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Advancement in digital technology has generated a massive amount of data. Large

amount of information streaming in from various sources such as phones, tablets, computers

and internet has made an immense need to provide a structured and organized view of the

data. Hierarchy (taxonomy) is one of the most easy and convenient way of data organization.

It has been used extensively to store large volumes of data in various application domains

ranging from biological datasets (for organizing genes and protein sequences) to image and

text datasets (for providing the structured view of billions of images and web pages).

Hierarchical structure representation of the data can be effectively used to eliminate the

expensive and tedious task of manual classification. To this end, Hierarchical Classification

(HC) deals with the task of automatically classifying the instances (examples) within the

topic hierarchy have been developed. Although, HC is popular among the researchers due

to its wide application, it faces severe challenges due to the following reasons:

1. Data imbalance problem with several classes having very few positive instances for

training (rare categories problem).



2. Incorporating hierarchical structural relationships into the model parameters opti-

mization.

3. Multi-label classification were instances may belong to multiple classes.

4. Feature selection for effective and efficient discrimination between classes.

5. Inconsistent hierarchy due to manual design based on semantics and partial domain

knowledge.

6. Non-mandatory leaf node predictions (or orphan nodes detection) were instances may

be assigned to internal nodes in the hierarchy, and

7. Scalability due to large number of classes and instances with high-dimensional fea-

tures.

Several approaches that address these issues individually (or multiple issues together) have

been developed over the years.

In this thesis, we develop novel and innovative methods to deal with the rare cate-

gories and inconsistencies problems within the hierarchy classification framework. For rare

categories, we present a ranking methodology that exploits the hierarchical structure for

generalized model learning, whereas for dealing with hierarchical inconsistencies we propose

an inconsistent node flattening and rewiring strategy. We have also developed the methods

for embedding feature selection into the HC framework which helps to improve the classifi-

cation accuracy while reducing the computational time during the learning and prediction

phases. Additionally, the proposed approach also reduces the memory required to store the

large number of model parameters. Finally, we develop a multi-stage integrated pipeline to

solve the large-scale HC problem that can also detect orphan classes (i.e., classes with no

examples in the training set).



Chapter 1: Introduction

1.1 Motivation

Hierarchical structures are widely popular for organizing large volumes of data and have

been successfully used in various large-scale online prediction competitions, such as Large

Scale Hierarchical Text Classification (LSHTC1) challenge for representing web documents

in web-taxonomy, ImageNet2 for organizing images according to the WordNet hierarchy and

BioASQ3 challenge for biomedical semantic indexing of PubMed journal abstracts organized

in the MeSH hierarchy.

Manual annotation of unlabeled instances (examples) into hierarchy of classes is a te-

dious and cumbersome task. This problem become even more difficult with the exponential

data growth rate over time. Although, several traditional binary and multi-class classifi-

cation techniques have been developed for automated classification, they are not efficient

and effective for Hierarchical Classification (HC) because they ignore the implicit inter-class

relationships information that are available from the hierarchical structures. To overcome

this shortcoming various HC approaches have been proposed in the literature [3–9]. Still

there are many research gaps that need be addressed with more theoretical foundations and

experimental studies. In the next few paragraphs we will discuss and highlight some of the

critical challenges faced by large-scale HC that form the main focus point of this thesis.

Hierarchical structure inconsistency - Designing a consistent hierarchy is chal-

lenging either due to insufficient domain knowledge or several confounding classes (such

as soc.religion.christian and talk.religion.misc classes in Newsgroup dataset4, both relate

1http://lshtc.iit.demokritos.gr/
2http://image-net.org/
3http://www.bioasq.org/
4http://qwone.com/∼jason/20Newsgroups
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(a) Synthetic dataset with five class (b) Hierarchy 1 (c) Hierarchy 2

Figure 1.1: (a) Synthetic dataset with five classes (marked with different symbol and color)
and two different hierarchical structure shown in (b) and (c).

to religion). Moreover, hierarchy generation based on semantics is susceptible to incon-

sistencies [2, 10]. This problem is more common for large-scale datasets. To illustrate in

detail, consider the example shown in Figure 1.1(a), it consist of 1000 points divided into

five classes that are generated using gaussian distribution with different mean and vari-

ance. Figure 1.1(b) and Figure 1.1(c) shows two different possible hierarchical structures

with these classes. Hierarchy 1 separates examples into three categories at level 1, namely{
(�, �),(F),(N,  )

}
which are not consistent for classification since categories (�, �) and

(N,  ) are not easily separable (assuming linear separators) whereas Hierarchy 2 is more

consistent since it groups easily separable classes together. This explains intuitively that

inconsistent hierarchical structure can deteriorate the classification performance. To over-

come this problem, we will discuss various approaches that we have developed to remove

inconsistencies from the hierarchy prior to learning models.

Rare categories - Large-scale HC problem involves thousands of categories with vary-

ing distribution of instances per category. In datasets of such a large-scale, skewed class

distributions is observed where plenty of classes have few examples for training (for e.g.

more than 75% of LSHTC datasets belongs to rare categories with less than 10 examples)

making it considerably difficult to learn a generalized model. This is known as the rare

categories problem [4] and datasets exhibit power-law distribution for examples per class
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(a) DMOZ-2010 (b) DMOZ-2012

Figure 1.2: Power law distribution for DMOZ-2010 and DMOZ-2012 datasets.

as shown in eq. (1.1). To improve HC performance, it is necessary to address the issue of

rare categories. In this thesis, we explore various rank-based approaches for improving the

performance on rare categories.

P (si > S) ∝ S−γ (1.1)

where si denotes the size of class i and γ denotes the power law exponent. Figure 1.2(a) and

(b) show the power-law distribution followed in large-scale DMOZ-2010 and DMOZ-2012

datasets, respectively.

Less cohesive or overlapping categories - Within real-world datasets, two or more

categories may be so similar that learning a discriminative model between them is difficult

[11]. In such cases, it is beneficial for classification to merge these categories into one

common category. For example, categories like ‘softball’ and ‘baseball’ have several common

features such as pitch, ball, bat, gloves due to which discrimination between instances of these

two classes becomes difficult without having enough training instances (less likely for large-

scale datasets). Alternatively, due to lack of domain knowledge instances with different

characteristics, classes are put together into a common category making it less cohesive.

In such cases, it is beneficial to split a category into multiple sub-categories for effective

classification. Typically, classes with more generic representation are less cohesive whereas

over simplified classes have overlapping instances. In order to improve performance, it is
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important to resolve less cohesive and overlapping categories from the hierarchy.

Orphan node detection - Due to change in distinctive characteristics of data over

time; we often need to evolve/adapt the hierarchy by creating a new set of classes whose

instances have not yet been observed in the training data. This problem referred as orphan

node detection (or identification) is an important factor to consider for improving the HC

performance [12]. In this thesis, we will discuss about an approach that we have developed

for detecting the orphan nodes in the hierarchy. Our approach is easily integrable to exisiting

top-down HC prediction approach with minor changes.

Scalability - Large-scale HC are often characterized by data consisting of thousands

of categories and millions of instances with high dimensional features. Dealing with data

of such a large-scale motivates the development of scalable approaches that can be easily

parallelized across multiple compute nodes. To this end, several distributed approaches have

been proposed [13,14]. However, there is specific hardware and software requirements which

limits the applicability of this approach. To overcome this, we propose to solve this problem

using feature selection (FS) techniques that helps to improve performance by removing the

redundant and irrelevant features while being computationally tractable due to squeezing of

high-dimensional features that reduces the time required between optimization iterations.

Further, FS also helps to reduce the memory required for storing model parameters which

is of the utmost importance in large-scale settings.

1.2 Contributions

In this thesis, we have addressed some of the issues that are prevalent with large-scale HC.

Specifically, the main contributions can be summarized as follows:

1. Developed local and global flattening approaches that are able to better identify the

set of inconsistent nodes that exists within the hierarchy, thereby improving the HC

performance [2].

2. Developed an efficient filter-based rewiring approach for taxonomy modification which
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unlike previous wrapper based approaches does not require multiple, expensive com-

putations. Our approach is scalable and can be applied to the HC problems with

high-dimensional features, large number of classes and examples [10].

3. Developed global and adaptive approaches for embedding state-of-the-art feature se-

lection algorithms into HC framework [15].

4. Developed rank-based models to improve the performance on classes with rare cate-

gories. In addition, hierarchical information is exploited into the model learning to

boost the performance further [16].

5. Developed multi-stage embarrassingly parallel integrated framework to address the

multiple issues faced with large-scale HC. Moreover, we also propose an exploratory

learning approach for orphan node detection that can be easily incorporated in the

integrated framework [17].

1.3 Thesis Outline

Chapter 2 discusses about the symbols and notations used in this thesis and provides a

brief overview of various HC methods in the literature. In Chapter 3 and 4, various hier-

archical structure modification approaches to resolve inconsistencies within the hierarchy

have been proposed. Chapter 5 provides insight into different approaches for integrating

information theoretic feature selection methods into the HC framework followed by Chapter

6 that discusses about the various rank-based approaches we have developed to solve the

rare categories problem. In Chapter 7, multi-stage integrated pipeline is discussed that

is beneficial for improving the overall HC performance by addressing multiple HC issues.

Finally, we conclude and discuss about the various future research directions in Chapter 8.
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Chapter 2: Background

This chapter presents the background work for research addressed by this thesis. Specifi-

cally, this chapter gives a broad overview of hierarchical classification and inconsistencies

within the hierarchy definition. Many work has been accomplished by the researchers in

this area. However, we will restrict our discussion to those methods that are useful for

understanding and grasping the materials presented in this thesis.

2.1 Notations

This section discusses the commonly used notations in this thesis. Summary of notations

are described in Table 3.1. For ease of understanding, vectors and matrices are denoted

by bold letters. Moreover, for representing matrices we have used uppercase letters and

vectors are represented using lowercase letters.

Specific to the HC problem, N denotes the total number of nodes in the hierarchy.

Total number of training instances is denoted by symbol N , where N input training pairs

are represented using D = {(x(i), y(i))}Ni=1 where x(i) ∈ X corresponds to the i-th input vector

in the input domain (space) X and y(i) ∈ Y corresponds to the true label in the ouput domain

(space) Y. For binary classifiers, learned optimal model weight vectors corresponding to

the n-th node in the hierarchy H is represented using wn whereas the group of m weight

vectors are represented using the notation [W]m∗d, where d corresponds to the dimensionality

(number of features) of the input vector. For multi-class classifiers, multiple classifiers are

trained at each of the internal node in the hierarchy. Therefore, we use the notation wc
n to

represent the learned model corresponding to c-th child of node n whereas combined model

at node n is represented using Wn = [wc
n]c∈C(n). C(n) denotes the set of children of node n
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Table 2.1: Notations

Symbol Description

H original given hierarchy
N set of nodes in H
N total number of training examples
R set of real numbers

d or F dimensionality (number of feature) of input vector
L set of leaf categories (classes or labels)

x(i) ∈ Rd input vector for i-th training example
y(i) ∈ L true label for i-th training example

wn learned model weight vectors using binary classifiers for n-th node in
the hierarchy

wc
n learned model weight vectors using multi-class classifiers corresponding

to c-th children of n-th node in the hierarchy
C(n) set of children for n-th node in the hierarchy
π(n) parent of n-th node in the hierarchy
S(n) set of siblings for n-th node in the hierarchy
A(n) set of n-th node ancestors including the node itself but excluding root

x̂(i) ∈ Rd input vector for i-th test example
ŷ(i) ∈ L predicted label for i-th test example

yn(i) ∈ ±1 binary label used for i-th training example to learn weight vectors for
n-th node in the hierarchy, yn(i) = 1 iff y(i) = n, -1 otherwise

ycn(i) ∈ ±1 binary label used for i-th training example to learn weight vector
corresponding to c-th child of n-th node in the hierarchy, ycn(i) = 1 iff
y(i) = c, -1 otherwise

Ψn optimal objective function value for n-th node in the hierarchy
Ψc
n optimal objective function value for c-th child of n-th node in the

hierarchy

whereas parent and siblings of node n are denoted by symbol π(n) and S(n), respectively.

A(n) denotes the set of n-th node ancestors including the node itself but excluding root.

For training binary classifiers at node n, we use the binary label yn(i) = ±1 for i-th

training instance where yn(i) = 1 iff y(i) = n and -1, otherwise. Similarly, for multi-class

classifiers we use the binary label ycn(i) = ±1 for i-th training instance where ycn(i) = 1 iff

y(i) = c and -1, otherwise. Predicted label for the i-th test instance x̂(i) is represented using

the notation ŷ(i).
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2.2 Hierarchical Classification

Hierarchical Classification (HC) is one of the most important problem in data mining and

machine learning community that has received significant interest among researchers due

to its practical importance. In general, HC problem can be formally defined as:

Definition 1 (Problem Definition). Given, a hierarchy H defined over the output (la-

bel) space Y and a set of N training examples composed of pairs D={(x(i), y(i))}Ni=1, where

(x(i), y(i)) ∈ X ×Y, the goal of the hierarchical classification is to learn a mapping function

f : X ∈ Rd → Y that maps the inputs in the input space X to outputs in the output space

Y, such that the function f is accurately able to predict the output y of an input instance x

and generalizes well to data that is not observed during the training.

In literature various method exists to solve the HC problem based on how the hierarchi-

cal relationships information is leveraged during the model learning [3]. One of the simplest

approach, known as flat classification disregards the hierarchical structure and train clas-

sifiers for each of the leaf categories to discriminate from remaining leaf categories. Other

approaches involve utilizing the hierarchical relationships information during the learning

and/or predicting phase. For example, local and global classifiers. While local classifiers

are trained by splitting the hierarchical structure into several smaller structures for utilizing

the local relationships, global classifiers are trained by considering the entire class hierarchy

at once. In next few sections we will discuss various existing methods for each of these

approaches in detail.

2.2.1 Flat Classification Approach

This is one of the simplest and straight forward implementation of the standard classification

algorithm into the HC problem. In this method, we ignore the hierarchy and train an

independent one-vs-rest binary or multi-class classifiers corresponding to each of the leaf

categories that can discriminate it from remaining leaf categories. Label prediction ŷ for an
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unknown test instance x is done according to the rule shown in eq. (2.1).

ŷ = argmax
y ∈ Y

f(x, y|w) (2.1)

where the function f : X × Y is parameterized by the model weight vector w.

This approach provides an indirect solution to the HC problem because all the ancestors

associated with the predicted leaf category are also assigned to the test instance. Some of

the well-known standard formulation of binary [18] and multi-class [19] classifiers that can

be used for flat classification is shown in eq. (2.2) and eq. (2.3).

Binary classifier minimize :
w

N∑
i=1

ξ
(
w; x(i), y(i)

)
+
λ

2
||w||22 (2.2)

Multi− class classifier minimize :
wl,ξi

N∑
i=1

ξi +
λ

2

|L|∑
l=1

||wl||22

subject to : wT
y(i)x(i)−wT

l x(i) ≥ eli − ξi, i = 1, · · ·, N (2.3)

where : eli =


0 if y(i) = l

1 otherwise

where λ > 0 is the penalty parameter, (ξ, ξi) ≥ 0 denotes the loss function such as hinge

loss or logistic loss and || · ||22 denotes the squared l2-norm.

Although, flat classification approach is known for its simplicity and has been shown to

work well in practice for small and well-balanced datasets [20], it’s performance suffers when

the number of classes (categories) that needs to be discriminated becomes huge and are not

balanced [4], potentially containing lots of rare categories. It also has a major problem with

longer training and prediction time because it consider all the examples during the model

training and invoke all the models for the leaf categories to make label prediction making

it computationally expensive, especially when the number of classes becomes huge.
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Figure 2.1: Local classifier per node.

2.2.2 Local Classification Approach

This method explores local hierarchical structure relationships information such as parent-

child and siblings relationships during the model learning. Based on how the local infor-

mation is extracted during the model learning, local classification approach can be further

categorized into three broad categories (i) Local Classifier per Node approach (LCN) (ii)

Local Classifier per Parent Node approach (LCPN) and (iii) Local Classifier per Level ap-

proach (LCL).

Local Classifier per Node Approach

In this approach, binary classifier fn is learned for each node (except root) n ∈ N in the

hierarchy H as shown in Figure 2.1. The dashed squares in the figure represents binary

classifiers. Goal of this approach is to learn the classifiers that can effectively discriminate

between the sibling nodes in the hierarchy. Usually, for training the classifier at a node,

we assign examples belonging to the n-th node and its descendants as the positive training

examples, and those belonging to the siblings of the n-th node and there descendants as

the negative examples. However, in literature different criteria for defining the positive and

negative examples has been used [21–23].

To make the label prediction of an unknown test instance x, the algorithm (shown in

10



Figure 2.2: Local classifier per parent node.

eq. (2.4)) typically proceeds in the top-down fashion starting at the root and recursively

selecting the best children till it reaches a terminal node that belong to the set of leaf

categories L, which is the final predicted label.

ŷ =



initialize n := root

while n /∈ L

n := arg maxq∈C(n) fq(x)

return n


(2.4)

This approach although popular in literature, suffers from training a large number of

binary classifiers when the size of hierarchy becomes huge.

Local Classifier per Parent Node Approach

In this approach, multi-class classifier is learnt for each of the parent nodes in the hierarchy

H as shown in Figure 2.2. The dashed square in the figure represents multi-class classifiers.

Like local classifier per node approach, goal of this approach is to learn classifiers that can

effectively discriminate between the siblings. For training the classifier at each parent node

p we use the examples from its descendants where each of the children categories C(p) of

11



Figure 2.3: Local classifier per level.

parent node p corresponds to different class. Predicting the label for an unknown test in-

stance x is done in a similar manner as shown in eq. (2.4).

Local Classifier per Level Approach

In this approach, multi-class classifier is learnt for each level in the hierarchy as shown in

Figure 2.3. Among local approaches, this is the least popular approach in the literature.

For training the classifier at each level, we use the examples from nodes in the level and its

descendants, where different nodes in the level corresponds to different class. Prediction for

an unknown test instance x is done by choosing the best node at each level in the hierarchy

H. Since classifiers at each level makes independent predictions, there is possibility that

this approach may lead to inconsistent prediction. For example, in Figure 2.3 inconsistent

prediction occurs if the prediction made by the level 1 classifier is B whereas the level 2

classifier predicts A.2 that corresponds to different branch in the hierarchy. In order to

make this approach useful, classification results are complemented with a post-processing

step to resolve such inconsistent predictions.
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Figure 2.4: Global classifier.

2.2.3 Global Classification Approach

This approach is often referred as the big-bang approach in the literature [24]. Unlike local

approaches, global classification approach learns a single complex classification model by

taking into account the class hierarchy as a whole as shown in Figure 2.4. For predicting

the labels of an unknown test instance x, an approach similar to flat or local methods is

followed.

2.2.4 Literature Review

There have been numerous work proposed in the literature to address the problem of HC.

In this section we will review some of the most commonly used methods.

Introduced orthogonality between the node and its ancestors, Zhou et al. [9]

Classifying sibling classes at lower level becomes difficult as the depth of the hierarchy

increases because the classes become more similar to each other. To address this problem, a

hierarchical SVM that enforces the learned model parameters of the node to be orthogonal

to its ancestor nodes was proposed in the paper. Orthogonality between the i-th node and its

ancestor nodes j ∈ A(i) is incorporated by introducing the regularization constraints |wT
i wj |

into the minimization objective function. Optimization formulation for there proposed
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solution can be represented using the equation shown in eq. (2.5).

minimize :
1

2

m∑
i,j=1

Kij |wT
i wj |+

C

N

N∑
k=1

ξk

subject to : wT
i x(k)−wT

j x(k) ≥ 1− ξk,∀j ∈ S(i),∀i ∈ A
(
y(k)

)
, ξk ≥ 0,∀k ∈ {1, · · ·, N}

(2.5)

where C > 0 is a penalty parameter, ξk > 0 is the loss function and Kij ≥ 0 captures the

hierarchical structure relationships. More precisely, Kij = 0, if node i is neither an ancestor

nor a descendant of node j, otherwise Kij > 0.

Shrinking data sparse leaf node model parameters towards data rich ancestor

nodes, McCallum et al. [25]

Insufficient examples available for training at the leaf categories is one of the main reason for

inferior classification performance. To overcome this, a well established statistical technique

known as shrinkage is explored in this paper. Learned model parameter estimates of the data

sparse leaf node is generalized by enforcing the parameter smoothness with the data rich

ancestors. Probabilistically, we can define the marginal probability of generating an input

instance x given the model parameters w as the sum of total probability over individual

components using the equation shown in eq. (2.6).

P (x|w) =
∑
y∈Y

P (y|w)P (x|wy) (2.6)

where P (x|wy) can be computed as the product of probability estimates for individual input

component as shown in eq. (2.7).

P (x|wy) = P (|x|)
|x|∏
k=1

P (xk|wy) (2.7)
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Given the initial parameter estimates of the learned model weight vectors corresponding

to class y and its ancestor as
{

wi
y

}
i∈A(y)

. Parameter smoothing can be applied by shrinking

the learned parameters of class y to its ancestor categories as per the rule shown in eq.

(2.8).

ŵy =
∑

i∈A(y)

λiyw
i
y (2.8)

where ŵy denotes the final learned parameter estimates corresponding to the class y.

Two stage classification for large scale taxonomy, Xue et al. [26]

As the hierarchy size increases, learning models for each node in the hierarchy becomes

difficult. To address this issue Xue et al. proposed two stage classification approach. For

each test document, in the first stage a set of candidate categories is retrieved based on

similarity to the test document. Then the second stage builds a classifier on the hierarchy

restricted to the set of categories fetched in first stage and classifies the test document

using the restricted hierarchy. Although, pruning reduces the hierarchy to a manageable

size, one severe drawback of this approach is having to train a different classifier for each

test document.

Parent-child regularization, Gopal et al. [6]

Hierarchical dependencies between different classes in the hierarchy is leveraged by regu-

larizing the model parameters of each class with their parent class. They proposed two

models, HR-SVM and HR-LR based on the type of loss function used for classifier training.
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The proposed formulation of their approach is shown in eq. (2.9) and eq. (2.10).

HR− SVM minimize
W

∑
n∈N

1

2
||wn −wπ(n)||2 + C

∑
n∈L

N∑
i=1

[
1− yn(i)wT

nx(i)
]
+

(2.9)

HR− LR minimize
W

∑
n∈N

1

2
||wn −wπ(n)||2 + C

∑
n∈L

N∑
i=1

log
(

1 + exp
(
− yn(i)wT

nx(i)
))
(2.10)

where : yn(i) =


1 if x(i) belongs to class n ∈ L

−1 otherwise

HR-SVM and HR-LR models gives state-of-the-art performance results on LSHTC

datasets and can also be easily parallelized by optimizing the alternate even and odd levels

at subsequent iterations. This is possible because there is no dependency between even-even

or odd-odd levels.

Refined Experts, Bennett et al. [7]

Hierarchical classification problem suffers from two significant challenges - error propagation

and increasingly complex non− linear decision surfaces at higher levels in the hierarchy. To

overcome this problem, author proposed the method of refined experts, where refinement

method is used to eliminate the error propagation by changing the training distribution

based on cross-validation results to prevent errors and expert extraction of meta-features at

lower levels is done to improve the decision boundary at higher levels. Combining both of

this step into top-down classification settings is referred by the author as refined experts.

Empirical evaluation of their proposed approach shows an improvement upto 30% in Macro-

F1 score.
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2.3 Inconsistencies within the Hierarchy

Most of the HC approaches often use hierarchy during the learning process to design ap-

propriate loss function for classification. Their performance can be severely affected if the

hierarchy used for learning is not well-suited for classification purpose. In majority of the

cases, the hierarchy used for training is manually designed by the domain experts that

reflects the human view of the domain. This manual process of hierarchy creation suffers

from various design issues that makes it unsuitable to achieve high classification accuracy.

Major reason behind such issues includes: (i) hierarchy is designed for the sole purpose of

easy search and navigation without taking classification into consideration. (ii) a-priori it is

not clear to domain experts when to generate new nodes (i.e. hierarchy expansion) or merge

two or more nodes (i.e. link creation) in the hierarchy and it is often left at the discretion of

domain experts to decide, which results in certain degree of arbitrariness (iii) large number

of classes poses a unique challenge for manual design of good hierarchy.

Hierarchical inconsistencies is a general term that refers to the various types of incon-

sistency that can exist within the hierarchy, which makes it difficult to learn generalized

classifiers. Based on the adapted hierarchy creation process, two types of inconsistency can

exist within the hierarchy. (i) inconsistent node - obtained due to over simplification process

of creating new node to combine two or more specific concepts into one general concept and

(ii) inconsistent link - obtained due to domain experts personal choice or bias. Figure 2.5

shows the various types of inconsistencies. Similar type of nodes are marked with same color

in the figure, red edge (link) in the figure denotes inconsistent link whereas the inconsistent

node is marked with red rectangular box.

Various methods to solve hierarchical inconsistencies issue have been proposed in the

literature. These methods can be broadly categorized into two different categories. First cat-

egory of methods ignore the existing hierarchy and generates its own hierarchy (automatic

hierarchy generation) based on some methods such as clustering whereas second category

of methods aim to modify the provided hierarchy using some elementary operations such as
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Figure 2.5: Hierarchy with inconsistent node and links (marked in red).

insert and delete, to make it better suited for obtaining higher classification accuracy. Both

methods have their own advantages and disadvantages. Automated generation of hierarchy

requires pre-processing time for creating hierarchy which may be computationally expensive

if the number of classes are huge. It also requires the number of hierarchical levels to be

pre-defined as an input to the algorithm which may be unknown and difficult to decide.

On positive side, automated generated hierarchy may results in better classification perfor-

mance possibly because of lesser number of inconsistent nodes and links in the hierarchy.

On the contrary, modifying the existing hierarchy is less time consuming but it requires

the decision to be made at each step of the hierarchy modification (using elementary oper-

ation), which can be very difficult. In the next few paragraphs we will discuss in detail the

literature of existing algorithms for both of these methods.

2.3.1 Automated Hierarchy Generation Approach

Linear discriminant projection and clustering approach, Li et al. [1]

In this paper, author has proposed the use of linear discriminant projection to transform

all instances to lower dimensional space before performing the hierarchical agglomerative

clustering, which produces meaningful hierarchy of clusters. Hierarchies generated using

this method showed improved classification performance but the main drawback of their
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approach is that they ignore the original hierarchical structure which may carry some im-

portant information. In addition, there is no theoretical guarantee for deciding the number

of levels that can be used to achieve the best classification performance. Moreover, this ap-

proach is practically not suitable for large scale problems due to the projection step which

is not scalable.

2.3.2 Existing Hierarchy Modification Approach

Modification based on promote, demote and merge operations, Tang et al. [27]

Empirical study done by author showed varying classification performance with different

hierarchical structures. To this end, author proposed the usage of three basic elementary

operations - promote, demote and merge, on the existing hierarchy to make it suitable for

achieving best classification performance. At each step of hierarchy modification, one of

the three operations is applied to obtain new hierarchy which is better than the previous

best hierarchy. The process of hierarchy modification is repeated until there is no more

possible modifications which can lead to the performance improvement. Experiments on

text dataset showed improved performance but there are few caveats of this approach: (i)

Deciding which operation to apply first and which part of the hierarchy to explore first is

one of the critical factors governing runtime performance. Although there is no justification

for these issues, author pointed out that with some intelligent heuristics this problem can

be simplified. (ii) After each step of hierarchy modification there is an evaluation phase

which validates if the modified hierarchy performed better compared to the last one. This

step can be expensive if the hierarchy under consideration has huge number of classes. To

some extent evaluation phase computation can be reduced by restricting the analysis to the

part of the hierarchy where modification has been done. This modified approach has been

explored in [28].
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Genetic Algorithm for improving performance, Qi and Davison [29]

Considering only the current best obtained hierarchy for improving the performance may not

be an optimal approach, so the author considers using multiple best performing hierarchies

at each step for improving the performance using genetic-based algorithm. Author proposed

different methods for adapting the genetic operations such as mutations and cross-over

operations to the hierarchical settings. Experiments on multiple classification tasks showed

that their proposed algorithm can significantly improve classification task. However, the

performance is highly dependent on the hierarchies and the operators selected at each step.

Maximum Margin based Approach, Babbar et al. [30]

In this paper author identified that level(s) flattening [31] may not be an optimal strategy to

reduce error propagation. To overcome this author proposed removing only the problematic

(inconsistent) nodes in the hierarchy for achieving better classification performance. Set of

inconsistent nodes within the existing hierarchy is determined using the maximum margin

value that is obtained at each node using the SVM-based discriminative classifiers. Improved

accuracy and runtime performance was observed while comparing their proposed approach

with other level flattening approaches such as top-level flattening, bottom-level flattening

and multiple-level flattening [31,32].

2.4 Evaluation Metrics for Hierarchical Classification

2.4.1 Flat Measures

Standard set based measures [33] such as Micro-F1 (µF1) and Macro-F1 (MF1) are used for

evaluating the performance of various methods. To compute µF1, we sum up the category

specific true positives (TPc), false positives (FPc) and false negatives (FNc) for different
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categories and compute the µF1 score as:

P =

∑
c∈L TPc∑

c∈L(TPc + FPc)

R =

∑
c∈L TPc∑

c∈L(TPc + FNc)

µF1 =
2PR

P +R
(2.11)

Unlike µF1, MF1 gives equal weight to all the categories so that the average score is not

skewed in favor of the larger categories. MF1 is defined as follows:

Pc =
TPc

TPc + FPc

Rc =
TPc

TPc + FNc

MF1 =
1

|L|
∑
c∈L

2PcRc
Pc +Rc

(2.12)

where, |L| is the number of categories (classes).

2.4.2 Hierarchical Measures

Different from flat measures that penalizes each of the misclassified examples equally, hier-

archical measures take into consideration hierarchical distance between the true label and

predicted label for evaluating the classifier performance [34]. In general, misclassifications

that are closer to the actual class are less severe than misclassifications that are farther

from the true class with respect to the hierarchy (for e.g., an example from hockey class mis-

classified as the baseball class is less severe in comparison to the hockey misclassified as cat).

The hierarchy based measures include hierarchical F1 (hF1) (harmonic mean of hierarchical

precision (hP ), hierarchical recall (hR)) and tree-induced error (TE) [35], which are defined
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as follows:

hP =

∑N
i=1

∣∣∣A(ŷ(i)
)
∩ A

(
y(i)

)∣∣∣∑N
i=1

∣∣∣A(ŷ(i)
)∣∣∣

hR =

∑N
i=1

∣∣∣A(ŷ(i)
)
∩ A

(
y(i)

)∣∣∣∑N
i=1

∣∣∣A(y(i)
)∣∣∣

hF1 =
2 ∗ hP ∗ hR
hP + hR

(2.13)

TE =
1

N

N∑
i=1

δ
(
ŷ(i), y(i)

)
(2.14)

where, A
(
ŷ(i)

)
and A

(
y(i)

)
are respectively the sets of ancestors of the predicted and true

labels which include the label itself, but do not include the root node. ŷ(i) is the predicted

label and y(i) is the true label of example i, δ(a, b) gives the length of the undirected path

between categories a and b in the graph.

It should be noted that for test dataset with orphan nodes, results are reported by

considering only the seed classes i.e., having at least one training instance as reported in

other studies such as Dalvi et al. [12]. Moreover, for hierarchical inconsistencies we have

used the original hierarchy for all methods for consistent evaluation of hierarchical measures

unless noted.
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Chapter 3: Flattened Hierarchy for Removing

Inconsistencies

3.1 Introduction

In the past, various methods have been developed to improve the HC performance [3]. One

of the simplest method is to learn binary one-versus-rest classifier for each of the leaf cate-

gories, ignoring the hierarchical relationships. This method is referred as flat classification.

Other methods involve use of the hierarchies (see Section 3.2) during the learning and pre-

diction process. Hierarchies provide useful structural relationships (such as parent-child and

siblings) among different classes that can be exploited for learning generalized classification

models. Previously, researchers have demonstrated the usefulness of hierarchies for classifi-

cation and have obtained promising results [6,8,25,26,36–38]. However, in many situations

hierarchies used for learning models are not consistent due to the presence of inconsistent

nodes (and links) resulting in excessive error propagation. As such, HC approaches are

outperformed by the flat classifiers that completely ignore the hierarchy [20,39].

Flat classifiers, though effective in some cases, suffer from two major issues: (i) During

the prediction phase, flat classifiers invoke all the models for leaf categories and are consid-

erably slower than top-down HC approaches, in which only the models in the relevant path

are invoked. (ii) For large-scale HC problems, it is challenging to learn effective classifica-

tion models that can discriminate between large number of classes. This problem is worse

for datasets with skewed class distributions where plenty of classes have very few examples

for training (rare categories problem) [4]. Large-scale datasets show power-law distribution

of examples per category [40]. Considering these issues, the focus of this work is to improve

top-down HC approaches, which are computationally feasible for large-scale datasets and
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Figure 3.1: Various hierarchical structures (b)-(f) obtained after flattening some of the
nodes (or levels) from the original hierarchy shown in (a). ‘IN’ denotes the internal node
and ‘LN’ denotes the leaf node.
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handle the imbalance problem by utilizing structural relationships.

The main drawback of top-down HC approaches that contributes to their inferior classi-

fication performance is error propagation — compounding of errors from misclassifications

at higher levels which cannot be rectified at the lower levels. This problem can be alle-

viated to certain extent by restructuring (modifying) the hierarchy to remove inconsistent

nodes that causes performance deterioration. In this work, our main contribution includes

development of data-driven approaches for removing inconsistencies in the expert defined

(original) hierarchy leading to a hierarchy that achieves higher classsification performance

irrespective of the HC approach used for training. We propose a flattening approach where

inconsistent nodes are selectively removed from the hierarchy. The criterion for flattening a

node is based on the optimal regularized risk minimization objective value attained by the

model trained for that node on a separate validation set. If the objective value for a node n

is above a certain threshold, then we flatten n, i.e., we remove n from the hierarchy and add

its children to n’s parent node. Based on the strategy adapted for identifying inconsistent

nodes, we propose two different approaches for inconsistent nodes flattening (INF) from the

hierarchy: (i) Local approach (Level-INF) that computes a level-wise cutoff threshold and

(ii) Global approach (Global-INF) that computes a global threshold for the entire hierarchy.

Experimental comparisons of top-down HC approach on our proposed modified hierar-

chy shows statistically significant performance improvement in comparison to the baseline

hierarchy (expert defined or original) and other comparative methods for hierarchy modifi-

cation [30, 31]. We also performed detailed analysis to show that the reduction in misclas-

sification error at higher levels with our proposed hierarchy modification approach leads to

reduced error propagation and hence better classification performance. In comparison to

flat classification, our approach is more accurate for classes with fewer training instances

(rare categories) and is computationally efficient for large-scale HC problems during the

prediction phase [41].
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3.2 Literature Review

There has been a large body of research focusing on the HC problem. Besides completely

ignoring the hierarchy (flat classifiers), one class of HC methods solve various local sub-

problems that train individual classifier(s) for each of the nodes (or parent nodes) in the

hierarchy or learn classifiers for each of the levels. This methods are referred as local clas-

sification because only local structural relationship information are used during training

these classifiers. To predict the labels of instances, top-down local hierarchical methods

proceed by selecting the most relevant node at the topmost level and then recursively se-

lecting the best node until a leaf category is reached, which is the final predicted label.

Local approaches are more popular due to their computational benefits [3]. Contrary to

local classification, global classification methods [42] learn a single complex model over all

the nodes in the hierarchy and are computationally more expensive than flat and local

methods. Therefore, in this work we focus on top-down local classification methods for

training models and predicting labels.

Some of the earlier studies focus on exploiting hierarchies among categories for the

purpose of classification [8,27,35,43], but the number of categories are limited to a few hun-

dreds. One of the earlier breakthroughs in the field of hierarchical text categorization was

by Koller et al. [36]. This approach used a divide and conquer paradigm for solving the HC

problem which can easily be adopted in large-scale settings. Following this, numerous ap-

proaches have been developed to improve HC for larger datasets. Liu et al. [44] studied the

classification performance using a SVM based method that scales for millions of categories.

Gopal et al. [6] used a regularization term within the optimization function to capture the

parent-child relationships in the hierarchy. This approach referred as HR-LR and HR-SVM

shows improved classification performance but the training procedure for large-scale prob-

lem requires a distributed implementation and map-reduce supported infrastructure. Xue

et al. [26] proposed a two stage approach. For each test document, in the first stage a set

of candidate categories are retrieved based on similarity to the test document. Then the
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second stage builds a classifier on the hierarchy restricted to the set of categories fetched in

first stage and classifies the test document using the restricted hierarchy. Although, pruning

reduces the hierarchy to a manageable size, one severe drawback of this approach is having

to train a different classifier for each test document which is expensive. Other works in the

field of HC can be found in a detailed survey by Silla et al. [3].

3.2.1 Hierarchy Modification

As discussed earlier, most HC approaches rely on hierachical relationships for learning com-

plex models to improve the classification performance. However, the performance can be

negatively impacted if the hierarchy used during learning models is inconsistent. Therefore,

it is of utmost importance to generate an improved hierarchical representation that is suit-

able for classification prior to learning models. Inconsistencies in the hierarchy are due to

the following reasons:

(i) Hierarchies are designed for efficient search and navigation without considering HC

performance.

(ii) Hierarchical groupings of categories is done based on semantics, whereas classification

depends on data characteristics such as term frequency.

(iii) Multiple hierarchies are possible for the same dataset (such as SCOP and CATH [45]

for protein structures). However, there is no consensus regarding which hierarchy is

better for classification.

(iv) Consistent hierarchy design for datasets with large number of categories is prone to

errors.

Several approaches that restructure the hierarchy have been developed in past. Level

flattening [31] is one of the approach used in earlier works of hierarchy modification, where

some of the levels are flattened (removed) from the original hierarchy prior to learning

models. Based on levels that are flattened various methods of modification exist. Top Level
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Flattening (TLF) as shown in Figure 3.1(c) modifies the hierarchy by flattening the top level

in the original hierarchy. Model learning and prediction for flattened hierarchy is done in

similar fashion as top-down methods. Bottom Level Flattening (BLF) and Multiple Level

Flattening (MLF), shown in Figures 3.1(d) and 3.1(e) are similar methods of hierarchy

modification where bottom and multiple levels are removed, respectively. As done in Wang

et al. [31], we removed the first and third levels for evaluating the MLF approach.

Babbar et al. [30] proposed a maximum-margin based strategy for hierarchy modifi-

cation. This method selectively removes some of the inconsistent nodes in the hierarchy

based on margins rather than removing complete levels. Hierarchy modification using this

approach (shown in Figure 3.1(f)), is beneficial for classification and has been theoreti-

cally justified [46]. We followed a similar approach for hierarchy modification. However,

our method differs in following two aspects: (i) We developed a more systematic approach

for threshold selection to identify the inconsistent nodes for flattening. Our approach is

based on deviation from mean that is empirically tuned for each dataset, and (ii) We also

considered a global perspective of the hierarchy (Global-INF) for threshold selection to

identify the inconsistent set of nodes. This approach is more intuitive and realistic mea-

sure for threshold selection because it prevents excessive flattening of the nodes that is just

based on local decisions, thereby allowing the benefits of leveraging the hierarchy during

the model learning and classification process, especially for rare categories (see Section 3.6

for justification).

Hierarchy modification using a supervised learning approaches are also proposed in the

literature [4, 27], where the hierarchy is gradually modified to achieve better hierarchy for

improving the classification performance. These methods have an expensive evaluation costs

that needs to be performed after each modification, making it computationally infeasible

for large-scale settings. Hence, we do not compare our approach to these methods. Other

competitive methods that involves restructuring the hierarchy are developed by us and

appear in an arXiv publication [10].
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Table 3.1: Notation description

Symbol Description

C > 0 mis-classification penalty parameter
f∗n optimal objective function value for n-th node obtained using

validation dataset. We have dropped the subscript n at some places
for ease of description

HL modified hierarchy after level-wise inconsistent node removal
HG modified hierarchy after global inconsistent node removal
Nk set of nodes at k-th level in H
IL set of inconsistent nodes using level-wise INF method
IG set of inconsistent nodes using global-INF method
µ(S) mean of samples in set S
σ(S) standard deviation of samples in set S
Sk set of f∗ values for node at k-th level in H
S set of f∗ values for all nodes (except root) in H
τk threshold limit for identifying inconsistent nodes at k-th level in H
τ threshold limit for identifying inconsistent nodes in H
ψk ≥ 0 fitness parameter for level-wise threshold selection at k-th level in H
ψ ≥ 0 fitness parameter for global threshold selection in H

3.3 Methods

Table 3.1 summarizes the common notations used in this work.

3.3.1 Problem Setup

Given, a hierarchy H we train a binary one-vs-rest classifiers for each of the node n ∈ N — to

discriminate its positive examples from the examples of other nodes (i.e., negative examples)

in the hierarchy. We followed the ‘inclusive policy’ for training classifiers, where all the

descendant categories of node n (including node itself) is considered as positive examples

and the remaining categories as negative examples [22]. In this work, we have used logistic

regression (LR) [47] as the underlying base model for training. The LR objective uses

logistic loss to minimize the empirical risk and l2-norm term (denoted by || · ||22) to control

the model complexity and prevent from overfitting. The objective function for training a
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model corresponding to node n is provided in eq. (3.1).

min
wn

[
C

N∑
i=1

log
(

1 + exp
(
− yn(i)wT

nx(i)
))

+
1

2
‖wn‖22

]
(3.1)

For each node n, we solve eq. (3.1) to obtain the optimal weight vector denoted by

wn. The complete set of parameters for all the nodes {wn}n∈N constitutes the learned

model for the hierarchical top-down classifier. For LR models the conditional probability

for ŷn(i) ∈ ±1 given its feature vector x(i) and the weight vector wn is given by eq. (3.2)

and the classification decision function using eq. (3.3).

P
(
ŷn(i) | x(i),wn

)
=

1(
1 + exp

(
− yn(i)wT

nx(i)
)) (3.2)

ŷn(i) =


+ 1 fn(x(i)) = wT

nx(i) ≥ 0

− 1 otherwise

 (3.3)

For a test example with feature vector x(i), the top-down classifier predicts the class

label ŷ(i) ∈ L as shown in eq. (3.4), where C (p) denotes the set of children of node p.

Essentially, the algorithm starts at the root node and recursively selects the best child

nodes till it reaches a terminal node belonging to the set of leaf categories L.

ŷi =



initialize p := root

while p /∈ L

p := argmaxq∈C(p) fq(x(i))

return p


(3.4)
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3.3.2 Inconsistent Node Flattening

Motivation Gao et al. [46] showed that for any classifier that correctly classifies m

random input-output pairs using a set of D decision nodes, the generalization error bound

with probability estimates greater than 1 - ζ is less than the expression shown in eq. (3.5).

δr2

m

[∑
n∈D

(
1

γ2n
) log(4em) log(4m) + |D| log(2m)− log(

2

ζ
)

]
(3.5)

where γn denotes the margin at node n ∈ D, δ is a constant term and r is the radius of

the ball containing the distribution’s support.

This provides two significant strategies in designing our approach to reduce the general-

ization error: (i) Increase the margin γn for learned models at node n ∈ N in the hierarchy,

or (ii) Decrease the number of decision nodes |D| involved in making the prediction. For

achieving the optimum classification performance, we need to balance the trade-off between

the margin γn and the number of decision nodes |D|. Two of the extreme cases for learning

hierarchical classifiers are flat and top-down methods. For flat classifiers, we have to make

single decision (i.e., |D| = 1) but margin width γn is presumably small due to the large

number of leaf categories that needs to be distiguished, which makes it difficult to obtain

large margin. For top-down hierarchical classifiers, we have to make a series of decisions

from root to leaf nodes (i.e., |D| ≥ 1) but margin γn is larger due to the fewer number of

categories that needs to be distinguished at each of the decision nodes. Motivated by this

trade-off, in this work we propose a method that removes some of the inconsistent nodes in

the hierarchy H, and thereby, increasing the value of margin γn for learned models at node

n in the hierarchy, while minimizing the number of decision nodes to classify an unlabeled

test instances.

In order to improve the effectiveness of classification we need to identify these inconsis-

tent nodes and flatten them. We mark a node n within the hierarchy as inconsistent if the

value of the objective function f∗n becomes greater than a chosen threshold value. To get a
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Algorithm 1: Level-wise Inconsistent Node Removal

Data: Original Hierarchy H, input-output (xi, yi)
Result: Modified Hierarchy HL

1 Train l2-regularized LR model in a top-down order

2 /* Set of inconsistent node, initially empty */

3 IL := Φ;

4 for k := 1 . . . end level do
5 /* Set of all nodes f∗ values in the level */

6 Sk := Φ;

7 for n ∈ Nk do
8 Sk := Sk ∪ {f∗n};
9 end

10 τk := µ(Sk) + ψkσ(Sk);

11 /* Identify inconsistent node in level */

12 for n ∈ Nk do
13 if (f∗n > τk & n /∈ L) then
14 IL := IL ∪ {n};
15 end

16 end

17 end

18 /* New hierarchy with inconsistent node(s) removed */

19 HL = H - {IL};
20 return HL

more reliable estimate of the f∗n, we first train the regularized LR models on a training set

locally for each node and then compute the objective function on a separated validation set,

which is different from the training set. The objective value on validation set for node n is

denoted by f∗n. We develop the following approaches for setting the threshold for flattening.

Level-wise Inconsistent Node Flattening: In this approach, referred as Level-INF,

we select a different threshold τk locally for each level k in the hierarchy. Algorithm 1

presents the level-wise approach that selects inconsistent nodes at each level in a top-down

manner. The threshold τk for level k is computed as the sum of mean and ψk times the

standard deviation of the set of values {f∗n}n∈Nk , where ψk is a fitness parameter at level k

that is empirically estimated for each dataset based on {f∗n}n∈Nk values (see Section 3.6.2)

and Nk represents the set of nodes in level k. All nodes n ∈ Nk that satisfy f∗n > τk are
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Algorithm 2: Global Inconsistent Node Removal

Data: Original Hierarchy H, input-output (xi, yi)
Result: Modified Hierarchy HG

1 Train l2-regularized LR model in a top-down order

2 /* Set of inconsistent node, initially empty */

3 IG := Φ;

4 /* Set of all nodes (except root) f∗ values in H */

5 S := Φ;

6 for n ∈ N do
7 S := S ∪ {f∗n};
8 end

9 τ := µ(S) + ψσ(S);

10 /* Identify inconsistent node in H */

11 for n ∈ N do
12 if (f∗n > τ & n /∈ L) then
13 IG := IG ∪ {n};
14 end

15 end

16 /* New hierarchy with inconsistent node(s) removed */

17 HG = H - {IG};
18 return HG

marked as inconsistent and added to the set of inconsistent nodes denoted by IL. This

procedure is repeated for all levels of the hierarchy. Finally, we flatten the nodes in set

IL — remove n ∈ IL and corresponding edges, and add edges from children of n to n’s

parent node. The modified hierarchy thus obtained is denoted by HL. Using the modified

hierarchy, we re-train a top-down classifier.

Global Inconsistent Node Flattening: Different from Level-INF approach, which

sets different thresholds for each level, the global method shown in Algorithm 2 computes

a single threshold value for all levels. The threshold τ is computed as the sum of mean and

ψ times the standard deviation of the set of value {f∗n}n∈N , where ψ is a fitness parameter

that is empirically estimated for dataset considering all N nodes f∗n values. τ is used to

identify the set of inconsistent nodes IG in the hierarchy (i.e., all nodes n with f∗n > τ).

The hierarchy obtained by flattening the nodes present in IG is denoted by HG. Using the
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Table 3.2: Dataset statistics

Name #Total Node #Leaf Node Depth #Training #Testing #Features

CLEF 88 63 4 10,000 1,006 80
DIATOMS 399 311 4 1,940 993 371
IPC 553 451 4 46,324 28,926 1,123,497
DMOZ-SMALL 2,388 1,139 6 6,323 1,858 51,033
DMOZ-2010 17,222 12,294 6 128,710 34,880 381,580
DMOZ-2012 13,963 11,947 6 383,408 103,435 348,548

modified hierarchy, we re-train a top-down classifier. In this work we refer to this approach

as Global-INF.

3.4 Experimental Protocol

3.4.1 Datasets

We have used text and image datasets for evaluating the performance of our proposed

approaches. Various statistics of the datasets used in our experiments are listed in Table

3.2. All these datasets are single-labeled and the examples are mandatorily assigned to

the leaf nodes in the hierarchy (although our proposed approaches is trivially extendable

to datasets with multi-label and non-mandatory leaf node label assignments). For all text

datasets, we have applied the tf-idf transformation with l2-norm normalization to the word-

frequency feature vector. Description of the used data is as follows:

Image Datasets

CLEF [48] Medical images annotated with medical applications codes. Each image is

represented by the 80 features that are extracted using local distribution of edges.

DIATOMS [49] Diatom images that was created as the part of the ADIAC project.

Features for each image is created using various feature extraction techniques mentioned

in [49]. Further, we have preprocessed the original dataset by removing the examples that
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(a) DMOZ-SMALL (b) DMOZ-2010 (c) DMOZ-2012

Figure 3.2: Distribution of DMOZ datasets visualizing majority of the classes with rare
categories (marked in red and black).

belongs to the internal nodes.

Text Datasets

IPC1 Collection of patent documents organized in international patent classification hi-

erarchy.

DMOZ-SMALL, DMOZ-2010 and DMOZ-20122 Multiple web documents organized

into various classes using the hierarchical structure. It is subset of the web pages from

open directory project and has been released as the part of the LSHTC3 challenge. For

evaluating the DMOZ-2010 and DMOZ-2012 datasets we have used the provided test split

and prediction scores are obtained using the web-portal interface4,5 that was used during

the competition.

3.4.2 Experimental Details

In all the experiments, we have divided the training dataset into train and small validation

dataset in the ratio 90:10. Each experiment was run five times with different sets of train

1http://www.wipo.int/classifications/ipc/en/
2http://dmoz.org
3http://lshtc.iit.demokritos.gr/
4http://lshtc.iit.demokritos.gr/node/81
5http://lshtc.iit.demokritos.gr/LSHTC3 oracleUpload
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and validation split chosen randomly. Testing is done on an independent held-out dataset as

provided by these benchmarks. The model is trained by choosing mis-classification penalty

parameter (C) in the set [10−3, 10−2, 10−1, 1, 101, 102, 103]. The best parameter is selected

using a validation set. The best parameters are used to re-train the models on the entire

training set and the performance is measured on a held-out test set. For the INF methods,

we compute and save the f∗n value for each node in the hierarchy using a validation set.

Setting the threshold as µ + ψσ (or µ + ψkσ for k-th level in Level-INF approach), we

remove the inconsistent nodes where best value of fitness parameter ψ (or ψk) is computed

empirically for each dataset (see Section 3.6.2). All experiments were conducted using a

modified version of liblinear6 software [50] and were run on ARGO, a research computing

cluster provided by the Office of Research Computing (URL: http://orc.gmu.edu), at George

Mason University, VA.

3.5 Comparative Approaches

3.5.1 Flat Methods

Logistic Regression (LR) We train binary one-versus-rest regularized LR classifiers for

each of the leaf categories, ignoring the hierarchical structure. The prediction decision ŷ

for unlabeled test instance x is based on the maximum prediction score achieved when

compared across the one-versus-rest classifiers as shown in eq. (3.6).

ŷ = argmax
n ∈ L

wT
nx (3.6)

Error Correcting Output Codes (ECOC) [51] This approach combines binary classi-

fiers to exploit correlations and correct errors. Codewords are generated randomly with bits

assigned for representing the hierarchical information between the categories. Experiments

were done with codeword length varying from 32 to 1024 bits depending on the dataset. For

6http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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testing an unlabeled example, the output codeword is compared to the codeword of each

categories, and the one with the minimum hamming distance is selected as the class label

for that example.

3.5.2 Top-Down (TD) Hierarchical Methods

For all TD hierarchical baselines we train a binary one-vs-rest classifiers for each of the node

(except root) in the hierarchy and predictions are made starting from the root node and

recursively selecting the best scoring child nodes until a leaf node is reached (see eq. (3.4)).

Depending upon the hierarchy that we use during the training and prediction process, we

compare with the following baselines.

Top-Down Logistic Regression (TD-LR) Original hierarchy provided by the domain

experts is used for classifiers training and label prediction.

Level flattening Modified hierarchy obtained by flattening different level(s) is used in-

stead of original hierarchy. Depending on level(s) flattened we have Top Level Flattening

(TLF), Bottom Level Flattening (BLF), Multiple Level Flattening (MLF) hierarchy as dis-

cussed in Section 3.2.1.

Maximum-margin based Taxonomy Adaptation (MTA) Original hierarchy is mod-

ified using the margin value computed at each node in the hierarchy as described in Babbar

et al. [30].

3.6 Results

3.6.1 Comparison to Top-Down Hierarchical Baselines

Performance based on Flat Metrics: Table 3.3 presents the µF1 and MF1 performance

comparison of our proposed hierarchical modification approaches with TD-LR (involves no
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Table 3.3: µF1 and MF1 performance comparison of various TD hierarchical baselines
against our proposed approaches

Dataset Metric
Hierarchical Baselines Proposed Approaches

TD-LR TLF BLF MLF MTA Level-INF Global-INF

CLEF
µF1(↑)72.74 (0.43) 75.84 (0.32) 73.76 (0.32) X 74.48 (0.42)75.25 (0.55) 77.14M (0.01)
MF1(↑)35.92 (0.01) 38.45 (0.65) 40.93 (0.19) X 39.53 (0.74)39.89 (0.24) 46.54N (0.01)

DIATOMS
µF1(↑)53.27 (0.32) 56.93 (0.28) 53.27 (0.24) X 58.36 (0.64)58.32 (0.64) 61.31N (0.53)
MF1(↑)44.46 (0.24) 45.17 (0.62) 44.30 (0.64) X 45.21 (0.65)48.77 (0.12) 51.85N (0.23)

IPC
µF1(↑)49.32 (0.32) 51.28 (0.61) 50.36 (0.64) X 51.36 (0.32)50.40 (0.32) 52.30M (0.12)
MF1(↑)42.51 (0.94) 44.99 (0.43) 43.74 (0.81) X 42.80 (0.94)43.26 (0.43) 45.65M (0.11)

DMOZ-SMALL
µF1(↑)45.10 (0.23) 45.48 (0.19) 44.34 (0.32) 45.80 (0.64) 46.01 (0.74)45.43 (0.21) 46.61M (0.28)
MF1(↑)30.65 (0.43) 30.60 (0.54) 30.94 (0.53) 30.62 (0.32) 30.82 (0.63)30.34 (0.12) 31.86N (0.64)

DMOZ-2010
µF1(↑)40.22 (0.55) 41.32 (0.32) 40.34 (0.24) 41.77 (0.56) 41.82 (0.42)40.71 (0.83) 42.37 (0.27)
MF1(↑)28.37 (0.46) 29.05 (0.84) 28.41 (0.57) 29.11 (0.13) 29.18 (0.54)28.66 (0.53) 30.41 (0.64)

DMOZ-2012
µF1(↑)50.13 (0.28) 50.32 (0.42) 50.11 (0.32) 48.05 (0.39) 50.31 (0.48)49.90 (0.92) 50.64 (0.22)
MF1(↑)29.89 (0.23) 29.89 (0.23) 29.73 (0.14) 27.65 (0.48) 30.04 (0.57)30.52 (0.74) 30.58 (0.28)

Table shows mean and (standard deviation) in bracket across five runs. ’X’ denotes MLF
not possible. The significance-test results are denoted as M for a p-value less than 0.05 and
N for p-value less than 0.01. We have used sign-test and wilcoxon rank test for statistical
evaluation of µF1 and MF1 scores, respectively. Tests are between our best proposed ap-
proach, Global-INF and best baseline approach, MTA for single run. These statistical tests
are not performed on DMOZ-2010 and DMOZ-2012 datasets because we do not have access
to true labels from the online evaluation system.

hierarchy modification) and comparative TD hierarchy modification approaches as base-

lines. We see that our proposed approach Global-INF consistently outperforms all other

approaches for the different datasets across all metrics. For the image datasets we see a

relative performance improvement upto 7% in MF1 on comparing Global-INF with the best

TD modification baseline i.e., MTA. To validate the performance improvement we con-

ducted pairwise statistical significance tests between our best approach, Global-INF and

best TD baseline for all datasets except DMOZ-2010 and DMOZ-2012, where true test la-

bels (and class-wise performance) are not available from the online evaluation. Specifically,

we compute sign-test for µF1 [52] and non-parametric wilcoxon rank test for MF1 scores (it

should be noted that significance tests are between two approaches for single run). In Fig-

ure 3.3 we present the pairwise statistical comparisons for different approaches studied here

on the DMOZ-SMALL dataset. The Global-INF consistently outperforms other baseline

approaches studied here.

Overall, results of statistical tests shows that Global-INF approach significantly outper-

forms the best baseline (and hence other baselines) for all the datasets (see Table 3.3).
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(a) µF1 (b) MF1

Figure 3.3: P-values comparison of different approaches for DMOZ-SMALL dataset. Sig-
nificant improvements are denoted by dark black color.

On comparing our two proposed approaches – Global-INF has better performance over

Level-INF. This is because the Level-INF approach strictly enforces some of the nodes to

be flattened from each levels although there f∗n value may be much lower than the other

nodes at different levels in the hierarchy and vice-versa. In contrast, Global-INF approach

takes all nodes f∗n values into consideration while making a decision and hence it determines

a better set of inconsistent nodes. MTA approach has poor performance due to the similar

issues as with Level-INF approach. Performance of level flattening approaches, viz., TLF,

BLF and MLF, suffers because these methods remove the entire level(s) in the hierarchy

and do not take into consideration whether any node in that level is important for HC. TD-

LR approach has the worst performance because of the inconsistent nodes present in the

original hierarchy that are negatively impacting the generalization capabilities of learned

models at the higher levels (see Section 3.6.3), which results in error propogation.

Performance based on Hierarchical Metrics: Hierarchical evaluation metrics hF1

and TE compute errors for misclassified examples based on the definition of a defined

hierarchy. As such, Table 3.4 presents the hF1 and TE score for all TD approaches evaluated

over the original hierarchy and the modified hierarchy (obtained by flattening). We can see

that our proposed approach, Global-INF outperforms other approaches because it is able

to identify a better set of inconsistent nodes. On comparing the classification performance
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Table 3.4: Hierarchical performance comparison of various TD hierarchical baselines against
our proposed approaches over original (experts defined) and modified hierarchy

Dataset Hier.
Hierarchical Baselines Proposed Approaches

TD-LR TLF BLF MLF MTA Level-INF Global-INF
hF1 score (↑)

CLEF
Original 74.52 (0.01) 78.24 (0.75) 75.13 (0.46) X 76.01 (0.74)76.81 (0.59) 79.06 (0.01)
Modified - 77.78 (0.65) 78.08 (0.13) X 77.50 (0.23)78.28 (0.24) 80.87 (0.13)

DIATOMS
Original 56.15 (0.21) 62.53 (0.43) 56.14 (0.17) X 59.60 (0.28)60.03 (0.24) 62.80 (0.04)
Modified - 63.38 (0.24) 57.02 (0.62) X 59.70 (0.14)59.98 (0.28) 63.88 (0.13)

IPC
Original 62.57 (0.32) 64.39 (0.38) 63.00 (0.10) X 63.42 (0.54)63.26 (0.34) 64.73 (0.12)
Modified - 65.48 (0.32) 63.24 (0.41) X 63.14 (0.54)62.52 (0.38) 66.29 (0.28)

DMOZ-SMALL
Original 63.14 (0.54) 63.17 (0.43) 63.26 (0.52) 63.32 (0.64) 63.20 (0.54)61.98 (0.56) 63.37 (0.44)
Modified - 64.32 (0.50) 63.94 (0.38) 63.39 (0.19) 63.82 (0.42)58.02 (0.14) 64.97 (0.75)

DMOZ-2012 Original 73.04 (0.21) 72.70 (0.17) 73.04 (0.28) 70.49 (0.03) 73.03 (0.11)71.41 (0.38) 73.19 (0.02)
TE score (↓)

CLEF
Original 1.26 (0.01) 1.08 (0.08) 1.23 (0.03) X 1.13 (0.09) 1.15 (0.05) 1.04 (0.03)
Modified - 0.89 (0.07) 0.88 (0.04) X 0.90 (0.04) 0.94 (0.01) 0.71 (0.09)

DIATOMS
Original 1.76 (0.01) 1.49 (0.01) 1.76 (0.03) X 1.60 (0.03) 1.60 (0.06) 1.49 (0.02)
Modified - 1.28 (0.02) 1.32 (0.02) X 1.14 (0.06) 1.16 (0.02) 1.08 (0.08)

IPC
Original 2.23 (0.02) 2.12 (0.04) 2.20 (0.01) X 2.22 (0.06) 2.19 (0.01) 2.10 (0.02)
Modified - 1.64 (0.01) 1.58 (0.04) X 1.80 (0.06) 1.83 (0.03) 1.38 (0.02)

DMOZ-SMALL
Original 3.55 (0.04) 3.55 (0.02) 3.53 (0.03) 3.53 (0.06) 3.51 (0.08) 3.65 (0.06) 3.50 (0.02)
Modified - 2.96 (0.05) 2.90 (0.01) 2.62 (0.03) 2.68 (0.03) 2.82 (0.02) 2.37 (0.03)

DMOZ-2010 Original 3.69 (0.03) 3.58 (0.01) 3.68 (0.10) 3.56 (0.08) 3.61 (0.02) 3.74 (0.04) 3.53 (0.01)

Table shows mean and (standard deviation) in bracket across five runs. ’X’ denotes MLF not possi-
ble. Evaluations for DMOZ-2010 and DMOZ-2012 datasets cannot be performed on new hierarchy
as it is not supported by the web-portal. Further, hF1 for DMOZ-2010 and TE score for DMOZ-2012
dataset is not available from the online evaluation system.

over the original hierarchy and the modified hierarchy, we can see that for most of the

approaches classification on modified hierarchy shows an improved performance. This is

because flattening of hierarchies results in the reduction of hierarchical path length for

mis-classified examples contributing to performance improvement.

3.6.2 Empirical Study for Threshold (τ) Selection

Figure 3.4 shows the MF1 performance comparison of flat LR approach against our best

TD approach, Global-INF with varying selection of threshold (τ) in the interval [µ, µ+ 3σ]

(performance deteriorates after µ + 3σ) with step-size 0.1σ for CLEF and DMOZ-SMALL

datasets. We choose these datasets for evaluation because they have different data charac-

teristics. The CLEF dataset is well balanced and does not suffer from the rare categories

issue, whereas DMOZ-SMALL dataset is highly imbalanced and majority of the classes

belong to rare categories (i.e., having ≤ 10 examples) as shown in Figure 3.2. In order
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Figure 3.4: MF1 performance comparison of flat LR approach (marked in dotted red) against
best TD approach, Global-INF (marked in solid blue) with different selection of threshold
(τ) for CLEF and DMOZ-SMALL datasets. Validation data is used for plotting the graph.

to identify the set of inconsistent nodes in the hierarchy, we compare the computed f∗n

value of each internal node with the chosen threshold (τ) and mark the node as inconsistent

iff f∗n > τ . It can be seen from the figure that for CLEF dataset, performance improves

as the threshold (τ) decreases giving intuition that τ should be kept smaller i.e., remov-

ing more internal nodes from the hierarchy (enforcing flat structure) is better and hence

reducing the threshold value τ can possibly lead to better results. However, for the DMOZ-

SMALL dataset, performance first increases and than decreases with maximum performance

achieved at τ = µ+ 1.8σ. This behavior suggests that for imbalanced data distribution with

potentially large number of rare categories, we should generally keep the threshold higher.

It helps to leverage the hierarchical information while reducing error propagation by remov-

ing inconsistent nodes. The best threshold for a specific dataset can be chosen empirically

using a small validation set as done in this study.

To further understand the behavior of modified hierarchy using Global-INF approach,

we analyzed the datasets in terms of level-wise fan-out (# children) in the hierarchy, before

and after removing inconsistent nodes. We can see from the Figure 3.5 that with both

datasets maximum flattening take place at higher levels in the hierarchy, which results in

increased fan-out value. Reason for inconsistencies at higher levels is the presence of many
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(a) CLEF (b) DMOZ-SMALL

Figure 3.5: Total fan-out (# children) at each level for CLEF and DMOZ-SMALL datasets
before and after flattening inconsistent nodes using Global-INF approach.

Table 3.5: Level-wise error for TD-LR and Global-INF approach

Dataset Level TD-LR Global-INF
no. error (↓) # ME error (↓) # ME

CLEF
L-1 21.27 (0.63) 214 20.18 (0.26) 203
L-2 07.71 (0.42) 240 07.34 (0.29) 224
L-3 11.30 (0.16) 274 05.66 (0.13) 227

DMOZ-SMALL

L-1 42.47 (0.32) 789 39.83 (0.17) 740
L-2 14.45 (0.62) 921 12.91 (0.21) 855
L-3 15.14 (0.34) 972 17.99 (0.14) 968
L-4 12.32 (0.02) 1001 07.57 (0.10) 991
L-5 15.66 (0.05) 1020 33.33 (0.04) 992

Table shows mean and (standard deviation) of error rate across five runs. # ME denotes the average
number of misclassified examples upto that level.

dissimilar classes beneath each node, which makes it comparatively difficult to learn gener-

alized classifiers resulting in higher f∗n values (i.e., inconsistent nodes marked for removal).

3.6.3 Level-wise Misclassification Error

Table 3.5 shows the level-wise error analysis that is obtained for TD-LR and our best

approach, Global-INF for CLEF and DMOZ-SMALL datasets. We can see that at higher

levels, the Global-INF approach misclassifies fewer examples (shown in #ME column) that

results in less error propagation down the levels, and hence better overall performance.
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Table 3.6: MF1 and hF1 performance comparison between Global-INF and flat baselines
with varying distribution of training examples per class.

# Train Best Proposed Flat Baselines
Dataset example Global-INF LR ECOC

per class MF1 hF1 MF1 hF1 MF1 hF1

CLEF

6-10 36.12 66.45 35.14 62.34 36.16 63.45
11-50 45.52 76.13 45.92 77.04 45.36 76.40
>50 52.24 84.12 55.92 87.24 53.24 85.90
avg. 46.99 79.00 51.31N80.58 50.02 79.34

DIATOMS

6-10 41.08 48.92 38.92 46.32 39.14 47.44
11-50 42.82 62.72 44.18 62.45 43.82 59.26
>50 53.17 64.10 57.24 68.10 52.21 63.28
avg. 51.85 62.80 54.17N63.50 48.82 61.92

IPC
11-50 43.64 62.45 43.94 60.92 42.98 60.01
>50 47.28 68.70 49.44 68.95 47.21 67.96
avg. 45.65 65.73 45.74 64.00 44.65 61.84

DMOZ-SMALL

≤5 28.77 51.86 27.02 46.81 27.12 47.35
6-10 55.55 67.47 54.76 65.40 54.18 63.28
11-50 72.26 78.74 72.60 80.12 72.02 78.53
>50 69.43 86.70 71.44 88.95 69.80 85.89
avg. 31.86M 63.37 30.80 60.87 30.10 60.50

DMOZ-2010

≤5 18.23 53.59 14.35 48.13 10.46 47.47
6-10 23.03 55.76 22.62 51.84 20.74 49.63
11-50 42.56 62.39 43.26 61.85 41.92 60.44
>50 70.74 77.51 73.20 81.51 68.92 77.18
avg. 28.41M 56.17 27.06 53.94 26.12 49.24

DMOZ-2012

≤5 10.28 50.56 8.78 48.01 7.41 47.14
6-10 20.37 50.71 18.84 48.82 18.32 48.26
11-50 37.19 73.16 37.98 73.24 35.72 72.73
>50 53.20 79.73 55.72 84.92 50.23 78.10
avg. 29.14N 68.24 27.04 66.45 26.64 65.10

CLEF, DIATOMS and IPC datasets does not have any categories with ≤5 examples (≤10
for IPC). The significance-test results are denoted as M for a p-value less than 0.05 and N for
p-value less than 0.01. Wilcoxon rank test is used for statistical evaluation of MF1 scores.
Tests are between Global-INF and best flat, LR approach.

This experiment supports our hypothesis that Global-INF approach identifies better set of

inconsistent nodes that helps in minimizing the error propagation. Results for other TD

baselines are not shown in the work for brevity.
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(a) Small Datasets (b) Large Datasets

Figure 3.6: Prediction runtime comparison (in mins) between Global-INF and LR approach.
Image datasets have small difference hence omitted.

3.6.4 Comparison to Flat Baselines

Table 3.6 shows the MF1 and hF1 performance comparison of our best approach, Global-

INF against flat baselines – LR and ECOC approach. For easier analysis, we have showed

the results for datasets separated by varying distribution of training size (for evaluating

DMOZ-2010 and DMOZ-2012 datasets we have used a separate held out dataset because

we don’t know the actual labels of test dataset from the online evaluation). We show the

results for MF1 because it gives equal importance to all the classes while evaluation and

hence provides better essence of the results for datasets with skewed distribution. For com-

puting hF1, we have used the original hierarchy for consistent evaluation. As we can see

from the table, the LR approach outperforms Global-INF approach for CLEF, DIATOMS

and IPC datasets because these datasets are well balanced and have smaller number of cate-

gories. However, for the DMOZ datasets, our approach Global-INF has better performance

because hierarchical structure provides useful information for categorizing classes with rare

categories. Within the DMOZ datasets, rare categories make up more than 75% of the

classes as shown in Figure 3.2. The ECOC approach has the worst performance because

the codewords used in our experiments are chosen randomly and merging of categories may

require nonlinear discriminants instead of the linear classifiers used in this work.
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Table 3.7: Total training runtime comparison (in mins) between Global-INF and LR ap-
proach

CLEF DIATOMS IPC DMOZ-SMALL DMOZ-2010 DMOZ-2012

Global-INF 3 10 830 68 25,462 63,000
LR 1 3 658 46 15,248 46,124

3.6.5 Computational Run Time

Although, the flat LR approach outperforms Global-INF approach for some datasets in

terms of classification performance, their prediction runtime is significantly higher and it

can be untenable for large-scale problems [6, 44]. The prediction runtime comparison of

Global-INF and LR approach is shown in Figure 3.6. As expected, Global-INF approach has

comparatively lower prediction runtime (upto 4x improvement). The difference is significant

for large-scale datasets (DMOZ-2010 and DMOZ-2012). For completeness, we also report

the total training runtime in Table 3.7. The Global-INF approach has higher training

runtime due to the overhead involved with classifiers re-training after hierarchy modification

and also involves training one-vs-rest binary classifiers for internal nodes in addition to leaf

categories. Nevertheless, both flat and TD approaches are trivially parallelizable due to

decoupling (i.e., no interactions) between the classifiers learnt at different nodes n in the

hierarchy. For reporting training runtime, we trained classifiers in parallel across multiple

compute nodes in the cluster and sum up the time taken at each node. In our experiments,

we choose expensive one-vs-rest binary classifiers over comparably cheaper one-vs-sibling

binary classifiers because our preliminary experiments showed better results with one-vs-

rest approach. It should also be noted that there is no significant difference between the

prediction and training runtime of different TD approaches, and hence we do not report

them here.
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3.7 Summary

In this work we proposed two different approaches for hierarchy modification that restruc-

tures the hierarchy by flattening most prominent set of inconsistent nodes, thereby im-

proving the hierarchy representation which is more suited for HC. Performance evaluation

on wide range of datasets over the proposed modified hierarchy shows improved classifi-

cation results because fewer examples are misclassified at higher levels, resulting in less

error propagation. Comparison of our proposed approach with the competitive hierarchy

modification approaches in the literature showed significant performance improvement sup-

porting the hypothesis that our approach identifies the better set of inconsistent nodes. We

also performed experiments to compare our approach with the flat approach with varying

distribution of training examples per categories. Results demonstrated the usefulness of

leveraging hierarchical information for classifying classes with fewer training examples.
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Chapter 4: Improving Large-scale Hierarchical Classification

by Rewiring

4.1 Introduction

Top-down HC methods that leverage the hierarchy during the learning and prediction pro-

cess are effective approaches to deal with large-scale problems [36]. Classification decision

for top-down methods involves invoking only the models in the relevant path within the

hierarchy. Though computationally efficient, these methods have higher number of misclas-

sifications due to error propagation [2]. For several benchmarks, the HC approaches are

outperformed by flat classifiers that ignore the hierarchy [20, 39]. In majority of the cases,

the hierarchy available for training classifiers is manually designed by experts based on do-

main knowledge and is not consistent for classification. In order to improve performance,

we need to restructure the hierarchy to make it more favorable and useful for classifica-

tion. Motivated by this idea, our main focus in this work is on generating an improved

representation from the expert-defined hierarchy. To summarize, our contributions are as

follows:

• We propose an efficient data-driven filter based rewiring approach for hierarchy mod-

ification which unlike previous wrapper based approaches [27, 29] does not require

multiple, expensive computations. Our approach is scalable and can be applied to the

HC problems with high-dimensional features, large number of classes and examples.

• We perform extensive empirical evaluations and case studies to show the strengths

of our approach in comparison to other hierarchy modification approaches such as

clustering and flattening.

• The modified hierarchy can be used with any hierarchical classification approaches like

top-down HC or state-of-the-art approaches incorporating hierarchical relationships
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[53]. The modified hierarchy in conjunction with a scalable Top-Down HC approach

outperforms the flat classifiers on ∼65% of the rare categories (i.e., classes with less

than 10 training examples) across the DMOZ datasets (See Section 4.5.5).

4.2 Related Work

Our work is closely related to the rewiring approach developed in Tang et al. [27], where

the expert-defined hierarchy is gradually modified. Iteratively, a subset of the hierarchy is

modified and evaluated for classification performance improvement using the HC learning

algorithm. Modified changes are retained if the performance results improve; otherwise the

changes are discarded and the process is repeated. This repeated procedure of hierarchy

modification continues until the optimal hierarchy is reached. Expensive evaluation at each

step makes this approach intractable for large-scale datasets. Another drawback of this

approach is deciding which branch of the hierarchy to explore first (for modification) and

which elementary operation (promote, demote, merge) to apply at each step. Other work

in similar direction can be found in [28,29].

Earlier studies focused on flattening based approaches where some level or nodes are

selectively flattened (removed) based on certain criterion [30–32]. In other work, learning

based approach have been proposed [4], where nodes to flatten are decided based on clas-

sification performance improvement on a validation set. This approach although useful for

smaller datasets, is not scalable due to the expensive evaluation process after each node

removal. Recently, Naik et al. [2] proposed a taxonomy adaptation where some nodes are

intelligently flattened based on empirically defined cut-off threshold and objective function

values computed at each node. Hierarchy modification using this approach is scalable and

beneficial for classification and has been theoretically justified [46].

Other approaches towards hierarchy modification involves generating hierarchy from

scratch, ignoring the expert-defined hierarchy. These approaches exploit hierarchical clus-

tering algorithms for generating the hierarchy [1, 54–56]. Constructing hierarchy using
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clustering approaches is not popular due to its sensitivity to predefined parameters such as

number of levels.

4.3 Methods

4.3.1 Motivation

The manual process of hierarchy creation suffers from various issues. Specifically, (i) Hier-

archies are generated by grouping semantically similar categories under a common parent

category. However, many different semantically sound hierarchies may exist for same set

of classes. For example, in categorizing products, the experts may generate a hierarchy by

first separating products based on the company name (e.g., Apple, Microsoft) and then the

product type (e.g., phone, tablet) or vice-versa. Both hierarchies are equally good from

the perspective of an expert. However, these different hierarchies may lead to different

classification results. (ii) Apriori it is not clear to domain experts when to generate new

nodes (hierarchy expansion) or merge two or more nodes (link creation) while creating hi-

erarchies, resulting in a certain degree of arbitrariness. (iii) A large number of categories

pose a challenge for the manual design of a consistent hierarchy. (iv) Dynamic changes may

require hierarchical restructuring.

To remove inconsistencies, various approaches for hierarchy modification have been pro-

posed. These approaches can be broadly categorized into two categories: (i) Flattening

approaches [2,4,30–32] where some of the identified inconsistent nodes (based on error rate,

classification margins) are flattened (removed) and (ii) Rewiring approaches [27–29] where

parent-child relationships within the hierarchy are modified to improve the classification

performance. Clustering based methods have also been adapted in some of these studies

[1, 54] where consistent hierarchy is generated from scratch using agglomerative or divisive

clustering algorithms. A summary of the various existing methods and their characteristics

is shown in Table 4.1.

To understand the qualitative difference between hierarchy generated using various
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(a) Expert-defined Hierarchy (b) Clustered Hierarchy

(c) Flattened Hierachy (d) Rewired Hierachy

Figure 4.1: (a) Expert-defined hierarchy (classes with high degree of similarities are marked
with symbols F,  ) modified using various methods: (b) Agglomerative clustering with
cluster cohesion to restrict the height to original height [1] (c) Global-INF flattening method
[2] (d) Proposed rewiring method. Modified structure changes are shown in green color.
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Table 4.1: The summary review of existing taxonomy modification methods and their char-
acteristics.

Modification Method Approach Type Scalable

Margin-based modification [30] Flattening Filter X
Level flattening [31] Flattening Filter X
Inconsistent node flattening [2] Flattening Filter X
Learning based algorithm [4] Flattening Wrapper ×
Agglomerative clustering [1] Clustering Wrapper ×
Divisive clustering [54] Clustering Wrapper ×
Optimal hierarchy search [27] Rewiring Wrapper ×
Genetic based algorithm [29] Rewiring Wrapper ×
Our proposed approach:
Similarity based modification Rewiring Filter X

approaches, we performed experiments on the smaller newsgroup1 dataset containing 20

classes. Figure 4.1(b)-(d) shows the hierarchy structure obtained using clustering, flat-

tening and rewiring based approaches, respectively. Hierarchy generated using clustering

completely ignores the expert-defined hierarchy information, which contains valuable prior

knowledge for classification [27]. Flattening approaches cannot group together the classes

from different hierarchical branches (for e.g, soc.religion.christian and religion.misc). On the

contrary, the rewiring approaches provide the flexibility of grouping classes from different

sub-branches. More details about Figure 4.1 are discussed later in a case study (Section

4.5.1).

4.3.2 Proposed Rewiring Approach

Wrapper based approaches [27–29] modify the hierarchy by making one or few changes,

which are then evaluated for classification performance improvement using the HC learning

algorithm. Modified changes are retained if the performance results improve; otherwise the

changes are discarded and the process is repeated. This repeated procedure of hierarchy

modification continues until the optimal hierarchy that satisfies certain criteria is reached.

As such, wrapper approaches are not scalable for large datasets.

1http://qwone.com/sim jason/20Newsgroups/
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Algorithm 3: rewHier Algorithm
Data: Original Hierarchy H, input-output (xi, yi)
Result: Modified Hierarchy HM

1 /* Initialization */

2 HM = H;

3 /* Ist step: Grouping Similar Classes Pair */

4 Compute cosine similarity between all possible class pairs.

5 /* similar class grouping */

6 Identify the most similar class pairs with similarity scores value greater than empirically defined threshold

parameter τ . Let |c| denotes the number of such pairs represented by the set S = {s1, s2, . . . , s|c|}, where i-th

pair si is represented using (s
(1)
i , s

(2)
i ).

7 /* IInd step: Inconsistency Identification and Correction */

8 for i = 1 to |c| do

9 rewire[1] = 1; /* check if rewiring is needed for s
(1)
i */

10 rewire[2] = 1; /* check if rewiring is needed for s
(2)
i */

11 /* Inconsistent pair check */

12 if π(s
(1)
i ) 6= π(s

(2)
i ) then

13 /* check similarity to all siblings */

14 foreach j ∈ ζ(s
(1)
i ) do

15 if
(
(j, s

(2)
i ) or (s

(2)
i , j)

)
/∈ S then

16 rewire[2] = 0;

17 break;

18 end

19 end

20 foreach j ∈ ζ(s
(2)
i ) do

21 if
(
(j, s

(1)
i ) or (s

(1)
i , j)

)
/∈ S then

22 rewire[1] = 0;

23 break;

24 end

25 end

26 if (rewire[1] == 0) and (rewire[2] == 0) then
27 /* perform node creation */

28 Nnew = φ /* create new node */

29 [HM ] = NC(Nnew→lca(si), si→Nnew,HM );

30 /* lca denotes lowest common ancestor */

31 else
32 if (rewire[1] == 1) then

33 [HM ] = PCRewire(s
(1)
i →π(s

(2)
i ),HM );

34 else

35 [HM ] = PCRewire(s
(2)
i →π(s

(1)
i ),HM );

36 end

37 end

38 end

39 end

40 /* perform node deletion */

41 [HM ] = ND(HM );

42 return HM

We propose an efficient data-driven filter based rewiring approach where the hierarchy

is modified based on certain relevance criterion (pairwise sibling similarity) between the
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different classes within the hierarchy. Our approach is single step and do not require ex-

perimental evaluation for multiple iterations. We refer to our proposed rewiring approach

as rewHier. Algorithm 3 illustrates our approach for hierarchy modification. Specifically,

it consists of two steps:

(i) Grouping Similar Classes Pairs - To ensure classes with high degree of similarity

are grouped together under the same parent node in the modified taxonomy, this step

identifies the similar classes pairs that exist within the expert-defined hierarchy. Pairwise

cosine similarity is used as the similarity measure in our experiments because it is less prone

to the curse of dimensionality [57]. Once the similarity scores are computed, we determine

the set S of most similar pairs of classes using an empirically defined cut-off threshold τ for

a dataset (detailed analysis regarding τ selection is discussed in Section 4.5.4). For example,

in Figure 4.1(a) this step will group together the class pairs with high similarity scores such

as S =
[
(religion.misc, soc.religion.christian), (electronics, windows.x), (electronics, graphics),

···
]
.

Pairwise similarity computation between different classes is one of the major bottlenecks

of this step. To make it scalable, we distribute the similarity computation across multiple

compute nodes.

(ii) Inconsistency Identification and Correction - To obtain the consistent hierar-

chy, we group together each of the similar class pairs to a common parent node. Iteratively,

starting from the most similar class pairs we check for potential inconsistencies i.e., if the

pairs of classes are in different branches (sub-trees). In order to resolve the identified in-

consistencies we take corrective measures using three basic elementary operations: (i) node

creation, (ii) parent-child rewiring and (iii) node deletion. Figure 4.2(b)-(d) illustrates the

various hierarchical structures that are obtained after the execution of these elementary

operations on the expert-defined hierarchy in Figure 4.2 (a).

Node Creation (NC) - This operation groups together the identified similar class

pairs in different branches (sub-trees) of the hierarchy using a new node, with parent as the

lowest common ancestors of similar classes. Figure 4.2(b) illustrates this operation where
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(a) Expert-defined Hierarchy (b) Node Creation (D)

(c) Parent-child Rewiring (6) (d) Node Deletion (B)

Figure 4.2: Modified hierarchical structures (b)-(d) obtained after applying elementary
operations to expert-defined hierarchy (H). Leaf nodes are marked with ‘rectangle’ and
structural changes are shown by red color.

the similar class pairs 5 and 6 are grouped together by the newly created node D. This

operation is used only when a proper subset of the leaf nodes from different branches are

similar (i.e., not similar to all leaf nodes in the branch; otherwise the parent-child rewiring

operation is used).

Parent-child Rewiring (PCRewire) - As shown in Figure 4.2(c), this operation sim-

ply assigns (rewires) the leaf node from one parent to another parent node in the hierarchy.

It is useful when the leaf node is identified to be similar to all the sibling leaf nodes within

the given hierarchy branch. For example, in Figure 4.2(c), if the computed similarity score

determines the leaf node 6 to be more similar to nodes 3, 4 and 5 in comparison to its

current siblings 7 and 8, than it is more desirable from a classification perspective to assign
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6 as node B child rather than C.

Node Deletion (ND) - This refers to deletion of nodes in the hierarchy that are deemed

useless for classification. In Figure 4.2(d), node B is deleted because there are no leaf nodes

that can be classified by node B. This operation is used as a post-processing step in our

algorithm to refine the hierarchy.

The rewHier algorithm determines (outer for loop) the best corrective measures (node

creation or parent-child rewiring) that need to be taken. Once all the inconsistencies have

been addressed, rewHier calls the node deletion procedure as a final modification step

where unnecessary nodes are deleted. The modified hierarchy obtained after inconsistencies

removal can be used to train any classifier.

4.3.3 Top-Down Hierarchical Classification

We propose to use the Top-Down HC approach with our modified hierarchies because it

scales well during training and prediction. Specifically, we train binary one-vs-rest classifiers

for each of the nodes n ∈ N — to discriminate its positive examples from the examples of

other nodes (i.e. negative examples) in the hierarchy. In this work, we use logistic regression

(LR) as the underlying base model for training [6]. The LR objective uses logistic loss

to minimize the empirical risk and squared l2-norm term (denoted by || · ||22) to control

model complexity and prevent overfitting. The objective function fn for training a model

corresponding to node n is provided in eq. (4.1).

fn = min
wn

[
C

N∑
i=1

log
(
1 + exp

(
−yn(i)wT

nx(i)
))

+
1

2
‖wn‖22

]
(4.1)

For each node n in the hierarchy, we solve eq. (4.1) to obtain the optimal weight vector

denoted by wn. The complete set of parameters for all the nodes [wn]n∈N constitutes the

learned model for top-down classifier.

For a test example with feature vector x(i), the top-down classifier predicts the class label
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Table 4.2: Dataset statistics.

Dataset
Total Leaf

Levels Train Test Features
Nodes Nodes

CLEF 88 63 3 10000 1006 80
DIATOMS 399 311 3 1940 993 371
IPC 553 451 3 46324 28926 1123497
DMOZ-SMALL 2388 1139 5 6323 1858 51033
DMOZ-2010 17222 12294 5 128710 34880 381580
DMOZ-2012 13963 11947 5 383408 103435 348548

ŷ(i) ∈ L as shown in eq. (4.2). Essentially, the algorithm starts at the root and recursively

selects the best child node until it reaches a terminal node which is the predicted label.

ŷ(i) =



initialize p := root

while p /∈ L

p := argmaxq∈C(p) fq(x(i))

return p


(4.2)

4.4 Experimental Protocol

4.4.1 Datasets

We have used an extensive set of datasets for evaluating the performance of our proposed

rewiring approach. Various statistics of the datasets used are listed in Table 4.2. CLEF

[48] and DIATOMS [49] are image datasets and the rest are text datasets. IPC2 is a

collection of patent documents and the DMOZ datasets are an archive of web-pages available

from LSHTC3 challenge website. For evaluating the DMOZ-2010 and DMOZ-2012 datasets

we use the provided test split. The results reported for these two benchmarks are blind

prediction (i.e., we do not know the ground truth labels for the test set) obtained from

2http://www.wipo.int/classifications/ipc/en/
3http://lshtc.iit.demokritos.gr/
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the web-portal interface4,5. For all text datasets we apply the tf-idf transformation with

l2-norm normalization on the word-frequency feature vector.

4.4.2 Methods for Comparison

Hierarchical Methods

Based on the hierarchy used during the training process, we use the following methods for

comparison.

Top-Down Logistic Regression (TD-LR): Expert-defined hierarchy provided by do-

main experts is used for training the classifiers.

Clustering Approach: Hierarchy generated using agglomerative clustering is used.

For evaluation, we have restricted the height of clustered hierarchy to the original height

by flattening using cluster cohesion [1].

Global Inconsistent Node Flattening (Global-INF) [2]: Hierarchy is modified by

flattening (removing) the inconsistent nodes based on optimal optimization objective value

obtained at each node (eq. (4.1)) and empirically defined global cut-off threshold.

Optimal Hierarchy Search [27]: Optimal hierarchy is identified in the hierarchical

space by gradually modifying the expert-defined hierarchy using elementary operations –

promote, demote and merge. For reducing the number of operations (and hence hierarchy

evaluations), we have restricted the modification to the hierarchy branches where we en-

countered the maximum classification errors. This modified approach is referred as T-Easy.

In the original paper [27], the largest evaluated dataset has 244 classes and 15795 instances.

Flat Method

The hierarchy is ignored and binary one-versus-rest l2-regularized LR classifiers are trained

for each of the leaf categories. The prediction decision for unlabeled test instances is based

on the maximum prediction score achieved across the several leaf categories classifiers.

4http://lshtc.iit.demokritos.gr/node/81
5http://lshtc.iit.demokritos.gr/LSHTC3 oracleUpload
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State-of-the-art Cost-sensitive Learning [53]

Similar to flat method but with cost value associated with each instance in the loss function

as shown in eq. (4.3). This approach is referred as HierCost and for evaluations we have

used the best cost function “exponential tree distance (ExTrD)” proposed in the paper.

fn = min
wn

[
C

N∑
i=1

σi log
(
1 + exp

(
−yn(i)wT

nx(i)
))

+
1

2
‖wn‖22

]
(4.3)

where σi is the cost value assigned to example i.

4.4.3 Experimental Details

To make the experimental results comparable to previously published results we use the

same train-test split as provided by the public benchmarks. In all the experiments we di-

vide the training dataset into train and a small validation dataset in the ratio 90:10. The

final reported testing performance is done on an independent held-out dataset as provided by

these benchmarks. The model is trained by choosing the misclassification penalty parameter

C in the set
[
0.001, 0.01, 0.1, 1, 10, 100, 1000

]
. The best parameter selected using a valida-

tion set is used to retrain the models on the entire training set. For our proposed rewiring

approach, we compute the pairwise similarities between classes using the entire training

dataset. Additionally, we use the liblinear solver6 for optimization in all the experiments.

The source code is made available at our website: http://cs.gmu.edu/∼mlbio/TaxMod

6http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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Table 4.3: µF1 and MF1 performance comparison using different hierarchy modification
approaches on newsgroup dataset. Table shows mean and (standard deviation) in bracket
across five runs.

TD-LR
Clustering [1] Flattening [2] Proposed

Metric Agglomerative Global-INF rewHier
[Figure 4.1(a)] [Figure 4.1(b)] [Figure 4.1(c)] [Figure 4.1(d)]

µF1(↑) 77.04 (0.18) 78.00 (0.09) 79.42 (0.12) 81.24 (0.08)
MF1(↑) 77.94 (0.04) 78.20 (0.01) 79.82 (0.07) 81.94 (0.04)

4.5 Discussion and Results

4.5.1 Case Study

To understand the quality of different hierarchical structures (expert-defined, clustered,

flattened and rewired) for the newsgroup dataset shown in Figure 4.1, we perform top-

down HC using each of the hierarchy, separately. The dataset has 11269 training instances,

7505 test instances and 20 classes. We evaluate each of the hierarchy by randomly selecting

five different sets of training and test split in the same ratio as original dataset.

The results of classification performance is shown in Table 4.3. We can see that using

these modified hierarchies substantially improves the classification performance in com-

parison to the baseline expert-defined hierarchy. On comparing the clustered, flattened

and proposed rewired hierarchies, the classification performance obtained from using the

rewired hierarchy is found to be significantly better than the flattened and clustered hier-

archy. This is because rewired hierarchy can resolve inconsistencies by grouping together

the classes from different hierarchical branches.

4.5.2 Evaluating Rewiring Approaches

Performance based on Flat Metrics

Table 4.4 shows the µF1 and MF1 performance comparison of rewiring approaches against

expert-defined, clustered and flattened hierarchy baselines. The rewiring approaches consis-

tently outperform other baselines for all the datasets across all metrics. For image datasets,
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Table 4.4: µF1 and MF1 performance comparison using different hierarchy modification
approaches.

Dataset
Evaluation

TD-LR
Agglomerative Flattening Rewiring Methods

Metrics Clustering [1] Global-INF [2] T-Easy [27] rewHier

CLEF
µF1(↑) 72.74 73.24 77.14 78.12 78.00
MF1(↑) 35.92 38.27 46.54 48.83N 47.10N

DIATOMS
µF1(↑) 53.27 56.08 61.31 62.34N 62.05N
MF1(↑) 44.46 44.78 51.85 53.81N 52.14N

IPC
µF1(↑) 49.32 49.83 52.30 53.94M 54.28M
MF1(↑) 42.51 44.50 45.65 46.10M 46.04M

DMOZ-SMALL
µF1(↑) 45.10 45.94 46.61 NS 48.25M
MF1(↑) 30.65 30.75 31.86 NS 32.92N

DMOZ-2010
µF1(↑) 40.22 NS 42.37 NS 43.10
MF1(↑) 28.37 NS 30.41 NS 31.21

DMOZ-2012
µF1(↑) 50.13 NS 50.64 NS 51.82
MF1(↑) 29.89 NS 30.58 NS 31.24

N (M) indicates that improvements are statistically significant with 0.01 (0.05) significance
level. We have used sign-test and non- parameteric wilcoxon rank test for statistical eval-
uation of µF1 and MF1 scores, respectively. Test are performed between rewiring methods
and the best baseline, Global-INF. These statistical tests are not performed on DMOZ-
2010 and DMOZ-2012 datasets because we do not have access to true labels from the online
evaluation system. ‘NS’ denotes Not Scalable.

the relative performance improvement is larger with performance improvement up to ∼11%

using MF1 scores in comparison to the baseline TD-LR method.

In Table 4.4 results with p-values < 0.01 and < 0.05 are denoted by N and M, respectively.

We compute the sign-test for µF1 [52] and non-parametric wilcoxon rank test for MF1

comparing the F1 scores obtained per class for the rewiring methods against the best baseline

i.e. Global-INF. Both, the rewiring approaches significantly outperform the Global-INF

method across the different datasets.

The proposed rewHier approach shows competitive classification performance in com-

parison to the T-Easy approach. For smaller datasets, the T-Easy approach has better

performance because it searches for the optimal hierarchy in the hierarchical space. How-

ever, the main drawback of the T-Easy approach is that it requires computationally ex-

pensive learning-based evaluations for reaching the optimal hierarchy making it intractable

for large, real-world classification benchmarks such as DMOZ (See detailed discussion in

Runtime Comparison).
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Table 4.5: hF1 performance comparison over expert-defined and new modified hierarchy.
For DMOZ-2010 dataset hF1 score is not available from the online evaluation system and
for DMOZ-2012 dataset modified hierarchy is not supported.

Dataset
Hierarchy Flattening Rewiring Methods

used Global-INF T-Easy [27] rewHier

CLEF
Original 79.06 81.43 80.14
Modified 80.87 81.82 81.28

DIATOMS
Original 62.80 64.28 63.24
Modified 63.88 66.35 64.27

IPC
Original 64.73 67.23 68.34
Modified 66.29 68.10 68.36

DMOZ-SMALL
Original 63.37 NS 66.18
Modified 64.97 NS 66.30

DMOZ-2012 Original 73.19 NS 74.21

Performance based on Hierarchical Metrics

Hierarchical evaluation metrics such as hF1 computes errors for misclassified examples based

on the definition of a defined hierarchy. Table 4.5 shows the hF1 score for the best baseline

method, Global-INF and the rewiring methods evaluated over the original and the modified

hierarchy. The rewiring methods shows the best performance for all the datasets because it is

able to restructure the hierarchy based on the dataset that is better suited for classification.

Runtime Comparison

In Table 4.6 we compare the training times of the different models. For training, we learn

the models in parallel for different classes using multiple compute nodes which are then

combined to obtain the final runtime. For our proposed rewiring approach we also compute

the similarity between different classes in parallel. We can see from Table 4.6 that TD-LR

takes the the least time as there is no overhead associated with modifying the hierarchy;

followed by the Global-INF model which requires retraining of models after hierarchy flat-

tening. Rewiring approaches are most expensive because of the compute intensive task of

either performing similarity computation in our proposed approach or multiple hierarchy

evaluations using the T-Easy approach. The T-Easy method takes the longest time due
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Table 4.6: Total training time (in mins).

Dataset
Baseline Flattening Rewiring Methods
TD-LR Global-INF T-Easy [27] rewHier

CLEF 2.5 3.5 59 7.5
DIATOMS 8.5 10 268 24
IPC 607 830 26432 1284
DMOZ-SMALL 52 65 NS 168
DMOZ-2010 20190 25600 NS 42000
DMOZ-2012 50040 63000 NS 94800

Table 4.7: Number of elementary operation executed for rewiring approaches.

# Executed elementary operation Dataset
for hierarchy modification CLEF DIATOMS IPC

T-Easy [27]
52 156 412

(promote, demote, merge)

proposed rewHier method
25 34 42

(NC, PCRewire, ND)

to large number of expensive hierarchy evaluations after each elementary operations until

the optimal hierarchy is reached. Table 4.7 shows the number of elementary operations

executed using the T-Easy and the rewHier approach. We can see that T-Easy approach

performs large number of operations even for smaller datasets (for e.g., 412 operations for

IPC datasets in comparison to 42 for the rewHier).

4.5.3 Effect of varying the Training Size

Figure 4.3 shows the MF1 comparison of rewiring approaches with Global-INF approach

on CLEF and DMOZ-SMALL datasets with varying percentage of training size. For both

datasets we can see that rewiring approaches outperform the flattening approaches. For

the CLEF dataset with smaller training percentage, the rewHier approach has better per-

formance. The reason for this behavior might be the over-fitting of the optimal hierarchy

with the training data in case of T-Easy approach, which results in poor performance on

unseen examples. For training dataset with enough examples as expected, T-Easy method
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Figure 4.3: MF1 performance comparison of rewiring approaches with best method, Global-
INF, with varying % of training size. T-Easy approach is not scalable for DMOZ-SMALL
dataset.

Figure 4.4: Sorted cosine similarity scores for DMOZ-SMALL dataset.

gives the best performance but at the cost of expensive runtime. We cannot run T-Easy on

the larger DMOZ datasets.

4.5.4 Threshold (τ ) Selection to Group Similar Classes Pairs

Figure 4.4 shows the sorted (descending order) class pairs cosine similarity scores for DMOZ-

SMALL dataset. We can see that similarity scores become nearly constant after 1000 pairs

(and drops further after 6000, not shown in the Figure) that does not provide any interesting

similar classes grouping information for taxonomy modification. As such, for this dataset

choosing threshold as the similarity score of the 1000-th class pair is a reasonable choice. A
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Figure 4.5: Percentage of rare categories (≤10 examples per class) classes improved over
flat method.

similar approach to determine the threshold is applied for other datasets as well.

4.5.5 Improvement over Flat and State-of-the-art Approaches

Figure 4.5 presents the percentage of classes improved for TD-LR and HierCost HC ap-

proaches in comparison to the flat approach on DMOZ datasets containing rare categories

i.e., less than 10 training examples. For the DMOZ-2010 and DMOZ-2012 benchmarks we

use a separate held out test dataset since, we do not have the true labels for the provided

test set used for the online competition. From Figure 4.5 we observe that both the HC

approaches outperforms the flat approach irrespective of the hierarchy being used. Rare

categories benefit from the utilization of hierarchical relationships, and using the hierarchy

improves the accuracy of HC. Moreover, use of rewHier to train the TD-LR and HierCost ap-

proaches improves the classification performance in comparison to using the expert-defined

hierarchy. Further, the HierCost approach consistently outperforms the TD-LR approach

because HierCost penalizes the misclassified instances based on the assignment within the

hierarchy. (Interested researcher can find more comprehensive results in the supplementary

material).

In terms of prediction runtime, the TD approaches outperform the flat and HierCost
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approaches. The flat and HierCost models invoke all the classifiers trained for the leaf

nodes to make a prediction decision. For the DMOZ-2012 dataset, the flat and HierCost

approaches take ∼220 minutes for predicting the labels of test instances, whereas the TD-LR

model is 3.5 times faster on the same hardware configuration.

4.6 Summary

We propose a data-driven filter based rewired approach for hierarchy modification that is

more suited for HC. Our method is robust and can be adapted to work in conjunction with

any state-of-the-art HC approaches in the literature that utilize hierarchical relationships.

Irrespective of the classifiers being trained, our modified hierarchy consistently gives better

performance over use of clustering or flattening to modify the original hierarchy. In compar-

ison to previous rewiring approaches, our method gives competitive results with much better

runtime performance that allow HC approaches to scale to significantly large datasets (e.g.,

DMOZ). Further, experiments on datasets with skewed distribution shows the effectiveness

of our proposed method in comparison to flat and state-of-the-art methods, especially for

classes with rare categories.
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Chapter 5: Large-scale Hierarchical Classification with

Feature Selection

5.1 Introduction

Many large-scale HC approaches have been developed in past to deal with the various “big

data” challenges by: (i) Training faster models, (ii) Quickly predicting class-labels and (iii)

Minimizing memory usage. For example, Gopal et al. [13] proposed the log-concavity bound

that allows parallel training of model weight vectors across multiple computing units. This

achieves significant speed-up along with added flexibility of storing model weight vectors

at different units. However, the memory requirements is still large (∼26 GB for DMOZ-

2010 dataset) which requires complex distributed hardware for storage and implementation.

Alternatively, Map-Reduce based formulation of learning model is introduced [6, 16] which

is scalable but have software/hardware dependencies that limits the applicability of this

approach.

To minimize the memory requirements, one of the popular strategy is to incorporate

the feature selection in conjunction with model training [9, 58]. The main intuition behind

these approaches is to squeeze the high-dimensional features into lower dimensions. This

allows the model to be trained on low-dimensional features only; significantly reducing the

memory usage while retaining (or improving) the classification accuracy. This is possible

because only subset of features are beneficial to discriminate between classes at each node

in the hierarchy. For example, to distinguish between sub-class ‘Chemistry’ and ‘Physics’

that belongs to class ‘Science’ features like chemical, reactions and acceleration are im-

portant whereas features like coach, memory and processor are irrelevant. HC methods

that leverage the structural relationship shows improved classification performance but are

computationally expensive [6, 8, 44].
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Figure 5.1: Figure demonstrating the importance of feature selection for HC. Green color
(sticky note) represents the top five best features selected using gini-index feature selection
method at each internal node. Internal nodes are represented by orange color (elliptical
shape) and leaf nodes are represented by blue color (rectangular shape).

In this work, we study different filter-based feature selection methods for solving large-

scale HC problem. Feature selection serves as the preprocessing step in our learning frame-

work prior to training models. Any methods developed for solving HC problem can be

integrated with the selected features, providing flexibility in choosing the HC algorithm of

our choice along with computational efficiency and storage benefits. Based on procedure

followed for selecting relevant number of features at each node, we propose two different

formulations: (i) Global feature selection (Global-FS) and (ii) Adaptive feature selection

(Adaptive-FS). Experimental analysis on various real world datasets across different do-

mains demonstrates the utility of the feature selection over full set of high-dimensional

features. Further, we also investigate the effect of feature selection in classification perfor-

mance when the number of labeled instances per class is low.
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5.2 Related Work

There have been several studies focused on feature selection methods for the flat classi-

fication problem [59–64]. However, very few work emphasize on feature selection for HC

problem that are limited to small number of categories [65, 66]. Figure 5.1 demonstrates

the importance of feature selection for hierarchical settings where only the relevant features

are chosen at each of the decision (internal) nodes. More details about the figure will be

discussed in Section 5.5 (Case Study).

Feature selection aims to find a subset of highly discriminant features that minimizes

the error rate and improve the classifier performance. Based on the approach adapted

for selecting features two broad categories of feature selection exist, namely, wrapper and

filter-based methods. Wrapper approaches evaluate the fitness of the selected features

using the intended classifier. Although many different wrapper-based approaches have been

proposed, these methods are not suitable for large-scale problems due to the expensive

evaluation needed to select the subset of features [59]. On the contrary, filter approaches

select the subset of features based on the certain measures or statistical properties that does

not require the expensive evaluations. This makes the filter-based approaches a natural

choice for large-scale problem. Hence, in this work we have focused on various filter-based

approaches for solving HC problem (discussed in Section 5.3.2). In literature, third category

referred as embedded approaches have also been proposed which are a hybrid of the wrapper

and filter methods. However, these approaches have not been shown to be efficient for large-

scale classification [59] and hence, we do not focus on hybrid methods.

To the best of our knowledge this is the first work that performs a broad study of

filter-based feature selection methods for HC problem.
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5.3 Methods

5.3.1 Model Learning

Given a hierarchy H, we train multi-class classifiers for each of the internal nodes n ∈ N in

the hierarchy— to discriminate between its children nodes C(n). In this work, we have

used Logistic Regression (LR) as the underlying base model for training [6]. The LR

objective uses logistic loss to minimize the empirical risk and l1-norm (denoted by
∣∣∣∣ · ∣∣∣∣

1
) or

squared l2-norm term (denoted by
∣∣∣∣·∣∣∣∣2

2
) to control model complexity and prevent overfitting.

Usually, l1-norm encourages sparse solution by randomly choosing single parameter amongst

highly correlated parameters whereas l2-norm jointly shrinks the correlated parameters. The

objective function Ψc
n for training a model corresponding to c-th child of node n is provided

in eq. (5.1).

Ψc
n = min

wcn

[
λ

T (n)∑
i=1

log
(

1 + exp
(
−ycn(i)

(
wc
n

)T
x(i)

))
+R

(
wc
n

)]
(5.1)

where λ > 0 is a mis-classification penalty parameter, T (n) denotes the set of training

instances considered at node n and R
(
.
)

denotes the regularization term given by eq. (5.2).

R
(
wc
n

)
=



∣∣∣∣wc
n

∣∣∣∣1
1
, l1 − norm

OR∣∣∣∣wc
n

∣∣∣∣2
2
, l2 − norm


(5.2)

For each child c of node n within the hierarchy, we solve eq. (5.1) to obtain the optimal

weight vector denoted by wc
n. The complete set of parameters for all the children nodes Wn

= [wc
n]c∈C(n) constitutes the learned multi-class classifiers at node n whereas total parameters

for all internal nodes W = [Wn]n∈N constitutes the learned model for Top-Down (TD)

classifier.
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For a test instance x̂(i), the TD classifier predicts the class label ŷ(i) ∈ L as shown in

eq. (5.3). Essentially, the algorithm starts at the root node and recursively selects the best

child nodes until it reaches a terminal node belonging to the set of leaf nodes L.

ŷ(i) =



initialize p := root

while p /∈ L

p := argmaxq∈C(p)
(
wq
p

)T
x̂(i)

return p


(5.3)

5.3.2 Feature Selection

The focus of our study in this work is on filter-based feature selection methods which are

scalable for large-scale datasets. In this section, we present four feature selection approaches

that are used for evaluation purposes.

Gini-Index - It is one of the most widely used method to compute the best split (or-

dered feature) in the decision tree induction algorithm [67]. Realizing its importance, it

was extended for the multi-class classification problem [68]. In our case, it measure the

feature’s ability to distinguish between different leaf categories (classes). Gini-Index of ith

feature fi with L classes can be computed as shown in eq. (5.4).

Gini− Index(fi) = 1−
L∑
k=1

(
p(k|fi)

)2
(5.4)

where p(k|fi) is the conditional probability of class k given feature fi.

Smaller the value of Gini-Index, more relevant and useful is the feature for classification.

For HC problem, we compute the Gini-Index corresponding to all feature’s independently

at each internal node and select the best subset of features (SF) using a held-out validation

dataset.
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Minimal Redundancy Maximal Relevance (MRMR) - This method incorporates

the following two conditions for feature subset selection that are beneficial for classification.

(i) Identify features that are mutually maximally dissimilar to capture better represen-

tation of entire dataset and

(ii) Select features to maximize the discrimination between different classes.

The first criterion referred as “minimal redundancy” selects features that carry distinct

information by eliminating the redundant features. The main intuition behind this criterion

is that selecting two similar features contains no new information that can assist in better

classification. Redundancy information of feature set F can be computed using eq. (5.5).

RD =

[
1

|SF |2
∑

fi,fj∈SF

I(fi, fj)

]
(5.5)

where SF ⊂ F denotes the subset of selected features and I(fi, fj) is the mutual information

that measure the level of similarity between features fi and fj [69].

The second criterion referred as “maximum relevance” enforces the selected features to

have maximum discriminatory power for classification between different classes. Relevance

of feature set F can be formulated using eq. (5.6).

RL =

[
1

|SF |
∑
fi∈SF

I(fi,L)

]
(5.6)

where I(fi,L) is the mutual information between the feature fi and leaf categories L that

captures how well the feature fi can discriminate between different classes [61].

The combined optimization of eq. (5.5) and eq. (5.6) leads to a feature set with

maximum discriminatory power and minimum correlations among features. Depending on

strategy adapted for optimization of these two objectives different flavors exist. The first
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one referred as “mutual information difference (MRMR-D)” formulates the optimization

problem as the difference between two objectives as shown in eq. (5.7). The second one

referred as “mutual information quotient (MRMR-Q)” formulates the problem as the ratio

between two objectives and can be computed using eq. (5.8).

MRMR-D = max
SF⊆F

(RL −RD) (5.7)

MRMR-Q = max
SF⊆F

(RL/RD) (5.8)

For HC problem again we select the best top SF features (using a validation dataset) for

evaluating these methods.

Kruskal-Wallis - This is a non-parametric statistical test that ranks the importance of

each feature. As a first step this method ranks all instances across all leaf categories L and

computes the feature importance metric as shown in eq. (5.9):

KW = (N − 1)

∑L
i=1 ni(r̄i − r̄)2∑L

i=1

∑ni
j=1 ni(rij − r̄)2

(5.9)

where ni is the number of instances in ith category, rij is the ranking of jth instances in the

ith category and r̄ denotes the average rank across all instances.

It should be noted that using different feature results in different ranking and hence

feature importance. Lower the value of computed score KW , more relevant is the feature

for classification.

5.3.3 Proposed Framework

Algorithm 4 presents our proposed method for embedding feature selection into the HC

framework. It consist of two independent main subroutines: (i) a feature selection algorithm
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Algorithm 4: Feature Selection (FS) based Model Learning for Hierarchical Classifi-
cation (HC)

Data: Hierarchy H, input-output pairs
(
x(i), y(i)

)
Result: Learned model weight vectors:

W = [W1, W2, · · · , Wn], n ∈ N
1 W = φ;

2 /* 1st subroutine: Feature Selection */

3 for fi ∈ F do
4 Compute score (relevance) corresponding to feature fi using feature selection

algorithm mentioned in Section 5.3.2;

5 end

6 Select top k features based on score (and correlations) amongst features where best

value of k is tuned using a validation dataset

7 /* 2nd subroutine: Model Learning using Reduced Feature Set */

8 for n ∈ N do
9 /* learn models for discriminating child at node n */

10 Train optimal multi-class classifiers Wn at node n using reduced feature set as

shown in eq. (5.1);

11 /* update model weight vectors */

12 W = [W, Wn];

13 end

14 return W

(discussed in Section 5.3.2) for deciding the appropriate set of features at each decision

(internal) node and (ii) a supervised learning algorithm (discussed in Section 5.3.1) for

constructing a TD hierarchical classifier using reduced feature set. Feature selection serves

as the preprocessing step in our framework which provides flexibility in choosing any HC

algorithm.

We propose two different approaches for choosing relevant number of features at each

internal node n ∈ N . The first approach which we refer as “global feature selection (Global

FS)” selects the same number of features for all internal nodes in the hierarchy where the

number of features are determined based on the entire validation dataset performance. The

second approach, referred as “adaptive feature selection (Adaptive FS)” selects different

number of features at each internal node to maximize the performance at that node. It

should be noted that adaptive method only uses the validation dataset that exclusively
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Table 5.1: Dataset statistics

Name
Data Leaf Internal

Depth Train Test Features
#children

Type Node Node
(avgerage per

internal node)

NG Text 20 8 4 11,269 7,505 61,188 3.38
CLEF Image 63 34 4 10,000 1,006 80 2.56
IPC Text 451 102 4 46,324 28,926 1,123,497 5.41
DMOZ-SMALL Text 1,139 1,249 6 6,323 1,858 51,033 1.91
DMOZ-2010 Text 12,294 4,928 6 128,710 34,880 381,580 3.49
DMOZ-2012 Text 11,947 2,016 6 383,408 103,435 348,548 6.93

belongs to the internal node n (i.e., descendant categories of node n). Computationally,

both approaches are almost identical because model tuning and optimization requires similar

runtime which accounts for the major fraction of computation.

5.4 Experimental Protocol

5.4.1 Datasets

We have performed an extensive evaluation of various feature selection methods on a wide

range of hierarchical text and image datasets. Key characteristics about the datasets that

we have used in our experiments are shown in Table 5.1. All these datasets are single-labeled

and the instances are assigned to the leaf nodes in the hierarchy. For text datasets, we have

used the word-frequency representation and perform the tf-idf transformation with l2-norm

to the word-frequency feature vector.

Text Datasets

NEWSGROUP (NG)1 - It is a collection of approximately 20,000 news documents

partitioned (nearly) evenly across twenty different topics such as ‘baseball’, ‘electronics’

and ‘graphics’ (refer to Figure 5.1).

IPC2 - Collection of patent documents organized in International Patent Classification

1http://qwone.com/∼jason/20Newsgroups/
2http://www.wipo.int/classifications/ipc/en/
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(IPC) hierarchy.

DMOZ-SMALL, DMOZ-2010 and DMOZ-20123 - Collection of multiple web doc-

uments organized in various classes using the hierarchical structure. Dataset has been

released as the part of the LSHTC4 challenge in the year 2010 and 2012. For evaluating the

DMOZ-2010 and DMOZ-2012 datasets we have used the provided test split and the results

reported for this benchmark is blind prediction obtained from web-portal interface5.

Image Datasets

CLEF [48] - Dataset contains medical images annotated with Information Retrieval in

Medical Applications (IRMA) codes. Each image is represented by the 80 features that are

extracted using local distribution of edges method.

5.4.2 Experimental Details

For all the experiments, we divide the training dataset into train and small validation

dataset in the ratio 90:10. The train dataset is used to train TD classifiers whereas the

validation dataset is used to tune the parameter. The model is trained for a range of

mis-classification penalty parameter (λ) values in the set
{
0.001, 0.01, 0.1, 1, 10, 100,

1000
}

with best value selected using a validation dataset. Adopting the best parameter,

we retrain the models on the entire training dataset and measure the performance on a

separate held-out test dataset. For feature selection, we choose the best set of features

using the validation dataset by varying the number of features between 1% and 75% of

all the features. Our preliminary experiments showed no significant improvement after

75% hence we bound the upper limit to this value. We performed all the experiments on

ARGO cluster (http://orc.gmu.edu) with dual Intel Xeon E5-2670 8 core CPUs and 64 GB

memory. Source code implementation of the proposed algorithm discussed in this work is

made available at our website6 for repeatability and future use.

3http://dmoz.org
4http://lshtc.iit.demokritos.gr/
5http://lshtc.iit.demokritos.gr/node/81
6https://cs.gmu.edu/∼mlbio/featureselection
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: Performance comparison of LR + l1-norm models with varying percentage (%)
of features selected using different feature selection (Global) methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.3: Performance comparison of LR + l2-norm models with varying percentage (%)
of features selected using different feature selection (Global) methods.
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5.5 Results

5.5.1 Case Study

To understand the quality of features selected at different internal nodes in the hierarchy we

perform case study on NG dataset. We choose this dataset because we have full access to

feature information. Figure 5.1 demonstrates the results of top five features that is selected

using best feature selection method i.e., Gini-Index (refer to Figure 5.2 and 5.3). We can

see from the figure that selected features corresponds to the distinctive attributes which

helps in better discrimination at particular node. For example, the features like Dod (Day

of defeat or Department of defense), Car, Bike and Team are important at node ‘Rec’ to

distinguish between the sub-class ‘autos’, ‘motorcycles’ and ‘Sports’ whereas other features

like Windows, God and Encryption are irrelevant. This analysis illustrates the importance

of feature selection for TD HC problem.

One important observation that we made in our study is that some of the features like

Windows, God and Team are useful for discrimination at multiple nodes in the hierarchy

(associated with parent-child relationships). This observation conflicts with the assumption

made in the work by Xiao et al. [9], which attempts to optimize the objective function by

necessitating the child node features to be different from the features selected at the parent

node.

5.5.2 Classification Performance Comparison

Global FS - Figures 5.2 and 5.3 shows the µF1 and MF1 comparison of LR models with

l1-norm and l2-norm regularization combined with various feature selection methods dis-

cussed in Section 5.3.2 respectively. We can see that all feature selection method (except

Kruskal-Wallis) show competitive performance results in comparison to the full set of fea-

tures for all the datasets. Overall, Gini-Index feature selection method has slightly better

performance over other methods. MRMR methods have a tendency to remove some of the
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Table 5.2: Performance comparison of adaptive and global approach for feature selection
based on Gini-Index with all features. LR + l1-norm model is used for evaluation.

Dataset Metric Adaptive FS Global FS All Features

NG
µF1 76.16M 76.39M 74.94
MF1 76.10M 76.07M 74.56

CLEF
µF1 72.66 72.27 72.17
MF1 36.73N 35.07M 33.14

IPC
µF1 48.23N 46.35 46.14
MF1 41.54N 39.52 39.43

DMOZ-SMALL
µF1 40.32M 39.52 38.86
MF1 26.12N 25.07 24.77

DMOZ-2010
µF1 35.94 35.40 34.32
MF1 23.01 21.32 21.26

DMOZ-2012
µF1 44.12 43.94 43.92
MF1 23.65 22.18 22.13

N (and M) indicates that improvements are statistically significant with 0.05 (and 0.1)
significance level.

important features as redundant based on the minimization objective obtained from data-

sparse leaf categories which may not be optimal and negatively influences the performance.

The Kruskal-Wallis method shows poor performance because of the statistical properties

that is obtained from data-sparse nodes [70].

On comparing the l1-norm and l2-norm regularized models of best feature selection

method (Gini-Index) with all features, we can see that l1-norm models have more perfor-

mance improvement (especially for MF1 scores) for all datasets whereas for l2-norm models

performance is almost similar without any significant loss. This is because l1-norm assigns

higher weight to the important predictor variables which results in more performance gain.

Since, feature selection based on Gini-Index gives the best performance, in the rest of

the experiments we have used the Gini-Index as the baseline for comparison purpose. Also,

we consider l1-norm model only due to space constraint.

Adaptive FS - Table 5.2 shows the LR + l1-norm models performance comparison of

adaptive and global approaches for feature selection with all features. We can see from the

table that adaptive approach based feature selection gives the best performance for all the
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Table 5.3: Comparison of memory requirements for LR + l1-norm model

Dataset
Adaptive FS Global FS All Features

#parameters size #parameters size #parameters size

NG 982,805 4.97MB 908,820 3.64MB 1,652,076 6.61MB
CLEF 4,715 18.86KB 5,220 20.89KB 6,960 27.84KB
IPC 306,628,256 1.23GB 331,200,000 1.32GB 620,170,344 2.48GB
DMOZ-SMALL 74,582,625 0.30GB 85,270,801 0.34GB 121,815,771 0.49GB
DMOZ-2010 4,035,382,592 16.14GB4,271,272,967 17.08GB6,571,189,180 26.28GB
DMOZ-2012 3,453,646,353 13.81GB3,649,820,382 14.60GB4,866,427,176 19.47GB

datasets (except µF1 score of NG dataset which has very few categories). For evaluating the

performance improvement of models we perform statistical significance test. Specifically, we

perform sign-test for µF1 [52] and non-parametric wilcoxon rank test for MF1. Results with

0.05 (0.1) significance level is denoted by N (M). Tests are between models obtained using

feature selection methods and all set of features. We cannot perform test on DMOZ-2010

and DMOZ-2012 datasets because true predictions and class-wise performance score are not

available from online web-portal.

Statistical evaluation shows that although global approach is slightly better in com-

parison to full set of features they are not statistically significant. On contrary, adaptive

approach is much better with an improvement of ∼2% in µF1 and MF1 scores which are

statistically significant.

5.5.3 Memory Requirements

Table 5.3 shows the information about memory requirements for various models with full

set of features and best set of features that are selected using global and adaptive feature

selection. Upto 45% reduction in memory size is observed for all datasets to store the

learned models. This is a huge margin in terms of memory requirements considering the

models for large-scale datasets (such as DMOZ-2010 and DMOZ-2012) are difficult to fit in

memory.

It should be noted that optimal set of features is different for global and adaptive
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Table 5.4: Feature selection preprocessing time (in mins)

Dataset
Feature Selection Method

Gini-Index MRMR-D MRMR-Q Kruskal-Wallis

NG 2.10 5.33 5.35 5.42
CLEF 0.02 0.46 0.54 0.70
IPC 15.24 27.42 27.00 23.24
DMOZ-SMALL 23.65 45.24 45.42 34.65
DMOZ-2010 614 1524 1535 1314
DMOZ-2012 818 1824 1848 1268

methods for feature selection hence they have different memory requirements. Overall,

adaptive FS is slightly better because it selects small set of features that are relevant for

distinguishing data-sparse nodes present in CLEF, IPC and the DMOZ datasets. Also, we

would like to point out that Table 5.3 represents the memory required to store the learned

model parameters only. In practice, 2-4 times more memory is required for temporarily

storing the gradient values of model paramaters that is obtained during the optimization

process.

5.5.4 Runtime Comparison

Preprocessing Time - Table 5.4 shows the preprocessing time needed to compute the

feature importance using the different feature selection methods. The Gini-index method

takes the least amount of time since it does not require the interactions between different

features to rank the features. The MRMR methods are computationally expensive due to

the large number of pairwise comparisons between all the features to identify the redundancy

information. On other hand, the Kruskal-Wallis method has overhead associated with

determining ranking of each features with different classes.

Model Training - Table 5.5 shows the total training time needed for learning models.

As expected, feature selection requires less training time due to the less number of features

that needs to be considered during learning. For smaller datasets such as NG and CLEF

improvement is not noticeable. However, for larger datasets with high-dimensionality such
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Table 5.5: Total training time (in mins)

Dataset Model
Feature Selection

All Features
(Gini-Index)

NG
LR + l1 0.75 0.94
LR + l2 0.44 0.69

CLEF
LR + l1 0.50 0.74
LR + l2 0.10 0.28

IPC
LR + l1 24.38 74.10
LR + l2 20.92 68.58

DMOZ-SMALL
LR + l1 3.25 4.60
LR + l2 2.46 3.17

DMOZ-2010
LR + l1 2258 6524
LR + l2 2132 6418

DMOZ-2012
LR + l1 8024 19374
LR + l2 7908 19193

as IPC, DMOZ-2010 and DMOZ-2012 improvement is much higher (upto 3x order speed-

up). For example, DMOZ-2010 dataset training time reduces from 6524 minutes to mere

2258 minutes.

Prediction Time - For the dataset with largest number of test instances, DMOZ-2012

it takes 37 minutes to make predictions with feature selection as opposed to 48.24 minutes

with all features using the TD HC approach.

In Figure 5.4 we show the training and prediction time comparison of large datasets

(DMOZ-2010 and DMOZ-2012) between flat LR and the TD HC approach with (and with-

out) feature selection. The flat method is comparatively more expensive than the TD

approach (∼6.5 times for training and ∼5 times for prediction).

5.5.5 Effect of Varying Training Size

Table 5.6 shows the classification performance on NG dataset with varying training dataset

distribution. We have tested the models by varying the training size (instances) per class

(tc) between 5 and 250. Each experiment is repeated five times by randomly choosing tc

instances per class. Moreover, adaptive method with Gini-Index feature selection is used for
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Figure 5.4: Training and prediction runtime comparison of LR + l1-norm model (in mins)

Figure 5.5: Level-wise error analysis of LR + l1-norm model for CLEF, IPC and DMOZ-
SMALL datasets.
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Table 5.6: Performance comparison of LR + l1-norm model with varying training size
(number of instances) per class on NG dataset.

Dataset Train size
Feature Selection

All Features
Distribution (per class)

(Gini-Index)
µF1 MF1 µF1 MF1

5
27.44 N 26.45 N 25.74 24.33
(0.4723) (0.4415) (0.5811) (0.6868)

10
37.69 M 37.51 N 36.59 35.86

Low (0.2124) (0.2772) (0.5661) (0.3471)
Distribution

15
43.14 M 43.80 M 42.49 42.99
(0.3274) (0.3301) (0.1517) (0.7196)

25
52.12 N 52.04 N 50.33 50.56
(0.3962) (0.3011) (0.4486) (0.5766)

50
59.55 59.46 59.52 59.59

(0.4649) (0.1953) (0.3391) (0.1641)

100
66.53 66.42 66.69 66.60

High (0.0346) (0.0566) (0.7321) (0.8412)
Distribution

200
70.60 70.53 70.83 70.70

(0.6068) (0.5164) (0.7123) (0.6330)

250
72.37 72.24 73.06 M 72.86

(0.4285) (0.4293) (0.4732) (0.4898)

Table shows mean and (standard deviation) in bracket across five runs. N (and M) indicates
that improvements are statistically significant with 0.05 (and 0.1) significance level.

experiments. For evaluating the performance improvement of models we perform statistical

significance test (sign-test for µF1 and wilcoxon rank test for MF1). Results with 0.05 (0.1)

significance level is denoted by N (M).

We can see from Table 5.6 that for low distribution datasets, the feature selection method

performs well and shows improvements of upto 2% (statistically significant) over the baseline

method. The reason behind this improvement is that with low data distribution, feature

selection methods prevents the models from overfitting by selectively choosing the important

features that helps in discriminating between the models of various classes. For datasets

with high distribution, no significant performance gain is observed due to sufficient number

of available training instances for learning models which prevents overfitting when using all

the features.
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5.5.6 Levelwise Analysis

Figure 5.5 shows the level-wise error analysis for CLEF, IPC and DMOZ-SMALL datasets

with or without feature selection. We can see that at topmost level more error is committed

compared to the lower level. This is because at higher levels each of the children nodes that

needs to be discriminated is the combination of multiple leaf categories which cannot be

modeled accurately using the linear classifiers. Another observation is that adaptive feature

selection gives best results at all levels for all datasets which demonstrates its ability to

extract relevant number of features at each internal node (that belongs to different levels)

in the hierarchy.

5.6 Summary

In this work we proposed two different approaches for embedding feature selection into HC

framework. For evaluation, we have used four different easily parallelizable feature selection

methods in the literature. Experimental evaluation shows that with feature selection we

are able to achieve significant improvement in terms of runtime performance (training and

prediction) without affecting the accuracy of learned classification models. We also showed

that feature selection can be beneficial, especially for the larger datasets in terms of memory

requirements. This is the first work presenting the systematic study of various information

theoretic feature selection methods for large-scale HC.
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Chapter 6: Ranking Models

6.1 Introduction

With the growth of information organized in hierarchical databases, it is essential to develop

automated approaches for classifying test instances (e.g., documents, proteins and images)

into hierarchies. Several classification approaches have been developed that exploit the

hierarchical structure prevalent within these underlying databases. One commonly used

approach is to train local one-versus-rest classifiers for each of the nodes within the hierarchy

and then make a prediction using a combination of these several trained classifiers. However,

the major problem with this approach is that it doesn’t perform well for classes with rare

categories. In this chapter, we will discuss the various methods that we have developed for

addressing the HC issue related to rare categories problem.

Sparsity of instances (examples) distribution on leaf categories poses a severe challenge

for generalized classifier learning on rare categories (i.e., having ≤ 10 examples). The prob-

lem becomes more evident when the number of categories becomes huge due to the power

law distribution followed in the evolution of large-scale taxonomies [71]. Figure 6.1 shows

the category-wise data distribution for DMOZ datasets. We can see from the figure that

for DMOZ datasets most of the categories (i.e. ≥ 75%) have fewer (≤ 10) training examples

assigned to them and hence suffer from rare categories problem. Hierarchy provides use-

ful information for training these rare categories. We have developed various rank-based

approaches for dealing with the rare categories issue.
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(a) DMOZ-SMALL (b) DMOZ-2010

(c) DMOZ-2012

Figure 6.1: Distribution of DMOZ datasets visualizing majority of the classes with rare
categories (marked in red and black).

6.2 Related Work

Ranking methods have been used extensively in the web search engines for identifying the

relevant documents corresponding to the user search query [72]. It has also been studied

extensively and found to be successful in variety of other application domains that includes

recommender systems [73], drug discovery [74] and bioinformatics [75]. The objective of

ranking methods is to learn a ranking function that given an input query, scores relevant

results higher than irrelevant ones or produces an ordinal list of outputs. Based on the choice

of ranking function and problem formulation, these methods can be grouped into three broad

categories [76]. (i) Pointwise approaches solve a regression problem [77] to estimate the

ranking score per instance, McRank [78] and Prank [79] are examples of this approach. (ii)
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Pairwise approaches, like RankBoost [80] and RankSVM [81], perform pairwise comparison

between training examples to assign higher ranking scores to relevant examples compared

to irrelevant examples. These methods are known for their good generalization performance

but involve high computational costs due to O(N2) possible comparisons between N training

examples [82]. (iii) Listwise approaches like ListNet [83] and AdaRank [84], minimize a

ranking loss based on the relative ordering of all examples within a given set of lists.

Ranking models have been shown that it can be used to construct highly generalizable

classification models [85]. However, they have not been studied from the hierarchical clas-

sification perspective. In this work, we specifically study the use of pairwise ranking based

loss functions for training leaf nodes local classifiers to leverage the hierarchical structure.

We also study the effect of using cost-sensitive loss functions along with incorporation of

regularization penalties that enforce parent and children within the hierarchy to have similar

learned models within our framework.

Ranking methods for hierarchical classification: In order to formulate the hi-

erarchical classification problem with a ranking approach, we provide a ranking score to

each of the training instances. This score is assigned to the training examples based on

their relative position in the hierarchy. Given a specific leaf-node within the hierarchy,

for which we are training the ranking based classifier, examples that belong to this node

(positive instance) are assigned the highest ordinal score compared to all other examples

(rest/negative instance) in the hierarchy. For the rest of the training examples, the ranking

score is based on the hierarchical distances from the leaf node for which we are learning

the specific model. If two training instances have the same hierarchical distance, then we

assign the same ranking score to each of them. The intuition behind our approach is that

sorting the examples allows for information of the hierarchy to be captured better than the

one-versus-rest approach of training the leaf node classifiers.

Figure 6.2 shows the ranking assignment for training examples that belong to different

leaf nodes within the hierarchy, from the perspective of training the individual leaf node

classifiers. In Figure 6.2, each leaf node has some set of positive instances denoted by x(i).
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Figure 6.2: Ranking assignment r(i)’s for examples x(i)’s at different leaf nodes in the
hierarchy.

For ranking models, we assign rank to each of the x(i) denoted by r(i). Ranking assignment

is done based on the hierarchical distance from the leaf node for which we are learning

the model. For e.g., in order to learn the ranking model for leaf node A.1.1 we assign

all examples belonging to this category the highest rank, followed by examples belonging

to category A.1.2 which is the nearest leaf node category to A.1.1, followed by examples

belonging to leaf node A.2.1 and then B.1 the furthest leaf node. In ranking models, for the

leaf node all pairs of examples are considered which captures how well the example pairs

are related to the leaf node. In contrast, one-vs-rest classifiers only rely on positive and

negative examples which does not take into account the degree of relevance for the negative

examples.

Assume N rank ordered training examples represented by pairs (x(i), r(i)), the objective

of a ranking model is to learn a linear function f(x) = wTx, such that higher ranked pairs

are assigned higher scores i.e., f
(
x(i)

)
> f

(
x(j)

)
iff r(i) > r(j). Function f(x) provides

a ranking score for new and unseen examples. Pairwise ranking models learn the weight

vector wl corresponding to each leaf node l by minimizing a rank-based loss function across

all the training example pairs, while restricting the model to have low complexity using a
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regularization penalty. We can express general optimization for pairwise ranking models as:

min
w

N−1∑
i=1

N∑
j=i+1

L(wTx(i),wTx(j), zij)︸ ︷︷ ︸
Ranking Loss

+λ Ω(w)︸ ︷︷ ︸
Regularization

(6.1)

where L(·) represents the ranking loss function, Ω(·) represents the regularization (e.g.,

l2-norm) and λ ≥ 0 balances the trade-off between the loss and regularization terms. The

regularization term safeguards against model over-fitting and allows the model to generalize

to the examples not encountered in the training set. In case of the well known ranking SVM

model [81], the loss function is a hinge loss and the regularization penalty is a l2-norm. The

optimization problem is expressed as:

min
w

N−1∑
i=1

N∑
j=i+1
r(i) 6=r(j)

[
1− zijwT

(
x(i)− x(j)

)]
+

+
λ

2
||w||22 (6.2)

where [a]+ denotes the hinge loss given by max(0, a), and zij denotes the ranking preference

given by:

zij =



1 if r(i) > r(j)

0 if r(i) = r(j)

−1 otherwise

(6.3)

The ranking preference zij will introduce a penalty for misordering any of the training

example pairs no matter how far these pairs are ranked in reality (or in our hierarchy).

6.3 Methods

We modify the rank-based loss function and regularization term described in eq. (6.2) to

solve the hierarchical classification problem. Various rank-based approach that we proposed

90



are as follows:

6.3.1 Rank SVM (rSVM)

We modify the ranking SVM formulation (eq. (6.2)) for hierarchical classification by intro-

ducing a contribution term Cij for each of the input vector pairs x(i) and x(j) to ensure that

pair of examples that are close to the node for which we are learning the model have more

importance than example pairs that are far away in the hierarchy. Minimization problem

for this model corresponding to a leaf node l can be formulated as:

min
wl

N−1∑
i=1

N∑
j=i+1
r(i) 6=r(j)

Cij

[
1− zijwT

l

(
x(i)− x(j)

)]
+

+
λ

2
||wl||22 (6.4)

where Cij captures the contribution of training pair x(i) and x(j) in model learning and is

given by,

Cij =


1 if x(i) ∈ l or x(j) ∈ l

1
min(hli,hlj)

otherwise

(6.5)

where hli denotes the hierarchical distance (minimum number of edges) between the leaf

node l for which we are learning the model and the training instance x(i). If one of the

training instance is a member of the leaf node l, then Cij = 1 (i.e. maximum contribution),

otherwise Cij is higher for training pairs that are nearby in the hierarchy for which we are

learning the model (and thus making them more important for training the model, wl)

compared to the ones far away. zij is as expressed in eq. (6.3).

6.3.2 Hierarchy Regularized Rank SVM (rSVMHR)

We also include additional regularization term that enforce the models learned for parent

and children within the hierarchy are similar to each other [6]. In order to learn the weight
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vectors for leaf node l we first learn the weight vectors for parent node π(l) given by eq.

(6.6) and the minimization problem for leaf node is given by eq. (6.7).

min
wπ(l)

N−1∑
i=1

N∑
j=i+1
r(i)6=r(j)

Cij

[
1− zijwT

π(l)

(
x(i)− x(j)

)]
+

+
λ

2
||wπ(l)||22 (6.6)

where wπ(l) denotes the weight vector for the parent of leaf node l.

min
wl

N−1∑
i=1

N∑
j=i+1
r(i) 6=r(j)

Cij

[
1− zijwT

l

(
x(i)− x(j)

)]
+

+
λ1
2
||wl||22 +

λ2
2
||wl −wπ(l)||22 (6.7)

where the regularization term ||wl−wπ(l)||22 force the weight vector of leaf node l to be similar

to its parent weight vector π(l), λ1 ≥ 0 and λ2 ≥ 0 denotes the regularization parameters.

6.3.3 Cost Sensitive Rank SVM (rSVMCS)

This model takes into account the hierarchical distance between the training pairs while

learning the model and assigns a different mispenalty cost to the misclassified training

instances that are further away within the hierarchy compared to the ones nearby. Objective

function is given by:

min
wl

N−1∑
i=1

N∑
j=i+1
r(i)6=r(j)

Cij

[
1− hijzijwT

l

(
x(i)− x(j)

)]
+

+
λ1
2
||wl||22 (6.8)

where hij is the hierarchical distance between training pair x(i) and x(j) (it should be noted

that Cij 6= hij). hij penalizes more the misclassified data points x(i) and x(j) that are

further in the hierarchy compared to the ones nearby (whereas Cij being the contribution

term penalizes more the training pairs x(i) and x(j) that are further away from the node

for which we are learning the model compared to the ones nearby).
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Table 6.1: Dataset statistics

Name
# Leaf

Height # Training # Testing # Features
# Training

Node Pairs

Newsgroup 20 4 11269 7505 61188 60288759
CLEF 63 4 10000 1006 80 41960499
IPC 451 4 46324 28926 1123,497 863285980
DMOZ 1139 6 6323 1858 51033 9120885

6.3.4 Hierarchy Regularized Cost Sensitive Rank SVM (rSVMHR
CS )

- This model is the combination of the cost sensitive and hierarchy regularized rank SVM

models. Minimization problem for this model can be expressed as:

min
wl

N−1∑
i=1

N∑
j=i+1
r(i)6=r(j)

Cij

[
1− hijzijwT

l

(
x(i)− x(j)

)]
+

+
λ1
2
||wl||22 +

λ2
2
||wl −wπ(l)||22 (6.9)

6.4 Experimental Protocol

6.4.1 Datasets

We have performed an extensive set of experiments on a wide range of available image

and text hierarchical datasets. Newsgroups1 dataset is a collection of approximately 20,000

newsgroup documents partitioned (nearly) evenly across 20 different topics. CLEF [48] is

a hierarchical dataset containing medical images annotated with Information Retrieval in

Medical Applications (IRMA) codes. Each image is represented by the 80 features that are

extracted using local distribution of edges method. IPC2 is another hierarchical dataset

containing patent documents classified according to the International Patent Classification

(IPC). DMOZ3 dataset contains hierarchical dataset that have been released as the part of

1http://qwone.com/∼jason/20Newsgroups/
2http://www.wipo.int/classifications/ipc/en/
3http://lib.iit.demokritos.g
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the LSHTC challenge. Statistics about these used datasets are shown in Table 6.1. For all

text datasets, we have applied the tf − idf transformation with l2-norm normalization to

the word-frequency feature vector as the pre-processing step.

6.4.2 Parameter Estimation

For sub-gradient descent optimization we have set the learning rate α to 10−2 and the

maximum number of iterations is fixed to 103. In all the models regularization parameters

λ, λ1 and λ2 are tuned using a small validation set. The model is trained for a range of

values for parameter λ, λ1, λ2 in the set {0.001, 0.01, 0.1, 1, 10, 100, 1000} and the best

model is selected using the validation set. We retrain the models using the best parameters

on the entire training set and measure the performance on the held-out test dataset.

6.4.3 Hardware and Software details

All experiments were run on ARGO4, a research computing cluster provided by the Office

of Research Computing at George Mason University, VA. The pairwise method for learning

ranking models is computationally expensive because of O(N2) possible pairs for a training

set with N examples. To speedup the model learning we have implemented the algorithm

in map-reduce. The experiments were performed on a MapReduce cluster using Hadoop

version 1.2.1 on 15 Dell C8220 nodes with dual Intel Xeon E5-2670 8 core CPUs. Each

node has a physical memory of 64 GB RAM. Due to resource sharing with other cluster

processes only 2 map and 1 reducer slots per machine were available for Hadoop. Algorithm

5 and Algorithm 6 provides a mapper and reducer implementation of subgradient method

for ranking models. It should be noted that training data that needs to be provided for

ranking models is the difference of all possible input pairs x(i) and x(j).

Map-reduce implementation for the lSVM models is done in a similar way.

4http://argo.orc.gmu.edu
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Algorithm 5: Mapper Implementation

Data: key: < row number >, value: < x(i)− x(j) >

Result: Intermediate partial weight vector wi
l

1 for each input vector do
2 /* check for support vectors (SV) */

3 if (((wi−1
l )Txij)zij ≤ 1) then

4 for each feature index (fid) in xij do
5 /* xa,b denotes b-th feature of xa vector */

6 output(fid,−zijxij,fid);
7 end

8 end

9 end

Algorithm 6: Reducer Implementation

Data: <key, value>: output from mapper
Result: Learned weight at i-th iteration wi

l

1 /* Aggregate support vectors (ASV) */

2 ASV := 0;

3 for each value of fid do
4 ASV = ASV+ < value(fid) >;

5 end

6 /* Update weight vector for i-th iteration*/

7 wil,fid = wi−1l,fid − (α)[λwi−1l,fid +ASV ];

8 output(fID,wil,fid);

6.4.4 Methods for Comparison

To evaluate the performance of our proposed approaches with the standard classification

method, we implemented the various SVM model in a similar fashion as we developed the

rank-based approaches. Equivalent models that we implemented are - Linear SVM (lSVM),

Hierarchy Regularized lSVM (lSVMHR), Cost Sensitive lSVM (lSVMCS) and Hierarchy

Regularized Cost Sensitive lSVM (lSVMHR
CS ). Minimization problem for this models can be
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formulated as:

lSVM min
(wl,b)

N∑
i=1

[
1− y(i)

(
wT
l x(i) + b

)]
+

+
λ

2
||wl||22 (6.10)

lSVMHR min
(wl,b)

N∑
i=1

[
1− y(i)

(
wT
l x(i) + b

)]
+

+
λ1
2
||wl||22 +

λ2
2
||wl −wπ(l)||22 (6.11)

lSVMCS min
(wl,b)

N∑
i=1

[
1−max(1, hli)y(i)

(
wT
l x(i) + b

)]
+

+
λ

2
||wl||22 (6.12)

lSVMHR
CS min

(wl,b)

N∑
i=1

[
1−max(1, hli)y(i)

(
wT
l x(i) + b

)]
+

+
λ1
2
||wl||22 +

λ2
2
||wl −wπ(l)||22 (6.13)

where x(i) is the i-th input training instance, y(i) ={±1} is the output label for i-th instance,

wl is the weight vector, b is the costant term and {λ, λ1, λ2} are the regularization parameters.

6.5 Results

Table 6.2 shows the performance comparison of the different approaches across various

datasets. we can see that rSVM models which incorporate the rank-based loss function

have better performance as compared to the lSVM models because the ranking approach

learns a more generalized model by performing pairwise comparison of the training examples

and penalizing more the misclassified pairs which are far away in the hierarchy compared

to the ones that are nearby. Among rSVM models, the rSVMHR
CS model has the best

performance. This model captures the parent-child relationship during learning along with

the mispenalty cost based on hierarchical distance which captures how good/bad training

pairs are, resulting in better generalized model.

6.5.1 Observation based on number of training examples per class

Figure 6.3 shows the hF1 comparison for best rank-based model (rSVMHR
CS ) and best baseline

linear SVM model (lSVMHR
CS ) on CLEF, IPC and DMOZ-SMALL datasets with varying

training sizes (NEWSGROUP dataset excluded because for all classes training size >100).
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Table 6.2: Classification performance comparison of various datasets

Linear Models Ranking Models

lSV M lSVMHRlSV MCS lSV M
HR
CS rSVM rSVMHRrSVMCSrSVM

HR
CS

Newsgroup
µF1(↑) 0.72 0.76 0.74 0.80 0.73 0.75 0.74 0.78

(0.0142) (0.0324) (0.0623) (0.0524) (0.0153) (0.0183) (0.0743) (0.0888)
MF1(↑) 0.74 0.77 0.75 0.80 0.76 0.77 0.74 0.79

(0.0426) (0.1512) (0.0323) (0.0642) (0.0627) (0.0320) (0.0727) (0.0342)
hF1(↑) 0.79 0.83 0.80 0.83 0.80 0.83 0.79 0.84

(0.0995) (0.0298) (0.0630) (0.0348) (0.0884) (0.0582) (0.0642) (0.0656)
TE(↓) 1.11 1.08 1.07 1.06 1.09 1.08 1.07 1.05

(0.0894) (0.0582) (0.0224) (0.0627) (0.0720) (0.0726) (0.0447) (0.0744)
CLEF
µF1(↑) 0.77 0.78 0.77 0.79 0.78 0.79 0.79 0.80

(0.0424) (0.0342) (0.0283) (0.0723) (0.0825) (0.0421) (0.0263) (0.0435)
MF1(↑) 0.49 0.51 0.51 0.52 0.50 0.52 0.52 0.54 N

(0.0314) (0.0294) (0.0632) (0.0734) (0.0528) (0.0538) (0.0780) (0.0647)
hF1(↑) 0.79 0.80 0.80 0.81 0.81 0.82 0.82 0.84

(0.0535) (0.0435) (0.0231) (0.0532) (0.0532) (0.0264) (0.0273) (0.0554)
TE(↓) 1.03 1.01 1.02 1.00 1.01 1.00 1.00 0.98

(0.0432) (0.0742) (0.0532) (0.0274) (0.0244) (0.0718) (0.0123) (0.0326)
IPC
µF1(↑) 0.51 0.54 0.55 0.56 0.52 0.53 0.53 0.57 N

(0.0605) (0.0668) (0.0135) (0.0584) (0.0521) (0.0334) (0.0433) (0.0414)
MF1(↑) 0.45 0.48 0.48 0.49 0.46 0.48 0.49 0.50 N

(0.0826) (0.0742) (0.0246) (0.0466) (0.0842) (0.0418) (0.0275) (0.0534)
hF1(↑) 0.63 0.65 0.66 0.67 0.66 0.66 0.67 0.69

(0.0682) (0.0525) (0.0624) (0.0684) (0.0600) (0.0398) (0.0852) (0.0508)
TE(↓) 2.20 2.04 2.02 1.96 2.05 2.00 1.98 1.84

(0.0325) (0.0732) (0.0242) (0.0683) (0.0473) (0.0587) (0.0274) (0.0603)
DMOZ-SMALL
µF1(↑) 0.49 0.51 0.52 0.53 0.51 0.52 0.52 0.54 N

(0.0632) (0.0564) (0.0365) (0.0382) (0.0832) (0.0764) (0.0643) (0.0385)
MF1(↑) 0.32 0.33 0.35 0.36 0.34 0.37 0.37 0.38 N

(0.0611) (0.0523) (0.0841) (0.0742) (0.0462) (0.0648) (0.0284) (0.0524)
hF1(↑) 0.62 0.68 0.68 0.69 0.68 0.69 0.70 0.71

(0.0624) (0.0372) (0.0423) (0.0503) (0.0614) (0.0302) (0.0274) (0.0688)
TE(↓) 2.20 2.11 2.07 2.08 2.12 2.08 2.06 2.01

(0.0821) (0.0322) (0.0321) (0.0652) (0.0638) (0.0293) (0.0148) (0.0674)

Table shows mean across five runs and (standard deviation) in bracket. Statistical sig-
nificance test, sign test for µF1 and non-parameteric wilcoxon rank test for MF1, were
performed on the results of best proposed ranking model with the best linear model. All
statistically significant values at p-value of 5% is marked with N.
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(a) CLEF (b) IPC

(c) DMOZ-SMALL

Figure 6.3: Performance comparison of models based on number of training examples per
class for different datasets.

rSVMHR
CS model works very well compared to lSVMHR

CS , especially when the number of

positive training examples are small i.e. rare categories. The ranking models are able to use

the information about the relative ordering of examples from different leaf nodes within the

hierarchy far better than the one-versus-rest setup of non-ranking (lSVMHR
CS ) models.

6.5.2 Analyzing performance based on number of siblings per class

Figure 6.4 shows the hF1 comparison for the lSVMHR
CS and rSVMHR

CS models based on

number of siblings. Both models show a decrease in their hF1 scores as the number of

siblings increases because it becomes difficult to discriminate. In comparison, rank-based

model are able to better discriminate between siblings compared to linear model.
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(a) CLEF (b) IPC

Figure 6.4: Performance comparison of models based on number of siblings per class.

(a) CLEF (b) IPC

Figure 6.5: Performance comparison based on average similarity between parent-child.
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(a) CLEF (b) IPC

Figure 6.6: Performance comparison based on average similarity between siblings.

In Figure 6.5 and Figure 6.6, we show the average pairwise similarity (dot-product)

between the parent-children model vectors and the average similarity between th sibling

model vectors for the CLEF and IPC dataset in relation to the number of siblings, re-

spectively. rSVMHR
CS models have high degree of parent-child similarity compared to the

lSVMHR
CS models. On comparing the average similarities between siblings, it can be seen

that as the number of siblings increases the pairwise sibling similarity decreases to discrim-

inate between the more number of siblings. Specifically, the rSVMHR
CS model have high

pairwise sibling similarity ∼5-10% compared to the lSVMHR
CS models, because the parent-

child regularization term forces the siblings to have models similar to their parents.

6.5.3 Comparison with other Hierarchical Baseline Models

Table 6.3 shows the performance comparison of best rank-based model with the flat lSVM

model and hierarchical models. Hierarchical models include: (i) lSVMHR model that in-

corporates parent-child relationship [6] during model learning. (ii) Simple top-down hier-

archical model using support vector classifier at each node [44]. We refer to this model

as TD-SVM, and (ii) Top-down hierarchical model using orthogonal transfer method as

proposed in Zhou et al. [9]. We refer to this model as TD-OT. Prediction for unseen test
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Table 6.3: Performance comparison of best ranking model with flat and hierarchical models.

Best Model Flat Model Hierarchical Models
(ranking)

rSVMHR
CS lSVM lSVMHR TD-SVM TD-OT

Newsgroup
µF1(↑) 0.78 0.72 0.76 0.70 0.74
MF1(↑) 0.79N 0.74 0.77 0.74 0.76
hF1(↑) 0.84 0.83 0.83 0.78 0.79
TE(↓) 1.05 1.11 1.08 1.17 1.11
CLEF
µF1(↑) 0.80 0.77 0.78 0.72 0.74
MF1(↑) 0.54N 0.49 0.52 0.35 0.38
hF1(↑) 0.84 0.79 0.80 0.74 0.76
TE(↓) 0.98 1.03 1.01 1.24 1.18
IPC
µF1(↑) 0.57N 0.51 0.54 0.51 -
MF1(↑) 0.50N 0.45 0.48 0.40 -
hF1(↑) 0.69 0.63 0.65 0.54 -
TE(↓) 1.84 2.20 2.04 2.15 -
DMOZ-SMALL
µF1(↑) 0.54N 0.49 0.51 0.35 0.36
MF1(↑) 0.38N 0.32 0.33 0.20 0.18
hF1(↑) 0.71 0.62 0.68 0.38 0.40
TE(↓) 2.01 2.20 2.11 2.54 2.50

‘-’ denotes not scalable. N denotes statistically significant results at p-value of 5% on
comparing best proposed (ranking) model with the best baseline (flat, hierarchical) model.
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Table 6.4: Training time (in mins) comparison in map-reduce (reported per class)

Name lSVM lSVMHR lSVMCS lSVMHR
CS rSVM rSVMHR rSVMCS rSVMHR

CS

Newsgroup 12.4 13.6 13.8 14.2 82.4 84.8 85.5 86.1
CLEF 11.2 13.0 13.5 14.4 68.7 70.3 70.8 72.0
IPC 36.4 37.8 38.0 38.2 614.8 626.8 632.2 634.6
DMOZ 8.1 8.8 8.9 9.1 35.2 36.1 37.1 38.5

instance in hierarchical top-down model is done by starting at root node and then recur-

sively selecting the best child node till it reaches a terminal node belonging to the set of

leaf nodes L.

Table shows that the proposed rank-based model has superior performance compared

to the flat and hierarchical models. Top-down models have poor performance because of

the error propagation i.e, misclassified examples at the top level cannot be corrected at the

lower level.

6.5.4 Runtime Comparison

Table 6.4 shows the average training time (in mins) per class required to learn the models

in map-reduce framework for the different datasets. As expected, lSVM model takes the

least time to learn the model because no overhead is involved in incorporating additional

constraints. Ranking models take more time compared to there linear counterparts because

ranking models have O(N2) possible input training pairs for datasets with N examples

and hence is more computationally expensive. Other lSVM models, lSVMHR, lSVMCS

and lSVMHR
CS have the overhead of either incorporating the parent-child relationship in the

regularization constraint or adding hierarchical distance for cost sensitive learning or both,

and hence, takes more time. Similar type of overahead also occurs in case of rSVMHR,

rSVMCS and rSVMHR
CS models when compared to the rSVM models.

In Figure 6.7 we show the training runtime performance comparison for lSVM and

rSVM models for serial and map-reduce implementation on the IPC dataset. It can be

seen that for datasets of small size, the serial version has better performance because the
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(a) lSVM Model (b) rSVM Model

Figure 6.7: Serial vs. map-reduce runtime comparison (in mins) with varying size on IPC
dataset.

architectural overhead in map-reduce framework exceeds the amount of parallelism that

can be obtained, whereas the map-reduce version outperforms the serial version when the

datasets size is large.

6.6 Summary

In this work we developed a hierarchical classification approach that trains local leaf nodes

using a ranking model. We improve this approach by introducing regularization constraints

that force the parent and children nodes within the hierarchy to have similar learned mod-

els. We also incorporate a hierarchy influenced cost-sensitive loss function within the op-

timization formulation. The performance of ranking models was compared with the flat

classification approaches (lSVM) along with state-of-the-art HC baselines. Our empirical

results on a wide variety of datasets demonstrated the strength of the proposed HC method

in terms of reducing the prediction errors. We are also able to show improved performance

using rank-based model with training datasets having few instances per class. Further anal-

ysis on parent-child and siblings similarity shows more degree of relatedness for rank-based

models in comparison to its linear counterpart. Finally, we developed the map-reduce based

algorithm for distributed training of individual models.
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Chapter 7: Integrated Framework for Large-scale

Hierarchical Classification

7.1 Introduction

State-of-the-art HC approaches embed the parent-child relationships from the hierarchy

either, within the regularization term [6] or the loss term [53]. The intuition behind Hier-

archy Regularized Logistic Regression (HR-LR) or Hierarchy Regularized Support Vector

Machine (HR-SVM) approach is that data-sparse child nodes benefit during training from

data-rich parent nodes and has shown to achieve the best performance on standard HC

benchmarks (LSHTC datasets). In case of HierCost, a cost-sensitive learning approach was

adapted. This method intuitively captures the hierarchical information by treating mis-

classifications differently based on the commonalities (common ancestors) between the true

and the predicted labels. Another approach involves using feature selection in conjunction

with HC [15, 39]. It helps to improve the accuracy and efficiency of model training along

with reduce memory requirement which is crucial for large-scale problem. Other developed

approaches for solving HC can be found in [2, 3, 44].

The hierarchical structure has a significant impact on the classification performance of

model being trained [2]. If the hierarchy used has too many inconsistent relationships such

as parent-child or siblings, less cohesive or overlapping categories, than the performance can

be poor. In fact for some datasets HC methods are outperformed by flat methods that ig-

nore the hierarchy [4,6]. Oftentimes, the hierarchy is manually designed by domain experts

based on semantic relationships. This type of curated hierarchy is prone to inconsisten-

cies and is not optimal for achieving good classification performance. Moreover, partial or

incomplete domain knowledge may result in less cohesive categories that are not easily sep-

arable and vice-versa. Furthermore, constant change in data distribution over time requires
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new categories (orphan nodes) to be identified to improve the taxonomic representation and

hence classification performance [86]. Other problem associated with large-scale classifica-

tion is the highly skewed distribution between classes, where majority of the classes have few

instances (examples) for training (rare categories problem). For example, more than 75%

of the categories in the ODP1 and Yahoo!2 directory have five or fewer positive instances

[6, 44]. Learning a classification model for these classes suffer from statistical challenges

where mis-predictions tend to favor the larger classes. As a result, overall performance on

the rare categories classes are unsatisfactory.

In this work, we propose a solution to handle multiple issues that affect the HC perfor-

mance. To summarize, our main contributions are as follows:

• We develop an integrated framework which consists of a multi-stage embarrassingly

parallel pipeline to improve the HC performance.

• We propose the exploratory learning approach for orphan node identification that can

be easily incorporated in our framework.

• An extensive case study was performed to analyze the strength and effectiveness of

each step in the integrated framework.

7.2 Methods

In this section we discuss the modification strategies for handling multiple issues. We are

interested in following issues that are faced by HC.

1. Hierarchical structure inconsistency.

2. Rare categories.

3. Less cohesive or overlapping categories and

4. Orphan node identification.

1http://www.dmoz.org
2http://dir.yahoo.com

105



7.2.1 Modification Strategies

Firstly, we provide solution to handle each of these issues independently and then we discuss

an integrated framework to combine these solutions. It must be noted that we are also

interested in solving the large-scale problem and therefore desire solutions that are easily

parallelizable.

1. Hierarchical structure inconsistency: Cross-linkage of inconsistent relationships

is an effective method to solve hierarchical structural inconsistency. The decision to

perform cross-linkage is based on the average pairwise cosine similarity score between

classes and their relative positions in the hierarchy. Intuitively, the idea is to group

classes with high similarities together to a common parent. To this end, first we iden-

tify a set of class pairs with high similarity scores and than we iteratively perform

check on these class pairs if they are grouped together. If not than we apply elemen-

tary operations – node creation, parent-child rewiring and node deletion to correct

inconsistencies as done in Naik et al. [10]. Node creation helps to group similar

classes from different hierarchical branches by creating new node with only children

as the similar classes. This operation is used only when a proper subset of the classes

from different branches are similar, otherwise parent-child rewiring operation is per-

formed which simply reassigns the parent of one class to other. Finally, node deletion

operation helps to remove irrelevant nodes with 0 or 1 children.

2. Rare categories: Feature Selection (FS) is an effective method for dealing with rare

categories [15]. It helps to prevent the model over-fitting by considering only the

relevant features; thereby improving the classification performance on rare categories

classes. We propose to use the Gini-index measure to determine the relevance of each

feature in classification as it gives comparatively better results over other measures and

can be easily parallelized. Gini-index corresponding to feature fi can be computed

as shown in eq. (7.1). Smaller the value of Gini-index better the feature is for
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classification.

Gini− index(fi) = 1−
L∑
k=1

(
p(k|fi)

)2
(7.1)

where p(k|fi) is the conditional probability of class k given feature fi. Appropriate set

of features SF at each internal node is determined using small validation dataset.

3. Less cohesive or overlapping categories: Overlapping categories have a high de-

gree of similarities between them. In order to identify overlapping categories (possible

only between siblings), we first compute the pairwise cosine feature similarity and

consider two or more siblings as overlapping if the similarity score exceeds a certain

threshold. For experimental evaluations, we set the threshold value as 0.5. To deter-

mine the less cohesive categories, we use the feedback from classification results on a

validation dataset [11]. Categories are identified to be less cohesive if Pc<<P where

Pc is the precision of a category and P is the average precision of siblings categories.

Moreover, we use k-means clustering for splitting less cohesive categories.

4. Orphan node identification: We followed an exploratory learning approach to

identify orphan nodes [12]. Algorithm 7 shows how the orphan nodes are determined

during the prediction phase. Essentially, we start predicting the label of instances in

the top-down order by computing the probability score given in eq. (7.2) and selecting

the best child with highest probability score. At each level, we check if new node (i.e.

orphan) needs to be created for better classification. The decision to create a new node

is based on the probability score of children nodes; nearly uniform score (computed

using MinMax partition, shown in Algorithm 8 [12]) indicates that the test instance

cannot be confidently assigned to any of the children nodes and hence we create a new

node. Otherwise we select the best child (with highest probability score) and proceed

down the level. This process is repeated until the leaf node is reached or new orphan
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Algorithm 7: Orphan Node Identification

Data: Test instance x̂(i), Hierarchy H
Result: Optimal label assignment ŷ(i), Modified Hierarchy HM

1 n = root;

2 DetectOrphanNode = 0;

3 while ((n /∈ L) and (DetectOrphanNode == 0)) do
4 Compute probability score for children of n-th node using eq. (7.2)

5 /* orphan node check */

6 if NearlyUniform
(
∀c∈C(n) p(Ccn|x̂(i))

)
then

7 Create new class c′ at level l

8 Initialize parameters for new class wc′
n with training instance as x̂(i)

9 Parent(c′) = n;

10 ŷ(i) = c′;

11 L = L ∪ {c′};
12 HM = OrphanNode(H); /* modified hierarchy with new orphan node */

13 DetectOrphanNode = 1;

14 else

15 n = argmax
c ∈ C(n)

(
p(Ccn|x̂(i))

)
;

16 ŷ(i) = n;

17 end

18 end

19 return HM , ŷ(i)

node is created.

p(Ccn|x̂(i)) =
exp
(

(wc
n)T x̂(i)

)
∑
c∈C(n) exp

(
(wc

n)T x̂(i)
) (7.2)

7.2.2 An Integrated Framework for HC

Figure 7.1 presents our proposed integrated framework. The order in which the above

steps are executed is important to achieve the maximum HC performance improvement.

Global restructuring must be performed first because full set of features are important to

identify inconsistent parent-child, followed by the feature selection which selects relevant

features amongst siblings categories for effective classification. Less-cohesive or overlapping
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Algorithm 8: Criterion to determine nearly uniform probability score [12]

Data: Probability score of n-th children p(Ccn|x̂(i))
Result: True or False

1 maxProbability = argmax
c ∈ C(n)

(
p(Ccn|x̂(i))

)
2 minProbability = argmin

c ∈ C(n)

(
p(Ccn|x̂(i))

)
3 if

(
maxProbability
minProbability < 2

)
and

(
maxProbability < 2

|C(n)|

)
then

4 NearlyUniform = True

5 else
6 NearlyUniform = False

7 end

8 return NearlyUniform

Figure 7.1: Integrated Framework pipeline for Large-scale Hierarchical Classification.

categories are determined next which is based on feature similarities computed using features

selected in the previous step. Finally, orphan node identification step is performed that is

invoked during the prediction phase.

Scalability - As noted earlier, we are interested in solution which can be easily par-

allelized at different steps. Our proposed integrated framework is embarrassingly parallel

which makes it favorable for large-scale problems. To summarize parallelization can be

exploited at following steps: 1) Computing similarities between different classes. 2) Select-

ing features using Gini-index at each internal node and 3) Learning optimal model weight

vectors.
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Table 7.1: Dataset statistics

Name Domain Total Node Categories Levels Training Testing Features

CLEF Image 88 63 3 10000 1006 80
IPC Text 553 451 3 46324 28926 1123497

DMOZ-SMALL Text 2388 1139 5 6323 1858 51033
DMOZ-2010 Text 17222 12294 5 128710 34880 381580
DMOZ-2012 Text 13963 11947 5 383408 103435 348548

7.2.3 Model Learning

Given a hierarchy H, we train multi-class classifiers for each of the internal nodes n ∈ N in

the hierarchy— to discriminate between its children nodes C(n). In this work, we have used

Logistic Regression (LR) as the underlying base model for training. The LR objective uses

logistic loss to minimize the empirical risk and squared l2-norm term (denoted by
∣∣∣∣ · ∣∣∣∣2

2
) to

control model complexity and prevent overfitting. The objective function f cn for training a

model corresponding to c-th child of node n is provided in eq. (7.3).

f cn = min
wnc

[
λ

T (n)∑
i=1

log
(

1 + exp
(
−ycn(i)

(
wc
n

)T
x(i)

))
+
∣∣∣∣wc

n

∣∣∣∣2
2

)]
(7.3)

where λ > 0 is a mis-classification penalty parameter.

For each child c of node n within the hierarchy, we solve eq. (7.3) to obtain the optimal

weight vector denoted by wc
n. The complete set of parameters for all the children nodes Wn

= [wc
n]c∈C(n) constitutes the learned multi-class classifiers at node n whereas total parameters

for all internal nodes W = [Wn]n∈N constitutes the learned model for Top-Down (TD)

classifier. Label prediction for a test instance x̂(i) is done in conjunction with the orphan

node identification as shown in Algorithm 7.
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7.3 Experimental Protocol

7.3.1 Datasets

We have used an extensive set of image and text datasets for evaluation purposes. Various

statistics of the datasets used in our experiments are listed in Table 7.1. All these datasets

are single labeled and the examples are assigned to the leaf nodes in the hierarchy. For

text datasets, we have preprocessed the datasets by applying the tf-idf transformation with

l2-norm normalization on the word-frequency feature vector. Further, these datasets do

not have orphan nodes therefore for evaluation we randomly remove 1% of the classes from

training dataset. Descriptions of the datasets used in our experiments are as follows:

CLEF [48] - Medical images annotated with medical applications codes. Each image is

represented by 80 features extracted using local distribution of edges.

IPC3 - Collection of patent documents organized in International Patent Classification

(IPC) hierarchy.

DMOZ-SMALL, DMOZ-2010 and 20124 - Multiple web documents organized in

the hierarchical structure. Datasets have been released as the part of the LSHTC5 challenge

in the year 2010, 2012. Since, we don’t have access to true labels for test instances we split

the train dataset into 80:20 ratio for evaluation.

7.3.2 Orphan Node Evaluation Metrics

We have used the standard set based performance measures µF1 and MF1 for evaluating

the performance of learned models. However, for test dataset with orphan nodes, results

are reported by considering only the seed classes i.e. having at least one training instance

as reported in Dalvi et al. [12].

3http://www.wipo.int/classifications/ipc/en
4http://dmoz.org
5http://lshtc.iit.demokritos.gr
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7.3.3 Methods for Comparison

We use various TD methods for comparison purpose.

Top-Down Logistic Regression (TD-LR): In this method, we use the original hierar-

chy for model learning. For predicting the labels of unlabeled test instances, we start at

root node and recursively select the best child nodes until leaf node is reached. This is the

baseline model used in our experiments.

HC with Incomplete Class Hierarchies [12]: Similar to TD-LR, we use the original

hierarchy for model learning. However, prediction for unlabeled test instances are done

using Algorithm 7. This method has the advantage that it can detect the orphan nodes

during the testing (prediction) phase. We refer to this method as TD-LR + ICH.

HC with Integrated Framework: This is our proposed method discussed in Figure

7.1. We refer to this method as TD-LR + IF.

7.3.4 Experimental Details

For all the experiments, we divide the training dataset into train and small validation dataset

in the ratio 90:10. The train dataset is used to train TD model whereas the validation

dataset is used to tune the parameters. The model is trained for a range of mis-classification

penalty parameter (λ) values in the set
{
0.001, 0.01, 0.1, 1, 10, 100, 1000

}
with best value

selected using a validation dataset. Adapting the best parameter, we retrain the model on

the entire training dataset and measure the performance on a separate held-out test dataset.

For feature selection, we choose the best set of features SF using the validation dataset. We

use the liblinear solver6 for efficient training of TD model.

6http://www.csie.ntu.edu.tw/∼cjlin/liblinear
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(a) Original Hierarchy (H) (b) Modified Hierarchy (HM )

Figure 7.2: (a) Original (predefined) hierarchy and (b) Modified hierarchy obtained after: (i)
Restructuring and (ii) Less cohesive or overlapping categories steps for Newsgroup dataset.
Structural changes are marked in white color.
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Table 7.2: Performance comparison with and without Orphan Node identification

Removed Nodes Identified
Metric

Accuracy
for Experiment Orphan Nodes with Orphan Node w/o Orphan Node

soc.religion.christian, guns, µF1 76.34 (0.0123) 75.23 (0.0182)
guns, windows.x, electronics electronics MF1 76.00 (0.0224) 74.68 (0.0682)

windows.x, misc.forsale misc.forsale, µF1 76.48 (0.0624) 75.22 (0.0213)
mideast, crypt mideast, crypt MF1 76.26 (0.0817) 74.64 (0.0518)

Table shows mean and (standard deviation) in bracket across five runs.

7.4 Results

7.4.1 Case Study

To understand the strength and effectiveness of each step in the integrated framework we

perform case study on smaller Newsgroup7 dataset containing 20 classes, 61188 features,

7505 test and 11269 training instances (evenly distributed across 20 classes). Figure 7.2(b)

shows the modified hierarchy obtained after restructuring and less cohesive or overlapping

categories on the original Newsgroup dataset shown in Figure 7.2(a). For evaluating each

of this hierarchy we randomly choose five different sets of training and test split in the

same ratio as original dataset. Modified hierarchy achieves an average MF1 score of 82.16

as opposed to original hierarchy that achieves a score of 77.94. This result shows that

modified hierarchy is more beneficial for HC.

To understand the benefits of feature selection step we perform experiments by varying

the number of instances in each class between 5 and 50. Figure 7.3 shows the comparison of

feature selection over using full set of features. Rare categories with 5-10 instances per class

benefits significantly with feature selection. Moreover, the improvement in performance

decreases as the number of instances per class increases because more training instances

leads to better generalized models with full set of features. It should be noted that feature

selection is also helpful in terms of training, prediction time and memory requirements to

store model weight vectors.

Finally, to access the orphan node identification step, we performed experiments by

7http://qwone.com/∼jason/20Newsgroups
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Figure 7.3: Performance comparison of feature selection with full features.

randomly removing four classes from training dataset. Results obtained with different sets

of orphan nodes is shown in Table 7.2. Our approach effectively identifies a subset of orphan

nodes which is helpful in improving the HC performance of seed classes.

7.4.2 Accuracy Comparison

Table 7.3 shows the µF1 and MF1 performance comparison of various models. Each ex-

periment is repeated five times by randomly selecting the train and test dataset. Our pro-

posed integrated framework consistently outperforms the other approaches across different

datasets. To access the performance improvement we conducted pairwise statistical signifi-

cance tests between the baseline model TD-LR and
{
TD-LR + ICH, TD-LR +IF

}
model.

Specifically, we perform micro-sign test for µF1[52] and non-parametric wilcoxon rank test

for MF1 scores (it should be noted that significance tests are between two models for sin-

gle run). Statistical significant results are denoted by N(M) for significance with p-value

0.01 (0.05). We can see from the table that most of the results obtained are statistically

significant with our proposed framework.

Baseline TD-LR model has the worse performance due to the presence of inconsistencies

within the hierarchy along with rare categories, less cohesive or overlapping categories and

orphan nodes. On comparison, TD-LR + ICH model is slightly better because this method
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Table 7.3: µF1 and MF1 performance comparison

Dataset
TD-LR TD-LR + ICH TD-LR + IF

(Baseline) (Dalvi et al. [12]) (Proposed)
µF1 MF1 µF1 MF1 µF1 MF1

CLEF
73.06 33.86 73.56 34.13 74.63 34.98M

(0.0231) (0.0821) (0.0526) (0.0642) (0.0521) (0.0916)

IPC
47.24 41.25 48.92N 43.00N 49.26N 44.12N

(0.2645) (0.1737) (0.2536) (0.6150) (0.1427) (0.3638)

DMOZ-SMALL
40.12 23.63 40.29 24.17M 42.34N 26.23N

(0.2913) (0.1245) (0.1734) (0.2234) (0.2236) (0.1194)

DMOZ-2010
36.18 21.42 36.20 21.44 38.24N 23.11N

(0.2437) (0.1470) (0.2522) (0.0167) (0.1243) (0.1850)

DMOZ-2012
38.42 23.88 38.92 24.24M 40.87N 26.34N

(0.1029) (0.0324) (0.0124) (0.1142) (0.0243) (0.185)

Table shows mean and (standard deviation) in bracket across five runs. N (M) indicates that
improvements are statistically significant with 0.01 (0.05) significance level. Comparison is
between TD-LR model and other models.

Table 7.4: Runtime (in mins) and memory requirements comparison

Dataset
TD-LR TD-LR + ICH TD-LR + IF

(Baseline) (Dalvi et al. [12]) (Proposed)
train predict memory train predict memory train predict memory

CLEF 0.28 < 1 27.52 KB 0.28 < 1 28.16 KB 3.12 < 1 19.00 KB
IPC 68.58 1.91 02.46 GB 68.58 2.31 02.50 GB 102.54 2.00 01.48 GB

DMOZ-SMALL 3.17 < 1 00.48 GB 3.17 1.24 00.50 GB 18.29 1.06 00.31 GB
DMOZ-2010 6418 20.60 26.10 GB 6418 28.24 26.56 GB 10826 24.08 15.95 GB
DMOZ-2012 19193 49.9 19.30 GB 19193 62.49 19.90 GB 28107 53.46 14.02 GB

can deal with orphan nodes. Our approach TD-LR + IF is best performing method because

it can effectively deal with issues that are faced by other two models.

7.4.3 Runtime and Memory Comparison

Table 7.4 shows the average training, prediction time and memory comparison of various

models. Our model (TD-LR + IF) has expensive training time due to overhead associated

with feature selection and pairwise similarity computation steps. However, we would like

to emphasize that both these steps are embarrassingly parallel. On comparing prediction

time, our model and TD-LR + ICH model are expensive due to extra time required for
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orphan node identification. Comparatively, TD-LR + ICH is more expensive due to mixed

integer programming being solved [12] for making the final predictions. Baseline TD-LR

model takes least time because predicting label involves recursive selection of best child

node along tree path only.

On comparing memory required to store model parameters, our approach requires the

least space due to feature selection at each internal node which reduces the dimensions

of learned model weight vectors and hence memory. In fact, for large-scale DMOZ-2010

and DMOZ-2012 datasets improvement is much more significant with ∼40% reduction in

memory space.

7.5 Summary

In this work we propose an integrated framework to solve the major issues faced by large-

scale HC. Unlike previous HC approaches, our framework can identify the orphan nodes

during the testing phase. We also performed an extensive analysis with case study to

determine the importance of each step in HC. Our experimental evaluation on various

datasets shows that the proposed framework can achieve significant improvements in terms

of accuracy and memory requirements. Our approach is scalable due to high degree of

parallelization at each step that can be exploited to improve the training time of model

learning.
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Chapter 8: Conclusion and Future Work

8.1 Conclusion

To conclude, this thesis provides solution to two of the well known HC issues namely, hi-

erarchical inconsistencies and rare categories. For hierarchical inconsistencies, inconsistent

node flattening and rewiring approach are proposed. Flattening methods, that selectively

removes the inconsistent nodes from the hierarchy based on the deviation from mean, are

effective for improving the classification performance. However, they cannot deal with incon-

sistencies in different parts of the hierarchy resulting in limited performance improvement.

In contrary, the rewiring approach can overcome this limitation by modifying the existing

parent-child relationships based on the similarities between the classes resulting in better

HC performance. For solving rare categories issue, different rank-based approaches have

been proposed which results in better classification performance especially for classes with

rare categories. Additionally, to solve the large-scale HC problem this thesis also discusses

about various approaches for integrating state-of-the-art feature selection methods into HC

framework which results in better accuracy and runtime while requiring lesser memory for

storing model parameters. Finally, we discussed about an integrated approach to handle

multiple issues together that are faced by HC resulting in improved performance while being

scalable for larger datasets.

8.2 Future Work

8.2.1 Large-scale Multi-Task Learning

Multi-Task Learning (MTL) has been used effectively in many different applications [87–

94]. It aims to learn generalized model by jointly learning multiple related tasks together.

118



Intuition behind MTL methods is that the training signal present in related tasks can help

each of the tasks learn better model. It also allows for learning of better models with fewer

labeled examples (i.e. classes with rare categories). However, there are two major problem

with MTL that needs to be addressed.

1. Determining related task to consider for joint optimization is difficult.

2. It is computationally expensive due to joint learning and cannot be scaled for large-

scale problem.

Naik et al. [47] proposed a kNN based tanimoto similarity measure that can identify

related task between two hierarchies (DMOZ and Wikipedia). However, the major problem

associated with this approach is that k value is unified across all target DMOZ classes to

determine the related task from source Wikipedia classes and vice-versa. Although, the

improvement is observed with different values of k but there is no consensus regarding

what value of k will work better for different datasets. To overcome this, we would like to

explore more flexible ways to determine the best value of k for each target DMOZ classes.

Specifically, we are interested in finding related tasks by projecting instances from each

of the DMOZ classes to the Wikipedia classes. To find the optimal value of k for DMOZ

classes we make use of Cover Ratio which is defined as follows:

Definition 2 (Cover Ratio). Given, two hierarchies represented by HS1 and HS2 with set

of classes CS1 and CS2, respectively. Cover Ratio between ith class of HS1 i.e. CiS1 and jth

class of HS2 i.e. CjS2 is defined as the percentage of instances from CiS1 that projects into

the CjS2 class where projection is done by computing similarity between each of the instance

belonging to class CiS1 and the centroid of each class belonging to hierarchy HS2 and assigning

the instance to a class having maximum similarity score.

Cover Ratio(CiS1, C
j
S2) =

∣∣∣ ∀
k∈Ci

S1

argmax
(
similarity(k, CS2)

)
== j

∣∣∣
|CiS1|

(8.1)
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Figure 8.1: Different hierarchical structures (b)-(c) obtained by flattening original (expert-
defined) hierarchy (a).

For each DMOZ class, Wikipedia classes with Cover Ratio above certain specified threshold

are considered as the related task for joint optimization in MTL. This approach if imple-

mented will not only help to select optimal value of k for different target DMOZ classes but

will also boost the accuracy performance by preventing negative inductive transfer between

the identified k related tasks.

For reducing the runtime performance of MTL based methods, feature selection could

be an effective tool [9, 15, 58]. Large-scale problem have high-dimensional features which

increases the runtime between optimization iterations resulting in longer runtime. Feature

selection will be helpful to reduce the dimensions of instances thereby reducing the time

taken for each iteration and improving the runtime performance along with improved accu-

racy (by removing redundant and irrelevant features) and lesser memory to store the model

parameters.
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8.2.2 Partial Flattening of Inconsistent Nodes

Removing inconsistent nodes from the orginial (expert-defined) hierarchy are beneficial for

improving the HC performance [2,4,31]. However, flattening all children of the inconsistent

nodes may not be an optimal choice for classification. It is quiet possible that some of

the children of inconsistent nodes are actually benefitting from these nodes by leveraging

structural information (especially rare categories). However, due to overall optimization

objective value, the node is identified as inconsistent and all its children are flattened. To

overcome this drawback, we plan to perform more regressive analysis with partial flattening

of inconsistent nodes where only the subset of children are flattened as shown in Figure 8.1.

Validation dataset can be used to identufy the subset of children that performs compar-

atively better with the inconsistent nodes presence.

8.2.3 Multi-linear Models

As stated earlier, Top-Down (TD) methods are effective for dealing with large-scale HC.

However, the performance of TD may be poor due to error propagation i.e. errors made

at the higher levels in the hierarchy cannot be corrected at the lower levels. To overcome

this problem various methods have been proposed that modify hierarchy [4,32] or combine

multiple predictions [5, 7] for improving the classification performance. Still, the margin

of errors at higher levels in the hierarchy is more compared to lower levels [2] because at

higher levels each of the discriminative node consist of the multiple sub-categories which

may not be easily separable with the linear classifiers. Alternatively, non-linear classifiers

[95] can be used to overcome this problem but they are computationally expensive which

makes them unsuitable for large-scale problem.

An ideal classifier must poses the classifying properties of non-linear classifiers while

being computationally efficient like linear classifiers. Recently, multi-linear methods have

been propsed by Huang and Lin [96] which address this issue for binary classification prob-

lem. Multi-linear models take advantage of both, linear and non-linear models. While
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multi-linear models are more accurate than linear models, it is also computationally effi-

cient than non-linear models. One of the logical research extension of this work could be

for multi-class HC problem.

8.2.4 Extreme Classification

Overtime, number of labels (categories) keeps on increasing. Extreme Classification is the

problem of dealing with extremely large label spaces. To motivate consider the example

of social media such as twitter where new hashtag is being created by the user frequently.

Obviously, when new hashtag appears they do not have enough instances to train generalized

models for classifying future tweets. In such cases it would be beneficial to fetch instances

from other related hashtags. Problem that would be interesting to solve is how to determine

the related hashtags from such a extremely large space of hashtags. Many works in this

direction have been proposed in the literature [97–102]. Similar approach can be extended

to the HC problem where labels (tags) can be organized into the hierarchy and mapping

of unlabeled tags can be done easily by recursively selecting the best set of tags in the

hierarchy.

At another level given streaming data the following situation can arise which will lead

to interesting learning problems.

1. Assume, we are given streaming data with tweets. Before a hashtag gets popular,

users may choose not to use a particular one of interest at all or make up their own.

In this setting can we reassign previous tweets before the hashtag originated to the

particular hashtag using classification.

2. Given, the limited data and treating hashtag assignments as an extreme classification

problem can we use the data from step 1 to make predictions on future tweets. Can we

know that a tweet generated needs a new hashtag that does not exist in the previous

pool i.e., orphan prediction in the classification literature.
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