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Dr. Daniel Barbará, Committee Member

Dr. Kathryn B. Laskey, Committee Member

Dr. Huzefa Rangwala, Committee Member

Dr. David Rosenblum, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Summer Semester 2021
George Mason University
Fairfax, VA



Uncovering Structure in Social Networks

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Matthew Bain Revelle
Master of Science

George Mason University, 2009
Bachelor of Science

University of Mary Washington, 2003

Director: Dr. Carlotta Domeniconi, Professor
Department of Computer Science

Summer Semester 2021
George Mason University

Fairfax, VA



Copyright © 2021 by Matthew Bain Revelle
All Rights Reserved

ii



Dedication

I dedicate this dissertation to my family and friends.

To you all. Thank you for asking me ”how much longer?”, listening to me ramble about
my research, and your words of encouragement. Special thanks to the Schultz family, the
Hall family, Ben Bennett, Car Bauer, Ryan Donnelly, Ryan Kincade, Dr. Heidi Lawrence,
Ryan Garner, and Joshua Lowder.

To my colleagues at Kudu Dynamics. I would not have been able to complete this milestone
without your support.

To the professors at Mary Washington College and George Mason University that took
time to mentor and challenge me. Especially Prof. Rita D’Arcangelis, Prof. Zoran Duric,
Prof. Sean Luke, Prof. John Reynolds, and Prof. Marsha Zaidman.

To Billie. You were my one constant during this period of my life. The comfort and
companionship you gave me helped me recharge and you always reminded me to go outside
and get lost in the woods.

To my sibling, Garrett Revelle. Thank you for our random conversations of all kinds and
allowing me to occasionally tag along in gaming matches when I needed a break.

To my parents, Christine McGowan and John Revelle. Thank you for encouraging me to
learn and persevere. You provided me with an environment to explore and be curious.

To Shane. You care for me and help me become a better person. You are an inspiration to
me in so many ways. Thank you for supporting me during the often stressful experience of
completing my dissertation. I love you.

iii



Acknowledgments

I would like to thank everyone who made the work of this dissertation possible.

I thank all the members of the Data Mining and Machine Learning (DMML) lab at George
Mason University for their discussions, insights, and support. It was inspiring to work
alongside so many engaged students and faculty.

I thank all my collaborators in the Volgenau School of Engineering, particularly Ben Gel-
man, Dr. Aditya Johri, Mack Sweeney, and Dr. Seungwon Yang.

I thank my dissertation committee members, Dr. Daniel Barbará, Dr. Kathryn B. Laskey,
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Abstract

UNCOVERING STRUCTURE IN SOCIAL NETWORKS

Matthew Bain Revelle, PhD

George Mason University, 2021

Dissertation Director: Dr. Carlotta Domeniconi

Social networks are defined by relationships between people and permeate all aspects

of human life. Improving our understanding of the structure and dynamics of networks

enhances our knowledge of many human systems. In this dissertation, I present novel

techniques and methodologies for the tasks of community detection, role discovery, and

community evolution prediction as well as an analysis on temporal artifacts that may occur

when constructing social network datasets.

Community detection in networks is a broad problem with many proposed solutions.

Existing methods frequently make use of edge density and node attributes; however, the

methods ultimately have different definitions of community and build strong assumptions

about community features into their models. I propose a new method for community detec-

tion, which estimates both per-community feature distributions (topics) and per-node com-

munity membership. Communities are modeled as connected subgraphs with nodes sharing

similar attributes. Nodes may join multiple communities and share common attributes with

each. Communities have an associated probability distribution over attributes and node at-

tributes are modeled as draws from a mixture distribution. The method includes two basic

assumptions about community structure: communities are densely connected and have a

small network diameter.



These assumptions inform the estimation of community topics and membership assignments

without being too prescriptive.

There has been extensive research on social networks and methods for specific tasks such

as: community detection, link prediction, and tracing information cascades; and a recent

emphasis on using temporal dynamics of social networks to improve method performance.

The underlying models are based on structural properties of the network, some of which

we believe to be artifacts introduced from common misrepresentations of social networks.

Specifically, representing a social network or series of social networks as an accumulation

of network snapshots is problematic. I demonstrate how cumulative graphs differ from

activity-based graphs and may introduce temporal artifacts.

Users in online social networks often have very different structural positions which may

be attributed to a latent factor: roles. We analyze dynamic networks from two datasets

(Facebook and Scratch) to find roles which define users’ structural positions. Each dynamic

network is partitioned into snapshots and we independently find roles for each network

snapshot. I developed a role discovery methodology and investigate how roles differ between

snapshots and datasets. Six persistent roles are found and user role membership, transitions

between roles, and interaction preferences are analyzed and presented.

Communities in social networks evolve over time as nodes enter and leave the network

and their activity behaviors shift. I present a novel technique for predicting community

evolution events based on group-node attention. Group-node attention enables support for

variable-sized inputs and learned representation of groups based on member and neighbor

node features, including temporal information. Existing work on community evolution

prediction has focused on the development of frameworks for defining events while using

traditional classification methods to perform the actual prediction. It is my hope this work

on a prediction model for community evolution events will prompt the development of

additional novel prediction models.



Chapter 1: Introduction

1.1 Motivation

The use of data mining and machine learning in social networks is an active research area

and encompasses many different tasks and approaches. In this dissertation, I present several

models and analyses of social networks with an emphasis on social interaction networks,

communities, persistent roles, and community dynamics. I have developed and contributed

methods for community detection, role discovery, and community evolution prediction and

presented findings on the effects of eschewing edge deactivation in social interaction networks

and the persistence of network roles in the same.

Social interaction networks describe interactions between actors, usually people. These

interactions may be phone calls, social media messages, or in-person conversations. In

static network analysis, a single cumulative network is formed from a series of pairwise

interactions that are accumulated as network edges. In the setting of static networks, I

developed a community detection model which is presented in Chapter 4.

Community detection is the problem of finding related sets of nodes in a network. Gener-

ally, structural information is used to define these sets and we expect these nodes to be more

densely connected to each other relative to the rest of the network. The problem is similar

to clustering but in a network setting and also suffers from being an ill-posed problem. I

developed a community detection model [1] which uses not only network structure but also

node attributes. This model jointly learns communities along with a topic estimated by

text associated with community members. My work on this model, and the comparative

evaluation we performed, introduced me to other competitive models. A few related meth-

ods [2, 3] challenged the existing definition of communities as being subgraphs with high

edge density [4, 5] and presented analyses indicating the overlap of multiple communities

1



are the densest subgraphs.

These models were based on the analyses conducted in [6, 7] that demonstrated the

presences of densification—the super-linear growth of edges relative to nodes—and network

diameter shrinking. For certain kinds of networks, where edges are only added and never

removed, the finding is unsurprising. We might expect densification in information networks

such as citation networks where paper authors serve as nodes and an edge represents one

author citing another. However, due to social capacity this result is not expected for

social interaction networks. In Chapter 5, I conduct an analysis on two series of network

snapshots and show that both densification and diameter shrinking can be introduced into

social networks by failing to include a mechanism for edge deactivation when constructing

the networks.

While considering the need for edge deactivation when constructing network snapshots

over time, I began to investigate the impact of network roles in social network dynamics.

Roles can be considered latent factors which represent structural positions and node behav-

iors. Nodes can hold multiple roles simultaneously, and in a dynamic setting the roles of a

node may change over time. In this way, roles capture patterns of behaviors that impact the

evolution of a network. Extending the work of [8] and [9], I developed a methodology for

identifying roles over temporal network snapshots and discovered the existence of persistent

roles in two distinct datasets. The presence of shared persistent roles across both time and

datasets was surprising and suggests that roles can serve as a basis for defining dynamic

network structure. These results are presented in Chapter 6.

Role and community structure transitions are promising components both for general

generative models of dynamic networks and specific prediction tasks such as community

evolution prediction. While community evolution prediction is an active area of research,

the literature has focused on providing alternative frameworks for labeling community evo-

lution events across series of network snapshots. In effect, these various frameworks propose

modifications to the definition of the community evolution prediction task in order to im-

prove prediction performance when using standard classification models. To my knowledge,

2



there has been no prior work that introduces a classification model developed for commu-

nity evolution prediction. In Chapter 7 I present a graph neural network (GNN) model

that incorporates group-node attention and temporal information for community evolu-

tion prediction. This Group-Node Attention Network (GNAN) model is demonstrated to

outperform baselines used for community evolution prediction.

1.2 Challenges

The tasks of community detection, role discovery, and community evolution prediction on

social networks share several challenges. While repositories of network data [10, 11] are

available there is often additional preprocessing required to construct a dataset for specific

tasks. Ground truth for various machine learning and data mining tasks on networks is

generally unavailable. There has been some effort in generating ground-truth communi-

ties which can be used to evaluate community detection methods. While this is generally

considered an acceptable attempt for objective evaluation of community detection, there is

evidence indicating that ground-truth communities defined according to metadata do not

map to structural communities observed in networks [12,13].

Similarly for role discovery and community evolution prediction, there are no ground-

truth roles or community evolution events that can be used for evaluation. Evaluation

of role discovery methods usually involves some form of qualitative analysis. In the case

of community evolution prediction, since the various frameworks include a definition of

community evolution events we can use these labels for evaluation. However, different

network features are captured by the event labels depending on the labeling function used

by the framework and the community evolution event labels from previous snapshots are

used in training prediction models. In this way, community evolution prediction frameworks

can be viewed as a form of feature engineering through obscured aggregation of features.

There are various types of networks and in [14] they are organized into four top-level

categories: technological, information, biological, and social. As each type of network cap-

tures different relationships between different categories of objects, it is important to closely
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examine the assumptions of models or findings. Assumptions made during the construction

of a network dataset can introduce artifacts which alter the semantics of network nodes or

edges. For example, consider social interaction networks without edge deactivation. With-

out edge deactivation a social interaction network becomes a history of all interactions

rather than a temporal snapshot of a dynamic network.

1.3 Problem Statement

The overall hypothesis of this work is that node roles, communities, and their interactions

form the building blocks of social networks; and these building blocks provide an effective

framework to study and understand the evolution of network dynamics. The research areas

of community detection, role discovery, and community evolution prediction are then each

critical components to improving our understanding of network dynamics. Our understand-

ing of network dynamics then relies on improvements in our ability to define communities,

discover roles that characterize node behaviors, and learn models of structural change in

both communities and roles. My work explores this hypothesis while developing methods

that improve the state-of-the-art of community detection, role dynamics, and community

evolution prediction.

The hypothesis in Chapter 4 is that groups of nodes with edge density are evidence

of communities where community members have similar attributes within a subset of fea-

ture dimensions. Community detection can then be seen as jointly inferring community

membership along with a feature distribution—or topic— associated with each community.

Chapter 5 presents the hypothesis that a lack of edge deactivation when constructing net-

works from social interaction datasets can lead to the introduction of temporal artifacts. In

Chapter 6, the hypothesis that node behaviors across temporal snapshots can be expressed

through a set of roles and role transitions is explored. Finally, Chapter 7 considers the

hypothesis that learning a group representation from individual node features according

to group-node attention can improve performance of community evolution event prediction

over the standard methods used in the literature.
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1.4 Contributions

I developed the Seeded Estimation for Network Communities (SENC) method for joint dis-

covery of community members and topics using both node attributes and graph structure

[1]. Communities are modeled as connected subgraphs with nodes sharing similar attributes.

Nodes may join multiple communities and share common attributes with each. Commu-

nities have an associated probability distribution over attributes and node attributes are

modeled as draws from a mixture distribution. We make two basic assumptions about com-

munity structure: communities are densely connected and have a small network diameter.

These assumptions inform the estimation of community topics and membership assignments

without being too prescriptive.

I investigated the claims of densification and diameter shrinking in social interaction

networks and provided evidence that densification will occur when edge deactivation is not

included in the construction of social networks from social interaction data [15, 16]. In

certain settings, densification and diameter shrinking can be viewed as temporal artifacts

introduced by data preprocessing methodology. Determining the cause of topological ef-

fects such as densification is important as models developed for community detection, link

prediction, and other network-related tasks are often designed with particular assumptions

about network and community structure.

Users in online social networks often have very different structural positions which may

be attributed to a latent factor: roles. I performed an analysis on dynamic networks from

two datasets (Facebook and Scratch) to find roles which define users’ structural positions

[17]. Each dynamic network is partitioned into snapshots and I independently find roles for

each network snapshot. I developed a role discovery methodology and investigate how roles

differ between snapshots and datasets. Six persistent roles are found and user role mem-

bership, transitions between roles, and interaction preferences are analyzed and presented.

Existing work in community evolution prediction has focused on developing new frame-

works that label events occurring between pairs of communities in consecutive network

snapshots. Rather than propose an alternative framework, I developed the Group-Node
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Attention Network (GNAN) model which uses group-node attention to learn a represen-

tation of a community that is optimized for the prediction of future community evolution

events. I built several series of network snapshots and found the accompanying communities

and their community evolution events. These datasets are used in a comparative evaluation

that demonstrates the improved performance of GNAN over the standard baseline classifiers

used for the community evolution prediction task.

The contributions of my dissertation are summarized as follows:

Seeded Estimation of Network Communities (SENC)

• A scalable probabilistic method for simultaneously finding highly interpretable

community topics and node memberships.

• A flexible and intuitive method of influencing community estimation through the

use of bounded seed groups.

• The introduction of several datasets with ground-truth communities used for

comparative experiments with top-performing methods.

Temporal Artifacts from Edge Accumulation

• An analysis on the effects of edge accumulation on social interaction networks

and the associated network artifacts that are introduced.

• Evidence which indicates densely overlapping communities are the result of unchecked

edge accumulation.

• Findings that provide guidance for data preprocessing methodology and design

of network models.

Persistent Roles

• A methodology for discovering and tracing persistent roles over a series of network

snapshots.

• The discovery of six persistent roles: popular, friendly, explorer, reciprocated,

community member, and active-community member.
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• An analysis of role membership, transitions between roles, and interaction pref-

erences.

Group-Node Attention Network (GNAN)

• A graph attention network model using group-node attention capable of learning

a community representation.

• Construction of two series of network snapshots with communities and commu-

nity evolution event labels for comparative evaluation.

• A comparative evaluation of GNAN against standard baseline methods used in

the community evolution event prediction literature.

• An analysis of the effects caused by using increasingly older network snapshots

for training.
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Chapter 2: Background

2.1 Clustering

A substantial proportion of community detection techniques do not use node attributes

to detect communities or provide per-community feature distributions as output. Many

solely rely on graph structure [18] or independently group objects by topics and structure

[19]. The state-of-the-art methods for community detection have introduced linking models,

subspace clustering, topic models, and heterogeneous networks to improve performance and

simultaneously estimate topics and membership.

The SENC method presented in Chapter 4 is most similar to subspace clustering and

topic models—both are further discussed here. SENC assumes community members are

similar across a subset of the feature space and considers node feature values to be drawn

from per-community feature distributions.

The recent literature on linking models which incorporate node attributes [2, 20] shows

promising results. I aim to perform competitively with those methods by taking a different

approach which is probabilistic but allows the use of heuristics to select seed groups.

Other literature [21] has focused on topic models for heterogeneous information net-

works. While SENC is more general and does not require customization to support multi-

ple types of nodes, extra information provided by those networks can be provided through

additional node features or edges.

2.1.1 Subspace Clustering

Subspace clustering is used to find clusters of objects that occur when the objects are

embedded in a subset of the feature space dimensions. A survey of subspace clustering

methods is provided in [22] which categorizes various approaches. Subspace clustering is
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frequently used on high-dimensional datasets and can be viewed as online feature selection

for clustering [23].

A major challenge of subspace clustering is finding the optimal subspace clusters. A

naive approach would exhaustively try every combination of features, but this is compu-

tationally infeasible for all but the smallest datasets. SENC is able to determine which

features are relevant to each community by finding the maximal likelihood for the target

community’s feature distribution in the context of the mixture distribution which describes

the node.

The work in Chapter 4 extends research on subspace clustering in networks by intro-

ducing the use of probability distributions to describe the observed features and to estimate

community topics and memberships. We view communities as having feature distributions

which represent a common interest of all members.

2.1.2 Topic Models

Topic models are probabilistic models used to find the semantic structure of documents

[24] and frequently make assumptions about the relationships between topics, objects, and

words. Some models support multiple topics per object or topic hierarchies, but the model

is built with those assumptions. Topic models have been designed for networks which group

related objects dependent on network structure [25].

The methods combining topic models with graph clustering tasks such as community

detection are limiting. They either involve complex models which are only applicable to

specific datasets or they independently find topics by treating vertices as documents and

then attempt to fit the topics onto the graph to find clusters [19].

In Chapter 4, I represent node attributes as term-weight vectors and associate a topic

with each community. Every cluster found is a community, and each community has a single

feature distribution or topic. We can then estimate a node’s membership to a community

by finding mixture weights which best explain the node’s feature values through community

topics.
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2.2 Social Network Analysis

2.2.1 Terminology

There are several terms which may be used interchangeably in this dissertation. A network

is the same as a graph. Graph is more commonly used in formal definitions while network

tends to be used when speaking of a graph in a data analysis context. Vertex and node are

similarly associated with formal definitions and data analysis. Group and community both

refer to a subset of vertices in a graph which exhibit community-like structure—for some

definition of community-like—according to their corresponding edges.

2.2.2 Network Features

There are various statistics and measures used to characterize networks, nodes, and node

subsets. I present a selection of such features here that are pertinent to this work. Additional

information can be found in [14] and I use similar notation here. A network, or graph, G can

be defined as a set of vertices V and edges E . Edges are pairs of vertices (i, j) which may be

unordered or ordered—ordered pairs are required to represent directed networks. Adjacency

matrices provide an alternative representation of edges. A basic adjacency matrix A has

elements Aij where

Aij =





1 if vertices i and j are connected,

0 otherwise.

(2.1)

Edge weights are commonly used to quantify the strength of an edge. The matrix A

will be symmetric for undirected networks and can be extended to represent weighted edges

by storing the edge weight as element Aij . The degree of a vertex refers to the total number
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of connected edges and can be defined as

ki =

n∑

j=1

Aij . (2.2)

In a directed network, the definition of degree can be further extended to in-degree and

out-degree, where each respectively refer to the number of incoming and outgoing edges.

In a social network where edges correspond to a social interaction, the in-degree can be

seen as a measure of popularity. Similarly, the out-degree is the total number of nodes

interacted with and has a theoretical limit known as social capacity which is discussed in

Section 2.2.3. When working with directed edges, a notion of reciprocity can be considered

for an individual node in an unweighted, directed network by

reciprocity(i) =

∑
j Aji∑
j Aij

, ∀j | Aij = 1 . (2.3)

A global definition of reciprocity may also be calculated as the ratio of all reciprocated

edges over the total number of edges in the network.

A network path is a sequence of vertices where each vertex is connected to the next. A

shortest path—or geodesic path—refers to a shortest path between two vertices. Multiple

shortest paths may exist for a pair of vertices. The shortest distance (geodesic distance)

refers to the length of the shortest path. The diameter of a network is the length of the

longest shortest path.

Connected components are defined as the maximal subset of vertices such that there is

a path between every pair of vertices in the component. Some networks may have only a

single component. In social networks that consist of multiple components it is common to

find a largest connected component that is much larger in number of nodes than all other

components. The concept of network diameter can be applied to individual components in

a network. A clique is a set of vertices where each vertex i is connected with every other
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vertex j in the set and the size of a clique is the number of member vertices. A maximal

clique is a clique such that there are no other vertices in the graph which can be added to

create a larger clique. The term k-clique is used to refer to cliques with k vertices.1

There are additional group- and node-level features used in this dissertation to char-

acterize network topology. We can measure group cohesion in terms of group affinity and

group density. Group affinity captures the preference for interacting within a group com-

pared to the rest of the network and is calculated by findng the ratio of the number of edges

between group members over all the edges involving any group member

∑
ij Aij | i, j ∈ C∑

ij Aij | i ∈ C, j /∈ C
, (2.4)

where C is the set of nodes in a group. Group density refers to the density of edges in a

group and is calculated by finding the ratio of the number of edges between group members

and the total possible number of edges in the group based on the number of group members

C = |C| in

∑
ij Aij | i, j ∈ C
C(C − 1)

. (2.5)

Centrality measures are used to quantify the centrality of a node in a network. Two such

measures are PageRank score and betweenness centrality. PageRank was introduced in [26]

for calculating the relevance of web sites and improves upon previous centrality measures

that incorporate node degree as a measure of importance for each node. The intuition is

that web sites that are preferred sources of information will be linked to more often. Then

links from one of these popular, or authoritative, web sites should contribute more to the

centrality score. In a social network setting, PageRank will assign a higher score to a node

if it is popular or a popular node interacts with it. However, the contribution of a popular

node to its neighbors is proportional to its out-degree. The PageRank scores for vertices is

1An alternate definition of k-cliques which correspond to a different concept is given in [14].
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defined as

x = D(D− αA)−11 , (2.6)

where D is the diagonal matrix with elements having value max(douti , 1), α is a constant

less than 1, and 1 is a vector of ones. The term douti is the out-degree of node i. Note that

in the case of douti = 0, we can use any non-zero value instead to prevent division by zero

without changing the resulting value.

The betweeness centrality assigns higher scores to nodes which more often occur on the

shortest paths between node pairs in the network. Betweenness centrality can be viewed as

a proxy for measuring node influence. The score for node i is calculated by summing the

proportion of shortest paths between all pairs of nodes that pass through node i,

xi =
∑

st

nist
gst

, (2.7)

where nist is the number of shortest paths between nodes s and t that include node i and

gst is the total number of shortest paths between nodes s and t.

2.2.3 Network Dynamics

The concepts of social capacity [27] and bursty communications [28,29] have been considered

separately and more recent literature [30–32] has attempted to measure and use these to

determine the state of edges in a large social network.

Social capacity captures the maximum number of relationships one prefers to maintain

at any given time and there is evidence that social capacity is conserved over time [30,33,34].

The term bursty is used to describe the temporal patterns of social interactions between

pairs of nodes. That is, humans tend to interact in bursts and these patterns must be

considered in order to correctly identify the activation/deactivation of edges.

The observation of social capacity and burstiness of human interaction in some net-

works suggests careful consideration is required to construct accurate static views of these
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networks. In fact, accepted claims of graph evolution [35, 36] appear to fail when graph

series are constructed based on timestamped interactions rather than accumulated without

regard for edge deactivation.

Previous literature [37] introduced densification and diameter shrinking as common

network characteristics and we briefly describe them here. Densification is the super-linear

growth of edges relative to nodes and results in a network becoming denser over time.

Diameter shrinking is the reported tendency for network diameters to decrease over time

as more edges are accumulated. We can see both how densification contradicts the notion

of social capacity and might account for diameter shrinking.

2.2.4 Network Roles

In [9], the role membership for a series of network snapshots are found and analyzed and

the roles are used to construct a transition model of role memberships. Every node in every

snapshot is represented as a mixed membership of roles. This mixed membership may

change over time and a transition model captures the likelihood of transitioning between

roles. Their method assumes roles are stationary and uses the same set of basis vectors

(roles) for every snapshot rather than directly estimate roles from each snapshot. The

authors suggest roles may generalize over time and across datasets, but do not provide

support for this statement. To my knowledge, the work in Chapter 6 is the first to present

evidence of common, persistent roles derived directly from data.

Some models which incorporate roles do not distinguish between node features derived

from network structure and those external to the graph. In [38], a probabilistic model which

incorporates node features as dependent on latent factors (roles) is introduced. While these

features could be derived from network structure as described in [39], the experiments

performed in [38] only include external features such as document terms and voting counts.

The network topology is ignored.

Communities provide extra structural information which can benefit role discovery. In

both [40] and [41], communities are simultaneously detected with roles. Roles are used as
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latent factors of which node attributes are dependent.

Finally, [25] and [42] add roles to topic models where authors may take a role when

generating a document and the topic of the document is dependent on the author’s role.

An overview of role discovery approaches is provided in [39] which discusses graph-based,

feature-based, and hybrid definitions of roles and methods for their discovery from graph

and node-attribute data. They show that feature-based roles are more flexible and capable

of capturing more complex roles. A framework for feature-based role discovery is introduced

and discusses classes of approaches for role feature construction and role assignment.

The use of non-negative matrix factorization (NMF) for discovering node roles was in-

troduced in [8]. In that paper, the authors use a method [43] to generate features which

aggregate various per-node structural attributes. This node-attribute matrix is then decom-

posed using NMF and the resulting basis vectors correspond to node roles in the network.

Later work adds additional constraints to NMF which can be used to specify expectations of

sparsity or diversity of the roles [44]. The work in Chapter 6 differs as I discover persistent

roles across datasets and time using independent decompositions of network snapshots.

Other work [45, 46] uses role-labeled nodes to identify the roles of unlabeled nodes.

However, the roles in their work are not defined in terms of structural positions in the

network but rather functional occupations in an organization (e.g., roles held in technology

companies: research & development, executives, and human resources). That is, the roles

are defined in terms of domain knowledge and non-structural node features. The authors

then introduce a classifier for these functional roles which incorporates information derived

from the network structure.

Aside from identifying patterns of structural positions, roles have also been used in the

context of information cascades to identify groups of nodes which have similar influence and

blockage attributes [47].

A feature-based approach for automatic detection of user roles in online forums is pre-

sented in [48]. Their method uses principal component analysis (PCA) and agglomerative
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clustering of feature profile data to find roles; where each cluster corresponds to a role. An-

other feature-based approach using a mixture model of roles is presented in [49]. Nodes are

first clustered using node features derived from the network structure and then a qualitative

assignment of nodes to roles follows.

2.2.5 Community Detection

Community detection [50] is the task of clustering nodes in a network according to one

or more criteria that indicate cohesion. Communities can be defined in terms of network

structure alone [4] or include node attributes [1, 2, 51, 52]. Additionally, methods [53, 54]

which operate on heterogeneous networks that include multiple kinds of nodes or edges have

been proposed.

Communities can be partitions of a network where each node is a member of a single

community, or communities may overlap. This choice is dependent on the type of network

being processed, the limitations of the community detection method, and the real-world

applications for the discovered communities.

While it was earlier proposed that high network modularity was a defining characteristic

of communities [4,36] presented evidence that edge density is highest in regions of networks

where communities overlap due to densification of the network. Since then, [15] showed that

accounting for edge decay in social networks prevents densification. Additional information

on this topic can be found in Chapter 5.

Earlier work in community detection focused on finding static communities in a single

network. However, later work has considered how to extend community detection to a

dynamic setting [55, 56]. The task of dynamic community detection expands community

detection to include community tracking as a component of community detection. Rather

than predicting future community evolution events, dynamic community detection methods

attempt to find definitions of communities according to multiple criteria which includes

adjusting previous community definitions according to additional information such as link

activation and deactivation among nodes in the dynamic network. The introduction of the
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temporal dimension to community detection requires not only finding communities in a

network but also tracking the evolution of those communities over time. Nodes may enter

and leave the network, new edges are created, and old edges are deactivated.

An alternative approach to dynamic community detection is to use a static commu-

nity detection algorithm on a time series of network snapshots. The communities found in

consecutive snapshots can be associated with one another based on community member-

ship [57–60]. The tracking of communities over time and association of event labels with

the changes in community membership is the setting for community evolution prediction

discussed in Section 3.3.

2.3 Graph Neural Networks

Advancements in neural network architectures are being applied to various machine learning

and data mining tasks on graphs and there are several surveys [61–63] which provide an

overview of the various model architectures and their applications in graph classification

[64], graph embedding [65], node embedding [64, 66], link prediction [67], graph generation

[68,69], and heterogeneous networks [70].

Complete surveys of GNNs can be found in [62] and [63], these surveys organize GNN

architectures into categories according to model assumptions and purpose. The authors of

[63] neatly define five top-level categories: graph recurrent neural networks, graph convo-

lutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial

methods. The graph attention network model proposed in Chapter 7 falls under the graph

convolutional networks category.

Graph convolutional networks (GCNs) generally accept both node attributes and the

adjacency matrix as inputs and are often used for classification tasks, clustering, and graph

reconstruction. There are many different approaches to performing convolution or aggrega-

tion operations on graphs and we can further categorize graph convolutional networks by
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the type of convolution operation used: spectral or spatial. Models using spectral convolu-

tion [71, 72] transform node representations into the spectral domain. This transformation

may result in node representations that include contributions from nodes that are distant in

the input graph (spatial domain). There has been work to constrain spectral convolutions

to account for locality in the spatial domain [71,73] and generalize GCNs using a message-

passing framework [74]. However, GCNs are still limited in expressive power due to the use

of non-parametric weights used during aggregation instead of the the trainable parameters

used to compute attention coefficients in graph attention networks [62].

The introduction of attention—through graph attention networks (GANs) [64]—has

been especially useful for working with graph data due to supporting both variable-sized

inputs and trainable, independent aggregation weights. Attention mechanisms enable a

GNN to learn the significance of related graph objects when using aggregation to compute

a hidden representation of a particular graph object. For example, attention can be used

to learn graph node embeddings for each node, based on the attributes of adjacent nodes.

Through the use of an appropriate loss function and backpropagation, the learned node

embedding is optimized for the specific task of the neural network. While attention mech-

anisms are frequently used for self-attention where the attended objects and the object

used to compute the attention coefficients are the same, attention can be used anywhere

weighted aggregation is needed. In [75], self-attention is used at the node-level, but a se-

mantic attention layer is used to learn the importance of distinct node embeddings that

are associated with different views of a heterogeneous graph. Additional information about

attention mechanisms is provided in Section 2.3.1.

As part of this dissertation, a graph neural network for community evolution prediction

is presented in Chapter 7. This model, the Graph-Node Attention Network (GNAN), is

a graph neural network that uses group-node attention to learn a group representation for

predicting community evolution events. Group-node attention enables the representation

of a community to be learned by using group-level features to attend to individual nodes

associated with the community. While graph neural networks have been used for a variety of
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tasks, to the best of my knowledge there is no existing work using graph neural networks for

community evolution prediction or employing group-node attention. Additionally, GNAN

utilizes the defined communities required for the community evolution prediction task, as

well as a group-relative positional information, to provide a relaxed masking over nodes in

the network.

2.3.1 Attention Mechanisms

Attention mechanisms in neural networks enable a model to learn which objects and features

are relevant to a given task from a potentially variable-sized number of input objects.

Attention can be viewed as a weighted mean where the weights (attention coefficients)

are learned and the output of an attention layer is a representation of each input object

according to an independent weighted mean of related objects.

Implementations of attention vary, but the formulation of attention from the Trans-

former model proposed in [76] is commonly used and includes a scaled dot-product attention

represented in terms of query, key, and value matrices: Q, K, and V. Self-attention is a

common use of attention where the representation of an object depends on the features of

attended objects of the same type. This serves as an alternative to recurrent neural net-

works (RNNs) for learning representations of individual objects according to some context

which includes potentially-related objects. Attention is frequently used in natural language

processing to learn parts of speech and other semantic concepts useful for tasks such as

natural language translation where each of the input objects is a word embedding.

In the self-attention setting, the Q ∈ Rn×dk , K ∈ Rn×dk , and V ∈ Rn×dv matrices are

projections of some input matrix X ∈ Rn×dmodel , where n is the number of objects, dmodel

is the length of the input, dk is the key length, dv is the value length, and each row of X is

the feature vector of an individual object (e.g., sentence term or graph node). The Q, K,

and V matrices are computed multiplying X by learned model parameter weight matrices
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WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , and WV ∈ Rdmodel×dv ,

Q = XWQ, (2.8)

K = XWK , (2.9)

V = XWV . (2.10)

The attention defined in terms of these matrices is

α = softmax(
QKT

√
dk

), (2.11)

Attention(Q,K,V) = αV, (2.12)

where α are the attention coefficients.

Attention layers can be stacked in self-attention; that is, the output of a previous at-

tention layer is used as the input to the next attention layer and each attention layer has

its own weight parameters. A common variant of attention is multi-head attention. An

attention head corresponds to an individual attention function in multi-head attention and

each head has its own weight parameters. The outputs of the individual attention heads

need to be combined before a final layer output is produced. Concatenation and projection

are used in [76] but other models [64] average the output of each head. Though attention is

often used for self-attention, it is possible to use different types of objects for defining the

query matrix Q than those used for defining the key matrix K and value matrix V. The

group-node attention defined in Chapter 7 is an instance of using attention with different

types of objects.
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Chapter 3: Related Work

3.1 Community Detection

There are many approaches to community detection and the state-of-the-art methods which

use both network structure and node features are based on linking models [2,20,77], heuristic

clustering [52, 78–80], topic models [25, 81], or graph neural networks [82–84]. Previous

work [85] has also considered initialization with candidate communities. There has also

been extensive work in community detection on attributed graphs [51]. Additionally, work

has been done on avoiding community detection methods [86] and incorporating outlier

detection in community detection [87].

Linking models estimate the probability of links and node attributes. They are similar

to block models [88,89] with link probabilities dependent on node attributes and community

membership. Recent implementations are efficient and competitively find communities, but

treat node and community features as binary values [2]. This results in a poor representation

of the community’s shared interest or topic.

There have been attempts at extending clustering methods to support network data,

such as subspace clustering [52, 78, 79]. In contrast to linking models, these methods do

not model edge probability and instead use observed edges and node attributes to identify

dense, connected subgraphs with similar node attributes over a subset of the feature space.

These methods are not probabilistic and rely on heuristics for detecting nodes with similar

attributes. Further, they find many duplicates of a single detected community and require

a distinct post-processing step to identify the optimal detected communities.

Topic model approaches extend basic models such as LDA [90] to estimate latent factors

and introduce a dependence of edges on the latent factors. These models are generative and
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require a task-specific probabilistic graphical model. In the past they have been difficult to

scale up for larger datasets due to the sampling methods on which they rely [91].

With the increased interest in deep learning, graph neural networks (GNNs) have been

applied to the community detection problem [82–84]. These approaches learn embeddings

for either nodes or edges and incorporate positional information, node attributes, or graph

convolutions. Experiments indicate that these models can outperform existing methods,

but due to architectural limitations several [83, 84] are only feasible for use with smaller

network datasets.

3.2 Role Discovery

There is existing research on role discovery through matrix decomposition of node attributes

[8, 9] and calculating the transition probability between roles over time in a consecutive

series of graphs [9]. There are several problems with this work: a mixture of network

types (e.g., computer, affiliation, social, and social interaction) are used for experiments,

but there is little discussion on the relationship between discovered roles and network type;

no explanation is provided for the length of the time windows used to construct the graph

series; and, no analysis of features captured by roles and how these roles map to known

social roles [92] which have structural definitions.

Each of those problems is remedied by my past and current work and will enable me to

approach the problem from a theoretically sound position and focus on social roles within

dynamic social interaction networks.

The term role in the context of [8,9] has a different definition than its classical usage in

social network analysis [92]. In these recent works, roles are found through a decomposition

of a matrix representing node attributes. The roles are then basis vectors which are used

to reconstruct the original attribute matrix and do not necessarily correspond to social

roles. The results of [8] do demonstrate that basis vectors can correspond to roles, but

more investigation is needed to determine the universality of the findings and whether it
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applies to social interaction networks.

3.3 Community Evolution Prediction

There has been substantial work on community evolution event prediction and commu-

nity evolution in the last 10 years that have provided frameworks for tracking evolving

communities across network snapshots [58,93,94].

The development of additional community tracking frameworks is often motivated by

improving performance in predicting community evolution events associated with changes

in community structure. Not all frameworks use the same set of evolution events, but the

events present in [95]—one of the first community tracking frameworks used for community

evolution prediction—can either be mapped to events in other frameworks or are explicitly

dropped. This standard set of events include: continuing, dissolving, growing, merging,

shrinking, and splitting.

Given a series of network snapshots over time, the general methodology of the frame-

works involves performing community detection on each snapshot network, finding rela-

tionships between communities in adjacent snapshots, and then using the relationships and

additional network features to define community evolution events.

I use the Group Evolution Discovery (GED) [95] framework in Chapter 7 to find com-

munity evolution events, but the model proposed there can be used with any community

tracking framework. Selecting an appropriate community tracking framework is then analo-

gous to feature engineering. Many traditional classification techniques (decision trees, SVM,

etc.) have been used in previous works [57, 58, 96] which include experiments showing the

relative performance of traditional classification techniques when applied to communities

and events defined according to the community tracking framework being proposed in each

paper. The community evolution prediction literature also often include experiments that

evaluate the contribution of engineered features [96,97]. However, these previous works do

not introduce new classification models and instead alter the community evolution event

labeling function. The redefining of the event labeling function acts as a form of feature
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engineering where the definitions of community evolution events are crafted such that pre-

diction performance is improved.
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Chapter 4: Finding Community Topics and Memberships

4.1 Introduction

Given a graph of self-organizing objects, we wish to estimate the latent topics around which

the objects organize and discover community membership. We hypothesize groups with high

edge density in graphs are evidence of communities whose members have similar attributes

within a subset of the feature dimensions. The work in this chapter has been published in

[1].

In this chapter I present Seeded Estimation of Network Communities (SENC). SENC is a

probabilistic method which uses both node attributes and graph structure to simultaneously

estimate community feature distributions and members. We assume a community may

exist around seed groups in the network. Many community detection methods build strong

assumptions regarding community features into their models, which limits generalizability.

SENC provides a flexible means of accounting for a variety of community structures through

the use of configurable lower and upper bounds on discovered communities. The seed groups

define the lower bounds, and they may in turn be defined by network structure or node and

edge attributes. In the experiments presented in this chapter, we consider every maximal

k-clique in the network to be the core of a partially defined community. The upper bounds

provide an intuitive way to incorporate knowledge about the degree of clustering in the

network. Nodes may be members of multiple communities and communities may overlap.

Communities are defined by the associated distribution (topic) and a set of member

nodes. Every seed group corresponds to a community, and the initial feature distributions

are a weighted average of the seed members’ attributes. We use the features of nodes in

each group to compute initial estimates for the community feature distributions (topics). We

then find initial estimates of the membership weights given these estimated per-community
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topics. After this initialization, membership weights and community feature distributions

are iteratively updated. The feature distributions are updated by aggregating attributes of

community members and finding the maximum likelihood of a mixture distribution where

the parameters for all other communities are fixed.

4.2 Seeded Estimation of Network Communities

Network communities indicate interaction and attraction among members which is not

shared by non-members. The nature of the interaction may be reflected in node attributes

and we would expect for member nodes to be similar to one another. However, nodes may

participate in multiple communities and the members of each community may be similar

to each other in different ways.

To provide motivation for the proposed method, let us discuss an example using an

unspecified online social network. This social network allows users to join discussion areas

for topics such as “computer science” or “coffee.” Suppose a user is interested in both CS

and coffee and participates in both communities. We expect the user’s posts to the CS

community will be different from her posts to the coffee community. We also expect the

user’s post in the CS community will be more similar in content to other posts in the CS

community than to most posts in the coffee community.

Now assume we do not have access to individual user posts. Instead we have aggregated

word counts for each user and we do not know which post contained which words. We can

model a user’s word frequencies as a random variable drawn from a multinomial distribution.

Since each user may belong to different communities or have different levels of involvement

then it’s necessary to use a different multinomial distribution for each user. As previously

hinted, we expect posts within a single community to have similar word frequencies. If

we knew those per-community word distributions we could then represent each user’s word

distribution as a mixture distribution. This is akin to standard topic models such as LDA

[24].

The Seeded Estimation of Network Communities (SENC) method described here has an
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Figure 4.1: Lower and upper bounds for a seed community. The lower-bound nodes are
black, upper-bound nodes are grey, and excluded nodes are white.

advantage over state-of-the-art community detection methods in its exploitation of network

structure to regularize and guide estimation. This is possible through the use of seed

groups. A seed group is a subgraph with properties which indicate the nodes are a subset

of a community.

Each seed group is considered to be a lower bound of a community and its members

are representative of this corresponding community. The lower-bound members, or seed

members, influence estimation; the members’ attributes are used as the initial estimate

for the corresponding community’s word distribution. The community topic is updated as

additional member nodes beyond the lower bound are found.

Along with a lower bound, each seed community has a corresponding upper bound. The

definition of this upper bound can be dependent on the network and its selection guided by

simple network statistics such as the clustering coefficient. Figure 4.1 depicts an example

of the bound sets for a seed community where the distance of a node from lower-bound

members is used to define the upper-bound set. The bounds serve as a gentle bias to

flexibly model assumptions regarding the shape of communities in a network.
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Table 4.1: Definition of notation.

N number of nodes
C number of communities
D number of feature dimensions
Φ community topics, C ×D matrix
Θ community memberships, N × C matrix
G(V, E) graph defined by vertices and edges
Sc=1...C ⊆ V members of community c
x attributes of a node

4.2.1 Notation

Before continuing it is useful to introduce notation and additional terms for describing the

proposed method. We use topic to refer to the characteristic features of a community as

well as the associated probability distribution parameters for all C communities, Φ, where

each row Φc,∗ is a parameter for the categorical distribution associated with community

c = 1, . . . , C with length D, the number of feature dimensions.

The node attribute vector x is a D-length vector of continuous, node feature values.

A membership weight vector or membership vector is denoted as Θn,∗ and refers to the

probability weight vector associated with node n over all C communities. The individual

membership vectors make up the N rows of the membership matrix Θ. The membership

weights indicate the proportion of node features which are attributed to each community.

For quick reference, basic notation used in the equations is available in Table 4.1.

4.2.2 SENC Model

SENC uses an EM algorithm to find the maximum-likelihood estimates for community top-

ics and node memberships. Per-node community memberships are estimated as weighted

counts of observed feature values given the community topics in the E-step and per-

community topics are maximized in the M-step.

Node memberships for each node n participating in a seed group, n ∈ ⋃
c=1...C Sc,

are estimated using the community topics. We represent the feature values of a node x
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as being drawn from a mixture distribution with per-node mixture weights Θn,∗ over all

community distributions Φ using per-community topic distributions Φc,∗. A single term

for a node n is drawn by first selecting a community c with probabilities Θn,∗ and then

choosing a specific term with probabilities Φc,∗. For the data discussed in this chapter,

the community feature distributions are categorical distributions and node features x are

generated by multiple trials of a mixture categorical distribution with proportions Θn,∗Φ.

A multinomial distribution is a categorical distribution with multiple, independent trials.

We refer to the per-node feature distributions as multinomial distributions.

Nodes may be members of multiple communities and node features will then be charac-

teristic of multiple community topics. In order to untangle the features characteristic of a

community from those belonging to adjacent communities we define a mixture categorical

likelihood function. This is the standard likelihood function but with the event probability

vector p parameter computed as the matrix product of some 1 × C mixture vector and

C ×D per-community topics matrix: θn,∗Φ.

To improve readability we introduce γ as the sum of feature values from community

members Sc:

γ =
∑

n∈Sc

x . (4.1)

When estimating Φc,∗ using community members Sc, the mixture vector θ is a weighted

average of membership vectors {Θn,∗ : n ∈ Sc} weighted by the proportional number of

observations contributed by each node n ∈ Sc

θ =
∑

n∈Sc

(
∑
d

xd)Θn,∗
∑
d

γd
. (4.2)

Using θ and γ we can now show how Φc,∗ may be updated. The event probability vector
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p is the parameter for a categorical distribution:

p = θΦ , (4.3)

=
C∑

i=1

θiΦi,∗ , (4.4)

= θcΦc,∗ +

C∑

i=1,i 6=c
θiΦi,∗ . (4.5)

We can use the factoring of p in Equation (4.5) with the multinomial expected value

to find the maximum-likelihood value of Φc,∗ given the community member observations γ

from Equation (4.1).

The expected value for a single feature value i in random variable X drawn from

Mult(p, n) is E{Xi} = npi, where n is the number of trials and p is the event probability

vector. If we replace the expected value of each feature dimension with the summation of

community members’ Sc attributes γ then we can substitute the expected value with the

observed value γi for feature i and define

γi = (

D∑

d=1

γd)θΦ∗,i . (4.6)

If we replace the expected value of each feature dimension with the summation of com-

munity members’ Sc attributes γ then we can define the maximum likelihood of Φc,∗ as:
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γ = (
∑

d

γd)θΦ , (4.7)

= (
∑

d

γd)(θcΦc,∗ +
C∑

i=1,i 6=c
θiΦi,∗) , (4.8)

γ∑
d

γd
= θcΦc,∗ +

C∑

i=1,i 6=c
θiΦi,∗ , (4.9)

θcΦc,∗ =
γ∑
d

γd
− (

C∑

i=1,i 6=c
θiΦi,∗) , (4.10)

Φc,∗ =

γ∑
d
γd
− (

C∑
i=1,i 6=c

θiΦi,∗)

θc
. (4.11)

Using Equation (4.11) we can easily estimate community topics using node attributes,

per-node community membership weights, and the latest topic estimates for other commu-

nities.

We use Φ′ to reference a modified version of Φ with normalized columns, each summing

to 1. The per-node community memberships are found by performing a weighted count of

node attributes over the communities, where α denotes a normalization scalar

Θn,∗ = αΦ′xT . (4.12)

For each observed term, we assign a proportion of the count to each community according

to the relative probability of that term occurring in each community. A community with a

higher relative probability of a given term occurring will receive a larger proportion of the

count than the others.
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4.2.3 Algorithm

The SENC algorithm constructs per-community lower- and upper-bound matrices, initial-

izes per-community topics Φ and per-node community memberships Θ, and then performs

expectation-maximization iterations until estimates stop improving or the maximum num-

ber of iterations is reached. The algorithm requires the N ×N graph adjacency matrix and

the N × D node attribute matrix as input. The lower-bound matrix is a C × N binary

matrix of the seed members where 1-values indicate node n belongs to community c. The

upper-bound matrix is a binary N×C matrix where 1-values indicate node n may belong to

community c. This prevents nodes from distant communities being assigned to communities

with a similar topic. The construction of lower- and upper-bound sets for each community

is dependent on the network being processed. Two matrices are produced as output: a

C ×D community topic matrix and an N × C community membership matrix. A goal of

the proposed method is to remove features representative of overlapping communities over

EM iterations. The node membership vectors are estimated using the community topics to

perform a weighted count over node attributes. These weighted counts are normalized to

sum to one and used as membership weights.

Algorithm 1 Main Program: initialization, EM, termination.

Require: The graph and node attributes.
Ensure: The community topics and membership.

1: Construct lower-bound and upper-bound matrices;
2: Initialize community topics Φ and memberships Θ;
3: while Not convergent or max iteration do
4: Call E-step to update membership Θ;
5: Call M-step to update community topics Φ;
6: Check for convergence;
7: end while
8: return Community topics Φ and membership Θ;

After initial estimates are calculated, the algorithm alternatively updates the node mem-

berships and community topics. The per-node and per-community iterations within the E-

and M-step are independent and computation may be distributed across multiple threads.

The E-step in Algorithm 2 updates the per-node community memberships for all nodes
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Algorithm 2 E-step: update per-node community memberships.

Require: The community topics, upper-bound matrix, and node attributes.
Ensure: The updated membership.

1: for Each node n do
2: Identify which communities influence node n;
3: Select topics of influential communities;
4: Compute weighted counts from selected topics with Equation (4.12);
5: Assign normalized counts to membership vector Θn,∗;
6: end for
7: return Updated membership Θ;

Algorithm 3 M-step: update per-community topics.

Require: The node attributes, membership, influence, and community topics from the pre-
vious iteration.

Ensure: The updated community topics.
1: for Each seeded community c do
2: Select all nodes with membership in c;
3: Compute weighted average of selected nodes’ membership by Equation (4.2);
4: Estimate topic with Equation (4.11);
5: Assign updated topic to parameter vector Φc,∗, if likelihood improves;
6: end for
7: return Updated topics Φ;

given the community topics, influence matrix, and node attributes. This is done by com-

puting the weighted counts of node attributes using the probability of each attribute for

each community, as shown in Equation (4.12). The upper-bound complexity of the E-step

is O(NCD), where C and D are the number of communities to which a node may belong

and the number of dimensions relevant to those communities. In practice, C and D will be

much smaller than C and D.

The M-step, shown in Algorithm 3, updates the per-community feature distributions.

We find a new estimate for Φc,∗ using Equation (4.11) and compare its log-likelihood to the

previous iteration’s estimate. The new estimate is used if it better explains the feature values

of the member nodes. The M-step has computational complexity of O(C(NC+ND+CD)),

where N is the number of nodes in the upper-bound set of a community, C is the number

of communities associated with the N nodes, and D is the number of feature dimensions

relevant to all C communities and N nodes. Again, C, N , and D are usually much smaller
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than C, N , and D.

4.3 Experimental Evaluation

We evaluate the proposed model on networks with varying structure to determine whether

SENC’s results are consistently competitive with state-of-the-art methods. The networks

considered are: an NSF research collaboration network, several DBLP citation networks [98],

and a Scratch project collaboration network. For comparison, we evaluate the performance

of four state-of-the-art community detection methods: CESNA [99], CoDA [3], EDCAR

[100], and Link Clustering [101]. CESNA and EDCAR use network structure and node

attributes to detect communities; however, the current implementations struggled to process

networks with a large number of features. In order to evaluate more methods we elected to

use smaller datasets. CoDA and Link Clustering only use network structure.

4.3.1 Datasets

We construct a research collaboration network from NSF awards granted by the Directorate

for Computer and Information Science and Engineering (CISE) between January 1995 and

August 2014. This is accomplished by forming undirected edges between the PI and co-PIs

who received funding from the same award. The awards are associated with programs and

we use the programs with at least three associated researchers as ground truth. We find

90% of researchers received funding from six or fewer programs; this suggests programs

function well as ground-truth communities. There are a total of 768 programs in the CISE

Directorate. NSF awards data is publicly available from the NSF website1.

An online computer science bibliography, DBLP, contains entries for published papers

with information about the authors, citations, and publication venues. The per-year DBLP

citation networks were constructed from an existing citation dataset [98] by forming edges

between authors who cited each other within that year. Papers are linked to a publication

venue and these venues were used to define ground truth. Venues referenced only once

1http://www.nsf.gov/awardsearch/download.jsp
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Table 4.2: Network statistics. N : number of nodes, E: number of edges, D: number
of node attributes, MC: number of maximal cliques with 3+ members, GCC: global
clustering coefficient, LCC: average local clustering coefficient, G: number of ground-truth
communities.

Dataset N E D MC GCC LCC G

NSF 8,168 38,212 43,445 3,331 0.590 0.683 429
DBLP 2010 32,961 130,420 58,007 37,120 0.422 0.440 2,288
DBLP 2011 32,614 131,921 56,166 39,955 0.421 0.438 2,215
DBLP 2012 33,576 135,883 54,269 42,443 0.381 0.397 1,861
Scratch 1,714 17,824 36,494 7,705 0.584 0.704 718

were removed from the dataset. Venues with three or more associated authors were used as

ground truth.

Scratch [102] is an online community where users may write and share projects (pro-

grams) with other users. One way in which Scratch users may interact is by remixing

projects. Remixing allows a user to create a copy of any existing project which they may

then modify. We create a co-remix affiliation network from the MIT Scratch Team’s dataset

containing users, projects, and remixes. An edge is formed when two users remix the same

project. To reduce the total number of edges we used co-remix edges where users had four

or more projects in common. Users may create project galleries which are curated collec-

tions of projects. Galleries corresponding to three or more users were used as ground truth.

The Scratch dataset used to construct the network may obtained from the MIT Media Lab

website2.

Several of the methods make use of node attributes and these were provided as tf-

idf weighted values for EDCAR and SENC and binary values for CESNA. For the NSF

CISE network, terms associated with each researcher were taken from NSF award titles

and abstracts. The DBLP author terms were taken from titles and abstracts of papers

they wrote. Scratch user terms were extracted from titles, descriptions, and tags of their

projects. The term features in all networks had stop words removed and terms stemmed.

Multiple connected components were found in all networks and the smaller components

2https://llk.media.mit.edu/scratch-data
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were removed as they may be trivially considered communities. Table 4.2 lists the network

statistics for the largest component of each network used for experiments and analysis. All

the networks used for experiments are undirected, but they vary in structure.

As shown in Table 4.2, the NSF and Scratch networks have higher clustering coefficients

than the DBLP networks. This is unsurprising as the NSF and Scratch networks are

affiliation networks (co-award and co-remix). These experiments show that while SENC is

able to perform competitively across all the networks other methods tend to either perform

better on networks with higher or lower clustering coefficients.

4.3.2 Methodology

The public implementations of CESNA, CoDA, EDCAR, and Link Clustering were used.

CESNA and CoDA rely on an estimate of the number of communities. We provided the

number of NSF programs, DBLP publication venues, and Scratch galleries as estimates.

CoDA is designed for directed networks but can be used to find communities in undirected

networks. It does this by processing the network twice, switching the direction of edges

between runs. As a result, two sets of detected communities are generated. We combined

both sets when evaluating the performance of CoDA. EDCAR requires 10 parameters and

the suggested values from the implementation documentation were used. Link Clustering

is parameter-less and only requires the edge list as input. Maximal cliques of size three

and above were used as the lower-bound groups for SENC and the upper-bound groups

were selected based on the clustering coefficient. The high clustering coefficients of the

NSF and Scratch networks indicate tighter upper bounds should be used than with the

DBLP networks. For the DBLP networks we extend the lower bounds by including all

nodes adjacent to any lower-bound member. The upper bounds for the NSF and Scratch

networks are simply the same maximal cliques.

Link Clustering and SENC require a post-processing step to define exact communities.

The Link Clustering implementation includes a script to calculate the optimal dendrogram

cut threshold and we use this to determine the communities for evaluation. SENC defines
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Table 4.3: F1 scores for all methods and datasets.

Method Attr. NSF DBLP10 DBLP11 DBLP12 Scratch Avg.

CoDA No 0.216 0.278 0.273 0.263 0.283 0.263
Link Clust. No 0.303 0.266 0.265 0.258 0.399 0.298
CESNA Yes 0.228 0.272 0.263 0.255 0.356 0.275
EDCAR Yes 0.164 N/A N/A N/A N/A N/A
SENC Yes 0.346 0.301 0.297 0.298 0.365 0.321

community membership with probabilities and does not perform a hard assignment of nodes

to communities like the other evaluated methods. We account for this in the evaluation

by filtering weaker memberships. For all nodes, we sort their memberships in descending

order by weight and take all the assignments until the sum of weights reaches a minimum

threshold value. An optimal threshold is used for each dataset.

We use the evaluation function described in [99, 103] and recited in Equation (4.13) to

compute the F1 score and Jaccard similarity of detected communities against ground-truth

communities. This function is especially useful when the numbers of detected communities

and ground-truth communities differ as occurs with several of the methods in the exper-

iments. In Equation (4.13), C∗ denotes a set of ground-truth communities, C a set of

detected communities, and δ(·) is a similarity metric.

1

2|C∗|
∑

C∗
i ∈C∗

max
Cj∈C

δ(C∗i , Cj) +
1

2|C|
∑

Cj∈C
max
C∗

i ∈C∗
δ(C∗i , Cj) (4.13)

4.3.3 Results

Using the evaluation function defined in Equation (4.13) we find the F1 score and Jac-

card similarity between the detected communities from all methods and the ground-truth

communities.

The results are provided in Tables 4.3 and 4.4 and show SENC outperforms most other

methods over all datasets and achieves the highest average performance. Unfortunately,

the current implementation of EDCAR was unable to process most of the networks. We

37



Table 4.4: Jaccard index for all methods and datasets.

Method Attr. NSF DBLP10 DBLP11 DBLP12 Scratch Avg.

CoDA No 0.132 0.172 0.168 0.162 0.174 0.162
Link Clust. No 0.233 0.166 0.166 0.161 0.265 0.198
CESNA Yes 0.139 0.167 0.161 0.156 0.228 0.170
EDCAR Yes 0.112 N/A N/A N/A N/A N/A
SENC Yes 0.269 0.190 0.187 0.190 0.235 0.214

Table 4.5: Top-5 researchers of the AMPLab and Computational Learning communities
with corresponding membership weights.

AMPLab Comp. Learning

Peter Bartlett 0.5084 Laurent El Ghaoui 0.5884
Laurent El Ghaoui 0.4116 Peter Bartlett 0.4916

Michael Franklin 0.1346 Jesse Snedeker 0.4647
Michael Jordan 0.1049 Federico Girosi 0.4134

Alexandre Bayen 0.0996 Robert Berwick 0.2830

believe this is partly due to the large number of features.

We note the relative difference in performance of CoDA and CESNA to Link Clustering

flips between the networks with higher and lower clustering coefficients. In the NSF and

Scratch networks, Link Clustering outperforms CoDA and CESNA but performs worse

than CESNA on the DBLP10 network and worse than CoDA on every DBLP network.

This may indicate these other methods include a biased definition of communities which is

not found in all social networks. SENC performs well across all the networks and avoids

this problem through the use of its configurable bounds chosen based on network statistics

such as clustering coefficients.

4.3.4 Interpretation of Detected Communities

We also perform a qualitative analysis on communities discovered by SENC to illustrate

the interpretability of its results. Several communities relating to data mining and machine

learning were found in the NSF CISE network.

We present the top-5 researchers and top-40 terms of two such groups in Table 4.5
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Figure 4.2: Word clouds of the top-40 terms from the AMPLab community (left) and
computational learning community (right).

and Figure 4.2. The first community is associated with Berkeley’s AMPLab3, which works

on problems involving machine learning, cloud computing, and crowdsourcing. The top-5

researchers are all EECS faculty at Berkeley and Michael Franklin and Michael Jordan

are both directors of AMPLab. Recall membership weights are normalized per-researcher

and a lower membership weight indicates the researcher’s work is also captured by other

community topics. Most of the terms are self-explanatory, but the term Alon refers to Alon

Halevy of University of Washington whose name appears in several award abstracts and

has collaborated with Michael Franklin.

We find another community with 12 members in common with the AMPLab community.

Its topic may be described as computational learning and its applications to computer vision

and natural-language processing. The AMPLab and computational learning communities

have 41 and 34 members respectively, with roughly about one-third being shared. These

common members include: Michael Jordan, Michael Franklin, Peter Bartlett, and Tomaso

Poggio. Figure 4.3 shows both the distinct and common members of both communities.

Although both communities are generally concerned with human-centric applications of

machine learning, the AMPLab community is focused on computing architecture to solve

3https://amplab.cs.berkeley.edu
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Figure 4.3: The AMPLab (blue) and computational learning (orange) communities with
shared members (green). The red node represents Michael Jordan.
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such problems, while the computational learning community is focused on understanding

human vision and motor control. This discovery of overlapping communities with shared

general interests but distinct features exemplifies an advantage of SENC’s initialization by

seed groups.
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Chapter 5: Temporal Artifacts from Edge Accumulation

5.1 Introduction

The modeling of social networks is an expansive and active area of research. While models

may incorporate other network features such as node attributes [55,99,100,104], nearly all

rely on network structure. Many methods are now also incorporating temporal dynamics

[55, 56, 68, 105], but how the temporal information is integrated varies. There are various

approaches [9,55] to representing a dynamic social network as a series of networks, but until

recently [30,106] all have lacked theoretical foundation. The work presented in this chapter

has been published in [15,16].

Dynamic network representations which capture edge deactivation [55,107] have shown

to improve task-specific performance. However, many leading community detection meth-

ods [37, 104] are based on cumulative graphs and ignore edge deactivation. The findings

presented in this chapter suggest that some existing models may be designed to accommo-

date temporal artifacts introduced by not including edge deactivation in the processing of

network data.

There are two social network phenomena which motivate this analysis: social capacity

[27] and bursty events [29]. Social capacity can be viewed as a per-node limit on the

number of incident edges active at any given time and thus conflicts with the claim of

densification and shrinking diameters in social networks [35,36] unless additional conditions

are met. For example, a network where every new node has a larger social capacity would

lead to densification and shrinking diameters. While variation in social capacity based on

demographics has been observed [30,106] there has been no evidence presented that would

indicate social capacity is a function of when a node joins the network.
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Timestep 1

Timestep 2 Timestep 3

Figure 5.1: An example of divergent network structure between cumulative graphs (top,
orange) and activity graphs (bottom, green).

In order to measure the existence of densification and shrinking diameters, we first must

construct a series of network snapshots which more accurately captures network structure

than simply accumulating all edges over time. We do this by using communication activity

between nodes as evidence that an edge is active. The bursty dynamics of social commu-

nication are accounted for by measuring the inter-event times and selecting an observation

window large enough to minimize incorrectly deactivating an active edge. Thus we are able

to construct a series of activity graphs which provide a more accurate approximation of the

network state at a given point in time. This method of graph construction has been used

previously on a mobile phone network [30] to improve understanding of communication

strategies. We can then measure and compare evidence of densification and shrinking di-

ameters in both a cumulative graph series and an activity graph series. Figure 5.1 provides

an example of how series of cumulative and activity network snapshots may diverge over

time.

Densification and diameter shrinking are accepted as basic characteristics of dynamic
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Figure 5.2: Dense community overlap when edges are never deactivated.

social networks. This would support the argument that the most dense regions of a net-

work are not the centers of communities as previously shown [4] but instead the overlapping

regions of communities [6] (Figure 5.2). However, this chapter presents results which con-

tradict those findings. When edge deactivation is incorporated, we do not find evidence

of densification and diameter shrinking appears to be dependent on the rate of new nodes

entering the network; this may be an effect of social capacity.

5.2 Evidence of Temporal Artifacts

5.2.1 Datasets

A dataset with timestamped interactions is required to construct an accurate temporal

series of networks. We use data from Scratch [102], an online community where users may

write and share programming projects, and Facebook [108].

In Scratch, there are several ways by which users may interact: project comments,

project remixes, gallery curation, and user following. More information about Scratch and

these interactions may be found in [102]. We selected a single type of interaction to simplify

analysis. Project comments are a natural choice as they are the most-frequent interaction

between Scratch users and thus a better approximation of edge status (active/inactive).

These project comments serve as a means for users to communicate within the context of
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a project. The comments in the Scratch dataset are timestamped and thus we can create

timestamped edges from comment authors to project authors.

The Scratch dataset spans over March 2007 to December 2011 and includes a large

period of rapid growth in Scratch users, shown in Figure 5.3, which does not slow until

towards the end of the dataset. There are a total of 7,788,000 project comment interactions

between 164,205 users. There are many short-term interactions and we filter out directed

interactions between pairs which only occur once or twice when measuring communication

behavior. Such interactions have undefined or trivial inter-event statistics as there are zero

or one inter-event observations when only one or two interactions are observed. There are a

total of 1,799,050 of such interactions which were removed, leaving 5,988,950 interactions.

The Scratch dataset used to construct the networks may be obtained from the MIT Media

Lab website1.

Facebook allows users to interact by posting on each other’s wall and these posts are

typically comments, photos, and web links. Each of these posts is recorded as an interaction

with a source user (the post author), a destination user (the owner of the wall), and a

timestamp.

The Facebook data includes wall post interactions between a subset of Facebook users

over October 2004 to January 2008. There are a total number of 876,993 wall posts between

46,952 users. The Facebook networks were prepared similarly to the Scratch networks, edges

are only formed between node pairs that have at least a total of three interactions over the

entire dataset. The Facebook dataset used to construct the networks may be obtained from

the KONECT website2.

5.2.2 Methodology

As the relationships in the interaction networks are based on communication events between

nodes, we check for evidence of bursty patterns. Bursty communication can be identified by

the dispersion of inter-event times between node pairs. If communication is bursty then the

1https://llk.media.mit.edu/scratch-data
2http://konect.uni-koblenz.de/networks/facebook-wosn-wall
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Figure 5.3: The number of interaction events occurring by month in the Scratch dataset.
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standard deviation of inter-event time will be larger than the mean. The ratio of the mean

and standard deviation of inter-event times is the coefficient of variation (cv) and used to

measure dispersion. When cv > 1, there is evidence of bursty communication. The use of

dispersion to identify burstiness is further discussed by Miritello et al.[32].

We hypothesize the observation of densification and diameter shrinking [35,36] may be

attributed to the inclusion of deactivated edges in a network. To test this we construct two

graph series from each dataset. Each network in all the series captures network activity over

consecutive and non-overlapping periods. The size of the observation windows are based

on the inter-event times of the datasets. A three-month observation window was selected

for the Scratch series because it is large enough to account for the majority of inter-event

times (97% of inter-event times are < 62 days) and conveniently maps to annual quarters.

The first series is a cumulative graph series where new nodes and edges are added at each

consecutive snapshot to the previous network in the series. The second series is based on

node interaction activity and we refer to it as the activity graph series. The two Facebook

series are based on a six-month observation window that was calculated similarly.

Edge activity is determined by tracking the activation and deactivation of edges between

consecutive observation windows. A similar approach has been used in previous literature

[32, 106]. An edge is considered to activate if it is not present in the preceding observation

window but an interaction event occurs in the current observation window. Similarly,

an edge is deactivated if an event occurs in the current observation window but not in

succeeding period. Only edges active in each observation window are used to construct the

activity graph series of both datasets.

The edge-node ratio ( num.ofedgesnum.ofnodes) is calculated for each graph in all series and used to

measure densification. If densification is present, we expect the number of edges to grow

super-linearly in the number of nodes [36]. We also measure the effective diameter of every

graph in both series to determine whether diameter shrinking is observed. The effective

diameter is the smoothed count of the smallest number of hops at which at least 90% of

all connected pairs of nodes can be reached [36]. We prefer the effective diameter over the
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Figure 5.4: The log(cv) for node pairs in the Scratch interaction network with at least three
events. A small number of node pairs (1,038) were removed for this plot as they had a cv
of zero and thus were undefined.

standard diameter because it was used in [36] to report diameter shrinking and is more

robust to degenerative graph structures.

5.2.3 Results

As shown in Figure 5.4, bursty communication patterns are observed in the Scratch dataset

as the cv values are frequently greater than 1 (log(cv) > 0). Bursty communication patterns

are also observed in the Facebook dataset, though somewhat less frequently with just under

half of interacting node pairs having cv values > 1. The reduced frequency of bursty

communication patterns in Facebook may be due to node pairs having either a single burst
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Figure 5.6: The effective diameter over time
in the Scratch cumulative and activity graph
series.

of interactions or interactions around a regular event (e.g., posting on a friend’s Facebook

wall for their birthday).

For Scratch, we see evidence of densification in the cumulative series but not in the

activity series—shown in Figure 5.5. The accumulation of edges, without removal of de-

activated edges, appears to introduce densification as a temporal artifact in the Scratch

interaction network. This is especially clear when the number of interactions stops growing

around July 2010, denoted by dashed vertical line in both Figures 5.5 and 5.6.

An overall trend of diameter shrinking is not clearly observed in either Scratch network

series. After an initial decrease, Figure 5.6 shows a generally increasing diameter for both

series and a larger variance in diameter for the activity series. The lack of diameter shrinking

may be due to the growth of the Scratch website during the period of time covered in the

dataset. However, the effective diameter of the cumulative series is generally smaller than

that of the activity series. This is unsurprising given that the cumulative snapshots contain

additional edges which would reduce the distances between pairs of nodes.

In the Facebook network series we see trends similar to that of the Scratch network
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Figure 5.8: The effective diameter over time
in the Facebook cumulative and activity
graph series.

series. As in Scratch, Figure 5.7 shows that the edge density continues to increase in the

cumulative series but not in the activity series. While an initial decrease in the diameter

is observed in both Facebook network series, Figure 5.8 depicts the diameter of both series

slowly increasing in the later network snapshots.

These findings are not unexpected but they are contrary to previous literature [35, 36]

which has served as the basis for leading network models. The edge-node ratio in the

cumulative graphs is monotonically increasing over time and social capacity is ignored. In

contrast, the edge-node ratio in activity graphs may decrease or stabilize as inactive edges

are detected and removed.

Figures 5.9 and 5.10 reveal another interesting artifact caused by accumulating inactive

edges. In Figure 5.9, we see that the number of nodes in the cumulative series is increasing

at a much larger rate than the activity series. The total number of nodes, along with

edge density, are exaggerated by not removing inactive edges. While this is the case for

the Scratch dataset, the snapshots in both of the Facebook network series have a similar

number of nodes.
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This contrast between the Scratch and Facebook datasets indicates many Scratch users

do not remain active while most users in the Facebook dataset do stay active. The short

membership of some nodes in the Scratch network is likely due to Scratch being used as a

teaching aid in classrooms. Students will create an account to participate in class and then

become inactive at the end of a school semester or year. Ignoring edge deactivation may

mask the actual node interaction patterns and contribute to mistaken findings which appear

reasonable, as demonstrated by the difference in node lifetimes of the Scratch and Facebook

datasets. These findings suggest more accurate social networks may be derived from ongoing

dyadic interactions rather than one-time events such as “following” or “friending.”
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Chapter 6: Persistent Roles

6.1 Introduction

Online networks rely extensively on user contributions and participation for their vibrancy.

This requires that users perform certain activities and take on specific roles within the

network. In this chapter we take a distinct approach to identify latent role behaviors

which persist over time by examining interaction patterns and structural positions of users.

This approach provides a novel way of understanding latent mechanisms that underlie the

structure and processes of dynamic networks. The work presented in this chapter has been

published in [17].

Role discovery has been applied to many networks [9, 109] and incorporated into static

network models [49]. Despite the prevalence of role discovery methods and applications, no

experiments have been presented that show the existence of persistent roles derived directly

from data. While network-specific roles are useful for many purposes, identifying a set of

roles which commonly occur in online social networks enables new methods for comparative

analysis which emphasize relationships between roles.

In this chapter, I present a methodology for discovering and tracing persistent roles over

time. We discover roles for 26 network snapshots of online social networks from two datasets

(Facebook and Scratch). These roles are found to persist both within and between the

network snapshots from both datasets. We then conduct a summary analysis to demonstrate

how roles may help interpret network structure by considering role membership, transitions

between roles, and interaction preferences.

In these experiments, we discover six roles from the networks and show these roles are

both distinct from one another and occur in every network from both datasets. These roles

are: popular, friendly, explorer, reciprocated, community member and active-community
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member. While the discovered roles are common to both datasets and persist over time, we

find the relationships between roles may differ. These findings suggest common roles shared

among social interaction networks are useful for modeling and comparing networks.

6.2 Discovering Persistent Roles

We aim to find roles which best characterize the nodes in a network. The network datasets

we consider in this chapter are dynamic networks which include timestamped, directed

interactions between node pairs. Each interaction represents a single action such as one

user messaging another. As the primary goal is to identify persistent roles over time, we

will partition the dynamic network D = (N , E) into snapshots, St for each timestep t. The

original edges E are timestamped, directed interactions between node pairs and only edges

occurring at timestep t, Et, are included in snapshot St = (Nt, Et). The edges in Et are

converted from individual interactions to directed, weighted edges, where the edge weight

is the total number of directed interactions occurring between the nodes in St. Nodes N

are derived from the edges E and all nodes present at timestep t, Nt, participate in at least

one edge in Et.

6.2.1 Temporal Network Snapshots

The snapshots we construct are non-overlapping and each snapshot St spans the same

length of time, known as the observation window Ω. The structure of network snapshots

are defined by the activity which occurred within the observation window, thus there is no

accumulation of inactive edges. The observation window Ω is calculated so that most time

deltas δtij between interactions of any two nodes i and j are smaller than Ω. Specifically, we

find the average time deltas 〈δtij〉 for each interacting node pair. The 90th percentile of all

average time deltas is then used as Ω. We assume most connected pairs do not continually

disconnect and reconnect and thus choosing an Ω which preserves most edges is appropriate.

This methodology is described with more detail in [16,31].
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Table 6.1: Node features

Name Description
1 In-degree Count of incoming edges
2 Out-degree Count of outgoing edges
3 Weighted in-degree Count of incoming interactions
4 Weighted out-degree Count of outgoing interactions
5 Reciprocity Ratio of reciprocated edges over all outgo-

ing edges
6 New activity count Count of new outgoing edges
7 Social strategy Ratio of new outgoing edges over all out-

going edges [31]
8 Betweenness centrality Number of all shortest paths which pass

through the node
9 PageRank PageRank measure of centrality [26]

10 Weighted PageRank Weighted variant of PageRank
11 Transitivity Probability any two neighbor nodes are

connected (local clustering coefficient)
[110]

12 Weighted transitivity Weighted variant of transitivity [111]

6.2.2 Role Feature Selection

From the network snapshots we find D structural and behavioral features (D = 12 for these

experiments) for all n ∈ Nt nodes and construct a matrix of node attributes Xt ∈ RD×Nt .

The complete list of features used is shown in Table 6.1. Most of the features listed in

Table 6.1 have common definitions, a few do not. The new activity count is computed for

each node as the difference of the set of nodes reached from outgoing edges at the current

snapshot St and the set of nodes reached from outgoing edges at the previous snapshot St−1.

Similarly, social strategy is a ratio of the count of new outgoing edges (outgoing edges at

snapshot St) that did not exist at the previous snapshot over the total number of outgoing

edges for the given node at snapshot St, num. of new outgoing edges
num. of all outgoing edges . Users with a higher social

strategy value tend to prefer making new connections (social explorer, or simply explorer)

rather than preserve older connections (social keeper) [31].

These features were selected to enable the representation of the unique structural and

behavioral patterns which may exist in online social networks which include individual,

54



timestamped interactions. For example, while in-degree (count of incoming edges) cap-

tures popularity, the weighted in-degree (count of incoming interactions, e.g., in Facebook,

number of incoming wall comments) captures the overall level of incoming activity for the

target node. Features such as transitivity encode information about a node’s neighborhood

while betweenness centrality and PageRank capture global information about the node’s

position in the network. The reciprocity, new activity count, and social strategy pertain to

interaction behaviors.

6.2.3 Role Discovery and Membership

To find roles, a decomposition of a node-attribute matrix is performed and the resulting

basis vectors are the discovered roles. We use non-negative matrix factorization (NMF)

[112] for this task. The role vectors contain values corresponding to each feature which can

be used to characterize the role — features with higher values are more characteristic of the

role. For example, a role with a large in-degree might be labeled as popular.

NMF decomposes a matrix X ∈ RD×N into a basis matrix U ∈ RD×L and a coefficient

matrix V ∈ RL×N , where L is the factorization rank of the decomposition X ≈ UV. Each

of the L columns of the basis matrix U are the basis vectors or factors (roles) and the N

columns of the coefficient matrix V are the coefficient (weight) vectors which explain how

each observation xi is represented as a mixture of roles.

NMF is independently run on the matrix of node attributes for each snapshot Xt with

the same parameters. We use the standard Euclidean update equation and Frobenius cost

function. We use non-negative double singular value decomposition (NNDSVD) [113] to

initialize NMF. This helps NMF converge faster and introduces a bias for sparse factors

(roles). We do not expect roles will have non-zero values for all features as we assume roles

are a parts-based representation [114] of node attributes. Each role is characterized by a

subset of all available features.
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Figure 6.1: Error curves for the first, mid, and final network snapshots in Facebook (top)
and Scratch (bottom).

6.2.4 Model Selection

A critical parameter of NMF is the factorization rank L. The common methods for selecting

the rank value include: MDL [115], AIC [116], and error curves [117]. We initially tried

to use MDL but found model size dominated the description length and resulted in the

selection of low-performing models.

Recent existing work on role discovery with NMF [8, 9] used MDL and we attempted

to use the same MDL function definition. Unfortunately, it appears the function does not

appropriately balance between the model size and error for these datasets. We found that

in all cases, the model with the lowest MDL had the smallest rank possible (for NMF with

NNDSVD), L = 2.

We inspected the error curves, shown in Figure 6.1, and found that L = 2 results in

a relatively large error. These curves were computed by calculating the root-mean-square
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error (RMSE) between the actual data X and corresponding NMF approximation UV.

Instead of MDL, we elected to use the knee of the error curve to estimate the rank. As

shown in Figure 6.1, networks across both datasets had a similar error curve. Ranks L = 5

and L = 6 correspond to the knee point for most of the curves, and therefore are appropriate

choices. Rank L = 6 is used for the factorization of all networks in these experiments.

6.2.5 Tracking Roles

Given T snapshots and node-attribute matrices for each snapshot Xt, t = 0 . . . T − 1, NMF

is used to perform the approximate decomposition Xt ≈ UtVt. Recall the basis matrix Ut

corresponds to role features and the coefficient matrix Vt corresponds to role membership

weights for each user. We hypothesize that roles may persist over time and need to verify

whether the same roles do occur in consecutive basis matrices; i.e., do roles from Ut appear

in Ut+1.

This role tracking is performed by measuring the similarity of every pair of role vectors

between consecutive snapshots {uit × ujt+1 | i, j ∈ 1 . . . L}. We use cosine similarity to

evaluate the pairs and ensure that each role in snapshot t maps to only one role in snapshot

t+1 (the mapping is injective). We use a threshold value (0.75) to determine whether a pair

matches. That is, if sim(uit,u
j
t+1) > 0.75 then the pair of role vectors match. In practice,

we find most matching pairs in this data have a cosine similarity greater than 0.9.

6.3 Experimental Analysis

6.3.1 Datasets

We use two datasets of timestamped, directed interactions to construct dynamic networks

and 26 network snapshots. The first dataset is a collection of Facebook wall posts [108]

available from KONECT1. In Facebook, users may post on each other’s wall and these

posts are typically comments, photos, and web links. Each of these posts is recorded as an

1http://konect.uni-koblenz.de/networks/facebook-wosn-wall
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Figure 6.2: Number of nodes, edges, and interactions over time in the Facebook and Scratch
networks.

interaction with a source user (the post author), a destination user (the owner of the wall),

and a timestamp.

The second dataset is a collection of Scratch project comments [102] extracted from a

general Scratch dataset available from the MIT Media Lab website2. Scratch is an online

social network and web application for writing and sharing software programs. Program-

ming education is the primary objective of Scratch and many users are children and young

adults. Scratch users write and share projects; comments may be made on each other’s

projects. Similar to Facebook walls, project comments in Scratch serve the purpose of

public communication between users.

In both datasets, the interactions are used to construct a dynamic network and then

network snapshots. The snapshots are constructed using the methodology discussed in

Section 6.2.1. Figures 6.2, 6.3, and 6.4 show how the size and clustering of the snapshots

2https://llk.media.mit.edu/scratch-data
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Figure 6.3: Network diameter over time in the Facebook and Scratch networks.

from both datasets vary over time. Note that both the Facebook and Scratch interaction

networks are growing over time.

A node-attribute matrix is created for each network snapshot using the features de-

scribed in Section 6.2.2. Attributes are normalized by min-max normalization with all

values belonging to the interval [0, 1].

6.3.2 Methodology

We use the roles found by decomposing the per-snapshot, node-attribute matrix Xt to

answer the proposed research questions. First we demonstrate that a common set of six

persistent roles are found in the series of network snapshots from both datasets. While the

feature proportions of the roles is similar across datasets and over snapshots, the magnitudes

of the vectors change. Correspondingly, the magnitudes of the coefficient vectors (role

membership weights) differ between snapshots.
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Figure 6.4: Global and average local transitivity (clustering coefficient) over time in the
Facebook and Scratch networks.
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We resolve this issue by averaging the basis vectors (roles) across all snapshots and then

using non-negative least squares (NNLS) [118] to find the optimal coefficient matrix for

the data, given the averaged basis matrix. This normalizes the role memberships between

snapshots and these membership values are used in the rest of the analysis. Note that since

the original basis vectors for all network snapshots had high cosine similarity, the averaged

basis vectors also have a high cosine similarity with every original basis vector.

6.3.3 Persistent Roles

We use the methodology discussed in Section 6.2.3 to find roles in each network snapshot

from both datasets. Then we follow the methodology described in Section 6.2.5 to determine

whether the discovered roles occur in all snapshots from each dataset. We find six roles in

both datasets which persist over time and perform a pairwise comparison of the sets of roles

from each dataset. There is a one-to-one correspondence (bijection) of the two sets of six

roles, using the same cosine similarity test as was used for testing the persistence of roles

across consecutive snapshots. That is, the same set of six roles persist over time in both

datasets. We note that several roles are dominated by a single feature which is not shared

with any other role, this suggests a parts-based factorization of node attributes.

Figure 6.5 shows the discovered roles and their feature weights. The role names were

selected according to the distinguishing features of the roles and we describe them here.

The popular role is defined by the in-degree and centrality features while the friendly role

has larger proportions in out-degree, weighted out-degree, and the number of new outgoing

edges.

The reciprocated role is dominated by the reciprocity feature and captures the proportion

of a node’s outgoing edges which are reciprocated by the receiver node. A node with perfect

reciprocity would have a high membership weight in this role. The explorer role is dominated

by the social strategy feature which indicates whether a node prefers to interact with new

nodes rather than maintain existing relationships. We have observed that many nodes start

as explorers when they first join the network.
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Figure 6.5: Features for all roles, computed as average of role basis vectors from all network
snapshots.
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Figure 6.6: Errors plotted for 50 series of randomly rewired networks.

The final two roles, active-community member and community member, capture the

clustering of nodes. Active-community member is dominated by weighted transitivity which

is similar to standard transitivity (local clustering coefficient) but accounts for the strength

of the edge when calculating the coefficient. As we defined edge weight as the number of

directed interactions between a pair of source and destination nodes, a node with a high

weighted transitivity coefficient is involved in an active community. In contrast, a node

with a high unweighted transitivity coefficient simply participates in a densely-connected

community and we cannot say anything about the activity of the community without further

information.

6.3.4 Evidence of Role Dependence on Network Structure

We conduct an experiment with synthetic data to demonstrate the discovered roles capture

patterns particular to the datasets. Fifty series of rewired networks were generated from
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networks in the original datasets. For each series, one of the snapshot networks was ran-

domly selected. An increasing percentage of interactions in the network were removed and

replaced with the same number of random interactions. Non-negative least squares (NNLS)

is used to find the optimal role memberships (coefficient matrix) for each of the rewired

networks.

The root-mean-square error between the actual data and the optimal approximation

is calculated and Figure 6.6 shows the error increases as more interactions are randomly

rewired. Thus this analysis supports the fact that the discovered roles reflect an intrinsic

property of both social interaction networks, and not an artifact of the methodology used.

6.3.5 Role Membership

Using the persistent roles, we compare their distributions of role membership weights and

check for correlations between roles. The role membership correlations (Spearman’s coeffi-

cients) were calculated for every snapshot network, however due to space constraints only

the results for the final snapshot from Scratch is shown in Figure 6.7.

The role membership correlations tend to be similar between all network snapshots in

each dataset with one notable exception. Several correlations in early Facebook snapshots

(popular and friendly, community member and friendly) shifted from having a negative

correlation to a positive correlation. This change in Facebook may be due to the growth

and sudden increase of activity after the first few snapshots.

6.3.6 Role Transitions

Nodes may be members of multiple roles and their role memberships may change over time.

We visualize these transitions in Figure 6.9 for both the Facebook and Scratch datasets by

identifying the top-5% nodes of each role for each network snapshot and draw a line between

the roles of subsequent snapshots if nodes transition from one role to the other between those

two snapshots. We select the nodes with the highest role membership weights as we expect

them to be exemplary representatives of the roles. The height of the bars corresponds to
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Active−community member
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Friendly

Popular

Reciprocated

Explorer

Figure 6.7: Role correlations for the final snapshot from the Scratch dataset. The upper
panels are colored to correspond to positive (blue) and negative (red) correlation. Darker
shaded panels indicate larger correlation. The diagonal panels show the distribution of role
membership weights. The lower panels show a confidence ellipse and smoothed line of the
correlation.

the number of nodes with the role. A line is drawn between two roles if at least 10 users

transitioned between the roles. The transition lines are sized according to the logarithm of

the number of transitioning users. Since a user may share multiple roles, some transition

lines merge and show users with multiple roles in common transitioning to a role in the

next timestep. Figure 6.8 helps explain how to interpret the transition lines.

As shown in [9], role membership of nodes may change over time and understanding these

transitions allows us to construct predictive models. In this work, since a set of common roles

has been identified, we can also perform comparative analysis of role transitions between

the two datasets.

In both datasets, we see there are many transitions between popular and friendly roles

as well as both community member roles. This is unsurprising as membership correlation

is high for both pairs of roles. Further we note that neither popular nor friendly nodes ever

transition to the explorer role. In contrast, users do transition from explorer to popular and
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Figure 6.8: A transition line from the red role to the blue role (left). A combined transition
line from the red and green roles to the blue role (right). A combined line corresponds to
transitioning users who belong in the top-5% of multiple roles in a single timestep.

friendly. This suggests that the most-popular users are less inclined to form new connections

at the same rate as the top-5% explorer users.

There are also differences in the role transitions between the two datasets. In Facebook,

we observe some community member nodes transition to the explorer role but this does

not occur in Scratch. We hypothesize this may be attributed to the different uses of the

social networks. While Facebook is a general social network, Scratch is used for teaching

programming by schools and it is common for students in those classes to primarily only

interact with other classmates.

6.3.7 Role Affinity

In this section we determine whether the persistent roles affect user link preferences. As the

networks used in this study are directed, we consider both how roles impact the selection of

nodes to interact with (outgoing) as well as how roles affect the attractiveness of some nodes

(incoming). All nodes are assigned their primary role (the role with highest membership

weight) for the role affinity analysis.

In Figure 6.10, we have colored nodes according to role and highlighted a subgraph

for demonstration purposes. A standard force-directed layout algorithm was used to posi-

tion the nodes. Note that while nodes with a higher in-degree tend to be either popular

(magenta) or friendly (black), the friendly nodes have more outgoing interactions (larger

outgoing edges). While friendly and popular roles reside in the core of the subgraph, ex-

plorer (green) and reciprocated (yellow) nodes appear on the periphery.
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Figure 6.9: The role transitions for the top-5% users in each role over all snapshots for
Facebook (top) and Scratch (bottom).
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Figure 6.10: A subgraph from a Facebook snapshot network. Nodes are colored by their
primary role and sized according to their in-degree. Edges are sized according to the number
of interactions they represent.

We augment the network visualization with Figure 6.11 to present the exact counts of

edges between roles. We note the lack of incoming edges to explorer nodes; evidence of this

is also visible in the network of Figure 6.10.
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Figure 6.11: The number of users with a primary role linked to/from other user roles. The
column labels refer to the source node roles (for outgoing edges) and destination node roles
(for incoming edges). The roles on the x-axis refer to the adjacent nodes.
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Chapter 7: Group-Node Attention for Community Evolution

Prediction

7.1 Introduction

Social networks can change dramatically over time and predicting those changes is important

in various real-world setting such as supporting education in massive open online courses

(MOOCs) and online communities of creators (OCOCs) [119, 120] or disrupting criminal

group persistence [121].

Existing work in community evolution prediction has focused on developing new frame-

works that label events occurring between pairs of communities in consecutive network

snapshots. A main goal of these frameworks is to define community evolution events in

such a way that prediction of those events by standard classification models improves rela-

tive to other community evolution prediction frameworks. Rather than attempt to prescribe

another event prediction framework, I propose a new prediction model inspired by recent

work in graph attention networks that relaxes graph attention by leveraging community

membership information.

In this work, I propose a graph neural network model, the Group-Node Attention Net-

work (GNAN), which is capable of attending to community members and neighbors to con-

struct an embedding for groups used to predict the occurrence of one or more community-

level events in the next snapshot. In Chapter 6, we have seen evidence of persistent social

roles that are uncovered directly from network data. A motivation for group-node attention

is to enable the learning of group representations from group-related roles which may be

included in the learned node embeddings. To the best of my knowledge, GNAN is the first

use of graph neural networks for the community evolution prediction task.
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Table 7.1: Definition of notation.

Symbol Definition

{G1, . . . ,GT } Series of T snapshot networks.
Gt = (Vt, E t) The set of nodes and edges for network Gt.
{C1, . . . , CT } Series of community subgraph sets from T snapshot networks.
Cti The subgraph for group i of snapshot t.
M(Ci) The set of member nodes for subgraph Ci.
N(Ci) The set of nodes adjacent to subgraph Ci.
N Number of nodes associated with a group.
E Number of event labels.
Dn, Dg Number of attributes in a single snapshot per node/vertex and

group.
Dm Number of hidden dimensions used for the model
Dq, Dk, Dv The query, key, and value sizes used in group-node attention.
H Number of attention heads.
P Number of previous snapshots used to construct node attribute

vectors.
xtu DnP node attribute vector for node u at snapshot t that includes

attributes from previous snapshots.
Xt
i N ×DnP node attribute matrix for group i in snapshot t.

gti Dg group attribute vector for group i in snapshot t.
mt
i N group-relative position vector for all nodes in group i in snap-

shot t.
hX Hidden representation of the node attributes.
hg Hidden representation of the group attributes.

I define a neural network architecture which incorporates changes of time, group-relative

node positions, and basic network features and demonstrate it is capable of outperforming

baseline methods frequently used in the community evolution prediction literature. Two

series of network snapshots are constructed from social interaction networks in Facebook and

Scratch and we use the clique percolation method (CPM) [4] and the GED [95] framework

to find communities and their associated events. Along with [58], these series of network

snapshots contain an order of magnitude more communities than most previous work in

community evolution prediction.
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Figure 7.1: Diagram of model architecture showing the computation of event predictions of
group i at snapshot t. The ‖ symbol represents concatenation.

7.2 Group-Node Attention Network

I propose a classification model (Figure 7.1) that learns to use the features of related nodes

to find a representation of a group optimized for predicting evolution events in dynamic

networks based on group-node attention. Group-node attention is performed by using group

features to determine the relevance of node features and the contributions of group members

and group-adjacent nodes. Node and group features can be derived from the network

topology (e.g., network degree and group density) or from external sources such as text

documents associated with nodes.

A community can be simultaneously involved in multiple events. Given consecutive

network snapshots {Gt−1,Gt} and sets of communities found in each snapshot {Ct−1, Ct},

we can train a model that outputs a vector where each element corresponds to an event

class. The values of the output vector are used with a decision threshold to predict whether

a group is involved with an event of each of the various types.

7.2.1 Spatial and Temporal Mixing

A major intuition behind the proposed model is to incorporate the features of group mem-

bers and neighbors (spatial information) and changes of those features over time (temporal

information). Because we do not require that community identity be known across snap-

shots, we must rely on node identity for tracking changes over time. Figure 7.2 depicts a
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Figure 7.2: The attributes of group members and group-adjacent nodes in snapshot t are
used to define the node attributes associated with the group.
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Figure 7.3: Concatenation of node attributes for a node at snapshot t and including histor-
ical attributes. In this figure, P = 2 with a total of two snapshots used to form the node
attribute matrix from the current snapshot t and the previous t− 1 snapshot.

group and neighboring nodes at snapshot t along with the configuration of those nodes at

snapshot t− 1. Given a node u which exists in both snapshots Gt−1 and Gt we can form a

vector xtu that is a concatenation of the attributes of node u at snapshots t − 1 and t, as

shown in Figure 7.3.

The input matrix Xt
i for group i at snapshot t is constructed through row concatenation

of all node feature vectors xtu for each node u that is a member or neighbor of group i:

{u ∈ M(Cti ) ∪ N(Cti )}. An additional dimension, represented as vector mt
i in Figure 7.1, is

used to specify whether the node is a member or group-adjacent (one-hop neighbor of the

group).
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Figure 7.4: A diagram of the multi-head group-node attention layer used in the model with
H attention heads.

7.2.2 Group-Node Attention

In order to generate the aggregated hidden group vector hX , we use the result of the spatial

and temporal mixing of the nodes associated with the input group along with transformed

group features to construct query, key, and value matrices (Q,K,V) using learned weight

matrices WQ,WK ,WV as in [76]. Figure 7.4 provides a diagram of the multi-head group-

node attention portion of the model where we see the separate linear layers associated with

each of the weight matrices.

Attention applied to graphs is most often used in the form of self-attention. In that

situation, a node embedding is computed based on the representation of adjacent nodes in

earlier layers. In the proposed model, we are using group-node attention rather than self-

attention. That is, the hidden representation of a group depends on a learned transform

of group and group-adjacent nodes that is conditioned on group features by way of the Q

matrix used to compute the attention coefficients. The output of the attention layer is then

an aggregation of the node feature vectors Xi associated with group i into a single hidden

representation hX dependent on the group features gi.

There are three fully-connected layers used for input transformations: FCNX , FCNq,

and FCNg. Each performs a linear transform of its input and then a non-linear activation.

For example,

FCNg(g
t
i) = ReLU(Wgg

t
i + bg) , (7.1)
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where Wg ∈ RDg×Dm is a weight matrix and bg is a bias vector. These transforms are used

to reshape the input to match the appropriate dimensions used by the model and each has

its own weight and bias parameters.

To simplify notation we will introduce several intermediate variables which correspond

to the output of these transformations:

zq = FCNq(g
t
i) , (7.2)

ZX = FCNX(Xt
i ‖mt

i) , (7.3)

hg = FCNg(g
t
i) . (7.4)

For readability we will drop the i and t annotations when referring to the intermediate

variables. An individual input to the model is for a single group i at a snapshot t.

We use hg directly to predict classification labels, but ZX and zq are used for the group-

node attention layer that learns a representation of groups from node features. The zq

vector is used to construct the query matrix Q and ZX to construct the key and value

matrices K and V.

The group-node attention layer uses multi-head attention in order to potentially learn

multiple group representations. The output of each head is provided by GNAttHead(·)

defined as

GNAttHead(ZX , zq) = αV, (7.5)

where α is a attention coefficient vector and V is a value matrix.

We use scaled dot-product attention where the attention coefficients are

α = softmax(
QKT

√
Dm

). (7.6)
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The query Q, key K, and V matrices are defined as

Q = zqW
Q , (7.7)

K = ZXWK , (7.8)

V = ZXWV (7.9)

where WQ, WK , and WV are learned weight parameters; and Q ∈ R1×Dk , K ∈ RN×Dk ,

and V ∈ RN×Dm . Since we use the transformed group feature vector zq ∈ RDq to construct

the attention coefficients α we are calculating a weighted average over the node embeddings

of the group members and group neighbors

GNAttHead(ZX , zq) = softmax(
zqW

Q(ZXWK)T√
Dm

)ZXWV . (7.10)

The output of each head is passed through a ReLU activation and then all are concate-

nated (‖) together and passed through a final transformation,

GNAtt(ZX , zq) = (‖Hh ReLU(GNAttHeadh(ZX , zq)))W
O , (7.11)

where WO ∈ RHDv×Dm is a weight matrix parameter that mixes the results of the group

heads.

Finally, the output of GNAtt is concatenated with hg and passed through an output

layer

hX = GNAtt(ZX , zq) , (7.12)

ỹ = FCNout(hX ‖hg) , (7.13)
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where FCNout uses a sigmoid activation function to scale the predicted class label probabil-

ities and ỹ ∈ RE .

7.3 Experiments

7.3.1 Community Detection and Tracking

The model presented in this chapter predicts community evolution events for communities

defined over a series of network snapshots. This requires both a method for detecting

communities and tracking the same communities across snapshots. As outlined in Section

3.3, there are many existing community tracking frameworks. The proposed model does

not depend on any specific framework and we select GED [95] for our experiments as it

is well-established in the literature and supports overlapping communities. GED uses two

parameters—α and β— for labeling events, we use the standard values of 0.5 for both

parameters. We use the clique percolation method (CPM) [4] on clique graphs as described

in [122] to define the communities for each network snapshot. The used implementation of

CPM constructs a clique graph and then merges cliques that share a majority of members.

CPM supports overlapping communities and uses cliques as primitives for constructing

communities—this matches the intuition of the proposed model and expected structure of

social interaction networks where communities are dense, overlapping graph regions [4].

Figure 7.5 shows an example of labeling community evolution events for the community

evolution prediction task. In particular, we construct snapshots with a fixed temporal win-

dow length and identify community evolution events as relationships between communities

in successive snapshots. The network snapshots are constructed from social interaction

data, and we adopt a methodology used by [30] to determine a maximum edge deactivation

threshold to prevent densification (Chapter 5) [15]. Edges are removed if they are inactive

for longer than the edge deactivation threshold. Any future activity will cause the edge to

be reformed.
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Figure 7.5: Community evolution events across three network snapshots.
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Figure 7.6: Facebook snapshot network size statistics.

7.3.2 Datasets

We use several datasets that have been previously used for community tracking and commu-

nity evolution prediction: the Facebook WOSN [108] and Scratch [102] datasets. Following

the methodology in [30], we found maximum edge deactivation thresholds of six months

(165 days) and three months (62 days) for the Facebook and Scratch datasets. Due to the

size of the Scratch networks and computational requirements of pre-processing, we elected

to use a smaller threshold of four weeks. The Facebook dataset extends from July 2006 until

April 2009 and each network snapshot includes activity for a month. The Scratch dataset

includes data from May 2010 until May 2011 and each snapshot includes two weeks worth

of activity. For both datasets we include all communities with four or more members as

we found this reduces noise in the data caused by groups of three forming and dissolving.

Larger groups are more likely to participate in various kinds of community evolution events.

Figures 7.6 and 7.7 show the number of nodes, directed edges, and undirected edges for

the series of network snapshots for both Facebook and Scratch. We note that while the

number of nodes and edges for both series change over time, the Scratch snapshots seem to

be more stable, especially with respect to the number of nodes. This may also be due to
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Figure 7.7: Scratch snapshot network size statistics.
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Figure 7.8: Community evolution event counts for the datasets.
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Figure 7.9: Distribution of group sizes in datasets. There are an additional 139 groups
with size greater than 20 and 20 groups with size greater than 100 in the Scratch network
snapshots. The largest group has size 687. The largest group in the Facebook network
snapshots has 14 members.

the additional pre-processing steps to reduce the total number of edges and groups when

generating the Scratch snapshots. We see that continuing and dissolving events are the most

frequent in the Facebook dataset, while merging and splitting are the most common in the

Scratch dataset. This may be due to the nature of the networks—Facebook is primarily

used to connect with people already known by a user, but Scratch encourages creating new

relationships through project collaboration. The distribution of events for both datasets

can be found in Figure 7.8.

As shown in Figure 7.9, most groups in both datasets are smaller. Because of this we

expect the use of group-relative position as a performance optimization—rather than the

masked attention based on the adjacency matrix—should have minimal effect on the learned
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Table 7.2: Node features

Name Description
1 In-degree Count of incoming edges at snapshot t
2 Out-degree Count of outgoing edges at snapshot t
3 Previous in-degree Count of incoming edges at snapshot t− 1
4 Previous out-degree Count of outgoing edges at snapshot t− 1

Table 7.3: Group features

Name Description
1 Density The ratio of actual edges to potential edges among group members
2 Group affinity The ratio of edges between group members over all edges of all

group members
3 Size Number of member nodes
4 Event counts Counts of the incoming event types from the previous snapshot

group representation since all members of a smaller group are within two hops of each other.

7.3.3 Methodology

For comparison to GNAN, we trained instances for four baseline methods selected because of

their common use for community evolution prediction and for their diversity. The baseline

methods used are CART decision trees, logistic regression, multilayer perceptron (MLP),

and SVM with a radial basis function (RBF) kernel. The implementations from [123]

are used for CART, logistic regression, and SVM. Those implementations support a class

weights parameter which was configured to balanced to adjust for the class imbalance in

the dataset. None of these three baselines directly support multi-label classification so

an instance of the classifier was trained for each community evolution event label. We

performed a sweep over the regularization parameter (C ) for SVM using the values: 0.01,

0.1, 1, 10, and 100. The GNAN and MLP models are both implemented with [124], use

a model size of 16 dimensions for embedding layers, and were optimized using AdamW

with a learning rate of 0.001 and weight decay of 0.01. The MLP models have three layers.

The binary cross-entropy loss function was used and training stops after five consecutive
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Table 7.4: Mean AUC scores for events in the Facebook dataset. Highest values are in bold.
The •/◦ annotation indicates whether GNAN is statistically superior/inferior to the other
method. A two-sided Wilcoxon signed-rank test was used at 95% significance level.

Method Cont. Dis. Grow Merge Shrink Split Macro Avg.

CART 0.526• 0.515• 0.508• 0.532• 0.570• 0.584• 0.539•

Log. Reg. 0.581• 0.590• 0.552• 0.695• 0.923• 0.892• 0.706•

MLP 0.620 0.596• 0.571• 0.718 0.939 0.962• 0.734•

SVM 0.585• 0.590• 0.556• 0.693• 0.916• 0.884• 0.704•

GNAN 0.636 0.617 0.603 0.757 0.939 0.966 0.753

epochs without a decrease in total loss when tested against the validation data. Since none

of the baselines support variable-sized input, the features for group member and neighbor

nodes were provided as two separate vectors—one for group members and one for group

neighbors—containing the mean average of the feature values. Those two vectors were

concatenated with the group features to form a single vector input.

The Holdout method with random splits is used for comparing the proposed method

with the standard models used in community evolution prediction. We perform 30 random

splits of the network snapshots into training, validation, and test sets. All network snapshots

before the split are used for training and validation, the remaining future network snapshots

can be used for testing. The training and validation sets are randomly split from all the

examples in all the snapshots that occur before the randomly-selected split. The random

splits are selected from the interval [5, T ] where T is the final snapshot. This guarantees

a minimum number of training examples are made available to the models. In order to

address the non-determinism and sensitivity to parameter values for some of the models

included in this experiment, we train five instances of each model for each random split.

We select one of the five models for each split based on the macro-averaged AUC to use for

evaluation with the test data. We only use the groups from the snapshot after the split for

evaluation.
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Table 7.5: Mean AUC scores for events in the Scratch dataset. Highest values are in bold.

Method Cont. Dis. Grow Merge Shrink Split Macro Avg.

CART 0.533• 0.590• 0.517• 0.642• 0.570• 0.670• 0.586•

Log. Reg. 0.588• 0.784 0.584• 0.800 0.681• 0.828• 0.710•

MLP 0.621 0.814 0.610 0.819 0.778 0.908 0.756
SVM 0.588• 0.784 0.569• 0.749• 0.751• 0.824• 0.710•

GNAN 0.631 0.827 0.636 0.845 0.782 0.907 0.769

7.3.4 Comparative Results

The results of the evaluation of GNAN against the baselines are shown in Tables 7.4 and 7.5.

The mean AUC scores are used for the evaluation as they capture the overall comparative

performance. We see that GNAN generally outperforms all baselines on both datasets with

the exception of the shrinking event in Facebook and the splitting event in Scratch. The

most competitive baseline is the multilayer perceptron (MLP).

In the Facebook snapshot series, we see that all methods other than CART perform well

for predicting shrinking and splitting events. This is likely due to group size and previous

snapshot event counts being good indicators of shrinking and splitting. We notice the same

is true for the splitting event in the Scratch dataset, but prediction of the shrinking event

seems to be more challenging.

The Scratch networks were constructed from social interactions and we required there be

at least four interactions between a pair of nodes before including the edge in the networks.

This was done in order to improve the performance of community detection with CPM;

however, we expect that including that missing structural information would further improve

the relative performance of GNAN over the baselines for the Scratch networks. Similarly, the

Scratch networks do contain some larger groups and extending GNAN with self-attention

for nodes may also increase model performance that by capturing substructure within those

large communities.
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Figure 7.10: The mean AUC scores for GNAN on both the Facebook and Scratch network
snapshots.

7.3.5 Temporal Effects

In addition to the comparative experiment, analyses were performed to evaluate the perfor-

mance of GNAN across snapshots and as additional, earlier network snapshots were added.

In Figure 7.10, we see the mean AUC scores for the GNAN model instances trained

for the comparative analysis in Section 7.3.4 on both the Facebook and Scratch network

snapshots. We see a general trend of higher scores in later snapshots for both datasets,

but there are also decreases in score values for particular ranges of snapshots. The general

increasing trend of scores might be attributed to having more training data. If we consider

the changes in network activity over the snapshots in Figures 7.6 and 7.7 we can see that

GNAN performance appears to correlate with network activity. Using the number of undi-

rected edges as an indicator of network activity, we calculate Spearman’s rank correlation

coefficient and find that the mean AUC is slightly correlated with network activity for the

Facebook snapshots, ρ = .2956, p = 0.1, and for the Scratch snapshots, ρ = .3501, p = .06.

A decrease in prediction performance during periods of reduced network activity may

indicate that the model is missing additional information useful for predicting community
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Figure 7.11: The event counts and percentages over network snapshots for both the Face-
book and Scratch datasets.

evolution events. Notably, events external to the network—such as start/stop of academic

semesters or holidays—may impact node behavior and result in structural changes.

The evolution event counts in Figure 7.11 show a positive correlation between commu-

nity evolution event counts and network activity when considered along with the network

activity figures (Figures 7.6 and 7.7). Additionally, the event percentage plots in Figure

7.11 reveal that the distribution of events changes over time. This is most obvious in the

Facebook network snapshot series where we see the proportion of dissolving events is neg-

atively correlated with increased network activity, while continuing, growing, merging, and
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splitting events all appear to be positively correlated with increased network activity.

While all previous snapshots were used in training GNAN and the baseline models for

the comparative evaluation in Section 7.3.4, additional GNAN model instances were trained

with incrementally larger snapshot intervals to determine the performance impact of adding

additional historic information to the model. Snapshots for evaluation were selected by

starting at the final snapshot of each dataset and adding every fifth snapshot index. For

each evaluation snapshot index, training data was provided in increasingly larger intervals

with a stride of five. When fewer than five snapshots remain then all additional snapshots are

added to the final interval of training snapshots. For example, for the evaluation snapshot

index of 14, there would be three training intervals: [9, 13], [4, 13], [1, 13]. Five instances of

GNAN are trained for each of these three intervals of training data and then validation is

used to select the best model for each training interval—that model is used for evaluation.

The results provided in Figures 7.12 and 7.13 show that while generally more training

data improves model performance, including data from earlier snapshots can negatively

impact prediction performance for certain evolution events. The network activity (Figures

7.6 and 7.7) of Facebook and Scratch network snapshots and the distributions of evolution

events (Figure 7.11) change over time and this can affect model training.

For Facebook, the prediction performance of GNAN on shrinking and splitting events

appears to be consistent across all evaluation snapshots. While not as tightly grouped as

the Facebook AUC scores, the shrinking and splitting events also have the lowest variance

in score across snapshots for the Scratch dataset. The prediction performance for all other

events in both datasets appear to be more dependent on the evaluation snapshot used.

Consider the prediction of growing events for the Facebook evaluation snapshot at index

34. We see that using only snapshots 29-33 improves performance compared to using

snapshots 24-33. However, adding the five next earlier snapshots such that all snapshots

19-33 are used increases performance again. According to Figure 7.11a, there are growing

training examples gained by including all of the earlier snapshots. From Figure 7.6, we see

that while the number of edges decline for a period over snapshots 29-33 and snapshots 19-23
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Figure 7.12: GNAN model performance as earlier training data is introduced for the Face-
book dataset.
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Figure 7.13: GNAN model performance as earlier training data is introduced for the Scratch
dataset.
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there is only a growth of the number of edges in the snapshots 24-29. The reason for the drop

of performance may then be due to the predictors for growing events being different between

periods of increased network activity and periods of decreased network activity. It appears

that more training examples for the growing event only improve prediction performance

when those examples are taken from snapshots with network activity similar to that of the

evaluation snapshot. This relationship between network activity in the training snapshots

and the evaluation snapshot suggests that model performance may be improved by selecting

training snapshots that capture similar network trends as the evaluation snapshot.
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Chapter 8: Conclusion and Future Research

8.1 Conclusion

Social networks of all kinds continue to affect our daily lives in a myriad of ways and

inspire an active research community. Identifying communities, uncovering the roles held

by individuals, and predicting network dynamics are all aspects of uncovering structure

in social networks. The ultimate impact of research in this area can be significant as it

informs us how to nurture learning in MOOCs [119,120], interrupt radicalization in at-risk

populations [125], dismantle criminal organizations [121], and improve civic discourse by

identifying and exposing misinformation campaigns [126].

In this dissertation, I have presented novel methods for community detection, persis-

tent role discovery, and community evolution prediction. I have also shown that previous

assumptions about community structure and network topology for social interaction net-

works may be attributed to data preprocessing methodology rather than being an innate

characteristic of social networks based on social interactions.

A probabilistic approach to community detection that outputs node memberships and

community topics (SENC) was introduced. The bounded seed groups enable SENC to

account for differences in underlying community structure across many networks. The

output produced by SENC is highly interpretable. We can understand the nature of a

discovered community by examining its topic distribution. We can also review a node’s

relative community involvement through its membership weights.

Evidence was presented that temporal artifacts may be introduced in social networks

when the relationships represented by edges require allocation of inelastic resource such as

time or attention. Our findings suggest more accurate social networks may be derived from

ongoing dyadic interactions rather than one-time events such as “following” or “friending.”
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A methodology for identifying persistent roles across time and datasets was presented.

Using this methodology, we find the same six user roles which capture distinct structural

positions in 26 network snapshots from two online social networks. To my knowledge, this

was the first work to present evidence of persistent roles independently derived from multiple

datasets. Beyond the discovery of persistent roles, we provide an analysis of the roles and

show there are differences in role membership and interaction across the snapshots.

A graph neural network with group-node attention for community evolution prediction

(GNAN) was introduced. GNAN is able to incorporate both spatial and temporal informa-

tion of individual member and neighbor nodes by way of group-node attention. The model

is capable of learning a group representation for community evolution prediction.

8.2 Future Research

Though the work presented here has focused on social network analysis, I plan to extend

and apply my work to other domains with variable-sized structured data. I am specifically

interested in the domain of program analysis and how graph attention models which incor-

porate the concepts of community detection, role discovery, and representation learning can

be used in this different setting. I plan to apply an extension of GNAN for program analysis

tasks such as type recovery from program binaries. This application domain is well-suited

for models based on graph attention networks. In the case of the type recovery problem,

generating large datasets with labels is straightforward as the type information is available

from program source code in common languages such as C and C++. This resolves one of

the largest challenges in applied machine learning and data mining for social networks: a

lack of ground truth and objective class labels.

While we found GNAN to be an improvement over baseline classifiers for predicting

community evolution events, there are several ways in which the model can be extended

and there are additional domains where learning group embeddings, or even hierarchical

group embeddings, may be useful. I plan to extend GNAN with masked self-attention

at the group level, support for stacked group-node attention layers that incorporate both
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self-attention of nodes with group-node attention, and optimization for training on GPUs.

I had considered developing a model for predicting network role transitions based on

the persistent roles presented in Chapter 6 before I began developing the GNAN model.

I ultimately chose to pursue community evolution prediction instead as there were more

existing frameworks and methodologies that could be used as a setting for the prediction

task. With the surge of research on dynamic networks, higher-order node embeddings, and

GNNs; I believe much of the foundation for network role prediction is now in place.
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