
Error Controls for Broadcast Communication Systems: An Integer Programming
Approach to UEP Coding Scheme and A Deterministic Approach to Network Coding

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Wook Jung
Master of Science

George Mason University, 2003
Bachelor of Science

Ajou University, Korea, 2000

Director: Dr. Shih-Chun Chang, Associate Professor
Department of Electrical and Computer Engineering

Spring Semester 2015
George Mason University

Fairfax, VA

Copyright c© 2015 by Wook Jung
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my parents, my wife, and my daughter.

iii

Acknowledgments

First of all, I would like to express my heartfelt thanks to my advisor, Dr. Shih-Chun
Chang who lead me to the field of coding theory and inspired me by showing his enthusi-
asms and ingenuity. This dissertation would not have been possible without his support,
encouragement, guidance and persistent help.

I would like to thank Drs. Bijan Jabbari, Brian L. Mark, Bernd-Peter Paris and Robert
Simon for their invaluable suggestions and serving as on my dissertation committee. I would
like to give a special thanks to Dr. Pelin A. Kurtay and Director Lisa Nolder for supporting
me whenever I had difficulties during the course of my Ph.D. study.

Last, but certainly not least, I thank my family for their endless and unconditional
support and encouragement.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . x

1 Introduction . 1

1.1 Contributions . 3

1.2 Outline . 4

2 Background and related works . 5

2.1 Unequal error protection codes . 5

2.2 Degraded broadcast channels . 7

2.3 Linear (Integer) programming . 10

2.4 Network coding . 12

2.5 Packet retransmissions using network coding 14

3 UEP coding schemes for broadcast channels . 19

3.1 Integer programming approach to UEP coding scheme for single-bit messages 21

3.1.1 UEP code constructions using integer programming 21

3.1.2 Bounds, results, and comparisons . 27

3.1.3 Performance analysis . 33

3.1.4 Decoding of UEP codes using integer programming 40

3.2 Integer programming approach to UEP coding scheme for multi-bit messages 50

3.2.1 UEP code constructions using integer programming 51

3.2.2 Bounds, results, and comparisons . 56

3.2.3 Asymptotic code rates and throughput of broadcast channels 59

3.2.4 Decoding of UEP codes using integer programming 64

3.3 Discussions . 70

3.3.1 On the complexity of UEP code construction 70

3.3.2 On the decodability of the UEP decoding algorithm 74

3.3.3 On the non-binary UEP code construction 78

v

4 Deterministic network coding for reliable packet transmissions on single-hop broad-

cast network . 83

4.1 Deterministic network coding . 83

4.1.1 Reed-Solomon codes . 83

4.1.2 Deterministic linear network codes 86

4.2 Deterministic network coding for reliable packet transmission 87

4.2.1 Packet retransmissions using deterministic network coding 87

4.2.2 Forward error corrections using deterministic network coding 97

4.3 Numerical analysis and simulations . 106

4.3.1 Analysis . 106

4.3.2 Numerical results . 113

4.4 Discussions: unequal error protection using network coding 116

5 Summary and future works . 120

5.1 Future works . 121

A Generator matrices of optimal UEP codes . 123

B Derivation of (3.105) . 136

Bibliography . 137

vi

List of Tables

Table Page

2.1 Example of feedbacks . 15

3.1 Numerical results from integer programming and the corresponding upper

and lower bounds for s = (3, 5, . . . , 2k + 1) 30

3.2 Optimal code construction from integer programming for a separation vector

s = (3, 5, . . . , 2k + 1) . 31

3.3 Codelength comparisons among UEP codes, Time sharing repetition codes,

and shortened BCH codes for s = (3, 5, . . . , 2k + 1) 33

3.4 UEP decoding example using integer programming and majority logic . . . 49

3.5 Optimal results of integer programming: l-bit message 57

3.6 Code length comparisons for s = (3, 5, . . . , 2k + 1) 58

3.7 Decoding example for l = 2 and k = 2 . 70

3.8 Comparisons of UEP code construction for s = (3, 5, . . . , 2k + 1) 74

3.9 Length comparisons between optimal UEP codes and punctured RS codes

over GF(q) where q = 2k . 82

vii

List of Figures

Figure Page

1.1 Single-hop wireless broadcast network . 2

2.1 Overview of channel coding . 6

2.2 Broadcast channel . 8

2.3 Degraded broadcast channel with k component channels. 9

2.4 Cascaded BSCs for a degraded broadcast channel. 9

2.5 The butterfly network: network coding on multicast 12

2.6 Benefit of network coding . 13

2.7 Retransmissions with XOR-based network coding 16

2.8 Retransmissions with random network coding 17

3.1 Multiuser communication system over a broadcast channel 20

3.2 Integer programming results with bounds for s = (3, 5, . . . , 2k + 1) 32

3.3 Rates of optimal UEP codes for 2 ≤ k ≤ 215 when a separation vector is

given as s = (3, 5, . . . , 2k + 1). 36

3.4 Code rate and throughput of the degraded broadcast channel for 2 ≤ k ≤ 28. 38

3.5 Bit error performance with a binary UEP code where n = 25 and k = 6 for

a given s = (3, 5, . . . , 13). 39

3.6 Diagrams of UEP decoding method for single-bit message mi at receiver Ri 50

3.7 Rates of optimal UEP codes for 2 ≤ k ≤ 212 when l = 2, 3, 4. 62

3.8 Throughput of the degraded broadcast channel for 2 ≤ k ≤ 27 63

3.9 Diagrams of UEP decoding method for l-bit messagemi = (m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
l)

at receiver Ri . 71

4.1 ARQ scheme . 89

4.2 Packet retransmission scheme with deterministic network coding 91

4.3 Forward error correction scheme with deterministic network coding 99

4.4 E[Z] versus packet error probability, p. 108

4.5 E[Z] versus number of receivers, r. 109

viii

4.6 E[Z] versus number of transmitted packets, k. 109

4.7 Contours of E[Z]. 110

4.8 Comparison results: theory versus simulation. 110

4.9 Expected no. of transmission vs. packet error probability 114

4.10 Expected no. of transmission vs. no. of receivers 115

4.11 Comparison result: numerical analysis vs. simulation 117

4.12 Clustered broadcast network . 118

ix

Abstract

ERROR CONTROLS FOR BROADCAST COMMUNICATION SYSTEMS: AN INTE-
GER PROGRAMMING APPROACH TO UEP CODING SCHEME AND A DETER-
MINISTIC APPROACH TO NETWORK CODING

Wook Jung, PhD

George Mason University, 2015

Dissertation Director: Dr. Shih-Chun Chang

Traditional network protocols employ error control techniques for reliable information

dissemination over noisy communication channels. In this dissertation, two main topics

are investigated for efficient error controls over a broadcast channel. First, unequal error

protection (UEP) coding schemes for multiuser communications are investigated, and we

propose integer programming approaches to UEP coding and decoding. Second, reliable

packet transmissions over a single-hop broadcast network are considered, and we propose a

unified solution to use a deterministic network coding for a packet retransmission scheme

and a packet-level forward error correction scheme.

For multiuser communications over a broadcast channel, integer programming approaches

are introduced to the construction and the decoding of a binary linear UEP code. First,

optimal UEP codes are constructed from integer programming for maximum efficiency, and

lower bounds of UEP codes are derived to show the efficiency. Then, performance of the

UEP coding scheme for multiuser communications are analyzed on a degraded broadcast

channel. Finally, a decoding method of the binary UEP code is proposed by using iterative

integer programming and majority logic. By presenting numerical results, examples, and

comparisons, we demonstrate that the UEP coding scheme effectively provides efficient

forward error correction for multiuser broadcast communications.

For reliable packet transmissions over a single-hop broadcast network, we propose packet-

level error control schemes by using a deterministic linear network coding. We first construct

a deterministic network code based on Reed-Solomon (RS) code. Then, we provide an adap-

tive way to apply the deterministic network code for both retransmissions and forward error

corrections by puncturing the RS code. Numerical analysis and simulations are performed

to show the efficiency of the error control schemes.

Chapter 1: Introduction

Error controls for communication network over a noisy channels are classified into two

categories:

1. Forward error correction (FEC) scheme that corrects channel errors by using error

correcting codes; or,

2. Automatic repeat request (ARQ) scheme that recovers erroneous or lost information

by retransmissions based on feedback.

In this dissertation, we investigate both FEC and ARQ schemes for reliable communications

over a broadcast channel.

For the forward error correction, a communication system usually employs conventional

error correcting codes that have equal error protection capability. However, when multiple

users communicate over a noisy channel, each user is likely to have unequal errors on the

received information. An unequal error protection (UEP) coding scheme provides more

efficient error controls for the communication system than the conventional coding scheme.

When information has different significance, whether it is a bit or groups of bits, unequal

error protection (UEP) codes separate the information and provide different levels of error

protection. The notion of a UEP code was first introduced by Masnick and Wolf in [1]. Since

then, construction methodologies of UEP codes have been actively studied in many coding

theory papers. A majority of the linear UEP code constructions are based on combining

shorter length linear codes. In this dissertation, unlike those approaches, we propose a

construction methodology of optimal UEP codes for broadcast communications based on

integer programming. We also propose a decoding methodology of the UEP codes based on

integer programming and majority logic.

1

Figure 1.1: Single-hop wireless broadcast network.

Furthermore, consider packet transmissions over a broadcasting network that a single

source has data packets to transmit to all receivers within its broadcasting range. One can

consider the broadcasting source as an access point (AP) in wireless network and each re-

ceiver as a mobile station as depicted in Figure 1.1. Because of uncertainty of the broadcast

channel, traditional network protocols employ error controls (either FEC scheme or ARQ

scheme) for reliability of packet deliveries.

The packet retransmission scheme requires a feedback channel to receive packet er-

ror/loss information. The broadcasting source first collects acknowledgments of the trans-

mitted packets (ACK/NACK) from its receivers through the feedback channel, then the

source retransmits packets based on the acknowledgments. On the other hand, the forward

error correction scheme does not require the feedback channel. Instead the forward error

correction scheme adds redundancy into transmitting packets to ensure that an intended

receiver can recover packets without requesting retransmissions when packet errors occur

during transmission.

Since Ahlswede et al. introduced the concept of a network coding in [2], which allows to

process packets at a network node, there have been some studies to apply the network coding

concept into reliable packet transmissions. Our research investigates the methodologies of

network coding for reliable packet transmissions and provides a unified solution based on

linear network coding for both a retransmission scheme and a packet-level forward error

correction scheme on a single-hop wireless broadcast network.

2

1.1 Contributions

The contributions of this dissertation can be categorized into two parts.

Unequal error protection coding and decoding by integer programming for

broadcast channels

1. An integer programming approach is introduced to construct optimal UEP codes for

multiuser communication over a broadcast channel.

• An integer programming problem is formulated based on unequal error protection

requirements of multiple users to construct an optimal binary UEP code.

• An integer programming bound and an asymptotically achievable code rate are

derived to show efficiency of the integer programming approach.

• Performance analysis of the UEP coding scheme is presented for multiuser com-

munications over a degraded broadcast channel.

2. A decoding algorithm is developed for the UEP codes based on iterative integer pro-

gramming and majority logic.

Reliable packet transmission on single-hop broadcast networks using determin-

istic network coding

1. A methodology of deterministic linear network coding is investigated based on a punc-

tured Reed-Solomon (RS) code.

2. A unified solution is provided for efficient reliable packet transmissions on a single-hop

broadcast network:

• A packet retransmission scheme (ARQ scheme) based on deterministic network

coding.

• A packet-level forward error correction scheme (FEC scheme) based on deter-

ministic network coding.

3

1.2 Outline

The organization of this dissertation is as follows. First, Chapter 2 provides background and

a literature review. Next, in Chapter 3, we propose an integer programming approach to

construct binary UEP codes, and we provide an integer programming bound and numerical

results that show the constructed UEP codes are optimal. Based on the bound, we illustrate

asymptotic code rates with comparisons to throughput of the broadcast channel, and we

also measure bit error performance of the UEP coding scheme on a degraded broadcast

channel. Moreover, we present an iterative decoding method by using integer programming

and majority logic. Then, in Chapter 4, we construct a deterministic linear network code

from Reed-Solomon codes, and we present a unified solution based on the deterministic

network coding for both a retransmission scheme and a packet-level forward error correction

scheme on a single-hop wireless broadcast network. We also provide numerical analysis and

simulation results to show the efficiency of the schemes. At the end of both Chapter 3 and

Chapter 4, we discuss limitations and brief research directions. Finally, Chapter 5 presents

a summary and future developments.

4

Chapter 2: Background and related works

2.1 Unequal error protection codes

The concept of unequal error protection (UEP) codes was first introduced by Masnick and

Wolf in [1]. Consider a coded communication system depicted in Figure 2.1. Let C be a

binary linear code that protects a message vector m = (m1,m2, . . . ,mk) sent over a noisy

channel,

C =
{

c | c = mG, m ∈ {0, 1}k
}

where G is a k × n generator matrix. Suppose that the code C protects each message mi

against ti channel errors for 1 ≤ i ≤ k. For a conventional t-error correcting code, ti = t for

1 ≤ i ≤ k. However, if ti 6= tj for 1 ≤ i 6= j ≤ k, the code C has an unequal error protection

capability, and it is called an unequal error protection code.

In [3], Dunning and Robbins introduced the notion of a separation vector which specifies

the unequal error protection capability of a UEP code.

Separation vector For a binary linear (n, k) code C, a separation vector s = (s1, s2, . . . , sk)

is defined as

si = min {wH(mG) | mi 6= 0} for 1 ≤ i ≤ k. (2.1)

where wH(·) denotes the Hamming weight.

It follows from the definition that a message bit mi can be separated and protected

against up to
⌊
si−1
2

⌋
channel errors for a given separation vector s = (s1, s2, . . . , sk). Suppose

that each message mi requires ti unequal error protection for 1 ≤ i ≤ k. Then, a linear

5

Source Encoder Channel Decoder Receiver
m c r m̂

Figure 2.1: Overview of channel coding

code C can satisfy the requirements if its separation vector s = (s1, s2, . . . , sk) satisfies

si ≥ 2ti + 1 for 1 ≤ i ≤ k.

Earlier works on UEP codes [1, 3–5] have mainly focused on establishing theoretical

foundations. Particularly, we are interested in bounds on lengths of UEP codes derived in

[1,5] since the bounds shall be compared to the lengths of UEP codes that we construct in

Section 3. Masnick and Wolf have derived an upper bound of a UEP code in [1], and we

rewrite the upper bound for a binary UEP code in the following.

Upper bound When a message mi is protected against ti errors for 1 ≤ i ≤ k, an upper

bound of a binary UEP code can be given by

n ≤ k + rU (2.2)

where rU is the smallest number of check bits r such that

2r >

2tk−1
∑

i=0

(
n− 1

i

)

−
k∑

i=2

(
n− 1− Ξi

2ti − 2

)

−
k∑

i=2

(
n− 1− Ξi

2ti − 1

)

(2.3)

when Ξi is the number of message bits that are protected against i-bit or more errors (See

[1, pp. 606–607] for the derivation).

On the other hand, van Gils has derived a lower bound on lengths of UEP codes for a

non-increasing separation vector (i.e., si ≥ sj for 1 ≤ i 6= j ≤ k) in [5], and we rewrite the

lower bound for a binary UEP code in the following.

6

Lower bound When a message mi is protected against ti errors and a non-decreasing

separation vector is given as si = 2ti + 1 for 1 ≤ i ≤ k (i.e., ti ≥ tj for 1 ≤ i 6= j ≤ k), a

lower bound of a binary UEP code can be given by

n ≥
k∑

i=1

⌈ si
2i−1

⌉

(2.4)

(See [5, pp. 869–870] for the derivation).

In [1, pp. 603–604], Masnick and Wolf have also presented a binary UEP code construc-

tion method. However, it has been claimed by the authors that the optimal code construc-

tion becomes difficult for large dimensions (beyond k = 5). This observation motivates us

to develop an integer programming approach to construct optimal UEP codes.

Since the pioneering work of Masnick and Wolf, constructions of UEP codes have been

actively studied, and most construction methods of linear UEP codes are based on combining

(e.g., direct sum, |u|u + v|, concatenation, etc.) shorter length linear codes as presented

in [4, 6–11]. Also there have been studies that investigate information theoretic features

of UEP codes [12, 13] and studies that combines UEP coding and modulation for unequal

error protection [14–19]. Furthermore, linear network coding has been applied for unequal

error protection in [20–25].

2.2 Degraded broadcast channels

The notion of a broadcast channel was introduced by Cover in [26]. When k users are

simultaneously communicated through a broadcast channel, the channel can be described

by a single input (denoted by S) and multiple outputs (denoted by Ti for 1 ≤ i ≤ k) as

depicted in Figure 2.2.

In [27], Bergmans introduced the notion of degraded broadcast channels by decomposing

a broadcast channel into multiple degraded component channels. Let CHi denote compo-

nent channels and let Di be artificial channels that represent degradation for 1 ≤ i ≤ k

7

Broadcast
Channel

S Ti

...

T1

...

Tk

Figure 2.2: Broadcast channel with a channel input S and channel outputs Ti for 1 ≤ i ≤ k.

where CH1 = D1. If a channel CHj is represented by the cascade of CHi and Dj , then the

channel CHj is a degraded version of the channel CHi where j = i + 1 for 2 ≤ j ≤ k and

the broadcast channel is called degraded (Figure 2.3 [27]).

By using the decomposed channel model (Figure 2.3), the error characteristics of the

degraded broadcast channel can be described with k cascaded binary symmetric channels

(BSCs) with transition probabilities αi ∈ [0, 12] as shown in Figure 2.4 [27]. Let pi denote

the bit error probability of the each component channel, then

p1 = α1,

p2 = α1(1− α2) + (1− α1)α2 = p1(1− α2) + (1− p1)α2,

p3 = (1− α1)(1 − α2)α3 + (1− α1)α2(1− α3) + α1(1− α2)(1− α3) + α1α2α3

= {α1(1− α2) + (1− α1)α2} (1− α3) + {1− α1(1− α2)− (1− α1)α2}α3

= p2(1− α3) + (1− p2)α3,

...
...

8

S D1

CH1

D2

CH2

D3

CH3

Dk

CHk

Tk
T1 T2 T3

Figure 2.3: Degraded broadcast channel with k component channels.

•

•

0

1

S

•

•

T1

•

•

T2

•

•

Tk−1

•

•

Tk1− α1

α
1

α1

1− α1

1− α2

α
2

α2

1− α2

1− αk

α
k

α k

1− αk

Figure 2.4: Cascaded BSCs for a degraded broadcast channel.

Similarly, the bit error probability of each component channel can be written by

pi = pi−1(1− αi) + (1− pi−1)αi for 1 ≤ i ≤ k (2.5)

where p0 = 0.

Let Γi represent an information rate for each component channel CHi for 1 ≤ i ≤ k,

then the throughput rate of the degraded broadcast channel, RT can be given by

RT =

k∑

i=1

Γi = Γ1 + Γ2 + · · ·+ Γk, (2.6)

and the throughput rate is upper bounded by the capacity of channel CH1.

Since the notion of degraded broadcast channel was introduced in [27], information the-

oretic features (e.g., coding theorem or capacity region) of the degraded broadcast channel

9

have been studied in [28–34].

2.3 Linear (Integer) programming

Linear programming is an optimization method to find a minimum or maximum of a linear

function (objective function) subject to certain linear equations or inequalities. If the vari-

ables of the objective function are restricted to be integers, then the linear programming is

called an integer programming.

A typical linear programming problem is formulated as the following [35–37]:

Minimize or maximize

f1x1 + f2x2 + · · ·+ fnxn

subject to

a11x1 + a12x2 + · · ·+ a1nxn

(
≥

=

≤

)

b1

a21x1 + a22x2 + · · ·+ a2nxn

(
≥

=

≤

)

b2

...
...

am1x1 + am2x2 + · · ·+ amnxn

(
≥

=

≤

)

bm

where

xj ≥ 0 for 1 ≤ j ≤ n

The function f1x1 + f2x2 + · · · + fnxn is an objective function to linearly optimize and

the variables x1, x2, . . . xn are called decision variables. If the decision variables are strictly

10

integers, then the optimization refers to an integer programming. If some of the deci-

sion variables are restricted to be integers, then the optimization refers to a mixed integer

programming. Based on the formulated problem, a linear programming solver provides a

feasible solution for the decision variables xj for 1 ≤ j ≤ n that satisfy all linear constraints,

and the best feasible solution is called an optimal solution.

Linear (integer) programming has been applied to coding theory for obtaining bounds

on lengths of linear codes ([38, Ch. 17, p. 537]), but mostly it has been used for alternative

methods to decode linear codes [39–51].

As an example, we provide the concept of an integer programming approach for maxi-

mum likelihood decoding. Consider a communication system where a codeword c of a binary

linear code C is transmitted over a noisy channel as depicted in Figure 2.1. At the receiving

end of the coded system, a decoder tries to recover m̂ from the received r = (r1, r2, . . . , rn)

such that m̂ = m. A decoding rule of a maximum likelihood decoder is to find a particular

codeword x = (x1, x2, . . . , xn) that maximizes Pr(x|r). Assuming that all codewords of C

are equally likely and the channel is memoryless [52, Ch. 1], it is equivalent to minimizing

∑n
j=1 γjxj where

γj = log

(
Pr(rj |xj = 0)

Pr(rj |xj = 1)

)

. (2.7)

Then, the ML decoder can determine that the transmitted codeword c is the codeword x

that has the minimum sum of
∑n

j=1 γjxj. Let H be a parity check matrix of the linear code

C. Then an integer programming problem for the ML decoding can be formulated as

minimize

n∑

j=1

γjxj

subject to

11

S1 S2

A

B

R1 R2

x1 x2

x1 x2x1 + x2

x1 + x2 x1 + x2

Figure 2.5: The butterfly network: network coding on multicast

Hx⊤ = 0 over GF(2)

where

xj ∈ {0, 1} for 1 ≤ j ≤ n.

2.4 Network coding

The concept of network coding was first introduced by Ahlswede et al. [2]. In their work,

Ahlswede et al. have showed that coding at network nodes is necessary in multicast connec-

tion for optimal utilization. Figure 2.5 shows an example of network coding in a multicast

network.

With network coding, unlike the traditional store and forward packet-switching, a net-

work node not just forwards packets but also combines packets before transmitting. This

new concept in communication networks has been proposed as a promising solution in a

wide range of areas such as network throughput improvement, network resource utilization,

security, and so on. A simple example of benefit of network coding in terms of wireless

12

A B C

A B C

A B C

x1 x2

x1 x1

x2 x2

(a) Without network coding

A B C

A B C

x1 x2

x1 + x2 x1 + x2

(b) With network coding

Figure 2.6: Benefit of network coding

resource utilization is shown in Figure 2.6. Compared to the “without network coding” sce-

nario (Figure 2.6 (a)) which requires three time slots to exchange packets, network coding

allows an exchange of packets in two time slots by processing packets in an intermediate

node (Figure 2.6 (b)).

In the early stage of network coding, research has focused on theoretical foundations

[53–60]. Li et al [53] and Koetter and Médard [54] have provided the concept of linear

network coding, and Ho et al [59] have introduced the concept of random network coding in

a multicast packet network. With the random network coding, a network node transmits

linearly encoded packets with randomly chosen coding coefficients from a large enough finite

field.

Along with the development of the theoretical frameworks on network coding, researches

to practically implement the network coding concept have been made. Chou et al. [61]

provided a practical and a distributed approach to apply random network coding into

traditional packet networks by injecting the encoding information (i.e., coding coefficients)

in the packet header so that receivers can decode the packet. Katti et al. [62] developed

another practical approach to apply network coding using XOR to encode packets at wireless

nodes.

13

2.5 Packet retransmissions using network coding

Network coding has been adopted to provide reliable communications over lossy packet

networks. Coding schemes and forward error corrections using network coding have been

discussed in [63–69]. Additionally, a couple of studies have shown packet retransmission

schemes using network coding on a single-hop wireless broadcast network [70,71]. In those

retransmission schemes, network coding is deployed for retransmitting packets at a broad-

casting source to reduce the number of retransmissions.

Traditional retransmission scheme (ARQ) retransmits unsuccessfully delivered packets

based on feedbacks (ACK/NACK) from receivers. Nguyen et al. [70] uses XOR-based

network coding to retransmit packets, i.e., a broadcasting source performs XOR operation

on retransmission packets based on the feedbacks from its receivers. Xiao et al. [71] uses

random network coding instead of XOR based network coding, i.e., a broadcasting source en-

codes retransmission packets with randomly chosen coding coefficients from a large enough

finite field of GF(q = 2m) (e.g., GF(28)) and injects its encoding information in the packet

header.

We consider the following communication scenario over a single-hop wireless broadcast

network to compare the number of retransmissions among a traditional ARQ, XOR based

retransmission scheme, and random network coding based retransmission scheme.

• A single source broadcasts packets to all receivers within its broadcast range, and

every receiver wants to receive all packets from the source.

• Each receiver sends feedback to the source whether it has successfully received packets

or not.

• The broadcasting source retransmits packets based on the feedbacks.

An example of the collected feedbacks at the broadcasting source listed in Table 2.1

after transmitting 4 packets, p1, p2, p3, and p4 to receivers, R1, R2, R3, and R4.

14

receiver p1 p2 p3 p4
R1 o o x x

R2 x x o o

R3 o x o x

R4 o x x o

Table 2.1: Example of feedbacks: the symbol ’o’ represents a successfully delivered packet
and symbol ’x’ represents a lost packet at each receiver.

Traditional ARQ scheme Since none of the 4 packets is received successfully at all 4

receivers simultaneously, the broadcasting source has to retransmit all 4 packets to

receivers. Let q1, q2, q3, and q4 be the retransmission packets, then

qi = pi for 1 ≤ i ≤ 4.

XOR-based retransmission scheme If XOR operation is allowed for retransmission,

the number of retransmissions can be reduced to 3 encoded packets. Let q1, q2, and

q3 be the retransmission packets, then

q1 = p1 ⊕ p3, q2 = p2, and q3 = p4.

At the receiving end, every receiver can recover its lost packets using XOR operation

(See Figure 2.7). For example, since the receiver R2 has already successfully received

p3 from the previous transmission, the lost packets, p1 and p2 can be recovered from

p1 = q1 ⊕ p3 = (p1 ⊕ p3)⊕ p3,

p2 = q2.

Retransmission scheme based on random network coding Suppose that a broad-

casting source can linearly encode packets with coding coefficients. Since the packet

loss pattern in Table 2.1 shows that every receiver wants to receive two out of four

15

R1 R2

S

R4 R3

p1
o

p2
o

p3
o

p4
x

p3 = {p1 ⊕ p3} ⊕ p1

p1
o

p2
x

p3
o

p4
o

p1 = {p1 ⊕ p3} ⊕ p3

p1
o

p2
x

p3
o

p4
x

p1
o

p2
x

p3
o

p4
o

p3 = {p1 ⊕ p3} ⊕ p1

retransmit p1 ⊕ p3

(a)

R1 R2

S

R4 R3

p1
o

p2
o

p3
o

p4
x

p1
o

p2
o

p3
o

p4
o

p1
o

p2
o

p3
o

p4
x

p1
o

p2
o

p3
o

p4
o

retransmit p2

(b)

R1 R2

S

R4 R3

p1
o

p2
o

p3
o

p4
o

p1
o

p2
o

p3
o

p4
o

p1
o

p2
o

p3
o

p4
o

p1
o

p2
o

p3
o

p4
o

retransmit p4

(c)

Figure 2.7: Retransmissions with XOR-based network coding

packets, two linearly combined retransmission packets, q1 and q2 will be enough for

all receivers to recover their lost packets:

q1 = α1p1 + α2p2 + α3p3 + α4p4

q2 = β1p1 + β2p2 + β3p3 + β4p4

where α1, α2, α3, α4 and β1, β2, β3, β4 are coding coefficients over a certain finite field.

If the source linearly combines packets with proper coding coefficients and if all re-

ceivers know what coding coefficients are used to combine the retransmitted packets,

16

R1 R2

S

R4 R3

p1
o

p2
o

p3
x

p4
x

p1
x

p2
x

p3
o

p4
o

p1
o

p2
x

p3
o

p4
x

p1
o

p2
x

p3
x

p4
o

retransmit q1 = α1p1 + α2p2 + α3p3 + α4p4

(a)

R1 R2

S

R4 R3

p1
o

p2
o

p3
o

p4
o

p1
o

p2
o

p3
o

p4
o

p1
o

p2
o

p3
o

p4
o

p1
o

p2
o

p3
o

p4
o

retransmit q2 = β1p1 + β2p2 + β3p3 + β4p4

linear operation at R1:

(
α3 α4

β3 β4

)(
p3
p4

)

=

(
q1
q2

)

+

(
α1 α2

β1 β2

)(
p1
p2

)

linear operation at R2:

(
α1 α2

β1 β2

)(
p1
p2

)

=

(
q1
q2

)

+

(
α3 α4

β3 β4

)(
p3
p4

)

linear operation at R3:

(
α2 α4

β2 β4

)(
p2
p4

)

=

(
q1
q2

)

+

(
α1 α3

β1 β3

)(
p1
p3

)

linear operation at R4:

(
α2 α3

β2 β3

)(
p2
p3

)

=

(
q1
q2

)

+

(
α1 α4

β1 β4

)(
p1
p4

)

(b)

Figure 2.8: Retransmissions with random network coding

17

receivers can recover their lost packets by solving linear equations (See Figure 2.8).

For example, since R3 already successfully received p1 and p3 from the previous packet

transmissions, the receiver R3 can recover p2 and p4 by solving the following linear

equations:






α2 α4

β2 β4











p2

p4




 =






q1

q2




+






α1 α3

β1 β3











p1

p3




 ,

hence,






p2

p4




 =






α2 α4

β2 β4






−1









q1

q2




+






α1 α3

β1 β3











p1

p3












.

18

Chapter 3: UEP coding schemes for broadcast channels

A multiuser communication system over a broadcast channel is depicted in Figure 3.1.

Due to the inequality of errors that the broadcast channel introduces, each user requires a

different level of error protection denoted by

t = (t1, t2, . . . , tk) for 1 ≤ i ≤ k. (3.1)

For a message vector m = (m1,m2, . . . ,mk) whose element mi represents a l-bit message

of each user,

mi =
(
m

(i)
1 ,m

(i)
2 , . . . ,m

(i)
l

)
for 1 ≤ i ≤ k,

a binary UEP code C with a generator matrix G can be represented as

C =
{

mG |m = (m1,m2, . . . ,mk) , mi ∈ {0, 1}
l for 1 ≤ i ≤ k

}

.

As defined in [3], the unequal error protection capability of the code can be specified by its

separation vector denoted by ŝ = (ŝ1, ŝ2, . . . , ŝk) where

ŝi = min {wH (mG) |mi 6= 0} for 1 ≤ i ≤ k. (3.2)

where wH(·) denotes the Hamming weight. If the separation vector satisfies

ŝi ≥ 2ti + 1 for 1 ≤ i ≤ k, (3.3)

then the UEP code can correct up to ti errors and recover the l-bit message m̂i = mi for

each user.

19

Broadcast
Channel

E•

m = (m1,m2, . . . ,mk)

D2

D1

...

Dk

R2

R1

...

Rk

c

r1

r2

rk

m̂1

m̂2

m̂k

Figure 3.1: Multiuser communication system over a broadcast channel

Suppose that the unequal error protection requirement from each user is given as a

separation vector s = (s1, s2, . . . , sk) such that

si = 2ti + 1 for 1 ≤ i ≤ k. (3.4)

Then, by using integer programming, our objective is to construct a binary UEP code whose

separation vector ŝ satisfies

ŝi ≥ si for 1 ≤ i ≤ k, (3.5)

i.e.,

min {wH (mG) |mi 6= 0} ≥ si for 1 ≤ i ≤ k. (3.6)

In addition, we develop a decoding algorithm by using integer programming such that each

receiver Ri recovers the message mi when the broadcast channel introduces less than or

equal to ti errors.

20

3.1 Integer programming approach to UEP coding scheme

for single-bit messages

In this section, we limit our scope to the case of single-bit message for each user, i.e.,

mi = mi where mi ∈ {0, 1} for 1 ≤ i ≤ k.

3.1.1 UEP code constructions using integer programming

First of all, a separation vector which specifies the unequal error protection requirement of

each user is defined as the following;

Definition 3.1 (Non-decreasing separation vector). A separation vector s = (s1, s2, . . . , sk)

is defined for unequal error protection as in non-decreasing order, i.e.,

si ≤ sj for 1 ≤ i < j ≤ k. (3.7)

Let Ab be a k × (2k − 1) matrix consisting of all nonzero binary k-tuples as columns in

increasing order,

Ab =












a1,1 a1,2 . . . a1,2k−1

a2,1 a2,2 . . . a2,2k−1

...
...

. . .
...

ak,1 ak,2 . . . ak,2k−1












=












a1

a2

...

ak












(3.8)

=















0 0 0 · · · 0 1 · · · 1 1

0 0 0 · · · 1 0 · · · 1 1

...
...
...
. . .

...
...
. . .

...
...

0 1 1 · · · 1 0 · · · 1 1

1 0 1 · · · 1 0 · · · 0 1















(3.9)

21

where ai =
(
ai,1, ai,2, . . . , ai,2k−1

)
is a row vector, and let G be a generator matrix of UEP

code written as

G =












g1

g2
...

gk












, (3.10)

then, for 1 ≤ i ≤ k, each row vector gi can be represented as

gi =
(

ai,1, . . . , ai,1
︸ ︷︷ ︸

x1 times

, ai,2, . . . , ai,2
︸ ︷︷ ︸

x2 times

, · · · , ai,2k−1, . . . , ai,2k−1
︸ ︷︷ ︸

x
2k−1

times

)

(3.11)

where xj ≥ 0 for 1 ≤ j ≤ 2k − 1, and

n =
2k−1∑

j=1

xj (3.12)

represents the code length.

For a given separation vector s = (s1, s2, . . . , sk), it follows from (3.2) and (3.7) that

wH (g1) ≥ s1, (3.13a)

wH

(

gi +
i−1∑

j=1

ωjgj

)

≥ si for 2 ≤ i ≤ k (3.13b)

22

where ωj ∈ {0, 1}. Then, from (3.11),

wH (g1) =
2k−1∑

j=1

a1,jxj = a1x
⊤, (3.14a)

wH

(

gi +

i−1∑

j=1

ωjgj

)

=
(

ai +

i−1∑

j=1

ωjaj

)

x⊤ for 2 ≤ i ≤ k. (3.14b)

where x =
(
x1, x2, . . . , x2k−1

)
.

Therefore, from (3.13) and (3.14), we can have the following inequalities

Aix
⊤ ≥ b⊤

i for 1 ≤ i ≤ k (3.15)

where Ai is a 2i−1 × (2k − 1) matrix that contains all 2i−1 rows of

a1 for i = 1 (3.16a)

ai +

i−1∑

j=1

ωjaj for 2 ≤ i ≤ k, (3.16b)

and bi = (si, si, . . . , si) is a row vector of length 2i−1.

Based on (3.15), we formulate an integer programming problem for UEP code construc-

tion with the separation vector s = (s1, s2, . . . , sk) whose elements are given as si = 2ti + 1

for 1 ≤ i ≤ k.

23

UEP code construction

Minimize

n = x1 + x2 + · · · + x2k−1

subject to

Ax⊤ ≥ b⊤

where

A =












A1

A2

...

Ak












, b⊤ =












b⊤
1

b⊤
2

...

b⊤
k












A feasible solution or the best feasible solution (i.e., optimal solution) to the integer pro-

gramming problem shall provide the vector x =
(
x1, x2, . . . , x2k−1

)
whose sum is the objec-

tive value n. Let an index set Js be

Js =
{

j | xj 6= 0, 1 ≤ j ≤ 2k − 1
}

,

= {j1, j2, . . . , jτ} where 1 ≤ j1 < j2 < . . . < jτ ≤ 2k − 1, (3.17)

and let qj be j-th column of the matrix Ab, i.e.,

Ab =
(
q1,q2, . . . ,q2k−1

)
. (3.18)

Then, a generator matrix of UEP code can be constructed from the integer programming

solution as

G =
(
qj1 , . . . ,qj1
︸ ︷︷ ︸

xj1
times

, qj2 , . . . ,qj2
︸ ︷︷ ︸

xj2
times

, . . . , qjτ , . . . ,qjτ
︸ ︷︷ ︸

xjτ times

)
. (3.19)

24

Example 3.1 (k = 3). For s = (3, 5, 7), it follows from (3.8),

Aa =









0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1









=









a1

a2

a3









,

then the generator matrix can be represented as

G =









0 · · · 0 0 · · · 0 1 · · · 1

0 · · · 0 1 · · · 1 · · · 1 · · · 1

1 · · · 1 0 · · · 0 1 · · · 1









=









g1

g2

g3









.

← x1 →← x2 → · · · ← x7 →

From (3.16),

A1 =

(

0001111

)

= a1,

A2 =






0110011

0111100




 =






a2

a2 + a1




 ,

A3 =












1010101

1011010

1100110

1101001












=












a3

a3 + a1

a3 + a2

a3 + a1 + a2












.

Therefore, the UEP code construction is to find x that minimizes the sum x1+x2+ · · ·+x7

25

satisfying

x4 + x5 + x6 + x7 ≥ 3,

x2 + x3 + x6 + x7 ≥ 5,

x2 + x3 + x4 + x5 ≥ 5,

x1 + x3 + x5 + x7 ≥ 7,

x1 + x3 + x4 + x6 ≥ 7,

x1 + x2 + x5 + x6 ≥ 7,

x1 + x2 + x4 + x7 ≥ 7.

The optimal solution obtained from the integer programming is

n =
7∑

j=1

xj = 11

where

x1 x2 x3 x4 x5 x6 x7

3 2 2 1 1 1 1
.

From (3.19), the corresponding generator matrix is

G =









0 0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 0 0 1 1

1 1 1 0 0 1 1 0 1 0 1









.

26

Since ŝ = (4, 6, 7) and

ŝi ≥ si for 1 ≤ i ≤ k,

the UEP code generated from G satisfies the unequal error protection requirement.

3.1.2 Bounds, results, and comparisons

Integer programming bounds

We begin by introducing a lower bound on the length of UEP codes in the following theorem.

Theorem 3.1 (Integer programming bound). For a given non-decreasing separation vector

s = (s1, s2, . . . , sk), an integer programming bound is given by

n ≥
k∑

i=1

⌈ si
2k−i

⌉

. (3.20)

Proof. For the integer programming approach to construct UEP code, we formulate 2k − 1

inequalities in matrix form as

Ax⊤ ≥ b⊤.

Since the rows of A consist of 2k − 1 linear combinations of ai for 1 ≤ i ≤ k, each column

of A has exactly 2k−1 ones [52, p.97]. Therefore, the sum of 2k−1 inequalities can be given

as

2k−1
(
x1 + x2 + · · ·+ x2k−1

)
≥

k∑

i=1

2i−1si, (3.21)

hence,

2k−1 n ≥
k∑

i=1

2i−1si. (3.22)

To preserve the integer property of the length n, we add ceiling functions into (3.22); as a

27

result,

n ≥
k∑

i=1

⌈
2i−1

2k−1
si

⌉

. (3.23)

Therefore,

n ≥
k∑

i=1

⌈ si
2k−i

⌉

.

We observe that the integer programming bound in (3.20) is consistent with the lower

bound derived in [5, Corollary 14]. As introduced in (2.4), van Gils has derived a lower

bound of a UEP code for a non-increasing separation vector s′ = (s′1, s
′
2, . . . , s

′
k) as

ns′ ≥
k∑

i=1

⌈
s′i

2i−1

⌉

. (3.24)

Since the separation vector s = (s1, s2, . . . , sk) is in non-decreasing order, we set s′i = sk−i+1.

Then, we transform the bound of (3.24) into

ns′ ≥
k∑

i=1

⌈
s′i

2i−1

⌉

=
k∑

i=1

⌈sk−i+1

2i−1

⌉

=
k∑

i=1

⌈ si
2k−i

⌉

.

In the following, we also include an upper bound on the length of UEP codes derived by

Masnick and Wolf in [1]. As we have reviewed in (2.2), the length of a UEP code with a

28

given error protection requirement t = (t1, t2, . . . , tk) can be upper bounded by

n ≤ k + rU (3.25)

where rU is the smallest number of check bits r such that

2r >

2tk−1
∑

i=0

(
n− 1

i

)

−
k∑

i=2

(
n− 1− Ti

2ti − 2

)

−
k∑

i=2

(
n− 1− Ti

2ti − 1

)

. (3.26)

Integer programming results

Numerical results of integer programming by using IBM ILOG CPLEX v12.5.1 1 [72] for a

given s = (3, 5, . . . , 2k + 1) are presented in Table 3.1. From k = 2 to 8, lengths are exactly

the same as the lower bound, therefore the corresponding UEP codes are optimal. These

optimal results are listed in Table 3.2. For 9 ≤ k ≤ 15, instead of finding optimal solutions,

we limit our search for sub-optimal solutions due to time constraint. The results and the

corresponding lower and upper bounds are plotted in Figure 3.2.

In Table 3.2, for each k that has the optimal solution, we show nonzero variables xj

that construct the generator matrix2 of the UEP code. We note that there are many

combinations of xj for 1 ≤ j ≤ 2k−1 that are summed to the optimal value of n (e.g., there

are 3 solutions to n = 7 when k = 2, 7 solutions to n = 11 when k = 3, 2063 solutions to

n = 16 when k = 4, and so on).

Comparisons

In Table 3.3, we compare the length of UEP codes to the length of time sharing repetition

codes and the length of shortened BCH codes [73]. First of all, the length of time sharing

repetition codes that provides the error protection requirement t = (t1, t2, . . . , tk) can be

1The IBM ILOG CPLEX v12.5.1 were run on ARGO, a research computing cluster provided by the Office
of Research Computing at George Mason University, VA. (URL: http://orc.gmu.edu)

2The corresponding generator matrices are provide in Appendix A

29

.
Table 3.1: Numerical results from integer programming

and the corresponding upper and lower bounds for s =
(3, 5, . . . , 2k + 1)

k
Lower bounds Integer programming Upper bounds

(3.20) results, n (3.25)

2 7 7 7

3 11 11 12

4 16 16 19

5 20 20 25

6 25 25 32

7 30 30 39

8 35 35 46

9 39 40a 53

10 44 45 60

11 49 52 67

12 55 58 74

13 59 64 81

14 64 70 88

15 69 76 95
aUnderline indicates sub-optimal length

obtained by

nTS =

k∑

i=1

ni (3.27)

where ni denotes the length of component code that provide ti error correction for 1 ≤ i ≤ k.

Since the lengths of the component codes can by given by

ni = 2ti + 1 for 1 ≤ i ≤ k, (3.28)

30

Table 3.2: Optimal code construction from integer programming for a separation vector
s = (3, 5, . . . , 2k + 1)

k n xj for j ∈ Js

2 7
x1 x2 x3

4 2 1

3 11
x1 x2 x3 x4 x5 x6 x7

3 2 2 1 1 1 1

4 16
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 20

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

2 1 1 1 1 1 1 1 1 1

x11 x12 x13 x14 x15 x16 x17 x18 x19

1 1 1 1 1 1 1 1 1

6 25

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1 1 1 1 1 1 1 1 1 1 1 1 1

x14 x15 x16 x17 x18 x19 x20 x21 x32 x33 x34 x35

1 1 1 1 1 1 1 1 1 1 1 1

7 30

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x16 x17 x18 x19 x20 x21 x22 x23 x32 x33 x34 x35 x64 x65 x104

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 35

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x16 x17 x18 x19 x20 x21 x22 x23 x32 x33 x34 x35 x64 x65 x66

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x126 x127 x128 x129 x184

1 1 1 1 1

the length of time sharing repetition codes with a given separation vector s = (3, 5, . . . , 2k + 1)

is

nTS =

k∑

i=1

(2ti + 1) = k(k + 2) (3.29)

31

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Dimension k

L
e
n

g
th

Upper bounds

Code construction

Lower bounds

Figure 3.2: Integer programming results with bounds for s = (3, 5, . . . , 2k + 1)

Secondly, since BCH codes are equal error protection codes, a minimum length of shortened

BCH code that provides t = (t1, t2, . . . , tk) is equivalent to a minimum length of shortened

BCH code that provides at least t = max∀i ti = tk error corrections. Therefore, for a given

separation vector s = (3, 5, . . . , 2k + 1), a minimum length of shortened BCH code can be

obtained by the following procedures.

1. Let (nB , kB , tB) be parameters for tB-error-correcting binary BCH codes, then we find

a minimum length BCH code whose dimension kB is at least k and error correction

capability tB is at least tk =
⌊
sk
2

⌋
= k.

2. Then, a minimum length of shortened BCH code with k error correction capability

can be given as

nSB = nB − (kB − k) . (3.30)

32

Table 3.3: Codelength comparisons among

UEP codes, Time sharing repetition codes, and
shortened BCH codes for s = (3, 5, . . . , 2k + 1)

k
UEP Time Sharing Shortened BCH

n nTS (nSB, k,≥ k)

2 7 8 (10, 2, 2)

3 11 15 (13, 3, 3)

4 16 24 (24, 4, 5)

5 20 35 (25, 5, 5)

6 25 48 (31, 6, 7)

7 30 63 (46, 7, 7)

8 35 80 (53, 8, 10)

9 40a 99 (54, 9, 10)

10 45 120 (55, 10, 10)

11 52 143 (58, 11, 11)

12 58 168 (89, 12, 13)

13 64 195 (90, 13, 13)

14 70 224 (98, 14, 14)

15 76 255 (106, 15, 15)
aUnderline indicates sub-optimal length

3.1.3 Performance analysis

Asymptotic code rates

Based on the integer programming bounds, we compute asymptotically achievable code

rates in the following theorem.

Theorem 3.2. Let RU be the rate of UEP code whose separation vector is given as s =

(3, 5, . . . , 2k + 1). Then

RU ≈ 0.2 when k ≫ 1. (3.31)

Proof. Let n be the length of the optimal UEP code whose separation vector is s =

33

(3, 5, . . . , 2k + 1), then, from (3.20),

n =
k∑

i=1

⌈
2i+ 1

2k−i

⌉

=
k−1∑

j=0

⌈
2(k − j) + 1

2j

⌉

. (3.32)

Let

ηj =

⌈
(2k − 2j + 1)

2j

⌉

,

and

k = ax2
x + ax−12

x−1 + · · ·+ a0

where x = ⌊log2 k⌋, then

ηj =







2k + 1 , j = 0

k , j = 1

ax2
x−j+1 + · · ·+ aj−12

0 + δj , 2 ≤ j ≤ x+ 1

1 , x+ 2 ≤ j ≤ k − 1

(3.33)

where δj ∈ {0, 1} [74, p.47,51]. By letting ∆j , ηj − δj for 2 ≤ j ≤ x+ 1, we can have

x+1∑

j=2

∆j = ax
(
2x−1 + · · ·+ 1

)
+ ax−1

(
2x−2 + · · ·+ 1

)
+ · · ·+ a2 (2 + 1) + a1

= ax (2
x − 1) + ax−1

(
2x−1 − 1

)
+ · · ·+ a0 (1− 1)

= k −
x∑

w=0

aw (3.34)

34

From (3.33) and (3.34),

1∑

j=0

ηj = 3k + 1, (3.35a)

x+1∑

j=2

ηj = k −
x∑

w=0

aw +

x+1∑

j=2

δj , (3.35b)

and

k−1∑

j=x+2

ηj = k − ⌊log2 k⌋ − 2. (3.35c)

Therefore,

n =

k−1∑

j=0

ηj ≈ 5k when k ≫ 1. (3.36)

Consequently, the code rate RU is converged to

RU =
k

n
≈

k

5k
= 0.2 when k ≫ 1.

Simulation results based on R = k
n
of the UEP codes are illustrated in Figure 3.3 for

s = (3, 5, . . . , 2k + 1) and 2 ≤ k ≤ 215, which shows asymptotic convergence to 0.2 as proven

in Theorem 3.2.

Throughput of the degraded broadcast channels

Recall from Section 2.2, the proposed broadcast channel model depicted in Figure 3.1 can

be considered as a degraded broadcast channel that has k component channels [27]. From

k cascaded binary symmetric channels (BSCs) with parameters αi ∈ [0, 12] as shown in

35

2^10 2^11 2^15

0.2

0.22

0.24

0.26

0.28

0.3

Dimension k

R
a
te

Figure 3.3: Rates of optimal UEP codes for 2 ≤ k ≤ 215 when a separation vector is given
as s = (3, 5, . . . , 2k + 1).

Figure 2.4, the bit error probability of the each component channel can be given by

pi = pi−1(1− αi) + (1− pi−1)αi for 1 ≤ i ≤ k (3.37)

where p0 = 0 [27]. For simplicity, let αi = p for 1 ≤ i ≤ k, then

p1 = p,

p2 = (1− p1)p+ p1(1− p) = p(1 + Φ),

p3 = (1− p2)p+ p2(1− p) = p(1 + Φ + Φ2),

...

pi = (1− pi−1)p+ pi−1(1− p) = p(1 + Φ + Φ2 + · · ·+Φi−1)

36

where Φ = (1− 2p). Therefore, (3.37) can be written as in a closed form,

pi =
1− Φi

2
for 1 ≤ i ≤ k. (3.38)

Let n satisfy the bound (3.20) for a given separation vector s = (3, 5, . . . , 2k + 1), then

mi can be successfully delivered to receiver i when the corresponding component channel in-

troduces less than or equal to i errors. Therefore, the average rate of successful transmission

of a bit to receiver Ri, denoting by θi, can be given as

θi =
i∑

j=0

(
n

j

)

(1− pi)
n−jpji , 1 ≤ i ≤ k, (3.39)

consequently,

Γi =
θi
n
, 1 ≤ i ≤ k (3.40)

where Γi denote the effective transmission rate of each component channel.

From (2.6), throughput of the degraded broadcast channel can be given by

RT =

k∑

i=1

Γi ≤
k

n
. (3.41)

Numerical results of the throughput RT for 2 ≤ k ≤ 28 and the corresponding code rate, k
n

for a given s = (3, 5, . . . , 2k + 1), are illustrated in Figure 3.4.

Bit-error performance of the degraded broadcast channels

For the degrade broadcast channel model with cascaded BSCs, a message bit mi cannot be

recovered at a receiver i if the channel introduces more than
⌊
si
2

⌋
errors when the proposed

UEP coding scheme is used for multiuser communications. Therefore we can obtain a

37

0 50 100 150 200 250

0.15

0.2

0.25

0.3

Number of users, k

R
a
te

s

code rate, k/n

throughput, R
T

(a) p = 1
n
for 1 ≤ i ≤ k

0 50 100 150 200 250
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of users, k

R
a
te

s

code rate, k/n

throughput, R
T

(b) p = 1
2n

for 1 ≤ i ≤ k

Figure 3.4: Code rate and throughput of the degraded broadcast channel for 2 ≤ k ≤ 28.

probability of bit error for a receiver i as

Pb(i) = Pr(m̂i 6= mi) =

n∑

j=i+1

(
n

j

)

(1− pi)
n−jpji , 1 ≤ i ≤ k (3.42)

38

0 1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

E
b
 / N

0
 (dB)

B
it

 e
rr

o
r

p
ro

b
a
b

il
it

y
,

P
b

user 1

user 2

user 3

user 4

user 5

user 6

(a) Multiuser communications over a degraded broadcast channel

0 1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0
 (dB)

B
it

 e
rr

o
r

p
ro

b
a
b

il
it

y
,
P

b

m
1

m
2

m
3

m
4

m
5

m
6

(b) Multilevel error protection

Figure 3.5: Bit error performance with a binary UEP code where n = 25 and k = 6 for a
given s = (3, 5, . . . , 13).

where pi is a bit error probability of the component channel as derived in (3.38). In

Fig. 3.5(a), assuming an AWGN channel with BPSK signaling (i.e., p = Q
(√

2kEb

nN0

)

),

we illustrate the bit error performances of the 6-user communication system over the de-

graded broadcast channel with a binary UEP code whose length is n = 25 for a given

39

s = (3, 5, . . . , 13).

For comparison, we investigate the bit error performance when the optimal UEP codes

are applied for a conventional multilevel error protection. Consider a communication sce-

nario that a k-bit message vector m = (m1,m2, . . . ,mk) is transmitted to a single receiver

where the message bit mi for 1 ≤ i ≤ k has levels of error protection requirement. Suppose

that a separation vector s = (3, 5, . . . , 2k + 1) specifies the multilevel error protection, i.e.,

a message bit mi is protected against i-bit channel errors. Then, a probability of bit error

for each message bit can be written as

Pb(i) = Pr(m̂i 6= mi) =

n∑

j=i+1

(
n

j

)

(1− p)n−jpj, 1 ≤ i ≤ k. (3.43)

where p denotes a transition probability of a single BSC (i.e., p = Q
(√

2kEb

nN0

)

by assuming

an AWGN channel with BPSK signaling). In Fig. 3.5(b), we illustrate the bit error perfor-

mances of the 6-level error protection with binary UEP codes whose length is n = 25 for a

given s = (3, 5, . . . , 13).

3.1.4 Decoding of UEP codes using integer programming

Decoding by majority logic

Let a generator matrix of UEP code be represented with its column vectors fj for 1 ≤ j ≤ n,

G =












g1,1 g1,2 . . . g1,n

g2,1 g2,2 . . . g2,n
...

...
. . .

...

gk,1 gk,2 . . . gk,n












,

= (f1, f2, . . . , fn), (3.44)

40

and let a received vector at receiver Ri for 1 ≤ i ≤ k be written as ri = (r1, r2, . . . , rn).

Then each received bit rj can be represented by

rj = mfj + ej , (3.45)

=

k∑

i=1

migi,j + ej for 1 ≤ j ≤ n

where m = (m1,m2, . . . ,mk) is a message vector, gi,j is an element at the i-th row and the

j-th column of the generator matrix G, and ej is a channel error.

Let Jh be a subset of J where J = {1, 2, . . . , n} for a given h, and r̂h be a modified

received bit where

r̂h =
∑

j∈Jh

rj (3.46)

under modulo-2 additions. If the subset Jh satisfies

∑

j∈Jh

fj = ii (3.47)

where ii denotes the i-th column of k × k identity matrix,

r̂h =
∑

j∈Jh

(mfj + ej) ,

= mi +
∑

j∈Jh

ej . (3.48)

Consider the generator matrix G from Example 3.1 and the index subsets J1 = {8},

J2 = {5, 10}, and J3 = {7, 11}. Then, the corresponding modified received bits are written

41

as

r̂1 =
∑

j∈J1

rj = r8 = m1 + e8,

r̂2 =
∑

j∈J2

rj = r5 + r10 = (✟✟m2 + e5) + (m1 +✟✟m2 + e10)

= m1 + (e5 + e10) ,

r̂3 =
∑

j∈J3

rj = r7 + r11

= (✟✟m2 +✟✟m3 + e7) + (m1 +✟✟m2 +✟✟m3 + e11)

= m1 + (e7 + e11) .

Suppose that the channel has introduced no error or single-bit error (i.e.,
∑

j∈∀j ej ≤ 1).

Then, it is easy to see that the message bit m1 can be determined at the receiver R1 by

majority logic since at most one of r̂1, r̂2, and r̂3 has an error component. Based on this

observation, we develop the following theorem.

Theorem 3.3. Suppose that, at receiver Ri for 1 ≤ i ≤ k, the number of errors are less

than or equal to ti =
⌊
si
2

⌋
. Then the receiver Ri can recover the message mi if there exist

disjoint subsets J1,J2, . . . ,Jsi of J where each subset satisfies

∑

j∈Jh

fj = ii for 1 ≤ h ≤ si.

Proof. From (3.48), each subset modifies the corresponding received bits as

r̂h =
∑

j∈Jh

rj = mi +
∑

j∈Jh

ej for 1 ≤ h ≤ si. (3.49)

42

If the subsets J1,J2, . . . ,Jsi are disjoint, i.e.,

Jh ∩ Jh′ = ∅ for 1 ≤ h 6= h′ ≤ si, (3.50)

where
⋃si

h=1 Jh ⊆ J , then less than or equal to
⌊
si
2

⌋
of r̂h has nonzero error components

since
∑

∀j ej ≤
⌊
si
2

⌋
. Therefore, the message mi can be determined at the receiver Ri by

using majority logic on (r̂1, r̂2, . . . , r̂si), i.e.,

mi =







0 if
∑si

h=1 r̂h ≤
⌊
si
2

⌋

1 otherwise

(3.51)

Based on Theorem 3.3, we formulate an integer programming problem such that it finds

a subset of J that satisfies (3.47). Then, we iterate the integer programming until all

disjoint subsets, J1,J2, . . . ,Jsi are found.

Iterative integer programming

Consider a subset Jh of an index set J = {1, 2, . . . , n} that satisfies the following constraint

over GF(2) for a given i,

∑

j∈Jh

gi,j = 1 (3.52a)

∑

j∈Jh

gi′,j = 0 for 1 ≤ i′ 6= i ≤ k. (3.52b)

43

Then, from (3.45) and (3.46),

r̂h =
∑

j∈Jh

rj =
∑

j∈Jh

(mfj + ej)

= mi

∑

j∈Jh

gi,j +
∑

1≤i′ 6=i≤k

mi′

∑

j∈Jh

gi′,j +
∑

j∈Jh

ej

= mi +
∑

j∈Jh

ej .

Therefore, the subset Jh which satisfies (3.47) can be obtained from the constraints (3.52)

under modulo-2 addition.

Let us define a vector y = {y1, y2, . . . , yn} that consists of binary variables yj where

yj ,







0 if j /∈ Jh

1 if j ∈ Jh

for 1 ≤ j ≤ n. (3.53)

Then, the constraints (3.52) to find the subset Jh can be rewritten under modulo-2 addition

as

∑

j∈Gi

yj = 1, (3.54a)

∑

j∈Gi′

yj = 0, for 1 ≤ i′ 6= i ≤ k (3.54b)

where Gi denotes an index set for the i-th row of G that has nonzero component, i.e.,

Gi = {j | gi,j 6= 0, 1 ≤ j ≤ n} for 1 ≤ i ≤ k. (3.55)

Furthermore, since the objective of iterative integer programming is to find si numbers

44

of disjoint subsets J1,J2, . . . ,Jsi of J , and since

|J1|+ |J2|+ · · ·+ |Jsi | ≤ |J | = n (3.56)

where |·| denotes the cardinality of a set, minimizing the number of elements in a subset is

desired to maximize the possibility that there exist si numbers of disjoint subsets.

Therefore, for receiver Ri, finding a subset Jh becomes to an integer programming

problem that minimizes the sum of y1 + y2 + · · ·+ yn satisfying the constraints in (3.54):

Finding an index subset at receiver Ri

Minimize

y1 + y2 + · · ·+ yn

subject to

Gy⊤ − 2z⊤ = ii

where

y = (y1, y2, . . . , yn) ,

y1, y2, . . . , yn ∈ {0, 1},

z = (z1, z2, . . . , zk) ,

z1, z2, . . . , zk ∈ {0, 1, 2, 3, . . . }.

In the formulated integer programming problem, artificial variables zu for 1 ≤ u ≤ k are

introduced to convert the modulo-2 additions in (3.54) into the linear constraints (i.e., real

additions), and they are bounded by

∑

j∈Gu

yj − 1 ≤ 2zu ≤
∑

j∈Gu

yj for 1 ≤ u ≤ k. (3.57)

45

The following table shows an example of the conversion with an artificial variable z that is

bounded by

y1 + y2 + y3 − 1 ≤ 2z ≤ y1 + y2 + y3

where z ∈ {0, 1, 2, . . . }.

y1 y2 y3
⊕

y

∑

y z
∑

y - 2z

0 0 0 0 0 0 0

0 0 1 1 1 0 1

0 1 0 1 1 0 1

0 1 1 0 2 1 0

1 0 0 1 1 0 1

1 0 1 0 2 1 0

1 1 0 0 2 1 0

1 1 1 1 3 1 1

Decoding algorithm

Example 3.2 (k = 3). From G in Example 3.1 and (3.55),

G1 = {8, 9, 10, 11} ,

G2 = {4, 5, 6, 7, 10, 11} ,

G3 = {1, 2, 3, 6, 7, 9, 11} .

46

Therefore, the integer programming problem at R1 becomes to minimize the sum y1 + y2 +

· · ·+ y11 satisfying

y8 + y9 + y10 + y11 − 2z1 = 1,

y4 + y5 + y6 + y7 + y10 + y11 − 2z2 = 0,

y1 + y2 + y3 + y6 + y7 + y9 + y11 − 2z3 = 0.

The optimal solution of the integer programming problem finds the smallest subset that

satisfy (3.47);

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

0 0 0 0 0 0 0 1 0 0 0
→ J1 = {8},

then R1 sets y8 = 0 and repeats the integer programming to obtain disjoint subset J2;

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

0 0 0 0 1 0 0 0 0 1 0
→ J2 = {5, 10}.

Since R1 needs si = 3 disjoint subsets to decode m1, R1 sets y5 = y8 = y10 = 0 and repeats

the integer programming to obtain the last disjoint subset J3;

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

0 0 0 0 0 0 1 0 0 0 1
→ J3 = {7, 11}.

Using the disjoint subsets J1, J2, and J3, R1 can determine m1 by majority logic. We

note here that the iterative integer programming to find the si numbers of disjoint subsets

does not depend on the received information (i.e., it only depends on the structure of a

generator matrix). Therefore, only the majority logic decoding is applied upon receiving

47

information with the predetermined index subsets, which reduces the complexity of the

decoding.

The detailed descriptions of the decoding algorithm is shown in Algorithm 1, and dia-

grams of the iterative integer programming and the majority logic decoding are illustrated

in Fig. 3.6. Additionally, complete decoding procedures are listed in Table 3.4 for all re-

ceivers R1, R2, and R3 with a message vector m = (1, 1, 1) and the corresponding codewords

c = (1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1). Let e1, e2, and e3 denote error vectors at receiver R1, R2,

and R3, respectively. Then, the error vectors and received vectors are given as

e1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) → r1 = (1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1) ,

e2 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0) → r2 = (1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) ,

e3 = (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0) → r3 = (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) .

Algorithm 1 UEP decoding algorithm at receiver Ri

1: procedure Iterative integer programming

2: h← 0
3: repeat ⊲ Finding si numbers of subsets
4: h← h+ 1
5: Jh ← integer programming solution
6: yj ← 0 for j ∈

⋃

1≤w≤hJw
7: until h = si
8: end procedure

9: Upon receiving ri = (r1, r2, . . . , rn)

10: procedure Majority logic decoding

11: h← 0
12: repeat ⊲ Modifying received bits
13: h← h+ 1
14: r̂h ←

∑

j∈Jh
rj

15: until h = si
16: if

∑si
h=1 r̂h ≤

⌊
si
2

⌋
then ⊲ Majority logic

17: m̂i ← 0
18: else
19: m̂i ← 1
20: end if
21: end procedure

48

Table 3.4: UEP decoding example using integer programming and majority logic

r1 = (1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1) at R1

h Jh r̂h

1 {8} r̂1 = r8 = 1

2 {5, 10} r̂2 = r5 + r10 = 0

3 {7, 11} r̂3 = r7 + r11 = 1 → m1 = 1

r2 = (1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) at R2

h Jh r̂h

1 {4} r̂1 = r4 = 1

2 {5} r̂2 = r5 = 1

3 {8, 10} r̂3 = r8 + r10 = 0

4 {1, 6} r̂4 = r1 + r6 = 1

5 {9, 11} r̂5 = r9 + r11 = 0 → m2 = 1

r3 = (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) at R3

h Jh r̂h

1 {1} r̂1 = r1 = 1

2 {2} r̂2 = r2 = 1

3 {3} r̂3 = r3 = 1

4 {8, 9} r̂4 = r8 + r9 = 0

5 {4, 6} r̂5 = r4 + r6 = 1

6 {10, 11} r̂6 = r10 + r11 = 0

7 {5, 7} r̂7 = r5 + r7 = 0 → m3 = 1

The optimal UEP codes listed in Table 3.2 can be successfully decoded by using the

integer programming decoding. However, not every optimal code constructed from the

integer programming approach is decodable by the proposed decoding algorithm since it

may not have the disjoint subsets. For example, there are 2, 063 solutions for k = 4 that

have optimal value n = 11, but 1, 719 solutions (i.e., 1, 719 generator matrices for UEP

codes) have the disjoint subsets. Therefore, we investigate the decodability of the proposed

decoding algorithm in Section 3.3.2.

49

h = 1

Integer
Programming

h = si?

Jhyj = 0,
j ∈

⋃
1≤w≤h Jw

no

h = h+ 1

J1,J2, . . . ,Jsi

yes

(a) Iterative integer programming

r̂h =
∑

j∈Jh
rj

for 1≤h≤si

J1,J2, . . . ,Jsi

ri = (r1, r2, . . . , rn)

Majority logic on
r̂1, r̂2, . . . , r̂si

m̂i

(b) Majority logic decoding

Figure 3.6: Diagrams of UEP decoding method for single-bit message mi at receiver Ri

3.2 Integer programming approach to UEP coding scheme

for multi-bit messages

In this section, we extend the integer programming approach for the case of single-bit

messages introduced in Section 3.1 to l-bit message case.

50

3.2.1 UEP code constructions using integer programming

Recall that a message vector m = (m1,m2, . . . ,mk) consist of l-bit messages for k users

denoted by

mi =
(
m

(i)
1 ,m

(i)
2 , . . . ,m

(i)
l

)
for 1 ≤ i ≤ k (3.58)

where m
(i)
u ∈ {0, 1} for 1 ≤ u ≤ l.

Furthermore, for a given non-decreasing separation vector s = (s1, s2, . . . , sk) where

si = 2ti +1 for 1 ≤ i ≤ k, it follows from (3.3) that a UEP code can correct up to ti =
⌊
si
2

⌋

channel errors for the message mi if

wH (mG) ≥ si, mi 6= 0 for 1 ≤ i ≤ k. (3.59)

Let

m′
(i−1)l+u = m(i)

u for 1 ≤ i ≤ k and 1 ≤ u ≤ l, (3.60)

and

k′ = kl. (3.61)

Then, we can rewrite the message vector m as

m = (m1 |m2 | . . . |mk)

=
(
m

(1)
1 ,m

(1)
2 , . . . ,m

(1)
l | m

(2)
1 ,m

(2)
2 , . . . ,m

(2)
l | . . . | m

(k)
1 ,m

(k)
2 , . . . ,m

(k)
l

)

=
(
m′

1,m
′
2, . . . ,m

′
l | m

′
l+1,m

′
l+2, . . . ,m

′
2l | . . . | m

′
k′−l+1,m

′
k′−l+2, . . . ,m

′
k′

)
(3.62)

Also, let us define the modified separation vector of length k′ as s̄ = (s̄1, s̄2, . . . , s̄k′) where

each element is written by

s̄i′ = si for (i− 1)l + 1 ≤ i′ ≤ il and 1 ≤ i ≤ k, (3.63)

51

i.e.,

s̄ =
(
s1, s1, . . . , s1
︸ ︷︷ ︸

l times

, s2, s2, . . . , s2
︸ ︷︷ ︸

l times

, . . . , sk, sk, . . . , sk
︸ ︷︷ ︸

l times

)
. (3.64)

Then, the constraints (3.59) is equivalent to

wH (mG) ≥ s̄i′ , m′
i′ = 1 for 1 ≤ i′ ≤ k′, (3.65)

consequently, using the integer programming approach introduced in Section 3.1.1, we can

construct a UEP code that satisfies (3.65).

Let Ab be the k′ × (2k
′
− 1) matrix as defined in (3.8), i.e.,

Ab =















0 0 0 · · · 0 1 · · · 1 1

0 0 0 · · · 1 0 · · · 1 1

...
...
...
. . .

...
...
. . .

...
...

0 1 1 · · · 1 0 · · · 1 1

1 0 1 · · · 1 0 · · · 0 1















=















a1

a2
...

ak′−1

ak′















(3.66)

then, from (3.15), we have the following inequalities for integer programming problem:

Ai′x
⊤ ≥ b⊤

i′ for 1 ≤ i′ ≤ k′ (3.67)

where

Ai′ =







a1 if i′ = 1

ai′ +
∑i′−1

u=1 ωuau, if 2 ≤ i′ ≤ k′
(3.68a)

where ωu ∈ {0, 1},

52

x =
(
x1, x2, . . . , x2k′−1

)
, (3.68b)

and

bi′ =
(
si′ , si′ , . . . , si′
︸ ︷︷ ︸

2i′−1

)
. (3.68c)

Therefore, based on (3.67), we formulate an integer programming problem for UEP code

construction with a given separation vector s = (s1, s2, . . . , sk) whose elements are given as

si = 2ti + 1 for 1 ≤ i ≤ k.

UEP code construction

Minimize

n = x1 + x2 + · · ·+ x2k′−1

subject to

Ax⊤ ≥ b⊤

where

A =












A1

A2

...

Ak′












, b⊤ =












b⊤
1

b⊤
2

...

b⊤
k′












53

Example 3.3 (k = 2 & l = 2). For a given s = (3, 5), it follows from (3.66),

Ab =












000000011111111

000111100001111

011001100110011

101010101010101












=












a1

a2

a3

a4












,

and, from (3.68a),

A1 =

(

000000011111111

)

= (a1) ,

A2 =






000111100001111

000111111110000




 =






a2

a2 + a1




 ,

A3 =












011001100110011

011001111001100

011110000111100

011110011000011












=












a3

a3 + a1

a3 + a2

a3 + a1 + a2












,

A4 =


























101010101010101

101010110101010

101101001011010

101101010100101

110011001100110

110011010011001

110100101101001

110100110010110


























=


























a4

a4 + a1

a4 + a2

a4 + a1 + a2

a4 + a3

a4 + a1 + a3

a4 + a2 + a3

a4 + a1 + a2 + a3


























.

54

Therefore, the UEP code construction becomes to find x that minimizes the sum x1 +

x2 + · · ·+ x15 satisfying

x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 3

x4 + x5 + x6 + x7 + x12 + x13 + x14 + x15 ≥ 3

x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 ≥ 3

x2 + x3 + x6 + x7 + x10 + x11 + x14 + x15 ≥ 5

x2 + x3 + x6 + x7 + x8 + x9 + x12 + x13 ≥ 5

x2 + x3 + x4 + x5 + x10 + x11 + x12 + x13 ≥ 5

x2 + x3 + x4 + x5 + x8 + x9 + x14 + x15 ≥ 5

x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15 ≥ 5

x1 + x3 + x5 + x7 + x8 + x10 + x12 + x14 ≥ 5

x1 + x3 + x4 + x6 + x9 + x11 + x12 + x14 ≥ 5

x1 + x3 + x4 + x6 + x8 + x10 + x13 + x15 ≥ 5

x1 + x2 + x5 + x6 + x9 + x10 + x13 + x14 ≥ 5

x1 + x2 + x5 + x6 + x8 + x11 + x12 + x15 ≥ 5

x1 + x2 + x4 + x7 + x9 + x10 + x12 + x15 ≥ 5

x1 + x2 + x4 + x7 + x8 + x11 + x13 + x14 ≥ 5.

55

The optimal value obtained by solving the integer programming problem is

n =

15∑

j=1

xj = 10,

where

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11

1 1 1 1 1 1 1 1 1 1
.

Therefore, the corresponding generator matrix is

G =












0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 0 0 0 0

0 1 1 0 0 1 0 0 1 1

1 0 1 0 1 1 0 1 0 1












.

3.2.2 Bounds, results, and comparisons

A lower bound on the length of the UEP code for the case of l-bit messages are given in

the following corollary.

Corollary 3.1 (Integer programming bound for l-bit messages). For a given non-decreasing

separation vector s = (s1, s2, . . . , sk), an integer programming bound is given by

n ≥
k∑

i=1

il∑

j=il−l+1

⌈ si
2kl−j

⌉

. (3.69)

Proof. For the given separation vector s = (s1, s2, . . . , sk), we formulate 2kl − 1 inequalities

56

Table 3.5: Optimal results of integer programming: l-bit message

l k IP bound IP result nonzero xj for 1 ≤ j ≤ 2kl − 1

2 2 10 10
x1 x2 x3 x4 x5 x7 x8 x9 x10 x11

1 1 1 1 1 1 1 1 1 1

2 3 16 16
x1 x2 x4 x5 x6 x8 x9 x10 x11 x16 x17 x19 x32 x35 x47 x61

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 13 13
x1 x2 x3 x4 x5 x6 x7 x8 x16 x32 x44 x54 x61

1 1 1 1 1 1 1 1 1 1 1 1 1

4 2 15 15
x1 x2 x4 x7 x8 x11 x13 x14 x16 x32 x64 x127 x128 x179 x213

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

for constraints of the integer programming problem as

Ax⊤ ≥ b⊤.

Similar to the proof of Theorem 3.20, each column of A has 2kl−1 ones, and the sum of the

inequalities can be written as

2kl−1
(
x1 + x2 + · · ·+ x2kl−1

)

≥ (2l − 1)s1 + 2l(2l − 1)s2 + · · · + 2(k−1)l(2l − 1)sk. (3.70)

Consequently,

n 2kl−1 ≥
l∑

i=1

2i−1s1 +
2l∑

i=l+1

2i−1s2 + · · ·+
kl∑

i=(k−1)l+1

2i−1sk. (3.71)

57

Table 3.6: Code length comparisons for s = (3, 5, . . . , 2k + 1)

l k
UEP code Shortened BCHa Time sharing

n nSB nTS component codesb

2 2 10 (12, 4, 2) 15
(5, 2, 1)

(10, 2, 2)

2 3 16 (21, 6, 3) 27

(5, 2, 1)

(10, 2, 2)

(12, 2, 3)

3 2 13 (14, 6, 2) 17
(6, 3, 1)

(11, 3, 2)

4 2 15 (18, 8, 2) 19
(7, 4, 1)

(12, 4, 2)

a Shortened BCH codes with parameters: (nSB, kl, t ≥ k)
b Shortened BCH codes with parameters: (ni, l, t ≥= i)

By applying ceiling functions,

n ≥
l∑

i=1

⌈
2i−1s1
2kl−1

⌉

+

2l∑

i=l+1

⌈
2i−1s2
2kl−1

⌉

+ · · ·+
kl∑

i=(k−1)l+1

⌈
2i−1sk
2kl−1

⌉

. (3.72)

Therefore,

n ≥
k∑

i=1

il∑

j=il−l+1

⌈ si
2kl−j

⌉

.

In Table 3.5, we show results of integer programming for the l-bit messages with s =

(3, 5, . . . , 2k + 1). For the listed l and k, the optimal UEP codes are constructed by integer

programming such that their lengths satisfy the integer programming bounds derived in

(3.69). Generator matrices for the optimal UEP codes are constructed in Appendix A.

58

In addition, we compare the length of UEP codes to the length of t-error-correcting

shortened BCH codes and the length of time sharing shortened BCH codes in Table 3.6.

Similar to (3.30), for a separation vector given as s = (3, 5, . . . , 2k + 1), a minimum length

of shortened BCH code that provides at least t = ⌊sk2 ⌋ = k error corrections can be obtained

by

nSB = nB − (kB − kl) (3.73)

where nB is a minimum length of binary BCH code whose dimension, kB is at least kl and

whose error correction capability is at least t = k. Also, a length of time sharing shortened

BCH codes can be written as the sum of the length of components codes,

nTS =
k∑

i=1

ni (3.74)

where ni is a minimum length of shortened BCH code whose dimension is l and whose error

correction capability is at least t =
⌊
si
2

⌋
= i.

3.2.3 Asymptotic code rates and throughput of broadcast channels

In the following theorem, an asymptotically achievable code rate of the optimal UEP code

is derived for the case of l-bit messages.

Theorem 3.4. Let R(l) be a rate of the optimal UEP code for the l-bit messages when the

non-decreasing separation vector is given as s = (3, 5, . . . , 2k + 1). Then,

R(l) ≈
l

l + 4
when k ≫ 1. (3.75)

Proof. From (3.69), a length of the optimal UEP code for a given s = (3, 5, . . . , 2k + 1) can

59

be written as

n =

k∑

i=1

il∑

j=il−l+1

⌈ si
2kl−j

⌉

.

Since si = 2i+ 1 for 1 ≤ i ≤ k,

n =
k∑

i=1

il∑

j=il−l+1

⌈
2i+ 1

2kl−j

⌉

. (3.76)

Then, from (3.63),

n =

kl∑

u=1

⌈

2
⌈
u
l

⌉
+ 1

2kl−u

⌉

, (3.77a)

=

kl−1∑

v=0

⌈

2k + 1− 2
⌊
v
l

⌋

2v

⌉

. (3.77b)

Let

ηv =

⌈

2k + 1− 2
⌊
v
l

⌋

2v

⌉

,

and

k = ax2
x + ax−12

x−1 + · · ·+ a0

where x = ⌊log2 k⌋, then

ηv =







2k + 1 , v = 0

k + 1 , v = 1

ax2
x−v+1 + · · · + av−12

0 + δv, 2 ≤ v ≤ x+ 1

1 , x+ 2 ≤ v ≤ kl − 1

(3.78)

60

where δv ∈ {0, 1}.

Let ∆v = ηv − δv for 2 ≤ v ≤ x+ 1, then

∆v = ax2
x−v+1 + ax−12

x−v + · · ·+ av−12
0 (3.79)

and

x+1∑

v=2

∆v = ax
(
2x−1 + · · ·+ 1

)
+ ax−1

(
2x−2 + · · ·+ 1

)
+ · · ·+ a2 (2 + 1) + a1

= ax (2
x − 1) + ax−1

(
2x−1 − 1

)
+ · · ·+ a0 (1− 1)

= k −
x∑

w=0

aw. (3.80)

From (3.78) and (3.80),

1∑

v=0

ηv = 3k + 2, (3.81a)

x+1∑

v=2

ηv = k −
x∑

w=0

aw +

x+1∑

v=2

δv, (3.81b)

and

kl−1∑

v=x+2

ηv = kl − ⌊log2 k⌋ − 2. (3.81c)

Therefore,

n =

kl−1∑

v=0

ηv ≈ (l + 4)k when k ≫ 1, (3.82)

61

2^8 2^10 2^12

0.35

0.4

0.45

0.5

0.55

Number of users, k

R
a
te

s

l=4 l=3 l=2

Figure 3.7: Rates of optimal UEP codes for 2 ≤ k ≤ 212 when l = 2, 3, 4.

consequently, the code rate is converged to

R(l) =
kl

n
≈

l

(l + 4)
when k ≫ 1.

Simulation results for the rates of the UEP codes obtained by computing R(l) = kl
n

are

illustrated in Fig. 3.7 for 2 ≤ k ≤ 212, which shows asymptotic convergence l
l+4 for l = 2, 3,

and 4 as proven in Theorem 3.4.

As explained in Section 2.2, the broadcast channel model can be viewed as k degraded

component channels. Consequently, the model can be described by k cascaded BSCs with

transition probabilities, αi for 1 ≤ i ≤ k as illustrated in Figure 2.4.

Let n satisfy the bound in (3.69) for a given separation vector s = (3, 5, . . . , 2k + 1). It

follows from (3.37) and (3.39), since the l-bit message mi is successfully delivered to the

receiver Ri when the corresponding component channel introduces less than or equal to i

errors, the effective transmission rate of the l-bit message mi to the receiver Ri through the

62

0 20 40 60 80 100 120
0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

Number of users, k

R
a
te

s

k/n

R
T

(a) l = 2 and p = 1
2n

for 1 ≤ i ≤ k

0 20 40 60 80 100 120
0.14

0.142

0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

0.16

Number of users, k

R
a
te

s

k/n

R
T

(b) l = 3 and p = 1
2n

for 1 ≤ i ≤ k

0 20 40 60 80 100 120
0.12

0.122

0.124

0.126

0.128

0.13

0.132

0.134

0.136

0.138

0.14

Number of users, k

R
a
te

s

k/n

R
T

(c) l = 4 and p = 1
2n

for 1 ≤ i ≤ k

Figure 3.8: Throughput of the degraded broadcast channel for 2 ≤ k ≤ 27

63

component channel can be given by

Γi =
1

n

i∑

j=0

(
n

j

)

(1− pi)
n−jpji , 1 ≤ i ≤ k (3.83)

where pi is a bit error probability of the component channel as derived in (3.38). Conse-

quently, the throughput of the degraded broadcast channel can be given by

RT =
k∑

i=1

Γi ≤
k

n
. (3.84)

We illustrate the throughput of the degraded broadcast channel for the case of l = 2, 3,

and 4 in Figure 3.8 when αi = p = 1
2n for 1 ≤ i ≤ k.

3.2.4 Decoding of UEP codes using integer programming

In this section, we extend the decoding algorithm introduced in Section 3.1.4 to decode

l-bit messages, mi at each receiver Ri for 1 ≤ i ≤ k. Since a message vector is given as

m = (m1,m2, . . . ,mk) where mi =
(
m

(i)
1 ,m

(i)
2 , . . . ,m

(i)
l

)
for 1 ≤ i ≤ k, each element of the

received vector ri can be written as

rj =

k∑

i=1

l∑

u=1

m(i)
u gl(i−1)+u,j + ej for 1 ≤ j ≤ n (3.85)

where gi,j represents the i-th row and the j-th column element of G and ej is a channel

error. In the following, we explain the decoding method with an example of k = 2 and l = 2

to recover m1 =
(
m

(1)
1 ,m

(1)
2

)
at receiver R1 .

64

Example 3.4 (k = 2 & l = 2). From Example 3.3, the corresponding generator matrix is

G =












0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 0 0 0 0

0 1 1 0 0 1 0 0 1 1

1 0 1 0 1 1 0 1 0 1












.

Iterative integer programming Receiver R1 first finds subsets J 1
1 ,J

1
2 ,J

1
3 using

iterative integer programming to decode m
(1)
1 . From the generator matrix, we have

G1 = {7, 8, 9, 10} ,

G2 = {4, 5, 6} ,

G3 = {2, 3, 6, 9, 10} ,

G4 = {1, 3, 5, 6, 8, 10} .

Therefore, the integer programming problem that finds a subset J 1
h for 1 ≤ h ≤ si becomes

to minimize the sum y1 + y2 + · · ·+ y10 satisfying

y7 + y8 + y9 + y10 − 2z1 = 1,

y4 + y5 + y6 − 2z2 = 0,

y2 + y3 + y6 + y9 + y10 − 2z3 = 0,

y1 + y3 + y5 + y6 + y8 + y10 − 2z4 = 0.

65

The subsets obtained from integer programming are J 1
1 = {7}, J 1

2 = {2, 9}, and J 1
3 =

{1, 8}. Since the subsets for decoding m
(1)
1 has been found, R1 sets g1,j = 0 for j ∈ G1, and

R1 finds subsets J 2
1 ,J

2
2 ,J

2
3 to decode m

(1)
2 . Since we have

G1 = {} = ∅,

G2 = {4, 5, 6} ,

G3 = {2, 3, 6, 9, 10} ,

G4 = {1, 3, 5, 6, 8, 10} ,

the integer programming problem that finds a subset J 2
h for 1 ≤ h ≤ si becomes to minimize

the sum y1 + y2 + · · ·+ y10 satisfying

y4 + y5 + y6 − 2z2 = 1,

y2 + y3 + y6 + y9 + y10 − 2z3 = 0,

y1 + y3 + y5 + y6 + y8 + y10 − 2z4 = 0.

The subsets obtained from integer programming are J 2
1 = {4}, J 2

2 = {6, 10}, and J 2
3 =

{1, 5}.

66

Majority logic decoding Upon receiving ri = (r1, r2, . . . , rn), R1 recovers m1 =

(
m

(1)
1 ,m

(1)
2

)
using majority logic based on the subsets found from iterative integer program-

ming. Since the subsets for m
(1)
1 are J 1

1 = {7}, J 1
2 = {2, 9}, and J 1

3 = {1, 8},

r̂1 = r7 = m
(1)
1 + e7,

r̂2 = r2 + r9 =
(

✚
✚✚m
(2)
1 + e2

)

+
(

m
(1)
1 +

✚
✚✚m
(2)
1 + e9

)

= m
(1)
1 + (e2 + e9) ,

r̂3 = r1 + r8 =
(

✚
✚✚m
(2)
2 + e1

)

+
(

m
(1)
1 +

✚
✚✚m
(2)
2 + e8

)

= m
(1)
1 + (e1 + e8) .

Consequently, m
(1)
1 can be determined by majority logic if

∑

∀j ej ≤ ti.

To cancel out m
(1)
1 in the received vector, R1 updates ri = (r1, r2, . . . , rn) by

rj = rj +m
(1)
1 for j ∈ G1,

i.e.,

r7 = r7 +m
(1)
1 =

✚
✚✚m
(1)
1 +

✚
✚✚m
(1)
1 + e7,

r8 = r8 +m
(1)
1 =

✚
✚✚m
(1)
1 +

✚
✚✚m
(1)
1 +m

(2)
2 + e8,

r9 = r9 +m
(1)
1 =

✚
✚✚m
(1)
1 +

✚
✚✚m
(1)
1 +m

(2)
1 + e9,

r10 = r10 +m
(1)
1 =

✚
✚✚m
(1)
1 +

✚
✚✚m
(1)
1 +m

(2)
1 +m

(2)
2 + e10.

Then, R1 use the subsets J 2
1 = {4}, J 2

2 = {6, 10}, and J 2
3 = {1, 5} to obtain the following

67

modified received bits:

r̂1 = r4 = m
(1)
2 + e4,

r̂2 = r6 + r10

=
(

m
(1)
2 +

✚
✚✚m
(2)
1 +

✚
✚✚m
(2)
2 + e6

)

+
(

✚
✚✚m
(2)
1 +

✚
✚✚m
(2)
2 + e10

)

= m
(1)
2 + (e6 + e10) ,

r̂3 = r1 + r5 =
(

✚
✚✚m
(2)
2 + e1

)

+
(

m
(1)
2 +

✚
✚✚m
(2)
2 + e5

)

= m
(1)
2 + (e1 + e5) .

Consequently, R1 recovers m
(1)
2 by majority logic if

∑

∀j ej ≤ ti. Complete decoding proce-

dures are listed in Table 3.7 for receivers R1 and R2 with a message vector m = (1, 1, 1, 1)

and the corresponding codewords c = (1, 1, 0, 1, 0, 1, 1, 0, 0, 1).

In general, Ri first finds subsets J
u
1 ,J

u
2 , . . . ,J

u
si
using iterative integer programming for

1 ≤ u ≤ l. Then, upon receiving the received bit ri, the receiver Ri applies majority logic

on the modified received bits,

r̂h =
∑

j∈J u
h

rj = m(i)
u +

∑

j∈J u
h

ej for 1 ≤ h ≤ si (3.86)

to determine m
(i)
u , and Ri repeats procedures for 1 ≤ u ≤ l. The detailed descriptions

of the decoding algorithm is shown in Algorithm 2, and diagrams of the iterative integer

programming and the majority logic decoding are illustrated in Fig. 3.9.

68

Algorithm 2 Decoding algorithm at Ri for l-bit message

1: procedure Iterative integer programming

2: u← 0

3: repeat ⊲ Finding subsets for m
(i)
u

4: u← u+ 1
5: v ← l(i− 1) + u
6: Formulate an integer programming problem

min y1 + y2 + · · ·+ yn

s.t. Gy⊤ − 2z⊤ = iv

7: h← 0
8: repeat ⊲ Finding si numbers of subsets
9: h← h+ 1

10: J u
h ← integer programming solution

11: yj ← 0 for j ∈
⋃

1≤w≤h J
u
w

12: until h = si
13: gv,j ← 0 for j ∈ Gv
14: until u = l
15: end procedure

16: Upon receiving ri = (r1, r2, . . . , rn)

17: procedure Majoriy logic decoding

18: u← 0

19: repeat ⊲ Determine m
(i)
u

20: u← u+ 1
21: h← 0
22: repeat ⊲ Modifying received bits
23: h← h+ 1
24: r̂h =

∑

j∈J u
h
rj

25: until h = si
26: if

∑si
h=1 r̂h ≤

⌊
si
2

⌋
then ⊲ Majority logic

27: m̂
(i)
u ← 0

28: else

29: m̂
(i)
u ← 1

30: end if

31: rj ← rj + m̂
(i)
u for j ∈ Gl(i−1)+u

32: until u = l
33: end procedure

69

Table 3.7: Decoding example for l = 2 and k = 2

r1 = (1, 1, 0, 1, 0, 1, 1, 0, 1, 1) at R1

u h Jh r̂h

1

1 {7} r̂1 = r7 = 1

2 {2, 9} r̂2 = r2 + r9 = 0

3 {1, 8} r̂3 = r1 + r8 = 1 → m
(1)
1 = 1

r1 ← r1 + (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

r1 = (1, 1, 0, 1, 0, 1, 0, 1, 0, 0)

u h Jh r̂h

2

1 {4} r̂1 = r4 = 1

2 {6, 10} r̂2 = r6 + r10 = 1

3 {1, 5} r̂3 = r1 + r5 = 1 → m
(1)
2 = 1

r2 = (1, 1, 0, 1, 0, 1, 1, 1, 1, 1) at R2

u h Jh r̂h

1

1 {2} r̂1 = r2 = 1

2 {7, 9} r̂2 = r7 + r9 = 0

3 {1, 3} r̂3 = r1 + r3 = 1

4 {8, 10} r̂4 = r8 + r10 = 0

5 {5, 6} r̂5 = r5 + r6 = 1 → m
(2)
1 = 1

r2 ← r2 + (0, 1, 1, 0, 0, 1, 0, 0, 1, 1)

r2 = (1, 0, 1, 1, 0, 0, 1, 1, 0, 0)

2

1 {1} r̂1 = r1 = 1

2 {3} r̂2 = r3 = 1

3 {9, 10} r̂3 = r9 + r10 = 0

4 {7, 8} r̂4 = r7 + r8 = 0

5 {4, 6} r̂5 = r4 + r6 = 1 → m
(2)
2 = 1

3.3 Discussions

3.3.1 On the complexity of UEP code construction

In Section 3.1.1 (also, in Section 3.2.1), we introduce an integer programming approach

to construct optimal UEP codes for k users in broadcast communications. Essentially,70

h = 1u = 1

Integer
Programming

yj = 0
for

j ∈
⋃

1≤w≤h J u
w

h = si?

u = l?

Gl(i−1)+u = ∅

J u
1 ,J

u
2 , . . . ,J

u
si

for 1≤u≤l

J u
h

no

h = h+ 1

yes

no

u = u+ 1

yes

(a) Iterative integer programming

r̂h =
∑

j∈J u
h
rj

for 1≤h≤si

•

ri = (r1, r2, . . . , rn)

u = 1
J u
1 ,J

u
2 , . . . ,J

u
si

Majority logic
on

r̂1, r̂2, . . . , r̂si

•

m̂
(i)
u for 1 ≤ u ≤ l

rj = rj + m̂
(i)
u

for j∈Gl(i−1)+u

u = u+ 1

(b) Majority logic decoding

Figure 3.9: Diagrams of UEP decoding method for l-bit message mi = (m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
l)

at receiver Ri

when a separation vector s = (s1, s2, . . . , sk) is given, an integer programming problem is

formulated based on a basis matrix, Ab where Ab is k × (2k − 1) matrix consisting of all

nonzero binary k-tuples as columns in increasing order. Then the UEP code construction

becomes to minimize the sum x1 + x2 + · · · + x2k−1 subject to satisfying certain linear

constraints.

However, we observe that the number of variables for the objective function, x1 + x2 +

71

· · · + x2k−1 exponentially increases as the number of users, k is increased. Furthermore,

since integer programming is NP-hard problem, it may not provide an optimal solution

in reasonable time for a large number of variables as results indicate in Section 3.1.2.

These observations make the integer programming approach less practical when k is a

large number; hence, we wish to direct further researches on the complexity of the integer

programming approach. In the following, we present an idea to reduce the complexity of

the approach.

UEP code construction based on shortened BCH codes In the proposed integer

programming approach, we use a k×(2k−1) basis matrix, but we can reduce the complexity

of integer programming significantly by using a generator matrix of a binary BCH code

as the basis matrix. Suppose that a non-decreasing separation vector is given as s =

(s1, s2, . . . , sk), then the UEP code construction based on shortened BCH codes can be

described by the following procedures.

1. Choose a binary BCH code whose dimension is at least k and whose error correction

capability is at least t =
⌊
sk
2

⌋
= k, and let the parameters of the BCH code be

(nB , kB , t).

2. Obtain a shortened the BCH code with parameters (nSB, k, t) where nSB = nB −

(kB − k).

- example for k = 5: (31, 11, 5) BCH code → (25, 5, 5) shortened BCH code.

3. Set the generator matrix of the shortened BCH code as the basis matrix Ab.

72

- example for k = 5:

Ab =















1010101101100100011010000

0101010110110010001101000

0010101011011001000110100

0001010101101100100011010

0000101010110110010001101















4. Formulate integer programming as described in section 3.1.1.

5. Find the optimal solution to the formulated problem.

- example for k = 5: optimal value n = 21 where

x4 x7 x10 x11 x13 x15 x16 x17 x19 x23 x25

2 1 1 1 2 2 1 3 1 2 5
,

hence,

G =















001110000000010000000

110010011000010000000

001101100100001100000

110111100011100000000

001010011000001111111















As it is shown in the example of k = 5, the complexity of integer programming is reduced

since the number of variables are reduced from 31 (see Section 3.1.1) to 25. However, since

the dimension of basis matrix Ab is decreased to reduce the complexity, the optimal solution

from integer programming no longer guarantees to satisfy the bound derived in Section 3.1.2.

Therefore, there is a trade-off between the complexity of UEP code construction and the

73

Table 3.8: Comparisons of UEP code construction for s = (3, 5, . . . , 2k + 1)

.

k

Code construction based on Code construction based on

k × (2k − 1) matrix shortened BCH codes

no. of variables code length no. of variables code length

2 3 7 10 7

3 7 11 13 11

4 15 16 24 16

5 31 20 25 21

6 63 25 31 25

7 127 30 46 31

8 255 35 53 38

efficiency of the codes as we compared in Table 3.8. From the observation, reducing the

complexity of the integer programming approach would be an interesting subject to research.

3.3.2 On the decodability of the UEP decoding algorithm

From Section 3.1.1, we find an integer programming solution denoted by x =
(
x1, x2, . . . , x2k−1

)

whose nonzero components construct a generator matrix of a UEP code. Let I be an index

set for the nonzero components of x, i.e.,

I =
{

j | xj 6= 0, 1 ≤ j ≤ 2k − 1
}

, (3.87)

and let Ih be a subset of I for 1 ≤ h ≤ si. Then, for a given i, the sets Ih for 1 ≤ h ≤ si

satisfy (3.47) if

∑

j∈Ih

qj = ii for 1 ≤ h ≤ si (3.88)

74

under modulo-2 additions where qj is the j-th column of Ab from (3.8), i.e.,

Ab =












a1,1 a1,2 . . . a1,2k−1

a2,1 a2,2 . . . a2,2k−1

...
...

. . .
...

ak,1 ak,2 . . . ak,2k−1












=
(
q1, q2, . . . , q2k−1,

)
(3.89)

and ii is i-th column of k × k identity matrix.

Let xh =
(
x
(h)
1 , x

(h)
2 , . . . , x

(h)

2k−1

)
be defined as

x
(h)
j ,







1 if j ∈ Ih

0 otherwise

for 1 ≤ j ≤ 2k − 1. (3.90)

If

si∑

h=1

x
(h)
j ≤ xj ∀j, (3.91)

then the si numbers of disjoint subsets in Theorem 3.3 exist. Therefore, if the integer

programming solution x satisfies (3.88) and (3.91) for 1 ≤ i ≤ k, the corresponding UEP

code is majority-logic-decodable by the proposed decoding algorithm. For example, the

optimal UEP codes shown in Table 3.2 have the si numbers of the disjoint subsets, hence

they are majority-logic-decodable.

75

Modified integer programming approach of UEP code construction Let Ai be

an index set for i-th row of Ab that has non-zero component, i.e.,

Ai =
{

j | ai,j = 1, 1 ≤ j ≤ 2k − 1
}

.

Then, consider the variable xj for a given i that satisfies the following constraints:

xj ≥ 1, j 6= ξ, j ∈ Ai (3.92a)

xj′ − xj ≥ 0, j′ = j − ξ (3.92b)

where ξ = 2k−i. Recall that if xj ≥ 1, then qj appears xj times in columns of G. Conse-

quently, the constraints (3.92) guarantee that if qj appears xj times in columns of G, then

qj′ appears at least xj times in columns of G. Furthermore, since

qj + qj′ = ii

where ii is i-th column of k × k identity matrix, the constraints (3.92) also guarantee that

there exist xj numbers of subsets that satisfy (3.47) if xj ≥ 1 for j 6= ξ and j ∈ Ai.

Let a binary indicator variable wij be defined as

wij ,







1 if xj ≥ 1 and xj′ − xj ≥ 0

0 otherwise

(3.93)

for j ∈ Ai, j 6= ξ, and 1 ≤ i ≤ k. Then, there exist si numbers of disjoint subsets that

satisfy (3.47) if

∑

j 6=ξ
j∈Ai

wijxj + xξ ≥ si for 1 ≤ i ≤ k. (3.94)

76

Therefore, (3.94) can be additional constraints for integer programming so that the corre-

sponding UEP codes are majority-logic-decodable.

The logical constraints in (3.93) can be rewritten as integer programming constraints.

First, let binary indicator variables uij and vij be

uij = 1 if xj ≥ 1, (3.95a)

vij = 1 if xj′ − xj ≥ 0. (3.95b)

Then, since wij = uijvij, the indicator variable wij can be expressed with the following

inequalities:

uij + vij − 1 ≤ 2wij ≤ uij + vij . (3.96)

Similarly, the quadratic terms (i.e., wijxj) in (3.94) can be rewritten as linear constraints

by introducing artificial variables zij such that zij = wijxj . Suppose the variables xj are

bounded by 0 ≤ xj ≤M for 1 ≤ j ≤ 2k − 1 where M is a sufficiently large constant. Then,

zij can be expressed with the following pairs of inequalities:

0 ≤ zij ≤ Mwij , (3.97a)

xj −M(1− wij) ≤ zij ≤ xj. (3.97b)

Therefore, from the integer programming problem formulated in Section 3.1.1 and the ad-

ditional constraints (3.94), we can construct UEP codes that are majority-logic-decodable

77

Modified UEP code construction

Minimize

n = x1 + x2 + · · · + x2k−1

subject to

Ax⊤ ≥ b⊤,

∑

j 6=2k−i, j∈Ai

zij + x2k−i ≥ si, for 1 ≤ i ≤ k,

where

0 ≤ zij ≤ Mwij ,

xj −M(1− wij) ≤ zij ≤ xj .

3.3.3 On the non-binary UEP code construction

The integer programming approach to construct binary UEP codes can be extended to

construct non-binary UEP codes. Let the l-bit message mi = (m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
l) for

1 ≤ i ≤ k be represented with symbols in GF(q) where q = 2l, then, using the integer

programming approach introduced in Section 3.1.1, we construct non-binary UEP codes

over GF(q) with a given separation vector s = (s1, s2, . . . , sk) where si = 2ti+1 for 1 ≤ i ≤ k,

which satisfies

wH (mG) ≥ si, mi 6= 0 for 1 ≤ i ≤ k. (3.98)

where m = (m1,m2, . . . ,mk) and m1,m2, . . . ,mk ∈ GF(q).

Let the basis matrix Ab be a k× (qk − 1) matrix consisting of all nonzero k-tuples over

78

GF(q) as columns in increasing order; for GF(q) =
{
0, 1, α, α2, . . . , αq−2

}
,

Ab =












00 0 · · ·αq−2

00 0 · · ·αq−2

...
...
...
. . .

...

1αα2· · ·αq−2












=












a1

a2
...

ak












, (3.99)

and, for any vector v = (v1, v2, . . . , vw) over GF(q), let us define [v] = (v̂1, v̂2, . . . , v̂w) as

v̂j =







0 if vj = 0

1 if vj 6= 0
for 1 ≤ j ≤ w. (3.100)

Then, similar to the formulation in Section 3.1.1, we can have the following inequalities

for integer programming,

Aix
⊤ ≥ b⊤

i for 1 ≤ i ≤ k (3.101)

where Ai is a qi−1 × (qk − 1) matrix whose rows are

[a1] if i = 1, (3.102a)

[

ai +

i−1∑

u=1

ωuau

]

if 2 ≤ i ≤ k (3.102b)

where wu ∈ GF(q) for all u,

x =
(
x1, x2, . . . , xqk−1

)
, (3.103)

and

bi =
(
si, si, . . . , si
︸ ︷︷ ︸

qi−1

)
for 1 ≤ i ≤ k. (3.104)

79

Based on (3.101), we can formulate integer programming problem for non-binary UEP

code construction when a non-decreasing separation vector s = (s1, s2, . . . , sk) is given:

UEP code construction over GF(q)

Minimize

n = x1 + x2 + · · ·+ xqk−1

subject to

Ax⊤ ≥ b⊤

where

A =












A1

A2

...

Ak












, b⊤ =












b⊤
1

b⊤
2

...

b⊤
k












Example 3.5 (k = 2 & l = 2). Let GF (22) = {0, 1, α, α2 = α + 1} and s = (3, 5), then,

from (3.99),

Ab =






0 0 0 1 1 1 1 α α α α α2 α2 α2 α2

1 α α2 0 1 α α2 0 1 α α2 0 1 α α2




 =






a1

a2




 ,

80

and, from (3.102a),

A1 =

(

000111111111111

)

= [a1] ,

A2 =












111011101110111

111101111011110

111110111101011

111111010111101












=












[a2]

[a2 + a1]

[a2 + αa1]
[
a2 + α2a1

]












.

Therefore, the UEP code construction is to find x that minimizes the sum x1+x2+ · · ·+x15

satisfying

x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 ≥ 3

x1 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x13 + x14 + x15 ≥ 5

x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x11 + x12 + x13 + x14 ≥ 5

x1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + x10 + x12 + x14 + x15 ≥ 5

x1 + x2 + x3 + x4 + x5 + x6 + x8 + x10 + x11 + x12 + x13 + x15 ≥ 5.

The optimal solution obtained from integer programming is

n =
15∑

j=1

xj = 6

81

Table 3.9: Length comparisons between optimal UEP codes and punctured RS codes over

GF(q) where q = 2k

.

k q UEP codes punctured RS codes

4 16 12 12
5 32 15 15
6 64 18 18
7 128 21 21
8 256 24 24

where

x2 x6 x7 x10 x12

2 1 1 1 1
.

Consequently, the corresponding generator matrix is

G =






0 0 1 1 α α2

α α α α2 α 0




 .

Similar to Theorem 3.1, an integer programming bound on a length of the non-binary

UEP code can be given by

n ≥
k∑

i=1

⌈
si

qk−i

⌉

. (3.105)

In Table 3.9, lengths of the optimal binary UEP codes over GF(q) that satisfy the bound

(3.105)3 are provided for a given separation vector s = (3, 5, . . . , 2k + 1) with comparison

to lengths of the t-error-correcting punctured RS codes where t =
⌊
sk
2

⌋
= k. We observe

that there is no difference between the lengths of UEP codes over GF(q) and the lengths

the punctured RS codes.

3Derivation of (3.105) given in Appendix B

82

Chapter 4: Deterministic network coding for reliable packet

transmissions on single-hop broadcast network

Network coding concept has been adopted to many applications in order to give benefits

over traditional store-and-forward networks by allowing a network node to combine packets

before transmitting. Consider a single-hop, single-source, and, multiple-receiver broad-

cast network depicted in Figure 1.1, traditional network protocol provides reliable packet

transmissions over the broadcast network by either a forward error correction (FEC) or a

retransmission (ARQ). In this chapter we provide a unified solution for reliable packet trans-

missions on the broadcast network by applying a deterministic approach of linear network

coding into both forward error correction scheme and retransmission scheme.

4.1 Deterministic network coding

Practical approach of applying linear network coding to a packet retransmission scheme is

to choose coding coefficients uniformly at random from a large enough finite field and inject

coding coefficients in the packet header so that receivers can decode [71]. To eliminate

the overhead caused by injecting encoding information in the packet header, we apply a

deterministic approach to choose coding coefficients to encode packets; in other words, the

coding coefficients are known to both a sender and receivers.

4.1.1 Reed-Solomon codes

Reed-Solomon (RS) code is an widely applied error correcting code in many applications.

Conventional t-error-correcting (n, k, d) RS code is described by the parameters the length

of the code n, the dimension k, and the minimum distance d where d = n − k + 1 and

n− k = 2t.

83

Code construction

We define a generator matrix of (n, k, n − k + 1) Reed-Solomon code by following the

original formulation of Reed and Solomon in [75]. Let GRS be the k × n generator matrix

for the (n, k, n− k + 1) RS code, then

GRS ,












1 1 1 · · · 1

1 α α2 · · · αn−1

...
...

...
. . .

...

1 αk−1 (α2)k−1 · · · (αn−1)k−1












(4.1)

where α is a primitive element in GF(2m) whose order is n = 2m − 1 and k < n. Let

p = (p0, p1, . . . , pk−1) consist of k symbols in GF(2m) with its polynomial representation,

P (x) =

k−1∑

i=0

pix
i = p0 + p1x+ p2x

2 + · · ·+ pk−1x
k−1,

then a codeword, c = (c0, c1, . . . , cn−1) can be written as1

c=p GRS

=(P (1) P (α) P (α2) . . . P (αn−1)).

Let C(x) = c0+ c1x+ c2x
2+ · · ·+ cn−1x

n−1 be a polynomial representation of codeword

1The original formulation of code in [75] encoded with all elements of GF(2m), i.e., c =

(P (0) P (α) P (α2) . . . P (αn−1) P (1)). We note that the (n, k, n − k + 1) RS code is encoded with

only non-zero elements for this dissertation, i.e., c = (P (1) P (α) P (α2) . . . P (αn−1)).

84

c, then

C(αh) =

n−1∑

j=0

cj(α
h)j

=

n−1∑

j=0

(
k−1∑

i=0

pi(α
j)i

)

(αh)j

=

k−1∑

i=0

pi

n−1∑

j=0

α(i+h)j

=

k−1∑

i=0

pi
α(i+h)n + 1

α(i+h) + 1
.

Since

α(i+h)n + 1

α(i+h) + 1
= 0 for i+ h 6= n and 0 ≤ i ≤ k − 1, (4.2)

C(x) have α, α2, . . . αn−k as its roots; therefore, the code generated by GRS is Reed-

Solomon code with the minimum distance of n− k + 1 and its corresponding parity check

matrix can be defined as

HRS ,















1 α α2 · · · αn−1

1 α2 (α2)2 · · · (α2)n−1

1 α3 (α3)2 · · · (α3)n−1

...
...

...
. . .

...

1 αn−k (αn−k)2 · · · (αn−k)n−1















. (4.3)

Punctured RS codes

Reed-Solomon code is a maximum distance separable (MDS) code which satisfies the Sin-

gleton bound with equality. One property of MDS codes is that a punctured MDS code

85

is also maximum distance separable. Generally, a punctured MDS code can be obtained

by deleting columns of its generator matrix. Let G
(u)
RS denote a generator matrix of the

punctured RS code by deleting the last u columns of k × n generator matrix defined in

(4.1),

G
(u)
RS ,















1 1 1 · · · 1

1 α α2 · · · αn−u−1

1 α2 (α2)2 · · · (αn−u−1)2

...
...

...
. . .

...

1 αk−1 (α2)k−1 · · · (αn−u−1)k−1















. (4.4)

Since deleting the last u columns of GRS can reduce minimum distance by at most u, the

minimum distance of punctured code is greater than or equal to n−k+1−u. Furthermore,

since the Singleton bound implies that the minimum distance of (n−u, k, d−u) punctured

RS code is less than or equal to n−u−k+1, the code generated by G
(u)
RS has the minimum

distance of n− u− k + 1.

4.1.2 Deterministic linear network codes

Using the generator matrix of the Reed-Solomon code in (4.1), we can construct a deter-

ministic linear network code for a single-hop broadcast network (Figure 1.1). Suppose a

single source in the broadcast network has k packets to broadcast. Each packet is repre-

sented as s symbols in a finite field, GF(2m). A linear network coding allows the broad-

casting source to transmit l linearly encoded packets instead of transmitting k uncoded

packets. Let pi = (p0,i, p1,i, . . . , p(s−1),i)
⊤ be a column vector of i-th uncoded packet and

cj = (c0,j , c1,j , . . . , c(s−1),j)
⊤ be a column vector of j-th encoded packet, then an encoded

packet with a deterministic linear network code can be described by

cj =

k−1∑

i=0

piα
ij for 0 ≤ j ≤ l − 1 (4.5)

86

where α is a primitive element in GF(2m) whose order is n = 2m − 1 and k, l < n. We

represent our deterministic linear network coding model as the following:

Cs×l = Ps×kGk×l (4.6)

where Cs×l is a s × l matrix whose columns are linearly encoded packets, Ps×k is a s ×

k matrix whose columns are uncoded packets, and Gk×l is a k × l generator matrix of

deterministic linear network code defined as

Gk×l ,















1 1 1 · · · 1

1 α α2 · · · αl−1

1 α2 (α2)2 · · · (αl−1)2

...
...

...
. . .

...

1 αk−1 (α2)k−1 · · · (αl−1)k−1















. (4.7)

We note that the generator matrix of the deterministic linear network code, Gk×l, is

obtained from puncturing last n − l columns of generator matrix of (n, k, n − k + 1) RS

code (i.e., Gk×l = G
(n−l)
RS). As a result, a code generated by Gk×l has a minimum distance

of l − k + 1.

4.2 Deterministic network coding for reliable packet trans-

mission

4.2.1 Packet retransmissions using deterministic network coding

In a single-hop broadcast network, traditional packet retransmission scheme (ARQ) re-

transmits unsuccessfully delivered packets based on packet loss information collected from

receivers within broadcasting range(See Figure 4.1). It has been shown that allowing a

87

broadcasting source to combine retransmission packet reduces the number of retransmis-

sion packets over the broadcast network [70,71]. Specifically, the number of retransmissions

depends on the maximum number of packet losses among all receivers when linear network

coding is applied for packet retransmissions. For example, suppose that there are r num-

ber of receivers in a single-hop broadcast network, and let Rj denote j-th receiver where

1 ≤ j ≤ r. If a receiver Rj has been experienced ej packet losses, then the number of

retransmission packets for a broadcasting source to retransmit is max∀j {ej} for 1 ≤ j ≤ r.

Encoding

With a deterministic linear network coding, every retransmission packet is linearly encoded

by pre-determined coding coefficients. Using the deterministic linear network code defined

in Section 4.1.2, an encoded j-th retransmission packet can be written as

cj =

k−1∑

i=0

piα
ij for 0 ≤ j ≤ t− 1. (4.8)

where α is a primitive element in GF(2m) whose order is n = 2m − 1 and t is the number

of packets needed to retransmit (See Figure 4.2). The packet retransmission scheme with

the deterministic network coding can be represented in matrix form as

Cs×t = Ps×kGk×t (4.9)

where Cs×t is s× t matrix whose columns are linearly combined packets for retransmission,

Ps×k is s×k matrix whose columns are uncoded packets, and Gk×t is k×t generator matrix

of deterministic linear network code for retransmission scheme. Note that the generator

matrix, Gk×t is obtained by puncturing the last n − t columns of the generator matrix of

88

S

R1

Rj

Rr

p0, p1, . . . , pk−1





S = broadcasting source
Rj = j-th receiver, 1 ≤ j ≤ r
pi = i-th packet 0 ≤ i ≤ k − 1

(a) transmission of k packets

S

R1

Rj

Rr

p0
o

p1
o . . .

pk−1

x

p0
x

p1
x . . .

pk−1

o

p0
o

p1
x . . .

pk−1

o

(b) collect feedbacks

S

R1

Rj

Rr

pf1 , pf2 , . . . , pft

where 0 ≤ f1 < f2 < . . . < ft ≤ k − 1

(c) retransmission of t packets (t ≤ k)

Figure 4.1: ARQ scheme

89

(n, k, n− k + 1) RS code defined in (4.1),

Gk×t =















1 1 1 · · · 1

1 α α2 · · · αt−1

1 α2 (α2)2 · · · (αt−1)2

...
...

...
. . .

...

1 αk−1 (α2)k−1 · · · (αt−1)k−1















. (4.10)

Decoding

Upon receiving encoded retransmission packets, since each receiver has knowledge of coding

coefficients, retransmitted packets, and previously successfully received packets, lost packets

can be recovered at each receiver by solving linear equations. Because every receiver has

experienced a different number of lost packets and a different set of lost packets, each

receiver has different demands on retransmission packets. Thus, the coding coefficients of

linear transform have to be carefully chosen to ensure that packet retransmissions cover all

demands of receivers.

Suppose that a receiver lost t packets and received t retransmission packets from a broad-

casting source. Let f1, f2, . . . , ft denote the indexes for t lost packets and s1, s2, . . . , sk−t

denote the indexes for the k − t successfully received packets where 0 ≤ f1 < f2 < . . . <

ft ≤ k − 1 and 0 ≤ s1 < s2 < . . . < sk−t ≤ k − 1, then the t retransmitted packets can be

90

S

R1

Rh

Rr

p0, p1, . . . , pk−1





S = broadcasting source
Rh = h-th receiver, 1 ≤ h ≤ r
pi = i-th packet 0 ≤ i ≤ k − 1

(a) transmission of k packets

S

R1

Rh

Rr

p0
o

p1
o . . .

pk−1

x

no. of ’x’ = e1

p0
x

p1
x . . .

pk−1

o

no. of ’x’ = eh

p0
o

p1
x . . .

pk−1

o

no. of ’x’ = er

eh = no. of lost packets at h-th receiver

(b) collect feedbacks

S

R1

Rh

Rr

c0, c1, . . . , ct−1

(
t = max {eh} for 1 ≤ h ≤ r

cj =
∑k−1

i=0 piα
ij for 0 ≤ j ≤ t− 1

(c) packet retransmission using deterministic network code

Figure 4.2: Packet retransmission scheme with deterministic network coding

91

written as

(c0, c1, . . . , ct−1) = (p0,p1, . . . ,pk−1)Gk×t

= (p0,p1, . . . ,pk−1)












g0,0 g0,1 · · · g0,t−1

g1,0 g1,1 · · · g1,t−1

...
...

. . .
...

gk−1,0 gk−1,1 · · · gk−1,t−1












, where gi,j = αij

=
(
ps1 ,ps2 , . . . ,psk−t

)












gs1,0 gs1,1 · · · gs1,t−1

gs2,0 gs2,1 · · · gs2,t−1

...
...

. . .
...

gsk−t,0 gsk−t,1 · · · gsk−t,t−1












+ (pf1 ,pf2 , . . . ,pft)












gf1,0 gf1,1 · · · gf1,t−1

gf2,0 gf2,1 · · · gf2,t−1

...
...

. . .
...

gft,0 gft,1 · · · gft,t−1












. (4.11)

Let the two separated coefficient matrices in (4.11) be Ws and Wf respectively, then

(c0, c1, . . . , ct−1) =
(
ps1 ,ps2 , . . . ,psk−t

)
Ws + (pf1 ,pf2 , . . . ,pft)Wf . (4.12)

Because the receiver knows all coding coefficients (i.e., Ws andWf), t retransmitted packets

{c0, c1, . . . , ct−1}, and k − t successfully delivered packets {ps1 ,ps2 , . . . ,psk−t
}, the t lost

packets {pf1 ,pf2 , . . . ,pft} can be recovered by solving linear equations if the square matrix,

Wf is invertible.

LetVt(a0, a1, . . . , at−1) denote a t×tVandermonde matrix with elements of a0, a1, . . . , at−1,

92

then

Wf
⊤ = Vt(α

f1 , αf2 , . . . , αft)

=















1 1 · · · 1

αf1 αf2 · · · αft

αf12 αf22 · · · αft2

...
...

. . .
...

αf1 t−1
αf2 t−1

· · ·αft t−1















. (4.13)

Since det
(
A⊤
)
= det (A) where A is a square matrix,

det (Wf) = det
(

Wf
⊤
)

(4.14)

= det
(

Vt(α
f1 , αf2 , . . . , αft)

)

=
∏

f1≤i<j≤ft

(αj − ai). (4.15)

Since the elements, αf1 , αf2 , . . . , αft are non-zero and distinct over GF(2m), the determinant

of Wf is non-zero. Therefore, the matrix Wf is non-singular as required.

Now consider a case that a receiver requested e retransmission packets where e is less

than t and the receiver successfully received e consecutively encoded retransmission packets

93

{ch, ch+1, . . . , ch+e−1} where 0 ≤ h ≤ t− e. For simplicity, we assume h = 0, then

(c0, c1, . . . , ce−1) =
(
ps1 ,ps2 , . . . ,psk−e

)












gs1,0 gs1,1 · · · gs1,e−1

gs2,0 gs2,1 · · · gs2,e−1

...
...

. . .
...

gsk−e,0 gsk−e,1 · · · gse−t,t−1












+ (pf1 ,pf2 , . . . ,pfe)












gf1,0 gf1,1 · · · gf1,e−1

gf2,0 gf2,1 · · · gf2,e−1

...
...

. . .
...

gfe,0 gfe,1 · · · gfe,e−1












. (4.16)

Similar to (4.12), e retransmitted packets can be written as

(c0, c1, . . . , ce−1) =
(
ps1 ,ps2 , . . . ,psk−e

)
W∗

s + (pf1 ,pf2 , . . . ,pfe)W
∗
f (4.17)

where W∗
s and W∗

f are corresponding coefficient matrices. Because the determinant of

W∗
f is equal to the determinant of Ve(α

f1 , αf2 , . . . , αfe), as long as e consecutively en-

coded packet are successfully delivered at the receiver, W∗
f is invertible. Therefore, the

encoding based on Vandermonde matrix does guarantee to decode packets if a receiver (who

requested e packet retransmissions) successfully receives e consecutively encoded retrans-

mission packets where e is less than or equal to t.

94

Example

Let k = 4, s = 4. Suppose

P4×4 =












1 α 1 1

1 1 α α2

α4 α α α3

α5 1 α6 α4












where α is a primitive element in GF(23) and is a root of the primitive polynomial x3+x+1.

Assume that a broadcasting source collects feedbacks from receivers and there are at

most 2 unsuccessfully delivered packets among all receivers within broadcasting range. Then

the source needs to retransmit 2 linearly combined packets using (4.9):

C4×2 = P4×4G4×2

=












1 α 1 1

1 1 α α2

α4 α α α3

α5 1 α6 α4























1 1

1 α

1 α2

1 α3












=












α3 α

α4 α5

α6 α2

α6 α4












At the receiving end, each receiver wants to recover its lost packets from the linearly com-

bined packets. For example, a receiver R has p0 = (1, 1, α4, α5)⊤ and p2 = (1, α, α, α6)⊤

95

and wants to recover p1 and p3 from retransmitted packets. The linearly encoded retrans-

mission packets can be represented by

(c0, c1) = (p0,p1,p2,p3)G4×2

= (p0,p2)






g0,0 g0,1

g2,0 g2,1




+ (p1,p3)






g1,0 g1,1

g3,0 g3,1






=












1 1

1 α

α4 α

α5 α6

















1 1

1 α2




+ (p1,p3)






1 α

1 α3




 .

Since the receiver R knows p0, p2, and G4×2,

(p1,p3) =







(c0, c1) + (p0,p2)






1 1

1 α2

















1 α

1 α3






−1

=


















α3 α

α4 α5

α6 α2

α6 α4












+












1 1

1 α

α4 α

α5 α6

















1 1

1 α2

















1 α

1 α3






−1

=












α 1

1 α2

α α3

1 α4












96

4.2.2 Forward error corrections using deterministic network coding

Because a deterministic linear network code constructed by puncturing the generator matrix

of RS code (4.7), the deterministic linear network coding for packet transmission can easily

provide forward error corrections.

Encoding

In a single-hop broadcast network, a source broadcasts k + 2t linearly encoded packets to

provide t packet-error-correction. Using the deterministic linear network code defined in

Section 4.1.2, the packet encoding for forward error correction can be described by

cj =
k−1∑

i=0

piα
ij for 0 ≤ j ≤ n′ − 1, (4.18)

where α is a primitive element in GF(2m) and n′ = k+2t (See Figure 4.3). A deterministic

linear network coding model for forward error correction can also be expressed in matrix

form,

Cs×n′ = Ps×kGk×n′ (4.19)

where Ps×k is a s× k matrix whose columns are uncoded packets, Cs×n′ is a s× n′ matrix

whose columns are encoded packets, and Gk×n′ is a k×n′ generator matrix for deterministic

linear network code. Similar to the packet retransmission scheme, the generator matrix,

Gk×n′ for forward error correction scheme is obtained from puncturing the last n− (k+2t)

97

columns of the generator matrix in (4.1),

Gk×n′ =















1 1 1 · · · 1

1 α α2 · · · αn′−1

1 α2 (α2)2 · · · (αn′−1)2

...
...

...
. . .

...

1αk−1(α2)k−1· · · (αn′−1)k−1















. (4.20)

Theorem 4.1. The deterministic linear network code generated by Gk×n′ guarantees to

correct up to t packet errors where n′ = k + 2t.

Proof. Each encoded packet consists of s symbols over GF(2m) and any corrupted symbol

in a packet would result in a packet error. Thus, t-packet-error affects t columns of Cs×n′

and it corrupts at most t symbols in each row of Cs×n′ (See Figure 4.3). Since rows of

Cs×n′ are encoded with (k + 2t, k, 2t + 1) punctured RS code, they can be corrected up

to t symbols of errors. Therefore the deterministic linear network code generated by Gk×n′

guarantees to correct up to t packet errors where n′ = k + 2t.

Decoding

Let Rs×n′ denote a s×n′ matrix whose columns are received packets, Cs×n′ denote a s×n′

matrix whose columns are transmitted packets and Es×n′ denote a s × n′ matrix of errors

introduced by broadcast channel. Then,

Rs×n′ = Cs×n′ +Es×n′

and

r∗h = c∗h + e∗h for 0 ≤ h ≤ s− 1

98

S

R1

Rh

Rr

c0, c1, . . . , cn′−1

(
n′ = k + 2t

cj =
∑k−1

i=0 piα
ij for 0 ≤ j ≤ n′ − 1

(a) Packet transmission with t-error-correction capability

punctured (n′, k, n′ − k + 1) RS code

encoded packets, c0, c1, . . . , cn′−1

cs−1,0 cs−1,1 cs−1,2 . . . cs−1,n′
−1

...
...

...
. . .

...

c2,0 c2,1 c2,2 . . . c2,n′
−1

c1,0 c1,1 c1,2 . . . c1,n′
−1

c0,0 c0,1 c0,2 . . . c0,n′
−1

(b) A block of encoded packets

Figure 4.3: Forward error correction scheme with deterministic network coding

99

where r∗h = (rh,0, rh,1, . . . , rh,(n′−1)) and e∗h = (eh,0, eh,1, . . . , eh,(n′−1)) denote a row vector

of the received words and error vectors respectively.

Upon receiving Rs×n′ , row-by-row decoding is performed to correct packet errors. We

can use standard error and erasure decoder for a (n, k, n − k + 1) RS code to decode

punctured (n′, k, n′− k+1) RS code by treating the deleted columns as erasure positions.

Let the received polynomial be Rh(x) = rh,0+rh,1x+ . . .+rh,(n′−1)x
n′−1, then the standard

error and erasure decoding procedures for the punctured RS code consist of the following:

[52]

1. Compute erasure location polynomial, Γh(x) for 0 ≤ h ≤ s− 1,

Γh(x) = Γ(x) =

n−1∏

i=n′

(
1− αix

)
. (4.21)

2. Compute syndrome polynomial, Sh(x),

Sh(x) =

n−k∑

j=1

sh,jx
(j−1) (4.22)

where sh,j = rh(α
j) =

∑n′−1
i=0 rh,i(α

j)i and 0 ≤ h ≤ s− 1.

3. Compute modified syndrome polynomial, Θh(x),

Θh(x) ≡ Γh(x)Sh(x) mod xn−k. (4.23)

4. Key equation:

Λh(x)Θh(x) ≡ Ωh(x) mod xn−k (4.24)

where Λh(x) is error location polynomial and Ωh(x) is error value polynomial.

100

5. Apply Euclid’s algorithm to solve the key equation and determine Λh(x) and Ωh(x).

6. Apply Forney’s algorithm to find error location and value

ehj =







Ωh(α
−j)

Λh
′(α−j)Γh(α−j)

: if Λh(α
−j) = 0

0 : otherwise

for 0 ≤ j ≤ n′ − 1 (4.25)

7. Find the transmitted codeword, c∗h.

Suppose that the broadcast channel introduced less than t packet errors. Through row-

by-row decoding of the punctured RS code, each receiver can recover the encoded packets,

Cs×n′. Now consider a s × k sub-matrix of Cs×n′ by deleting the last n′ − k columns and

define as C′
s×k, then

C′
s×k = Ps×kVk(α

0, α1, . . . , αk−1)

where Vk(α
0, α1, . . . , αk−1) is the k × k Vandermonde matrix. Since the elements of

Vk(α
0, α1, . . . , αk−1) are non-zero and distinct over GF(2m), Vk(α

0, α1, . . . , αk−1) has non-

zero determinant. Therefore each receiver can recover the original packet information by

solving linear equations: Ps×k = C′
s×kVk(α

0, α1, . . . , αk−1)
−1

.

Example

Let k = 3 and s = 4. Suppose

P4×3 =












1 1 1

1 α α2

α4 α α3

α5 α6 α4












where α is a primitive element in GF(23) and is a root of the primitive polynomial x3+x+1.

101

From (4.1), a (7, 3, 5) RS code can be generated by

GRS = G3×7 =









1 1 1 1 1 1 1

1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5









.

Now assume that the broadcast channel needs single error correction capability. A (5, 3, 3)

punctured single-error-correcting RS code can be generated by puncturing the last two

columns of G3×7,

G3×5 =









1 1 1 1 1

1 α α2 α3 α4

1 α2 α4 α6 α









.

Then, a broadcasting source obtains encoded packets:

C4×5 = P4×3G3×5

=












1 α5 α3 α5 α6

α5 α3 α5 α6 α6

α5 α6 α2 α2 α5

α2 α3 α5 0 α3












.

For a receiver in a broadcasting range, suppose that received encoded packets are

R4×5 =












1 α5 α3 1 α6

α5 α3 α5 α α6

α5 α6 α2 α α5

α2 α3 α5 1 α3












,

102

and each row of received words are

r0(x) = 1 + α5x+ α3x2 + x3 + α6x4,

r1(x) = α5 + α3x+ α5x2 + αx3 + α6x4,

r2(x) = α5 + α6x+ α2x2 + αx3 + α5x4,

r3(x) = α2 + α3x+ α5x2 + x3 + α3x4.

From (4.21), the erasure location polynomial is

Γh(x) = (1 + α5x)(1 + α6x),

= 1 + αx+ α4x2 for h = 0, 1, 2, 3.

Then a receiver can compute the syndrome polynomials using (4.22),

S0(x) = α3 + α6x+ α6x2 + α4x3,

S1(x) = α6 + α2x+ x2 + α2x3,

S2(x) = α+ α2x+ x2 + α3x3,

S3(x) = 1 + α2x+ x2,

103

and the modified syndrome polynomials using (4.23),

Θ0(x) = α3 + α3x+ α6x2 + α2x3,

Θ1(x) = α6 + α6x+ x2 + α3x3,

Θ2(x) = α+ α6x2 + α2x3,

Θ3(x) = 1 + α4x+ α2x2 + α5x3.

Using the Euclid’s algorithm, the error location polynomials and the error value polynomial

can be obtained as

Λ0(x) = α2(1 + α3x),

Λ1(x) = α(1 + α3x),

Λ2(x) = α2(1 + α3x),

Λ3(x) = α6(1 + α3x),

and

Ω0(x) = α5 + α6x,

Ω1(x) = 1 + αx+ x2,

Ω2(x) = α3 + α6x+ αx2,

Ω3(x) = α6 + α5x+ α5x2.

104

Then using (4.25) one can locate error position and its value, hence the error vectors are

E4×5 =












0 0 0 α4 0

0 0 0 α5 0

0 0 0 α4 0

0 0 0 1 0












.

Finally, a receiver recovers the encoded packets,

C4×5 = R4×5 +E4×5

=












1 α5 α3 α5 α6

α5 α3 α5 α6 α6

α5 α6 α2 α2 α5

α2 α3 α5 0 α3












.

Since a receiver recovers the encoded packets, one can now obtain the original packets by

105

multiplying inverse of the Vandermonde matrix;

P4×3 = C4×3 ·V
−1

3×3

=












1 α5 α3

α5 α3 α5

α5 α6 α2

α2 α3 α5




















α α2 α5

α2 α6 1

α5 1 α4









=












1 1 1

1 α α2

α4 α α3

α5 α6 α4












.

4.3 Numerical analysis and simulations

4.3.1 Analysis

Packet Losses

We assume that packet loss characteristics over a broadcast channel are independent and

identical with a packet loss probability of p at each receiver, hence a transmitted packet is

successfully received at a receiver with probability of 1 − p. Let {Xi} be a set of random

variables which takes a value of 1 if i-th packet is not received successfully, or a value of 0

if i-th packet is received successfully for 1 ≤ i ≤ k,

Pr(Xi = 1) = p and Pr(Xi = 0) = 1− p. (4.26)

Let {Yj} be a set of random variables denotes the number of lost packets for j-th receiver Rj

where 1 ≤ j ≤ r, then Yj is the sum of a set of {Xi} which follows a binomial distribution

106

with parameters of k and p,

Yj =
k∑

i=1

Xi (4.27)

and

Pr(Yj = y) =

(
k

y

)

py(1− p)k−y. (4.28)

We define a random variable Z to denote that the maximum number of unsuccessfully

delivered packets among all receivers,

Z = max {Y1, Y2, . . . , Yr} , (4.29)

then we have

Pr(Z ≤ z) = Pr(max{Y1, Y2, . . . , Yr} ≤ z) (4.30)

=
r∏

i=1

Pr(Yi ≤ z) (4.31)

= {Pr(Yi ≤ z)}r. (4.32)

Therefore,

Pr(Z = z) = Pr(Z ≤ z)− Pr(Z ≤ z − 1) (4.33)

=

r∏

i=1

Pr(Yi ≤ z)−
r∏

i=1

Pr(Yi ≤ z − 1) (4.34)

= {Pr(Yi ≤ z)}r − {Pr(Yi ≤ z − 1)}r (4.35)

107

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

p

E
[Z

]

r = 10

k = 2

k = 5

k = 10

k = 15

Figure 4.4: E[Z] versus packet error probability, p.

and

E[Z] =

k∑

i=0

iPr(Z = i) (4.36)

= Pr(Z = 1) + 2Pr(Z = 2) + · · ·+ kPr(Z = k). (4.37)

From (4.33) and (4.36), on average, there are at most E[Z] numbers of unsuccessfully

delivered packets out of k transmitted packets among all receivers where

E[Z] = k −
k−1∑

i=0

Pr(Y ≤ i)r. (4.38)

We numerically experiment with the packet losses. The results are depicted in Figure 4.4,

Figure 4.5, Figure 4.6 and Figure 4.7. To evaluate the packet loss analysis, we simulate

actual packet losses among receivers in a single-hop broadcast network and compare the

simulation results with the analysis. The comparisons are shown in Figure 4.8.

108

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

r

E
[Z

]

p = 0.01

k = 2

k = 5

k = 10

k = 15

Figure 4.5: E[Z] versus number of receivers, r.

0 5 10 15 20 25
0

1

2

3

4

5

k

E
[Z

]

p = 0.05, r = 5

0 5 10 15 20 25
0

1

2

3

4

5

k

E
[Z

]

p = 0.05, r = 10

0 5 10 15 20 25
0

1

2

3

4

5

k

E
[Z

]

p = 0.1, r = 5

0 5 10 15 20 25
0

1

2

3

4

5

k

E
[Z

]

p = 0.1, r = 10

Figure 4.6: E[Z] versus number of transmitted packets, k.

109

0
.2

0.2

0
.4

0.4

0
.6

0.6

0
.8

0.8

1

p

r

k = 2

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

5

10

15

20

25

0
.2

0.2

0
.4

0.4

0
.6

0.6

0
.8

0.8

1

1

1
.2

1.2

1.4

1.6

1.8

2

p

r

k = 5

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

5

10

15

20

25

0
.5

0.5

1

1

1
.5

1.5

2

2

2.5

3
p

r

k = 10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

5

10

15

20

25

0
.5

0.5

1

1

1
.5

1.5

2

2

2
.5

2.5

3

3.5

4

p

r

k = 15

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

5

10

15

20

25

Figure 4.7: Contours of E[Z].

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

p

E
[Z

]

r = 10, no. of simulation = 1000

k = 2

k = 5

k = 10

k = 15

Numerical

Simulation

Figure 4.8: Comparison results: theory versus simulation.

110

Traditional ARQ scheme

For comparison, we review the average number of transmissions required for traditional

ARQ scheme. Let NARQ denote the average number of transmissions required for ARQ

scheme, r be the number of receivers, p be the probability of packet loss at each receiver,

and Psuccess be the probability that a retransmission packet is successfully delivered at all

receivers. Then,

NARQ = Psuccess + (1 +NARQ)× (1− Psuccess). (4.39)

By solving the above recursive equation, we have

NARQ =
1

Psuccess

. (4.40)

Under the assumption that the packet loss is independent and identical among all receivers,

Psuccess = (1− p)r. (4.41)

Therefore,

NARQ =
1

(1− p)r
. (4.42)

Retransmissions Scheme

For an analysis of retransmission scheme, we assume that each receiver sends ACK/NAKs to

its source based on current success or failure of packet receptions regardless of success/failure

of previous retransmission attempts (i.e., memoryless receiver). Let NRET denote the av-

erage number of transmissions required to successfully deliver a packet with retransmission

scheme, r be the number of receivers, and p be the packet loss rate.

Proposition 4.1. If t packets are unsuccessfully delivered out of k packet transmissions,

the average number of transmissions required to deliver a packet with network coded packet

111

retransmission is

NRET = 1 +
t

k(1− p)tr
(4.43)

where 0 < t ≤ k.

Proof. Let TRET denote the total number of retransmissions for t unsuccessfully delivered

packets, Psuccess be the probability that the retransmission packets are successfully delivered

to all receiver. Then,

TRET = t× Psuccess + (t+ TRET)× (1− Psuccess). (4.44)

By solving the above recursive equation, we have

TRET =
t

Psuccess

. (4.45)

Under the assumption that the packet loss is independent and identical among all receivers,

Psuccess = (1− p)tr. (4.46)

From (4.45) and (4.46),

TRET =
t

(1− p)tr
. (4.47)

Therefore,

NRET =
k + TRET

k
= 1 +

t

k(1− p)tr
.

112

Forward Error Correction scheme

Let NFEC denote the average number of transmissions required to successfully deliver a

packet when forward error correction scheme is used with deterministic linear network

coding.

Proposition 4.2. Assume that there are t unsuccessfully delivered packets out of k broad-

casting packets. The average number of transmissions required to deliver a packet for forward

error correction scheme with deterministic linear network coding is

NFEC = 1 + 2
t

k
(4.48)

where 0 < t ≤ k.

Proof. For the forward error correction scheme using deterministic network coding, a broad-

cast source transmit n′ encoded packets using (n′, k, n′ − k + 1) punctured RS code to

correct t packet errors, where n′ = k + 2t. Since n′ is the number of transmission required

to transmit k packets while providing t-error correction capability, the average number of

transmissions for successfully delivering a packet can be given by NFEC = n′

k
= 1+2 t

k
.

4.3.2 Numerical results

We experiment numerically to evaluate the theoretical analysis of the expected number of

transmissions to successfully deliver a packet in a single-hop wireless broadcast network.

Both forward error correction scheme and retransmission scheme apply deterministic net-

work coding for packet transmissions.

Figures 4.9 and 4.10 show the expected number of transmissions for delivering a packet

with varying packet error probability, p, varying the number of packets for a broadcasting

source to transmit, k, and varying the number of receivers within broadcasting range, r.

Given k, r,and p, the maximum number of unsuccessfully delivered packets over the single-

hop broadcast network among r receivers are calculated as t = E[Z] (4.38).

113

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
1

1.5

2

2.5

3

3.5

packet error probability, p

n
o
rm

a
ili

z
e
d
 a

v
g
.

n
o
.

o
f

tr
a
n
s
m

is
s
io

n
s

k = 5, r = 10

N
ARQ

N
RET

N
FEC

(a) k=5, r=10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
1

1.5

2

2.5

3

3.5

4

4.5

5

packet error probability, p

n
o
rm

a
ili

z
e
d
 a

v
g
.
n
o
.
o
f
tr

a
n
s
m

is
s
io

n
s

k = 10, r = 10

N
ARQ

N
RET

N
FEC

(b) k=10, r=10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
1

1.5

2

2.5

3

3.5

packet error probability, p

n
o
rm

a
ili

z
e
d
 a

v
g
.
n
o
.
o
f
tr

a
n
s
m

is
s
io

n
s

k = 15, r = 10

N
ARQ

N
RET

N
FEC

(c) k=15, r=10

Figure 4.9: Expected no. of transmission vs. packet error probability

114

1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

no. of receivers, r

n
o
rm

a
ili

z
e
d
 a

v
g
.

n
o
.

o
f

tr
a
n
s
m

is
s
io

n
s

k = 5, p = 0.05

N
ARQ

N
RET

N
FEC

(a) k=5, p=0.05

1 2 3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

no. of receivers, r

n
o
rm

a
ili

z
e
d
 a

v
g
.
n
o
.
o
f
tr

a
n
s
m

is
s
io

n
s

k = 10, p = 0.05

N
ARQ

N
RET

N
FEC

(b) k=10, p=0.05

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

no. of receivers, r

n
o
rm

a
ili

z
e
d
 a

v
g
.
n
o
.
o
f
tr

a
n
s
m

is
s
io

n
s

k = 10, p = 0.07

N
ARQ

N
RET

N
FEC

(c) k=10, p=0.07

Figure 4.10: Expected no. of transmission vs. no. of receivers

115

We observe that the expected number of transmissions for retransmission scheme in-

creases rapidly as p, k, or r increases. On the other hand, the expected number of transmis-

sions for forward error correction scheme remains small even if the packet error probability,

the number of packets to transmit, or the number of receivers are large.

We also simulate the expected number of transmissions in a single-source, single-hop

broadcast network to compare with the results of numerical analysis. Figure 4.11 shows the

comparisons between analysis and simulation results for traditional ARQ scheme, retrans-

mission scheme, and forward error correction scheme.

4.4 Discussions: unequal error protection using network cod-

ing

Theoretical analysis presented in this chapter assumes that error characteristics at all re-

ceivers in the broadcast network are identical. In the following, we provide an example of

unequal error protection on a clustered broadcast network by using the proposed determin-

istic network coding in a hybrid way.

Unequal error protection with hybrid-ARQ scheme using network coding

Consider a clustered broadcast network in Figure 4.12, a single source has k packets to

broadcast to receiver R1 to Rx+y. Assume that the broadcast channel degrades signals

physically, packet losses at receivers in the inner cluster is smaller than packet losses at

receivers in the outer cluster (i.e., p1 < p2). To deal with the unequal error characteristics

at receivers, we use the deterministic network coding for hybrid-ARQ (i.e., first apply for-

ward error correction scheme with the proposed network code to recover lost packets at the

receivers in the inner cluster, then apply network coded retransmissions in the outer clus-

ter). The network coded packet transmissions for unequal error protection on the clustered

broadcast network are described with the following steps:

116

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

packet error probability, p

n
o
rm

a
ili

z
e
d
 a

v
g
.

n
o
.

o
f

tr
a
n
s
m

is
s
io

n
s

r = 10, no. of simulation = 1000

Numerical

Simulation

(a) ARQ scheme

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1

2

3

4

5

6

7

8

9

packet error probability, p

n
o
rm

a
ili

z
e
d
 a

v
g
.
n
o
.
o
f
tr

a
n
s
m

is
s
io

n
s

k = 10, r = 10, no. of simulation = 1000

Numerical

Simulation

(b) Retransmission scheme

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

packet error probability, p

n
o
rm

a
ili

z
e
d
 a

v
g
.
n
o
.
o
f
tr

a
n
s
m

is
s
io

n
s

k = 10, r = 10, no. of simulation = 1000

Numerical

Simulation

(c) Forward error correction scheme

Figure 4.11: Comparison result: numerical analysis vs. simulation

117

S

R1

Rx

Rx+1

Rx+y

Rx+2

Figure 4.12: Clustered broadcast network

1. Send network coded packets with forward error correction capability

The idea of unequal protection scheme is to recover packet losses at the receivers in

the inner cluster with forward error correction and reduce the retransmission requests

from the receivers in the outer cluster. The forward error correction scheme with

deterministic network coding assumes that there is no help of error detection from

lower layer. However, since we provide scheme that forward error correction and

retransmission work together in a hybrid way, it seems that involvement of packet

error detection from the lower layer is useful to the unequal error protection scheme.

If CRC detects which packet comes with error, then the error location in the received

packets are known to the receiver. In Theorem 4.1, we prove that network coded k+2t

packets correct up to t packet errors, but, with given error locations on packets, only

k + t encoded packets are needed to correct t packet erasures [52].

With the clustered broadcast network, a source transmits k + t1 encoded packets to

recover t1 packet erasures where t1 denotes the number of packet losses at the inner

cluster’s receivers. From (4.18), a packet encoding for forward error correction using

the proposed deterministic network code can be described by

cj =

k−1∑

i=0

piα
ij for 0 ≤ j ≤ k + t1 − 1, (4.49)

118

where α is a primitive element in GF(2m).

2. Collect feedbacks from receivers

Suppose packet losses at the receivers in the inner cluster is at most t1 and at the

receivers in the outer cluster is at most t2. Since k + t1 encoded packets can recover

all packet erasures at the receivers in the inner cluster, packet retransmission depends

only on the feedbacks from receivers in the outer cluster.

3. Send network coded packet for retransmission

Based on the collected feedbacks from receivers, the broadcasting source knows that

receivers in the inner cluster successfully received k packets. The source also knows

that there are at most t2 packet losses among receivers in the outer cluster. However,

since the source initially broadcast k + t1 packets, the receivers in the outer cluster

successfully received at least k − (t2 − t1) packets. Therefore the broadcasting source

needs to retransmit k − (k − (t2 − t1)) = t2 − t1 packets for receivers in the outer

cluster in order to deliver k packets.

Let f1, f2, . . . , ft2 be indexes for the t2 unsuccessfully delivered packets to receivers in

the outer cluster where f1 < f2 < . . . < ft2 , then a packet encoding for retransmission

with the proposed deterministic network code using (4.8) can be described by

cj =
k−1∑

i=0

piα
ij for f1 ≤ j ≤ ft2−t1 . (4.50)

As we have shown in the above example, both forward error correction scheme and

retransmission scheme can adaptively work together to provide unequal error protection.

Since we have limited our focus on a special case of the clustered broadcast network, an

application of the hybrid ARQ scheme in general broadcast networks would be an interesting

subject to research.

119

Chapter 5: Summary and future works

Error controls are important techniques for reliable communications over noisy channels.

When information is corrupted by channel errors, the error control techniques are employed

either to retransmit the corrupted information based on feedback (ARQ), or to correct the

channel errors using error correcting codes (FEC). In this dissertation, we have investigated

methodologies of both a retransmission scheme and a forward error correction scheme.

Unequal error protection (UEP) codes have been considered as an efficient error cor-

rection method when information has levels of significance. For multiuser communications

over a broadcast channel, we have proposed a UEP coding scheme for a multiuser broad-

cast channel. First, we have introduced an integer programming approach to construct a

binary UEP code. For a given unequal error protection requirement from each user, we have

formulated an integer programming problem to be optimized for constructing an optimal

UEP code. Numerical results and integer programming bounds have shown the efficiency

of the code constructions. Also, we have investigated asymptotically achievable code rates

for the multiuser communications and we have analyzed performance of the UEP coding

schemes for the multiuser communications on degraded broadcast channels. Then, we have

presented decoding methods that use integer programming and majority logic. When users

receive information that is encoded by the UEP code, each user uses iterative integer pro-

gramming to find sufficient numbers of index subsets so that each receiver can decode the

information by majority logic. We have found that the UEP coding and decoding based on

integer programming effectively provide unequal error protection to each user in broadcast

communications.

For reliable packet transmissions over a single-hop broadcast network, we have applied

a linear network coding into both a retransmission scheme and a forward error correction

scheme. We have first constructed a deterministic network code from a Reed-Solomon error

120

correcting code whose generator matrix is in the form of Vandermonde matrix. Then, we

have provided an adaptive way to apply the deterministic network code for both a packet

retransmission scheme and a packet-level forward error correction scheme by puncturing the

generator matrix. For forward error correction scheme, we have constructed a generator

matrix by puncturing the last n − (k + 2t) columns of the generator matrix of a (n, k,

n−k+1) RS code to correct t packet errors. On the other hand, retransmission packets are

generated by puncturing the last n− t columns of the generator matrix of a (n, k, n−k+1)

RS code for t packet retransmissions. Therefore, we have found a unified solution to use the

deterministic linear network code for reliable packet transmissions on a single-hop wireless

broadcast network. We have provided the numerical analysis and simulation results to prove

the efficiency of applying the deterministic network code for packet transmissions, and we

have also shown that the unified solution can be applied in a hybrid fashion to provide

efficient error controls.

5.1 Future works

In Section 3.3.2, we have discussed decodability of the proposed iterative decoding method

that uses multiple integer programming and majority logic, and we have shown that not

every optimal UEP code constructed by the proposed integer programming approach is

decodable by the decoding method. We have also provided an idea of the modified integer

programming approach to construct UEP codes that are majority-logic-decodable (i.e., re-

ceived information can be decomposed into sufficient number of subsets that are decodable

by majority logic). However, the modified integer programming approach in Section 3.3.2

does not guarantee to construct optimal UEP codes because of the additional constraints.

Based on what we have found, we would like to extend our research to find a UEP code

construction method such that the codes are majority-logic-decodable and has optimal

length. Currently, we focus on the following research directions:

1. Solution filtering: As it has been noted in Section 3.1.2, there are many optimal

121

solutions from integer programming for a UEP code construction that satisfies a given

unequal error protection requirement. Suppose there are certain linear constraints

that validate the decodability of each optimal solution. Then, every optimal solutions

can be filtered by the additional constraints to obtain majority-logic-decodable UEP

codes. Therefore, research objective would be finding the constraints for filtering

solutions.

2. Modifying integer programming problem: The solution filtering approach ensures that

the filtered solution constructs an optimal UEP code. However, since finding every

or large numbers of optimal solutions from integer programming has to precede the

filtering, the amount of computation time will be increased. Therefore, modifying an

integer programming problem by adding linear constraints is preferred especially when

k is large. Since, as pointed out, the additional constraints may change the optimal

value of the solution, research objective would be finding the additional constraints

for integer programming that validate decodability and optimality of the UEP code

constructions.

122

Appendix A: Generator matrices of optimal UEP codes

Single-bit message Let G be a generator matrix of the optimal UEP codes constructed

from Table 3.2, and ŝ = (ŝ1, ŝ2, . . . , ŝk) be the corresponding separation vector obtained

from the generator matrix.

1. k = 2

Integer programming solution

x1 x2 x3

4 2 1

Generator matrix

G =






0 0 0 0 1 1 1

1 1 1 1 0 0 1






Separation vector

ŝ = (3, 5)

Disjoint subsets

J (1) =
{
{5}, {6}, {4, 7}

}

J (2) =
{
{1}, {2}, {3}, {4}, {6, 7}

}

where J (i) , {J1,J2, . . . ,Jsi} for 1 ≤ i ≤ k.

123

2. k = 3

Integer programming solution

x1 x2 x3 x4 x5 x6 x7

3 2 2 1 1 1 1

Generator matrix

G =









0 0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 0 0 1 1

1 1 1 0 0 1 1 0 1 0 1









Separation vector

ŝ = (4, 6, 7)

Disjoint subsets

J (1) =
{
{8}, {5, 10}, {7, 11}

}

J (2) =
{
{4}, {5}, {8, 10}, {1, 6}, {9, 11}

}

J (3) =
{
{1}, {2}, {3}, {8, 9}, {4, 6}, {10, 11}, {5, 7}

}

124

3. k = 4

Integer programming solution

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Generator matrix

G =












0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1












Separation vector

ŝ = (8, 8, 8, 9)

Disjoint subsets

J (1) =
{
{9}, {3, 11}, {4, 12}

}

J (2) =
{
{5}, {11, 15}, {10, 14}, {4, 8}, {1, 6}

}

J (3) =
{
{3}, {13, 15}, {10, 12}, {6, 8}, {14, 16}, {2, 4}, {5, 7}

}

J (4) =
{
{1}, {2}, {13, 14}, {11, 12}, {7, 8}, {15, 16}, {3, 4}, {5, 6}, {9, 10}

}

125

4. k = 5

Integer programming solution

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Generator matrix

G =















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1















Separation vector

ŝ = (4, 8, 8, 10, 11)

Disjoint subsets

J (1) =
{
{17}, {4, 20}, {1, 18}

}

J (2) =
{
{9}, {7, 15}, {6, 14}, {4, 12}, {1, 10}

}

J (3) =
{
{5}, {11, 15}, {10, 14}, {4, 8}, {1, 6}, {3, 7}, {9, 13}

}

J (4) =
{
{3}, {17, 19}, {13, 15}, {10, 12}, {6, 8}, {14, 16}, {2, 4}, {5, 7}, {9, 11}

}

J (5) =
{
{1}, {2}, {17, 18}, {7, 8}, {13, 14}, {11, 12}, {15, 16}, {3, 4},

{5, 6}, {9, 10}, {19, 20}
}

126

5. k = 6

Integer programming solution

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x21 x32 x33 x34 x35

1 1 1 1 1

Generator matrix

G =



















0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



















Separation vector

ŝ = (4, 6, 8, 10, 12, 13)

127

Disjoint subsets

J (1) =
{
{22}, {1, 23}, {2, 24}

}

J (2) =
{
{16}, {5, 21}, {1, 17}, {3, 19}, {2, 18}

}

J (3) =
{
{8}, {4, 12}, {3, 11}, {7, 15}, {1, 9},

{2, 10}, {5, 13}
}

J (4) =
{
{4}, {3, 7}, {1, 5}, {2, 6}, {8, 12},

{10, 14}, {9, 13}, {11, 15}, {16, 20}
}

J (5) =
{
{2}, {16, 18}, {1, 3}, {5, 7}, {4, 6},

{8, 10}, {12, 14}, {9, 11}, {13, 15}, {17, 19}, {22, 24}
}

J (6) =
{
{1}, {6, 7}, {2, 3}, {4, 5}, {8, 9},

{10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},

{20, 21}, {22, 23}, {24, 25}
}

128

6. k = 7

Integer programming solution

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x21 x22 x23 x32 x33 x34 x35 x64 x65 x104

1 1 1 1 1 1 1 1 1 1

Generator matrix

G =






















0 1 1 1

0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0






















Separation vector

ŝ = (3, 5, 8, 9, 12, 14, 15)

129

Disjoint subsets

J (1) =
{
{28}, {1, 29}, {8, 24, 30}

}

J (2) =
{
{24}, {1, 25}, {2, 26}, {3, 27}, {8, 28, 30}

}

J (3) =
{
{16}, {3, 19}, {7, 23}, {2, 18}, {1, 17},

{4, 20}, {5, 21}
}

J (4) =
{
{8}, {1, 9}, {5, 13}, {4, 12}, {2, 10},

{3, 11}, {6, 14}, {7, 15}, {24, 28, 30}
}

J (5) =
{
{4}, {17, 21}, {11, 15}, {8, 12}, {18, 22},

{1, 5}, {3, 7}, {2, 6}, {10, 14}, {9, 13}, {16, 20}
}

J (6) =
{
{2}, {4, 6}, {12, 14}, {1, 3}, {5, 7},

{8, 10}, {9, 11}, {16, 18}, {17, 19}, {20, 22},

{13, 15}, {21, 23}, {24, 26}
}

J (7) =
{
{1}, {14, 15}, {22, 23}, {8, 9}, {12, 13},

{6, 7}, {18, 19}, {20, 21}, {4, 5}, {16, 17},

{26, 27}, {2, 3}, {10, 11}, {24, 25}, {28, 29}
}

130

7. k = 8

Integer programming solution

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x21 x22 x23 x32 x33 x34 x35 x64 x65 x66 x126 x127 x128 x129 x184

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Generator matrix

G =


























0 1 1 1

0 1 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0


























Separation vector

ŝ = (3, 5, 7, 11, 11, 13, 15, 17)

131

Disjoint subsets

J (1) =
{
{33}, {1, 34}, {8, 16, 24, 35}

}

J (2) =
{
{28}, {1, 29}, {2, 30}, {6, 31, 33, 35}, {12, 16, 27, 32}

}

J (3) =
{
{24}, {2, 26}, {1, 25}, {3, 27}

{14, 16, 28, 31}{10, 20, 29, 32}, {7, 13, 18, 33, 35},
}

J (4) =
{
{16}, {7, 23}, {1, 17}, {6, 22}, {2, 18},

{3, 19}, {4, 20}, {5, 21}, {12, 24, 30, 31}
}

J (5) =
{
{8}, {7, 15}, {1, 9}, {6, 14}, {2, 10}, {4, 12}, {3, 11},

{5, 13}, {20, 24, 30, 31}, {21, 26, 28, 32}, {16, 18, 19, 25, 33, 35}
}

J (6) =
{
{4}, {9, 13}, {11, 15}, {2, 6}, {10, 14},

{3, 7}, {1, 5}, {8, 12}, {16, 20}, {18, 22},

{17, 21}, {19, 23}, {30, 31, 33, 35}
}

J (7) =
{
{2}, {1, 3}, {25, 27}, {9, 11}, {24, 26},

{5, 7}, {4, 6}, {8, 10}, {12, 14}, {13, 15},

{16, 18}, {17, 19}, {20, 22}, {21, 23}, {28, 30}
}

J (8) =
{
{1}, {6, 7}, {8, 9}, {33, 34}, {14, 15}, {10, 11},

{4, 5}, {12, 13}, {28, 29}, {24, 25}, {20, 21}, {18, 19},

{2, 3}, {16, 17}, {22, 23}, {26, 27}, {31, 32}
}

132

Multi-bit message Let G be a generator matrix of the optimal UEP codes constructed

from Table 3.5, and ŝ = (ŝ1, ŝ2, . . . , ŝk,) be the corresponding separation vector with respect

to the G.

1. k = 2 and l = 2

Integer programming solution

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11

1 1 1 1 1 1 1 1 1 1

Generator matrix

G =












0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 0 0 0 0

0 1 1 0 0 1 0 0 1 1

1 0 1 0 1 1 0 1 0 1












Separation vector

ŝ = (3, 5)

2. k = 3 and l = 2

Integer programming solution

x1 x2 x4 x5 x6 x8 x9 x10 x11 x16 x17 x19 x32 x35 x47 x61

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

133

Generator matrix

G =



















0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1

0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1

0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0

1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1



















Separation vector

ŝ = (4, 5, 7)

3. k = 2 and l = 3

Integer programming solution

x1 x2 x3 x4 x5 x6 x7 x8 x16 x32 x44 x54 x61

1 1 1 1 1 1 1 1 1 1 1 1 1

Generator matrix

G =



















0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 1 1 1 1 0 0 0 1 1 1

0 1 1 0 0 1 1 0 0 0 0 1 0

1 0 1 0 1 0 1 0 0 0 0 0 1



















Separation vector

ŝ = (3, 5)

134

4. k = 2 and l = 4

Integer programming solution

x1 x2 x4 x7 x8 x11 x13 x14 x16 x32 x64 x127 x128 x179 x213

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Generator matrix

G =


























0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

0 0 0 0 1 1 1 1 0 0 0 1 0 0 0

0 0 1 1 0 0 1 1 0 0 0 1 0 0 1

0 1 0 1 0 1 0 1 0 0 0 1 0 1 0

1 0 0 1 0 1 1 0 0 0 0 1 0 1 1


























Separation vector

ŝ = (3, 5)

135

Appendix B: Derivation of (3.105)

From the integer programming formulation, we have qk−1
q−1 inequalities in the form of

Ax⊤ ≥ b⊤.

Since each column of A has qk−1 ones, the sum of qk−1
q−1 inequalities can be given by

qk−1
(
x1 + · · ·+ xqk−1

)
≥ s1 + qs2 + · · ·+ q(k−1)sk,

hence,

qk−1 n ≥
k∑

i=1

qi−1si. (B.1)

By applying ceiling functions for integer property,

n ≥
k∑

i=1

⌈
qi−1

qk−1
si

⌉

. (B.2)

Therefore,

n ≥
k∑

i=1

⌈
si

qk−i

⌉

.

136

Bibliography

137

Bibliography

[1] B. Masnick and J. Wolf, “On linear unequal error protection codes,” IEEE Transac-
tions on Information Theory, vol. 13, no. 4, pp. 600–607, Oct. 1967.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[3] L. A. Dunning and W. E. Robbins, “Optimal encodings of linear block codes for
unequal error protection,” Informatioin and Control, vol. 37, pp. 150–177, May 1978.

[4] I. Boyarinov and G. Katsman, “Linear unequal error protection codes,” IEEE Trans-
actions on Information Theory, vol. 27, no. 2, pp. 168–175, Mar. 1981.

[5] W. J. van Gils, “Two topics on linear unequal error protection codes: Bounds on their
length and cyclic code classes,” IEEE Transactions on Information Theory, vol. 29,
no. 6, pp. 866–876, Nov. 1983.

[6] ——, “Linear unequal error protection codes from shorter codes (corresp.),” IEEE
Transactions on Information Theory, vol. 30, no. 3, pp. 544–546, May 1984.

[7] M.-C. Lin and S. Lin, “Codes with multi-level error-correcting capabilities,” Discrete
Mathematics, vol. 83, no. 2-3, pp. 301–314, 1990.

[8] R. H. Morelos-Zaragoza and S. Lin, “On a class of optimal nonbinary linear unequal-
error-protection codes for two sets of messages,” IEEE Transactions on Information
Theory, vol. 40, no. 1, pp. 196–200, Jan. 1994.

[9] U. Dettmar, Y. Gao, and U. Sorger, “Modified generalized concatenated codes and
their application to the construction and decoding of LUEP codes,” IEEE Transac-
tions on Information Theory, vol. 41, no. 5, pp. 1499–1503, Sep. 1995.

[10] R. H. Morelos-Zaragoza and H. Imai, “Binary multilevel convolutional codes with un-
equal error protection capabilities,” IEEE Transactions on Communications, vol. 46,
no. 7, pp. 850–853, Jul. 1998.

[11] V. Kumar and O. Milenkovic, “On unequal error protection LDPC codes based on
plotkin-type constructions,” IEEE Transactions on Communications, vol. 54, no. 6,
pp. 994–1005, Jun. 2006.

[12] S. Borade, B. Nakiboğlu, and L. Zheng, “Unequal error protection: An information-
theoretic perspective,” IEEE Transactions on Information Theory, vol. 55, no. 12,
pp. 5511–5539, Dec. 2009.

138

[13] B. Nakiboğlu, S. K. Gorantla, L. Zheng, and T. P. Coleman, “Bit-wise unequal er-
ror protection for variable-length block codes with feedback,” IEEE Transactions on
Information Theory, vol. 59, no. 3, pp. 1475–1504, Mar. 2013.

[14] A. R. Calderbank and N. Seshadri, “Multilevel codes for unequal error protection,”
IEEE Transactions on Information Theory, vol. 39, no. 4, pp. 1234–1248, Jul. 1993.

[15] L.-F. Wei, “Coded modulation with unequal error protection,” IEEE Transactions on
Communications, vol. 41, no. 10, pp. 1439–1449, Oct. 1993.

[16] R. H. Morelos-Zaragoza and S. Lin, “QPSK block-modulation codes for unequal error
protection,” IEEE Transactions on Information Theory, vol. 41, no. 2, pp. 576–581,
Mar. 1995.

[17] R. H. Morelos-Zaragoza, T. Kasami, S. Lin, and H. Imai, “On block-coded mod-
ulation using unequal error protection codes over Rayleigh-fading channels,” IEEE
Transactions on Communications, vol. 46, no. 1, pp. 1–4, Jan. 1998.

[18] R. H. Morelos-Zaragoza, M. P. C. Fossorier, S. Lin, and H. Imai, “Multilevel coded
modulation for unequal error protection and multistage decoding – part I: Symmetric
constellations,” IEEE Transactions on Communications, vol. 48, no. 2, pp. 204–213,
Feb. 2000.

[19] M. Isaka, M. P. C. Fossorier, R. H. Morelos-Zaragoza, S. Lin, and H. Imai, “Multilevel
coded modulation for unequal error protection and multistage decoding – part II:
Asymmetric constellations,” IEEE Transactions on Communications, vol. 48, no. 5,
pp. 774–786, May 2000.

[20] A. Limmanee and W. Henkel, “UEP network coding for scalable data,” in 5th Inter-
national Symposium on Turbo Codes and Related Topics, Sep. 2008, pp. 333–337.

[21] N. Thomos, J. Chakareski, and P. Frossard, “Prioritized distributed video delivery
with randomized network coding,” IEEE Transactions on Multimedia, vol. 13, no. 4,
pp. 776–787, Aug. 2011.

[22] M. Iezzi, M. Di Renzo, and F. Graziosi, “Network code design from unequal error
protection coding: Channel-aware receiver design and diversity analysis,” in IEEE
International Conference on Communications (ICC), Jun. 2011, pp. 1–6.

[23] C. Yao, J. K. Zao, C.-H. Wang, S.-Y. R. Li, N. A. Claude, and K.-K. Yen, “On sep-
aration vectors of static linear network codes with UEP capability,” in International
Symposium on Network Coding (NetCod), Jul. 2011, pp. 1–6.

[24] D. Vukobratović and V. Stanković, “Unequal error protection random linear cod-
ing strategies for erasure channels,” IEEE Transactions on Communications, vol. 60,
no. 5, pp. 1243–1252, May 2012.

[25] J. Yue, Z. Lin, and B. Vucetic, “Distributed fountain codes with adaptive unequal
error protection in wireless relay networks,” vol. 13, no. 8, pp. 4220–4231, Aug. 2014.

[26] T. M. Cover, “Broadcast channels,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 2–14, Jan. 1972.

139

[27] P. Bergmans, “Random coding theorem for broadcast channels with degraded compo-
nents,” IEEE Transactions on Information Theory, vol. 19, no. 2, pp. 197–207, Mar.
1973.

[28] R. G. Gallager, “Capacity and coding for degraded broadcast channels,” Problemy
Peredachi Informatsii, vol. 10, no. 3, pp. 3–14, Jul.-Sep. 1974.

[29] R. Ahlswede and J. Körner, “Source coding with side information and a converse for
degraded broadcast channels,” IEEE Transactions on Information Theory, vol. 21,
no. 6, pp. 629–637, Nov. 1975.

[30] J. Körner and K. Marton, “General broadcast channels with degraded message sets,”
IEEE Transactions on Information Theory, vol. 23, no. 1, pp. 60–64, Jan. 1977.

[31] A. El Gamal, “The feedback capacity of degraded broadcast channels (corresp.),”
IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 379–381, May 1978.

[32] T. Kasami, S. Lin, V. K. Wei, and S. Yamamura, “Coding for the binary symmetric
broadcast channel with two receivers,” IEEE Transactions on Information Theory,
vol. 31, no. 5, pp. 616–625, Sep. 1985.

[33] T. M. Cover, “Comments on broadcast channels,” IEEE Transactions on Information
Theory, vol. 44, no. 6, pp. 2524–2530, Oct. 1998.

[34] C. Nair and A. El Gamal, “The capacity region of a class of three-receiver broadcast
channels with degraded message sets,” IEEE Transactions on Information Theory,
vol. 55, no. 10, pp. 4479–4493, Oct. 2009.

[35] A. Sultan, Linear programming: an introduction with applications. San Diego, CA:
Academic press, Inc., 1993.

[36] R. K. Martin, Large scale linear and integer optimization: a unified approach. Nor-
well, MA: Kluwer academic publishers, 1999.

[37] J. C. Smith and Z. C. Taşkin, “A tutorial guide to mixed-integer programming models
and solution techniques,” in Optimization in Medicine and Biology, G. J. Lim and
E. K. Lee, Eds. Auerbach Publications, 2008.

[38] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. New
York, NY: North-Holland publishing company, 1977.

[39] J. K. Omura, “Iterative decoding of linear codes by a modulo-2 linear program,”
Discrete Mathematics, vol. 3, no. 1–3, pp. 193–208, 1972.

[40] M. Breitbach, M. Bossert, R. Lucas, and C. Kempter, “Soft-decision decoding of linear
block codes as optimization problem,” European Transactions on Telecommunications,
vol. 9, no. 3, pp. 289–293, May – Jun. 1998.

[41] T. Kasami, “On integer programming problems related to soft-decision iterative de-
coding algorithms,” in Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes (AAECC), ser. Lecture Notes in Computer Science, vol. 1719. Springer, 1999,
pp. 43–54.

140

[42] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear programming to
decode binary linear codes,” IEEE Transactions on Information Theory, vol. 51, no. 3,
pp. 954–972, Mar. 2005.

[43] S. C. Draper, J. S. Yedidia, and Y. Wang, “ML decoding via mixed-integer adap-
tive linear programming,” in IEEE International Symposium on Information Theory
(ISIT), 2007, pp. 1656–1660.

[44] K. Yang, X. Wang, and J. Feldman, “A new linear programming approach to decoding
linear block codes,” IEEE Transactions on Information Theory, vol. 54, no. 3, pp.
1061–1072, Mar. 2008.

[45] M. F. Flanagan, V. Skachek, E. Byrne, and M. Greferath, “Linear-programming de-
coding of nonbinary linear codes,” IEEE Transactions on Information Theory, vol. 55,
no. 9, pp. 4134–4154, Sep. 2009.

[46] A. Tanatmis, S. Ruzika, H. W. Hamacher, M. Punekar, F. Kienle, and N. Wehn, “A
separation algorithm for improved LP-decoding of linear block codes,” IEEE Trans-
actions on Information Theory, vol. 56, no. 7, pp. 3277–3289, Jul. 2010.

[47] M. Punekar, F. Kienle, N. Wehn, A. Tanatmis, S. Ruzika, and H. W. Hamacher,
“Calculating the minimum distance of linear block codes via integer programming,”
in 6th International Symposium on Turbo Codes and Iterative Information Processing
(ISTC), Sep. 2010, pp. 329–333.

[48] M. Helmling, S. Ruzika, and A. Tanatmis, “Mathematical programming decoding
of binary linear codes: Theory and algorithms,” IEEE Transactions on Information
Theory, vol. 58, no. 7, pp. 4753–4769, Jul. 2012.

[49] S. Scholl, F. Kienle, M. Helmling, and S. Ruzika, “Integer programming as a tool for
analysis of channel codes,” in Proceedings of 2013 9th International ITG Conference
on Systems, Communication and Coding (SCC), Jan. 2013, pp. 1–6.

[50] M. Esmaeili, A. Alampour, and T. A. Gulliver, “Decoding binary linear block codes
using local search,” IEEE Transactions on Communications, vol. 61, no. 6, pp. 2138–
2145, Jun. 2013.

[51] M. Punekar, P. Vontobel, and M. Flanagan, “Low-complexity LP decoding of non-
binary linear codes,” IEEE Transactions on Information Theory, vol. 61, no. 8, pp.
3073–3085, Aug. 2013.

[52] S. Lin and D. J. Costello, Jr., Error control coding, 2nd ed. Upper Saddle River, NJ:
Pearson Prentice Hall, 2004.

[53] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Transactions
on Information Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[54] R. Koetter and M. Médard, “An algebraic approach to network coding,” IEEE/ACM
Transactions on Networking, vol. 11, no. 5, pp. 782–795, Oct. 2003.

141

[55] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger, “On randomized network cod-
ing,” in Proceedings of 41st Annual Allerton Conference on Communication, Control,
and Computing, Oct. 2003.

[56] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M.
Tolhuizen, “Polynomial time algorithms for multicast network code construction,”
IEEE Transactions on Information Theory, vol. 51, no. 6, pp. 1973–1982, Jun. 2005.

[57] N. J. A. Harvey, D. R. Karger, and K. Murota, “Deterministic network coding by ma-
trix completion,” in Proceedings of 16th annual ACM-SIAM symposium on Discrete
algorithms (SODA), 2005, pp. 489–498.

[58] A. Ramamoorthy, J. Shi, and R. D. Wesel, “On the capacity of network coding for
random networks,” IEEE Transactions on Information Theory, vol. 51, no. 8, pp.
2878–2885, Aug. 2005.

[59] T. Ho, M. Médard, R. Köetter, D. R. Karger, M. Effros, J. Shi, and B. Leong,
“A random linear network coding approach to multicast,” IEEE Transactions on
Information Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[60] C. Fragouli and E. Soljanin, “Information flow decomposition for network coding,”
IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 829–848, Mar. 2006.

[61] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proceedings of 41st
Allerton Conference on Communication, Control and Computing, Oct. 2003.

[62] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs in the
air: Practical wireless network coding,” IEEE/ACM Transactions on Networking,
vol. 16, no. 3, pp. 497–510, Jun. 2008.

[63] R. W. Yeung and N. Cai, “Network error correction, part I: Basic concepts and upper
bounds,” Communications in Information and Systems, vol. 6, no. 1, pp. 19–36, 2006.

[64] ——, “Network error correction, part II: Lower bounds,” Communications in Infor-
mation and Systems, vol. 6, no. 1, pp. 37–54, 2006.

[65] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable communi-
cation over packet networks,” Physical Communication, vol. 1, no. 1, pp. 3–20, Mar.
2008.

[66] Z. Zhang, “Linear network error correction codes in packet networks,” IEEE Trans-
actions on Information Theory, vol. 54, no. 1, pp. 209–218, Jan. 2008.

[67] R. Köetter and F. R. Kschischang, “Coding for errors and erasures in random network
coding,” IEEE Transactions on Information Theory, vol. 54, no. 8, pp. 3579–3591,
Aug. 2008.

[68] D. Silva, F. R. Kschischang, and R. Köetter, “A rank-metric approach to error control
in random network coding,” IEEE Transactions on Information Theory, vol. 54, no. 9,
pp. 3951–3967, Sep. 2008.

142

[69] D. Silva and F. R. Kschischang, “On metrics for error correction in network coding,”
IEEE Transactions on Information Theory, vol. 55, no. 12, pp. 5479–5490, Dec. 2009.

[70] D. Nguyen, T. Tran, T. Nguyen, and B. Bose, “Wireless broadcast using network
coding,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 914–925,
Feb. 2009.

[71] X. Xiao, L.-M. Yang, W.-P. Wang, and S. Zhang, “A wireless broadcasting retrans-
mission approach based on network coding,” in Proceedings of 4th IEEE International
Conference on Circuits and Systems for Communications, ICCSC 2008, May 2008,
pp. 782–786.

[72] User’s manual for CPLEX V12.5.1, IBM ILOG, 2013. [Online]. Available:
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp

[73] H. J. Helgert and R. D. Stinaff, “Shortened BCH codes,” IEEE Transactions on
Information Theory, vol. 19, no. 6, pp. 818–820, Nov. 1973.

[74] D. E. Knuth, The art of computer programming, 3rd ed. Reading, MA: Addison-
Wesley, 1997, vol. 1.

[75] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of
the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, Jun.
1960.

[76] M.-C. Lin and S. Lin, “Cyclic unequal error protection codes constructed from cyclic
codes of composite length,” IEEE Transactions on Information Theory, vol. 34, no. 4,
pp. 867–871, Jul. 1988.

[77] M.-C. Lin, C.-C. Lin, and S. Lin, “Computer search for binary cyclic UEP codes of
odd length up to 65,” IEEE Transactions on Information Theory, vol. 36, no. 4, pp.
924–935, Jul. 1990.

[78] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On multilevel block modulation
codes,” IEEE Transactions on Information Theory, vol. 37, no. 4, pp. 965–975, Jul.
1991.

[79] T. Takata, S. Ujita, T. Kasami, and S. Lin, “Multistage decoding of multilevel block
M-PSK modulation codes and its performance analysis,” IEEE Transactions on In-
formation Theory, vol. 39, no. 4, pp. 1204–1218, Jul. 1993.

[80] R. H. Morelos-Zaragoza and S. Lin, “On primitive BCH codes with unequal error
protection capabilities,” IEEE Transactions on Information Theory, vol. 41, no. 3,
pp. 788–790, May 1995.

[81] J. Limbanyen and K. Yamaguchi, “Unequal error protection codes based on |u|u +
v| · | construction,” in IEEE International Symposium on Information Theory (ISIT),
Cambridge, MA, Aug.16 – 21, 1998, p. 198.

[82] E. Fujiwara, T. Ritthongpitak, and M. Kitakami, “Optimal two-level unequal er-
ror control codes for computer systems,” IEEE Transactions on Computers, vol. 47,
no. 12, pp. 1313–1325, Dec. 1998.

143

[83] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: Theoretical con-
cepts and practical design rules,” IEEE Transactions on Information Theory, vol. 45,
no. 5, pp. 1361–1391, Jul. 1999.

[84] N. Rahnavard, B. Vellambi, and F. Fekri, “Rateless codes with unequal error pro-
tection property,” IEEE Transactions on Information Theory, vol. 53, no. 4, pp.
1521–1532, Apr. 2007.

[85] S. Borade, L. Zheng, and M. Trott, “Multilevel broadcast networks,” in IEEE Inter-
national Symposium on Information Theory (ISIT), Jun. 2007, pp. 1151–1155.

[86] S. Borade, B. Nakiboğlu, and L. Zheng, “Some fundamental limits of unequal error
protection,” in IEEE International Symposium on Information Theory (ISIT), Jul.
2008, pp. 2222–2226.

[87] E. Kuriata, “Creation of unequal error protection codes for two groups of symbols,”
International Journal of Applied Mathematics and Computer Science, vol. 18, no. 2,
pp. 251–257, Jun. 2008.

[88] D. Sejdinović, D. Vukobratović, A. Doufexi, V. Senk, and R. J. Piechocki, “Expanding
window fountain codes for unequal error protection,” IEEE Transactions on Commu-
nications, vol. 57, no. 9, pp. 2510–2516, Sep. 2009.

[89] C.-H. Wang, M.-C. Chiu, and C.-C. Chao, “On unequal error protection of convo-
lutional codes from an algebraic perspective,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 296–315, Jan. 2010.

[90] R. Morelos-Zaragoza and N. D’souza, “Two-level channel coding for cooperative wire-
less networks based on WiMAX LDPC codes,” in IEEE 22nd International Sympo-
sium on Personal Indoor and Mobile Radio Communications (PIMRC), Sep. 2011,
pp. 2349–2353.

[91] A. B. Fontaine and W. W. Peterson, “On coding for the binary symmetric channel,”
Transactions of the American Institute of Electrical Engineers, Part I: Communica-
tion and Electronics, vol. 77, no. 5, pp. 638–647, Nov. 1958.

[92] P. Bergmans and T. M. Cover, “Cooperative broadcasting,” IEEE Transactions on
Information Theory, vol. 20, no. 3, pp. 317–324, May 1974.

[93] P. Bergmans, “A simple converse for broadcast channels with additive white gaussian
noise (corresp.),” IEEE Transactions on Information Theory, vol. 20, no. 2, pp. 279–
280, Mar. 1974.

[94] T. M. Cover, “An achievable rate region for the broadcast channel,” IEEE Transac-
tions on Information Theory, vol. 21, no. 4, pp. 399–404, Jul. 1975.

[95] T. Kasami and S. Lin, “Coding for a multiple-access channel,” IEEE Transactions on
Information Theory, vol. 22, no. 2, pp. 129–137, Mar. 1976.

[96] K. Marton, “A coding theorem for the discrete memoryless broadcast channel,” IEEE
Transactions on Information Theory, vol. 25, no. 3, pp. 306–311, May 1979.

144

[97] A. El Gamal, “The capacity of a class of broadcast channels,” IEEE Transactions on
Information Theory, vol. 25, no. 2, pp. 166–169, Mar. 1979.

[98] A. El Gamal and T. M. Cover, “Multiple user information theory,” Proceedings of the
IEEE, vol. 68, no. 12, pp. 1466–1483, Dec. 1980.

[99] C. Nair, “Capacity regions of two new classes of two-receiver broadcast channels,”
IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4207–4214, Sep. 2010.

[100] C.-C. Wang, “On the capacity of 1-to-K broadcast packet erasure channels with chan-
nel output feedback,” IEEE Transactions on Information Theory, vol. 58, no. 2, pp.
931–956, Feb. 2012.

[101] E. J. McCluskey, “Error-correcting codes: a linear programming approach,” The Bell
System Technical Journal, vol. 38, no. 6, pp. 1485–1512, Nov. 1959.

[102] H. T. Moorthy, S. Lin, and T. Kasami, “Soft-decision decoding of binary linear block
codes based on an iterative search algorithm,” IEEE Transactions on Information
Theory, vol. 43, no. 3, pp. 1030–1040, May 1997.

[103] M. P. C. Fossorier and S. Lin, “A unified method for evaluating the error-correction ra-
dius of reliability-based soft-decision algorithms for linear block codes,” IEEE Trans-
actions on Information Theory, vol. 44, no. 2, pp. 691–700, Mar. 1998.

[104] A. Eryilmaz, A. Ozdaglar, and M. Médard, “On delay performance gains from net-
work coding,” in Proceedings of 40th Annual Conference on Information Sciences and
Systems, Mar. 2006, pp. 864–870.

[105] P. Chou and Y. Wu, “Network coding for the internet and wireless networks,” IEEE
Signal Processing Magazine, vol. 24, no. 5, pp. 77–85, Sep. 2007.

[106] M. Ghaderi, D. Towsley, and J. Kurose, “Reliability gain of network coding in lossy
wireless networks,” in Proceedings of IEEE 27th Conference on Computer Communi-
cations (INFOCOM), Apr. 2008, pp. 2171–2179.

[107] C. Fragouli, J. Widmer, and J.-Y. Le Boudec, “Efficient broadcasting using network
coding,” IEEE/ACM Transactions on Networking, vol. 16, no. 2, pp. 450–463, Apr.
2008.

[108] X. Xiao, L. Yang, W. Wang, and S. Zhang, “A broadcasting retransmission approach
based on random linear network coding,” in Proceedings of the 9th International Con-
ference for Young Computer Scientists, ICYCS 2008, Nov. 2008, pp. 457–461.

[109] Y. Wu, V. Stankovic, Z. Xiong, and S.-Y. Kung, “On practical design for joint dis-
tributed source and network coding,” IEEE Transactions on Information Theory,
vol. 55, no. 4, pp. 1709–1720, Apr. 2009.

[110] I. Stojanovic, Z. Wu, M. Sharif, and D. Starobinski, “Data dissemination in wire-
less broadcast channels: Network coding versus cooperation,” IEEE Transactions on
Wireless Communications, vol. 8, no. 4, pp. 1726–1732, Apr. 2009.

145

[111] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network information
flow: A deterministic approach,” IEEE Transactions on Information Theory, vol. 57,
no. 4, pp. 1872–1905, Apr. 2011.

[112] D. Vukobratović, C. Khirallah, V. Stanković, and J. Thompson, “Random network
coding for multimedia delivery services in LTE/LTE-Advanced,” IEEE Transactions
on Multimedia, vol. 16, no. 1, pp. 277–282, Jan. 2014.

[113] Y. Lin, B. Liang, and B. Li, “Priority random linear codes in distributed storage
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 11,
pp. 1653–1667, Nov. 2009.

[114] A. K. Ramasubramonian and J. W. Woods, “Multiple description coding and practical
network coding for video multicast,” IEEE Signal Processing Letters, vol. 17, no. 3,
pp. 265–268, Mar. 2010.

[115] D. Slepian, “A note on two binary signaling alphabets,” IRE Transactions on Infor-
mation Theory, vol. 2, no. 2, pp. 84–86, Jun. 1956.

[116] M. Plotkin, “Binary codes with specified minimum distance,” IRE Transactions on
Information Theory, vol. 6, no. 4, pp. 445–450, Sep. 1960.

[117] N. J. A. Sloane and D. S. Whitehead, “New family of single-error correcting codes,”
IEEE Transactions on Information Theory, vol. 16, no. 6, pp. 717–719, Nov. 1970.

[118] N. J. A. Sloane, S. M. Reddy, and C.-L. Chen, “New binary codes,” IEEE Transactions
on Information Theory, vol. 18, no. 4, pp. 503–510, Jul. 1972.

[119] R. Roth and G. Seroussi, “On generator matrices of MDS codes (corresp.),” IEEE
Transactions on Information Theory, vol. 31, no. 6, pp. 826–830, Nov. 1985.

[120] Y. Xu and T. Zhang, “Variable shortened-and-punctured Reed-Solomon codes for
packet loss protection,” IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 237–
245, Sep. 2002.

[121] J. Lacan and J. Fimes, “Systematic MDS erasure codes based on Vandermonde ma-
trices,” IEEE Communications Letters, vol. 8, no. 9, pp. 570–572, Sep. 2004.

[122] D. J. J. Versfeld, J. N. Ridley, H. C. Ferreira, and A. S. J. Helberg, “On system-
atic generator matices for Reed-Solomon codes,” IEEE Transactions on Information
Theory, vol. 56, no. 6, pp. 2549–2550, Jun. 2010.

[123] W. J. van Gils, “On linear unequal error protection codes,” Master’s thesis, Eindhoven
University of Technology, Jul. 1982.

[124] R. H. Morelos-Zaragoza, “Multi-level error correcting codes,” Ph.D. dissertation, Uni-
versity of Hawaii, May 1992.

[125] T. Ho, “Networking from a network coding perspective,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, May 2004.

146

[126] Y. Wu, “Network coding for multicasting,” Ph.D. dissertation, Princeton University,
Jan. 2006.

[127] D. S. Lun, “Efficient operation of coded packet networks,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Jun. 2006.

[128] N. Axvig, “Applications of linear programming to coding theory,” Ph.D. dissertation,
University of Nebraska, Aug. 2010.

[129] W. W. Peterson and E. J. Weldon, Jr., Error-correcting codes, 2nd ed. Cambridge,
MA: MIT press, 1972.

[130] M. Y. Rhee, Error-correcting coding theory. McGraw-Hill, Inc., 1965.

[131] S. B. Wicker, Error control systems for digital communication and storage. Upper
Saddle River, NJ: Prentice Hall, 1995.

[132] M. Bossert, Channel coding for telecommunications. New York, NY: John Wiley &
Sons, Inc., 1999.

[133] R. E. Blahut, Algebraic codes for data transmission. New York, NY: Cambridge
university press, 2003.

[134] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes. New York,
NY: Cambridge university press, 2003.

[135] R. H. Morelos-Zaragoza, The art of error correcting coding, 2nd ed. Hoboken, NJ:
John Wiley & Sons, Inc., 2006.

[136] R. M. Roth, Introduction to coding theory. New York, NY: Cambridge university
press, 2006.

[137] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed. Hoboken,
NJ: John Wiley & Sons, Inc., 2006.

[138] T. Ho and D. S. Lun, Network coding: an introduction. New York, NY: Cambridge
univerisy press, 2008.

[139] R. W. Yeung, Information theory and network coding. New York, NY: Springer,
2008.

[140] M. C. Ferris, O. L. Magasarian, and S. J. Wright, Linear programming with MAT-
LAB. Philadelphia, PA: Society for Industrual and Applied Mathematics (SIAM)
and Mathematical Programming Society (MPS), 2007.

[141] J. M. Wozencraft and I. M. Jacobs, Principles of communication engineering.
Prospect Heights, IL: Waveland press, Inc., 1965.

[142] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed. Read-
ing, MA: Addison-Wesley, 1994.

[143] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to probability. Belmont, MA: Athena
Scientific, 2002.

147

Curriculum Vitae

Wook Jung received his Bachelor of Science in Information and Computer Engineering
in 2000 from Ajou University, Republic of Korea. He then pursued graduate studies at
George Mason University, Fairfax, VA, where he received his Master of Science in Computer
Engineering in 2003. His main research interests lie in efficient error control coding for
improving network performance. More generally, his interests lie in both theoretical and
practical aspects of communication networks.

148

