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Abstract

ROBUST DYNAMIC EVENT-TRIGGERED COORDINATION WITH A DESIGNABLE
MINIMUM INTER-EVENT TIME

James Berneburg

George Mason University, 2020

Thesis Director: Dr. Cameron Nowzari

This paper revisits the classical multi-agent average consensus problem for which many

different event-triggered control strategies have been proposed over the last decade. Many

of the earliest versions of these works conclude asymptotic stability without proving that

Zeno behavior, or deadlocks, do not occur along the trajectories of the system. More

recent works that resolve this issue either: (i) propose the use of a dwell-time that forces

inter-event times to be lower-bounded away from zero but sacrifice asymptotic convergence

in exchange for practical convergence (or convergence to a neighborhood); (ii) guarantee

non-Zeno behaviors and asymptotic convergence but do not provide a positive minimum

inter-event time guarantee; or (iii) are not fully distributed.

Additionally, the overwhelming majority of these works provide no form of robustness

analysis on the event-triggering strategy. More specifically, if arbitrarily small disturbances

can remove the non-Zeno property then the theoretically correct algorithm may not actually

be implementable.



Instead, this work for the first time presents a fully distributed, robust, dynamic event-

triggered algorithm, for general directed communication networks, for which a desired pos-

itive minimum inter-event time can be chosen by each agent in a distributed fashion. Sim-

ulations illustrate our results.



Chapter 1: Introduction

Systems composed of individually controlled agents are increasingly common and a very

active area of research. Such systems are designed for many different applications including

the coordination of unmanned air vehicles, distributed reconfigurable sensor networks, and

attitude alignment for satellites, etc; see [1] and [2] and their references. These are often

intended to fulfill some coordinated task, but require distributed control to be scaled with

large systems. In this case, communication limitations, such as wireless bandwidth, mean

that agents cannot be assumed to have continuous access to others’ states. Therefore, many

works have recently considered communication to be a limited resource, where individual

agents must autonomously schedule when to take various actions, rather than doing so

periodically or continuously.

A common solution to these types of problems comes in the form of event-triggered

coordination, where actions occur at specific instances of time when some event condition is

satisfied, such as when an error state [3] or a clock state [4] hits some threshold. A similar

strategy is self-triggered control, where the controller uses state information to schedule

events ahead of time. An introduction to these ideas for single-plant systems is found in [5].

One potential problem in event-triggered coordination is the Zeno phenomenon, where

the number of events triggered goes to infinity in a finite time period. This is problematic

as it asks for solutions that cannot be realized by actual devices. A way to prevent this

problem is to design triggering conditions that guarantee a positive minimum inter-event

time (MIET) exists. Note that this is different from first designing an event-triggering

condition, and then afterwards forcing a minimum inter-event time (dwell-time), which can

negatively affect convergence guarantees. For example, the self-triggered strategy in [6]

enforces a MIET and so only guarantees convergence to a set.
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As noted in [5], the existence of a positive MIET is important to ensure that the event-

triggering mechanism does not become unimplementable because it requires actions to be

taken arbitrarily fast. This issue has been addressed recently for single-plant systems,

e.g., in [7], where a general method for achieving stabilization based on Lyapunov func-

tions is developed, and [8], where a general framework for event-triggering mechanisms is

provided using the hybrid systems formalism of [9]. Hybrid systems formulations seem espe-

cially useful in networked control systems because they conveniently describe systems with

continuous-time dynamics and discrete-time memory updates via communication. However,

this is still a major challenge for multi-agent systems with distributed information.

To address this, we turn to a simple but widely applicable canonical problem: multi-

agent average consensus. Consensus problems are when multiple agents, each with its own

dynamics and limited access to the other agents’ states, are intended to be stabilized such

that all the agents’ states are equal. Applications include distributed computing, networks of

sensors, flocking, rendezvous, attitude alignment, and synchronization of coupled oscillators;

see [10], [2] and [1] and their references.

Event-triggered strategies for consensus problems have been studied quite extensively

over the last decade, with some of the earliest works appearing in 2009 [11–13]. We refer

to [14] for a detailed survey on the history of this problem but summarize the relevant

points next.

A seminal work on this topic is [15], which develops centralized event- and self-triggered

strategies that lead to multi-agent consensus, and then modifies them to be distributed. Un-

fortunately, although the centralized event-triggered strategy is able to guarantee a positive

MIET, the distributed strategies are unable to guarantee the prevention of Zeno solutions.

Similarly, the results in [16] are unable to exclude Zeno behavior.

Some works have addressed this issue by considering a periodically sampled (or sampled-

data) implementation to trivially address this issue, but this assumes perfect synchroniza-

tion among the entire network which is neither practical or scalable [17–20]. More recent

works have even considered asynchronous periodic implementations but these require some

2



sort of global knowledge to find periods that will work [21,22].

More related to our work, [3, 23, 24] present distributed event-triggered strategies for

the consensus problem that prevent Zeno solutions and ensure convergence to consensus.

The first two include an explicit function of time in the trigger mechanism, while the third

uses a dynamic triggering mechanism, by including a virtual state. While these are a good

start, unfortunately none of these can guarantee a positive MIET for the agents, which is

our main goal.

The distributed event-triggered strategy in [25] is able to guarantee convergence to

consensus with a positive MIET enforced; however, it requires global parameters in order

to design each agent’s controller, so it is not fully distributed. Alternatively, and most

similarly to the methods used in this work, the authors of [4] utilize a hybrid systems

formulation to solve a closely related problem in which a different communication model is

considered. In their work they show the existence of a positive MIET for a fully distributed

event-triggered strategy that guarantees asymptotic convergence with an event trigger that

employs a dynamic virtual state; however, this work still requires a type of synchronization

as agents need to trigger events in pairs.

Finally, another important consideration is the robustness of a MIET. We note here

that we are primarily concerned with the robustness of the event-triggering strategy rather

than robustness in terms of feedback stabilization. The authors of [26] acutely point out

that, even if an event-triggered controller may guarantee a positive MIET, it is possible that

arbitrarily small disturbances remove this property which means it is still equally useless for

implementing on physical systems. Another potential issue for event-triggered strategies is

robustness to imperfect event detection. More specifically, analysis on event-based solutions

often rely on the very precise timings of actions in response to events. Consequently, we are

also interested in designing a solution that is robust to small timing errors in determining

when event conditions have been satisfied.

Statement of contributions: This problem revisits a simple single-integrator multi-agent

average consensus problem originally conceived in [11–13]. By re-formulating the problem
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using hybrid systems, we are able to provide a novel algorithm with several key fundamental

improvements over similar event-triggered strategies in the literature. The contributions

of this paper are threefold. First, we provide the first known fully distributed solution

that guarantees a positive MIET. Second, we develop a method to design the triggering

functions such that each agent is able to independently prescribe their guaranteed MIET in

a distributed way; which has important implications on implementability of the proposed

algorithms in real applications. Finally, we investigate the robustness of the MIET against

both imperfect event detection, for which we provide an alternative robust trigger, and

additive state disturbances, discussing its effects. Simulations illustrate our results.
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Chapter 2: Mathematical Problem

2.1 Preliminaries

The Euclidean norm of a vector v ∈ Rn is denoted by ||v||. An n-dimensional column vector

with every entry equal to 1 is denoted by 1n, and an n-dimensional column vector with

every entry equal to 0 is denoted by 0n. The minimum eigenvalue of a square matrix A is

given by eigmin(A) and its maximum eigenvalue is given by eigmax(A). The cardinality of

a finite set N is denoted by |N |. Given a vector v ∈ RN , we denote by diag(v) the N ×N

diagonal matrix with the entries of v along its diagonal.

Young’s inequality is

xy ≤ a

2
x2 +

1

2a
y2, (2.1)

for a > 0 and x, y ∈ R [27].

By V −1(C) where C ⊂ Rm, we denote the set of points {s ∈ Rn : V (s) ∈ C}, for a

function V : Rn → Rm. By R≥0 we denote the set of nonnegative real numbers, and by

Z≥0 we denote the set of nonnegative integers. The closure of a set U ∈ Rn is denoted by

U . The domain of a mapping f is denoted by dom f and its range is denoted by range f .

Graph Theory An weighted graph G = (V, E , A) has a set of vertices V = {1, 2, ..., N},

a set of edges E ⊂ V × V , and an adjacency matrix A ∈ RN×N with each entry aij ∈ R≥0,

where aij > 0 if (i, j) ∈ E , and aij = 0 otherwise. For a digraph (directed graph), edge

(i, j) is distinct from edge (j, i). A path between vertex i and vertex j is a finite sequence of

edges (i, k), (k, l), (l,m), . . . , (n, j). A digraph is strongly connected if there exists a path

between any two vertices. For an edge (i, j), j is an out neighbor of i and i is an in neighbor
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Table 2.1: Agent i model definitions.

Definition Domain

qi = [xi, x̂i, χi]
T ∈ R3

vi = (qi, {x̂j}j∈N out
i

) ∈ R3 × R|N out
i |

ei = xi − x̂i ∈ R
ẑi = (Lx̂)i =

∑
j∈N out

i
wij(x̂i − x̂j) ∈ R

φ̂i =
∑

j∈N out
i

wij(x̂i − x̂j)2 ∈ R≥0

of j. A weighted digraph has a weighted adjacency matrix A where the ijth element is the

weight for edge (i, j). The in-degree, dini , for a vertex i is the sum of all the weights for the

edges that correspond to its in neighbors, and the out-degree, douti , is the same for its out

neighbors. A weight-balanced digraph is a digraph where dini = douti = di for each vertex i.

For a weight-balanced digraph, the degree matrix Dout = Din is a diagonal matrix with di

as the ith diagonal element, and the Laplacian is L = Dout −A.

Hybrid Systems A hybrid system H = (C, f,D,G) is a tuple composed of a flow set

C ∈ Rn, where the system state x ∈ Rn continuously changes according to ẋ = f(x), and

a jump set D ∈ Rn, where x discretely jumps to x+ ∈ G(x), where f maps Rn → Rn and

G : Rn ⇒ Rn is set valued [9, Definition 2.2]. While x ∈ C, the system can flow continuously

and while x ∈ D, the system can jump discontinuously.

A compact hybrid time domain is a subset Ecompact ⊂ R × N for which Ecompact =

∪J−1j=0 ([tj , tj+1], j), for a finite sequence of times 0 ≤ t0 ≤ t1 ≤ ... ≤ tJ , and a hybrid time

domain is a subset E ⊂ R×N such that ∀(T, J) ∈ E, E ∩ ([0, T ]×{0, 1, ...J}) is a compact

hybrid time domain [9, Definition 2.3]. The hybrid time domain is used to keep track of

both the elapsed continuous time t and the number of discontinuous jumps j.
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2.2 Problem Formulation

We begin by stating a long-standing version of the event-triggered consensus problem. We

then show why existing solutions to it are not pragmatic and how we reformulate the

problem to obtain solutions that can be implemented on physical platforms. Please see

Table 2.1 for a summary of notation used in the following.

Consider a group of N agents whose communication topology is described by a directed,

weight-balanced, and strongly connected graph G with edges E and Laplacian matrix L.

Each agent is able to receive information from its out neighbors and send information to its

in neighbors, and each weight of the graph is a gain applied to the information sent from

one agent to another.

The state of each agent i at time t ≥ 0 is given by xi(t) with single-integrator dynamics

ẋi(t) = ui(t), (2.2)

where ui is agent i’s input. It is well known that the input

ui(t) = −
∑

j∈N out
i

wij(xi(t)− xj(t)) (2.3)

drives all agent states to the average of the initial conditions [1], which is defined as

x̄ ,
1

N

N∑
i=1

xi(0).

Note that under the control law (2.3), the average x̄(t) is an invariant quantity. Defining

x = [x1, x2, . . . , xN ]T and u = [u1, u2, . . . , uN ]T as the vectors containing all the state and

input information about the network of agents, respectively, we can describe all inputs

together by

u(t) = −Lx(t).
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However, in order to implement this control law, each agent must have continuous access

to the state of each of its out neighbors. Instead, we assume that each agent i can only

measure its own state xi and must receive neighboring state information through wireless

communication. We consider event-triggered communication and control where each agent

only broadcasts its state to its neighbors at discrete instances of time. More formally, letting

{ti`}`∈Z≥0
⊂ R≥0 be the sequence of times at which agent i broadcasts its state to its in

neighbors j ∈ N in
i , the agents instead implement the control law

u(t) = −ẑ , −Lx̂(t), (2.4)

where x̂ = [x̂1, . . . , x̂N ]T is the vector of the last broadcast state of each agent. More

specifically, given the sequence of broadcast times {ti`}`∈Z≥0
for agent i, we have

x̂i(t) = xi(t
i
`) for t ∈ [ti`, t

i
`+1). (2.5)

Note that the input (2.4) still ensures that the average of all agent states is an invariant

quantity because ˙̄x =
1

N
1TN ẋ =

1

N
1TN (−Lx̂) = 0, which follows from the weight-balanced

property of the graph.

At any given time t ≥ 0, we define

vi(t) , (xi(t), x̂i(t), {x̂j(t)}j∈N out
i

) (2.6)

as all the dynamic variables locally available to agent i. The problem of interest, formalized

below, is then to obtain a triggering condition based on this information such that the

sequence of broadcasting times {ti`}`∈Z≥0
, for each agent i, guarantees that the system

eventually reaches the average consensus state.

Problem 1. (Distributed Event-Triggered Consensus) Given the directed, weight-

balanced, and strongly connected graph G with dynamics (2.2) and input (2.4), find a

8



triggering condition for agent i, which depends only on locally available information vi,

such that xi → x̄ for all i ∈ {1, . . . , N}.

This problem was first formulated in [11,12] in 2009. Since then, there have been many

works dedicated to this problem in both the undirected [3,15–17,23,28] and directed [18,19,

29] cases. Unfortunately, although the above referenced papers provide theoretical solutions

to this problem, we are not aware of a single solution which can be implemented on physical

systems some practical concerns, described next, are considered. For details on the history

of this problem and its theoretical solutions, we refer the interested reader to [14], but we

summarize the main points here.

The earliest solutions to this problem did not adequately investigate the Zeno phe-

nomenon, which invalidates their correctness [15,16]. In particular, these solutions to Prob-

lem 1 did not rule out the possibility of Zeno behavior, meaning that it was possible for a

sequence of broadcasting times {t`}`∈Z≥0
to converge to some finite time t` → T > 0. This

is clearly troublesome since all theoretical analysis then falls apart after t > T , invalidating

the asymptotic convergence results. More recently, the community has acknowledged the

importance of ruling out Zeno behavior to guarantee that all the sequences of times ti` →∞

as `→∞ for all i ∈ {1, . . . , N}. While enforcing this additional constraint on the sequences

of broadcasting times guarantees that theoretically the solutions will converge to the average

consensus state, we must consider other important practical issues as well.

Even guaranteeing that Zeno behavior does not occur, so that the inter-event times are

strictly positive for all agents i,

ti`+1 − ti` > 0,

is unfortunately still not enough to guarantee that the solution can be realized by physical

devices. This is because, although the inter-event times are technically positive, they can

become arbitrarily small to the point that no physical hardware exists that can keep up with

the speed of actions required by the event-triggered algorithm. The solutions in [23], [24], [3],

9



and [29] have this problem. This is inherently different from guaranteeing a strictly positive

MIET T , where ti`+1 − ti` ≥ T > 0, which is the focus of our work here.

Specifically, we consider the case where each agent i ∈ {1, . . . , N} has some maximum

rate 1
τi

at which it can take actions (e.g., broadcasting information, computing control

inputs). Therefore, each agent i cannot process two events in less than τi seconds, which is

written mathematically as

ti`+1 − ti` ≥ τi,

for all ` ∈ Z≥0. Note that there are also solutions that guarantee a MIET, but make other

sacrifices to do so. For example, the solution in [23] is able to guarantee a MIET under

certain conditions, but convergence is only to a neighborhood of consensus. Additionally,

the algorithms in [20, 25] are able to enforce a MIET, but only by using global parameters

of the system to design the algorithm, which is impractical in cases where the parameters

may change or are otherwise difficult to measure. The algorithm in [4] is fully distributed

and has a positive MIET, but it still requires pair of agents to trigger events at the same

time, which necessitates synchronization. With all this in mind, we reformulate Problem 1

such that solutions to the problem can be implemented on physical platforms given that

each agent i is capable of processing actions at a frequency of up to 1
τi

.

Problem 2. (Distributed Event Triggered Consensus with Designable MIET)

Given the directed, weight-balanced, and strongly connected graph G with dynamics (2.2),

input (2.4), and the minimum periods (τ1, . . . , τN ) for each agent, find a triggering condition

for each agent i, which depends only on local information vi, such that xi → x̄ and

min
`∈Z≥0

ti`+1 − ti` ≥ τi, (2.7)

for all i ∈ {1, . . . , N}.

To the best of our knowledge, Problem 2 has not yet been fully solved. Rather than being
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able to guarantee a strictly positive minimum inter-event time, similar works often settle for

only ruling out Zeno executions, meaning communication between agents may still need to

occur arbitrarily fast in order for the convergence results to hold. Conversely, other works

more simply force a MIET through the use of a dwell-time at the cost of losing the exact

asymptotic convergence guarantee in exchange for practical consensus. The works [3,23,24]

only preclude Zeno behavior but cannot guarantee that (2.7) holds even for arbitrarily

small minimum periods τi. The algorithm proposed in [25] comes close but requires global

system information. The methodology used in [4] is similar to ours here but ultimately

solves a different problem. Thus, we provide the first complete solution to Problem 2. For

now, we consider no state disturbances and perfect event detection, but we will relax these

assumptions in Section 3.2, where we study the robustness of the event-triggering strategy

with respect to various forms of disturbances.

2.2.1 Hybrid Systems Formulation

In order to solve Problem 2, we first reformulate it using hybrid systems tools, similar to [4].

We refer to the original state x as the ‘physical’ state that represents the actual state that

we wish to control. Separately, we maintain a set of ‘cyber’ or virtual states corresponding

to the internal memory of each agent. Given the communication model described by (2.5),

it seems natural to keep track of the last broadcast state x̂i for each agent as one of the cyber

states. Additionally, we introduce an extra virtual state χi for each agent i ∈ {1, . . . , N}

to introduce dynamics into our triggering strategy, and we collect these components in

the vector χ = [χ1, χ2, . . . , χN ]T . Note that the internal variable χi is only available to

agent i. In this work we consider scalar internal variables χi ∈ R but note that more

sophisticated controllers or even learning-based controllers could be captured by increasing

the complexity of the internal variables. The hybrid systems formulation will aid us here in

properly modeling both the continuous-time dynamical system with discrete-time memory

and control updates.
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We now define the extended state vector for agent i as

qi(t) =


xi(t)

x̂i(t)

χi(t)

 , (2.8)

and the extended state (capturing both ‘physical’ and ‘cyber’ states) of the entire system

is q = [qT1 , q
T
2 , . . . , q

T
N ]T ∈ R3N . With a slight abuse of notation, we now redefine the local

information (2.6) available to agent i at any given time as its own extended state qi and

the last broadcast states of its out-neighbors {x̂j}j∈N out
i

,

vi(t) , (qi(t), {x̂j(t)}j∈N out
i

). (2.9)

In this work, the goal is to use the internal variable χi to determine exactly when agent i

should broadcast its current state to its neighbors. To achieve this, we let this state take

values χi ≥ 0, and prescribe an event trigger whenever χi = 0. The exact dynamics of χi

will be designed in Section 2.3 to guarantee a solution to Problem 2. More specifically, at

any given time t ≥ ti`, the next triggering time ti`+1 is given by

ti`+1 = inf{t ≥ ti` : χi(t) = 0 and x̂i 6= xi}, (2.10)

for all ` ∈ Z≥0, for each agent i.

With the role of the new internal variable χi established (although its dynamics will be

designed later), we can now formalize our hybrid system

H = (C, f,D,G). (2.11)

We refer to [9] for formal hybrid systems concepts and assume the reader is familiar with
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this formalism.

Flow set (between event-triggering times): The flow set C for the entire system is given

by

C = {q ∈ R3N : χi ≥ 0 for all i ∈ {1, . . . , N}}. (2.12)

While the system state q ∈ C, the system flows according to f

q̇ = f(q) =


f1(v1)

...

fN (vN )

 for q ∈ C, (2.13)

with the individual extended states evolving according to

q̇i = fi(vi) ,


−ẑi

0

γi(vi)

 , (2.14)

where γi is the function to be designed.

The first row is exactly ẋi = ui as defined in (2.4), the second row says the last

broadcast state is not changing between event-triggers ˙̂xi = 0, and the last row is the

dynamics of the internal variable χ̇i = γi(vi). Recall that vi defined in (2.9) only contains

information available to agent i and thus the dynamics of the internal variable χi = γi(vi)

must be a function only of vi.

Jump set (at event-triggering times): The jump set D for the entire system is then given

by

D = ∪Ni=1{q ∈ R3N : χi ≤ 0}. (2.15)
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Although in a general hybrid system there may be no notion of distributed information,

since in this work the jumps correspond to some agent triggering an event, we formally

define

Di , {q ∈ R3N : χi ≤ 0} (2.16)

as the subset of D corresponding to when specifically agent i is responsible for the jump.

For q ∈ Di, we consider the following local jump map

gi(q) =



q+1
...

q+i
...

q+N


,



q1
...
xi

xi

χi


...

qN



. (2.17)

More specifically, letting ti` be the time at which agent i triggers its `th event q(ti`) ∈ Di,

this map leaves the physical state and the dynamic variable unchanged x+i = xi, χ
+
i = χi,

and updates its “last broadcast state” to its current state x̂+i = xi. Note also that this

leaves all other agents’ states unchanged q+j = qj for all j 6= i.

Now, since multiple agents may trigger events at once, the jump map must be described

by a set-valued map G : R3N ⇒ R3N [4, 30], where

G(q) ∈ {. . . , gi(q), . . . }, (2.18)

for all i such that q ∈ Di. Note that this construction of the jump map ensures that it is

outer-semicontinuous, which is a requirement for some hybrid systems results.
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Now, we reformulate Problem 2 in a more structured manner by using the hybrid sys-

tem (2.11). More specifically, by using this formulation we have formalized the objective

of finding a local triggering strategy to designing the function γi that depends only on the

local information vi defined in (2.9).

Problem 3. (Distributed Event-Triggered Consensus with Designable MIET)

Given the directed, weight-balanced, and strongly connected graph G with dynamics (2.2),

input (2.4), and the minimum periods (τ1, . . . , τN ) for each agent, find the dynamics of the

virtual state, γi(vi), such that xi → x̄ and

min
`∈Z≥0

ti`+1 − ti` ≥ τi,

for all i ∈ {1, . . . , N}.

2.3 Dynamic Event-Triggered Algorithm Design

In order to solve Problem 3, we perform a Lyapunov analysis to design γ , χ̇, the dynamics

of χ. Inspired by [4], we use a Lyapunov function with two components: VP represents the

physical aspects of the system, while VC represents the cyber aspects, related to communi-

cation and error. For convenience, let e , x− x̂ denote the vector containing the error for

each agent’s state, which is the difference between the actual state and the last broadcast

state. We consider

VP (q) = (x− x̄1N )T (x− x̄1N ) = ||x− x̄1N ||2

VC(q) =

N∑
i=1

χi.
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Note VC ≥ 0 because χi ≥ 0 for all i ∈ {1, . . . , N}. We then consider the Lyapunov

function

V (q) = VP (q) + VC(q). (2.19)

Note that V (q) ≥ 0 is continuously differentiable for all q ∈ R3N . Moreover, V (q) = 0

when all agents have reached their target state and each clock-like variable χi is equal to 0.

Now we will examine the evolution of V along the trajectories of our algorithm to see

under what conditions it is nonincreasing, and design γ accordingly. In order to do so, we

will have to split V̇ into components V̇i such that V̇ =
∑N

i=1 V̇i and each V̇i depends only on

the local information vi available to agent i. Choosing V properly to ensure that V̇ can be

split like this is essential to designing γi and doing so is nontrivial. Recalling our system

flow dynamics (2.13), we write

V̇P = −2(x− x̄1N )T ẑ

V̇C =
N∑
i=1

γi.

Because the graph is weight-balanced, x̄1TNL = 0TN . Therefore, V̇P = −2xT ẑ = −2x̂T ẑ −

2eT ẑ and

V̇ = V̇P + V̇C = −2x̂T ẑ − 2eT ẑ +

N∑
i=1

γi.
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Expanding this out and using notation defined in Table 2.1 yields

V̇ =
N∑
i=1

− ∑
j∈N out

i

wij(x̂i − x̂j)2 − 2eiẑi + γi

 (2.20)

V̇ =
N∑
i=1

V̇i =
N∑
i=1

(
−φ̂i − 2eiẑi + γi

)
.

We are now interested in designing γi for each agent i ∈ {1, . . . , N} such that V̇ (q) ≤ 0.

Therefore, we choose

γi = σiφ̂i + 2eiẑi, (2.21)

where σi ∈ (0, 1) is a design parameter. Note that whenever an agent i triggers an event the

error ei is immediately set to 0, and since χ̇i = γi ≥ 0 at these times we ensure that χi ≥ 0

at all times t ≥ 0. We can now write the derivative of the Lyapunov function as

V̇ =
N∑
i=1

−(1− σi)φ̂i ≤ 0. (2.22)

This choice of the clock-like dynamics γi is continuous in qi for constant x̂ and ensures

that V̇ ≤ 0.

Algorithm Synthesis

With the dynamics γi of the clock-like variable χi defined for each agent i ∈ {1, . . . , N},

we can now summarize all the components of our synthesized distributed dynamic event-

triggered coordination algorithm and formally describe it from the viewpoint of a single

agent.
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Table 2.2: Distributed Dynamic Event-Triggered Coordination Algorithm.

Initialization; at time t = 0 each agent i ∈ {1, . . . , N} performs:

1: Initialize x̂i = xi
2: Initialize χi = 0

At all times t each agent i ∈ {1, . . . , N} performs:

1: if χi = 0 and ei 6= 0 then
2: set x̂i = xi (broadcast state information to neighbors)
3: set ui = −

∑
j∈N out

i
wij(x̂i − x̂j) (update control signal)

4: else
5: propagate χi according to its dynamics γi in (2.21)
6: end if
7: if new information x̂k is received from some neighbor(s) k ∈ N out

i then
8: update control signal ui = −

∑
j∈N out

i
wij(x̂i − x̂j)

9: end if

The control input at any given time t ≥ 0 is

ui(t) = −ẑi(t) = −
∑

j∈N out
i

wij(x̂i(t)− x̂j(t)).

The sequence of event times {ti`}`∈Z≥0
at which agent i broadcasts its state to its neighbors

is the time the clock-like variable reaches zero when that agent’s error is nonzero, i.e.,

ti` = inf{t ≥ ti`−1 : χi(t) = 0 and ei 6= 0}.

The algorithm is formally presented in Table 2.2.
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Chapter 3: Results

3.1 Main Results

Here we present the main results of the paper by discussing the properties of our algorithm.

We begin by finding the guaranteed positive minimum inter-event time (MIET) for each

agent and showing how it can be tuned individually.

Theorem 3.1.1 (Positive MIET). Given the hybrid system H, if each agent i imple-

ments the distributed dynamic event-triggered coordination algorithm presented in Table 2.2

with σi ∈ (0, 1), then the inter-event times for agent i are lower-bounded by

Ti ,
σi
di
> 0. (3.1)

That is, ti`+1 − ti` ≥ Ti for all i ∈ {1, . . . , N} and ` ∈ Z≥0.

Proof. See the appendix.

Remark 3.1.2 (Design Trade off). The design parameter σi represents the trade off be-

tween larger inter-event times and faster convergence speeds. Larger σi makes the mag-

nitude of V̇ smaller (2.22). However, it is a coefficient of the nonnegative term in χi’s

dynamics (2.21), so larger σi means longer inter-event times and a longer MIET (3.1).

Additionally, note that the MIETs can be guaranteed up to a maximum of 1
di

.

Next, we present our main convergence result. To the best of our knowledge, this is the

first work to design a fully distributed event-triggered communication and control algorithm

that guarantees asymptotic convergence to the average consensus state with a lower bound

on the agent-specific MIET that can be chosen by the designer.
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Theorem 3.1.3 (Global Asymptotic Convergence). Given the hybrid system H, if each

agent i implements the distributed dynamic event-triggered coordination algorithm pre-

sented in Table 2.2 with σi ∈ (0, 1), then all trajectories of the system are guaranteed to

asymptotically converge to the set

{q : φ̂i = 0 ∀ i}.

Proof. See the appendix.

Remark 3.1.4 (Convergence). From Theorem 3.1.3, the algorithm presented in Table 2.2

does not entirely solve Problem 3, because agents only converge to {q : φ̂i = 0 ∀ i}. To

have xi = x̄, we must have both φi = 0 and ei = 0, for each agent i. However, under

the algorithm presented in Table 2.2, each agent i will not broadcast if φi = 0, even if it

has nonzero error. Therefore, if the algorithm is modified with an additional trigger which

guarantees that each agent i will always broadcast again, eventually, when ei 6= 0, then full

convergence is guaranteed. A very simple way to do so is to set a maximum time T imax ≥ Ti

between events for each agent i, so that, if it triggers an event at time ti` and φi = 0, another

event is guaranteed by time ti` + T imax. •

Minimum Inter-Event Time (MIET) Design

As noted in Remark 3.1.2, the design parameter σi can be used to choose the desired MIET

for agent i, up to a maximum of 1
di

. According to Problem 2, we must be able to guarantee

that the lower-bound on the MIET Ti as provided in Theorem 3.1.1 is greater than or equal

to the prescribed τi.

Consequently, if τi <
1
di

for all i ∈ {1, . . . , N}, then it is easy to see how (3.1) in

Theorem 3.1.1 can directly be used to choose the design parameter appropriately for each

agent. In the case that there exists some agent(s) j such that τj ≥ 1
dj

, then the graph

must be redesigned so that dj is lower for each agent j. Note that there exist distributed
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methods of choosing these gains for an existing strongly connected digraph so that it will

be weight-balanced [31,32].

3.2 Robustness

A problem with many event triggered algorithms is a lack of robustness guarantees in

the triggering strategies. In particular, we consider the effects of two different types of

disturbances that are often problematic for event-triggered control systems, discussing how

our algorithm can be implemented to preserve the MIET in the presence of additive state

disturbances and providing a modification that makes it robust against imperfect event

detection.

Robustness Against State Disturbances

We first analyze the robustness of our MIET against state disturbances. As noted in [26],

simply guaranteeing a positive MIET may not be practical if the existence of arbitrarily

small disturbances can remove this property, resulting again in solutions that might require

the agents to take actions faster than physically possible in an attempt to still ensure

convergence. Therefore, it is desirable for our algorithm to exhibit robust global event-

separation as defined in [26], which means that the algorithm can still guarantee a positive

MIET for all initial conditions even in the presence of state disturbances, which is referred

to as a robust MIET.

More formally, we desire the MIET given in (3.1) to hold, even in the presences of

arbitrary disturbances. Instead of the deterministic dynamics (2.2), consider

ẋi(t) = ui(t) + wi(t), (3.2)

where wi(t) is an arbitrary, unknown, additive state disturbance applied to each agent’s

state. However, ensuring that the MIET holds in these circumstances depends on the

specific implementation, as discussed in the following remark.
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Remark 3.2.1 (Trigger Robustness to Disturbances). Note that, following an event at time

ti`, each agent i does not even need to check the trigger condition (2.10) until time ti` + Ti,

because, by Theorem 3.1.1, it cannot be satisfied before that time, in the absence of any

disturbance. Therefore, in implementation, each agent can wait Ti seconds after triggering

an event before triggering a new one. This will have no effect on the performance of the

algorithm in the absence of disturbances, but it will ensure that the MIET is observed in

the presence of disturbances of the form given in (3.2). Additionally, see the definition of

the hybrid system H′ in (A.4) for how this can be modeled in theory. •

Note that this does not guarantee convergence all the way to consensus in the presence

of disturbances, simply that the positive MIET will be preserved. Analyzing the actual

convergence properties in any formal sense is beyond the scope of this work. Instead, we

consider the following simple example to show how the algorithm may handle a disturbance.

If each wi is an independent and identical Gaussian process with zero mean and variance

σ2, then dynamics of the average position, ˙̄x, will be a random variable with E[ ˙̄x] = 0 and

var( ˙̄x) = σ2/N . This indicates that x̄ is a Wiener process, which has a Gaussian distribution

with a mean equal to the initial average and a variance of tσ
2

N . We demonstrate the effects

of such a disturbance in Section 3.3.

Robustness Against Imperfect Event Detection

In addition to robustness against state disturbances, another important source of uncer-

tainty that cannot be overlooked in event-triggered control systems is imperfect event detec-

tion. Event-triggered controllers are generally designed and analyzed assuming very precise

timing of different actions is possible while continuously monitoring the event conditions.

This is not only impractical but problematic if not accounted for in the event-triggered

control design.

The algorithm presented in Table 2.2 is no longer guaranteed to converge if there are

delays in the triggering times. More specifically, let ti
∗
`+1 be the time at which the event
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condition (2.10) is actually satisfied, but the condition is not actually detected until the

actual triggering time ti`+1 = ti
∗
`+1 + δti`, where δti` > 0 is a random delay in the detection of

the event that depends on the hardware/software actually being utilized.

Unfortunately, due to the precise definition of our local jump set (2.16), even an arbi-

trarily small delay may negate our main convergence result in Theorem 3.1.3. Fortunately,

our analysis hinges on only requiring an event is triggered by ti
∗
`+1 rather than precisely at

this time. Thinking of this ti
∗
`+1 then as a deadline for the broadcast event rather than the

precise time it is required, we can simply enlarge our jump set as needed to ensure the

deadlines can still be met even with the delays.

More specifically, with a known positive upper-bound on the delay ∆i ≥ δti`, we can

enlarge the jump set to be

Di ⊂ D̃i , {q ∈ R3N : χi ≤
e2i∆i

Ti −∆i
}. (3.3)

This condition will guarantee that even with random bounded time-delays δti` ≤ ∆i, the

time ti`+1 + δti`+1 at which the delayed event condition actually occurs will still respect the

deadline ti`+1 + δti`+1 ≤ ti
∗
`+1. Note that our condition requires that ∆i < Ti = σi

di
and also

reduces the MIET by ∆i. Since σi is a design parameter, this reveals that the maximum

tolerable delay is 1
di

. This result is formalized next.

Theorem 3.2.2 (Robust Convergence with MIET). Given the hybrid system H, using

instead the enlarged jump set D̃i, if each agent i’s delay satisfies δti` ≤ ∆i for all ` ∈ Z≥0, the

distributed dynamic event-triggered coordination algorithm presented in Table 2.2, except

with events triggered according to (3.3) with ei 6= 0, guarantees that all trajectories of the

system asymptotically converge to the set

{q : φ̂i = 0 ∀ i}.
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Moreover, the inter-event times for agent i satisfy

ti`+1 − ti` ≥ T̃i ,
σi
di
−∆i > 0. (3.4)

Proof. See the appendix.

Remark 3.2.3 (Trigger Robustness to Delays). The intuitive implication of Theorem 3.2.2

is the following. Rather than agent i waiting for the condition (2.10) to be satisfied exactly

and responding immediately, it simply begins triggering an event when condition (2.10)

could be satisfied soon, and as long as the event can be detected and fully responded to

before then, the algorithm will work as intended. However, note that this imposes a trade

off because triggering earlier will result in a shorter guaranteed MIET, as shown in the

result of Theorem 3.2.2. •

3.3 Simulations

To demonstrate our distributed event-triggered control strategy, we perform various simu-

lations using N = 5 agents and a directed graph whose Laplacian is given by

L =



2 −1 0 0 −1

0 2 0 0 −2

−2 0 2 0 0

0 −1 −2 3 0

0 0 0 −3 3


.

Additionally, we consider that agents have minimum operating periods of [τ1, τ2, τ3, τ4, τ5] =

[0.4, 0.25, 0.25, 0.1, 0.2]. Because the agents have out degrees of [d1, d2, d3, d4, d5] = [2, 2, 2, 3, 3],

we use (3.1) and choose [σ1, σ2, σ3, σ4, σ5] = [0.9, 0.4, 0.4, 0.3, 0.6], so that the guaranteed

MIETs for the agents are [T1, T2, T3, T4, T5] = [0.45, 0.2, 0.2, 0.1, 0.2].

In light of Remark 3.1.4, we also have a secondary trigger, so that each agent will
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trigger its next event at most 2 seconds after its previous event. All simulations use the

initial condition x̂(0) = x(0) = [−1, 0, 2, 1, 2]T , to explore the effects of different design

parameters.

Figure 3.1 shows the main results. Figure 3.1 (a) shows the positions of the agents over

time, demonstrating that they converge to initial average position, indicated by the dashed

line, and the bottom plot shows the evolution of the Lyapunov function, which can be

seen to be nonincreasing, although the physical portion and the cyber portion are allowed

to increase individually. The top plot in Figure 3.1 (b) shows the evolution of the clock-

like state, χ5, for agent 5, and the bottom plot shows when each agent triggers an event,

demonstrating the asynchronous, aperiodic nature of event triggering. Figure 3.1 (c) shows

the inter-event times for all agents, with the horizontal lines indicating the theoretical lower

bounds. For each agent i, the minimum inter-event time Ti can be seen to be respected,

and the bound appears to be tight, as expected from the theoretical analysis.

Figure 3.2 (a) shows the effect of applying an additive white Gaussian noise disturbance,

i.e. ẋ = u + w, where each element of w is an independent and identically distributed

Gaussian process, with zero mean and a variance of σ2w = 0.1. To ensure that the MIET is

respected in the presence of noise, the algorithm is implemented in a self-triggered fashion.

That is, instead of measuring ei to propagate the dynamics (2.21), ei is approximated

assuming no noise. This simulation suggests that the expected value of each agent’s state is

the current average position, although that average can now change with time. Figure 3.2

(b) shows that the minimum inter-event times are still respected with this implementation.

Next, to show the effect of the design parameter σi on the algorithm’s performance, we

set σi = σ for each agent i and varied it. Figure 3.2 (c) shows the results on 2 statistics: the

average communication rate rcom, which is the number of events divided by the simulation

length, and the cost C, defined as follows. Considering each agent’s difference from the

average as an output, similar to [33], we adopt the square of the H2-norm of the system as
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Figure 3.1: Plots of the simulation results of the dynamic event-triggered algorithm showing
(a) the trajectories of the agents (top), with the dashed line representing the average, and
the evolution of the whole Lyapunov function V (bottom) as well as the physical component
VP and the cyber component VC ; (b) the dynamic variable χ5 for agent 5 (top) and rows of

stars indicating the event times of all agents (bottom); and (c) the inter-event times ti`+1−ti`
of each agent i, with the lower bounds as computed by (3.1) marked by the lines.

a cost performance metric

C ,
∫ t=tmax

t=0

N∑
i=1

(x(t)− x̄1N )2 , (3.5)

where tmax = ∞. However, for simplicity in simulations, we use the rough approximation

of tmax = 20 being the simulation length. The choice of parameter σ can be seen to be a

trade off between cost (speed of convergence) and communication rate. Higher values of σ

result in a higher cost, but also requires less communication and results in a higher MIET

by (3.1).

3.4 Conclusions

This paper has used the multi-agent average consensus problem to present a dynamic agent-

focused event-triggered mechanism which ensures stabilization and prevents Zeno solutions

by allowing for a chosen minimum inter-event time for each agent. The algorithm is fully

distributed in that it not only requires no global parameters, but the correctness of the

algorithm can also be guaranteed by each agent individually. That is, no global conditions

(besides connectivity of the graph) need to even be checked to ensure the overall system
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Figure 3.2: Simulation results with additive state disturbances showing (a) the trajectories
of the agents subjected to zero-mean additive white Gaussian noise with a variance of 0.1
(the dashed blue line indicates the expected value of the average position (x̄(0)), and the

dotted red lines show the variance over time (x̄(0)± tσ
2
w
N ); (b) the inter-event times ti`+1− ti`

of each agent i, with the lower bounds as computed by (3.1) marked by the lines; and
(c) the communication rate (top) and H2-norm cost (3.5) (bottom) as we vary the design
parameter σ.

asymptotically converges. Additionally, it provides robustness against missed event times,

guaranteeing convergence as long as events are triggered within a certain window of time.

While this work has presented an algorithm that distributed agents can implement to

guarantee asymptotic convergence, further research is needed to study the transient prop-

erties of our proposed algorithm and related algorithms. We plan to examine this algorithm

to see if it can guarantee exponential convergence to consensus, and, in particular, how the

secondary trigger discussed in Remark 3.1.4 should be designed for good performance.
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Appendix A: Hybrid Systems Results and Proofs

Proof of Theorem 3.1.1 [Positive MIET]

In order to compute the MIET for agent i, we formulate and solve a relevant optimal

control problem. Without loss of generality, let t = 0 be the time at which agent i triggers

an event. We then want to find the smallest possible time Ti > 0 at which it can trigger its

next event.

The relevant states and initial conditions of our optimal control problem are the local

auxiliary state and error, so we define ζ1 , χi + e2i and ζ2 , ei = xi− x̂i. This definition of

ζ1 will make the optimal control problem simpler, while containing the relevant information.

The dynamics is then given by

ζ̇ =

 ζ̇1 , χ̇i = γi + 2eiėi

ζ̇2 , ėi = −ẑi

 =

σiφ̂i,
−ẑi

 . (A.1)

Since an event has just been triggered at t = 0, the event condition (2.16) specifies the

initial condition ζ1(0) = ζ2(0) = 0. We now wish to find the smallest possible time Ti > 0

such that the event condition is satisfied again ζ1(Ti) = ζ2(Ti) 6= 0, which is equivalent to

χi = 0, ei 6= 0.

In addition to the state ζ and the constant σi, the dynamics depends on the information

provided by neighbors {x̂j}j∈N out
i

. Since these are unbounded variables, we treat each

x̂i − x̂j , for j ∈ N out
i , as an input and search for the ‘optimal’ values that minimize Ti.

Formally, we seek to minimize

J =

∫ Ti

0
1dt. (A.2)
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The Hamiltonian is

H = 1 + λ1σiφ̂i − λ2ẑi

where λ ∈ R2 is the costate. The costate equation ([34]) is

−λ̇ =
∂H

∂ζ

T

=

0

0

 .

The stationarity condition, dH
d(x̂i−x̂j) = 0 [34], implies

0 = 2σiwij(x̂i − x̂j)λ1 − wijλ2, ∀j ∈ N out
i .

This allows us to write the state as a function of time, and applying the terminal

condition of ζ1(Ti) = ζ2(Ti) 6= 0 allows us to solve for Ti. We solve for the costate, using the

fact that the Hamiltonian is constant at H = 0 [34]. The solutions for the state, costate,

‘input,’ and minimum time are

ζ1(t) =
di
σi

(
λ2
2λ1

)2

t,

ζ2(t) = ei(t) = − diλ2
2σiλ1

t,

λ1(t) =
σi

die2i (Ti)
,

λ2(t) = − 2σi
diei(Ti)

,

x̂i − x̂j = −ei(Ti)
σi

, j ∈ N out
i ,

Ti =
σi
di
, (A.3)
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where ei(Ti) 6= 0 is the error at the next event time. Interestingly, the minimum inter-event

time Ti does not depend on ei(Ti) which concludes the proof. �

Proof of Theorem 3.1.3 [Global Asymptotic Convergence]

To aid in several proofs, we redefine the hybrid system (2.11) to a nearly identical one

for analysis purposes only. This is a more generalized version of (2.11), with the individual

extended states qi defined in (2.8) augmented by an additional ‘timer’ state that keeps

track of how much time passes between events. This will allow us to provide a more formal

analysis of the asymptotic properties of our algorithm when events are triggered within

windows of time rather than at particular time instances. Let

q′i ∈

 qi

Ti

 ∈ R4,

where Ti ∈ R≥0 is the time elapsed since agent i’s last event. Letting q′ = [q′1
T , q′2

T , . . . , q′N
T ]T ∈

R4N denote the full augmented state vector, we can now redefine our system (2.11) with

some minimal modifications to the flow/jump sets/maps. The hybrid system we now con-

sider is given by

H′ = (C ′, f ′, D′, G′). (A.4)

The flow set remains essentially unchanged,

C ′ = {q ∈ R4N : χi ≥ 0 for all i ∈ {1, . . . , N}}. (A.5)

The only difference to the flow map is the propagation of the timer while the state is

30



flowing,

q̇′i = f ′i(q
′) ,

 fi(vi)

fT (Ti)

 for q′ ∈ C ′,

fT (Ti) ,


1, Ti < Ti

[0, 1], Ti = Ti

0, Ti > Ti

.

Recall that vi is simply the information locally available to agent i as defined in (2.6), and

note that Ṫi = fT (Ti) ensures that d
dtTi = 1 until Ti = Ti, where the timer stops counting.

Thus, the timer is bounded, even if inter-event times are not.

For a dwell-time si ∈ (0, σidi ], the jump set is enlarged,

D′ = ∪Ni=1{q′ ∈ R4N : Ti ≥ si}. (A.6)

Note that the auxiliary variable is already restricted so that χi ≥ 0 at all times, and

the original jump set (2.16), for agent i, was only designed as the boundary of the flow

set C, requiring an immediate trigger response. Instead, the new jump set (A.6) allows

the possibility for agents to trigger before reaching the boundary of the flow set as long

as si > 0 seconds have passed. Due to the guaranteed positive MIET result of Theorem 3.1.1,

having si ∈ (0, σidi ] ensures that the state cannot escape the flow set before it is allowed to

jump. Also, the MIET result is a prerequisite to using the modified system H′, ensuring

that the trajectories with the dwell-time si match the trajectories of the original system H.

The only difference to the original jump map (2.17) is the resetting of the timer Ti = 0
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for the triggering agent. For q′ ∈ D′i, we consider the following local jump map

g′i(q
′) =



q′1
+

...

q′i
+

...

q′N
+


,



q′1
... q+i

0


...

q′N


.

Now, since multiple agents may trigger events at once, the jump map must be described

by a set-valued map G′ : R4N ⇒ R4N [4, 30], where

G′(q′) ∈ {. . . , g′i(q′), . . . }, (A.7)

for all i such that q′ ∈ D′i. Note that this construction of the jump map still ensures that

it is outer-semicontinuous, which is a requirement for some hybrid systems results.

With our new hybrid system (A.4) fully defined, our goal is to show all trajectories of

the system with valid initial conditions asymptotically converge to the set

A , {q′ ∈ R4N : φ̂i = 0 ∀ i}.

Lemma 1 (General Asymptotic Convergence). Given the hybrid system H′, for any q(0) ∈

R4N such that xi ∈ R, x̂i ∈ R, χi ≥ 0, and Ti ≥ Ti, for i = 1, . . . , N , the system state is

guaranteed to asymptotically converge to the set A.

We show this by appealing to an invariance principle for hybrid systems [9, Theorem

8.2]. Since we are not concerned with the state of the timers Ti, with a slight abuse of

notation we redefine V (q′) = V (q) as in (2.19). We will now show that V is nonincreasing

along all trajectories of H′. We show that q′ converges to the largest invariant weakly
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invariant set A ⊂ {q′ ∈ R4N : V̇ (q′) = 0} ∪ {q′ ∈ D′ : G′(q′) ⊂ D′}.

While the state is flowing in the original system H (q ∈ C), we have already shown that

the clock defined by (2.21) ensures that V̇ < 0 ∀q′ /∈ A (2.22). Since the modified flow

set and map still don’t have any direct effect on V , this property is preserved. When the

system jumps in the original system H (q ∈ D), we have

V (G(q))− V (q) = 0,

because V does not depend on x̂. Similarly since the timer does not affect the function V

at all this property is also preserved in the modified system H′.

Since V is unchanged during jumps and V̇ (q′) < 0 for all q′ ∈ C ′ \ A, we know that V

is nonincreasing along all trajectories of H′. Since the modified jump set (A.6) guarantees

an agent i cannot jump twice in any si > 0 second period, all solutions to H′ do not

exhibit Zeno behavior. One can then show that both f ′ and G′ are outer semicontinuous,

ensuring that q′ asymptotically approaches the nonempty largest invariant set in V −1(c)∩B

for some c ≥ 0. Since V is radially unbounded with respect to x and χ this set and the

solutions to x and χ are bounded. Since C ′ ∪D′ = R4N , all solutions are complete.

Therefore, every solution to H′ such that xi ∈ R, x̂i ∈ R, χi ≥ 0, and Ti ≥ Ti, for

i = 1, . . . , N is complete, bounded, and asymptotically converges to A. �

Lemma 2 (Time until next event). For any time t ∈ [ti`, t
i
`+1), let ti`+1 be the next time

that agent i would trigger an event under (2.10). That is,

ti`+1 = inf{t′ ≥ t : χi(t
′) = 0 and ei(t

′) 6= 0}.

Under the hybrid system (2.11) with γi defined in (2.21), the time remaining until the next
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event is lower-bounded by

ti`+1 − t ≥

Ti
(

1− e2i
χi+e2i

)
, for (χi, ei) 6= (0, 0),

Ti, otherwise.
(A.8)

Proof:

This proof relies on examining each agent as a local system, as defined in (A.1). We

must find the minimum time to reach a point such that χi = 0 and ei 6= 0 from any initial

point with χi(0) ≥ 0 and ei(0) ∈ R. We must consider three cases.

• Case 1: χi(0) = 0 and ei(0) = 0

In this case, we can use Theorem 3.1.1 directly, and the minimum time is Ti.

• Case 2: χi(0) > 0 and ei(0) = 0

Note that in the proof of Theorem 3.1.1, the dynamics of ζ does not depend on χi.

Therefore, we can use the same reasoning to find the minimum time for χi to reach

a point such that χi(t) = χi(0) and ei 6= 0, which must happen before χi(t) = 0.

Therefore, the minimum time is lower bounded by Ti.

• Case 3: χi > 0 and ei 6= 0

First, we show that all points in this set lie along the optimal trajectories given

by (A.3). Writing the states as explicit functions of time, we have

χi(t) = ζ1 − ζ22 =
e2i (Ti)

Ti
t−

(
ei(Ti)

Ti

)2

t2

ei(t) = ζ2 =
ei(Ti)

Ti
t. (A.9)

To show that we can reach a point (χ∗, e∗), we must find a t∗ ∈ (0, Ti], such that

χ∗ = χi(t
∗) and e∗ = ei(t

∗), for some value of ei(Ti) 6= 0. Therefore, we use (A.9) to
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solve for ei(Ti) and t∗, yielding

ei(Ti) =
Tie
∗

t∗

t∗ =
Tie
∗2

x∗ + e∗2
. (A.10)

Note that ei(Ti) 6= 0 and t∗ ∈ (0, Ti] if e∗ 6= 0 and χ∗ ≥ 0, so these points lie along

optimal trajectories. Intuitively, then, t∗ is the time it would take to reach some

point (χ∗, e∗) along an optimal trajectory. Therefore, we can apply the principle

of optimality to find that the remaining time until the next event on this optimal

trajectory is Ti − t∗, and there can be no shorter time before an event.

Putting this all together, the time to reach any point such that χi = 0 and ei 6= 0 from

any initial point with χi(0) ≥ 0 and ei(0) ∈ R is lower bounded by

Ti
(

1− e2i
χi+e2i

)
, for (χi, ei) 6= (0, 0)

Ti, otherwise
.

�

Proof of Theorem 3.2.2 [Robust Convergence with MIET]

This proof follows from Lemma 2 and the analysis in its proof. We first show the

existence of a positive MIET, then show that χi remains nonnegative in the presence of

the delays δti`, for i = 1, . . . , N . This guarantees that the algorithm in Theorem 3.2.2 is

described by hybrid system H′, and we can apply our general convergence result Lemma 1.

First, note that the trigger condition given by (3.3), with ei 6= 0, corresponds to setting

t∗ = Ti − ∆i from (A.10). Because this t∗ corresponds to the time elapsed to reach this

point along a time optimal trajectory, as described in (A.3), we can conclude that Ti −∆i

gives us the minimum time for this trigger condition to be satisfied from the previous event.

Therefore, T̃i = Ti −∆i ≤ ti`+1 − ti`, and the condition Ti > ∆i ensures that T̃i is positive.
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Now that a positive minimum inter-event time has been established, we must ensure

that χi remains nonnegative in the presence of the delays δti`, for i = 1, . . . , N .

Note that the trigger condition ei 6= 0 with the system in the extended jump set (3.3)

corresponds to the remaining time from (A.8) in Lemma 2 being equal to ∆i, or formally,

∆i = Ti

(
1− e2i

χi + e2i

)
.

Since δti` ≤ ∆i, we can conclude that the event is acted upon before χi = 0, ei 6= 0 is satisfied,

so χi remains positive, for i = 1, . . . , N . Therefore, the algorithm in Theorem 3.2.2 will

be described by hybrid system H′. Finally, we can apply our general convergence result

Lemma 1 to guarantee convergence to the set {q ∈ R3N : φ̂i = 0 ∀ i}. �
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