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Abstract

A method for constructive induction is described that generates new problem-relevant attributes by
analyzing and abstracting iteratively created inductive concept hypotheses. The method, called
HCI (hypothesis-driven constructive induction), first creates a set of initial rules from the training
examples using a standard AQ rule-learning algorithm. The rules generated are then analyzed and
evaluated according to a rule quality criterion. The analysis determines which of the original
attributes are irrelevant, and reduces the original representation space. It also determines the best-
performing rules for each decision class, and assembles them into sets that are assigned names,
and treated as new attributes. These new atiributes are then used to reformulate the training
examples from the previous step, and the whole inductive process is repeated. This iterative -
process stops when the performance accuracy of the last generated rules exceeds a predefined
performance threshold. In several experiments on learning various well-defined transformations,
the AQ17-HCI system implementing the method consistently and significantly outperformed, in
terms of the predictive accuracy, the AQ1S5 rule learning system, GREEDY3 and GROVE decision
list learning systems, and REDWOOD and FRINGE decision tree learning systems.
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" 1. Introduction

Most systems for inductive learning from examples create concept descriptions in terms of the
attributes that are selected from those present in the original examples. Well-known examples of
such selectrive inductive systems include AQVAL/1 (Michalski, 1973), ID3 (Quinlan, 1983),
ASSISTANT (Cestnik et al., 1987), and CN2 (Clark and Niblett, 1989). In contrast to such
systems, a COnstructive inductive learning system generates new attributes, or generally
descriptors, and employs them in the hypothesized description. These descriptors can be
attributes, predicates, terms, Operators, etc., and are supposed to be more relevant to the learning
problem than those initially given. A constructive learning algorithm thus performs a problem-
oriented transformation of the knowledge representation space (Michalski, 1978; Rendell, 1985;
Matheus, 1989; Drastal, Czako & Raatz, 1989; Wnek & Michalski, 1991). '

The idea and the name constructive induction was first proposed by Michalski (1978), and
implemented in the INDUCE-1 system for learning structural descriptions from examples (Larson
& Michalski, 1977). INDUCE-1, and subsequent versions, e.g., INDUCE-4 (Bentrup, Mehler &
Riedesel, 1987), used various constructive generalization rules and procedures to generate new
problem-oriented descriptors (Michalski, 1983). These descriptors were then employed together
with the original ones in the process of induction. ) o ' o

Subsequently, a number of other systems that exhibit certain constructive induction capabilities
have been developed. These systems employ different strategies for constructing new descriptors.
Based on the major trend and a source for generating new descriptors, the existing systems can be
divided into four categories: data-driven, hypothesis-driven, knowledge-driven, and multistrategy-
driven, constructive induction. The border line between the strategies is not precise, the same
way, as there is no precise distinction between empirical learning and knowledge-based learning,
and where the annotation is a matter of proportion and primary source of power.

e Data-Driven Constructive Induction Systems (DCI). ‘

These systems analyze and explore the input data, specifically, interrelationships among
attributes, examples, concepts, etc., in order to determine new descriptors. Examples of such
systems are:

BACON represents information at varying levels of descriptions, with higher levels summarizing
the levels below them. BACON's constructive abilities rely on detecting interdependencies
between numerical attributes (Langley, Bradshaw & Simon, 1983).

PLSO (Probabilistic Learning System) creates new attributes from initial attributes using a form of

conceptual clustering performed on three levels of abstraction (Rendell, 1985).

Wyl leamns structural descriptions of checkers and chess concepts by first mapping the training
examples from performance representation into a learning representation, generalizing them
there, and converting the learned concept back into a performance representation for efficient
recognition (Flann & Dietterich, 1986). '

STAGGER generates new discrete attributes in order to utilize continuously valued attributes. It
also increases the representational capabilities by forming Boolean combinations of attribute
values (Schlimmer, 1987). ‘

AQ17-DCI system applies a variety binary and multi-argument operators to original attributes in
the search for new problem-oriented attributes. Best performing constructed attributes are
added to the original attribute set, and the whole set is employed in the process of inductive
generalization (Bloedorn & Michalski, 1991).

FCE (Factored Candidate Elimination) algorithm assumes a set of initial representation spaces.
After detecting inconsistency in all version spaces, it shifts to a larger size representations. The
new representation is a product of the existing ones (Carpineto, 1992).



o Hypothesis-Driven Constructive Induction Systems (HCD. .
Such systems determine new attributes by analyzing recursively generated inductive hypotheses.
Examples of systems in this.category are: ' )
BLIP invents new concepts on the basis of rule exceptions which cannot be defined in terms of the
given representation. Hypotheses and the negation operator are used to construct new concepts

FRINGE was designed for decision trees to avoid the duplication of tests in a decision tree. New
attributes are constructed from "fringes" of the tree and are in conjunctive form (Pagallo &
Haussler, 1990). .
KLUSTER introduces new relations or concepts if another concept cannot be characterized
without it. A definition of the demanded concept or relation is learned using initial examples
(Kietz & Morik, 1991).

e Knowledge-Driven Constructive Induction Systems (KCD). ‘

These systems apply expert-provided domain knowledge to construct and/or verify new
attributes. Examples of systems in this category are:

AM (Automated Mathematician) program changes its representation by using a set of predefined
heuristics, on three levels of abstraction: (1) by defining a new concept, (2) by creating new
attribute of a concept, (3) by shifting between the schemes (Lenat, 1977, 1983). _

AQ15 applies rules for constructing new attributes that were specified by an expert 1n the
arithmetic and/or logic form (Michalski, Mozetc, Hong & Lavrac, 1985).

MIRO applies an expert specified set of rules (a domain theory) to construct an abstraction space
and then to perform induction over this space (Drastal, Czako & Raatz, 1989).

o Multistrategy Constructive Induction Systems (MCI).

These systems combine different approaches and methods for constructing new descriptors.
Examples of systems in this category are:

INDUCE-1 (DCI & KCI) performs selective and constructive induction simultaneously. Ituses a
variety of rules and procedures for generating additional attributes (“meta-attributes”) from
structural descriptions of the training examples (KCI), along with a qualitative dependency
determination between attributes (DCI) (Larson & Michalski 1977; Michalski, 1978, 1983).

STABB (DCI & HCI) uses two procedures to Shift To A Better Bias. The least disjunction
procedure changes the representation by examining only the training examples and the current
description language (DCD). The constraint back-propagation procedure builds new
representation based on hypotheses (operator sequences) verified by LEX's critic (HCD).
STABB was incorporated into the existing LEX program (Mitchell, Utgoff & Banerji, 1983) to
provide LEX with constructive abilities (Utgoff, 1984, 1986).

Duce (HCI & KCI) suggests domain features to a user (or oracle) on the basis of a set of example
object descriptions (from an input or hypothesized) and six transformation operators. Such
inductive transformations are tested against an oracle which ensures the validity of any
ransformation (Muggleton, 1987).

CIGOL (HCI & KCI) (LOGIC backwards) is based on inverting the mechanism of resolution in
first-order Horn clause representation. New predicates, that play role of sub-concepts (or
missing premises), are generated from input or hypothesized examples of a high-level predicate
by applying the intra-construction operator (HCI). A user may name the concept (predicate) or
reject the proposed definition (KCI) (Muggleton & Buntine, 1988).

CITRE (HCI & KCI) (Constructive Induction on decision TREes) learns decision tree and uses it
to construct new features. The use of domain knowledge is limited to simple facts (ground
literal clauses) that define legal relationships between constructive operands (Matheus, 1989).

NeoDisciple (HCI & KCI) introduces new concepts in the form of example explanations provided
by an expert (KCI) (DISCIPLE, Tecuci & Kodratoff, 1990) , and creates new features based
on the similar definitions in the knowledge base to reduce the inconsistency in the learned rules
(HCI) (Tecuci, 1992; Tecuci & Hieb, 1992). ’

CLINT (HCI & KCI) (Concept-Learning in an INTeractive way) learns concepts using an
inductive and/or abductive method. If the learned rules match a predefined schemata then a



user is presented with the partially instantiated schema (HCI). The user may name the concept
(predicate) or reject the proposed definition (KCT) §D§: Raedt & Bruynooghe, 1991).

AQ17 (DCI, HCI & KCI) integrates in a synergistic way constructive features of AQI1S,
INDUCE, AQ17-DCI, and AQ17-HCI (Bloedom, Michalski & Wnek, 1992).

In an attribute-based learning system, the abstraction level of attributes strongly affects the
complexity of the hypothesized rules. By employing high-level attributes, the concept
representation can be simplified. Such attributes may, however, be encoded as very complex
functions of low-level primitives. In such cases, to improve the efficiency, these complex
functions have to be compiled (Flann and Dietterich 1986). o

The goal of constructive induction may be to simplify the ger}craged concept descriptions, or to
improve their predictive accuracy. The simplicity of a description 1s measured by computing the
number of attributes and the number & type of operators used in the description. The predictive
accuracy is measured by applying the hypothesis to the testing data, and determining the
correctness of the predictions. . o o

The primary goal of the method proposed in this paper 1s to increase the predictive accu.racy.of
the hypotheses. This is done by supplementing a generation of an inductive hypothesis with
various changes in the representation space. The changes are based on the analysis of th%
hypothesis and discovered patterns. For that reason, the method is called a "hypothesis-driven
constructive induction (HCI). The method is a major component of the multistrategy constructive
induction system AQ17, where the need and the character of required changes is detected by
analyzing the hypothesis. In AQ17, changes in the representation space can be data-, hypothesis-,
and knowledge-driven (Bloedorn, Michalski & Wnek, 1992). Here we describe the HCI part

only. '
‘ Ir?itial and consecutive selective hypotheses are generated by the rule learning program AQI135
(Michalski et al., 1986). AQI15 learns rules from examples represented as sequences of attribute-
value pairs. Attributes can be multi-valued and can be of different types, such as symbolic,
numerical, or structured (in which the value set is a hierarchy). The teacher presents to the learner
a set of examples of each of the concepts to be learned. The program’s output is a set of general
classification rules for each class. The rules are equivalent to expressions in disjunctive normal
form with internal conjunction. These rules cover all examples of a given class and none of other
classes’ examples (i.e., they are consistent and complete descriptions). The rules generated
optimize a problem-dependent “criterion of preference.” In the case of noisy data, the program
may generate only partially consistent and/or complete rules.

The program is based on the AQ algorithm, which iteratively employs a star generation procedure
(Michalski et al., 1986). A star of an example is the set of the most general alternative rules that
cover that example, but do not cover any negative examples. In the first step, a star is generated
for a randomly chosen example (a seed), and the "best" rule in it, as defined by the preference
criterion, is selected. All examples covered by that rule are removed from further consideration. A
new seed is then selected from the yet-uncovered examples, and the process is repeated. The
algorithm ends when all positive examples are covered. If there exists a single rule that covers all
the examples (that is, there exists a conjunctive characterization of the concept), the algorithm
terminates after the first step. In the HCI method, the AQ algorithm for searching the problem
space is combined with processes that change the representation space. The AQ generated
hypothesis serves as intermediate knowledge for proposing problem-oriented changes in the
representation and making the following search more accurate and more time effective.

2. Method Description

The proposed method for hypothesis-driven constructive induction (HCI) combines a standard
inductive rule learning algorithm AQ with a method for iteratively generating new attributes based
on the analysis of the hypotheses obtained in the previous iteration. At each iteration, the method
changes the representation space with respect to the set of attributes available for the given
iteration.

Although the method was applied and implemented using the AQ rule learning algorithm, it can
potentially be combined with any type of rule learning method. It thus represents a universal new



- approach to constructive induction of rule-based descriptions. The primary purpose of the method
is to increase the predictive accuracy of the generated hypothesis, rather than to minimize the total
complexity of the description. By the total complexity of the description we mean a measure that
combines the complexity of not only the final hypothesis (which in the method is often very

simple), but also the complexity of all the intermediate descriptions. Below is a diagram
illustrating the method.
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Figure 1. Hypothesis-driven constructive induction leaming algorithm.

The HCI algorithm starts with creating a set of classification rules from given examples of concepts
using a selective algorithm (Figure 1). (At this stage, the examples are formulated using all initially
available descriptors.) This step is performed in the rule learning module. The rules are next
examined in the evaluation module, in order to detect the need for a change in the representation
space. If such a need is detected, a new descriptor set is generated, and the input data is
reformulated according to those changes. Rule generation starts again. This iterative process stops
when correct rules were generated using relevant set of descriptors, or the repertoire of
representational changes was exhausted. : '

One way of evaluating learned description is to check completeness and consistency of the
learned rules. In the case of the VL1 representation and the AQ-type leamning strategy however,
the completeness and consistency with the training data is always guaranteed (in extreme, a concept
can be described as a disjunction of all training examples). Therefore, two other criteria are used:
(1) an expected degree of generalization, and (2) a performance accuracy. The degree of
generalization is an easy-to-define and to test, user-supplied recommendation of an expected
number of rules in the hypothesis. If the learning algorithm fails to express a concept to be
learned, it is assumed that the representation is not adequate and the representation change is made.
The method may use the second criterion, the performance accuracy, if the first one is not specified
by a user (Arciszewski, Dybala & Wnek, 1992).

However, even if the rule quality is sufficient, the change in the representation may be requested
based on the quality of attributes used in the hypothesis. This criterion stems from the fact that the
same selective algorithm may build different hypotheses depending on attributes present in
representing data. A domain description, expressed as a set of attributes, and a concept, expressed
as a set of training examples, are similar in terms of potential noise. In a domain description,



irrelevant attributes play the same role as noisy examples in training data. In both cases, removing
noise from the training set speeds up and improves induction.! o

In order to select a representative set of attributes, attribute quality is measured. However,
attribute utility measures-based on the training data do not take into consideration how the attributes
are interrelated or whether attributes are relevant to the learning task unless a complex search is
performed. Attribute evaluation based on a hypothesis analysis makes the proper evaluation
plausible since the hypothesis already reflects a mapping between the traimng set and the
representational capabilities of a learning program (representational bias). o

In general, the transformation of a descriptor set may involve generalization or _spec1a11ga,non.
One may generalize the set, by dropping (removing) attributes or narrowing their domains, or
specialize the set, by adding new attributes or extending domains of existing attributes. More
specifically, construction of a new attribute set may involve searching for one of the four types of
patterns: null-pattern, condition-pattern, rule-pattern, and rule-set-pattern. Null-pattern of an
attribute is detected when the attribute is used in few or no conditions of the hypothesis. In this
case, the attribute is removed. Condition-pattern is detected, if the analyzed hypothesis contains
conditions that repeatedly involve the same values of a single attribute. The third type is defined by
conjunctions of conditions (rules). This is called a rule-pattern. The fourth type is found in sets of
rules, i.e., disjunctions of rules, and is called a rule-sets-pattern. In multiple concept leamning, it
might be feasible to find patterns across class descriptions, class-patterns. ' ‘

Table 1 shows examples of possible attributes constructed in a simple, three-attribute domain
based on different patterns found in hypotheses.

Table 1. Examples of attributes constructed from different patterns.

o

n £

= 1..100 (Numeric attribute x has integer values from 1 to 100)
y = small, medium, large . (Symbolic attribute y)
z = white, red, blue, green, black (Symbolic attribute z)
Examples of constructed attributes
¢l <: (z = blue, red, white) (condition-pattern)
c2 < (x=20) & (y =large) (rule-pattern)
c3 <: ((x=75,100) & (y =small)) or (x=7) (rule-set-pattern)

The mapping in an attribute definition can result in assigning real or discrete values from the closed
interval 0 to 1. The simplest mapping assigns value 1 if the pattern is satisfied and O otherwise.
More sophisticated measures may express the distance between an instance and a pattern in real
values. For example, Bala, Michalski and Wnek (1992) use rule-pattern attributes with a real
valued similarity measure in the task of texture recognition.

There may be many strategies to schedule attribute generation of various pattern types. One
strategy could try new attributes based on all types of patterns generated once from the initial
hypothesis. However, at the same time the new attributes are introduced to the descriptor set, the
representation becomes more redundant. Moreover, the more new attributes the more redundancy
in the representation space. This correlation is intuitive and easy to prove. Also, initial testing of
this strategy supplemented with the attribute removal mechanism has shown that the final
classification rules have strong tendency to deteriorate. The explanation may follow from the fact
that in such a case, the primary discrimination power of initial attributes is dispersed among many
newly generated attributes.

In order to design reliable strategy, each type of pattern atwributes has to be tested and its
properties recognized. The strategy has to be based on small and strongly justified changes in the

1 Pachowicz (1990) improves learned descriptions by removing those examples from the training set that are
hypothetically noisy. Vafaie & De Jong (1991) use a genetic algorithm to preselect a set of attributes for AQ1S.
Leaming in the modified domain is faster and gives better concept descriptions in terms of predictive accuracy.



representation space. The selection of the type of attribute pattern can be based on the structure of
the hypothesis and the sequence of pattern types already applied. _

In Section 3, the implementation of the HCI method, with respect to attributes constructed from
patterns found in rule-sets, is presented in the AQ17-HCI rule learning system. In Section 4, an
exemplary problem is solved using the system. The changes in the representation spacc are
visualized using diagrams. In Section 5, experiments in four domains are presented. AQ17-HCl is
compared with two selective, inductive learning algorithms, as \_avell as three .HCI algorithms
utilizing the second type of patterns (patterns in rules). Finally, Section 6 summarizes the method.

3. Method Implementation

Learning in the rule learning module is performed by the AQ15 program. In the first place, if the
change in the representation is requested, the HCI method performs abstraction of the
representation space by identifying and removing those attributes that were not found in
hypotheses at all, or that were found in rules that cover marginal number of training examples,
"small disjuncts,” only. ) )

If the learned hypothesis is still not accurate then new attributes are introduced. In order to do
this, the learning system takes advantage of induced concept descriptions by abstracting them and
forming new, problem-relevant descriptors. ) .

Both the changes in the representation are totally separated from the induction from examples.
Especially the process of creating new attributes relies on the completed rule induction from
examples and therefore it would not be feasible to perform it in parallel with induction.

The heuristic for constructing attributes includes extracting a part of a classification hypothesis
that contains best rules. This is done by sorting all rules from the output hypothesis according to a
simple utility measure, 1, and selecting the minimum number of rules with the highest utility that

satisfy the inequality (1).

tu
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Since rules in the hypothesis may overlap over the same training examples, the tu rule utility
function depends on the number of positive examples covered by the rule (t), as well as the number

of positive examples that are uniquely? covered by the rule (u). The A constant determines the
importance of the exclusiveness of the coverage. Both A and TH1 were determined empirically

and preset to 2 and 0.67, respectively. With A =2, a preference is given to rules with higher
uniqueness. For TH1 = 0.67, the constructed attribute will at least cover 2/3 of training examples
of a given concept. Assuming that noise and exceptions are usually covered by rules with low ¢
and u weights, then the constructed attribute covers only fundamental portion of the learned
concept. However, the best solution for setting TH1 parameter would be a dynamic evaluation
based on knowledge about noise level and the confidence in the learned hypothesis.

The new attribute descriptions involve attributes from the current descriptor set and operators
defined within a given representational formalism. Since the implementation of AQ17-HCI
program is done using the VL1 variable-valued logic formalism (an extension of propositional
logic) thus the constructed attributes are VL1 logical expressions. Therefore, with the new
attributes, the system introduces conceptual changes within the representation rather then shifting
to another representational formalism. The whole instance space is conceptually partitioned into
regions that exhibit a szrong concept membership and an undecided concept membership. For
example, in the case of binary concepts, the new attributes partition the instance space into three
regions, instances with a strong positive concept membership, instances with a strong negative
concept membership, and instances with an undecided concept membership. Value "1" of such
attribute indicates instances belonging to the fundamental part of the given concept, and value "0"

2 Uniqueness means that no other rule in the hypothesis covers the same examples.



characterizes not decided instances, €.g., exceptions, noise. Real type values could be used to
express various degrees of similarity to defined subconcepts. o
The system is able to use the defined subconcept and its negation in the process of building
concept descriptions. It is done through the reformulation of the training data using all relevant
original attributes and newly generated attributes. For each training example the values of the new
atmbutes are calculated by evaluating the VL1 expression characterizing the new attribute.
The introduction of new attributes in the form of subconcepts made two implicit extensions to the
AQ17-HCI representational capabilities that were not present in AQ15:
(1) Rule-set-to—condition operator. _
The operator substitutes a DNF expression with an attribute value. For example, following the
domain description from Table 1, the system is able to create and use the following condition:
(c3=1)
that stands for ( ((x =75,100) & (y = small)) or (x=17)).
(2) Rule-set-negation—to—condition operator.
The operator substitutes a negated DNF expression with an attribute value. From the conceptual
point of view, this operator plays important role in negating the created subconcepts. For
example:
(c3=0)
that stands for; (not ( ( (x = 75,100) & (y = small) ) or x=7)))
and is equivalent to: ( ((x# 75,100) or (y # small) ) & (x#7))

From the outline of the method one can see that the process of inducing rules from examples may
be repeated several times in order to achieve the desired predictive accuracy. This adds complexity
to the learning algorithm depending on how many times induction is repeated. The complexity of
inducing rules from examples in AQ15 is O(PN), where P is a number of positive examples and N
is a number of negative examples (every positive example is generalized against all negative
examples). The complexity of forming a new attribute is linear with respect to the number of rules

in the hypothesis. As this constant effort is made for every iteration, the overall complexity is
O(PNT), where T is the number of iterations.

4. Example

To illustrate the performance of the constructive search, we describe an experiment on learning a
multiplexer function with 3 inputs and 8 outputs: the so-called multiplexer-11 problem (Wilson,
1987). For each positive integer k, there exists a multiplexer function defined on a set of k + 2K
attributes or bits. The function can be defined by thinking of the first k attributes as address bits
and the remaining attributes as data bits.

Figure 2 presents the MX11 concept graphically using a method for diagrammatic visualization.
This method employs a General Logic Diagram (GLD) which is a planar representation of a multi-
dimensional space spanned over multivalued discrete attributes3 (Michalski, 1973; Wnek and
Michalski, 1992). Each cell in the diagram represents a combination of the attribute values, e.g., a
concept example. Concepts are represented as sets of cells. They are depicted in the diagrams by
shaded areas. For example, the MX11 concept is described by eight rules listed at the bottom of
Figure 2. For easy recognition, each rule in the diagram was differently shaded.

The diagrammatic visualization method permits one to display the target and learned concepts,
individual steps in a learning process, and the errors in leaming. The set of cells representing the
target concept (the concept to be learned) is called rarger concept image (T). The set of cells
representing the learned concept is called learned concept image (L). The areas of the target
concept not covered by the learned concept represent errors of omission (T \ L), while the areas of

3 The system DIAV implementing the visualization method (Wnek and Michalski, 1992) permits one to directly

display description spaces up to 106 cells (e.g., about twenty binary attributes). Larger spaces can also be displayed
but their representations have to be projected to subspaces.



the learned concept not covered by the target concept represent errors of commission (L\T). The
union of both types of errors represents the error image. In the diagrams, errors are marked by
slanted lines.
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Figure 2. Diagrammatic visualization of the rules constituting MX11 concept.

Figure 3 explains the meaning of various cases in concept visualization. Concept images are
represented in the diagrams by shaded areas, e.g. Figure 3-A. If the target and learned concepts
are visualized in the same diagram, then the shaded areas represent leamned concept (Figure 3-B).
Error image is represented by slanted areas. It is easy to distinguish between errors of omission
and errors of commission. Since errors of commission are part of a learned concept, the
corresponding areas on the diagram are both shaded and slanted. Errors of omission are not part
of the learned concept thus the corresponding slanted areas remain white in the background. The
location of the target concept is implicitly indicated by correctly learned concept and errors of
omission. The parts of the target concept that were correctly learned are shaded only.

A. Target concept B. After learning

Figure 3. Interpretation of various areas in the diagrammatic visualization.



» MX11 function has the value of the data bit indexed by the address bits. In the experiment,
 input examples were encoded in terms of 11 binary attributes. Thus, the description space
ntains 2048 elements. The training set had 64 (6%) of the positive examples and 64 (6%) of the
;gative examples. Table 2 shows a sample of the positive and the negative examples. The
sributes a0, al, a2 describe address lines, and d0-d7 describe data lines.
From these examples, the rule generation module produced non-overlapping hypotheses of the
sorrect (Pos-Class) and incorrect (Neg-Class) behavior of the multiplexer. The classification rules
supplemented with the total and uniqueness weights are shown in Table 3.

Table 2. A part of the set of training examples

Positive examples Negative examples

a0ala2 dodld2d3d4dsd6d7 a0ala2 d0dld2d3d4d5d6d7

001 01000000 001 00111110

010 00100001 010 000O0O0O0TO1

010 11111110 010 11011110

101 00001101 101 000O00O0O0O

110 00001 1 11 110 00001000
Table 3. The rules induced by AQ15 from the training examples.
[Pos-Class _if 4]
1. (a0=1) & (al=1) & (a2=0) & (d6=1) or (11, wll)
2. (20=0) & (al=0) & (22=1) & (d1=1)or (11, uwll)
3. (a0=1) & (al=0) & (a2=1) & (d5=1) or (t:10, u:10)
4. (a0=1) & (al=1) & (a2=1) & (d7=1) or (1:10, u:10)
5. (a0=1) & (al=0) & (a2=0) & (d4=1) or (19, u:9)
6. (20=0) & (al=1) & (a2=1) & (d2=0) & (d3=1) & (d7=1)or (4, u:3)
7. (20=0) & (al=1) & (d2=1) & (d3=1) & (d4=0) & (d7=0) or (1:3, u:3)
8. (a0=0) & (a1=0) & (a2=0) & (d0=1) & (d1=0) & (d2=1) & (d3=1) & (d5=1) or : (1:2, w:2)
9. (a0=0) & (al=1) & (a2=1) & (d1=1) & (d3=1) & (d5=0) & (d6=0) or (2, u:l)
10. (20=0) & (al=1) & (a2=1) & (d0=1) & (d1=0) & (d2=0) & (d3=1) & (d4=1) & (d5=1) & (d6=1) & (d7=0)or (u:1, w:1)
11. (20=0) & (al=1) & (a2=0) & (d0=0) & (d1=0) & (d2=1) & (d3=0) & (d4=1) & (d5=1) & (d6=0) & (d7=0)or (r:1, w:1)

12. (20=0) & (al=1) & (a2=0) & (d0=1) & (d1=1) & (d2=1) & (d3=0) & (dd=1) & (d5=0) & (dé=1) & (d7=1) (1, u:l

[Neg-Class _if ]
1. (a0=1) & (al=1) & (a2=1) & (d7=0) or (t:13, u:13)
2. (a0=0) & (a2=0) & (d2=0) or (r:12, u:12)
3. (a0=0) & (al=0) & (a2=1) & (d1=0) or (t:10, u:10)
4. (al=0) & (a2=0) & (d1=1) & (d4=0) or (1.9, u:9)

5. (ab=1) & (al=1) & (22=0) & (d6=0) or (7, u:7)
6. (a0=1) & (al=0) & (a2=1) & (d5=0) or (t:5, u:5)
7. (a0=0) & (al=1) & (a2=1) & (d3=0) & (d7=1) or (t:5, u:s)
8. (a0=0) & (a1=0) & (a2=0) & (d0=0) & (d1=1) & (d2=1) & (d3=0) & (d6=0) & (d7=1) or (t:2, u2)
9. (20=0) & (al=0) & (a2=0) & (d0=0) & (d1=1) & (d2=1) & (d3=0) & (d4=0) & (d5=0) & (d6=1) & (d7=0) (t:1, u:l)

Figure 4 presénts the AQ15 learned concept description in the context of the target concept. The
total number of errors measured over the whole representation space is 299, which gives 15%
error rate. (The error rate for overlapping covers is 20%).
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F igu}e 4. Visualization of the MX11 (Pos-Class) concept learned by AQl15.

Pos-Class and Neg-Class are hypotheses in the k-DNF form. Each rule in the hypotheses is
accompanied with ¢ and 4 weights that represent total and unique numbers of training examples
covered by a rule. From these hypotheses, the best rules were selected to constitute the candidate
attributes P1 and N2 (Table 4). The new attributes are named after the concept descriptions they
were abstracted from, and consecutive numbers. Table 5 shows the definition of the new atributes
and Figure 5 shows the coverage of the instance space done by the new attributes.

Table 4. Best rules according to the formula (1).

[Pos-Class Neg-Class

1. (20=1) & (al=1) & (22=0) & (d6=1)  (tu:33)
2. (20=0) & (a1=0) & (a2=1) & (d1=1)  (tu:33)
3. (20=1) & (a1=0) & (a2=1) & (d5=1)  (tu:30)
4. (a0=1) & (al=1) & (2=1) & (d7=1)  (t:30)
5. (a0=1) & (a1=0) & (a2=0) & (dd=1) _ (tu:27)

L (a0=1) & (al=1) & (22=1) & (d7=0)  (w:39)
. (a0=0) & (a2=0) & (d12=0) (u:36)
. (a0=0) & (a1=0) & (a2=1) & (d1=0)  (r:30)
. (a1=0) & (a2=0) & (d1=1) & (d4=0)  (w:27)

DWW e

Tt =126 L= 9% (E o, )/ Cuyi=066 Tt =105 Ty =192 [Ty, )/ @ wy)=055
T, =153 Ty =191 (E my )/ (B w,) = 080 T =135 T, =195 (Tmy, )/ Ewmy)=069

Table 5. The definition of the constructed attributes P1 and N2.

Pl=1if N2 =1 if
1. (a0=1) & (al=1) & (a2=0) & (d6=1) or 1. (a0=1) & (al=1) & (a2=1) & (d7=0) or
2. (a0=0) & (a1=0) & (a2=1) & (d1=1) or 2. (a0=0) & (a2=0) & (d2=0) or
3. (a0=1) & (al=0) & (a2=1) & (d5=1) or 3. (a0=0) & (al=0) & (a2=1) & (d1=0) or
4. (a0=1) & (al=1) & (a2=1) & (d7=1) or 4. (al=0) & (a2=0) & (d1=1) & (d4=0)
5. (a0=1) & (al=0) & (a2=0) & (dd=1)

Pl = 0 otherwise N2 = 0 otherwise




P1=0 N2=0
Figure 5. Images of the constructed attributes.

Once the new attributes are created, they are used to reformulate the training examples (Table 6).
For each old training example the new P1 and N2 attribute values has been added. Note that, if the
new attribute originated in the given class then it mostly has value "1" assigned, and "0" value
otherwise. . After the reformulation is done the whole inductive process is repeated. Table 7
presents newly inducted rules.

Table 6. The part of the reformulated training set.

Positive examples Negative examples

a0ala2 d0dld2d3d4d5d6d7 Pl N2 a0ala2 d0did2d3dd4d5d6d7 P1 N2

001 01000000 1 O 001 001111100 1

010 00100001 0 O 010 00000001 0 1

010 11111110 0O 010 110111100 1

101 00001101 1 O 101 00000000 O0C O

1170 00001111 1 O 110 00001000 0 O
Table 7. Decision rules with the constructed attributes.
[Pos-Class__if ]
1. (Pl=1) or (t:51, u:S1)
2. (a0=0)&(d3=1)&(P1=0)&(N2=0) or (t:11, u:ll)
3. (aO:O)&(al:l)&(nZ:O)&(dS:O)&(PI:O)&(NZﬁ) (12, w2
[Neg-Class__if |
1. (N2=1) or (1:44, u:44)
2. (a0=1) & (P1=0) & (N2=0) or (1:12, uw:12)
3. (a0=0) & (al=1) & (a2=1) & (d3=0) & (P1=0) & (N2=0) or (L5, u:s)
4. (a0=0) & (al=0) & (a2=0) & (d0=0) & (d3=0) & (P1=0) & (N2=0) (t:3, u:3)

As expected, the new attributes were used in the output hypotheses in both Pos and Neg classes.
We can observe that large portions of training examples were covered by the rules (P1=1) in the
Pos-Class, and (N2=1) in the Neg-Class. Figure 6 summarizes the new learning task in the
changed representation space.
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Figure 6. Learning the concept MX11 in the changed representation space.

The MX11 target concept image is shown in Figure 6-A after mapping into the new
representation space. For an easy identification, areas that correspond to those in Figure 2 are
marked with the same pattern. There exists interdependency between P1, N2 and original
attributes, therefore the space spanned over that area excluded impossible combinations of instance
descriptions. For example, the whole area described by the rule ((P1=1) & (N2=1)) is impossible
since the intersection of the two attributes is empty (see P1, N2 definitions in Table 5 or their
visualization in Figure 5). Figure 6-B shows all instances of the MX11 concept mapped into the
new space. One cell in the new space represents 32 or 64 original examples depending on the rule
describing the new cell. Figure 6-C shows the training examples in the new space. Figure 6-D
shows the final concept learned. The learned concept still does not cover exactly the target concept
(3 errors of omission and 1 errors of commission) but it gives a better performance accuracy. The
learning could be further improved if the generalization were prohibited over impossible areas.
Instead of producing the rule (a0=0) & (d3=1) & (P1=0) & (N2=0) to cover the four positive examples
listed below, the system would be forced to generate more specific rule.

1. (20=0) & (al=1) & (a2=1) & (d0=0) & (d3=1) & (P1=0) & (N2=0)
2. (a0=0) & (al=1) & (a2=1) & (d0=1) & (d3=1) & (P1=0) & (N2=0)
3. (a0=0) & (al=1) & (a2=0) & (d0=0) & (d3=1) & (P1=0) & (N2=0)
4. (a0=0) & (al=0) & (a2=0) & (d0=1) & (d3=1).& (P1=0) & (N2=0)
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The rule would not cause the only commission €rror. The only remaining uncovered example (4)
could be generalized to form the rule: (20=0) & (a1=0) & (2=0) & (d0=1) & (P1=0), and therefore eliminate
the three omission errors. The ongoing research investigates ways of improving induction in
spaces with impossible instances. Another important issue that needs further research is utilization
of the information about the numbers of original examples mapped into new examples.

The final hypothesis produced by AQ17-HCI was tested against the testing set. The result was
94% accuracy (compared with 85% accuracy from rules generated by AQ15 without constructive

induction). Figure 7 shows the final concept image learned by AQ17-HCI in the original

representation space.
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Figure 7. Concept learned by AQI17-HCI after conversion to original representation space.

5. Experiments

A major measure of the performance of a learning algorithm is the classification accuracy of the
learned concepts on the testing examples. The goal of our experiments was to test how well the
method does according to this criterion, and how well it compares to other methods: standard
decision rule algorithm - AQ15, standard decision tree algorithm - REDWOOD, and algorithms
with constructive abilities: FRINGE, GREEDY3, and GROVE (Pagallo & Haussler, 1990).

5.1 Experimental domains

The domains for testing AQ17-HCI and comparison with other methods were four Boolean
functions: DNF3, DNF4, MX11, and PARS. The same functions were used to test decision tree
algorithms: REDWOOD (based on ID3) and FRINGE, and decision list algorithms: GREEDY3
and GROVE (Pagallo and Haussler, 1989, 1990). Table 8 provides a summary description of the
test domains. The number of randomly generated training examples was 1650, 2640, 1600, and
4000 for DNE3, DNF4, MX11, PARS respectively, as in (Pagallo and Haussler, 1989). For each
groblem, 2000 random examples (independent from training examples) were used to test learned
ypotheses.
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Table 8. Summary description of experimental domains

No. of No. of
training | testing
examples |examples

Target No.of | No.of | No.of | Average
concept | attributes| classes | rules |rulelength

DNF 3 32 2 6 5.5 1650 2000
DNF 4 64 2 10 4.1 2640 2000
MX 11 32 2 8 4.0 1600 2000
PAR S 32 2 16 5.0 4000 2000
DNF3  Boolean function defined by the expression:
x1x2x6x8x25x28-x29 or x2x9x14—x16—x22x25 or
X1ax4—-x19-x22x27x28 or —x2—-x10x14-x21-x24 or
x11x17x19x21-x25 or =x1-x4x13-x25

Attributes x3 x5 x7 x12 x15 x18 x20 x23 x26 x30 x31 x32 have random values for each example.

DNF4  Boolean function defined by the expression:

x1x4x13x57-x59 or x18-x22—x24 or x30-x46x48—x58 or
-x9x12-x38x55 or -—x5x29-x48 or x23x33x40x52 or
X4-x26-x38-x52 or x6x11x36—x55 or —=x6-x9-x10x39—-x46 or
X3X4X21—|X37—\X57 )

Attributes x2 x7 x8 x14 x15 x16 x17 x19 x20 x25 x27 x28 x31 x32 x34 x35 x41 x42 x43 x44
x45 x47 x49 x50 x51 x53 x54 x56 x60 x61 x62 x63 x64 have random values for each example.

MX11 = multiplexer-11 function (k=3) (Wilson, 1987).
For each positive integer «, there exists a multiplexer function defined on a set of

k+2K attributes or bits. The function can be defined by thinking of the first k attributes
as address bits and the last attributes as datza bits . The function has the value of the data

bit indexed by the address bits4.
Atributes x12 .. x32 have random values for each example.
PARS  parity-5 function.
For each positive integer k, there exists an even parity function defined on a set of &
attributes. The function has value true on an observation if an even number of attributes

are present, otherwise it has the value false.

Attributes x6 .. x32 have random values for each example.

4In experiments with multiplexer function, Pagallo and Haussler (1989, 1990) classified an example as positive
when the value of the function was J and negative for the value 0. However, according to the definiton, both values;
0 and 1 are valid values of the function. Thus, each multiplexer function needs an additional bit to indicate whether
the value of the function was properly assigned. For the sake of comparability of the results of the HCI method with
other methods (Pagallo and Haussler; 1989, 1990; VanDeVelde, 1989) we used the same, simpler multiplexer
function. This function learns how to “switch on” or “set to 1” the addressed line.
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5.2 Experimental results

This section compares the performance of the AQ15 and AQ17-HCI programs on a set of
experimental data. The rules generated by both programs were tested using the ATEST program
(Reinke, 1984). ATEST views rules as expressions which, when applied to a vector of attribute
values, evaluates to a real number. This number is called the degree of consonance between the
rule and an instance of a concept. o :

The method for arriving at the degree of consonance varies with the settings of the various
ATEST parameters. Rule testing is summarized by grouping the results of testing all the instances
of a single class. This is done by establishing equivalence classes among the rules that were tested
on those instances. - Each equivalence class (called a rank) contains rules whose degrees of
consonance were within a specified tolerance (tau) of the highest degree of consonance for that
rank. When ATEST summarizes the results it reports the percentage of Ist rank decisions
(tau=0.02) as well as the percentage of only choice decisions (100% match) (tau=0). In our
experiments we used ATEST with its default parameters.

In learning DNF functions, the HCI method strongly outperformed AQ15 in terms of
performance accuracy (Table 9). Table 10 shows that the HCI method requires a significantly
smaller training set to precisely learn the DNF4 problem. These results are due to better descriptors
used in expressing learned concepts both in the learning phase (relations already discovered and
stored under new attributes make it possible for a deeper search for dependencies among training
data) and the testing phase (match between an example and a more concise rule resultsin a higher
degree of consonance (Reinke, 1984)).

Table 9. The experimental results for different problems.

Average Error Rate
Target
concept AQLS AQI7-HCI
1st Rank 100% wmatch 1st Rank 100% match

DNF3 0.3% 1.5% 0.0% 0.0%
DNF4 0.2% 11.5% 0.0% 0.0%
MX11 0.0% 0.0% 0.0% 0.0%
PARS 1.6% " 18.8% 10.0% 0.0%

Table 10. The experimental results for different numbers of training examples in learning DNF4.

No. of Average Error Rate in Learning Target Concept DNF4
| tra(i)r.lgng AQIS AQ17-HCI
examples 1st Rank 100% match 1st Rank 100% match
330 29.6% 48.2% 27.2% 48.2%
660 7.7% 24.8% 2.4% 9.4%
1320 1.8% 16.4% 0.2% 4.3%
1980 0.8% 13.6% 0.0% 0.0%
2640 0.2% 11.4% 0.0% 0.0%
3960 0.2% 10.5% 0.0% 0.0%
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5.3 Empirical comparison of HCI with other methods

Figure 8 and Table 11 summarize the results obtained in ten executions of the tested algorithms.
The results for the REDWOOD, FRINGE, GREEDY?3, and GROVE algorithms come from
(Pagallo and Haussler, 1989, 1990). )
Figure 8 shows the learning curves for the concept DNF4. The curves were obtained by
measuring and averaging error rates over ten experiments for each measure point. The measure
points were 330, 660, 1320, 1980, 2640, and 3960 of training examples. Four systems, AQ15,
FRINGE, GREEDY?3, and AQ17-HCI obtain 100% performance accuracy when supplied with
3960 training examples. However, convergence to 100% is the fastest in the case of AQ17-HCL

Performance
Accuracy pqq7.Hel

FRINGE & GREEDY3

100% —

90% —

80%

70% —

0% +—f——T—T—T T T T T T T _1»
330 660 1320 1980 2640 3960

Number of Training Examples
Figure 8. Learning curves for the concept DNF4.

Table 11 shows results obtained for the numbers of training examples listed in Table 8. AQI7-
HCI with hypothesis-driven constructive induction capabilities has completely learned all the target
concepts. REDWOOD and GROVE did not learn any concept with 100% accuracy. FRINGE and
GREEDY?3 learned three concepts but failed to learn the PARS concept. Itis worth noting that the
standard decision rule system AQ15 (without constructive induction) leamned all the concepts.

Table 11. The experimental results.

Average Error Rate
come, | Decision TREES (*) | Decision LISTS (*) | Decision RULES (1)
REDWOOD| FRINGE |GREEDY3| GROVE | AQI5 |AQ17-HCI
DNF3 7.4% 0.3% 0.6% 1.4% 0.3% 0.0%
DNF4 24.9% 0.0% 0.0% 7.8% 0.2% 0.0%
MX11 13.1% | 0.0% 0.5% 3.9% 0.0% 0.0%
PARS 36.5% 22.1% 45.8% 41.3% 1.6% 0.0%

(*) from (Pagallo and Haussler, 1989, 1990), (1) 1st rank decisions.
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6. Discussion and conclusions

Both AQ15 rules and the AQ17-HCI constructed rules provide a complete and consistent coverage
of the input examples. Since HCI {nvolves attributes constructed form AQ15 rules then a question
arises: why AQ17-HCI produces higher accuracy on testing examples? The answer seems to lie in
the AQ15’s strategy to generalize examples. The extend-against operator considers attributes one
at a time and is limited to the initial attributes>. This can be an essential obstacle in learning hard
concepts in the context of preliminary description of a learned problem (Rendell & Seshu, 1990).
Hard concepts are spread out all over the given hypotheses space and require multiple covers.

In order to merge those regions and make the induction process simpler, a learning algorithm has
to detect possible attribute interactons, and construct new attributes that capture those interactions.
A closer look at AQ17-HCI shows that it does exactly this. By abstracting concept descriptions,
the method takes advantage of already detected attribute interactions and uses them in converting a
hard problem to an easier one by just enlarging the initial attribute set. Since new attributes
combine initial interacting attributes, the systematic transformation in a hypotheses space support
the extend-against operator in finding more accurate and effective hypotheses.

The results shown in Table 11 suggest that all of the problems were hard for the standard decision
tree algorithm REDWOOD. The reason is that the decision tree structure does not capture
interactions between attributes. Only FRINGE which places conjunctions of initial attributes in the
nodes of the decision tree, thus acting more like AQ15, was able to partially overcome those
difficulties. The AQ15 algorithm was able to find almost perfect solutions. This suggests that the
structure of this algorithm supports solving this kind of problems.

The presented HCI method of constructive induction generates new attributes by analyzing and

abstracting inductive concept hypotheses, rather than by directly combining different attributes..

This way the search for new attributes is very efficient, aithough it is more limited in the repertoire
of the attributes that can be constructed by direct, data-driven methods. In our experiments, the

proposed method performed very favorably, in terms of performance accuracy, in comparison to
methods employed in such programs as AQ15, REDWOOD, FRINGE, GREEDY 3, and GROVE.

In the HCI method, new attributes correspond to subsets of best performing rules obtained in the
previous iteration of the method. This is a real advantage of the method because it can easily
handle problems with attributes of any type, such as Boolean, nominal, linear, as well as
structured (where domains are hierarchies). The algorithm detects irrelevant attributes among those
used in a primary description of a problem as well as those introduced during the attributes’
generation process. Initial and new attributes are examined according to classification abilities and
new hypothesis building is based on the most relevant attributes. .

The presented HCI method has shown to be effective in improving performance accuracy of an
inductive system. On the other hand, generated attributes are rather complex and therefore, the
overall complexity of the descriptions may be increased. In future research, we plan to investigate
attribute generation based on selected components of the best performing rules rather than the entire
rules. This could potentially lead to both a further improvement of the accuracy, as well asto a
greater simplification of the overall complexity of the hypotheses. We also plan to test the method
on different types of leamning problems in order to determine its strongest areas of applicability.

5 One way to address this problem can be a lookahead technique to detect interaction between attributes, but this
increases computational cost (Rendell and Seshu, 1990)
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