3.4: Normalized examples of legitimate abnormal data seen at only one site.

can be optimized further depending on how many false positives human operators are able

to manage. These matches are what the system identifies as attacks. Once these attacks are

identified, the Bloom filter representation could be sent out to any additional participating

servers and future occurrences could be blocked. In order to confirm our correlation results

with the Bloom filters, we also perform an offline correlation of results using string edit

distance [21] with a threshold of two changes per 10 characters. We cluster together any

pair of alerts from either site with less than this threshold. If a cluster contains alerts

from more than one site, then it represents a common content alert. With only minor

differences, these methods give us similar performances, confirming that using privacy-

preserving Bloom filters provides an accurate and computationally efficient correlation.

To simulate a production deployment, we use the Bloom filter comparison as our default

correlation technique and use the string edit distance clustering only to facilitate manual

inspection as needed, especially at a single site. See Table 3.4 for examples of true negatives

where legitimate requests are not alerted on since each is seen at just one site. Table 3.5

shows an example of the same attack with a slight variation being matched between two

sites.

We run our experiments correlating the abnormal traffic between sites from our October-

November eight-week dataset and our December three-week dataset and then manually

classify the results since ground truth is not known with an in-the-wild dataset such as

ours. We display our classification of our system’s alerts in Table 3.6. As we predicted

in [27], most of the false positives repeat themselves early and often, so we also display the

33



faq=’ and char()+user+char()= and ”=’

id=’ and char()+user+char()= and ”=’

Table 3.5: Normalized example of abnormal data; one from each site that matched.

Oct-Nov
Oct-Nov

Dec.
Dec. Gained by Dec.

with with adding Common to
training training third server Three Sites

Duration of testing2 54 days 47 days 19 days 12 days

Total false positives 46,653 362 40,364 1,031 1,006 0

Unique false positives 64 13 48 5 3 0

Total true positives 19,478 7,599 7,404 2,805 186 322

Unique true positives 351 263 186 89 9 8

Table 3.6: Main experiment results considering a match to be at least 80% of n-grams being
in a Bloom filter. Note that the 5th column results are included in column 4. Also, note
that due to self-training time for the CAD sensor, actual time spent testing data is about
two days less.

results assuming a näıve one-week training period that labels everything seen in that week

and then ignores it. While this training technique could certainly be improved upon, we

choose to show this näıve example in order to better show the effectiveness of the approach

as a whole and to preclude any optimizations that might turn out to be dataset specific.

Such a training period provides a key service in that most false positives are either due to a

client adding additional parameters regardless of web server, such as with certain browser

add-ons, or servers both hosting the same application with low enough traffic throughput

2Due to equipment outages, approximately three hours of data is missing from the Oct.-Nov.
www.cs.columbia.edu dataset and less than 0.5% of the Dec. dataset abnormal data totals are missing.
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that it fails to be included in a normal model. Many of these cases tend to be rare enough

to not be modeled but repeat often enough that a training period will identify them and

prevent an operator from having to deal with large volumes of false positives. Certainly with

such a näıve automated approach, attacks will not be detected during this training period,

but after this period we end up with a large benefit in terms of few false positives with little

negative beyond the single week of vulnerability. Any attacks seen during training that are

then ignored in the future would have already compromised the system, so we do not give

an attacker an advantage going forward. In fact, this training period serves an operator

well in that many of the high-volume attacks that are leftover “background radiation” will

be seen in this training period and thus not needed to be categorized in the future. Adding

an additional web server in our last experiment provides a glimpse at how broadening the

scope of collaboration to a larger network of web servers can help us realize a high detection

rate.

Let us now analyze how accurate our system is. The false positive rate is relatively easy

to measure. We manually classify the unique alerts and then count the total occurrences of

each. With regard to the number of requests that pass through the normalization process,

the false positive rate is 0.03%. If you calculate it based on the total incoming requests

then it is much less. The true positive rate or detection rate is much harder to accurately

measure since we have no ground truth working with a real dataset. First, remember what

class of attacks we are trying to detect. We are trying to detect widespread attacks and

leave the goal of detecting attacks targeted at a single site to other security methods in

order to better leverage collaboration. With this in mind, there exists two places where

a widespread attack could be missed. An attack could arrive at multiple sites but not be

detected as abnormal by one of the local CAD sensors and therefore never be exchanged

with other sites. The other possibility is that an attack could be abnormal at both sites

but different enough that the correlation method fails to properly match it.

In the first case where a local CAD sensor fails to identify the attack as abnormal, we

have a better chance to measure our accuracy. Most CAD sensors are vulnerable to mimicry
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attacks where an attacker makes the attack seem like normal data by padding the malicious

data in such a way as to fool the sensor. We can mitigate this by deploying very different

sensors to each site, which as a whole are very difficult to bypass, while individually they

are vulnerable to a specific padding method. In this way, an attacker might bypass some

sites, but as the attack is widespread, eventually two of the CAD sensors that the attacker

is not prepared for can detect the attack and broadcast a signature out to the rest of the

sites.

Oct-Nov
Oct-Nov

Dec.
Dec. Gained by Dec.

with with adding Common to
training training third server Three Sites

Total false positives 47,605 439 41,845 1,017 4 0

Unique false positives 77 23 55 5 1 0

Total true positives 25,042 10,168 9,594 3,272 254 293

Unique true positives 488 362 221 109 10 8

Table 3.7: Experiment results considering a match to be at least 60% of n-grams to be in
a Bloom filter.

In the latter scenario, we have to rely heavily on the vulnerable web applications having

some structure to what input they accept so that attacks exploiting the same vulnerability

will be forced to appear similar. We can certainly loosen correlation thresholds as seen in

Table 3.7 as well as come up with more correlation methods in the future. In practice,

this is where the lack of ground truth hinders a comprehensive review of our performance.

As far as we can tell, between the structure imposed by having to exploit a vulnerability

with HTTP parameters, lower correlation thresholds, and finding additional attributes for

correlation, we should have a good head start on attackers in this race. At the very least,

our layer of security will make it a race instead of just forfeiting to attackers immediately

once a vulnerability is found. Without ground truth, we cannot be sure that we detect all
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widespread attacks. We have seen no indication in our data that attackers are using any

of the above evasion techniques yet, so we believe that our system will provide an effective

barrier, one which we can continue to strengthen using the above approaches.

mosconfig absolute path=http://phamsight.com/docs/images/head??

config[ppa root path]=http://phamsight.com/docs/images/head??

option=com gcalendar&controller=../../../../../../../../../../../../../../../proc/self/environ%

id=’ and user=–

id=-.+union+select+–

command=createfolder&type=image&currentfolder=/fck.asp&newfoldername=test&uuid=

option=com user&view=reset&layout=confirm

Table 3.8: Normalized examples of actual attacks seen at multiple sites.

We detect a broad range of widespread attacks, with some examples shown in 3.8.

Common classes of attacks show up such as code inclusion, directory traversal, and SQL

injection. Our system faithfully detects any wide spread variants of these attacks, some of

which might evade certain signature systems; however, the novel attack detection our system

provides lies with the last two examples shown. These two attacks are attempting to exploit

application-specific vulnerabilities, one attacking an in-browser text editor and the other a

forum system. Since attacks such as these resemble the format of legitimate requests and

lack any distinct attribute that must be present to be effective, existing defenses cannot

defend against zero-day attacks of this class. The fact that our system caught these in the

wild bodes well for its performance when encountering new widespread zero-day attacks.

An examination of the false positives explains the repeated nature and sporadic occur-

rences of new false positives. See Table 3.9 for some examples of normalized false positives.

All the false positives fall into one of two broad categories: rare browser specific requests or

rarely used web applications installed on two or more collaborating servers. For example,

the most common false positive we see is an Internet Explorer browser plug-in for Microsoft
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c=&load=hoverintentcommonjquery-color&ver=ddabcfcccfadf

jax=dashboard secondary

feed=comments-rss

Table 3.9: Normalized examples of false positives seen at multiple sites.

Office which sends a GET request to the web server regardless of user intent. The use of

this plug-in is rare enough that the request shows up as abnormal at all sites. As for server-

side applications, we see most of the unique false positives relating to the administrative

functions of isolated WordPress blogs, which see so little use that the requests stand out as

abnormal. New false positives will continue to occur in small numbers as web servers and

browsers evolve over time (less than one per three days on average during our eight-week

run). We believe that identifying these few rare occurrences is quite manageable for oper-

ators. This task gets easier since as the number of collaborators grow, so do the resources

for the minimal manual inspection needed to identify these isolated occurrences.

Adding a third web server, www.cs.gmu.edu, to the collaboration shows that addi-

tional web servers help us to identify more attacks and allows some basic insight into

what types of web servers might be best grouped together for collaboration. Assuming our

training method, adding this third server as a collaborating server exchanging data with

www.cs.columbia.edu allows us to detect 11.25% more unique attacks than just correlating

alerts between www.cs.columbia.edu and www.gmu.edu. This increase over the 80 unique

attacks we detect without it supports the need for adding substantial numbers of collab-

orators to increase the detection rate. Unfortunately, this new collaborating server also

introduces false positives that we do not see in previous experiments. We expect as with

previous false positives that future experiments will most likely repeat these with few new
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additions. An offline correlation using edit distance shows both GMU web servers having

a number of attacks in common as well. This supports an idea that collaborating with

distinct web servers could be as useful as collaborating across sites. False positives seem to

be a function of rarely used web services located at each server, so servers hosting only a

few clearly defined and well-used services may give substantially better results.

This additional web server also provides the opportunity to require alerts to be seen

by at least three sites before reporting them as attacks. While this proposition is hard to

accurately evaluate with only one dataset and just three servers, of which www.cs.gmu.edu

experiences much lower traffic volumes, a couple of interesting results stand out. As ex-

pected, both false positives and true positives drop off significantly. We see no false positives

after the training period. This shows that for at least our datasets, all of the server-side

services that cause false positives drop out once we require three web servers to have the

data in common. If this continues to be the case as more servers are added, then only

reporting attacks that target three or more servers could solve most of the false positive

issues. While requiring three servers to confirm an attack does yield fewer true positives, the

ones it does detect are quite widespread and if the collaboration is expanded, the detection

should increase greatly. This method, while scaling in detection rate more slowly than only

requiring two servers to confirm attacks, could be a much more effective option to keep false

positives low once enough servers collaborate.

Time Gap Across Site CU, Across Site Across Site CU Across Site GMU
in Minutes GMU and GMU CS CU and GMU and GMU CS and GMU CS

Min 0.23 1.48 7.52 0.23

Max 17501.07 25911.00 20589.02 24262.13

Average 4579.85 5477.35 7048.07 6489.08

Std. Dev. 5250.04 6173.61 7038.27 7634.13

Table 3.10: Time gap statistics across three sites
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We measure the implications of changing the threshold for matching two alerts. In-

creasing the threshold past 80% to require perfect or almost perfect matches fails to help

in reducing the false positives, since at this threshold almost all of the false positives are

exact matches, so even requiring all n-grams to match a Bloom filter exactly does not help.

Reducing the threshold to allow more loose matches does show a trade-off in increased

detection of attacks at the expense of additional false positives. By only requiring 60% of

n-grams from one alert to match the Bloom filter representation of another site’s alert, we

can expect to capture attacks with significantly more variance, such as similar payloads

targeting different web applications. See experiment details in Table 3.7. While at first,

the results from a lower threshold appear quite good in terms of raw numbers of alerts,

looking at only the new unique alerts that human operators have to classify tells a more

balanced story. Going from an 80% threshold to 60% for our eight-week run with a training

period increases the detection of new unique attacks by 37.6%, while increasing the newly

seen unique false positives by 76.9%. In the three-week run, the lower threshold adds no

new unique false positives, pointing to the need for threshold optimization once the sys-

tem scales up. In fact, it lowers the utility of adding a new server since the existing ones

detect additional attacks without it. However, as the number of web servers collaborating

increases, this matching threshold along with the number of servers required to share an

alert before reporting it as an attack should be key settings in order to optimize the system.

From the offline generated alert clusters, we conduct a temporal study of the alerts

seen across the three servers. Firstly, we look at the time gap between alerts across sites.

We compute the pair-wise time gap of common alert clusters across the three servers.

Additionally, we calculate the minimum time gap between alert clusters common to all three

servers. Table 3.10 summarizes the minimum, maximum, average, and standard deviations

of the time gaps for the above cases. A better visual representation of the common alert

clusters across all three servers is represented in Figure 3.7. The graph shows the minimum

time gap between alerts observed at one server and the same alert being observed at the

other two servers. The horizontal axis denotes the relative time elapsed since the start of
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Figure 3.7: Time gap between alerts at collaborating sites.

observing the first alert. The vertical axis denotes the cluster. Each of the bars in the

graph start at the time when an alert is observed at a site and ends at a time when it is

seen first among the other two sites. The bar graphs are color-coded to represent where the

attack was first seen. From the statistics it can be seen that the average time gap between

alerts could be used to our advantage. The results from the time gap analysis from the

October-November run computed across CU and GMU shows a similar large average value

(Min: 1.57min, Max: 71022.07min, Average: 15172.53min, Std. Dev.: 18504.44min). This

gives us sufficient time to take preventive action at the collaborating sites by exchanging a

small blacklist.

Furthermore, we analyze the number of unclassified unique alerts that an operator has to

manually classify every day. Figure 3.8 depicts the number of unique alerts generated daily.

The graph shows both true positive and false positives observed using our collaborative
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Figure 3.8: Number of new unlabeled unique alerts per day that a human operator would
have to parse. The large number of false positives from the AD system is reduced by almost
a magnitude difference when correlated to other sensors.

approach alongside a standalone approach. The horizontal axis denotes time in one day

bins, and the vertical axis denotes the frequency of alerts observed on a log scale. For the

standalone CAD sensor, a unique alert is included in the frequency when it is first observed

at a site. However, for multiple sites collaborating, an alert is included in the frequency

count at the time when it is confirmed to be seen at all sites. On average, the number of

unique alerts observed every day using a standalone CAD sensor at CU is 82.84 compared to

3.87 alerts when using a collaborative approach, over an order of magnitude in difference.

Therefore, a collaborative approach clearly reduces the load on the operator monitoring

alerts to an easily managed amount.
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3.6 Conclusions

Web services and applications provide vital functionality but are often susceptible to remote

zero-day attacks. Current defenses require manually crafted signatures which take time to

deploy, leaving the system open to attacks in the meantime.

Our work demonstrates that we can identify zero-day attacks by correlating Content

Anomaly Detection (CAD) alerts from multiple sites while decreasing false positives at every

collaborating site. Indeed, with a false positive rate of 0.03% the system could be entirely

automated or operators could manually inspect the less than four new alerts per day on

average that we observe in our eight-week experiment. We demonstrate that collaborative

detection of attacks across administrative domains, if done in a controlled and privacy-

preserving manner, can significantly elevate resources available to the defenders exposing

previously unseen attacks.
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Chapter 4: transAD: An Anomaly Detection Network

Intrusion Sensor for the Web
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4.1 Introduction

Web based applications have become an integral part of our lives, providing us a platform

to accomplish various essential tasks. For example, Internet banking, e-commerce, and

e-prescription services exchange personally identifiable information that need to be safe-

guarded. Additionally, many widely deployed out-of-the box web product solutions have

become easy and profitable targets for attackers. Recently, attacks on these web-based

applications have been on the rise [40, 41]. Although existing Network Intrusion Detection

Systems (NIDS) play an important role in preventing attacks on web services, the rising

number and new types of attacks highlight the need for improved web defenses.

Industry relies primarily on signature-based NIDS [38, 42–46] to secure their networks.

These systems rely on previously known signatures to identify attacks. Without prior known

signatures, signature-based NIDS are unable to detect new attacks, i.e., “zero-day” attacks.

TransAD is one of a class of NIDS that use algorithms based on Anomaly Detection (AD) to

combat zero-day attacks. AD sensors analyze traffic and identify deviations from “normal”

patterns as potential attacks. However, designing these promising systems presents several

challenges. First, implementations generally rely on highly labor-intensive labeled training

data as a basis for establishing normal traffic patterns [47]. Second, high False Positive

Rates (FPRs) are seen as a major drawback due to the amount of effort required to analyze

false positives [48]. Third, AD sensors can potentially be subject to poisoning attacks

that intentionally modify the learned normal model to allow various types of attacks [49].

Current AD sensors have failed to completely address all of these issues, and therefore, have

not been widely deployed in the industry [47,48].

In this chapter we present transAD —a new, self-learning, ensemble-based AD system

for the web that solves all three problems. Unlike other AD systems, our system features a

completely unsupervised learning algorithm that does not require any labeled training data.

Given the volume of data processed by a NIDS, labeling training data for NIDS requires a

prohibitive amount of manual effort and is a time-consuming process. Additionally, most of
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the supervised learning algorithms learn a static model of traffic and are unable to adapt over

time to changes in the system. Adapting to changing patterns of traffic requires additional

sets of manually labeled training data at regular intervals for re-training the supervised AD

sensor. This additional time and effort required to keep supervised AD sensors updated

makes their use impractical in the real world. Consequently, these methods have been

heavily criticized [47]. Our method does not use labeled training data and works with

network traffic collected without any manual intervention. Therefore, our method does not

require any manual effort to label a training dataset; transAD is capable of continuously

self-adapting to the changes in the system without additional manual intervention or effort.

In addition to obviating the manual effort and time required for labeling training

datasets, our system is designed to generate low false positive rates. TransAD does this

by using a combination of ensemble of sensors called micro-models, an unsupervised AD

algorithm, and our hash-based distance metric. Each micro-model uses the unsupervised

AD algorithm to identify potential attacks. To do so, each packet is evaluated by all of the

micro-models independently. Decisions made by individual micro-models in the ensemble

are combined using a voting mechanism. The use of an ensemble gives robustness to the de-

termination of attacks (those that are considered anomalous by a majority of micro-models)

and serves to reduce the errors, false positive rate in particular.

It is important to note that the direct application of the comparable AD algorithm for

NIDS produces unacceptably high FPRs of approximately 3% [50]. Our AD sensor, on

the other hand, yields an average false positive rate of 0.28% when evaluated using two

real-world data sets. It is the judicious combination of the AD technique, with ensemble

methods and a proper distance metric, that allows us to obtain demonstratively outstanding

low false positive rates and high detection rates in the evaluation section of this paper. The

novelty of our approach comes from the successful combination of the above techniques.

Additionally, our inherent system design makes it very difficult for perpetrators to defeat

our system using poisoning attacks. In order to poison our system, the attacker needs to fab-

ricate packets that look like normal traffic while containing elements of the intended attack,
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fooling the system into including these packets in the learned normal model. This corrupts

the learned normal model and allows the attacker to evade our system. In ensemble-based

design, poisoning attacks take a long time and require attackers to make time-sensitive

multi-step maneuvers. In our current configuration, the perpetrator must launch a sus-

tained attack for a minimum of 56 hours to corrupt the ensemble. Furthermore, our hash-

based distance algorithm makes it hard to simulate packets that contain attack data while

resembling normal traffic.

In order to evaluate our system, we conduct experiments using two large data sets col-

lected from a public university’s web servers. These datasets contain 1.1 million packets, of

which thousands were attack packets. To statistically analyze the data from our experimen-

tal results, we manually labeled more than 18,500 alert packets. Our results demonstrate

that we are able to achieve a high rate of detection of true attacks while keeping the false

alarms very low. More importantly, the reduction in the average number of false alarms,

even for traffic collected from a campus with thousands of students, reduces the amount of

effort wasted by operators.

The following is a summary of the primary contributions of this work:

• Developed a novel Anomaly Detection based Network Intrusion Detection system for

the Web that is based on unsupervised learning and does not require any labeled

training data.

• Applied a novel combination of our hash-based distance metric, unsupervised AD

system, and ensemble-based techniques to produce outstandingly low false positive

rates.
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4.2 Related Work

There are many approaches used for network intrusion detection systems (NIDS). In general,

systems are categorized into signature-based and anomaly-based systems. Signature-based

systems rely on a database of attack signatures and compare new data against these existing

signatures. Many signature-based detectors are available commercially (e.g. CISCO [44],

Juniper [45], McAfee [46], Snort [42], Suricata [43], Bro [38]). These approaches are widely

used, provide high detection rates, and low false positive rates for previously known attacks.

Signature-based systems contrast with anomaly-based sensors, which typically approach

the problem by creating a normal model of the system and then detect variations from nor-

mal [51]. The advantage of anomaly-based systems is the ability to detect previously unseen

(i.e. “zero-day”) attacks. However, the resulting algorithms frequently suffer from high false

positive rates, making them burdensome for human operators [47,48]. In the following sub

sections, we briefly discuss comparable AD sensors and the ensemble techniques used in

anomaly detection.

4.2.1 Anomaly Detection

Anomaly detectors designed as NIDS include the Anagram [49] and PAYL [52,53] anomaly

detection systems. Anagram stores the n-grams, a contiguous sequence of n characters

of a given string, in a Bloom filter [54]. Anagram scores new packets by the percentage

of the n-grams not seen in the training data. PAYL models the frequency of 1-grams in

the “normal” model and compares the frequency distribution of an incoming packet to

the training data. Both these algorithms require clean training data, which places a large

burden on the operator, forcing them to label a large number of packets.

The AD sensor we introduce has its roots in existing machine learning principles for

transduction [55]. In transduction, potential attacks are determined by comparing the

strangeness of incoming packets to the baseline model. The strangeness represents how

different an incoming packet is from the normal baseline model. This process is further
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described in Section 4.3.3. The authors in [50] present DNIDS, a TCM based IDS that uses

a strangeness definition taken from the work of TCM classifiers [56]. In [55] an improved

strangeness function is introduced, which results in performance improvements of the AD

sensor. The KDD 1999 benchmark dataset used to evaluate DNIDS is outdated and known

to contain attacks that are easily separable. Therefore the evaluation presented in [56] is

unreliable. Additionally, DNIDS yields a 3% FPR, which is an unacceptably high value for

a NIDS.

These systems, and the one we present, examine the payload of the packet directly and

are known as Content Anomaly Detection (CAD) systems. However, CAD systems do not

work for encrypted payloads.
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4.3 System Architecture
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processing
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processed 

Packet

VotingAttack Normal

Packet ready to be 
tested by micro-models.

Alert & Discard Include

Figure 4.1: transAD Architecture

Our AD sensor consists of the following main components: a filtering and a pre-

processing stage, an ensemble of micro-models and a voting mechanism. The system archi-

tecture is shown in Figure 4.1. At the filtering stage, only packets of interest are allowed to

pass through the filter, while the rest of the packets are discarded. The pre-processing stage

extracts the content of the packet and prepares it for use by the AD algorithm. The pre-

processed packets are now used to build the ensemble of micro-models. Each micro-model

consists of packets collected for a fixed period of time (epoch) called the micro-model dura-

tion. Multiple micro-models are created from sequential epochs to form an ensemble. Each

micro-model in the ensemble evaluates each test packet, and their decisions are combined
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using a voting mechanism.

Initially, our AD sensor starts by collecting a baseline of packets that represent the nor-

mal incoming pattern of traffic. Before the packets are added to the baseline, packets are

filtered and pre-processed. TransAD builds ensembles in real-time and learns the normal

traffic pattern by breaking the baseline data into timed “epochs.” The baseline data con-

tained in each fixed epoch is referred to as a micro-model. Several micro-models are built

by collecting packets for multiple epochs to form an ensemble. Once the initial ensemble

is ready, new packets are evaluated by the ensemble of micro-models. Every micro-model

individually acts as an AD sensor that uses packets contained in the respective micro-model

as the normal sample. In order to evaluate if a packet is a potential attack, it is individually

evaluated by each micro-model in the ensemble using the transduction technique. Individual

decisions of each micro-model in the ensemble are combined by a weighted voting scheme

to arrive at a final decision. If a packet is voted as an attack, an alert is generated by our

sensor. Alerts are then manually inspected by the NIDS operator.

The final component of our sensor helps keep our sensor up-to-date with respect to the

changes in the monitored environment over time. The normal traffic patterns may change

due to changes in the types of services offered and/or changes in the behavior of users. If

the system does not adapt to these changes, the detection and false positive rate of the

system may be adversely affected. Our sensor adapts to these changes by building new

micro-models using tested packets. Test packets are included in a future micro-model if

they are voted as normal. Once newer micro-models are ready, they are incorporated into

the ensemble and the older micro-models are discarded.

The current implementation of the system is in c++ and uses libpcap 1 and boost c++

libraries 2. We currently process the packets stored in the tcpdump format offline faster

than real-time. However, our implementation provides hooks to extend this to run on live

captures.

1http://www.tcpdump.org/
2http://www.boost.org/

51



4.3.1 Bootstrapping transAD

Bootstrapping is the process of building the initial ensemble of micro-models of our AD

sensor. Our sensor targets web traffic containing GET requests because they are a common

attack vector used by perpetrators. A GET request method is a commonly used request

method of HTTP protocol to communicate with a web server. Our system inspects the

contents of the GET request parameters to identify potential attacks. All the GET request

packets received by transAD are pre-processed using a filtering and normalization process to

enable the AD algorithm to easily identify potential attacks. Next, these packets are used to

build the initial ensemble of micro-models. This is followed by a sanitization process where

the micro-model ensemble self-cleanses and removes potential attacks. This sub-section

describes the bootstrapping process in greater detail.

Although, our system uses GET requests for evaluation, it can be extended to work with

other protocols. POST requests, another popular HTTP method, consist of approximately

0.025% of the total requests received by our web server. Since this makes up a very small

portion of the requests seen by our AD sensor, we leave consideration of POST requests for

the future.

Filtering and Normalization of GET requests

As the packets arrive, the filter removes packets other than those containing GET requests

with user-supplied arguments. Only GET requests with user-supplied arguments are allowed

through the filter because the user arguments typically contain the actual attack.

Once the packets have been filtered, they are normalized. The normalization process

involves the following steps: replacing escaped hex characters in GET requests with their

respective ASCII characters; discarding numbers in the GET request parameters because

strings form the core of a potential attack; converting the characters into lowercase char-

acters to simplify comparison; and finally, GET request parameters that are shorter than

5 characters are filtered out, as these rarely contain attacks [27]. Figure 4.2 shows a GET
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request before and after the normalization process. Normalizing the GET request parame-

ters helps our AD sensor to better discriminate between normal and abnormal packets [57].

Therefore, the filtering and normalization processes are applied to all the packets in the

bootstrap phase and also to the packets that are tested during normal operation.

/org/AFCEA/index.php?id=officers'%20and%20char(124)%2Buser
%2Bchar(124)=0%20and%20''='

id=officers' and char()+user+char()= and ''='

Figure 4.2: Normalization of an actual GET request.

Building Micro-models

Once the packets are normalized, they are ready to be included in a micro-model. Each

micro-model is built using the packets collected for a fixed time duration (epoch) called

the micro-model duration. Several micro-models are built using packets collected from

consecutive, but disjoint, epochs to form an ensemble of micro-models. Since real network

traffic is used to build micro-models, they may potentially contain attack packets.

Most AD sensors are very sensitive to the baseline data used to generate their normal

models, and thus require data that is as clean as possible. However, because of the time

and effort required to manually label the high volume of traffic processed by NIDS, manual

cleansing is not feasible. Based on our experimental data, our sensor appears to be robust

to noisy training examples. Even so, the performance of our sensor will improve with clean

normal micro-models. In order to ensure we have clean data in our micro-models, we use a
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sanitization process.

Sanitizing the Micro-models

The sanitization process self-cleanses the initial micro-models without any manual interven-

tion. In the sanitization process, each packet in a micro-model is evaluated by all the other

micro-models in the ensemble by using the transduction method. The individual decision of

the other micro-models in the ensemble are combined using a weighted voting scheme. The

weights for each micro-model are in proportion to the number of packets used to build the

micro-model. The packets that are voted as potential attacks by the rest of the ensemble

are discarded from the micro-model. Only those packets voted as normal are retained in

the respective micro-models. The above process is repeated for every packet in every micro-

model in the initial ensemble. Thus, the sanitization process self-cleans the micro-model by

removing packets that are considered anomalous by a majority of the ensemble.

The sanitization process results in relatively clean data because a majority of the attacks

are short-lived, and a given attack is usually limited to a small subset of micro-models. In

the sanitization process, a short-lived attack in one micro-model will be voted as abnormal

by the majority of the other micro-models in the ensemble. Sanitization removes the offend-

ing packet from the micro-model thereby producing a cleaner micro-model. Therefore, the

sanitization process self-cleanses the micro-models automatically by using the power of the

ensemble. This produces micro-models that closely represent the normal, non-attack net-

work traffic pattern. Sanitization has also shown to improve the performance in comparable

systems [2].

At the end of this bootstrap process, we have an ensemble of filtered, pre-processed

packets that are included in sanitized micro-models that is ready to diagnose future pack-

ets.

54



4.3.2 Model Drift

Once the bootstrapping process is complete, we have a sanitized micro-model ensemble.

The sanitized ensemble of micro-models is used to detect potential attacks among incoming

packets. However, the initial ensemble of micro-models may become stale over time and may

no longer represent the normal traffic pattern. Micro-models become stale for two reasons:

first, changes are made to the services offered within a network; second, the behavior of users

interacting with the network changes. As a result, if the ensemble is not updated, it may not

conform to the normal traffic pattern and AD sensors could produce more false positives.

This, in turn, would burden the NIDS operator as time and effort is wasted inspecting

false alarms. To adapt to this model drift, we used a scheme where older micro-models are

discarded as new micro-models become available.

As packets are being evaluated by the AD sensor, they are used to create new micro-

models, using filtered and pre-processed packets voted as normal by the ensemble. When

all the packets in an epoch are tested by the ensemble, a new sanitized micro-model is built.

Two drift policies were tested; in the first, the oldest micro-model in the ensemble was

discarded as soon as a newer micro-model was available. In the second, the five oldest micro-

models were discarded as soon as five newer micro-models became available. Although the

drift policy adapts the system to gradual changes over time, drastic changes to the system

such as adding a new service will be flagged correctly as potential attacks until the ensemble

adapts to the new traffic pattern. Results for each drift policy are presented in the parameter

evaluation in Section 4.4.

4.3.3 Distance Metric and Strangeness

To decide if a packet is a potential attack, our sensor utilizes a technique called transduc-

tion [58]. The transduction3 method computes the fitness of a test packet with respect

to a micro-model. The fitness is computed utilizing a function called strangeness that

3Transduction aims to solve the diagnosing problem for the test packet as opposed to induction, where a
general model to diagnose all packets would be built.
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measures the uniqueness (or isolation) of the packet. With respect to the normal packets

in each micro-model, the fitness test takes the form of a hypothesis test [59], in which the

null hypothesis is that “the test packet fits the sample distribution.” When the result of

the test is statistically significant, we can reject the null hypothesis and therefore consider

the test packet a potential attack.

The strangeness function can take many forms. In the experiments documented in this

paper, we use the sum of the distances to a packet’s k-nearest neighbors (k-NN). This

strangeness function has shown to work efficiently in [55]. Our sensor uses an improved

hash-based distance to measure the similarity between two packets. The greater the distance

between two packets, the less similar they are. This hash-distance is used to identify a test

packet’s k-nearest neighbors in each micro-model; the strangeness of a test packet is the

sum of the hash-distance to the k-nearest neighbors.

In order to compute the nearest neighbors to a test packet, we need a suitable distance

metric. Since the objective of our implementation is to find abnormal GET request param-

eter strings, we must use a suitable distance measure that is designed to work with strings.

Initially, we tried using Levenshtein string edit distance [60]. When Levenshtein distance

was used, the strangeness of a packet was computed after normalizing the distances with

the largest distance value observed in a micro-model. However, those experiments resulted

in high false positive rates. We solved this problem by introducing a hash-based distance

metric that produced a 43% reduction in false positive rates when compared to Levenshtein

distance.

The hash distance metric works on n-grams of the normalized GET request parameters.

N-grams are sub-sequences of ‘n’ characters in a string. A sliding window is used to extract

all the n-grams from a normalized GET request. A hash table is created with n-grams of the

GET request parameters as the key and packet identifier as the value. FNV1a 32-bit [61]

hashing algorithm is used to hash the n-grams in the hash table. We chose FNV1a 32-bit

hashing algorithm for its efficiency and low collision rate.

To compute the distance between two normalized GET requests, each of the n-grams
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of the test request is looked up in the hash table. If the hash bucket that contains that

n-gram has the identifier of a micro-model request, then an n-gram match is recorded.

The similarity metric is computed as a total number of n-gram matches normalized by the

number of n-grams in the larger GET request. The similarity metric is now subtracted from

1 to obtain the distance between the two requests as shown in Equation 4.1. For example,

in Figure 4.3, the two strings “abcdefg” and “ahbcdz” have one common 3-gram “bcd”

that is hashed to the same bucket and is recorded as a match. The number of 3-grams in

the larger string is 5. Therefore, the similarity metric is 1/5 and distance between the two

strings is 0.8 (1− 1/5).

Distance = 1− total number n-gram matches

number of n-grams in the larger string
(4.1)

In the example shown in Figure 4.3, the hash distance performs a simple n-gram match

without considering the position of the n-grams in both requests. Simple n-gram matching

is a very relaxed measure of similarity and does not take into account the context of the n-

grams present in the two requests; it also does not produce a very accurate representation of

distance between the two strings. In order to address this issue, we considered the positions

of the n-grams in the request while counting the number of matches.

To improve on simple n-gram matching, a relative-distance delta (r∆) parameter is

introduced to consider a range of possible n-gram positions that should be counted as a

match. The simple n-gram matching (r∆ = ∞) does not consider the n-gram positions.

The most restrictive version would require the position of n-grams in the two requests to be

the same (r∆ = 0). If n-gram at position x in the test request has at least one occurrence
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String S1: abcdefg String S2: ahbcdz

n-grams of String 1

abc bcd cde def efg

n-grams of String 2

ahb hbc bcd cdz

Hash Table

H(abc)

S1
H(bcd)

S1 S2
H(cde)

S1
H(cdz)

S1

Match

Figure 4.3: Hash Distance: A simple n-gram match is shown between two strings. The hash
bucket for the 3-gram ‘bcd’ contains the identifiers for both strings. Therefore, a 3-gram
match is recorded between the two strings. Note: Position of n-grams is not considered in
this simple n-gram match approach.

of the same n-gram in the range of positions [x− r∆, x + r∆] in the micro-model request,

the match count is incremented by one. Matches are considered for all the occurrences of

the each n-gram in the test request. In order to eliminate the duplicate n-gram matches,

the number of matches cannot exceed the occurrence count of the same n-gram in either of

the two requests. Therefore, the number of n-gram matches is defined as the minimum of

the following values for the n-gram in question:

• the number of matches counted for each occurrence
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• the occurrence count in the test request

• the occurrence count in the micro-model request

The algorithm to compute the relative position hash distance is shown in Figure 4.4.

The hash distance using the relative position parameter is computed as shown in 4.1. The

sum of the hash distances of the k-nearest neighbors is used to compute the strangeness of

the test packet, and the fitness test uses the strangeness of the test packet to determine if

the packet is a potential attack using a hypothesis test.

matches← 0
ngramCount1← number of n-grams in packet 1
ngramCount2← number of n-grams in packet 2
maxNgrams = MAX(ngramCount1, ngramCount2)
for all ngram in packet 1 do

lookup hash table entry value with the key ngram
if hash table entry value contains ID of packet 2 then
tempMatch← 0
count1← number of occurrences of ngram in packet 1
count2← number of occurrences of ngram in packet 2
minCount←MIN(count1, count2)
for all positions1 of ngram in packet 1 do

for all positions2 of ngram in packet 2 do
diff = ABS(position1− position2)
if diff ≤ r∆ then
tempMatch← tempMatch + 1
break

end if
end for

end for
match← match + MIN(tempMatch,minCount)

end if
end for
distance = 1− match

maxNgrams

return distance

Figure 4.4: Algorithm for computing relative position hash distance.
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4.4 Evaluation

In this section we evaluated the performance of our AD sensor using two real-world datasets.

We tuned the parameters used by our sensor using the first dataset. Once the parameters

were selected, we evaluated the performance of our AD sensor against both datasets. Our

results show that using transAD yields high detection rates and low false positive rates.

Additionally, we compared the performance of the transAD sensor with another AD sensor,

Sanitization Tool for ANomaly Detection (STAND) [2].

4.4.1 Data Sets

We used two datasets 4 consisting of 461 million packets to calibrate and evaluate our AD

sensor. The first dataset used to tune and evaluate our system consisted of 13 days of

real network traffic arriving at George Mason University’s main web server 5 in October

2010. Approximately 223 million packets were captured over this period, of which 25 million

packets were HTTP/GET requests. Of the captured HTTP/GET requests, approximately

445, 000 have user arguments that could contain potential attacks. These packets were used

to build micro-models and test our transduction-based AD Sensor.

A second dataset, which is disjoint from the first dataset, was used to further evaluate

our sensor and consisted of real network traffic collected over 14 days in September 2012.

The second dataset contains 238 million packets, of which approximately 19 million packets

were HTTP/GET requests. This dataset contains approximately 717, 000 HTTP/GET

packets with arguments.

In order to evaluate our AD sensor, unique alerts generated by the transAD and STAND

for both datasets were manually labeled as attacks or benign packets. To assist in the expert

manual inspection of the alert packets, each alert packet’s content was compared to attacks

seen at honey pot sites and its source IP was checked against black lists and Offensive IP

databases. Manually inspecting the contents of all these alert packets was a time-consuming

4An IRB approval was received to collect, store, and conduct experiments on this data.
5http://www.gmu.edu/
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process.

The 18,500+ unique alerts generated by both transAD and STAND were manually

labeled. Of the total number of unique alerts generated by both transAD and STAND,

13,443 were unique true positive alerts. It was relatively easy to identify true positives,

but identifying all of the False Negatives (FNs) was prohibitive. Identifying all of the false

negatives would require labeling the complete dataset —an infeasible task with more than

1.1 million packets in our datasets. In order to estimate the false negatives, we identified

transAD’s false negatives as the true positives identified by STAND but missed by transAD.

Similarly, STAND’s false negatives were identified as the true positives identified by transAD

but missed by STAND. While this method does not give us a perfect count, it was feasible

in the time allowed and represents a lower bound on false negatives.

4.4.2 Parameter Evaluation

In order to study the performance of our AD sensor with respect to the parameters described

in Table 4.1, we conducted experiments to explore the parameter space. The first dataset

with labeled alerts was used to explore the parameter space. Initially, the parameter values

were set to the initial values shown in the Table 4.1. The initial values were chosen based

on existing literature for comparable AD sensors. Experiments were conducted by varying

one parameter at a time while the rest of the parameters were set to initial values. When a

better parameter was observed, it was noted as the default value (see Table 4.1). After the

default values for all parameters were defined, the experiments were re-run using the default

parameters and varying the parameter of interest. The following sub-sections present the

results of the effect of each parameter on the performance of our AD sensor.

Micro-model duration (∆)

Micro-model duration, the size of the epoch chosen for each micro-model, affects the per-

formance of the AD sensor. If the micro-models are constructed for small epochs, they may
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Parameter Description Initial Value Default Value

Number of Nearest ‘k’ is the number of nearest neighbors

3 3
Neighbors (k) used by the k-NN algorithm. Based

on the results from [55],
we chose 3 for all of our experiments.

Micro-Model Micro-models used in our sensor are built

3 hours 4 hours
Duration (∆) using packets received in a fixed epoch.

The length of this epoch is the
duration of each micro-model.

n-gram Size (g)
The hash-based distance scheme

6 6
uses n-grams to compute the distance between
two GET request parameters. This specifies
the number of characters in the n-gram.

Relative n-Gram For n-grams with matching content, r∆

∞ 10
Position Matching (r∆) specifies the range of positions between the

n-grams in the request for them to
considered a match.

Confidence Level (c)
Confidence level is used by the hypothesis

- 80%
to evaluate if a given packet is normal.
Confidence level estimates the reliability
of the decisions made by the hypothesis test.

Voting Threshold (T)
The voting threshold is the percentage

2/3 majority 2/3 majorityof micro-models in the ensemble that must
agree for a packet to be labeled abnormal.

Ensemble Size (e) The number of micro-models used in the ensemble. 25 25

Drift Parameter (r)
The drift parameter denotes the number of old

1 1
micro-models in the ensemble discarded and
the number of staged micro-models inducted
into the ensemble at a time.

Table 4.1: Parameters of transAD

62



contain only a small sample of packets that do not fully characterize the normal traffic pat-

tern. As a result the k-nearest neighbor algorithm may not be able to find nearest neighbors

for normal packets. The inability to find close neighbors may increase the strangeness of

normal packets. This may lead to the AD sensor diagnosing normal packets as potential

attacks. However, a very large epoch will result in models that are more likely to be con-

taminated with potential attacks. Such contamination may allow actual attack packets to

seem less strange since the distance algorithm may be able to find close neighbors and thus

evade our AD sensor. To find the best value for ∆, we fixed all the remaining parameters

of the sensor and tested our system for various values of ∆.

Figure 4.5 shows a magnification of the left-hand portion of the Receiver Operating

Characteristics (ROC) curve for ∆’s between 1 and 5 hours. Each point in a curve is

plotted by computing the True Positive Rate (TPR) and FPR at the following confidence

levels used for the hypothesis test: 100%, 98%, 95%, 90%, 85%, 80%, 75%, 70%, and

65%. The FPR considerably improves as micro-model duration is increased and reaches a

minimum at 4 and 5 hours, and the Area Under the Curve (AUC) reaches a maximum for 4

and 5 hours with the value 0.9989. Also, the graph indicates that our AD sensor has similar

performance for ∆s of 4 and 5 hours. These results are consistent with the micro-model

duration chosen for the Anagram sensor in the sanitization phase [2]. Since there is no

additional improvement in the FPR with a 5-hour micro-model duration, we set the default

value of ∆ to 4 hours.

n-gram Size

Previous work on the Anagram sensor [49] (a predecessor to STAND) studied the distri-

bution of different sizes of n-grams in network traffic and their effect on the AD sensor

performance. The authors concluded that higher order n-grams perform well with their

sensor. This is due to the higher order n-grams that characterize attacks occurring less

frequently in normal packets. The infrequency of the higher order n-grams in normal pack-

ets makes it difficult to find nearest neighbors for attack packets. This causes the normal
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Figure 4.5: Micro-model Duration (∆): Magnified section of the ROC Curve for transAD
at different micro-model durations.

packets to have larger strangeness values.

Figure 4.6 shows the performance of our system with n-gram sizes of 5 through 9. The

ROC curve for each n-gram size is plotted for confidence levels 100%, 98%, 95%, 90%, 85%,

80%, 75%, 70%, and 65%. The maximum AUC value of 0.9989 is obtained for n-gram size

6. N-gram size 6 performs the best because n-gram size 5 has a slightly lower detection rate

while n-gram size 7 and larger have a higher FPR than n-gram size 6.

The increase in the FPR for sizes 7, 8 and 9 n-grams is due to their low frequency of

occurrence. This results in the k-nearest neighbors algorithm not being able to find close
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neighbors in normal micro-model packets. As a result, some normal packets were strange

with respect to the micro-models causing them to be marked as potential attacks. Thus, our

results show that as n-gram size increases beyond 6, TPR increases and FPR also increases.

The findings for our AD sensor are similar to experimental results using Anagram. We set

n-gram size 6 as the default value.
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Figure 4.6: n-Gram Size: Magnified section of the ROC Curve for transAD at different
n-gram sizes.
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Relative Position Matching (r∆)

The importance of using the relative position parameter for hash distance was introduced

in Section 4.3.3. Here, we present the results of using different relative position matching

values. Figure 4.7 shows a magnified left-hand portion of the ROC curve for three Relative

Position Matching values used in the Hash Distance: exact position matching (r∆ = 0); r∆

= 10; and simple n-gram matching (r∆ =∞). The ROC curve was plotted by varying the

confidence levels as in our other experiments. Simple n-gram matching has the maximum

AUC value of 0.999, and r∆ = 10 has the next best AUC of 0.9989. Although r∆ = 10

has a slightly lower AUC compared to simple n-gram matching, we use r∆ = 10 because it

improves our system’s defense against poisoning attacks. Therefore, we set r∆ to 10 as the

default value.

Voting Threshold

Figure 4.8 shows the magnified left-hand portion of the ROC curves for transAD represent-

ing different voting thresholds used to combine the ensembles’ decisions. The performance

of transAD was tested with the following voting thresholds: 0.67 (absolute majority voting),

0.5 (simple majority), 0.4, and 0.3. The ROC curve was generated by calculating the TPRs

and FPRs by varying the confidence values for each threshold, similar to the ROC graphs

hitherto presented.

The AUC is at a maximum for the absolute majority voting threshold at 0.9989. There-

fore, absolute majority ensemble voting threshold performs better because it has the lowest

FPR compared to the other threshold values at similar detection rates. Also, as seen in Fig-

ure 4.8, the FPR increases as the voting threshold is relaxed. We use the absolute majority

voting threshold as the default value.

Ensemble Size

A very large ensemble size will contain old micro-models that may be stale, which may

not as accurately represent the current pattern of traffic. On the other hand, a very small
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Figure 4.7: Relative Position Matching (r∆): Magnified section of the ROC Curve for
transAD for different relative position matching.

ensemble size might not have enough micro-models to correctly represent the complete

normal traffic pattern of the system. Choosing either an overly large ensemble size or an

overly small ensemble size could negatively impact the detection rate of the AD sensor.

The effect of varying the number of micro-models in the ensemble is shown in Figure 4.9.

This figure shows the section of the ROC curves for ensemble sizes 15, 25, and 35. Ensemble

size 25 has the maximum AUC value 0.9989. Hence, ensemble size 25 has a higher detection

rate when compared to ensemble size 15 and 35 at the same FPR. Therefore, we chose

ensemble size 25 as the default parameter.
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Figure 4.8: Voting Threshold: Magnified section of the ROC Curve for transAD for different
voting thresholds.

Model Drift

We examined two different drift settings to adjust for changes in the traffic pattern over time:

one where the micro-models were replaced as soon as a new one was available and another

where the micro-models were replaced as soon as five new micro-models were available.

Figure 4.10 shows the partial ROC curve for drifting micro-models one at a time and five at

a time. The AUC for both the drift polices have the same value of 0.9989. Therefore, drift

policies tested in our experiments did not show any significant differences. Our results show

that updating the micro-models immediately when a new one is ready does not negatively

68



0 1 2 3 4 5 6 7 8

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (x10 −3)

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

ensemble=15
ensemble=25
ensemble=35

Figure 4.9: Ensemble Size: Magnified section of the ROC Curve for transAD for different
ensemble sizes.

impact the detection or false positive rates of the sensor. We therefore, select the drift

parameter 1 as the default parameter.

While it is possible to tune the parameters for an individual network as we did, in the

future we plan to evaluate our sensor across different networks with the goal of automatically

tuning parameters to observed traffic.
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Figure 4.10: Drift Policy: Section of the ROC Curve for transAD for different drift policies

4.4.3 Effectiveness of transAD Against Attacks

This sub-section describes the potential and actual attacks detected by transAD and de-

tection and false positive rates achieved by transAD on the two real-world datasets. Addi-

tionally, we discuss the resistance offered by transAD to poisoning attacks.

Types of Attacks Detected

TransAD detected numerous potential attacks in both datasets. None of the potential

attacks detected by our sensor required a signature. Since transAD is a self-learning sensor,
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Buffer Overflow
/?slide=kashdan?slide=pawloski?slide=ascoli?

slide=shukla?slide=kabbani?slide=ascoli?
slide=proteomics?slide=shukla?slide=shukla

Remote File Inclusion
//forum/adminLogin.php?config[forum installed]=

http://www.steelcitygray.com/auction/uploaded/golput/ID-RFI.txt??

Directory Traversal /resources/index.php?con=/../../../../../../../../etc/passwd

Code Injection //resources-template.php?id=38-999.9+union+select+0

Script Attacks
/.well-known/autoconfig/mail/config-v1.1.xml?
emailaddress=********%40*****************

Table 4.2: Attacks detected by transAD in the first dataset. Note: The GET request for
the script attack has been scrubbed to protect individuals’ privacy.

it has the ability to detect never-before-seen attacks without having the need to know any

signatures. TransAD did not have any prior knowledge of the actual attacks detected.

Therefore, all potential attacks detected by transAD are new. Hence, transAD has the

ability to detect other zero-day attacks.

Upon manually examining these potential attacks, many different classes of real attacks

were observed. These attacks fall into the following broad classes: buffer overflow, remote

file inclusion, directory traversal, code injection, and script attacks. Examples of the type

of alerts generated by transAD are shown in Table 4.2. The types of attacks detected

depend on the dataset, and SQL injection attacks and buffer overflow attacks occurred

more frequently than the rest in our datasets. All of the attacks detected by transAD in

the two datasets are real attacks as no artificial attacks were injected.

Detection and False Positive Rates

TransAD was run on the two datasets with an 80% confidence level and the default param-

eters chosen in Section 4.4.2. True positive, false positive, true negative, and false negative

counts and rates are shown for the two datasets in Tables 4.3 and 4.4. The TPR (detection
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rate) and FPR computed for the first dataset are 92.78% and 0.40%, respectively. The

TPR and the FPR for the second dataset are 94.77% and 0.15%, respectively. TransAD

consistently maintains a high detection rate and a very low FPR across both datasets.

Analysis of the data indicates that most of the false positive alerts generated by transAD

were related to an online help chat service provided by the technology support center at

George Mason University. The online chat support service received queries using GET

requests from the campus community. Since the queries asked by individuals were random,

the n-grams from these requests did not occur in enough micro-models to be considered

normal. This led to these packets being marked as alerts. Other sources of false positives

include search queries from the university’s catalog and cultural activities page.

Resistance to Poisoning Attacks

In addition to achieving high detection rates and low false positive rates, our AD sensor

is not easily susceptible to poisoning attacks. Poisoning attacks, also known as adaptive

learning attacks, are where the perpetrator attempts to corrupt the normal model learned

by the AD sensor with sustained attacks [49]. In order to successfully poison our AD

sensor, the attacker must perform numerous time-sensitive steps continuously over a long

period. One starts by sampling and analyzing our traffic pattern. They must then generate

an attack packet using a polymorphic attack generator. Once they have generated attack

packets, they need to select those packets that resemble our traffic pattern and may evade

our AD sensor. Additionally, in order to poison each micro-model, the attacker needs to

know the micro-model duration (epoch). Attackers must repeat the above process quickly

for consecutive epochs to poison a majority of the micro-model to successfully evade our

AD sensor. Performing all of the above steps in a time-sensitive manner over a long period

makes poisoning our AD sensor very difficult.

In order to poison a single micro-model, the attacker has to craft seed packets that have

contents very close to the normal traffic pattern while containing elements of an attack. To

evade our system, these seed packets need to have n-grams that are close to the normal traffic
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pattern. This would force the seed packet to find close neighbors and be considered normal

by our sensor. Therefore in order to construct a successful seed packet, the perpetrator

needs know the normal traffic pattern used for that micro-model and the n-gram size. N-

gram size used by the sensor is not publicly available to the attacker and makes it hard

for the attacker to generate seed packets. If an attacker successfully evades a single micro-

model with a single seed packet, they need to repeat the process multiple times with seeds

that are incrementally close to the final attack.

In addition to the above challenges, the hash-based distance metric used in our sensor

raises the bar for attackers and makes generating an evasive attack packet mimicking normal

traffic very difficult. Instead of simple n-gram matching, the hash-based distance metric

proposed in this paper takes into account the positions of the n-grams in a packet. The

relative distance parameter introduced in Section 4.3 considers n-grams to be a match only

when they are positioned within the specified range in the two GET requests. If the the

n-gram in the test GET request is not present in the specified range of positions in the

micro-model request, it is not considered a match. This increases the distance between the

packets and consequently increases their strangeness, and these packets are more likely to

be voted as potential attacks. Therefore, the hash-based distance with a relative distance

parameter further restricts the attacker’s ability to generate a useful attack by limiting the

positions and combinations of n-grams in a packet that can be used to generate successful

seed attack packets that resembles normal traffic.

TransAD’s ensemble-based architecture offers an additional line of defense that makes

it robust against poisoning attacks. In order to evade our ensemble of micro-models, the

attacker must poison a majority of the micro-models. In order to do this, the attacker needs

to know the micro-model duration, ensemble size, and drift scheme, none of which is publicly

available and must be inferred by the attacker by observing the system. The attacker

must successfully collect information about the normal traffic patterns for each micro-model

duration, craft seed packets to evade each micro-model, and sustain the attack until a

majority of the micro-models have accepted the seed attack packets and the micro-model
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containing it is included in the ensemble by the drift scheme. A sustained attack is necessary

because, even if attack packets are successfully created to poison a single micro-model,

evading our sensor is not possible because the majority of the ensemble would vote against

it. If ‘∆’ is the micro-model duration, at minimum the attacker needs to craft multiple

seed packets every ∆ hours and sustain the attack for at least ((e/2) ∗∆) + (r ∗∆) hours,

where ‘e’ is the ensemble size and ‘r’ is the drift parameter. In our present configuration,

the attacker must successfully repeat this process every four hours and sustain the attack

for a minimum of 56 hours to poison our system. The whole process of poisoning our AD

sensor may require multiple rounds of seed packets with seeds that incrementally resemble

the final attack. This makes poisoning our sensor a time-consuming process.

Overall, in order to poison our system, the attacker must very carefully build seed

packets and poison the first micro-model. It is not possible for the attacker to be certain

that the seed packet has evaded the system. The attacker can at most remain cautiously

optimistic that his seed has not been rejected by a majority of the ensemble that contains

a long history of normal traffic. Since the attacker is not certain if the initial seed can

successfully evade the system, they would need to repeat the process by injecting seed

packets that incrementally contain data closer to the real attack to poison a majority of

the micro-models. Finally an actual attack is launched. Poisoning our sensor requires time-

sensitive, multi-step maneuvers and requires a sustained attack over a long period of time,

making it very challenging for attackers.

4.4.4 Comparison to Sanitization Tool for ANomaly Detection (STAND)

Common Alerts between transAD and STAND

In this sub-section we compared the alerts generated by transAD and STAND. As we did for

transAD, we tested the performance of STAND using both datasets and manually labeled

the alerts produced by STAND. Figures 4.11(a) & 4.11(b) show all the alerts that are

identified by transAD and STAND. The Venn diagrams show the TP and FP alerts that

have been identified by both the algorithms and those that have been identified by only
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Packet Count Rate

True Positives 12,056 92.78%

False Positives 1,125 0.40%

True Negatives 258,758 99.56%

False Negatives 938 7.21%

Table 4.3: Results for transAD on the first dataset

Packet Count Rate

True Positives 41,519 94.77%

False Positives 722 0.15%

True Negatives 251,252 99.71%

False Negatives 2,288 5.22%

Table 4.4: Results for transAD on the second dataset
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one of the two algorithms. In Figure 4.11(a), all occurrences of TP alerts are counted by

the AD sensor every time that packet is seen. In Figure 4.11(b), only unique FP alerts are

counted. This is because once the operator has inspected and labeled the packet as benign,

the AD sensor no longer alerts on that packet. Figures 4.12(a) and 4.12(b) show the Venn

diagrams for the second dataset.

Figures 4.11(a) and 4.12(a) show that a majority of the TP alerts are identified by both

AD sensors for both datasets. For the first dataset, transAD disjointly identifies 308 more

TPs than STAND. These 308 alerts are considered as FN for STAND. Also, transAD iden-

tifies 350 fewer disjoint FP alerts than STAND. For the second dataset, transAD disjointly

identifies 3,258 more TP alerts and TransAD produces 34 fewer disjoint FP alerts than

STAND. TransAD clearly has an advantage over STAND as it produces only a fraction of

the FP’s compared to the latter. Overall, transAD identifies more TPs and fewer FPs when

compared to STAND for both datasets.

(a) True Positive alerts (b) False Positive alerts

Figure 4.11: Common TP and FP alerts identified by STAND and transAD on the first
dataset.
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(a) True Positive alerts (b) False Positive alerts

Figure 4.12: Common TP and FP alerts identified by STAND and transAD on the second
dataset.

4.4.5 Comparison Detection and False Positive Rates

In this subsection, we compare the detection and false positive rates of transAD with

STAND. The TP, FP, TN, and FN counts and rates generated by STAND for the two

datasets is shown Table 4.5 and 4.6. STAND requires a smaller baseline than transAD,

hence STAND analyzed more test packets. Therefore, the number of packets tested by the

two algorithms are different.

The TPR (detection rate) and False Positive Rate (FPR) for transAD are 92.78% and

0.40%, respectively, for the first dataset. As presented in the above tables, the TPR and

FPR for STAND are 92.52% and 0.57%, respectively. Using transAD reduces the FPR

by 29.82%; the TPR increases by 0.28% when compared to STAND.

The TPR and FPR on the second dataset for transAD are 94.77% and 0.15%, re-

spectively. The TPR and FPR for STAND are 77.97% and 0.13%, respectively. It is

interesting to note that for this dataset, STAND has a 14.5% lower detection rate when

compared to the first dataset results. STAND does not have consistent detection rates

for both datasets. However, transAD performs consistently with over 90% detection rate

for both datasets. Using transAD increases the detection rate by 18% when compared to
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Packet Count Rate

True Positives 11,870 92.52%

False Positives 1,475 0.57%

True Negatives 244,278 99.39%

False Negatives 959 7.47%

Table 4.5: Results for STAND on the first dataset.

Packet Count Rate

True Positives 38,261 77.97%

False Positives 756 0.13%

True Negatives 563,551 99.86%

False Negatives 10,806 22.02%

Table 4.6: Results for STAND on the second dataset.

STAND. The FPR for transAD and STAND were similar.

The two test datasets yielded different results. However, in the first dataset where

transAD and STAND had comparable detection rates, transAD performed better with a

lower FPR. For the second dataset where transAD and STAND had comparable FPR,

transAD performed better with a much higher detection rate. Additionally, transAD con-

sistently maintains high detection rates over both datasets. Overall, transAD performs

better across both datasets.
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4.5 Conclusions & Future Work

We introduced a new AD sensor, transAD, that combines proven technology with new

methods to achieve high detection rates and low false positive rates. Our sensor consistently

yielded good results for two real-world datasets. For the two datasets, our AD sensor

detected actual attacks, none of which were previously known to transAD, which therefore

demonstrated that transAD is able to detect zero-day attacks. Additionally, transAD was

shown to be more effective than STAND, a leading AD sensor.

TransAD is a new content-based Anomaly Detection sensor for network intrusion detec-

tion based on transduction. Our AD sensor uses an unsupervised learning algorithm, which

obviates the need for labeled training data. Therefore, our sensor does not require any

manual labeling of training data and adapts to changes in the system without additional

manual effort.

In addition to requiring no labeled training data, our self-learning sensor uses an en-

semble technique of transduction-based AD sensors with our hash-based distance metric to

achieve low false positive rates and high detection rates. Also, the ensemble technique and

the hash distance metric presented in our paper makes our sensor more robust to poisoning

attacks.

We conducted a thorough evaluation of our sensor using two real-world datasets. To

validate its performance we manually label more than 18,500 alerts. After tuning the

parameters used by transAD, we found our sensor achieves consistently high detection

rates for both datasets while having generally lower false positive rates than STAND. This

unequivocally shows that our AD sensor, which is a novel combination of transduction,

hash-based distance, and ensemble-based techniques, produces very low false positive rates

while achieving high detection rates suitable for deployment.

In the future, we propose that the alerts generated by our sensor be processed by a

signature-based NIDS. This would help to filter out known attacks and reduce the number

of alerts that need to be manually examined by the operator and thus save time and effort.

Also, as pointed out by Sommer et al. in [47], AD sensors are agnostic to the semantics of
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the attacks and are unable to help the operator classify the attacks. Combining our system

with a signature-based system will help classify already known attacks.

To improve the detection rate, reduce false positive rate, our architecture could be

extended in the future to consider reverse neighbors when computing the decisions on

packets. A test packet that is normal would have close neighbors in the micro-model.

Reverse neighbors involve looking at the converse: how many micro-model packets claim a

test packet as a nearest neighbor. A test packet that is normal is expected to be a close

neighbor of many other packets in the micro-model. On the other hand, a test packet that

is a potential attack may have relatively close neighbors. However, this potential attack

packet might not have many close reverse neighbors. Incorporating the concept of reverse

neighbors would make it harder to generate seed packets to poisoning attacks and is likely

to improve detection and reduce false positive rates.

Finally, in this work, our evaluation is primarily focused on HTTP GET traffic. In the

future, we plan to evaluate our sensor with HTTP POST data and other types of network

traffic.

80



Bibliography



Bibliography

[1] Commerce-Land, “History of e-commerce,” http://www.ecommerce-land.com/history
ecommerce.html/, Jun. 2004.

[2] G. Cretu, A. Stavrou, M. Locasto, S. Stolfo, and A. Keromytis, “Casting out demons:
Sanitizing training data for anomaly sensors,” in Security and Privacy, 2008. SP 2008.
IEEE Symposium on, may 2008, pp. 81 –95.

[3] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo, “On the
infeasibility of modeling polymorphic shellcode,” in CCS ’07: Proceedings of the 14th
ACM conference on Computer and communications security. New York, NY, USA:
ACM, 2007, pp. 541–551.

[4] S. Staniford-Chen, S. Cheung, R. Crawford, and M. Dilger, “GrIDS - A Graph Based
Intrusion Detection System for Large Networks,” in National Information Computer
Security Conference, Baltimore, MD, 1996.

[5] P. Porras and P. G. Neumann, “EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances,” in National Information Systems Security Conference,
1997.

[6] F. Cuppens and A. Miege, “Alert Correlation in a Cooperative Intrusion Detection
Framework,” in IEEE Security and Privacy, 2002.

[7] C. Kruegel and T. Toth, “Distributed Pattern for Intrusion Detection,” in Network
and Distributed System Security (NDSS), 2002.

[8] C. Kruegel, T. Toth, and C. Kerer, “Decentralized Event Correlation for Intrusion
Detection,” in International Conference on Information Security and Cryptology, 2002.

[9] J. Ullrich, “DShield home page,” 2005, http://www.dshield.org.

[10] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D. Keromytis, and D. Li, “A
Cooperative Immunization System for an Untrusting Internet,” in IEEE International
Conference on Networks, 2003.

[11] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, and A. D. Keromytis, “Robust
Reactions to Potential Day-Zero Worms through Cooperation and Validation,” in Pro-

ceedings of the 9th Information Security Conference (ISC), August/September 2006,
pp. 427–442.

82



[12] V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion Detection in the DOMINO
Overlay System,” in NDSS, 2004.

[13] A. Farroukh, N. Mukadam, E. Bassil, and I. Elhajj, “Distributed and collaborative
intrusion detection systems,” in Communications Workshop, 2008. LCW 2008. IEEE
Lebanon, may 2008, pp. 41 –45.

[14] S. Zaman and F. Karray, “Collaborative architecture for distributed intrusion detection
system,” in Computational Intelligence for Security and Defense Applications, 2009.
CISDA 2009. IEEE Symposium on, July 2009, pp. 1 –7.

[15] D. Tian, H. Changzhen, Y. Qi, and W. Jianqiao, “Hierarchical distributed alert corre-
lation model,” in IAS ’09: Proceedings of the 2009 Fifth International Conference on
Information Assurance and Security. Washington, DC, USA: IEEE Computer Society,
2009, pp. 765–768.

[16] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo, “Towards Collaborative
Security and P2P Intrusion Detection,” in IEEE Information Assurance Workshop,
West Point, NY, 2005.

[17] G. Cretu-Ciocarlie, A. Stavrou, M. Locasto, and S. Stolfo, “Adaptive Anomaly De-
tection via Self-Calibration and Dynamic Updating,” in Recent Advances in Intrusion
Detection. Springer, 2009, pp. 41–60.

[18] A. Stavrou, G. F. Cretu-Ciocarlie, M. E. Locasto, and S. J. Stolfo, “Keep your friends
close: the necessity for updating an anomaly sensor with legitimate environment
changes,” in AISec ’09: Proceedings of the 2nd ACM workshop on Security and ar-
tificial intelligence. New York, NY, USA: ACM, 2009, pp. 39–46.

[19] B. H. Bloom, “Space/time trade-offs in Hash Coding with Allowable Errors,” Commu-
nications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[20] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A Content Anomaly Detector Re-
sistant to Mimicry Attack,” in Symposium on Recent Advances in Intrusion Detection,
Hamburg, Germany, 2006.

[21] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and rever-
sals.” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966, doklady Akademii
Nauk SSSR, V163 No4 845-848 1965.

[22] J. J. Parekh, K. Wang, and S. J. Stolfo, “Privacy-Preserving Payload-Based Correlation
for Accurate Malicious Traffic Detection,” in Large-Scale Attack Detection, Workshop
at SIGCOMM, Pisa, Italy, 2006.

[23] C. Marc-Andre, “IPInfoDB geo-location API,” http://ipinfodb.com/ip location api.
php.

[24] Websense, “LizaMoon,” http://community.websense.com/blogs/securitylabs/archive/
2011/03/31/update-on-lizamoon-mass-injection.aspx.

83



[25] G. Vigna, S. Gwalani, K. Srinivasan, E. M. Belding-Royer, and R. A. Kemmerer, “An
Intrusion Detection Tool for AODV-based Ad hoc Wireless Networks,” in Computer
Security Applications Conference, 2004.

[26] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo,
“On the infeasibility of modeling polymorphic shellcode,” in Proceedings of
the 14th ACM conference on Computer and communications security, ser. CCS
’07. New York, NY, USA: ACM, 2007, pp. 541–551. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315312

[27] N. Boggs, S. Hiremagalore, A. Stavrou, and S. Stolfo, “Experimental results of cross-
site exchange of web content anomaly detector alerts,” in Technologies for Homeland
Security (HST), 2010 IEEE International Conference on, nov. 2010, pp. 8 –14.

[28] A. Lazarevic, A. Ozgur, L. Ertoz, J. Srivastava, and V. Kumar, “A comparative study
of anomaly detection schemes in network intrusion detection,” in In Proceedings of the
Third SIAM International Conference on Data Mining, 2003.

[29] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for
network intrusion detection,” Security and Privacy, IEEE Symposium on, vol. 0, pp.
305–316, 2010.

[30] C. Taylor and C. Gates, “Challenging the Anomaly Detection Paradigm: A Provocative

Discussion,” in Proceedings of the 15th New Security Paradigms Workshop (NSPW),
September 2006, pp. xx–yy.

[31] D. Xu and P. Ning, “Privacy-preserving alert correlation: a concept hierarchy based
approach,” in Computer Security Applications Conference, 21st Annual, Dec. 2005, pp.
10 pp. –546.

[32] C. Gates, “Coordinated scan detection,” in Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS 09), 2009.

[33] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion detection signa-
tures with context,” in CCS ’03: Proceedings of the 10th ACM conference on Computer
and communications security. New York, NY, USA: ACM, 2003, pp. 262–271.

[34] M. Norton, D. Roelker, and D. R. S. Inc, “Snort 2.0: High performance multi-rule
inspection engine.”

[35] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. Markatos, and S. Ioannidis, “Regular
expression matching on graphics hardware for intrusion detection,” in Recent Advances
in Intrusion Detection. Springer, 2009, pp. 265–283.

[36] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algorithms to accel-
erate multiple regular expressions matching for deep packet inspection,” in Proceedings
of the 2006 conference on Applications, technologies, architectures, and protocols for
computer communications. ACM, 2006, pp. 339–350.

[37] P. Lin, Y. Lin, T. Lee, and Y. Lai, “Using string matching for deep packet inspection,”
Computer, vol. 41, no. 4, pp. 23–28, 2008.

84



[38] V. Paxson, “Bro: a System for Detecting Network Intruders in Real-Time,”
Computer Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999. [Online]. Available:
http://www.icir.org/vern/papers/bro-CN99.pdf

[39] Y. Song, A. D. Keromytis, and S. J. Stolfo, “Spectrogram: A mixture-of-markov-
chains model for anomaly detection in web traffic,” in NDSS ’09: Proceedings of the
16th Annual Network and Distributed System Security Symposium, 2009.

[40] Symantec, “Internet Security Threat Report, Volume 17,”
http://www.symantec.com/threatreport/, 2012.

[41] McAfee, “McAfee Threats Report: First Quarter 2012,”
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf, 2012.

[42] Sourcefire, “Snort intrusion detection system,” http://www.snort.org/, Jul. 2012.

[43] Suricata, “Suricata intrusion detection,” http://www.openinfosecfoundation.org/, Jul.
2012.

[44] Cisco, “Cisco security products,” http://www.cisco.com/en/US/products/hw/
vpndevc/products.html/, Jul. 2012.

[45] Juniper, “Juniper network security products,” http://www.juniper.net/us/en/
products-services/security/, Jul. 2012.

[46] McAfee, “Mcafee network intrusion prevention,” http://www.mcafee.com/us/
products/network-security/network-intrusion-prevention.aspx/, Jul. 2012.

[47] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for
network intrusion detection,” in Security and Privacy (SP), 2010 IEEE Symposium
on, may 2010, pp. 305–316.

[48] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Existing
solutions and latest technological trends,” Computer Networks, vol. 51, no. 12, pp.
3448–3470, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S138912860700062X

[49] K. Wang, J. Parekh, and S. Stolfo, “Anagram: A content anomaly detector resistant
to mimicry attack,” in Recent Advances in Intrusion Detection, ser. Lecture Notes in
Computer Science, D. Zamboni and C. Kruegel, Eds. Springer Berlin / Heidelberg,
2006, vol. 4219, pp. 226–248.

[50] L. Kuang, “Dnids: A dependable network intrusion detection system using the csi-knn
algorithm,” Queen’s University, 2007.

[51] D. Denning, “An intrusion-detection model,” Software Engineering, IEEE Transac-
tions on, vol. SE-13, no. 2, pp. 222–232, Feb. 1987.

[52] K. Wang and S. Stolfo, “Anomalous payload-based network intrusion detection,” in Re-
cent Advances in Intrusion Detection, ser. Lecture Notes in Computer Science, E. Jon-
sson, A. Valdes, and M. Almgren, Eds. Springer Berlin / Heidelberg, 2004, vol. 3224,
pp. 203–222.

85



[53] K. Wang, G. Cretu, and S. Stolfo, “Anomalous payload-based worm detection and
signature generation,” in Recent Advances in Intrusion Detection, ser. Lecture Notes
in Computer Science, A. Valdes and D. Zamboni, Eds. Springer Berlin / Heidelberg,
2006, vol. 3858, pp. 227–246.

[54] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970. [Online]. Available:
http://doi.acm.org/10.1145/362686.362692

[55] D. Barbará, C. Domeniconi, and J. P. Rogers, “Detecting outliers using
transduction and statistical testing,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, ser. KDD
’06. New York, NY, USA: ACM, 2006, pp. 55–64. [Online]. Available:
http://doi.acm.org/10.1145/1150402.1150413

[56] V. Vovk, A. Gammerman, and C. Saunders, “Machine-learning applications of algorith-
mic randomness,” in Proceedings of the Sixteenth International Conference on Machine
Learning (ICML-1999), 1999, pp. 444–453.

[57] N. Boggs, S. Hiremagalore, A. Stavrou, and S. J. Stolfo, “Cross-domain
collaborative anomaly detection: so far yet so close,” in Proceedings of the
14th international conference on Recent Advances in Intrusion Detection, ser.
RAID’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 142–160. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-23644-0 8

[58] A. Gammerman and V. Vovk, “Prediction algorithms and confidence measures based
onalgorithmic randomness theory,” Theoretical Computer Science, vol. 287, pp. 209–
217, 2002.

[59] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference. Springer,
2010.

[60] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and rever-
sals,” Tech. Rep. 8, 1966.

[61] G. Fowler, L. C. Noll, and P. Vo, “Fowler / Noll / Vo (FNV) Hash,”
http://isthe.com/chongo/tech/comp/fnv/, 1991.

86



Curriculum Vitae

Sharath Hiremagalore received his Bachelor of Technology (Honors) in Electronics and
Communication Engineering from SASTRA University, India in 2007. He received his
Master of Science in Computer Science from George Mason University, Fairfax, Virgina in
2011. His research interests include machine learning, network, and system security.

87


