
IMAGE ANALYSIS OF RADIOLOGICAL IMAGES
FROM PATIENTS WITH ADVANCED LUNG DISEASE

by

Mekhala Acharya
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Bioinformatics and Computational Biology

Committee:

Dr. Jason Kinser, Dissertation Director

Dr. Geraldine Grant, Committee Member

Dr. Donald Seto, Committee Member

Dr. Jeffrey Solka, Committee Member

Dr. James D. Willett, Director,
School of Systems Biology

Dr. Timothy L. Born, Associate Dean for
Student and Academic Affairs,
College of Science

Dr.Vikas Chandhoke, Dean, College of Science

Date: Fall Semester 2012
George Mason University
Fairfax, VA



Image Analysis of Radiological Images from Patients with Advanced Lung Disease

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Mekhala Acharya
Master of Science

George Mason University, 2006
Bachelor of Science

Mangalore University, 2000

Director: Dr. Jason Kinser, Professor
School of Physics and Computational Sciences, College of Science

Fall Semester 2012
George Mason University

Fairfax, VA



Copyright c© 2012 by Mekhala Acharya
All Rights Reserved

ii



Dedication

I dedicate this dissertation to my husband Prashanth. I would not have reached this stage
in my academic life had it not been for his unwavering support and faith in me. His patience
and love for science gave me the encouragement to stay focussed, consistent and dedicated
in my aim to complete the dissertation. It was not a question of just completing it, but
doing it well and with the utmost satisfaction. I cannot thank him enough for all those
hours spent reviewing my material, the discussions and constant encouragement I received.
Thank you Prashanth for being there when I needed you most.

iii



Acknowledgments

I would like to thank my advisor Dr Jason Kinser whose encouragement and faith in me
made it all possible. There were days of exasperation and frustration, but it was Dr Kinser’s
cheerful disposition and ‘can do‘ attitude that made this work see the light of the day. I
could shrink in the presence of his brilliance, but never once did he make me feel incapable
of assimilating the material or producing new work. I always came out with a renewed
sense of excitement after the brain-storming sessions. The sheer simplicity with which he
conveyed the most complex ideas gave me clarity and purpose which worked wonderfully
well especially during the most critical periods. Thank you Dr Kinser. I would especially
like to thank the radiologists at Inova Heart and Lung Disease Institute, Dr Steven Nathan
and Dr Candy Albano and Registered Nurse, Lori Schlegel. The exhaustive information
and feedback provided through data and meetings made the analysis feasible.

I would also like to say a special thank you to Dr Grant, whose initial input and references
in understanding the science of this disease gave me the momentum I needed for a great
start. Last but not the least I would like to acknowledge my committee members: Dr Seto
and Dr Solka whose inputs made this dissertation possible and complete.

iv



Table of Contents

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Diagnosis and Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Differential Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Current Challenges in Medical Imaging Modalities of Lung Disease . . . . . 5

1.2.1 Chest Radiography . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 HRCT Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Disease Quantification using HRCT scans . . . . . . . . . . . . . . . . . . . 8

2 Previous Approaches to the Study of IPF . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Quantification of Diffuse Lung Diseases . . . . . . . . . . . . . . . . . . . . 9

2.2 CT Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Texture Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Research Rationale and Data Collection . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Medical Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Experimental Data-Sets . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 CT Scanning Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Adaptive Multiple Feature Method . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Thresholding or Feature Identification . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Range Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



4.3 Smoothing or Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Adaptive Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Quantitative CT indices . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.3 Adaptive operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 ROI extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Co-Occurrence Matrix Measures . . . . . . . . . . . . . . . . . . . . 35

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Backpropagation Neural Network (BPNN) . . . . . . . . . . . . . . . . . . 38

4.6.1 Radial Basis Function (RBF) . . . . . . . . . . . . . . . . . . . . . . 40

4.6.2 Implementation and Analysis . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Pulse Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 PCNN Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Original Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Implementing in Python . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 Spiking Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.4 Collective Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.5 Neural Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 The ICM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Minimum Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 ICM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Connections in the ICM . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.5 Curvature Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.6 Centripetal Autowaves . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Comparing ICM with Gabor . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Segmentation of IPF Images with Pulse Images . . . . . . . . . . . . . . . . 76

5.5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.2 Pulse Image Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.3 ICM in Texture Analysis . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.4 Pulsation in Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.5 Pulse Streams for Classification . . . . . . . . . . . . . . . . . . . . . 82

vi



5.5.6 Analysis of Pulse Streams . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Associative Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.1 FAAM Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.2 Training the FAAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Application to a Single Patient . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7.1 Single Image Response . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7.2 Non-Training Image Response . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9 Multiple Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9.2 Training and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.11 Enhancements and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Comparisons and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Gold Standards and Image Processing . . . . . . . . . . . . . . . . . . . . . 101

6.2 Volumetrics for IPF images . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 PFT Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1 Previous Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Adaptive multiple Feature Method . . . . . . . . . . . . . . . . . . . 113

7.2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.3 Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 PCNN and IPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Volumetric Analysis and Gold standards . . . . . . . . . . . . . . . . . . . . 114

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vii



List of Figures

Figure Page

1.1 Classification of interstitial lung disease (ILD). COP, cryptogenic organizing

pneumonia; CTD, connective tissue disease; HPS, Hermansky-Pudlak syn-

drome; IBD, inflammatory bowel disease; IIP, idiopathic interstitial pneu-

monia; IPF, idiopathic pulmonary fibrosis; LAM, lymphangioleiomyomato-

sis; LIP, lymphocytic interstitial pneumonia; NSIP, nonspecific interstitial

pneumonitis; PAP, pulmonary alveolar proteinosis [1]. . . . . . . . . . . . . 2

1.2 Patient with advanced IPF. Chest radiograph shows extensive bilateral retic-

ular abnormality, more marked on the right that on the left. The images

show peripheral and basal reticular abnormality, honeycombing and traction

bronchiectasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Subpleural, lower lobe honeycombing and traction bronchiectasis. . . . . . . 3

1.4 IPF incidence is comparable to that of many other serious diseases. . . . . . 4

1.5 HRCT scans of healthy subject and patient with IPF. Details such as the

smaller bronchi are easier to appreciate on the HRCT scan. . . . . . . . . . 7

3.1 Paradigm of Image Analysis with associated structure of Knowledge-based

models that will be used at different stages of processing. . . . . . . . . . . 18

4.1 Characteristic honeycombing seen in IPF. . . . . . . . . . . . . . . . . . . . 21

4.2 The value of element B(2,4) was calculated from A(2,4). The Range Filter

uses a 3-by-3 neighborhood and the neighborhoods or different shapes and

sizes can be specified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 The structuring element SE creates a flat, disk-shaped structuring element,

where R specifies the radius. R must be a nonnegative integer, in this case a

value = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Honeycomb Detection using Range Filter. . . . . . . . . . . . . . . . . . . . 24

4.5 Range filter with line element and Range filter with pair element. . . . . . . 25

4.6 Original Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Adaptive filter with Exponential distribution. . . . . . . . . . . . . . . . . . 27

viii



4.8 Original Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.9 Adaptive filter with Rayleigh distribution. . . . . . . . . . . . . . . . . . . . 29

4.10 A CT density histogram from a fibrotic lung is less skewed, less kurtotic and

have increased mean lung attenuation compared to healthy lungs. . . . . . . 32

4.11 CT density histogram from normal lung shows a sharp peak and is skewed

to the left in comparison to the Gaussian normal distribution. . . . . . . . . 33

4.12 Block diagram of the Adaptive Multistage Nonlinear Filter (AMNF). . . . . 34

4.13 Texture quantified using texture metrics such as statistical moments (vari-

ance, kurtosis) and co-occurence matrices. . . . . . . . . . . . . . . . . . . . 37

4.14 A basic computational neural element or Perceptron for classification. . . . 38

4.15 Feedforward backpropagation network with one hidden layer. . . . . . . . . 39

4.16 Gabor filter composition for 1D signals:(a) sinusoid, (b) a Gaussian kernel,

(c) the corresponding Gabor filter. . . . . . . . . . . . . . . . . . . . . . . . 43

4.17 Gabor filter composition: (a) 2D sinusoid, (b) a Gaussian kernel, (c) the

corresponding Gabor filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.18 Example of Gabor filter oriented at 66◦ with the x-axis . . . . . . . . . . . . 45

4.19 Gabor filters with different frequencies and orientations. . . . . . . . . . . . 46

4.20 Segmentation result after Gabor filter is applied. . . . . . . . . . . . . . . . 47

5.1 Schematic representation of a PCNN processing element [2]. . . . . . . . . . 50

5.2 An input and selected pulse images from the PCNN [2]. . . . . . . . . . . . 52

5.3 An example of the progression of the states of a single neuron. See the text

for explanation of L, U, T and F [2]. . . . . . . . . . . . . . . . . . . . . . . 53

5.4 A typical PCNN example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Collective behavior of F [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Collective behavior of L [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7 Collective behavior of Θ [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.8 An example input [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.9 Output pulse images [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 Outputs of a PCNN with an asymmetric kernel, as discussed in the text.

These outputs should be compared to those shown in Figure 5.11 [2]. . . . . 61

5.11 Outputs of a PCNN with an on-center/off-surround kernel [2]. . . . . . . . . 63

5.12 An input image [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



5.13 Neuron that fired in the first 10 iterations for systems with P = 1, P = 2,

and P = 3 [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.14 An input image and a few of the pulse outputs from the ICM [2]. . . . . . . 66

5.15 An original image and several selected pulse images from the PCNN [2]. . . 67

5.16 Results from the ICM [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.17 A target (flower) pasted on a background [2]. . . . . . . . . . . . . . . . . . 69

5.18 The signature of the flower without a background (G.plt) and the signature

of the flower with a background (Gb.plt) [2]. . . . . . . . . . . . . . . . . . 69

5.19 The propagation of curvature flow boundaries [2]. . . . . . . . . . . . . . . . 70

5.20 The progression of an autowave from an initial shape [2]. . . . . . . . . . . . 71

5.21 The signatures of the flower and the flower with a background using the

centripetal autowave model [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.22 PCA on extracted vectors from Gabor filter correlations. . . . . . . . . . . . 75

5.23 PCA on extracted vectors from pulse images. . . . . . . . . . . . . . . . . . 76

5.24 Original image of a patient with IPF. . . . . . . . . . . . . . . . . . . . . . . 77

5.25 Overview of the system with a training track (upper path) and a query track

(lower path). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.26 Two pulse images from the first cycle. . . . . . . . . . . . . . . . . . . . . . 79

5.27 Four pulse images from the second cycle. . . . . . . . . . . . . . . . . . . . . 81

5.28 Four pulse images from the third cycle. . . . . . . . . . . . . . . . . . . . . 82

5.29 The x-axis represents the ICM iteration number, n, and the y-axis represents

the pulse activity for the neurons . . . . . . . . . . . . . . . . . . . . . . . . 83

5.30 Demonstration of the FAAM. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.31 Learning curves from a typical FAAM for three different regions in the same

patient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.32 The response from image 14 from both FAAMs. . . . . . . . . . . . . . . . . 88

5.33 The response from image 11 from both FAAMs. . . . . . . . . . . . . . . . . 88

5.34 Area metrics of classification. The top most graph depicts the total area of

the lung for each slice. The lower most graph depicts the area classified as

fibrotic and the graph above it depicts the area classified as healthy. The

second plot depicts the summation of the healthy and diseased regions. . . . 89

5.35 Image and Histogram before normalization. . . . . . . . . . . . . . . . . . . 91

5.36 The image is divided into different regions(back1, back2, organ, tissue, bone,

vascular, diseased and healthy). . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



5.37 Training scans from multiple patients. . . . . . . . . . . . . . . . . . . . . . 93

5.38 Demonstration of the FAAM from multiple patients. . . . . . . . . . . . . . 94

5.39 Honeycombing and Vascular regions from Patient a0017. . . . . . . . . . . . 96

5.40 Honeycombing and Vascular regions from Patient d0034. . . . . . . . . . . . 97

5.41 Honeycombing and Vascular regions. . . . . . . . . . . . . . . . . . . . . . . 98

5.42 Honeycombing and Vascular regions from Patient p0023 . . . . . . . . . . . 99

6.1 Diagnostic approach to IPF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Area metrics of classification. The top most graph depicts the total area of

the lung for each slice. The graph in red depicts the area classified as fibrotic,

green depicts vascular and the graph in blue depicts the area classified as

healthy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Lung volumes and capacities are depicted on a volume-time graph. . . . . . 105

6.4 Correlation graphs between sum of vascular and healthy (tot) against PFT

measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Correlation graphs between honeycomb regions (pcthon) and PFT measures. 110

xi



List of Tables

Table Page

6.1 Volumetric Percentage by Patient. . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Pulmonary function measurements in patients with IPF. . . . . . . . . . . . 105

6.3 Correlation Coefficients (r) and p-value in patients with IPF. Note: pctvas,

pcthealthy, pcthon: Volumetric measures computed from regional classifica-

tion for vascular, healthy and honeycomb regions respectively, tot = vascu-

lar+healthy measure of the lung. . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Coefficients of correlation (r-values) between volumetric measures and PFT

measures. Note: pctvas, pcthealthy, pcthon: Volumetric measures computed

from regional classification for vascular, healthy and honeycomb regions re-

spectively, tot = vascular+healthy measure of the lung. . . . . . . . . . . . 107

xii



Abstract

IMAGE ANALYSIS OF RADIOLOGICAL IMAGES FROM PATIENTS WITH ADVANCED
LUNG DISEASE

Mekhala Acharya, Ph.D.

George Mason University, 2012

Dissertation Director: Dr. Jason Kinser

There are diagnostic challenges in the evaluation of a patient with a known or suspected

diagnosis of interstitial lung disease [ILD] because of the extensive possibilities of diverse po-

tential diagnoses with similar symptoms. High-Resolution Computed Tomography (HRCT)

has changed the diagnostic evaluation of patients with ILD and is particularly useful in the

diagnosis of idiopathic pulmonary fibrosis (IPF) [3]. According to NIH, IPF is a disease in

which over a period of time the lung tissue becomes thickened, stiff and scarred. The char-

acteristic HRCT findings of IPF are reticular abnormality and honeycombing with basal

and peripheral predominance [4] and the radiographic pattern differs with the stage of the

disease.

The quantification of disease by CT is important to indicate prognosis and to evaluate

progression of the disease or response to treatment. It is difficult to convey the complex

textural information offered by a CT scan hindered by the lack of user friendly technology

for image analysis. Automated tools are presented which extract information from the CT

images and isolate visual evidence of the disease from healthy lung tissue. Each CT image

is converted to a set of pulse images, which through collective synchronization of pixels

extract pertinent information of the diseased regions.



In spite of the obvious difference in contrast, volume and texture, the healthy and dis-

eased regions are distinguished and classified using pulse images. The technique used is

successful in classifying the healthy and diseased portions of the lung. The goal is to train

adequate and varied stages of IPF images and to be able to extract sufficiently enough

information from test images. The algorithm was tested on HRCT scans procured through

Inova Fairfax Hospital, Department of Radiology. Two expert radiological reviewers com-

pared the initial results of the segmentation algorithm with the manual segmentation of

the original scans. Comparison revealed agreement regarding the presence or absence of

honeycombing. Algorithms and results for the analysis of patients with IPF and healthy

patients are presented.

The absence of gold standards in image processing makes quantification challenging for

early stage images of IPF and blinded images. Thus medical image processing validation

often cannot rely on availability of true gold standards. Hence lung volumes derived from

Pulmonary Function Tests (PFT) results served as established clinical parameters and were

used as ”gold standards” [5]. The results of the segmentation were compared with the mea-

surements of the pulmonary function tests. The relationship between image segmentation

results and the PFT results were calculated using linear aggression analysis and Pearson’s

product moment correlation. Volumetric measurements of of honeycomb, vascular and nor-

mal regions are found to correlate with results of PFTs in patients with IPF. The greatest

correlation was between honeycomb regions and forced vital capacity (FVC). The healthy

and honeycomb regions correlated negatively with PFT measure diffusing capacity (DLco).

Results demonstrate that the segmentation of IPF images using PCNN techniques are useful

in extracting quantitative information.

Keywords: Idiopathic pulmonary fibrosis, high resolution computed tomography, Pulse

coupled neural network, Intersecting cortical model, Fast analog associative memory



Chapter 1: Introduction

Many acute and chronic lung diseases with variable degrees of pulmonary inflammation and

fibrosis are collectively referred to as interstitial lung diseases (ILDs) or diffuse parenchymal

lung diseases [1]. Idiopathic pulmonary fibrosis (IPF), also known as cryptogenic fibrosing

alveolitis, is a distinct interstitial lung disease that is limited to the lung, has an unknown

etiology, and is associated with a histological pattern of usual interstitial pneumonia [3, 6].

IPF is the most common ILD accounting for 25 to 50 percent of the diffuse lung diseases

[7]. Figure 1.1 gives the current classification of ILDs according to the American Thoracic

Society [1].

1.1 Diagnosis and Treatment

The diagnosis of IPF is based on clinical, radiographic and histopathologic evaluations

[1]. IPF often presents clinically with progressive dyspnea, restricted lung function, and

impaired gas exchange. A patchy pattern of peripheral, sub-pleural and predominantly

lower lobe reticular opacities combined with honeycombing, traction bronchiectasis, and

the absence of significant ground glass together constitute the classic radiographic features

of IPF as seen in Figure 1.2 and Figure 1.3. Another feature of the disease is its pathologic

heterogeneity within the lungs. In the absence of clinical and radiographic features, a

surgical biopsy is recommended for definitive diagnosis of IPF [8].

1.1.1 Differential Diagnosis

Usual interstitial pneumonia (UIP) is the histopathological pattern that identifies patients

with IPF [1]. In the absence of surgical lung biopsy, the diagnosis of IPF remains uncertain.

Once diagnosed, IPF carries a bleak prognosis, with 5-year survival rates estimated at 30
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Figure 1.1: Classification of interstitial lung disease (ILD). COP, cryptogenic organizing
pneumonia; CTD, connective tissue disease; HPS, Hermansky-Pudlak syndrome; IBD, in-
flammatory bowel disease; IIP, idiopathic interstitial pneumonia; IPF, idiopathic pulmonary
fibrosis; LAM, lymphangioleiomyomatosis; LIP, lymphocytic interstitial pneumonia; NSIP,
nonspecific interstitial pneumonitis; PAP, pulmonary alveolar proteinosis [1].

Figure 1.2: Patient with advanced IPF. Chest radiograph shows extensive bilateral reticular
abnormality, more marked on the right that on the left. The images show peripheral and
basal reticular abnormality, honeycombing and traction bronchiectasis.
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Figure 1.3: Subpleural, lower lobe honeycombing and traction bronchiectasis.

to 50 percent [1]. The course of IPF is unpredictable and patients with well-maintained

lung function can be at significant risk of death. Some patients can have rapid progression

of their disease and in some such instances this can be due to an acute exacerbation, which

is itself a poorly characterized complication of the disease. There are no proven effective

medical therapies for IPF. The only recourse for patients is lung transplant, however only

a few patients with the disease are appropriate candidates for this.

There are diagnostic challenges in the evaluation of a patient with a known or suspected

diagnosis of diffuse infiltrative lung disease (interstitial lung disease [ILD]) because of the

extensive list of diverse potential diagnoses. The general availability of high-resolution

computerized tomography (HRCT) has allowed this imaging technique to become a standard

tool for the evaluation of patients with diffuse lung disease. Therefore it is necessary to

develop tools to extract information from these images which are useful in narrowing the

broad differential diagnosis.
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Figure 1.4: IPF incidence is comparable to that of many other serious diseases.

1.1.2 Epidemiology

Surprisingly little is know about the epidemiology of IPF in the United States. Once

considered a relatively rare disease, IPF is now recognized as the most common interstitial

lung disease [9]. The incidence of IPF is greater than that of ovarian cancer, similar to those

of pancreatic cancer and of all leukemias combined, and nearly 30 times that of cystic fibrosis

[10–12]. IPF is a fatal disease with an average 5-year mortality higher than that of many

difficult-to-treat cancers [7, 10, 13]. Disease awareness is among the critical challenges for

patients with IPF, their caregivers, and their healthcare teams. Greater disease awareness

can facilitate earlier diagnosis and frequent evaluation, both of which are recommended to

optimize the management of IPF [1,14]. The annual incidence of IPF in the United States

is over 30,000 [11]. IPF occurs more commonly in males than in females. The US prevalence

is approximately 83,000 [11]. 73% of patients with IPF are greater than 65 years of age [11].
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1.2 Current Challenges in Medical Imaging Modalities of

Lung Disease

Medical imaging systems include a wide variety of technologies, methods and applications

designed to provide information about the structure and function of living beings. The

term is used most frequently in reference to modalities associated with diagnostic radiology,

for example computed tomography (CT), ultrasound, projection radiography and magnetic

resonance imaging (MRI). It can, however, also be used more generically to include systems

that obtain images of other types, including those visualized during clinical procedures such

as endoscopy or derived from pathologic specimens.

1.2.1 Chest Radiography

Conventional chest radiography is often the first or only imaging procedure performed in

the patient with suspected or known lung disease. When a confident diagnosis of IPF is

made on the basis of the chest radiograph, it is correct in 48 to 87 percent of cases [15,16].

Given the indolent course of IPF, the clinical utility and optimal timing of follow-up chest

radiographs are unclear. Limitations include the fact that it is relatively insensitive for

early ILD and gives little if any useful information regarding the severity of inflammation

in ILD.

1.2.2 HRCT Technique

HRCT allows detailed evaluation of the lung parenchyma by using 1 to 2 mm thick slices

which images only 10 percent of the lung parenchyma [3] with a reconstruction algorithm

that maximizes spatial resolution [1]. This has resulted in more accurate differential diag-

nosis and determination of extent of fibrosis. The accuracy of a confident diagnosis of UIP

made on HRCT by a trained observer appears to be about 90 percent [16–18]. However

because a confident diagnosis of IPF is made by HRCT in two thirds of patients with IPF,

one-third of the cases are missed by relying on HRCT alone [19]. Less experienced observers
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are substantially less accurate than experienced observers [17]. But the quantitation is also

challenging for several reasons. It is difficult and potentially misleading to use a single num-

ber to convey the complex textural information offered by the CT scan. There is moderate

inter-observer agreement in scoring pattern type and disease extent in patients with IPF

[20]. All existing methods of CT quantification of ILD are dependent on patient’s inspira-

tion, which determines the volume of the lung and lung density. Spirometric control of the

level of inspiration on CT is the logical solution and not widely used in the United States

[21]. A significant problem with quantitative CT techniques is the lack of an automated

method for segmenting the lung and deriving quantitative indices. In spite of these draw-

backs, HRCT features alone are sufficient to make the diagnosis of UIP/IPF in 50 to 60

percent of cases selected based on the clinical suspicion of IPF. As seen in Figure 1.5 there

is a stark contrast between the HRCT images of the healthy subject as compared to the

HRCT scan from the IPF patient. IPF patient shows extensive basal reticular abnormality

compatible with lung fibrosis.

1.2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) has the ability to provide a combination of high res-

olution, excellent soft tissue contrast and high signal to noise ratio [22]. Its an excellent

diagnostic tool allowing for morphological evaluation of lung parenchyma and cardiac func-

tion. However evaluation of lung parenchyma using MRI is not yet common in patients with

severe IPF and with reduced parenchymal structure. The role of MRI for the assessment

of interstitial, inflammatory and obstructive disease is not yet determined. In general MRI

is less available, will take more time and will cost more than CT [23].

1.2.4 Ultrasound

The value of Thoracic Sonography (TS) in ILD was studied by Angelika Ressig [24]. TS is

cost-effective, non-invasive, broadly available method that requires neither ionizing radia-

tion nor a contrast medium. However HRCT is the most sensitive and specific radiologic
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(a) Healthy Subject

(b) IPF Patient.

(c) IPF Patient.

Figure 1.5: HRCT scans of healthy subject and patient with IPF. Details such as the smaller
bronchi are easier to appreciate on the HRCT scan.
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technique in comparison. TS is thus considered as a complementary method.

1.3 Disease Quantification using HRCT scans

Quantification of disease by CT is important to indicate prognosis and to evaluate progres-

sion of the disease or response to treatment. CT quantification may be visual or digital.

Most studies of diffuse lung disease use a visual approach asking observers to assign a nu-

merical grade to the severity of the disease on a four or five point scale [20,25,26]. However

such simple scoring systems may not have the resolution to detect subtle changes in extent

of disease on serial scans. A wide range of inter-observer and intra-observer correlations

(r values) are reported indicating substantial variation in visual assessment scores. Digital

methods of quantification of disease extent rely on a standard scale of CT attenuation,

measured in Hounsfield unit (HU). The mean attenuation of normal lung is around -820

to -860 HU, on HRCT, but this is critically dependent on the volume of inspired air [27].

For digital quantification, the lung must be first isolated (segmented) from the surrounding

structure.

The advantages of visual quantification include ease of performance, moderate repro-

ducibility with experience and training and sensitivity to patterns of disease. Advantages

of digital quantification include observer independence, excellent reproducibility and poten-

tially greater sensitivity to subtle changes [4].
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Chapter 2: Previous Approaches to the Study of IPF

Precise clinical measurement is an important part of the science of medicine. However

radiologists have been slow to to provide quantitative measurements of disease extent. In

the management of patients with diffuse lung diseases, it is important to define the extent

of the disease, particularly if the patient is being monitored for progression of disease or

response to treatment. In this chapter, some of the earlier approaches in the quantitative

analysis of IPF are explored.

2.1 Quantification of Diffuse Lung Diseases

Quantitative techniques have an important role in improving our understanding of the

pathophysiology of lung diseases. Physiologic evaluation provides a global measurement of

lung function, including contributions from normal and abnormal lung parenchyma.

Quantitation of radiologic abnormalities is challenging for several reasons. Radiology is

a descriptive visual speciality in which the subtleties of image appearance are important. It

is difficult and potentially misleading to use a single number to convey the complex textural

information offered by a chest radiograph or the chest CT scan. Visual integration of the

extent of abnormality is a complex task subject to substantial inter observer variation.

Use of digital data from chest radiography and chest CT has been hindered by the lack of

user-friendly technology for image analysis and by the difficulty of validating the system

used.

2.2 CT Density

A number of authors have used measures of CT density to evaluate the extent of diffuse

parenchymal lung diseases such as IPF [28–35]. CT scans were obtained from IPF and
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control patients and lung volumes were estimated from measurements of voxel size, and X-

ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained

from biopsies obtained from diseased and normal CT regions using stereologic methods. CT

density was used to calculate the proportion of tissue and air, and this value was used to

correct the biopsy specimens to the level of inflation during the CT scan. The data shows

that IPF is associated with a reduction in airspace volume with no change in tissue volume

or weight compared with control lungs. Thus Coxson et al. [28] concluded that the ratio

of air to tissue in the lung, estimated from CT density, correlated with that found in

histopathology.

Wollmer et al. [29] found a significant increase in CT lung density in 33 asbestos workers,

only 3 of whom had evidence of asbestosis in chest radiographs. In excess of detailed

morphologic information, CT provides good estimates of regional lung density [30, 31]. A

paper by Reuter et al. [32] demonstrated that subjects with asbestos exposure and normal

or near-normal chest radiographs had substantially higher lung density than age-matched

normal subjects reinforcing the concept that quantitative CT may be able to detect lung

disease earlier than analysis of CT images.

Lynch et al. [33] used quantitative CT indexes such as skewness, kurtosis and mean

lung attenuation to correlate IPF with pulmonary abnormality. One hundred and forty

four subjects participated in a double blind placebo controlled study and strong correlation

was found between thin-section CT histograms with pulmonary function tests of patients

with IPF.

2.2.1 Disadvantages

However all existing methods of CT quantification of ILD are less than ideal. Visual es-

timation techniques are subjective and show only moderate reproducibility. All available

techniques are dependent on the depth of the patient’s inspiration, which determines the

overall volume of the lung and the lung density. Quantitative methods based on CT density

histogram are particularly susceptible to variation with differing depths of inspiration.
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Spirometric control of the level of inspiration on CT is the logical solution [34]; though

available in Europe, it is not widely used in the United States. The optimal lung volume for

the measurement of lung density in patients with lung fibrosis is unclear. A study of normal

subjects by Verschakelen et al. [35] showed that scanning at low volumes accentuated the

problem of increased density in the dependent lung. This might potentially obscure density

changes due to early lung fibrosis. However a study by Beinert et al. [36] showed that

optimal discrimination between patients with lung fibrosis and normals occurred at a level

of inspiration of 20% or 50% of vital capacity. The impact of the reconstruction algorithm

on density measurements is unclear.

A significant problem with quantitative CT technology is the lack of user-friendly auto-

mated method for segmenting the lung and deriving quantitative indices. It seems partic-

ularly surprising that none of the major CT manufacturers provide a user-friendly package

for performing quantitative analysis of lung images [4].

2.3 Texture Analysis

Texture based methods examine the relationship between the attenuation of pixels within a

certain distance of each other. Previously published computer-based methods for evaluating

CT images of the lung [37–42] have used information from only one first-order textural

feature such as density and therefore do not take full advantage of the complexity of the

lung parenchyma as shown and recorded in digital form by HRCT.

Uppaluri et al. [43] developed an adaptive multiple feature method (AMFM) to assess

22 independent texture features to classify six different tissue patterns in a CT image. The

features with the greatest ability to discriminate between the different patterns were cho-

sen and a Bayesian classifier was evaluated on six images and manually compared by three

radiologists. The method used an objective assessment of global and regional changes in pul-

monary parenchyma to detect emphysema. This computerized method used a combination

of statistical and fractal texture features for characterization of lung tissues based upon high

resolution computed tomography (HRCT) scans. The AMFM is a texture-based method
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that combines statistical texture measures and a fractal measure. In total, 17 measures of

texture were used. Included in these measures were the grey level distribution measures,

run-length measures, co-occurrence matrix measures, and a geometric fractal dimension

(GFD).

A feature selection program based on the divergence measure was used to select an

optimal subset of features to best discriminate the tissues under consideration. A database

of HRCT slices of known classification, called the training set, was used to train a Bayesian

classifier. A test set of HRCT slices, distinct from the training set, was used to compute

the accuracy of the method in tissue characterization.

HRCT images obtained from normal subjects and those with emphysema, IPF, and

sarcoidosis were compared in a global analysis. This analysis was performed using the

whole single image slice of the lung field as the region of interest (ROI) to extract the

texture features. Two subject groups, three subject groups, and all four of the subject

groups were compared. Regional analysis was then performed allowing for comparisons of

normal and diseased lungs using the AMFM. Although this method performed well, it was

found AMFM did better with global disease categories rather with basic lung patterns such

as honeycombing, ground glass, nodular, etc.

Uchiyama et al. [44] proposed a scheme in which the lung was segmented and divided

into 32× 32 contiguous regions of interest (ROI). An artificial neural network was used to

classify each ROI. In a study by Delorme et al., a similar approach was undertaken wherein

they trained a computer system to establish rules for recognition of image features such as

normal parenchyma ground glass attenuation and fibrosis [45].

In his paper, Uchiyama et al. [44] used a database consisting of HRCT images from

patients which included normal and abnormal slices related to six different patterns, i.e.,

ground-glass opacities, reticular and linear opacities, nodular opacities, honeycombing, em-

physematous change, and consolidation. The areas with a specific pattern, which three

radiologists marked independently and consistently as the same patterns, were used as gold

standard for specific abnormal opacities in this study. The lungs were first segmented from
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the background in each slice by use of a morphological filter and a thresholding technique,

and then divided into many contiguous ROIs with a 32× 32 matrix.

Six physical measurements which were determined in each ROI included the mean and

the standard deviation of the CT value, air density components, nodular components, line

components, and multilocular components. Artificial neural networks (ANNs) were em-

ployed for distinguishing between seven different patterns which included normals and six

patterns associated with diffuse lung disease. Uchiyama et al. [44] studied the use of CAD

and reported a sensitivity of 99.2% for identifying any abnormal lung patterns (ground-glass

opacities, reticular or linear opacities, nodular opacities, honeycombing, emphysematous

changes, or consolidation) . Although these early results suggested that CAD may eventu-

ally be able to assist radiologists in their assessment of diffuse lung disease, the necessary

software tools are still in the theoretical development stage.

Fractal analysis have also been applied to CT patterns [46]. They computed generalized

fractal dimensions for HRCT images to investigate their value in the discrimination and

quantification of idiopathic pulmonary fibrosis (IPF) from normal lung parenchyma. The

probability distribution that was based on the pixel value in each image was used to compute

capacity, information, and higher fractal dimensions for a series of 52 HRCT slices obtained

from four patients. Qualitative classification of normal, mild, moderate, and severe IPF

cases was achieved. The generalizability of the model was tested by predicting the extent

of IPF for each patient from a regression model computed with the remaining slices in the

database.

The extent of IPF was predicted well within the 90% confidence interval given by the

model. Rodriguez et al. [46] also showed that the automatic discrimination and quantifica-

tion of IPF from normal lung parenchyma was possible using generalized fractal dimensions

on HRCT images. However, they did not attempt to compare the results of the segmen-

tation with measurements such as pulmonary function tests, which is important for the

treatment option and the patient prognosis.

Clustering techniques based on first order histogram analysis have been applied by
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researchers. In [47], researchers have applied rule based scheme for chest radiographic

image analysis in combination with artificial neural network to detect and classify interstitial

abnormalities.

Katsuragawa et al. [47] describe a computerized method to quantify ILD by using

physical texture measures obtained from an analysis of power spectrum of lung textures in

digital chest radiographs. He and his colleagues used Fourier transformation to determine

the frequency power spectrum of the radiographic texture of the lung on the ILO standard

radiographs [48]. The most detailed and most widely used system for quantification of

diffuse lung diseases on chest radiography is the International Labour Organization (ILO)

classification system for pneumoconiosis.

They found an increasing profusion of opacities was associated with increased root mean

square variation in the pixel values, while an increasing size of opacities was associated

with a shift of the first moment of the power spectrum toward lower frequencies. The

use of these two measures can, therefore, provide a measure of the profusion and size

of the radiographic opacities. These authors have progressively enhanced their analysis

algorithm, which has resulted in substantial decrease in false-positive detection of interstitial

abnormalities. However the system has not been used to quantify the extent of abnormality

in subjects with diffuse lung disease.
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Chapter 3: Research Rationale and Data Collection

The goal of this study is to quantify features that appear in radiological images, specifically

chest HRCT scans, and to measure their inter relationships. The aim is to understand and

measure the features that exist in radiological images. Of specific interest is the development

of algorithms to detect evidence of early onset of IPF. In this regard it is the peripheral

area of the lung and mostly the bases that are first involved in the disease process than the

more central areas.

The ideal quantitative technique would be simple to perform, reproducible and observer

independent and offer a valid measurement of disease extent, by comparison with physiologic

or pathologic indices. The purpose of this dissertation is to use these criteria to evaluate

methods for scoring abnormalities.

3.1 Objective

This goal will be addressed through several major steps.

1. Feature Identification.

Several researchers have identified the visible features of IPF through a manual pro-

cess. At first these features will be collected and parsed manually.

2. Feature Extraction.

Segmentation is important for feature extraction. The first step in automatic disease

pattern detection is to segment the lungs from the background [49]. Next, through a

manual down selection, features deemed significant will be isolated using appropriate

algorithms. Concurrently, methods will be developed to measure the strength of the

feature (size, intensity, etc) and to measure the confidence of detection.
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3. Feature Significance

Once the image has been segmented, shape and texture quantification techniques will

be applied to address different aspects of the data. The extracted features will be

compared to predefined disease patterns. In this step the ability to extract features

of significance will be reviewed.

4. Discrimination Ability of Features.

In this step, first-order algorithms of discrimination will be applied to the features

extracted from the images. The goal is to determine the ability of each feature to be

associated with diagnosis. It is expected that some features will be strongly associated

with IPF images and others will have a weaker association. These associations will

be measured and the ability of individual features will be quantified.

5. Onset Detection.

In this step the features on early onset images will be compared to normal and later

term images. Features from previous steps will be considered and measured. The goal

is to identify those features which are evident in early onset images.

6. Higher Order Considerations.

In this step combinations of features will be considered in higher order fashions. The

goal is to detect the interplay of different data domains within this set of images.
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3.2 Medical Image Analysis

Figure 3.1 shows a paradigm of image analysis with associated structure of knowledge-

based models that can be used at different stages of processing. The knowledge of physical

constraints and tissue properties can be very useful in imaging and image reconstruction.
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Figure 3.1: Paradigm of Image Analysis with associated structure of Knowledge-based

models that will be used at different stages of processing.

3.3 Materials and Methods

This study was approved by the Institutional Review Board at George Mason University.

The manuscript was reviewed and approved according to the procedures outlined by the
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Lung Tissue Research Consortium. Further information on the Consortium is available on

the website [www.ltrcpublic.com].

3.3.1 Experimental Data-Sets

Radiological images have been provided by Inova. The principal investigator is Dr Steven

D. Nathan, MD from the Advanced Lung Disease Program, Inova Heart and Lung Institute.

The images have been classified into healthy and diseased. The study population is divided

into normal, IPF, early onset and other lung diseases. Three CDs of images, two containing

healthy images and one having IPF images have been provided at present. The IPF CD

contains two studies with three time series each. Study 1 contains 110 HRCT scans and

Study 2 contains 60 HRCT scans. The healthy CD contains 64 chest scans.

Since this is a retrospective study, a standardized imaging protocol was not utilized.

Each patient included in the sampling (n=48) will have had one of three chest CT imaging

protocols used depending on what was ordered for the particular clinical indication. The

types are as follows:

• HRCT (high resolution CT without contrast)

• Routine Chest (with or without contrast)

• CT Angio (with contrast, rule out pulmonary embolism)

3.3.2 CT Scanning Protocol

All patients had HRCT studies of the thorax. Collimation was 1 mm for all but 1 study,

which had a collimation of 1.5 mm. Images were acquired at 1- or 2-cm intervals. Expira-

tory images were obtained in 29 cases. All images were reconstructed with a high spatial

frequency reconstruction algorithm and photographed at an appropriate window (1500 1750

Hounsfield units [HU]) and level (2500 to 2700 HU) settings. The average time between

imaging and biopsy was 9 months.
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Chapter 4: Research Methods

IPF is the most common ILD (Interstitial Lung Disease) accounting for 25 to 50 percent

of the diffuse lung diseases. [7]. Quantization of IPF images is challenging because it is

difficult and potentially misleading to use a single metric to convey the complex textural

information offered by the CT scan. In this chapter three different approaches have been

proposed. The corresponding analysis, results and drawbacks have also been presented.

4.1 Adaptive Multiple Feature Method

Texture based methods examined the relationship between the attenuation of pixels within

a certain distance of each other. Uppaluri et al [50] developed an adaptive multiple feature

method (AMFM) to assess 22 independent texture features to classify six different tissue

patterns in a CT image. The features with the greatest ability to discriminate between the

different patterns were chosen and a Bayesian classifier was evaluated on six images and

manually compared by three radiologists.

A computationally efficient method is presented which automatically segments the ROI

(region of interest) using a contrast enhancement function and adaptive thresholding. The

goal is addressed through several major steps:

• threshold or feature identification,

• smoothing or noise reduction and

• ROI extraction.
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4.2 Thresholding or Feature Identification

The scans contained low-contrast fuzzy regions. As a result the histogram modes corre-

sponding to the different types of regions in the image overlapped making segmentation by

thresholding difficult. Although applying a global threshold was computationally fast and

simple, it failed because there was low contrast between the object and the back-ground.

Figure 4.1 shows a typical lung scan for a patient with IPF. The lung on the left shows

a tremendous amount of a honeycomb structure. Honeycombing is defined as a cluster or

row of cysts [4]. Honeycomb cysts are very small (less than 5 mm in diameter) and are often

subpleural. As areas of honeycombing increases honeycomb cysts also increases in size in

patients with IPF. Whereas the middle portion of the lung on the right shows a smoother

texture indicative of healthier tissue.

Figure 4.1: Characteristic honeycombing seen in IPF.

4.2.1 Range Filter

Local thresholds were determined by examining the image intensities in the neighborhood

of each pixel. A texture segmentation algorithm was implemented using a range filter which

returned an array of pixels. This was accomplished using a native Matlab function called
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‘rangefilt‘. The syntax is shown below:

J = rangefilt(I) and J = rangefilt(I, NHOOD)

J = rangefilt(I) returns the array J, where each output pixel contains the range value

(maximum value - minimum value) of the 3 × 3 neighborhood around the corresponding

pixel in the input image I. The image I can have any dimension. The output image J is the

same size as the input image I.

J = rangefilt(I, NHOOD) performs range filtering of the input image I where user

specifies the neighborhood in the parameter ‘NHOOD‘. NHOOD is a multidimensional array

of zeros and ones where the nonzero elements specify the neighborhood for the range filtering

operation. NHOOD’s size must be odd in each dimension. By default, ‘rangefilt‘ uses a

3-by-3 matrix of logical ones. ‘rangefilt‘ determines the center element of the neighborhood.

Each output pixel contained the range value (maximum-minimum) of the 3 × 3 neigh-

borhood around the corresponding pixel in the input image as shown in Figure 4.2. The

range filter performed the dual step of thresholding and noise reduction. An automated

gray-level remapping method for enhancement of details in chest region CT images were

used by Davis et al [51]. The objective was to reduce dark line artifacts in CT images and

to provide an aid to the automatic detection of the lung region. This formed the basis for

adaptive thresholding.

In addition, to specify neighborhoods of various shapes, such as a disk, use the ‘strel‘

function to create a structuring element object and then use the native Matlab function

‘getnhood‘ method to extract the neighborhood from the structuring element object.

The filter used morphological operations of dilation and erosion to determine the max-

imum and minimum values in the specified neighborhood. Additional filters were applied

and compared in order to select an effective and optimal smoothing filter for noise reduc-

tion. Three low-pass filters: pairs, disk and lines with the ability to smooth the image and

reduce the noise were evaluated and the corresponding results are seen in Figures 4.4 and

4.5. The Range filter with disk element performed well in the dual step of thresholding

and noise reduction. Once again Matlab native function ‘strel‘ was used to create the disk
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Figure 4.2: The value of element B(2,4) was calculated from A(2,4). The Range Filter uses
a 3-by-3 neighborhood and the neighborhoods or different shapes and sizes can be specified.

element. The syntax is shown below.

SE = strel(’disk’, R, N) creates a flat, disk-shaped structuring element, where R

specifies the radius as seen in Figure 4.3. R must be a nonnegative integer. N must be 0, 4,

6, or 8. When N is greater than 0, the disk-shaped structuring element is approximated by

a sequence of N periodic-line structuring elements. When N equals 0, no approximation is

used, and the structuring element members consist of all pixels whose centers are no greater

than R away from the origin. If N is not specified, the default value is 4. The range filter

performed the dual step of thresholding and noise reduction.

Figure 4.3: The structuring element SE creates a flat, disk-shaped structuring element,
where R specifies the radius. R must be a nonnegative integer, in this case a value = 3.

Images were contrast enhanced using a Matlab function ‘adapthiseq‘. Next, adaptive

thresholding was completed and texture metrics such as first order statistics, co-occurrence

matrix and autocorrelation function to remove background inhomogeneities were applied.
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(a) Subject with Honeycombing (b) After applying Range Filter with DISK element

(c) Subject with Honeycombing (d) After applying RangeFilter with DISK element

Figure 4.4: Honeycomb Detection using Range Filter.
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(a) Line Element

(b) Pair Element

Figure 4.5: Range filter with line element and Range filter with pair element.
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This is further explained in detail in the next section. Regions of interest (ROI) were

delineated over which quantitative texture features are computed. Each pixel or region was

assigned to one or several quantitative texture feature metrics. The information collected in

the classification step was used to determine the category into which pixel or region belongs.

Within a defined region, its texture was categorized as healthy or diseased.

4.3 Smoothing or Noise Reduction

Noise reduction is an essential part of image processing, and there are many algorithms

for the noise reduction process. The noise reduction process can make images smooth;

on the other hand it makes the edges blurred because it is hard to distinguish the edges

from the noise. In smoothing, the data points of a signal are modified so individual points

(presumably because of noise) are reduced, and points that are lower than the adjacent

points are increased leading to a smoother signal.

There are several sources of noise which affect image quality. Some of which are due to

inherent properties of the imaging device such as spatial resolution, energy resolution, non-

uniformity, or distortions. Other degrading factors are dependent on the patient and organ

localization. A large patient will increase the influence of scattered photons. An organ

deep in the body will be overlapped by other tissues, which will increase the background

registrations. Patient and organ movements will also degrade the image quality [52].

4.3.1 Adaptive Thresholding

Adaptive thresholding takes into account spatial variations in illumination. The goal is to

develop a contrast enhancement function to enhance the IPF features while suppressing

the noise. For this purpose an adaptive neighborhood structure is used. This is defined

as set of two neighborhoods: inner and outer [53]. Depending on the disease extent, lung

features are of arbitrary shape. Hence a variable shaped feature adaptive neighborhood

criterion is needed that adapts the arbitrary shape and size of the local features to obtain

the ‘center‘ and ‘surround‘ regions [53]. The center consists of pixels forming the feature
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and the surround consists of pixels forming the background for that feature. These regions

can be used to compute the local contrast for the centered pixel. The adaptive image-

enhancement methods using first-order derivative information can been used to enhance

specific IPF features such as honeycomb cysts and traction bronchiectasis. The method

operates on small regions in the image, called ‘tiles‘, rather than the entire image.

Figure 4.6: Original Image.

Figure 4.7: Adaptive filter with Exponential distribution.
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The key step in the image processing chain proposed is the computation of local contrast

information based on adaptive neighborhoods. For each pixel I(x, y) the first criterion for

classifying the neighborhood pixels as ‘center‘ or ‘surround‘ (feature and background) is

gray value similarity. Any neighborhood pixel I(x + δx, y + δY ) is classified as ‘center‘ if

its intensity meets the condition:

I(x, y)− T ≤ I(x+ δx, y + δy) ≤ I(x, y) + T (4.1)

where T is the threshold value. Any neighborhood pixel is classified as ’surround’ if it does

not meet the intensity criterion. Pixels outside the threshold window that are not connected

to the center count as unclassified. For example if the window is 5×5 pixels, the only pixels

counted are those for which δx = ±2 or δy = ±2.

Figure 4.8: Original Image.

Zuiderveld [54] described a contrast limited adaptive histogram equalization method

(CLAHE) which operated on small regions in the image. A Matlab function ‘adapthiseq‘

enhances the contrast of the gray-scale image transforming the values using CLAHE. The

method operates on small regions in the image, called ‘tiles‘, rather than the entire image.

Each tile’s contrast is enhanced, so that the histogram of the output region approximately
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Figure 4.9: Adaptive filter with Rayleigh distribution.

matches the histogram specified by the ‘Distribution‘ parameter as seen in Figures 4.7

and 4.9. The ‘Distribution‘ parameter is one of the input parameters to the ‘adapthiseq‘

function which specifies the distribution that CLAHE uses as a basis for creating the contrast

transform function.

The Figure 4.12 shows CLAHE applied for the whole image. An image g(i, j) consists

of two parts, low frequency gl(i, j) and high frequency gh(i, j) which can be expressed as

g(i, j) = gl(i, j) + gh(i, j). (4.2)

The low-frequency part may be dominant in homogeneous regions, whereas the high-

frequency part may be dominant in edge regions. The two-component model allows for

different treatment of the components, and it can be used for adaptive image filtering and

enhancement [55]. The high frequency part may be weighted with a signal dependent

weighting factor to achieve enhancement. A two-component model is suitable not only

for noise suppression, but also for many other enhancement operations such as statistical

differencing and contrast enhancement. In adaptive multistage nonlinear filtering (AMNF),
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the first stage includes multiple linear and non-linear filters to filter the input image. In

the second stage, for each pixel, the output of only one filter is selected using an adaptive

criterion.

The structure of AMNF is shown in Figure 4.12 and its output is:

gAMNF (i, j) = gAF (i, j) + b(i, j)[g(i, j)− gAF (i, j)], (4.3)

where b(i, j) is a signal dependent weighting factor that is a measure of the local signal

activity and gAF (i, j), is the output from the second stage of the filter in Figure 4.12. The

value of b(i, j) is obtained from local statistics around processed pixel as

b(i, j) = σ2
f (i, j)/[σ2

f (i, j) + σ2
n(i, j)], (4.4)

where σ2
f is the signal variance and σ2

n is the noise variance. In the flat regions of the

input image, the signal-to-noise ratio is small, so b(i, j) becomes small and gAMNF (i, j)

approaches gAF (i, j). On the other hand , the signal-to-noise ratio is large around the edges

in the image, so b(i, j) → 1, and gAMNF (i, j) → gAF (i, j). The operation of the filter

therefore should preserve the edges in the image.

4.3.2 Quantitative CT indices

Concurrently, computer derived indexes such as mean lung attenuation, skewness and kur-

tosis were obtained from the frequency histogram. These are especially attractive because

they clearly scored the disease extent in patients with IPF. The first four moments of tex-

ture (mean, variance, skewness, and kurtosis) do show promise is separating the two types

of lung regions.

This is seen in the histogram analysis done for the healthy subject and the IPF patient.

In healthy subjects the first order histogram of CT attenuation is sharply peaked (kurtotic)

and skewed to the left in comparison to the Gaussian normal distribution as seen in Figure
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4.11. Histogram from patients with IPF are less skewed, less kurtotic and have increased

mean lung attenuation compared with those from patients with normal lungs as seen in

Figure 4.10.

The histograms of the healthy and honeycomb regions overlap and therefore segmenta-

tion of the two regions by a simple threshold is not plausible. Also quantitative methods

based on CT density histogram are particularly susceptible to variation with differing depths

of inspiration [34]. Statistical moments do not contain spatial information because they are

derived from the image histogram.

Mean, variance, skewness and kurtosis can be found using the equations given below.

Mean µ1 = 1/N
∑

(xi), (4.5)

Variance = 1/N
∑

(xi − µ1)2, (4.6)

Skewness = 1/N
∑

(xi − µ1/σ)3, (4.7)

Kurtosis = 1/N
∑

(xi − µ1/σ)4 − 3. (4.8)

4.3.3 Adaptive operation

In order to achieve better adaptive properties, five different filters with different window

sizes are selected according to the value of b(i, j) as shown in Figure 4.12. Linear filters

smooth the edges, average details with noise, and decrease greatly the spatial resolution.

As a consequence, the nonlinear filter with a small window (e.g. 3 × 3) can be used in

suspicious areas containing honeycombing and calcified lesions, while a linear filter with a

large window (e.g. 7×7 or 9×9) can be used in areas without suspicious features to achieve

noise removal and background smoothing.
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(a) IPF Subject

(b) Corresponding Density Histogram

Figure 4.10: A CT density histogram from a fibrotic lung is less skewed, less kurtotic and
have increased mean lung attenuation compared to healthy lungs.
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(a) Healthy Subject

(b) Corresponding Density Histogram

Figure 4.11: CT density histogram from normal lung shows a sharp peak and is skewed to
the left in comparison to the Gaussian normal distribution.
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The tree structured filter (TSF) seen in Figure 4.12 is based on the central weighted

median filter (CWMF), which provides a selectable compromise between noise removal and

edge preservation in the operation of the conventional median filter. The TSF is a multi-

stage non-linear filter that consists of multiple CWMFs organized in a tree structure.

During the enhancement process, the filter will be automatically selected by the weight-

ing factor b(i, j). The outputs of the five filters in the first stage will be subject to a binary

weighting that will select one filter out of five.

Figure 4.12: Block diagram of the Adaptive Multistage Nonlinear Filter (AMNF).
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Representing the outputs of the five filters as the vector gj , this adaptive process can

be written with the vector notation [56]:

gl = cT gj , 1 ≤ j ≤ m. (4.9)

The elements of c are set adaptively according to the weighting factor b(i,j).

[c1, c2, c3, c4, c5]T =



[1, 0, 0, 0, 0]T b(i, j) ≤ τ1

[0, 1, 0, 0, 0]T τ1 < b(i, j) ≤ τ2

[0, 0, 0, 1, 0]T τ3 < b(i, j) ≤ τ4

[0, 0, 0, 0, 1]T b(i, j) > τ4

. (4.10)

The threshold τ1 to τ4, will be set by the user.

4.4 ROI extraction

Regions of interest (ROIs) are portions of images, either selected graphically or selected

by other means such as thresholding. Once the HRCT images have been thresholded and

smoothed, the next logical step is to extract the regions of interest or ROI. These are the

diseased or healthy portions of the lung which help quantify the disease extent and aid in

the radiological diagnosis of the disease.

4.4.1 Co-Occurrence Matrix Measures

Texture analysis is a multistep process. The first step is usually an enhancement step to

emphasize the texture and reduce the influence of unwanted processes. The enhancement

step includes noise reduction, background removal, and possibly, histogram equalization.

The presence of noise may create a pseudo texture that has the potential to dominate and
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confound texture classification [57]. Background inhomogeneities may affect any intensity-

based operations, such as thresholding, and they may also confound some texture metrics.

Some texture metrics are more robust against background inhomogeneities. These in-

clude first order statistics, co-occurrence matrix and correlation function [58]. ROIs are

delineated over which quantitative texture features are calculated. Each pixel or region is

assigned to one or several quantitative texture feature metrics as seen in Figures 4.13. The

information collected in the classification step is used to determine the category into which

pixel or region belongs. Within a defined region, its texture can be categorized as healthy

or diseased as seen in Figure 4.13.

The Gray-Level Co-Occurrence Matrix (GLCM) is a method for extracting second or-

der statistical texture features [59]. The GLCM functions in Matlab software are used to

characterize the texture of an image by calculating how often pairs of pixel with specific

values and in a specified spatial relationship occur in an image, creating a GLCM, and then

extracting statistical measures from this matrix. These statistics provide information about

the texture of an image. A number of texture features can be extracted from the GLCM.

The following two features were used for the purpose of texture analysis: Correlation and

Variance.

CORR =

G−1∑
i=0

G−1∑
j=0

{i× j} × P (i, j)− {µx × µy}
σx × σ + y

. (4.11)

Correlation is a measure of gray level linear dependence between the pixels at the spec-

ified positions relative to each other.

VAR =

G−1∑
i=0

G−1∑
j=0

(i− µ)2P (i, j). (4.12)

Variance puts relatively high weights on the elements that differ from the average value

of P (i, j).
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G is the number of gray levels in the image. The gray level co-occurrence matrix P (i, j)

contains the second order statistical probability values for changes between the gray level

intensities i and j. µ is the mean value of P. µx, µy, σx, σy are means and standard deviations

of Px and Py respectively.

Figure 4.13: Texture quantified using texture metrics such as statistical moments (variance,
kurtosis) and co-occurence matrices.

4.5 Discussion

An adaptive thresholding algorithm has been presented which utilized quantitative CT

indexes to correlate IPF with pulmonary abnormality. Simulation results demonstrated

that the algorithm performed well in identified IPF images as seen in Figures 4.7, 4.9 and

4.13. However the absence of gold standards made quantification challenging for early stage
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images of IPF and blinded images. Although, statistical moments such as variance and kur-

tosis gave us good segmentation results, complex textural information such as in IPF can be

better analyzed in the Fourier domain. Spectral measures obtained from Fourier transform

of the image can quantify texture, particularly when repetitive patterns are present.

4.6 Backpropagation Neural Network (BPNN)

The architecture of choice for Neural Network will be a ‘perceptron‘ as shown in Figure 4.14.

A weighted sum of the input constitute the argument of a non-linear activation function

such as a Sigmoidal function. The resulting threshold value of the activation function is the

output of the neural element. For the learning process a backpropagation algorithm will be

chosen.

Figure 4.14: A basic computational neural element or Perceptron for classification.

Consider Figure 4.15 which is a feed forward back propagation network with one hidden

layer. For our research, we would need a multi-layer feed forward network with L layers of

N neural elements (perceptrons) in each layer such that

yk = F (W kyk−1) (4.13)
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for k=1,2,...L, where yk is the output of the kth layer neural elements with k = 0 representing

the input layer and W k is the weight matrix for the kth layer.

Figure 4.15: Feedforward backpropagation network with one hidden layer.

This method will need to be preceded by some preprocessing of the image data. This

would entail identification of regions of interest (ROI) using pixel classification methods like

histogram analysis. The features would be normalized to the unit interval [0,1] and then

split into the training and test set. The training examples would represent a reasonably

complete statistical distribution of the input data. The BPNN follows a gradient descent

algorithm.

1. Assign random weights in the range of [-1,+1) to all weights wk
ij .

2. For each classified pattern pair {y0, yL}in the training set, do the following steps:

• Compute the output values of each neural element using the current weight

matrix.

• Find the error e(k) between the computed output vector and the desired output

vector for the classified pattern pair.
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• Adjust the weight matrix using the change ∆W(k)computed as

∆W (k) = αe(k)[y(k−1)] (4.14)

for all layers k =1,...L where α is the learning rate that can be set between 0 and

1.

3. Repeat step 2 for all classified pattern pairs in the training set until the error vector

for training example is sufficiently low or zero.

4.6.1 Radial Basis Function (RBF)

The basic RBF contains an input layer for the image, a hidden layer for the RBF and an

output layer. The input layer starts with n input neurons with activations xi, iε(1...n), the

activation pattern of the input layer is represented by an n-dimensional vector x (input

image) is the ’Feature space’ Rn [56]

The hidden layer provides the radial basis function processing. The activation is propa-

gated to the N neurons of the hidden layer by directed connections with weights. The output

of each RBF unit is then weighted and summed such that the weight wj ∈ Rn, jε(1..n) are

computed as a set of vectors that represent the dataset in the feature space. The RBF

(a Gaussian function) is applied to the Euclidean distance between the input vector and

its own centroid (virtual position wj of the hidden layer neuron j). The activation of the

hidden layer neuron should decline with increasing distance between the vector x and its

centroid. The output of each RBF unit is then weighted and summed through a linear

combiner to provide the final output of the network.

Proposed Algorithm for Segmenting Honeycomb Features in IPF

1. Specific features with information about texture is needed. First order texture features

characterized by the gray level histogram are mean, variance, skewness and kurtosis

are obtained.
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2. Second order features such as contrast and local inhomogeneities [60] are obtained

using second order derivative functions such as laplachian and Gaussian function.

3. The contrast value of a pixel can be computed from the largest difference in gray values

between a pixel and its 8-connected neighbors. Alternatively, adaptive neighborhood

processing can be used to obtain the contrast value of the central pixel.

4. The feature vector consists of gray values of the center pixel and its neighbors obtained

with the contrast value of the center pixel.

5. All features are normalized to unit variance to be used in the RBF network classifier.

6. A training set of example images is prepared with a large number of pixels that are

manually classified as belonging to the background or honeycomb region.

7. Using representative features of all pixels, feature vectors are prepared and scaled for

fuzzy clustering

8. The centers of the clusters become locations of RBF that are used in the RBF network.

9. The RBF network classifier is used for training feature vectors and classifying pixels

into two classes: background and honeycomb structure.

4.6.2 Implementation and Analysis

The Neural Network was implemented using the Neural Network Toolbox from Matlab.

The multilayer feedforward neural network is the workhorse of the Neural Network Toolbox

software.

The lack of any improvement in segmentation quality was accompanied by a consider-

able increment in human intervention: manual pressing time for interactive labeling of the

training data was approximately 20 to 30 minutes per image. The second problem related

to the amount of input data. For achieving a high and reliable performance for non-training

cases, a large number of training cases are commonly required. If an artificial neural network

(ANN) is trained with only a small number of cases, the generalization ability (performance
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for non-training cases) will be lower (e.g., the ANN may fit only the training cases). An

unblinded number of 16 IPF patients was insufficient to train and evaluate the quality of

the segmentation results.

4.7 Gabor Filter

The honeycomb target has objects with certain textures which can be described in terms of

size but not shape. These targets are a cluster or row of cysts [4]. Honeycomb cysts are very

small (less than 5 mm in diameter) and are often subpleural. As areas of honeycombing

increases honeycomb cysts also increase in size in patients with IPF. Whereas the middle

portion of the lung on the left shows a smoother texture indicative of healthier tissue.

2-D Gabor filter has been recognized to be a very useful tool in computer vision and

image processing, especially for texture analysis. The increasing research on Gabor analysis

is motivated by biological findings. Numerous papers have been published on Gabor anal-

ysis since Gabor proposed the 1-D Gabor function [61–66]. A Gabor filter is obtained by

modulating a sinusoid with a Gaussian. For the case of one dimensional (1D) signals, a 1D

sinusoid is modulated with a Gaussian. This filter will therefore respond to some frequency

but only in a localized part of the signal. Figure 4.16 shows the gabor filter composition for

a 1D signal. This comprises of the sinusoid, Gaussian kernel and the corresponding Gabor

filter. Let g(x, y, θ, φ) be the function defining a Gabor filter centered at the origin with θ

as the spatial frequency and φ as the orientation. Gabor filters can be viewed as:

g(x, y, θ, φ) = exp(−x
2 + y2

σ2
) exp(2πθi(x cosφ+ y sinφ))) (4.15)

It has been shown that σ, the standard deviation of the Gaussian kernel depends upon

the spatial frequency to measured, i.e. θ. The relationship between σ and θ is σ = 0.5×1/θ

where 1/θ represents the wavelength of the cosine factor and is inversely proportional to

frequency.
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Figure 4.16: Gabor filter composition for 1D signals:(a) sinusoid, (b) a Gaussian kernel, (c)
the corresponding Gabor filter.
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A Gabor filter is a linear filter obtained by modulation of a sinusoidal function with a

Gaussian function of standard deviation ‘σ‘. The application of this filter to the images,

seen as a two-dimensional signal, is as follows: a sinusoidal function with orientation of 30◦

with the x-axis multiplied by a Gaussian kernel. The Figure 4.17 shows a) the sine function,

in b) the Gaussian kernel and c) the result.

Figure 4.17: Gabor filter composition: (a) 2D sinusoid, (b) a Gaussian kernel, (c) the
corresponding Gabor filter.

The response of a Gabor filter to an image is obtained by a 2D convolution operation.
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Let I(x, y) denote the image and G(x, y, θ, φ) denote the response of a Gabor filter with

frequency θ and orientation φ to an image at point (x, y) on the image plane. G(·) is

obtained as

G(x, y, θ, φ) =

∫ ∫
I(p, q)g(x− p, y − q, θ, φ) dp dq (4.16)

Fixed dimensions n × n, is calculated by a Gabor filter with the above equation, the

result is displayed as two images representing the real part (left) and the imaginary part of

the filter (right) as seen in Figure 4.18. Also shown in Figure 4.19 are Gabor filters with

different frequencies and orientations. The segmentation result after the filter is applied is

shown in 4.20. The diseased potion of the lung is seen clearly towards the periphery. It is

also identified in the left upper section of the lung.

(a) Subject with Honeycomb-
ing

(b) Real part of the Ga-
bor filter

(c) Imaginary part of the
Gabor filter

Figure 4.18: Example of Gabor filter oriented at 66◦ with the x-axis .

4.7.1 Goal

This section discusses invariant texture segmentation based on multichannel analysis. The

traditional Gabor filter is modified into a circular symmetric version. A very important

property of this new version is that it is rotation invariant. Texture images are decom-

posed into several channel outputs. K-means clustering algorithm is employed for pixel

classification. The goal will be addressed through several major steps.

1. Create a set of Gabor filters.
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(a) Orientation=22◦ (b) Orientation=44◦ (c) Orientation=66◦

(d) Orientation=88◦ (e) Orientation=110◦ (f) Orientation=132◦

(g) Orientation=154◦ (h) Orientation=176◦

Figure 4.19: Gabor filters with different frequencies and orientations.
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Figure 4.20: Segmentation result after Gabor filter is applied.

2. Correlate the filters with the image.

3. Smooth the correlations.

4. Extract selected pixels for training.

5. Train a K-means system for recognition of the pixels in the image.

6. Classify all pixels in the image.

4.7.2 Implementation

The Gabor Filter has been implemented using ImageJ, a Java image processing program.

Two-dimensional Gabor functions were proposed by Daugman et al [67] to model the spatial

summation properties (of the receptive fields) of simple cells in the visual cortex. They are

widely used in image processing, computer vision, neuroscience and psychophysics. The

parameterization used in 4.15 follows references[68–73].

4.8 Discussion

The lessons from the earlier approaches such as Adaptive thresholding led to the conclusion

that complex textural information such as in IPF can be better analyzed in the Fourier
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domain. Spectral measures obtained from Fourier transform of the image can quantify

texture, particularly when repetitive patterns are present. Keeping this in mind other

texture based approaches such as Gabor filter have been explored to improve upon the

segmentation and develop algorithms to detect evidence of early onset of IPF. Gabor filter is

a very useful tool for texture analysis in both domains and hence combines the advantages of

both filters. However the disadvantage of image dependence unexpectedly resulted in image

enhancements. Certain configuration settings for wavelength, orientation, phase offset or

aspect ratio worked well with one set of images but not with another.

One of the possible reasons in the difficulty in parameter selection for Gabor filter de-

sign could be attributed to the nonorthogonal characteristic of Gabor filters [67, 74]. It

was challenging to identify identical texture with less or more resolution than the original

image presented to the Gabor filter as the same texture. It is known that a set of Gabor

filters represents a complete but non orthogonal basis of a two-dimensional signal [75, 76].

Non-orthogonality implies a certain degree of redundancy among the features that can be

extracted from the various filters. In general the greater the superposition zone between

the adjacent filter, the higher the information redundancy [77]. The effects of filter or-

thogonality on pattern classification is not completely understood. The most commonly

adopted approach, in classification based on Gabor filters, is to minimize non-orthogonality

by designing Gabor filters that can overcome this redundancy [76, 78–80]. However it has

been noticed that filter orthogonality would make the response of the filter bank unstable

under rotation and translation, with negative effects on classification [81].
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Chapter 5: Pulse Images

In this section two digital models will be presented. The first is the Pulse-Coupled Neu-

ral Network (PCNN) which for many years was the standard for many image processing

applications [2, 82, 83]. The PCNN is based solely on the Eckhorn model [84] but there

are many other cortical models that exist. These models all have a common mathematical

foundation, but beyond the common foundation each also had unique terms. Since the goal

here is to build image processing routines and not to exactly simulate the biological system

a new model was constructed. This model contained the common foundation without the

extra terms and is therefore viewed as the intersection of the several cortical models, and

it is named the Intersecting Cortical Model (ICM) [85].

5.1 PCNN Details

The PCNN differs from the Eckhorn model to account for digitization[86]. The orientation,

scale and skewness of the inputs did not alter the results in prototypes of PCNN. A wide

range of images were run through the PCNN implementation chosen to determine the basis

of its working mechanisms and runtime parameters, to ensure its efficiency as an image

processing engine for general purpose HRCT images.

5.1.1 Original Model

A PCNN neuron shown in Figure 5.1 contains two main compartments: the Feeding and

Linking compartments. Each of these communicates with neighboring neurons through the

synaptic weights M and W respectively. Each retains its previous state but with a decay

factor. Only the Feeding compartment receives the input stimulus, S. The values of these

two compartments are determined by,
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Figure 5.1: Schematic representation of a PCNN processing element [2].

Fij [n] = eαF δnFij [n− 1] + Sij + VF
∑
kl

MijklYkl[n− 1], (5.1)

Lij [n] = eαLδnLij [n− 1] + VL
∑
kl

WijklYkl[n− 1], (5.2)

where Fij is the Feeding compartment of the (i, j) neuron embedded in a two-dimensional

array of neurons, and Lij is the corresponding Linking compartment. Ykl are the outputs

of neurons from a previous iteration [n − 1]. Both compartments have a memory of the

previous state, which decays in time by the exponent term. The constants VF and VL are

normalizing constants. If the receptive fields of M and W change then these constants are

used to scale the resultant correlation to prevent saturation.

The state of these two compartments are combined in a second order fashion to create

the internal state of the neuron, U. The combination is controlled by the linking strength,
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β. The internal activity is calculated by,

Uij [n] = Fij [n] (1 + βLij [n]) . (5.3)

The internal state of the neuron is compared to a dynamic threshold, Θ, to produce the

output, Y, by

Yij [n] =


1 if Uij [n] > Θij [n− 1]

0 Otherwise

. (5.4)

The threshold is dynamic in that when the neuron fires (Yij > Θij) the threshold then

significantly increases its value. This value then decays until the neuron fires again. This

process is described by,

Θij [n] = eαΘδnΘij [n− 1] + VΘYij [n], (5.5)

where VΘ is a large constant that is generally more than an order of magnitude greater than

the average value of Uij .

5.1.2 Implementing in Python

Consider a case where the input is a 360×360 frame and centered in this frame is a solid ‘T’.

The results are shown in Figure 5.2 with the original being shown in Figure 5.2(a) shows

how the pulsed images are generated from the original image at each iteration of pulsing

(advancing n).

A combination of neurons that pulse at n = 0 not pulsing again for many iterations,

and the neighboring pixels being encouraged to pulse through the connections M and W

causes the decay of the initial pulse and the waves traveling thru the matrix of neurons.
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(a) Original and n = 0. (b) n = 1. (c) n = 3. (d) n = 6.

(e) n = 7. (f) n = 8. (g) n = 10. (h) n = 11.

(i) n = 12. (j) n = 13. (k) n = 19.

Figure 5.2: An input and selected pulse images from the PCNN [2].
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5.1.3 Spiking Behavior

For a single neuron, the input stimulus, S, and the stimulus from neighbors determines the

output. The internal activity rises until it becomes larger than the threshold value. Then

the neuron fires and the threshold sharply increases then begins its decay until once again

the internal activity becomes larger than the threshold. This causes the pulsing nature of

the PCNN. Figure 5.3 shows the activity within a single neuron embedded in a 2D array

as it progresses in time.

Figure 5.3: An example of the progression of the states of a single neuron. See the text for
explanation of L, U, T and F [2].

The pulses also trigger communications to neighboring neurons when the output of the

neuron is high. Equations (5.1) and (5.2) explain this in detail. Consider three neurons A,

B, and C that are linearly arranged with B between A and C. For this example, only A is

receiving an input stimulus. At n = 0, the A neuron pulses sending a large signal to B.

At n = 1, B receives the large signal, pulses, and then sends a signal to both A and C. At

n = 2, the A neuron still has a rather large threshold value and therefore the stimulus is not
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large enough to pulse the neuron. Similarly, neuron B is turned off by its threshold. On the

other hand, C has a low threshold value and will pulse. Thus, a pulse sequence progresses

from A to C.

This process is the beginning of the autowave nature of the PCNN. Basically, when a

neuron (or group of neurons) fires, an autowave emanates from that perimeter of the group.

Autowaves are defined as normal propagating waves that do not reflect or refract. In other

words, when two waves collide they do not pass through each other. Autowaves are being

discovered in many aspects of nature and are creating a significant amount of scientific

research [87, 88]. The PCNN, however, does not necessarily produce a pure autowave and

alteration of some of the PCNN parameters can alter the behavior of the waves.

Consider the image in Figure 5.4. The original input consists of two ‘T’s. The intensity

of each ‘T’ is constant, but the intensities of each ‘T’ differ slightly. At n = 04 the neurons

that receive stimulus from either of the ‘T’s will pulse in step n = 16 (denoted as black). As

the iterations progress, the autowaves emanate from the original pulse regions. At n = 10 it

is seen that the two waves did not pass through each other. At n = 12 the more intense ‘T’

again pulses. Thus, small differences in intensity are clearly visible in the pulsing patterns.

Figure 5.4: A typical PCNN example.
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The network also exhibits some synchronizing behavior. In the early iterations segments

tend to pulse together. However, as the iterations progress, the segments tend to de-

synchronize. Synchronicity occurs by a pulse capture. This occurs when one neuron is close

to pulsing (Uij < Θij) and its neighbor fires. The additional input from the neighbor will

provide an additional input to Uij thus allowing the neuron to fire prematurely. The two

neurons, in a sense, synchronize due to their linking communications.

The de-synchronization occurs in more complex images due to signals that are residual

in nature. As the network processes the signals, the neurons are affected indirectly from

other non-neighboring neurons. This alters their behavior and the synchronicity begins to

fail. The beginning of this failure can be seen by comparing n = 1 to n = 19 in Figure 5.4.

Note that the corners of the ‘T’ autowave are missing in n = 19. This phenomenon is more

noticeable in more complicated images.

Gernster [89] argues that the lack of noise in such a system is responsible for the de-

synchronization. However, applications demonstrated in subsequent chapters specifically

show the PCNN architecture does not exhibit this link. Synchronization has been explored

more thoroughly for similar integrate and fire models [90].

The PCNN has many parameters that can be altered to adjust its behavior. The (global)

linking strength, β, in particular, has many interesting properties (in particular effects on

segmentation). While this parameter, together with the two weight matrices, scales the

feeding and linking inputs, the three potentials, V , scale the internal signals. Finally,

the time constants and the offset parameter of the firing threshold are used to adjust

the conversions between pulses and magnitudes. The dimension of the convolution kernel

directly affects the speed that the autowave travels. The dimension of the kernel allows

the neurons to communicate with neurons farther away and thus allows the autowave to

advance farther in each iteration.

The pulse behavior of a single neuron is greatly affected by αΘand VΘ. The αΘ affects

the decay of the threshold value and the VΘ affects the height of the threshold increase

after the neuron pulses. It is quite possible to force the neuron to enter into a multiple
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pulse regime. In this scenario the neuron pulses in consecutive iterations. The autowave

created by the PCNN is greatly affected by VF . Setting VF to 0 prevents the autowave

from entering any region in which the stimulus is also 0. There is a range of VF values that

allows the autowave to travel but only for a limited distance.

There are also architectural changes that can alter the PCNN behavior. One such

alteration is quantized linking where the linking values are either 1 or 0 depending on a

local condition. In this system the Linking field is computed by,

Lij [n] =


1 if

∑
kl wijklYkl > γ

0 Otherwise

. (5.6)

Quantized linking tends to keep the autowaves clean. In the previous system autowaves

traveling along a wide channel have been observed to decay about the edges. In other words

a wave front tends to lose its shape near its outer boundaries. Quantized linking has been

observed to maintain the wavefronts shape.

In a “real world” image generally all of the neurons receive some stimulus and thus in

the initial iteration all neurons will pulse. Then it will take several iterations before they can

pulse again. From an image processing perspective the first few iterations are unimportant

since all neurons pulse in the first iteration and then non pulse for the next several iterations.

An alternative is to initially set the threshold values higher. The first few iterations may

not produce any pulses since the thresholds now need to decay. However, the frames with

useful information will be produced in earlier iterations than in the “initially 0” scenario.

Parodi [91] suggests that the Θ be reset after a few iterations to prevent de-synchronization.

The influence of a dynamic VΘ was considered by Yamaguchi et al. [92] in which a static

VΘ was replaced by,

VΘ = 1 + a0 sin(ω0t), (5.7)

where a0 and ω0 were the variables that they altered. In a simulation of a 1D network they
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demonstrated that certain combinations of a0 and ω0 produced a stable case in which two

neurons receiving the same input pulse in synchrony, but other combinations produced a

chaotic behavior.

5.1.4 Collective Behavior

The PCNN is run again and neural activity is collected for each compartment. This allows

for visual inspection of the collective behavior of the neurons. Figure 5.5 shows the activity

of the F compartments of each neuron. At n = 0 only the neurons that are receiving a

stimulus have a significant value since the only active part of Equation (5.1) is the stimulus

S.

(a) n = 0. (b) n = 1. (c) n = 11. (d) n = 12.

(e) n = 49.

Figure 5.5: Collective behavior of F [2].

At n = 1 the first and third terms in Equation (5.1) begin to contribute to the activity in

F. Basically, the autowave appears and continues to expand up to n = 11. In this example,

at n = 12 the second cycle begins and the values in F are increased for the neurons that

fire. The image shown is scaled and therefore intensities shown on the page between n = 11

and n = 12 do not have the same magnitude. The last example shown is at n = 49 which
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shows three cycles of waves expanding.

Figure 5.6 shows the intensities of the L compartments with n = 0 not shown since

there is no activity in the first iteration. While the expanding autowave is present it is also

noticed that the L compartment is more sensitive to edges.

(a) n = 1. (b) n = 11. (c) n = 12. (d) n = 49.

Figure 5.6: Collective behavior of L [2].

The threshold Θ responses are shown in Figure 5.7. These have larger values when a

neuron fires. Clearly, at n = 12 the expanding wave is shown to have decreasing values

closer to the target since those neurons fired further back in time. The output arrays are

shown in Figure 5.2.

5.1.5 Neural Connections

The PCNN contains two convolution kernels M and W. The original Eckhorn model used

a Gaussian type of interconnections, but when the PCNN is applied to image processing

problems these interconnections can be used for altering the behavior of the network.

The few examples shown here all use local interconnections. It is possible to use long

range interconnections but two impositions arise. The first is that the computational load

increases with the number of interconnections. The second is that PCNN tests to date

do not differ in output significantly when using long range interconnections, although long

range inhibitory connections of similar models have been proposed in similar cortical models

[93].

Subsequent experiments replaced the interconnect pattern with a target pattern in the
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(a) n = 0. (b) n = 1. (c) n = 11. (d) n = 12.

(e) n = 49.

Figure 5.7: Collective behavior of Θ [2].

hope that on-target neurons would pulse more frequently. The matrices M and W were

similar to the intensity pattern of a target object. In actuality there was very little difference

in the output from this system than from the original PCNN. Further investigations revealed

the reason for this. Positive interconnections tend to smooth the image and longer-range

connections provide even more smoothing. The internal activity of the neuron may be

quite altered by a change in interconnections. However, much of this change is nullified

since the internal activity is compared to a dynamic threshold. The amount by which the

internal activity surpasses the dynamic threshold is not important and thus the effects of

longer-range interconnections are reduced.

Manipulations of a small number of interconnections do, however, provide drastic changes

in the PCNN. A few examples of these are shown. For these examples we use the input

shown in Figure 5.8. This input is a set of two ‘T’s.

59



Figure 5.8: An example input [2].

The first example computes the convolution kernel by,

Kij =


0 if i = m and j = m

1/r Otherwise

, (5.8)

where r is the distance from the center element to element ij, and m is half of the linear

dimension of K. In this test K was 5×5. Computationally, the feeding and linking equations

are,

Fij [n] = eαF δnFij [n− 1] + Sij + (K⊗Y)ij , (5.9)

and

Lij [n] = eαLδnLij [n− 1] + (K⊗Y)ij . (5.10)

The resultant outputs of the PCNN are shown in Figure 5.9. The output first pulses

all neurons receiving an input stimulus. Then autowaves are established that expand from

the original pulsing neurons. These autowaves are two pixels wide since the kernel extends

two elements in any direction from the center. These autowaves expand at the same speed

in both vertical and horizontal dimensions again due to the symmetry of the kernel.

Setting the elements of the previous kernel to zero for i = 0 and i = 4 defines a kernel

that is asymmetric. This kernel will cause the autowaves to behave in a slightly different

fashion. The results from these tests are shown in Figure 5.10.

The autowave in the vertical direction now travels at half the speed of the one in the
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(a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5.

(f) n = 6. (g) n = 7. (h) n = 8.

Figure 5.9: Output pulse images [2].

(a) n = 0. (b) n = 1. (c) n = 2. (d) n = 3. (e) n = 4.

(f) n = 5. (g) n = 6. (h) n = 8.

Figure 5.10: Outputs of a PCNN with an asymmetric kernel, as discussed in the text. These
outputs should be compared to those shown in Figure 5.11 [2].
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horizontal direction. Also the second pulse of the neurons receiving stimulus is delayed a

frame. This delay is due to the fact that these neurons were receiving less stimulus from

their neighbors. Increasing the values in K could eliminate the delay.

The final test involves altering the original kernel by simply requiring that,

Kij =


Kij if i = m and j = m

−Kij Otherwise

. (5.11)

The kernel now has a positive value at the center and negative values surrounding it.

This configuration is termed On-Center/Off-Surround. Such configurations of interconnec-

tions have been observed in the eye. Furthermore, convolutions with a zero-mean version of

this function are quite often used as an “edge enhancer”. Employing this type of function

in the PCNN has a very dramatic effect on the outputs as is shown in Figure 5.11. The

autowaves created by this system are now dotted lines. This is due to competition amongst

the neurons since each neuron is now receiving both positive and negative inputs.

5.2 The ICM

The PCNN is a digital model based upon a single biological model. As stated earlier there

are several biological models that have been proposed. These models are mathematically

similar to the Fitzhugh-Nagumo system in that each neuron consists of coupled oscillators.

When the goal is to create image processing applications it is no longer necessary to exactly

replicate the biological system. The important contribution of the cortical model is to

extract information from the image and there is little concern as to the deviation from any

single biological model.

The ICM is a model that attempts to minimize the cost of calculation while maintaining

the effectiveness of the cortical model when applied to images. Its foundation is based on

the common elements of several biological models.
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(a) n = 0. (b) n = 1. (c) n = 2. (d) n = 3. (e) n = 4.

(f) n = 5. (g) n = 6. (h) n = 7. (i) n = 8. (j) n = 9.

(k) n = 10. (l) n = 11.

Figure 5.11: Outputs of a PCNN with an on-center/off-surround kernel [2].

5.2.1 Minimum Requirements

Each neuron must contain at least two coupled oscillators, connections to other neurons,

and a nonlinear operation that determines decisively when a neuron pulses. In order to

build a system that minimizes the computation it must first be determined which operation

creates the highest cost. In the case of the PCNN almost all of the cost of computation

stems from the interconnection of the neurons. In many implementations users set M = W

which would cut the computational needs in half. One method of reducing the costs of

computation is to replace the traditional Gaussian type connections.

Another method is to reduce the number of connections. What is the minimum number

of neurons required to make an operable system? This question is answered by building a

minimal system and then determining if it created autowave communications between the

neurons. Consider the input image in Figure 5.12 which contains two basic shapes.

The system that is developed must create autowaves that emanate from these two

shapes. So, a model was created that connected each neuron to P other neurons. Each
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Figure 5.12: An input image [2].

neuron was permanently connected to P random nearest neighbors and the simulation was

allowed to run several iterations. The results in Figure 5.13 display the results of three

simulations. In the first P = 1 and the figure displays which neurons pulsed during the first

10 iterations. After 10 iterations this system stabilized. In other words the autowave stalled

and did not expand. In the second test P = 2 and again the autowave did not expand.

In both of these cases it is believed that the system had insufficient energy to propagate

the communications between the neurons. The third test used P = 3 and the autowave

propagated through the system, although due to the minimal number of connections this

propagation was not uniform. In the image it is seen that the autowaves from the two

objects did collide only when P = 3.

(a) (b) (c)

Figure 5.13: Neuron that fired in the first 10 iterations for systems with P = 1, P = 2, and
P = 3 [2].

The conclusion is that at least three connections between neurons are needed in order

to generate the autowave. However, for image processing applications the imperfect prop-

agation should be avoided as it will artificially discriminate the importance of parts of the

64



image over others.

Another desire is that the autowaves emanate as a circular wave front rather than

a square front. If the system only contained 4 connections per neuron then the wave

would propagate in the vertical and horizontal directions but not along the diagonals. The

propagation from any solid shape would eventually become a square and this is not desired.

Since the input image will be defined as a rectangular array of pixels the creation of a

circular autowave will require more neural connections. This circular emanation can be

created when each neuron is connected to two layers of nearest neighbors. Thus, P = 24

seems to be the minimal system.

5.2.2 ICM Theory

Thus, the minimal system now consists of two coupled oscillators, a small number of connec-

tions, and a nonlinear function. This system is described by the following three equations

[94],

Fij [n+ 1] = fFij [n] + Sij +W{Y[n]}ij , (5.12)

Yij [n+ 1] =


1 if Fij [n+ 1] > Θij [n]

0 Otherwise

, (5.13)

and

Θij [n+ 1] = gΘij [n] + hYij [n+ 1]. (5.14)

Here the input array is S, the state of the neurons are F, the outputs are Y, and the

dynamic threshold states are Θ. The scalars f and g are both less than 1.0 and g < f is

required to ensure that the threshold eventually falls below the state and the neuron pulses.

The scalar h is a large value the dramatically increases the threshold when the neuron fires.

The connections between the neurons are described by the function W and for now these

are still the 1/r type of connections. A typical example is show in Figure 5.14.

Distinctly the segments inherent in the input image are displayed as pulses. This system
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(a) (b)

(c) (d)

Figure 5.14: An input image and a few of the pulse outputs from the ICM [2].

behaves quite similar to the PCNN and is done so with simpler equations. Comparisons of

the PCNN and the ICM operating on the same input are shown in Figures 5.15 and 5.16.

Certainly, the results do have some differences, but it must be remembered that the

goal is to develop an image processing system. Thus, the results that are desired from these

systems is the extraction of important image information. It is desired to have the pulse

images display the segments, edges, and textures that are inherent in the input image.

5.2.3 Connections in the ICM

The function W () manages the connections between neurons as did the M and W matrices

in the PCNN. However, the PCNN connections were static whereas the ICM connections

are dependent upon the pulse activity of the previous iteration. Both the PCNN and ICM

do rely on only local connections. Before the function W () is explained the foundation for

this dynamic nature of the connections is explained.
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(a) Original (b) n = 1 (c) n = 2 (d) n = 3 (e) n = 9 (f) n = 10

(g) n = 11 (h) n = 12 (i) n = 13 (j) n = 14

Figure 5.15: An original image and several selected pulse images from the PCNN [2].

(a) n = 1 (b) n = 2 (c) n = 3 (d) n = 6 (e) n = 7 (f) n = 8

(g) n = 9 (h) n = 10

Figure 5.16: Results from the ICM [2].
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5.2.4 Interference

In the PCNN model the connections are proportional to 1/r and static. This lead to

the expanding waves seen in Figure 5.2. The expanding nature of the waves caused an

interference problem when the PCNN was applied to images with multiple objects. As

with wave interference of any kind, the waves expanding in Figure 5.4 are autowaves and

so when they collide the wavefronts are annihilated. This means that the presence of the

second object interferes with the expanding wave of the first object.

These expanding autowaves are the root cause of interference. Ideally, the autowaves

expanding from non-target objects should not alter the autowaves emanating from target

objects. But with strongly propagating auto waves, they do. If the non-target object is

brighter it will pulse earlier than the target object autowaves, and its autowave can pass

through the target region before the target has a change to pulse. The values of the target

neurons are drastically altered by the activity generated from non-target neurons. Thus,

the pulsing behavior of on-target pixels can be seriously altered by the presence of other

objects.

Consider the input image in Figure 5.17 in which the target (a flower) is pasted onto

a background. The target was intentionally made to be darker than the background to

amplify the interference effect. Two inputs F1 and F2 were created where F1 was the

image shown in Figure 5.17 and F2 was only the flower without a background. The pulse

images from a modified ICM were computed for each input. The modification was to use

the connections M that were also used in the PCNN. The signatures restricted to only the

on-target pixels of these two trials are shown in Figure 5.18. As seen the two signatures are

very different and thus the pulse activity for the neurons on-target is different solely due to

the presence of the background. It would be quite difficult to recognize an object from the

neural pulses if those pulses are so susceptible to the content of the background.
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Figure 5.17: A target (flower) pasted on a background [2].

Figure 5.18: The signature of the flower without a background (G.plt) and the signature of
the flower with a background (Gb.plt) [2].
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5.2.5 Curvature Flow

The solution to the interference effect is based on curvature flow theory [95]. In this scenario

the waves propagate towards the centripetal vectors that are perpendicular to the wavefront.

Basically, they propagate towards local center of curvatures. For solid 2D objects the

curvature flows will become a circle and then collapse to a point [96]. (There is an ongoing

debate as to the validity of this statement in dimensions higher than two.)

Such propagation from Malladi & Sethian [95] is shown in Figure 5.19. The initial

frame presents a intricate 2D shape. This figure will eventually evolve into a circle and then

collapse to a point. There is a strong similarity between this type of propagation and the

propagation of autowaves. In both cases the wavefront will evolve to a circle. The difference

is that the autowaves will also expand the circumference with each iteration whereas the

curvature flow will be about the same size as the original shape.

Figure 5.19: The propagation of curvature flow boundaries [2].

The interference in the ICM that lead to the deleterious behavior in Figure 5.18 was

caused when the neural communications of one object interfered with the behavior of an-

other. In other words, the autowaves from the background infringed upon the territory

owned by the flower. This stems from the ever expanding nature of the autowaves.

Curvature flow models evolve to the same shape as autowaves but do not have the ever-

expanding quality. Thus, the next logical step is to modify the connection function W () to

behave more like curvature flow wavefronts.

70



5.2.6 Centripetal Autowaves

A centripetal autowave follows the mechanics of curvature flow. When a segment pulses its

autowave will propagate towards a circle and then collapse. It does not propagate outwards

as does the traditional autowave. This results in autowaves developed from two neighboring

objects that will have far less interference.

The propagation of a curvature flow boundary is towards the local center of curvature.

The boundary, C, is a curve with a curvature vector ~κ. The evolution of the curve follows,

∂C

∂t
= ~κ · n̂, (5.15)

where n is normal. In two-dimensional space all shapes become a circle and then collapse

to a point. Such a progression is shown in Figure 5.20 where a curve evolves to a circle and

then collapses.

Figure 5.20: The progression of an autowave from an initial shape [2].

The ever-expanding nature of the autowaves leads to the interference and this quality is

absent in a curvature flow model. Thus, the logical step is to modify the neural connections

to behave as in the curvature flow model. This requires that the connections between the

neurons be dependent upon the activation state of the surrounding neurons. However, in

creating such connections the problem of interference is virtually eliminated. In this new
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scenario neural activity for on-target neurons is the same independent of the presence of

other objects. This is a major requirement for the employment of these models as image

recognition engines.

The new model will propagate the autowaves towards the local center of curvature and

thus obtain the name centripetal autowaves. The computation of these connections requires

the re-definition of the function W ().

Computations for curvature can be cumbersome for large images. Hence, for images, a

less computationally intense method is selected. The curves in figure start with the larger,

intricate curve and progress towards the circle and then collapse to a point. The neural

communications will follow this type of curvature flow progression. Of course, in the ICM

there are other influences such as the internal mechanics of the neurons which influence the

evolution of the neural communications.

The function W (A) is computed by,

W (A) =
[[
F2,A′

{
M(A′)

}
+ F1,A′(A

′)
]
< 0.5

]
, (5.16)

where,

A′ = A+ [F1,A {M(A)} > 0.5] . (5.17)

The function M(A) is a smoothing function. The function F1,A {X} is a masking func-

tion that allows only the pixels originally OFF in A to pass as in,

[F1,A]ij =


Xij if Aij = 0

0 Otherwise

, (5.18)
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and likewise F2,A {X} is the opposing function,

[F2,A]ij =


Xij if Aij = 1

0 Otherwise

, (5.19)

The inequalities are passing thresholds as in,

[X > d]ij =


1 if xij ≥ d

0 Otherwise

, (5.20)

and

[X < d]ij =


1 if xij ≤ d

0 Otherwise

, (5.21)

This system works by basically noting that a smoothed version of the original segment

produces larger values in the off-pulse region and lower values in the on-pulse region in the

same areas that the front is to propagate. The nonlinear function isolates these desirable

pixels and adjusts the communication wavefront accordingly.

The centripetal autowave signatures of the same two images used to generate the re-

sults in Figure 5.18 are shown in Figure 5.21. It is easy to see that the background no

longer interferes with the object signature. The behavior of the on-target neurons are now

almost independent of the other objects in the scene. This quality is necessary for image

applications.
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Figure 5.21: The signatures of the flower and the flower with a background using the
centripetal autowave model [2].

5.3 Summary

For quite some time, cortical models have been expressed in mathematical form. Coupled

oscillators or reaction-diffusion systems still apply to current models. Furthermore, in an

image processing application the differences between the different models may not be that

important. Therefore, speed and simplicity of implementation are more important here

than replication of a biological system [2].

For image processing applications the model selected here is the ICM which is built

on just three simple equations. Each neuron has two oscillators (the neuron potential and

the neuron threshold) and each neuron has a non-linear operation. Thus, when stimulated,

each neuron is capable of producing a spike sequence, and groups of locally connected

neurons have the ability to synchronize pulsing activity. When stimulated by an image,

these collectives can represent inherent segments of the stimulating image [2]. Thus, a

cortical model can become a powerful first step in many image processing applications.

The traditional neural connection schemes, however, do not impede the neural commu-

nications, allowing it to continually progress away from the originating region. While this

may be true in biological neurons, this property causes interference. This has been found

to be deleterious to object recognition. Activity from one region can so drastically alter
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the activity in another region that object recognition becomes very difficult. The solution

to this problem is to alter the connections to the neurons so that they become sensitive

to previous pulsing steps [2]. In the model presented, these connections are described as

centripetal autowaves such that the wavefront progresses towards the local center of curva-

ture of the pulsing regions. This eliminates the ever-expanding nature of the waves without

altering their shape-describing form.

5.4 Comparing ICM with Gabor

This comparison justifies the use of ICM as opposed to Gabor filters. In the Gabor study

a set of Gabor filters were created and each correlated with the input image. This created

a data cube of correlation surfaces and training vectors (jets) were extracted. This study

was replicated and the training vectors for honeycomb, vascular, and normal regions were

extracted. These were then remapped in PCA space and the result is shown. Consider the

results shown in Figure 5.22.

Figure 5.22: PCA on extracted vectors from Gabor filter correlations.

Clearly, the vascular training vectors are well separated from the others but honeycomb
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and normal have overlapping distributions. This makes recognition difficult.

In the second study the ICM generated pulse images which were collected in a data cube

and smoothed. The training vectors were extracted from this cube for several patients and

again remapped by PCA. The results are shown in Figure 5.23. In a very clear fashion the

Figure 5.23: PCA on extracted vectors from pulse images.

normal and honeycomb regions showed a separation. This is precisely the reason that the

ICM version is working better than the Gabor system.

5.5 Segmentation of IPF Images with Pulse Images

Each CT image is converted to a set of pulse images which through collective synchronization

of pixels extract pertinent information of the diseased regions. These pulse streams are

used for training and recall through an associative memory so that entire images can be

segmented and analyzed. The following sections presents the algorithms and results for the

analysis of patients with IPF and normal patients. Results demonstrate that segmentation

of IPF images is useful in extracting quantitative information.
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5.5.1 System Overview

Consider a typical image in Figure 5.24. A patchy pattern of peripheral, sub-pleural and pre-

dominantly lower lobe reticular opacities combined with honeycombing, traction bronchiec-

tasis and absence of significant ground glass attenuation constitute the classic features of

IPF.

Figure 5.24: Original image of a patient with IPF.

Figure 5.25 shows an overview of the data flow for this system. The upper path depicts

the training and the lower path depicts the recall system. There are two main engines which

will be described in the following sections. The intersecting cortical model (ICM) is the

engine that generates the pulse images and the fast analog associative memory (FAAM) is

the recall engine. Each step is detailed in the next sections with examples.

5.5.2 Pulse Image Generator

The pulse stream generator has its roots in early models of the mammalian visual cortex

[84]. The digitization of this model was popularized as the PCNN (pulse-coupled neural
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Figure 5.25: Overview of the system with a training track (upper path) and a query track
(lower path).

network) [86]. The PCNN contained a 2D array of neurons which were associated with the

2D array of pixels from an input image. Each neuron contained three compartments.

The first two were the feeding and linking compartments which were combined in a

second order fashion to generate the neuron’s potential. This potential was then compared

to a dynamic threshold (the third compartment) to produce a binary output. If the neuron

fires, or produces a high output, then the threshold is raised to a significant value and then

begins a decay process. The PCNN was used for may image processing applications. [2].

5.5.3 ICM in Texture Analysis

The ICM has been used successfully in texture analysis of medical images [97, 98]. It is a

modification of the PCNN which reduces the computational complexity. More importantly,

it modifies the method in which the neurons communicate with each other. In the PCNN

design when a neuron fires it sends a positive signal out to the neighboring neurons with

the strength of the signal inversely proportional to the distance between the neurons.

In terms of image processing this type of connection caused problems and so the ICM

adopted a centripetal autowave scheme [99] in which the connections to the neurons are de-

pendent on the pulse pattern that surrounds them. The use of autowaves prevents the neural

activity of one pixel from expanding too far from its location. In the original PCNN de-

sign the propagation of neural communications was not restricted and interference amongst

objects within the image was significant and deleterious for image processing applications.
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(a) Y at n = 1.

(b) Y at n = 2.

Figure 5.26: Two pulse images from the first cycle.
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The premise of the ICM is that each pixel in an input image {S : Si,j ; i = 1, ..., V, j =

1, ...,H}, where V and H are the vertical and horizontal dimensions of the image, is asso-

ciated with a neuron. In the ICM the potential of the neurons are computed by,

Fij [n+ 1] = fFij [n] + Sij +W{Y[n]}ij , (5.22)

where Y is the output of the previous iteration, f is a decay constant less than 1, h is a

strength factor, and W{·} is a centripetal autowave generator that modifies the neural con-

nections within each generation according to level set theory [95]. The output is computed

by,

Yij [n] =


1 Fij [n] > Θij [n]

0 Otherwise

, (5.23)

and the dynamic threshold is computed by,

Θij [n] = gΘij [n− 1] + hYij [n], (5.24)

where g < 1 and h > 1.

5.5.4 Pulsation in Cycles

The neurons in the ICM pulse in cycles. Figure 5.26 shows two of the pulse images from the

first cycle, Y [1] and Y [2] where there is no distinction between the fibrosis and the healthy

tissue. In the second cycle as shown in Figure 5.27, the neurons inside of the lung no longer

fire in unison. As seen in Figure 5.27(d) the healthy and fibrotic portions of the image are

firing at different times in a manner that is sensitive to the inherent textures.

The third cycle is shown in Figure 5.28 which shows a further separation of healthy

and fibrotic tissues. This stack of pulse images creates a pulse stream for each pixel. For

pixel (i, j) the pulse stream is τ{Yi,j [k]}, ∀k where τ{} is a local smoothing function. This
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(a) Y at n = 8. (b) Y at n = 9.

(c) Y at n = 10. (d) Y at n = 11.

Figure 5.27: Four pulse images from the second cycle.
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function is used to eliminate single pixel noise and to accommodate regions with slight

differences.

(a) Y at n = 19. (b) Y at n = 20.

(c) Y at n = 21. (d) Y at n = 22.

Figure 5.28: Four pulse images from the third cycle.

5.5.5 Pulse Streams for Classification

In order for the pulse streams to be useful in classification the diseased regions must behave

similar to each other but different from the healthy regions. The same rule applies to the

healthy region. Figure 5.29 shows two sets of error bars which represent the pulse response

in the honeycomb regions and the healthy regions. Non-overlapping bars justify the use of

82



pulse streams for the representation of the healthy and diseased regions. The location of the

error bars is the average intensity and the extent of the bars is the first standard deviation

from the average.

Figure 5.29: The x-axis represents the ICM iteration number, n, and the y-axis represents
the pulse activity for the neurons

5.5.6 Analysis of Pulse Streams

As seen the first cycle does not separate the diseased and healthy regions. The second cycle

begins at x = 5 and the diseased regions begin to pulse before the healthy regions. The

trend continues through the third cycle. The fourth cycle for the disease regions begins at

x = 20 and as seen the error bars increase significantly. The disintegration of the collective

behavior has reached a point that is no longer useful and thus the number of iterations is

terminated at n = 20.
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Starting with the second cycle the healthy and diseased regions demonstrate unique

pulse behaviors. Classification of these two regions via these pulse streams is very possible,

and the use of pulse streams is justified.

5.6 Associative Memory

The next step in the training process in Figure 5.25 is the extraction of classified jets. These

are pulse streams that are manually selected from fibrotic and healthy regions. The fibrotic

jets were extracted from various diseased regions in the image. These are used for training

in the next step. The learning algorithm FAAM (fast analog associative memory) [100]

is employed to perform the training and recall operations. This is a very simple greedy

training algorithm that has been successfully applied in other medical image applications.

[101].

5.6.1 FAAM Demonstration

Thus, to create a system that recognizes both diseased regions and healthy regions two

separate FAAMs are constructed. Figure 5.30 demonstrates the training process. Consider

a case in which data vectors are associated with two classes (represented by the two markers).

In Figure 5.30(a) there are only two training vectors and they have an opposing class.

There does exist a boundary that crosses the line segment that connects the two points

(not shown). However, the shape and location of the boundary is not known and there is

no other information about this boundary. With this lack of information the boundary is

defined as the bisector of the segment that joins the two data points.

As more data vectors are considered the FAAM determines is new boundaries are needed.

Figure 5.30(b) shows the case in which a new vector is added and it coincidentally is on

the correct side of the boundary. No training is required. Figure 5.30(c) shows the case

in which a data vector is added and a new boundary is required. The FAAM sequentially

considers the data vectors and creates the boundaries as necessary.
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(a) (b)

(c) (d)

Figure 5.30: Demonstration of the FAAM.

As new boundaries come into existence older boundaries may become obsolete. This is

shown in Figure 5.30(d) in which the first boundary is removed since the new boundary

separates all of the known data. The FAAM optimizes the separation of the classes by

creating and destroying boundaries. Unlike artificial neural networks the boundaries are

not moved. The attempt to optimize boundary locations through movement is actually

an expensive computation. The FAAM gains its speed by optimization via creation and

destruction.

Furthermore, as the FAAM training progresses the number of boundaries is indicative

of the training process. Certainly, if the number of boundaries increases as more data is

considered then the older boundaries were insufficient. Training was not accomplished. If,

however, the number of boundaries stabilizes then the FAAM has found boundaries that

separates the two classes and confidence in the training is reached.

It is possible that as boundaries are created that pockets appear in the mapping space

that are not defined. There are not examples of either class that exists on this particular area

defined by the boundaries. Thus, in the recall stage there are three types of outputs. The
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FAAM can classify the input as target, non-target, or unknown. There are modifications to

the FAAM to address this issue but since it is so minor in this application the modifications

were not employed.

The small subset of pulse streams are used to train the FAAM and each pulse stream

from an image will be classified by the FAAM. The application is shown in the next section.

5.6.2 Training the FAAM

The FAAM system creates and destroys decision boundaries when necessary. Thus training

is performed by the survival of the fittest boundaries. The FAAM considers training data

sequentially. As the FAAM training progresses the number of boundaries is indicative of

the training process.

If the number of boundaries increases as more data is considered then the older bound-

aries are insufficient. Training is not accomplished. If, however, the number of boundaries

stabilizes then the FAAM has found boundaries that separates the two classes and confi-

dence in the training is reached. If a network learns the problem then a leveling of the

number of decisions will occur.

Therefore a network performance is demonstrated by plotting the current number of

decision surfaces versus the number of training vectors considered. Three separate FAAMs:

healthy, honeycomb and vascular are constructed and the randomly selected jets are trained

by the network. The results are shown in Figures 5.31.

(a) Honeycomb Training (b) Normal Training (c) Vascular Training

Figure 5.31: Learning curves from a typical FAAM for three different regions in the same
patient.
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5.7 Application to a Single Patient

In this section a single patient is considered. There are 24 CT images that accompany this

scan and they include the full height to the lungs.

5.7.1 Single Image Response

Figure 5.24 is image number 14 from the scans and it is located in the lower half of the lung.

Since the honeycomb is more prevalent in the lower lung in IPF patients these images are

more useful. Figures 5.26, 5.27, and 5.28 show some of the pulse images from this input.

The others are not shown since they are less informative. Figure 5.29 shows the behavior

of the pulses for all iterations.

About 30 pixels from diseased and healthy regions from two CT images were manually

selected and the pulse streams of these pixels were used to train the fibrotic FAAM and the

healthy FAAM (denoted now as fFAAM and hFAAM). The pulse stream from every pixel

was then used as a query and the response from both FAAMs were collected. Figure 5.32(a)

shows the response from the fFAAM. Pixels that are white are classified as diseased. Pixels

that are gray (and inside the lung region) are classified as not diseased. The few black

pixels are classified as unknown. The regions outside of the perimeter of the lung were not

classified. Figure 5.32(b) shows the response from the hFAAM in which the white pixels

are classified as healthy.

The response of these networks corresponds with analysis of the images by physicians

specializing in lung disease. At this time there is no method to exactly quantify the response

of the networks.

5.7.2 Non-Training Image Response

The training in this example used pulse streams from images 8 and 14 for training. Figure

5.33(a) shows image 11 from which no training pulse streams were extracted. Figure 5.33(b)

shows the classification for the fFAAM and Figure 5.33(c) shows the classification of healthy

regions from hFAAM.
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(a) Response from fFAAM. (b) Response from hFAAM.

Figure 5.32: The response from image 14 from both FAAMs.

(a) Original image. (b) Response from fFAAM.

(c) Response from hFAAM.

Figure 5.33: The response from image 11 from both FAAMs.
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5.8 Analysis

Classification of the fibrotic and healthy regions allows for analysis of the patient’s state

and progression of the illness. Of importance is the volume of the lung that has become

diseased compared to that that remains healthy. Figure 5.34 shows classification areas for

this sample patient.

Figure 5.34: Area metrics of classification. The top most graph depicts the total area of
the lung for each slice. The lower most graph depicts the area classified as fibrotic and the
graph above it depicts the area classified as healthy. The second plot depicts the summation
of the healthy and diseased regions.

The x-axis corresponds to the CT slide number. The range of x corresponds to scans

from the top of the lung towards the bottom of the lung. There are a few images above and

below the lung in the data set. The top of the lung begins at x = 2 and the bottom of the

lung ends at x = 21. The difference between it and the total lung volume stems from those

pixels that were classified as unknown or tissue.

The percentage of fibrotic pixels to healthy tissues increases towards the bottom of the
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lung in congruence with the progression of the diseased starting at the bottom of the lungs.

Of note is also the cross over point at x = 18 where the area of diseased lung exceeds the

area of healthy lung. In this patient the total lung volume classified as diseased was 37%.

5.9 Multiple Patients

Three CT images are considered from three distinct patients at different stages of IPF.

There are apparent textural and contrast differences seen in image numbers 22, 33 and 39.

The response is recorded from multiple patients.

5.9.1 Normalization

To successfully and easily apply the algorithm across multiple patients, automatic histogram

normalization is necessary. With this in mind the normalization algorithm is best described

using the Figure 5.35(a) and its corresponding histogram 5.35(b) as shown below.

Find the highest peaks right at the beginning which correspond to the background re-

gion. See annotated Figure 5.36. The images contain low contrast contours. The histogram

modes corresponding to the different regions such as bone, tissue, air and background re-

gions (1) and (2), vascular, diseased and healthy often overlap.

Therefore any leading edge peak corresponding to the non-diseased/non-healthy region

is removed. The two remaining highest peaks located in the bimodal histogram are retained

and the image is now ready for training purposes. To further reduce noise, additional pre-

processing is done using a smoothing spline function. Once the image has been normalized,

we apply the Gaussian fit and use the mean and standard deviation to scale the image.

5.9.2 Training and Recall

For the purpose of training we select three CT images from three different patients seen in

Figure 5.37 which cover a broad spectrum of disease stages of IPF. Next the healthy and

fibrotic FAAMs are trained. The pulse stream from the test images from another patient is

then used as a query and response from both FAAMs are collected as seen in Figure 5.38.
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(a) Original image.

(b) Corresponding Histogram

Figure 5.35: Image and Histogram before normalization.
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Figure 5.36: The image is divided into different regions(back1, back2, organ, tissue, bone,
vascular, diseased and healthy).

5.9.3 Analysis

The test images as seen in Figures 5.39, 5.40, 5.41, 5.42 do not belong to the training series.

In spite of the obvious difference in contrast, volume and texture the healthy and diseased

regions are easily distinguished and classified.

5.10 Discussion

The technique used is successful in classifying the healthy and diseased portions of the lung.

The goal was to train adequate and varied stages of IPF images and to be able to extract

sufficiently enough information from test images. The algorithm was tested on HRCT

scans procured through Inova Fairfax Hospital, Department of Radiology. Two expert

radiological reviewers compared the initial results of the segmentation algorithm with the

manual segmentation of the original scans. Comparison revealed agreement regarding the

presence or absence of honeycombing. However for achieving a high and reliable performance

for non-training cases, a large number of training cases are commonly required.
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(a) HRCT Scan from Patient 22

(b) HRCT Scan from Patient 39 (c) HRCT Scan from Patient 17

Figure 5.37: Training scans from multiple patients.
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(a) HRCT Scan from Patient 33

(b) Response from hFAAM from Patient 33 (c) Response from fFAAM from Patient 33

Figure 5.38: Demonstration of the FAAM from multiple patients.
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5.11 Enhancements and Conclusions

Past experiences with the FAAM indicate that in these circumstances the FAAM performs

better if the data pairs are presented in random order. Given a data set {X : Y; ~xi : yi; i =

R(1, ..., N)} where ~xi is the i-th training vector which is associated with yi and yi is a

binary classification (yi ∈ [0, 1]). The value of N is the total number of training pairs. It is

possible to present ~xi : yi in sequential order but in this case it is better to randomize the

indices which is represented by the function R(·). The reason for this is the data contains

subgroups (i ∈ i1, ..., i2) in which the data vectors are extracted from the same region of a

single image. Thus, these vectors are self-similar. The number of training cases were also

increased and this aided the quality of segmentation as seen in Figures 5.39, 5.40, 5.41, 5.42.
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(a) HRCT Scan

(b) Honeycombing (c) Vascularization

Figure 5.39: Honeycombing and Vascular regions from Patient a0017.
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(a) HRCT Scan

(b) Honeycombing (c) Vascularization

Figure 5.40: Honeycombing and Vascular regions from Patient d0034.
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(a) HRCT Scan from Patient p0020

(b) Honeycombing (c) Vascularization

Figure 5.41: Honeycombing and Vascular regions.
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(a) HRCT Scan

(b) Honeycombing (c) Vascularization

Figure 5.42: Honeycombing and Vascular regions from Patient p0023 .
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Chapter 6: Comparisons and Conclusions

The diagnostic approach to IPF is multidisciplinary, involving primary care physicians, pul-

monologists, radiologists, and pathologists as seen in Figure 6.1. It begins with a complete

clinical evaluation, including history, physical examination, chest radiograph, laboratory

studies, and pulmonary physiologic testing [102]. After this thorough assessment, patients

suspected of having an IIP should undergo a HRCT scan of their lungs. In some instances,

an experienced chest radiologist can make a confident diagnosis of IPF or other diffuse lung

disease without further diagnostic intervention. When the HRCT results are unclear, many

patients will proceed directly to surgical lung biopsy. Ultimately, surgical lung biopsy is

the gold standard in diagnosing IPF.

Figure 6.1: Diagnostic approach to IPF.
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6.1 Gold Standards and Image Processing

The absence of gold standards in image processing makes quantification challenging for early

stage images of IPF and blinded images. Gene expression profiling offers the tantalizing

prospect of providing a new gold standard for the diagnosis of IPF. However, given the

current absence of a definitive gold standard test, classification should incorporate clinical,

radiological and pathological aspects of disease manifestation and behavior. By relying on

this combined approach to classification, it is to be hoped that all points along the pheno-

typic continuum of disease representing IPF can be recognized, something that is crucial to

the ongoing success of both clinical and basic scientific research into this devastating disease

[103].

Even though there may be some misclassification or decreased discrimination between

similar abnormalities for the classifiers, it is more important that the methods provide a

consistent result that agrees with the experts as frequently as the experts agree among

themselves, particularly in a setting were an objectively defined gold standard outside of

the expert opinion does not exist [104]. With this in mind lung volumes derived from PFT

results served as established clinical parameters and were used as ”gold standard” [5].

Medical image processing validation often can not rely on availability of true gold stan-

dards. Gold standards based on experts interpretation or correlation with other imaging

modalities and/or with pathology have been developed [105]. The comparison of a manual

segmentation to a computer algorithm’s classification is another issue.

6.2 Volumetrics for IPF images

Using pulse images pertinent information are extracted from defined regions with a distinctly

superior separation of classes. From these regional classifications volumetric measures of

honeycomb, vascular and normal regions are computed. Figure 6.2 shows classification

areas for sample patients. The x-axis corresponds to the CT slide number. The range of x

corresponds to scans from the top of the lung towards the bottom of the lung. There are a
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few images above and below the lung in the data set. The top of the lung begins at x = 1.

(a) Patient A (b) Patient B

(c) Patient C (d) Patient D

(e) Patient E (f) Patient F

Figure 6.2: Area metrics of classification. The top most graph depicts the total area of the
lung for each slice. The graph in red depicts the area classified as fibrotic, green depicts
vascular and the graph in blue depicts the area classified as healthy.

The percentage of fibrotic pixels to healthy tissues increases towards the bottom of the

lung in congruence with the progression of the diseased starting at the bottom of the lungs

as seen in Figures 6.2(b), 6.2(c) and 6.2(f). The volumetric percentage by healthy, fibrotic

and vascular regions for patients with IPF is shown in Table 6.1. The top most graph

depicts the total area of the lung for each slice. The graph in red depicts the area classified

as fibrotic and the graph in blue depicts the area classified as healthy.

In 6.2(c) the percentage of fibrotic pixels to healthy pixels increases towards the bottom

of the lung. Of particular note is the cross over point at x=25 where the area of the diseased

lung far exceeds the area of the healthy lung. The corresponding volumetric percentage
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Table 6.1: Volumetric Percentage by Patient.

across all the slices are seen in Table 6.1. In this patient the total lung volume classified as

diseased is 29.75 %.

In 6.2(d) the percentage of fibrotic to healthy pixels is almost equal at the beginning

of the lung. However the percentage of healthy tissue increases towards the bottom of the

lung. The total lung volume classified as diseased is only 2.67 % as compared to the total

lung volume classified as healthy which is 17% as seen in Table 6.1.

Finally consider Figure 6.2(b). It is seen that towards the top of the lung, the percentage

of fibrotic pixels is the least compared to the healthy and vascular regions. This trend

changes towards the bottom of the lung wherein the percentage fibrotic regions far exceeds

that of the healthy region. The total volumes of the fibrotic, healthy and vascular regions

remain on par at 38%, 30% and 33% respectively as seen in Table 6.1.

6.3 PFT Measurements

Pulmonary function testing is often used and recommended in the assessment and man-

agement of diffuse parenchymal lung diseases (DPLD). The potential clinical application of

physiologic testing includes to aid in diagnosis, although its value in differential diagnosis is

limited. Pulmonary function testing also aids in establishing disease severity and in defining

prognosis. Potential clinical applications include: (1) aiding in diagnosis; (2) establishing

disease severity; (3) defining prognosis; and (4) monitoring response to therapy and disease

progression.
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It is evident that the physiologic presentation of DPLDs, while typical, is not specific.

As such, pulmonary function tests (PFTs) should be used in conjunction with clinical,

radiographic, and histologic information in assuring an accurate diagnosis. On the other

hand, in patients with appropriate symptoms, PFTs can serve as early diagnostic tools

[106].

Much of the PFT data have come from an external provider/laboratory. Some are from

Inova’s pulmonary laboratory. There can be variances between equipment and references

used for completing the PFTs within the facilities. The PFT measurements collected for

analysis included but were not limited to:

• FEV1 forced expiratory volume in the first 1 second of expiration; volume of air

forcibly expired from a maximum inspiratory effort in the first one second.

• FVC forced vital capacity; the total volume that can be forcefully expired from a

maximum inspiratory effort.

• TLC total lung capacity; the total volume of air in the lungs at full inhalation; the

sum of all volume compartments.

• DLco diffusing capacity of the lung; the capacity of the lungs to transfer carbon

monoxide.

The components of the respiratory cycle are labeled as lung volumes and lung capacities

(a capacity is the sum of one or more volumes) as seen in Figure 6.3 [107].

These PFT measurements were chosen for correlation with volumetric measures com-

puted from regional classifications. A sample of the pulmonary function measurements in

patients from INOVA with IPF are shown in Table 6.2.

6.4 Materials and Methods

Sixteen patients (mean age, 66.2 ± 5.28 years [± SD]; range, 55 to 74 years) with IPF

were analyzed. PFTs were used to measure forced vital capacity (FVC), forced expiratory
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Figure 6.3: Lung volumes and capacities are depicted on a volume-time graph.

Table 6.2: Pulmonary function measurements in patients with IPF.
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volume in 1 second (FEV1), total lung capacity (TLC), and diffusing capacity (DLco). The

mean time between PFT administration and thin-section CT scanning was 64 ± 130 days.

6.4.1 Statistical Analysis

Statistical analyses were performed by using SAS 9.2 (SAS Institute, Cary, NC). Pearson

correlation coefficients (r-values) were used to quantify the relationships between volume

measurements of segmentation and each of the four PFT measurements (DLco, TLC, FEV1,

and FVC). A p-value of less than 0.05 was considered to indicate a significant difference.

6.5 Results

The correlation coefficients (r-values) between volumetric measures computed from regional

classification (honeycomb, vascular and normal regions) and PFTs and given in Table 6.3

and Table 6.4. Table 6.4 provides a direct comparison of segmentation volumes with PFT

measures.

The mean TLC% in patients with IPF was 63.33 ± 11.48, and mean VC% was 67.5 ±

11.22. Mean FEV was 74.38 ± 13.96. Mean DLco was 42.06 ± 14.71.

There is no well-defined threshold for acceptability of strength of correlation. A high

degree of correlation may indicate that volumetric measures from regional classification can

provide a useful indicator of disease progression [5]. The greatest correlation was between

honeycomb regions and FVC (r=0.51). The healthy and honeycomb regions correlated

negatively with PFT measure DLco (-0.3,-0.42). Of all the PFTs, FEV showed the least

correlation with volumetric measures, while FVC showed the greatest correlation. Of the

volumetric measures, normal regions showed the least magnitude of correlation with PFTs,

while honeycomb regions showed the greatest correlation.

As expected, correlation coefficients for results between PFT values were high within

this group, correlation between FVC and TLC was the greatest (r=0.72). This is primarily

because these lung function values determine how much air the lungs can hold, how quickly
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Table 6.3: Correlation Coefficients (r) and p-value in patients with IPF. Note: pctvas,
pcthealthy, pcthon: Volumetric measures computed from regional classification for vascular,
healthy and honeycomb regions respectively, tot = vascular+healthy measure of the lung.

Table 6.4: Coefficients of correlation (r-values) between volumetric measures and PFT mea-
sures. Note: pctvas, pcthealthy, pcthon: Volumetric measures computed from regional clas-
sification for vascular, healthy and honeycomb regions respectively, tot = vascular+healthy
measure of the lung.
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one can move air in and out of the lungs, and how well the lungs put oxygen into and remove

carbon dioxide from the blood and therefore correlate well amongst themselves. There was

no significant correlation within the volumetric measures themselves [106].

The corresponding graphs for correlation between volumetric measures and PFT mea-

sures are provided in Figures 6.4 and 6.5. These graphs are scatterplots, which is the

graphical version of the correlation. This graph shows the strength and direction of the

relationship between the two variables just like the correlation coefficient. The Figure 6.4

gives the correlation between the sum of vascular and healthy against the PFT measures.

The Figure 6.5 gives the correlation between the honeycomb regions against PFT measures.

In Figure 6.4(a), PFT values are plotted on the y-axis and correlated against volumetric

measures comprising of the sum of vascular and healthy regions (tot). There is a nega-

tive relationship (correlation) seen between DLco and tot. As DLco increases, the sum of

vascular and healthy regions decreases. Unlike Figure 6.2(a), Figures 6.2(b), 6.2(c) and

6.2(d) show a positive relationship between the two parameters. The strongest correlation

(r = 0.33) is seen between tot and FVC values and the least is seen between tot and DLco

(r = 0.11).

In Figure 6.5(a), PFT values are plotted on the x-axis and correlated against volumetric

measure from the honeycomb regions (pcthon) on the y-axis . Overall a negative relationship

(correlation) is seen between pcthon and the PFT values. As the percentage volume of the

honeycomb region decreases, the PFT value increases. The strongest relationship is seen

between pcthon and FVC (r = 0.51) closely followed by DLco (r = 0.42) and FEV (r = 0.4).

The weakest correlation is seen between pcthon and TLC values (r = 0.14). It is however

worth re-iterating that there is no well-defined threshold for acceptability of strength of

correlation [5].
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(a) (b)

(c) (d)

Figure 6.4: Correlation graphs between sum of vascular and healthy (tot) against PFT
measures.

109



(a) (b)

(c) (d)

Figure 6.5: Correlation graphs between honeycomb regions (pcthon) and PFT measures.
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6.6 Discussion

There is currently no widely accepted standardization system for scoring the extent of ILD.

It is especially important to define disease extent in patients with IPF for the purposes of

selection of treatment, determination of disease progression and evaluation of effectiveness

of investigational new treatments. The absence of gold standards in image processing makes

quantification challenging for early stage images of IPF and blinded images. Thus medical

image processing validation often cannot rely on availability of true gold standards.

Hence lung volumes derived from Pulmonary Function Tests (PFT) results served as

established clinical parameters and were used as gold standards. Volumetric measurements

of honeycomb, vascular and normal regions are found to correlate with results of PFTs

in patients with IPF. The greatest correlation was between honeycomb regions and forced

vital capacity (FVC). The healthy and honeycomb regions correlated negatively with PFT

measure diffusing capacity (DLco). Thus, in spite of the obvious difference in contrast,

volume and texture, the healthy and diseased regions are distinguished and classified using

pulse images.
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Chapter 7: Summary

High-Resolution Computed Tomography (HRCT) has changed the diagnostic evaluation of

patients with ILD and is particularly useful in the diagnosis of idiopathic pulmonary fibrosis

(IPF) [3]. The quantification of disease by CT is important to indicate prognosis and to

evaluate progression of the disease or response to treatment. In this thesis automated tools

are presented which extract information from the CT images and isolate visual evidence of

the disease from healthy lung tissue.

7.1 Previous Approaches

All existing methods of CT quantification of ILD are less than ideal and are dependent

on the depth of the patient’s inspiration. Visual estimation techniques are subjective and

show only moderate reproducibility. Quantitative methods based on CT density histogram

are particularly susceptible to variation with differing depths of inspiration. A significant

problem with quantitative CT technology is the lack of user-friendly automated method

for segmenting the lung and deriving quantitative indices. It seems particularly surprising

that none of the major CT manufacturers provide a user-friendly package for performing

quantitative analysis of lung images [4].

Texture based methods examines the relationship between the attenuation of pixels

within a certain distance of each other. However the methods failed to compare the results of

the segmentation with measurements such as pulmonary function tests, which is important

for the treatment option and the patient prognosis [46].
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7.2 Proposed Algorithms

Three different approaches were undertaken which resulted in some drawbacks and lessons

learned. It effectively led to an important conclusion when working with IPF images:

Quantization of IPF images is challenging because it is difficult and potentially misleading

to use a single metric to convey the complex textural information offered by the CT scan.

7.2.1 Adaptive multiple Feature Method

An adaptive thresholding algorithm has been presented which utilized quantitative CT

indexes to correlate IPF with pulmonary abnormality. Simulation results demonstrated

that the algorithm performed well in identified IPF images. However the absence of gold

standards made quantification challenging for early stage images of IPF and blinded images.

7.2.2 Neural Networks

Image processing requires complex computations which explains the need for artificial neural

networks [108, 109]. However there were several disadvantages which came to the forefront

during the task of training the network. The lack of any improvement in segmentation qual-

ity was accompanied by a considerable increment in human intervention: manual processing

time for interactive labeling of the training data was approximately 20 to 30 minutes per

image. The second problem related to the amount of input data. An unblinded number

of 16 IPF patients was insufficient to train and evaluate the quality of the segmentation

results.

7.2.3 Gabor Filter

Gabor filter is a very useful tool for texture analysis in both spatial and frequency domains

and hence combines the advantages of both filters. However the disadvantage of image

dependence unexpectedly resulted in image enhancements. Certain configuration settings

for wavelength, orientation, phase offset or aspect ratio worked well with one set of images
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but not with another. It was challenging to identify identical texture with less or more

resolution than the original image presented to the Gabor filter as the same texture.

7.3 PCNN and IPF

The ICM has been used successfully in texture analysis of medical images [97,98] is a mod-

ification of the PCNN which reduces the computational complexity. The technique used

is successful in classifying the healthy and diseased portions of the lung. The goal was to

train adequate and varied stages of IPF images and to be able to extract sufficiently enough

information from test images. The algorithm was tested on HRCT scans procured through

INOVA Fairfax Hospital, Department of Radiology. Two expert radiological reviewers com-

pared the initial results of the segmentation algorithm with the manual segmentation of the

original scans. Comparison revealed agreement regarding the presence or absence of hon-

eycombing.

7.4 Volumetric Analysis and Gold standards

It is especially important to define disease extent in patients with IPF for the purposes of

selection of treatment, determination of disease progression and evaluation of effectiveness

of investigational new treatments. The absence of gold standards in image processing makes

quantification challenging for early stage images of IPF and blinded images. Hence lung

volumes derived from Pulmonary Function Tests (PFT) results served as established clini-

cal parameters and were used as gold standards. Volumetric measurements of honeycomb,

vascular and normal regions are found to correlate with results of PFTs in patients with

IPF. Thus, in spite of the obvious difference in contrast, volume and texture, the healthy

and diseased regions are distinguished and classified using pulse images.
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7.5 Conclusion

In conclusion, the diagnostic approach to IPF remains multidisciplinary, involving primary

care physicians, pulmonologists, radiologists, pathologists and image analysts. Quantitation

of radiological images of IPF remains challenging. But despite its limitation, visual estima-

tion remains the most widely used technique for the estimation of the extent of the diffused

lung disease. Quantitative evaluation is a critical component of lung disease, and when

validated against an appropriate gold standard, it may one day replace routine physiologic

assessment. Until then, the need for the ideal quantitative technique that would be simple

to perform, reproducible, observer independent and offer a valid measurement of disease

extent would remain. In that perspective, clinicians and image analysts will continue to

team up to to build the best information retrieval methodologies.
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