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ABSTRACT

Most research on inductive learning has been concerned with qualitative learning that induces
conceptual, logic—style descriptions from the given facta. In contrast, quantitative learning deals with
discovering numerical laws characterizing empirical data. This research attempts to integrate both types
of learning by combining newly developed heuristics for formulating equations with the previously
developed concept learning method embodied in the inductive learning program AQ11. The resulting
system, ABACUS, formulates equations that bind subsets of observed data, and derives explicit, logic-style
descriptions stating the applicability conditions for these equations. [n addition, several new techniques
for gquantitative learning are introduced. Unita analysis reduces the search space of equations by
examining the compatibility of variables’ units, Proportionality graph search addresses the problem of
identifying relevant variables that should enter egquations. Suspension search focusses the search space

through heuristic evaluation. The capabilities of ABACUS are demonstrated by several examples from

physics and chemistry.
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1. INTRODUCTION

Research on inductive learning investigates the principles that govern the process of constructing
knowledge {rom observed data. Significant progreas has been achieved in developing methods for inducing
symbolic, logic-style descriptions that characterise classes of examples or observations. Reviews of some
such methods can be found in Dietterich and Michalski (1981) and Mitchell (1982), However, with the
rapid expansion of expert systems applications, it is becoming clear that there is a need for utilizing in
them not only qualitative knowledge, as has been the main thrust so far, but also quantitative numerical
knowledge (Kowalik, 1986). This suggests that research in machine learning should develop methods for

quantitative discovery, capable of automatically constructing numerical descriptions of the given
phenomena. Such numerical knowledge would be a part of a deep model of the knowledge of an expert
aystem.

There are also other reasons for tesearch on quantitative discovery. For example, in many [ields of
science [especially in the life sciences), researchers gather empirical data as a prerequisite for building
models and developing principles which explain the phenomena under study. Their tool bux for analysing
the data has traditionally contained various statistical techniques, including regression analysis, numerical
taxonomy, dimensional analysis, and the like. These methods manipulate numbers, equations and similar
structure.: without explicitly involving symbolic knowledge that represents domain constraints, control
heuristics, underlying assumptions, ete. All this knowledge, if it ever enters the process, comes from the
head of a data analyst. A given statistical procedure can only cope with specially prepared and interpreted
numbers. Therefore, it seems very desirable to develop Al methods for data analysis which can reduce the
amount of expert analysis currently required.

Some pioneering work in this direction has been done by Langley, Bradshaw, and Simon (1983a) with
their BACON systems. Even sarlier work has been done by Hajek (1978) on the GUHA method of data
analysis and by Zagoruiko and Lbov (1976, 1985) on systems SPAR (1968) and PINCH (1878) [or
quantitative prediction of a variable and the simultaneous selection of the must informative attributes

from the set of initial attributes.
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This paper provides a comprehensive review of the issues in quantitative empirical learning and
presents a methodology of such learning implemented in the program ABACUS. The ABACUS system is
able to discover multiple mathematical equations for numeric data and derives explicit, logic-style
descriptions stating preconditions for the application of the equations. Several new techniques particularly
suited to quantitative learning are introduced in this work. Units Analysis enables one to greatly reduce
the size of the search space by examining the compatibility of variables’ units, Two new search
algorithms, proportionality graph search and suspension search address some of the unique search problems
associated with quantitative learning. Section 2 outlines the issues which arise in quantitative discovery.
Section 3 discusses related work in the field, and section 4 introduces the new approach taken in the
ABACUS system. Sections 5 and 8 discuss the way in which ABACUS discovers equations and [ormulates
preconditions for these eq ations. Several examples illustrating the performance of ABACUS are presented

in section 7. Finally, section 8 overviews the ABACUS methodology and suggests directions for future

research.

2. GOALS for QUANTITATIVE DISCOVERY
At the heart of quantitative discovery is the desire to induce mathematical descriptions that

characterize the behavior of numerical observations. Independent of the technique used, there are a

number of issues which any work in this area must address., Established disciplines, such as regression

analysis, discuss ways for the data analyst to persenally address many of these issues. Artificial

Intelligence techniques must attempt to automate this phase of the analysis. We therefore outline the

following criteria for evaluating research on quantitative discovery.

(1) Coping with irreievant variables. In many discovery tasks, it is difficult to know which available
variables are relevant to describing the observed events and which are not. A discovery program
should be able to decide for itsell what is relevant.

(2) Coping with incorrect and irrelevant observations. [n empirical data, it is often the case that some of
the data is not representative of the process being observed. There are two common situations which

give rise to this. First, some observations may simply be erroneous. Second, the process may not be
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defined outside a given range of values, such as the pressure being too high or the substance being in

the wrong state.

(3) Discovering multiple equations underlying @ collection of data and stating the conditions under which
the equations apply. [t may often be the case that more than one squation is required to adequately
describe a given set of observations. In these situations, the observations should be clustered around
the various equations to form subsets of the original events. Conditions should be placed on each
equation to describe when it is applicable.

(4) Handling different types of variables. Often, the observable variables in a given situation are both
pumeric and symbolic. When a discipline is young, for example, it may not be known that a given
symbolic value has a one-to-one correspondence with an as yet undiscovered physical constant. A
quantitative discovery system should take into account the symbolic information available.

(5) Imprecision and errors in the data. The inaccuracy of experimental observations has always been a
problem in science, and the discovery system should not be crippled because of it.

(8) [ntegrafing with other learning systems, While quantitative knowledge is quite valuable, it is only a
part of the total knowledge available. These might include knowledge of qualitative dependencies

"among variables, including causal dependencies. A quantitative discovery system should be able to
interact with discovery programs for‘acquiring different types of knowledge.

(7) Robust and efficient. Discovery is inherently prone to combinatorial explosion. This, combined with
the difficulties introduced by the criteria defined above, make eificiency considerations particularky
important for qumtitahh‘le discovery. We want to be able to discover complicated equations and yet

accomplish this in a reasonable amount of time.

3. RELATED WORK

Numerical data analysis and equation formation has traditionally used such standard technigues as
regression analysis, numerical taxonomy, and dimensional analysis (e.g. Chatterjee and Price, 1977; Daniel

and Wood, 1971; Huntley, 1952; Langhaar, 1951). These methods are very useful when the domain is well
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understood and when the observations correspond closely ta the process being analyzed. For many
situations, however, these methods are either difficult to use, requiring a great deal of human analysis, or

they are simply inadequate. First, we are interested in discovering multiple equations in data when no
single equation exists. Stepwise regression analysis is based on the implicit assumption that there is one
best equation (Daniel and Wood, 1971). It will attempt to fit a single equation to the set of observed data,
no matter how complicated the resulting equation. This leads to our second concern, comprehensibility. It
is important that the results of a learning program be easy to understand. This is especially important in
situations where a set of data may be described by two or more succinct equations or approximated by one
complicated one. Third, regression analysis assumes that the data are a representative sample of the
process being observed. Techniques are described in the standard texts to remove, by hand, nontypical
data points, called outliers (Daniel and Wood, 1971; Chatterjee and Price, 1977). We are interested in the
automatic removal of these data points. Fourth, we are interested in minimising the amount of analysis
required by the user. For the standard techniques, numbers and equations must be specially prepared and
interpreted by the data analyst. Finally, we are interested in the smooth integration of quantitative and
qualitative knowledge. Regression analysis uses indicator variables which take on values of 0 or 1 to
represent different qualitative categories. We would like to see qualitative variables explicitly included in
the discovery program’s hypotheses.

The equation formation part of our r-uea.:ch is related to the BACON project at CMU (Langley,
1979, 1581; Langley et al, 1981, 1983, 1988), the COPER system {Kokar, 1981, 1985), and the HOTEP

system (El-Shafei, 1988). The precondition {ormation part is related to the research on inductive learning

done at the University of [linois (Michalski and Larson, 1978; Michalski, 1983).

The BACON project began in 1978 with the construction of BACON.1; the most recent system is
BACON.B. The basic approach taken in the early versions was to formulate empirical laws through the
repeated application of hypothesis generation rules. Thus the ideal gas law (PY/NT = 8.32) would be
formed in a layered fashion by creating the term FV, using this and the directly observed attribute T to

form a more general term P¥/7, and finally using this to formulate P¥/NT which summarizes all of the
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given data. A variety of additions were subsequently made to this basic methodology. BACON.4 was able

to postulate intrinsic properties for symbolic entities and could detect when common divisor’s existed for a
variable's values. BACON.5 included a simple method for learning by symmetry. BACON.6 (Langley &l al,
1983b, 1988) deviated from the methodology of the previous systems. The major difference was that forms
of the law must be provided by the user, allowing the system to formulate more complex laws including
trigonometric and algebraic functions.

While BACON compares well with the above criteria for quantitative discovery, several weeknesses
can be pointed out. One limitation is that it eannot derive multiple equations to describe different subsets
of the data. The issues of data clustering and the formulation of preconditions are not addressed. The

data is assumed to be correct and relevant to a single process and the user must state which variables are

dependent and which are independent. The equation formation techniques used in BACON.6 appear to be

quite powerful, enabling the system to derive rather complicated laws in a straightforward manner.

However, much of this power is achieved by requiring the user to provide a form of the answer.

A different approach to quantitative discovery is taken by Kokar (1981, 1985) and El-Shafei {1988,
Central to this approach is the application of dimensional analysis (Langhaar 1951; Huntley 1952).
Considering units of measurements, this analysis creates the set of all possible dimensionless products of
variables provided in the data. These products are then used to form squations explaining the data.
Traditional dimensional analysis requires that the relevant variables are known prior to application of the
procedure, thus requiring extensive domain knowledge. Kokar solves the irrelevant variables problem by
first trying to determine the completeness of the set of variables characterizing the given physical process.
This step precedes the equation formation step and is able to discard irrelevant variables as well as detect
when a needed relevant variable is missing. El-Shafei effectively ignores the need for determining variable
relevancy prior to dimensional analysis by using regression analysis to form the desired equation from the
set of dimensionless terms. He assumes that terms involving irrelevant variables will antomatically drop
out during the regression analysis. This may be an oversimplification of the problem since great care is

given to variable selection using classic regression analysis techniques {(Daniel and Wood, 1971; Chatterjee
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and Price, 1977).

These systems are quite robust in that they will find an equation to fit the data, no matter how

complex that equation may be. Therein lies one of the problems with these techniques. Because only a

single equation is always fit to the data, these systems cannot detect cases where the data could be better

described by two or more equations. In additien, these systems fail to take into account the symbolic

information available as well as having problems with gituations requiring dimensional constants. In the

following sections, we describe an approach to quantitative discovery which contains aspects of BACON,

dimensional analysis, and symbolic approaches to inductive learning.

4. THE ABACUS APPROACH TO QUANTITATIVE DISCOVERY

There are many strategies to derive an equation or set of equations summarizing the behavior of

some physical process. In choosing a particular strategy, one must weigh the gains from the use of that

strategy against the losses. The approach taken in ABACUS has been to satisfy as many criteria from our
list for quantitative discovery as possible, and to reduce the user supplied information to a minimum.
ABACUS can handle irrelevant variables, symbolic variables of different types, and a certain degree of
noise. lts great advantage is that it is able to discover multiple equations and ignore irrelevant
observations. The only information required from the user besides the actual observations is a list of the
attributes, their type (numeric or symbolic), and optionally their units {e.g. meters/second). The program

is never told which variables to treat as dependent and which to treat as independent. In achieving these
abilities, some sacrifices have had to be made in robustness and efficiency. The experimental results
deseribed in section 7 indicate that the system is both general and powerful.

The ABACUS method of quantitative discovery consists of two steps. First, the equation discovery
module analyzes the original empirical data and attempts to derive equations summarizsing the observed
behavior. If more than one equation is required to describe the observations, the data are divided into
disjoint subsets, and equations are determined for each subset. The second step passes the resulting
subsets to the precondition generation module. This module derives a logic-style description [or sach

subset. Such a description is used as a precondition for each equation. The result is a series of if-then rules
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in which the "if-part” states the precondition for applying the rule specified in the "then part™

The equation learning module searches for the best equation to describe the given empirical data.! If
the discovered squation holds for all events, the learning task is completed, and no preconditions need to
be generated. However, if the equation describes only a subset of the events then the subset described is
removed from the list of events and associated with the equation describing it. Sometimes several classes
of events can be described by one expression that evaluates to different values, When this occurs, a
number of classes are formed, one for each value of the expression. Remaining events are passed to the
equation learning procedure again in order to determine a separate equation for them. This iterative
process repeats until all events are accounted for. When no equation can be determined for some events,
they are placed in a “miscellansous” class.

Once the data have been divided into classes, the precondition generation algorithm is used to create
discriminant descriptions for these classes. The resulting logical expressions can be used to predict which
equation should apply to a newly observed event. The following example is used to illustrate the general
algorithm used in ABACUS.

Suppose the system s given the data depicted in Figure 1{a). Observed values for « and u are read
in and the equation discovery module is invoked. Aas there are only twn variables, the space of possible
equations is small. The best equation found, which describes 70% of the data, is '=y (a discussion of the
equation formation technique is in section 5). Events covered by the equation are put in a class associaled
with this equation. The equation discovery module is invoked again to analyze the remaining events. This
time, =+y=38 is found to hold for all events and a class set is created for these events. Because all
observations are accounted [or, the equation discovery step is completed and the precondition module is

called. This module searches for properties of the data which distinguish between the two classes. The
results are presented in Figure 1(b). They state that when x is below 5, the equation is y==", and when ~ is

hetween 5 and 30, the equation <+y=38 holds.

! There are many ways to determine the beel equation, Here we refer to the equation describing the largest subset of the data
{i.e., the most gemeral). It is alse importaot to consider syntactic and domain-dependent criteria, such 2 the equation’s simpliciky of
its relation to known physical phenomena, but the current work has not yet addressed these methods.
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Figure 1. ABACUS Analysis of Graph Example

5. DISCOVERING EQUATIONS

The technique used in ABACUS depicts quantitative discovery as a gearch through the space of
equations that could possibly describe the behavior of the observed data. This search process
mathematically combines variables representing terms to form new terms. For example, = and y might be
combined to form =+y. Search in this domain is different than in many other domains because new nodes
are formed by the combination of existing nodes rather than by node expansion. In addition, we have not
been able to derive a good heuristic evaluation function which can accurately indicate the possibility that a
given node lies on a promising path. Before describing the search algorithms used in ABACUS, we first
discuss how nodes in the search tree are formed, how search through a potentially exponential search space

is constrained, and how the goal node is recognized once it is found.

5.1. Variable Dependencies and Proportionality Graphs

At the heart of quantitative discovery is the concept that one variable's values may be dependent in

some way upon the values of another variable. The early BACON systems locked for monotonic



ABACUS. 9 May, 1988

relationships in the data to create new hypotheses (Langley, 1931a, 1983a). Michalski {1983) defines the

M-descriptor stating that if two variables exhibit a monotonic relationship, one should investigate the

properties of their product. In the strict sense, variable = monotonically increases with y if the values of =

always rise when the values of y rise while holding all other variables constant. There are two problems
with such a strict definition. First, for a given set of data, it is not always possible to observe changing

values for = and y while holding all other variables constant. Second, we must allow for inaccuracies and

errors in experimental data, Asa result, we are interested in the degree with which = is proportional to 4

rather than detecting if « exhibits a monotonic relationship to v for all of the data. With this in mind, we

say that = is gualitatively proportional to y if, for a given percentage of the events (user specifiable), the
values of = rise when the values of y rise while certain specified variables are held constant. Similarly, =
and y are inversely qualitatively proportional if « decreases as u rises for a majority of the events under the
same conditions. There are then four assertions possible as the result of a qualitative proportionality

measurement:

Prop Ix.yl =xandy are qualitatively proportional to a user-specifiable degree

Prop_ Ix,q} - x and y are inversely qualitatively proportional to a user—specifiable degree
Prop tx.y! - insufficient data to determine if x and y are related
Morel (x.y] - xand y are not related

To make a qualitative proportionality assertion about variables = and y, ABACUS locks for general
trends in the data. Since it is not always possible to hold all other variables constant, an ezclusion sef is
defined to be the set of attributes which do not need to be held constant and is constructed by the progr
and the user, The user must recognize which variables simply cannot or should not be held constant.
Similarly, when measuring the proportionality between variables = and y, the program recognizes that if «
is a program generated variable composed of user defined variables v and w. then v and - should be
removed [rom the set of variables which must be held constant. Since they are necessarily dependent upon
«, it would be impossible to hold v and = constant while changing =. The trend detection algorithm
determines whether y rises or decreases as x rises when all user defined variables not in the exclusion set
are held constant. [t never iries to hold program generated variables constant. If no groups can be found

where all of these variables remain constant, then Pr op' must be asserted. For each of the groups found, a
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measurement is made of the monotonic relationship between = and y from which an average is obtained

and used as the degree of proportionality between x and w. This measure is then used to assert Prop ,

Prop , or Mora!. The proportionality criterion has a margin of tolerance, allowing a moderate degree of

noise and a limited amount of conflicling proportionalities. Conflicting proportionalities occur when some
of the data indicates Prop” (x.y} and some indicates Prep”ix.y). In Figure 1(a), there were 16 points
given for the curve {Pr'ﬂl!l+"-x.91} and 7 given for the line (Prop” ix,y!), causing the program fo initially
assert Prop (=,ul. We have developed an algorithm that can handle the conflicting proportionalities
problem in a more general manner, based on determining breakpoints in the monotonic relationship
between variables. For the data in Figure 1(a), it would first determine the breakpoint A, and then process
points to the left and right of A independently.

From these proportionality assertions we may construct an undirected graph, called a proportionality
graph, where the nodes represent variables, and edges indicate the presence of a qualitative proportionality
relation between their incident vertices (Figure 2). For our purposes, edges shall only be constructed for
Prop” and Prop relationships, and Pr op? will effectively be treated as Morel. In Figure 2, a is

proportional (+ or =] to u. but not propoertional to c.

Figure 2. Proportionality Graph
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As explained in section 5.5, we are interested in nodes which form cycles in such a graph. In this

context, the term cycle refers to any biconnected components (Aho, 197 4) which may exist. A biconnected

component refers only to the maximal cycles in the graph, or in other words, only those cycles which are

not a subset of some other eycle. In Figure 2, the single maximal cycle (or biconnected component )

consists of the set of nodes lab e fl.

5.2. Equation Formation - A Search for Constancy

The existence of gualitative proportionalities between variables suggests the possibility of causal or
other relationships between them. For example, if we knew that the value of = always goes down when the
value of y goes up, then the relation =y = constant might be binding these variables. This may be
generalized to a rule:

If Proo i=.y) then create a variable equal to =y

Such a variable is more likely to take on a constant value than = or y independently. Expanding on this
concept, the following heuristics are formulated:

If Prop  (x.y) then
Generate a variable equal to a quotient relation between x and ¥y (5.1)
Generate variables equal to difference relations between x and y

If Prop ™ (x,y) then

Generate a variable equal to a product relation between x and ¥ {5.2)
Generate variables equal to sum relations between x and y

With these heuristics in mind, search in quantitative discovery involves the continual combination of
variables which are gualitatively proportional to form new variables in the hope of finding a variable
which takes on a constant value. Notice that application of the above heuristics tends to create variables

with the same or higher degrees of constancy than the original variables.
The variables created from product and quotient relations are what one would expect. A variety of

sum and difference relations may be formed, however, including =+y, =*+y’, and ="+y", Those actually
generated will depend upon the units involved as well as other domain independent constraints discussed
below. Using these rules, the system can generale many new variables when qualitative relationships are

detected among the current variables. In addition, ABACUS provides a facility for the user to predefine
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arbitrary functions or transformations on input variables which operate before the equation discovery

module is called. For example, the user may instruct the program to replace all values of = with 1egt«! or

to create a new input variable whose values are determined from a supplied function of existing variables.

5.3. Domain Independent Constraints

Several domain independent constraints are used to limit the large search space associated with

quantitative learning. These constraints involve eliminating mathematically redundant expressions and

physically impossible relationships. The constraints are divided into three categories:

« Units Compatibility Rules
« Redundancy Detection
s Tautology Detection

Below we discuss each of these in turn.

5.8.1. Units Compatibility Rule

When the system decides to create new variables by firing the rules presented in the previous section,

the additive relation rules will attempt to create a variety of new variables. Were all of these variables

created every time one of the rules fired, the number of variables would explode and the search space

would become unmanageably large. However, a simple physical constraint drastically limits the possible
choices. For two entities to be added or subtracted they must be of the same type, that is, they should

have the same physical units. One may divide meters by seconds, but one may not subtract seconds from

meters. Therefore, any action that violates this units compatibility rule is blocked. This is similar in

intent to the dimensional cohesiveness requirement of dimensional analysis (Langhaar, 1951; Huntley,
1952). All equations generated by ABACUS are guaranteed to be dimensionally cohesive if units are
specified for each variable.

When attempting to generate sum relations between two variables = and 4, if the units of = and y are

equal, then terms auch as =+y and =*+y? will be created. If, on the other hand, the units of = and y are not

the same, but differ only in exponent such that the units of «" is compatible with the units of y*, then the
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term x"+y" (where n = s}, would be created and terms like =+y would be blocked.? Finally, if the units are

not equal and can mnot be made compatible by exponentiation, then ne sum relations will be created,

effectively blocking all instantiations of the sum generation rule. In practice, this is the usual case. It
should be pointed out that these constraints only test the identity of units and provide no semantic

interpretation to guide the search. In the future we would like to use here also constraints stemming from

the physical properties of entities involved, such as trying to add the velocity of two unrelated entities.

5.3.2. Formula Redundancy

A common side effect of combining existing variables to form new ones is the possibility that for any
new variable, a mathematically equivalent yet syntactically different expression defining a variable may
have already been created. This is sspecially likely since variables created at one level in the search may

be combined with existing variables from any other level. For example, say variable represents the

relation:

L)
(c2)

where the parentheses show that - was ereated by dividing a variable ab by another cd. Further, suppose

during the course of the search the variable o/ tcd) had been created. At some point, the system will then

try to create a new variable y:

B
¢ <[]
As we can gsee, = and y represent the same variable, so creating y is redundant. From a purely syntactic
examination, however, x and 4 are not equal. The solution to this problem is to use a canonical form for
expressions so that equivalent formulas will always be syntactically equal. The form we use expresses all

EES =}

equations as a sum-of-products (Falkenhainer, 1985b). Thus Z ja-vl would be expressed as
Y Y

A canonical sum-of-products representation has also been used in the BACON systems to detect

redundancy (Langley, 1981).

T A further constraint requires that the exponents N and m be less than 4. This is a heuristic limitation, but sesms reasenzble
given bhat higher powers are rare io the oatural sciences.
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5.3.3, Numerical Tautologies
Another problem with combining mathematical Tormulas is the possibility that a mathematical
causing the program to effectively take a step backwards. Suppose, for example,

cancellation may result,

= ; ; a . "
the program discovers Prep (a/u. be). Creating & new variable —oc would result in & canceling out.
o

Were such operations allowed to go unchecked, the system may soon discover that a—:i always equals 1
aoc

for any data given.
ABACUS allows no action which would result in a mathematical cancellation. Using the canonical
form for formulas mentioned in the previous section, a check for tautologies is reducible to a set of simple

logical conditions. If the tautology condition for a given gperation holds, the proposed action iz blocked.

6.4, Recognising the Goal

Because a valid equation may describe only a subset of the events, recognizing when a good equation
has besn found and when to terminate search is not as easy as it would be otherwise. There are three
types of goal nodes recognized by the system. The first type corresponds to a term that describes all
eventa, i.e. one which evaluates to the same value for every event (within a percentage range of uncertainty

modifiable by the user). Such a goal ia easily recognized and search terminates when one is discovered.

The second type of goal node is based on the notion of a nominal (symbolic) subgroup of events and
also causes immediate cessation of the search process. A nominal subgroup is defined to be a set of events
that are equal on all nominal attributes. If a term is found which evaluates to a single value for a nominal
subgroup, search terminates on the assumption that an eguation of significance has been found. For
example, in Figure 3(a), </ has the same value for all events in the nominal subgroup corresponding to
the object “box™.

The third type of goal node does not halt the search algorithm. As each new variable is created, its
degree of conatancy is measured, and the variable having the largest degree of constancy is stored. The
degree of constancy is defined to be the percentage of the data for which the [unction evaluates to a single

value within a percentage range of uncertainty modifiable by the user. In Figure 3(b), =/u has a 67 percent
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Figure 3. Sample Goal Node Recognition

constancy because six out of the nine events are equal to 2. If two variables have the same constancy
value, only the first discovered is remembered as it is more likely to be of a simpler, and thus more
desirable form. A more thorough approach would examine the equations according to various syntactic
criteria and keep those that are both general and appealing. If search exceeds the allowed limit, the term
having the highest degree of constancy is returned. If its constancy is greater than a user modifiable
threshold, the resulting equation is reported. Otherwise, the program states that no formula could be

found.
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5.5. Search

ABACUS discovers equations by searching through the space of posaible terms which relate the user

supplied variables. These terms are formed by applying the variable generation rules to the current set of

proportionality assertions. Even with domain independent constraints, a search space generated in this

manner can become quite large. In an effort to counter this problem, ABACUS uses a combination of two
search algorithms which have been designed with guantitative learning in mind. The first algorithm,
proportionality graph search, uses the graphical nature of the proportionality assertions to guide the search
path and discriminate against irrelevant variables. The second algorithm, suspension seareh, enables the
program to reduce the pumber of terms being examined by removing those that do not look promising

until all other possibilities have been exhausted.

In this section we will examine only the search process itself, ignoring operations done once 3 final
term has been selected. For illustration, two examples will be used. The first example deals with
discovering the ideal gas law:

B =832

n

where P is the pressure of the gas, V is the volume, T is the temperature in degrees Kelvin, and n is the
number of moles. The ideal gas law equation belongs to the class of relations consisting solely of
multiplication and division, and whose variables are all of degree one. It is a law which has been

discovered in a variety of ways by the BACON programs {Langley, 1981, 1086}.

The other example is the non-vector form of the conservation of mementum law:

myvy 4 Mavg = I'|11‘v |’ + “‘:"‘ 2'
This relation represents those equations which include addition and subtraction. [t states that when two
particles collide while traveling along the same line, their total momentum is the same before and after the

collision. To complicate the example, the masses m, and m, will be allowed to change after impact

producting m ' and m.'. When the masses do not change, reducing the number of variables to 6, ABACUS

discovers the =aquation in much less time.
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5.5.1, Proportionality Graph Search
Experience has shown that in terms of difficulty, the types of equations ABACUS is able to discover

may be divided into two categories. Equations composed solely of multiplication and division tend to be

easiest to discover, while those including other operators, such as addition and subtraction, tend to be

more difficult (Falkenhainer, 1984, 1985b). Propertionality graph search is designed to handle equations
falling in the first category. They correspond to a large percentage of the physical laws found in
elementary physics and chemistry texts. Proportionality graph search is based on the observation that
these equations will form a cycle in the corresponding proportionality graph, baring the presence of an
exorbitant number of Pr up? assertions. As an example, equation 5.3 below represents a general equation of

this type.

|-I‘|"Ila

= Conatant (5.3)
xyz

Holding the four variables u, v, 4, and in (5.3) constant and varying u will necessarily cause z to vary as
well, in a direction which is completely predictable given the direction of change of u. This is true for
equation 5.3 no matter which four variables are held constant and which two are allowed to vary. In the
absence of Prnp? assertions, each variable is therefore qualitatively proportional (+ or -} to the other five.
For the given problem, that may have more than six variables, the subgraph for wvertices
\u. w. w. %, 4. = must therefore be strongly connected and these nodes will thus form a cyecle. This
introduces another observation about the proportionality graph for such an equation. Irrelevant variables

are more likely to be excluded from the above cycle and may often be incident on only ane edge.

The proportionality graph search technique directs its search to the interrelations of variables
forming a cycle and avoids variables that are not contained in a cycle. The algorithm consists of the
repeated application of the following steps:

{1) Form a proporticnality graph for the current set of variables, both those provided by the user and

those generated by the program. Exclude all edges which occurred in previously generated grapha.

{2) Extract the cycles {biconnected components) and represent each cycle by the set of nodes it contains. -
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(a)
(b) Cycle Seta:
((p V) (P NPT (VN)(VT)(NT)}
{(YV)}
{(NM)}

Figure 4. Proportionality Graph for [deal Gas Law (PV/NT = 8.32)
(3) Search each cycle in 2 depth-first manner for a depth given by the cardinality of the set.
This process repeats until a suitable relation is found up te 8 maximum of K times.} For each graph, the
cycle sets are sorted in decreasing order under the assumption that the largest cycles will prove to be the
most promising. A eycle [e.g. 1V M P T} is searched in 3 depth-first manner by first removing two nodes

that are proportional and combining them according to the equation formation heuristics to form new

¥ — i .
terms (2.2 E—} The remaining nodes {e.g. (P, 1) are then tested one at a Hime against these terms to

‘
form new berms. For the set {P, T} and the current node ;q—, £ would be tested against = to possibly

= . i P "
create new terms such as ——- If backtracking occurred, then 7 would be tested against T This process

repeats until sither a solution has been found or until all combinations have been sxhausted, Because
nodes are removed [rom the cycle set as search progresses, powers of variables are not possible after the
first round of search.

As an example of the heuristic power of this search technique, a sample pmponiunal‘ltr graph is

shown in Figure 4(a) for the ideal gas law, where 3 total of six attributes were initially provided by the

e ———
1 The defsult search dapth, K, is 4 sinze powers greater than 4 are seldom ween in the natural sciances.

|
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user. As can be seen, the irrelevant variable mass, 7. is independent of pressure, volume, and
temperature, but is proportional to the number of moles of gas present. A similar situation exists for the
variable v. The 3 cycles of the graph are given in Figure 4(b), where solitary edges are simply treated as
“cycles” having only one edge. Figure 5 shows the search tree resulting from the above strategy applied to

this example. The nodes shown were the only ones examined by ABACUS. For the ideal gas law, the

program generated the minimum number of nodes possible to arrive at the correct solution.

While the proportionality graph search is quite adept at locating relations like the ideal gas law, this
example happens to be ideally suited to such a search technique. Other types of relations, even those
composed solely of multiplication and division but with higher powers, are not so well suited to
proportionality graph search. For each iteration of the search algorithm, a new proportionality graph is
constructed. The difficulty begins with the second graph constructed, and becomes increasingly worse with
successive graphs. After completion of the first search pass, a large number of terms may exist in the

system, many of which differ only slightly, Consequently, the second proportionality graph constructed

(5

|

?

|
i
NT

Figure 5. Proportionality Graph Search Path for Ideal Gas Law Example
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has a much larger number of nodes than the first and, due to the similarity of the nodes, the graph tends

to be highly interconnected. Therefore, the extracted cycles are quite large, sometimes encompassing the

aptire graph. As the depth of each cycle search is given by the number of nodes in the cycle and

backtracking must be allowed, 2 great deal of time is wasted exploring very deep levels of the search tree.

5.5.2. Adding Suspension Search

To avoid the problems caused by repeated applications of proportionality graph search, ABACUS
uses only one iteration of the algorithm. If no law is found, then the program employs a technique called
suspension search. This algorithm is able to remove nodes from consideration, yet allows their return
should they be needed. It combines the benefits of a beam approach with the allowances for faulty
heuristics provided by backtracking. Suspension search begins as a normal breadth-first search. At each
level, however, the values for each node are examined. As the ultimate goal is to find a variable whose
values are constant or nearly constant, nodes possessing some degree of constancy are more likely to lie on
a terminating path than nodes which lack any degree on constancy. To this end, when each level is
created, all nodes on that level are divided into active nodes and suspended nodes. Suspended nodes are
those whose constancy is less than a low threshold which is roughly 5% of the events. Search then proceeds
on to the next level, where only the active nodes of previous levels are visible to the search algorithm. The
next level is created by testing the proportionality all new active nodes of the current level have among
themselves and with all active nodes of earlier levels (as well as with old active nodes of the current level,
as will be seen shortly). [f no relation has been found by the time the depth limit (user specifiable] is
reached, the best relation found so far is returned if its level of constancy is high enough according to a
user supplied parameter. [f not, search backtracks to the previous level where its suspended nodes are now
activated and related to each other, its old set of active nodes, and those active nodes of earlier levels.
Search then returns to the next level with a new set of active nodes. If still no relation is found,
backtracking will go back farther and the process will repeat as before. An environment of each level is
maintained to enable the program to remember what nodes were previously active and suspended when

search returns. The suspension search algorithm is presented in Figure 6. When invoked initially, nodes
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FUNCTION Suspension (mt:vuncﬂtﬂr_nodes. active_nodes, suspended_nodes, environment] - boolean,

o If the search depth limit has been reached
then return true if the best constancy found is greater than a threshald

glse return false

o If new active or suspended nodes can be created from the current list

of active nodes
then return true if one of these has a constancy of 100%
or return true if a call to Suspension using the new nodes returas true.

« If the filler depth has been reached
then save the epvirenment and return false

« [f new active or suspended sodes and be created from the current list
of suspended nodes
then return true if one of these has a constancy of 100%

otherwise save the environment
and return true if 3 call to Suspension using the new nodes returns true

e Save the environment and return false

Figure 8, Suspension Search Algorithm

created during proportionality graph search join the user defined variables in level 1 to form the initial set
of active and suspended nodes.

Because suspended nodes are ignored, fewer nodes are involved in the search at any one time.
Therefore, search may be allowed to explore deeper than it could otherwise. A second search depth limit is
defined, called the filter depth, which cites a limit shallower than that of the absolute depth limit. Search
may proceed beyond the filter limit depth, but only active nodes are allowed for levels beyond this limit.
Suspended nodes created at these levels are permanently discarded.

A partial suspension search tree is given in Figure 7 for the example involving the discovery of the
law of conservation of momentum. The dashed horizontal line represents the filter limit depth which has

been set to 3. A number of nodes may be eliminated as a result of this technique, considerably reducing

the search cost.
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Mo+ my vy 'y —my e

Figure 7. Partial Suspension Search Tree for Conservation of Momentum

.................... filler depth

<> - Active Nodes
3 - Suspended Nodes

Combining the proportionality graph search algorithm with the suspension search algorithm favors

quick discovery of laws which are composed solely of multiplication and division while still being adept at

discovering meore complicated equations in a reasonable amount of time. As cycles in the first pass can

pever be larger than the number of given attributes, the depth-first search of the first phase is not deep

for most problems, thus creating variables which would normally be created for more complicated

examples anyway.

6.5.3. Analysis

Search algorithms representing all the possible combinations of proportionality graph search,

breadth—first search, and suspension search have been constructed and directly tested in the ABACUS

system. Empirical evidence has shown that among these, the most powerful strategy is the combination of
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algorithms presented above {Falkenhainer, {985b). Search strategies not including the pmpo:ﬁanality

graph search algorithm tended to be slower for examples such as the ideal gas law while the algorithm by

jtself was slower on most other examples. Suspension gearch proved to be equivalent to breadth-first
search on small examples and superior on large examples.

The method shown is quite flexible. Where it falls short is in robustness. The only equations that
can be discovered are those composed of variables raised to some integer power and combined through the
nse of multiplication, division, addition, and subtraction. While this is usually sufficient for introductory

treatments of the physical sciences, We would like to strengthen this aspect of the current implementation

in future researc h.

8. FORMULATION OF QUALITATIVE PRECONDITIONS

When multiple equations are discovered for a given set of data, ABACUS generates 2 logical
precondition for each equation which describes when the formula is applicable. Deriving preconditions for
disjoint sets of events is an example of the general covering problem described by Michalski (1969) and
Michalski and Larson {1978): Given a list of observed events divided into classes, form a general
description ul sach class in terms of the given concepts such tlliat it covers every event in the class and
distinguishes this class from the events in other classes. These results are called discrimingnt deseriptions
and can be used to predict the class membership of any new event. For example, suppose we are presented
with examples of two classes 33 in Figure 8(a). An algorithm known as A9 would generate the deacriptions
in Figure B{b) [‘Micha.hki, 1969, 1983; Becker, 1985a). The description for class A specifies that objects in
this group consist solely of clear cireles or any kind of triangle. Similarly, class B contains either striped

circles or any squares of pentagons. These sets of conditions uniquely determine whether an object belongs

to class A or class B.

g.1. Definitions
Before embarking on 3 discussion of the A3 algorithm, a few definitions are needed. The data

representation language used in our implementation of AY is a variable valued logic known as VL,
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ABACUS
(a) ClassA
Jesnsel
(b) Class A Cover:  |Object = circle| [Filler = clear] v
[Object = triangle]

Class B Cover:  [Object = circle| [Filler = striped| Vv
[Object = square pentagon)|

Figure 8. A Simple Classification Problem

(Michalski & Larson, 1978}, an example of which is shown in Figure 8(b). Each term in square brackets

specifying the value or values of an individual variable is called a selector [(e.g. [Object=circle]). A
conjunction of selectors, represented by writing them together on a single line, is called a complez and

forms a partial description of a given class set. The entire description of the class is given by 2 disjunction

of such complexes and is called its cover. Thus, VL, class descriptions are represented in disjunctive

normal form (DNF).
The generalization operator in A% is ExtendAgainst (Michalksi, 1983). To extend selector A against
selector B, where A and B represent different selectors for the same attribute, generalize the list of possible
values for A without including any values B currently possesses. ExtendAgainst is a selector level
operation which returns a list of single selector complexes. When a complex is extended against another
complex, the selector for each attribute, x, in the first complex is extended against the corresponding
selector for x in the second complex.. The result of each selector operation is one or more generalized single
structured domains and the operation is defined

selector complexes. Variables may have nominal, linear, or

differently for each.
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ExtendAgainst for nominal variables, an unordered list of symbolic values, is quite simple. Te

extend instance A of an attribute against instance B is to assign all values in the domain to A, except those

values specifically held by B. For the nominal domain [blue, red, green, white, black}, extend against is
defined as follows:

Extend( [Color=bluej, [Color=redvwhite] ) = | [Color==blue\/green\/ black] )

ExtendAgainst in a linear domain is more complicated. If all values of A are less than B, then A is

extended to take on all values in the domain from MIN(domain) to one less than the smallest value of B.

Similarly, if all values of A are greater than B, then A takes on values from one greater than B's highest

value to MAX([domain). If A's values span those for B, then a list of complexes is generated. As an

example, suppose the domain consists of the integers 1 through 10. Then:

Extend( [X=2..4], [X=86..7]) ( PX=1..5] )
Extend| [X=8|, [X=2|) [ [(X=3..10] )
Extend( [X=2..10], X=3.8]) = ((X=1..2]) (X=7..10]) )

ExtendAgainst in a structured domain (not currently implemented in ABACUS) is performed by

climbing a generalization tree. Thus:

Extend( [X=Al, [X=B|) = [[X=0C|)
where C is the highest ancestor of A which is not an
ancestor of B.

At first one might wonder why the selectors are generalized to form complexes on their own, rather
than extending the complex as a whole. It is logically more general to extend the single selectors and
remove the other constraining conjunctive selectors. As an example, for:

Extend( (|x=3] [y=red]), ([x=6] [y=green]} )

the complex ([x=1..5]) is more general than the complex [ [x=1..5 [y=blue\red\ white\black| ).

8.2. Algorithms

The A9 method consists primarily of two high-level algorithms. The first is Cover, which takes each
class set in turn and generates a discriminant cover for the set (Figure 9). When a cover is being generated

for a class, its events are designated the positive examples and the events from all the other classes are
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FUNCTION Cover [positive_svents, negative_svents ; events) : cover;
While there are still uncovered positive events
« choose a seed event from the uncovered positive avents

« generate 3 star from the seed against the negative events, using the lexical evaluation
function (LEF) to limit the size of the star,

use the LEF to choose the best complex from the star and add it disjunctively to the cover.

s+ modify the list of uncovered positive events to reflect the addition of the new complex.

Return the cover.

Figure 9. Cover Algorithm

collectively called the negative examples. Cover first selects a single positive event, the seed, and passes
this to the Ster algorithm along with the list of negative events. The Star algorithm will return a list of
complexes which represent maximally general descriptions of the seed that do not cover any of the negative
svents. The Cover algorithm then selects the best complex according to a user specified lexicographic
evaluation function (LEF), adds this disjunctively to the current cover, and removes from the list of
positive events those which are deseribed by the new complex. This must necessarily include the seed

svent. If any events remain uncovered, a new sesd is chosen and the process repeats.

The Star algerithm (Figure 10) performs a beam search through the space of alternative generalized
descriptions for the seed. It generalizes the seed event against each negative event in turn and then,
through a specialization operation [multiply), adds this to the current description set (star) such that no
previously examined negative events become covered. Examining a single iteration, the Star algorithm
selects a negative event at random and extends the seed description against this negative event, forming a
list of alternate complexes. These complexes are then multiplied into the current star (list of complexes to
be returned) to ensure that no description in the star covers the negative event. When the star becomes
too large (greater than the specified beam sise), it is reduced in size by removing the less desirable

complexes as evaluated by the LEF. Once all negative events have been considered in this way, a list of
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FUNCTION Star (seedeveat, pegative_events | events} . complex_list,
Initialize the star to be empty.
For each negative event in negative events
« Extend the seed event against the negative event.
» Multiply the extended seed event into the current star.
o If the pumber of complexes in the star exceeds a user specified limit (*maxstar*),

remove those duplicated by subsumption and keep oniy the best of those
remainiag using the lexical evaluation function (LEF).

Return the star.

Figure 10, Star Algorithm

alternate maximally general complexes for describing the seed event remain. Because the star contains

generalizations of the seed, it is normally the case that many of the other positive events will also be
covered by these descriptions.

A modified version of A% (called AY/RU) is used in the current ABACUS implementation; this is
based on Becker's [1985b) Excel system for dealing with exceptions. One of the changes made to A% in
Excel is the replacement of the seed event by the refunion of the positive events. The refunion generalizes
the list of positive events as a whele, transforming them into a single complex covering the events
{Michalski, 1980). [n some situations, the covers generated by AY/RU tend to be simpler and fit the classes

more precisely. [n other situations, the covers are not as good because this approach makes disjoint

descriptions harder to find. For a more detailed discussion of these algorithms see {Becker, 1985b).

6.3. A%in ABACUS

The covers generated by A% have two possible uses in the ABACUS system. First, the combination of
logical conditions with mathematical equations gives the results predictive power. Suppose one were able
to only obtain values for n-1 variables of an n variable equation. By knowing which equation should

apply prier to evaluating it, one could determine the nth attribute from the other n-1 attributes. Second,
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Fxr?/q xgq=~C

If [:ubulmce=wa.ter] Then C| = 8897.352
If [substance==air] Then C, = 111.280

If [substance=silicon] Then C, = 1312.363
If |substance=germaninm]| Then C, = 1779.013

Figure 11. ABACUS Analysis of Coulomb’s Law

the logical conditions often provide additional conceptual meaning for the user. For example, Coulomb's

law relating the force of attraction of two charged particles separated by a distance r may be stated as

Fr?
Q199

= 4re

where ¢ is defined to be the permitivity of the surrounding medium, Figure 11 shows the results obtained

by ABACUS when given measurements for the force (F), the distance (r ), the charge of particle one (a ), the

charge of particle two [a,) and the name of the surrounding medium.* From the results it can be seen that

all of the data obey the same relationship form where the constant in each case is dependent on the
surrounding medium. For this example the domain constraints provide an indication that there is some
property associated with each substance which affects the electrical attraction of two charged particles.
HACON is able to discover a similar form of Coulomb's law by associating an intrinsic property

corresponding to permitivity with each nominal variable.

7. EXPERIMENTS
Some example experiments will now be discussed to show what types of problems ABACUS is able to

solve. These experiments investigate:

« Gravitational Attraction and Stoke's Law for Viscous Fluids

e The Law of Conservation of Kinetic Energy

% The current implementation of ABACUS actually outputs ao equation for each class, as in Lhe example shown in Figure 1. The sum-
marised results given here represent what would be displayed by a post-processor we have designed for bhe program.
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s Analysis of Chemical Compound Data
The first two are experiments designed to {llustrate the capabilities of the program. The data used [or
hand with a knowledge of the correct answer. The final chemistry example

these were generated by

represents an experiment run on data provided by members of the University of [linois Chemistry

Department.

7.1. Galilean Experiment on Free—Falling Bodies

When Galileo was studying the motion of projectiles, he concluded that the flight of all projectiles
could be viewed as two completely separate motions, one in a horizontal direction which is unaffected by
the pull of the Earth, and the other up and down, controlled by the Earth’s attraction, His dilemma then
was how to describe this vertical component of motion which is so firmly tied to the downward pull of the
Earth, By dropping various objects through different fluids, he noticed that objects of different weights
fell at more nearly the same rate when fluids of lower density were used. From this he deduced that in a
vacuum all objects fall at the same rate. Stoke later expanded on this by formulating a law which related
the retarding force of a liquid to its viscosity. We presented ABACUS with a set of data to simulate these

experiments. The balls dropped came in three sizes, for which there was a rubber ball and a clay ball in

Event i ‘

velocity: 18,064 m/s
radius: 0.05 m

mass: 0.94 kg { R\

time: 0.055 s | h
height: 1.0 m v

substance: Glycerol
location: DeathValley

3

Figure 12. Falling Bodies Experiment
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pach size. The six balls were dropped from rest through three different media, namely glycerol, castor oil,

and a vacuum, once each for 2 different size containers. The experiment was conducted in Death Valley
and in Denver, and the temperature was maintained at 20°C at both locations. The measired attributes

consist of the height of the container, the mass of the ball, its radius, the duration of the fall, and the
velocity with which it strikes the bottom of the container (Figure 12). [n addition, the substance through

which the ball fell has been noted along with the location of the experiment. Samples of the measurements

taken are given in Figure 12.5 Fach ball was dropped once through each medium for both containers at
each location for a total of 72 observations.

ABACUS was run twice on the resulting data. First, the default +2% margin of error was used,

resulting in the following observation:

Rule A IF [substance = Vacuum|
THEN y =981 =t

Rule B IF [substance = Glycerol]
THEN v xr=00556 xm

Rule C IF [substance = CastorOil]
THEN vxr=07336 xm

It appears that each equation found is dependent upon the medium through which the balls lall, ABACUS

was then run a second time using a margin of error of +0.2% and the following results were reported:

5 OF course. the correct measurements were calculated by hand for this experiment. The mass of each ball was derived lrom the
chosen radius and the standard depsities for rubber and clay. Likewise, the standard viscosity for each substance was used. Gravita-
tional acceleration was chosen io be 9.845 @ /¢F in Death Valley and 9.79 ®/a? in Deaver to reflect the fact that the force of gravity de-
creases a§ higher altibudes.
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Rule A IF [location = DeathValley]jsubstance = Vacuum)|
THEN v = 0.8453 x t

Rule B iF [location = Denver|[substance = Vacuum]|
THEN v =9.7898 x t

Rule C IF location = DeathValley|[substance = Glyeerol]
THEN vxr=09583 xm

Rule D IF [location = Denver|[substance = Glycerol|
THEN v xr=0.9530 x m

Rule E IF [location = DeathValley|[substance = CastorOil]
THEN vxr=0T7356 xm

Rule F IF [location = Denver|[substance = CastarOil|
THEN vyxr=07315xm

This time each equation is dependent upon both the medium through which the balls fall and the location

of the experiment. For the classes corresponding to rules A and B, it would also appear that the behavior

is independent of the characteristics of the balls used. Interpretting these findings, we know that an object

undergoes a constant acceleration due to earth's gravity and that an object under constant acceleration

will change speed propertional to the length of time it undergoes this aceeleration. This may be stated as

ye=aat and corresponds to the cases of the balls falling in a vacuum. The constants for these cases simply

represent the earth's gravitational acceleration at the two different locations, When we take the resistance

of the medium into account, however, as we must do for glycerol and castor oil, the retarding force of the
medium becomes involved and is stated by Stoke's law as:

F, = =fingrv
of the fluid, r is the radius of the ball, and v is the velocity at some

where n is the viscosity coefficient

point in time. Because of this added force, the object will reach a constant terminal velocity given by

L1

mg
or .
frnre m By

where g is the gravitational acceleration. This resembles the equation reported by ABACUS (v

Ve =

r<Camatant « m) for the glycerol and castor oil cases. In these cases, the constant contained values for 7

and g, explaining why the values reported for rules C through F in the second example were dependent on

both the type of liquid (n) and the location (g). If the nominal location and substance variables had been



ABACUS 32 May, 1986

replaced by the numeric variables g and 7 respectively, those variables would have shown up explicitly in

the equations. This would reduce tules C through F Lo a single rule with the constant equaling 8.

Knowing when to explicitly represent conceptual constants such as = would be an interesting topic for

future research.

This experiment points out a number of properties of ABACUS. First, two different equation forms
were discovered, each having only the velocity attribute in common, This demonstrates the program’s

ability to discover multiple equations for different groups of events, even when variables pertinent to one
are irrelevant to another. Secondly, the necessity and power of the logical preconditions can be seen here.

Finally, it points out the problems encountered when working with real numbers, noise, and uncertainties.
The results obtained for the £0.2% case were more interesting and correct than for the +2% experiment,

However, common sense and the presence of noisy data would generally rule out using +0.2%,

7.2. Conservation of Kinetic Energy

The law of conservation of energy states that energy can neither be created nor destroyed.

Therefore, when two bodies collide, the total energy of the system before the time of collision will be the
same as the total energy after the collision. For inelastic collisions, some of this energy is converted to

heat during the collision and so, at 2 macroscopic level, an apparent energy loss is observed. For perfectly

elastic collisions, however, the sum of the balls’ individual energies, namely their kinetic energies, will

remain constant before and after their collisions:

Ym, v, + eman,® = mv? & v, (7.1)

Converting these concepts into an experiment for ABACUS to examine, data was constructed for a

series of observations of various objects colliding. The data consisted of 7 attributes and 12 events, where
the 7 attributes consisted of the masses of the 2 balls, their 4 corresponding velocities (magnitudes), and a

nominal variable which described the observed collision as either elastic or inelastie.? For this dataset,

ABACUS produced the following results:

plifies the data clustering task. The example ia still

' We recognise that indicating the collision type with a symbolic variable sim
techniques, as discussed in the section on fubure

very interesting as it stands, but we would like to develop more powerful clustering
research.
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Rule A IF [eollision-type = elastic|
THEN 1]11[_7'2 - \r|'2} = mﬂvz'z = 722}

Rule B IF [eollision-type = inelastic|

THEN No formula was found

An equation equivalent to (7.1) was found to hold for those events corresponding to an elastic collision.

No equation could be found for the remaining “inelastic” eventa. ABACUS was not only able to discover
the desired equation, but was also able to specify that the equation only held for elastic collisions. As we

will discuss later, ABACUS found this law relatively difficult to discover because it contains subtraction.

7.3. Analyasis of Chemical Compounds

Figure 13 shows the structure of a typical bimetallic coordination compound. The distance between
the central metal atoms in such compounds is important to chemists, but it is difficult and expensive to
measure. At present, there is no known way to predict this distance given the values of other attributes,

providing a unique challenge for testing the usefulness of ABACUS and thus revealing its strengths and

weaknesses.

Figure 13. Bimetallic Coordination Compound in Eclipsed Conformation
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The compounds are symmetric about the central covalent bond, each side consisting of a primary

metal atom and up to five ligand molecules joined by lonic bond to the primary atom. Data for the

experiment consisted of the values of 13 attributes for 30 different abserved compounds as garnered from

various chemical research articles.” The full collection of data is reproduced in Figure 14, where the

compound formula has been added for thoroughness, "Metal” is the name of the two central metal atoms,

Compound  Metal Ox MMdist Rad Q@ eM Conl BO L1l L2 L3 Ld LS
|Cr{CH3)8|4- cr I 1.080 1.20 =4 12 eclip 4 Me Me Me Me Meone
[Mo2CIBlé- Mo U 2130 140 -4 12 edip 4 cl cl gl Gl None

Mol CH3)8|4- Mo O 2148 1.40 -4 12 eclip 4 Me Me Me Me None
MoZBra(p-MeCSHAN4 Mo O 2150 140 0 12 eclip 4 Br NR3 Br NR3I Nope
Mo2C 14 p-MeCSHAN Me I 2183 1.40 0 12 eclip 1 cl NR3 Cl NRI Noae
Mo2{CH2SiMe3}6 Mo IO 2187 140 O 9 slag 3 CH2SIR3 CH2SiR3 CHISiR3 Nooe None
Mo2(NMe2)4Clz Mo O 2200 140 0 9 stag 3 MMe2 NMe2 Cl MNone None
MaZ{MMe2)dMe2 Mo 2.201 1.40 0 B atag 3 NMe2 Nhial Me None None

Mo 2{NMe2)8 Me M 2211 L40 O 9 stag 3 MMe2 MNMe2 MMe2 Mone None
Re2CI18|PEL3|2 Re IO 2.922 137 0 12 eclip 4 PEt3 Cl cl Cl  None
Mo2{QCHZCMedl6 Mo I 2212 140 O 9 stag 3 0OCR3 OCR3 OCR31 Mone [Nooe
Re2C14|PIELIZ4 Re i} 2.232 137 0 14 eclip 4 Cl PE&3 ¢l PEtd Nooe
|Re2CI8|2- Re I 2241 137 -2 2 elip i cl Cl cl Cl  Nene

Mo O5iMed [ 8HNMe2 Mo I 2,742  L4D g 11 stag 3 O5iR3 05iR3 0%iR3 NR3  DNone
WI|CH25i[CH3]3|E W I 2.255 L4l 0 9  stag 3 CH25iR3 CHISiR3 CHISIR3 Mone MNone
|Re2Bra|2- Re I 2,270 L.37T -2 L2 eclip 4 Br Br Br Br None

W2 NMe2MCIZ W m 2283 141 0 ¢ stag 3 NM=2 MMe2 Cl None None
WZ{NEe2|4Me2 W 2201 L41 O 9 skag 3 NEt2 MNEL2 Me [None MNone

W2 NMell6 W 2294 141 0 9 stag 3 MMel Mhe2 MMe2 MNone MNone
W2[NE:2|i2 W 2206 L4l O g stag 3 NEL2 MNEt2 I Mene None
WaCI2(NEL2)4 w o 2301 L4l U] 9 stag 3 Cl NEt2 NELZ None [MNone
W2NEZMBr wom 2,303 L41 O 9 atag 3 NEL2 NEt2 Br MNone [Mone
W2{OCHMe2)8(pyr)2 w m 2332 141 0 11 stag 3 QCR3 OCR3 OCR3  NR3 Nome
Ca2(CO}8|P(o-Bn)3|2 Co O 2665 125 0 17 sbag 1 co co CO None PEL3
Mp{CO)8|PEL3|2 Mz O 2913 13 0 1T shag 1 co co co cO PEW3
Ma2(COJL0 Mn O 2923 137 0 1T stag 1 co co (a{s] co co
Cr2{coNo Cr =1 2970 L9 -1 1T stag 1 co co co co co
Re2(COJ10 Re O 3020 137 0 17 stag 1 co co co co  co
Te2{CO)0 Te o 3038 135 o 1T stag 1 co co co co co
Mo2(COJO Mo -[ 3123 140 -2 17 stag 1 co co co  co  Cco

Figure 14. Experimental Data for Bimetallic Coordination Compounds

T Daks were collected by 1M, Hanckel and Theodore L. Brown of the University of lllineis Chemistry Deparkmeat.
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"Ox" is the oxidation state of the metals, "Rad" is the radius of one metal atom in angstroms, and "eM”

represents the number of electrons per metal. The [ormal bond order of the covalent bond is given by

“BO", "MMdist" gives the distance between the metals in angstroms, "Q" is the total charge of the
molecule in units of electron charge, and the conformation (indicating the molecule's alignment) is shown

by “Conf". In Figure 13, the molecule is in the eclipsed conformation because the ligand molecules of each

side line up when viewed {rom on end. Finally, “L1” through “L5" are the names of the ligand molecules.

The experiment began by running ABACUS using all default parameter values. The response was
that no relation could be found. A further examination of the output revealed that no nodes were created,
thus indicating that either there were no relations in the data or that all proportionality tests returned
Prop’ and thus no examples could be obtained. The latter situation would occur i the large number of
nominal variables was interfering with the numerical relation-finding process. As a result, the program
was instructed to ignore all nominal variables when trying to hold variables constant for the
proportionality test. This time, nodes were created but still no relation was found to hold for the 40%
default constancy criterion. Since actual measured data might contain a reasonable amount of noise, the
decision was made to loosen the default margin of error of 2% to 5% and then again to 8%. Results now
began to be reported. A 40% constancy criterion coupled with a 2% margin of error was simply too strict.
The results of this run are shewn in Figure 15. What is most promising about these results is that the
same equation was found to hold for ail of the data, with only the constant differing. This suggests the

discovery of some type of physical phenomenon more strongly than if different equations were uncovered.

After co-nduct.in; numerous experiments in this manner, the most promising results were shown to
the members of the chemistry department for their opinion. While the results looked promising, the
conclusion was that these relations did not coincide conceptually with any known physical phenomenon
and the margin of error used was far too high for these data. However, the chemists suggested trying the
logarithm of the bond order as this type of term appears often in empirical bond srder - bond length
correlations. Continuing with the experimentation, the program was instructed to replace Bond Order by

log(Bond Order), a variety of parameter settings were tried, and the conclusions of Figure 16 were
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Rule A [F [L2 = CH2SiR3 v NEtZ ¥ NMe2|
[L1 = OCR3|[L4 = None
THEN MMdist = 0.2502 x &M

Rule B IF [L1 = OSiR3 v PE3|
[L2 = Br|
[L2 = Cl v OCR3||Metal = Re v W|
THEN  MMdist = 0.1954 = eM

Rule C IF [L2 = CO v Me v NR3 v PEtJ|

[ox = 11
THEN MMdist = 0.1735 < eM

Figure 15. Initial Results With Margin of Error at %

RuleA IF |Ox = |[L4 = Br v CI v Me v PEt3 v None]
THEN MMdist » log{BO) = 0.1180 x eM
Rule B F [L4 = Me v NR3 v PEt3|
[Q = -4.0000]

THEN MMdist = log{BO} = 0.1031 - eM

Figure 16. Resulis Using log{BondOrder)

obtained. As before, these results looked promising, but the margin of error was still too high.

After further analysis of the data by hand, it was reasoned that perhaps there was too much
redundancy in the original data. For example, each metal atom has a unique radius associated with it.

Therefore, our chemistry expert suggested that we reduce the number of attributes to 9, consisting of the

radius, the metal to metal distance, the bond order, the five ligand names, and a new electrons—per-metal
value (eM*) calculated by adding the bond order to the old value. Sinee a somewhat new dataset was

being used, the margin of error was returned to its default value of 2% and no variables were to be

ignored. On the first run, the equations of Figure 17 were obtained. OQur chemistry expert, Professor Ted

Brown [rom the University of [llinois Department of Chemistry, has judged these equations to be quite

interesting as they hold with only a 2% margin of error. However, he still considers them inconclusive
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Rule A iF [L1 = CO|[Rad = 1.29 .. 1.35]
[L1 = CO|[Rad = L.4|
THEN  MMdist = 2.2608 = Rad

Rule B IF |eM* = 18.0]
THEN MMdist = 2.1491 « Rad
Rule € iF [L2 = Br v OSiR3 ¥ PEt3|
L4 = Clj[Rad = 1.37
[Rad = 1.41)

THEN MMdist = 1.8279 ~ Rad
Rule D IF |L2 = Me v NR3|

[Rad = 1.4][L4 = Cl v None|
THEN  MMdist = 1.5528 x Rad

Figure 17. Results Using Reduced Dataset with Margin of Error at 2%

because they need physical explanation. He suggested further analysis to try and uncover an underlying
commonality between the compounds of each class which could explain these findings. Nevertheless, this

experiment demonstrates that ABACUS is quite useful in analysing real world data and searching for

unknown laws,

8. DISCUSSION OF METHODOLOGY
The experiments presented in section 7 have shown that ABACUS can potentially be a valuable tool
for discovering laws in a variety of domains. This section discusses the current implementation of

ABACUS, its limitations, and outlines some problems for future research.

8.1. Analysis of Experimental Results

ABACUS runs on a Sun Microsystems workstation running FranzLisp under a UNIX environment. A
variety of examples have been presented, representing different complexities of equations and
preconditions. Figure I8 shows a comparison of how complex all of our examples turned out to be.
Equations composed solely of multiplication and division have been shown to be quite simple discovery

tasks. This is exhibited by the small number of nodes required for all of the examples except the ones for
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Number of | Number of Total Equation Precondition Total

!  Example Events Classes MNodes iscovery Time | Generation Time | Time
| Ideal Gas 15 1 3 3 0 3
Momentum 22 3 a2 56 12 688
Coulomb 36 5 3z 47 27 T4
Stoke's Law 72 ] 5 18 k3 49

| Kinetic Energy 12 2 987 850 5 855
| Chemistry 30 4 5 3 28 31

NOTE: All times are given in CPU seconds

Figure 18. Relevant Statistics of the Quantitative Learning Experiments

conservation of momentum and kinetic energy. The Coulomb example was more difficult than the ideal

gas law because it contained a squared term, forcing the proportionality graph search algorithm to
exhaustively search the initial, highly interconnected graph. Equations which contain addition or

subtraction are significantly mere difficult using the methods presented here, bub are still quite
manageable. From the times, given in CPU seconds, it can be seen that the program was relatively
afficient for every example.

Performance is lessened somewhat by large numbers of events, This can be seen by comparing the
time cocuired zenerate five nodes for the large set of Stoke's law data against the time required to

generate [ive nodes for the smaller chemistry example. Other factors, such as the number of

proportionality tests performed, should be considered when comparing these times.

8.2. Limitations
There are a number of problems yet unsolved. Equations that the current ABACUS can discover are

limited to those involving multiplication, division, addition, and subtraction operators. The equations are
of the form

fiz) = Constant

where f(z) is composed solely of user defined variables and operations between them. General polynomials

with coefficients cannot be discovered, preventing the discovery of a variety of physical laws. In addition,
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terms such as sin and log cannot exist unless the user explicitly tells the program to create them.

There are classes of equation forms that cannot be discovered by the methods used in ABACUS. For

example, data corresponding to certain parabolas and oscillations often appear to be void of qualitative

proportionalities due to the problem of conflicting proportionalities. In addition, the user is not required to

supply carefully prepared data in which some attributes are held constant while others are allowed to

change. This causes many Prop’ assertions, making the problem more diffieult than it would be

otherwise.

8.3. Future Research

Of major importance is recognising a desirable term once it is created. When a term is invariant
across all events, the task is easy. When only a percentage of events are covered, when should the search
algorithm stop? The problem lies in the basic ignorance of the program. What is needed is some form of
conceptual knowledge which would enable it to distinguish between conceptually good terms and
conceptually useless terms. This became quite evident during testing of the program when occasionally an

unexpected answer would be returned which in fact covered more events than the desired equation, but
which was mathematically far more complicated. We need to develop a method for the program to

consider syntactically desirable equations even when they may not be the most general.

In this werk, we investigated what could be accomplished when only minimal information is
provided by the user. Previous guantitative discovery systems have required that the user specily which
variables are dependent and which are independent. They have also required that all permutations of
variable values be given so that rop’ assertions will never exist (Langley, 1985). The later condition
means that the user must generate a great many more events than needed by ABACUS. [n regression
analysis, the form of the equation is predefined. In our experiments, however, it soon became evident that
the value of ABACUS as a researcher’s assistant tool would be enhanced il we allowed additional knowledge
to be optional and didn't prevent the user from supplying available knowledge. A simple but useful

addition would provide an option for a user to include or exclude specified variables from the equation

discovery or precondition generation processes.
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The most challenging task we undertook was the discovery of multiple laws for a collection of data.

This single decision prevented the use of curve fitting technigques eliminating the possibility of discovering

a more general class of equations and making many very interesting relationships more difficult to

discover. The search strategy employed and the trend detection algorithm used were forced to be quite

loose. As a result, the potential search space was increased, irrelevant variables became harder to locate,

and conflicting proportionalities became an issue. A possible solution may be to cluster the events prior to

invoking the equation discovery module in some manner such that in each set of events, the events all hold
the same set of proportionality assertions. Given this, the more precise approaches such as regression
analysis could be taken once again. The method would be based on some form of clustering algorithm,
much like the conceptual clustering of Michalski {1980) and Stepp (1984), and might be quite simple,
merely forming clustered groups so that all events support the same proportionality assertion. As
mentioned earlier, the problem of confliciing proportionalities, such as shown in Figure 1, can be solved

for most cases by determining the points where the proportionality between variables changes sign. This

may introduce a new problem, that of merging two or more equations into one, a3 in the case of parabolic

or sinuscidal functions.

9. SUMMARY
The methodology of equation discovery and precondition generation used in ABACUS has been

presented, analyzed, and illustrated through examples. ABACUS has proved useful for a number of

problems in chemistry and physics and the results show that it has been efficient for each learning task.

ABACUS measures well against the criteria we proposed for a quantitative discovery system. It
handles irrelevant variables, and is capable of formulating multiple equations for characterising the data
and determining qualitative or logical preconditions for each equation. The technigues of variable
combination through search, as used in the early BACON programs, has been considerably improved upon
by analyzing the specific search characteristics of the domain. The current version of ABACUS falls short
on two points. It is relatively limited in the kinds of equations which can be discovered, and it occasionally

suffers from the computational cost of search.
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The work presented here is unique in geveral ways. First, no priof work has addressed the real-

world issue of discovering multiple equations to describe different aspects of 2 physical gituation. Even for

cases where it appears that a single physical phenomenon is being observed, as in the falling bodies

example, different physical situations may exist requiring different equation forms to describe them.

Previous programs have been unable to discover different equations for different subsets of the given

events. Second, the explicit generation of logic-atyle preconditions for the discovered equations is novel.
When dilferent physical situations exist [for what appears to be the same phencmenon, preconditions
determine when each equation applies. Finally, new search techniques for equation discovery have been

created. In conelusion, the ABACUS system seems to be s useful new tool in the analysis of experimental

data.
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