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ABSTRACT 

AN INTEROPERABLE FRAMEWORK FOR PLANETARY DEFENSE DATA 
INTEGRATION AND VISUALIZATION TO SUPPORT THE MITIGATION OF 
POTENTIAL HAZARDOUS ASTEROIDS 

Ishan A. Shams, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Chaowei Yang 

 

A large asteroid impact can cause catastrophic environmental effects, as was 

shown by the Chicxulub impact some 66 million years ago (Pope et al. 1997). In order to 

protect our planet from future near-Earth objects (NEOs), it is crucial to efficiently and 

seamlessly integrate data, discoveries, and resources. However, planetary defense 

information remains scattered throughout multiple branches, organizations, and countries. 

The challenges that come with dispersed planetary defense information are 

manifold.  First, the heterogeneity of planetary defense situations requires unique 

responses from various organizations. Second, there is a lack of structured integration, 

and interoperability among planetary defense stakeholders. This hampers effective 

communication and collaboration. Third, the diversity of data and information for 

planetary defense research creates discrepancy between PD data formats for individual 

researchers. Finally, future threats mitigation efforts are often hindered by a lack of 
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comprehensive understanding of the problem. Consequently, an interoperable framework 

for planetary defense data integration and visualization is needed to support the 

mitigation of potentially hazardous asteroids.  

This dissertation has presented a data-fusion framework that can be used to 

support the detection, characterization, and mitigation of potentially hazardous asteroids. 

The data-fusion framework was used to develop the Planetary Defense Knowledge 

Gateway (PDKG), a platform that enables users to access, visualize, and analyze 

integrated, and interoperable planetary defense data. This dissertation also focused on 

multiprocessing techniques, comprehensive data modeling, and data inaccuracies 

verification. The implemented multiprocessing techniques provides three main 

advantages: (1) a data pre-fetching technique to minimize data retrieval latency, (2) an in-

memory caching technique to improve data access performance, and (3) a query 

parallelization technique to speed up the execution of complex queries. The 

comprehensive data modeling considered the different types of information that needed 

to be integrated, such as observational data, catalog data, and expert knowledge. The data 

inaccuracies verification was performed using a set of heuristics that were designed to 

identify errors in the data.  

This research provides a foundation upon which the planetary defense community 

can build to mitigate the effects of dispersed information and aid in the overall decision-

making strategies. 
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1. INTRODUCTION 

Near-Earth objects (NEOs) are asteroids, comets, and large meteoroids whose 

orbit intersects with the Earth’s orbit; as such, they may pose a collision danger. NEOs 

are composed of mostly water ice with embedded dust particles. Many physical 

characteristics, such as albedo, brightness, shape, and phase, can be defined and 

measured for NEOs, particularly in relation to asteroids and comets. The scientific 

interest in comets and asteroids is mainly due to the possibility that they may collide with 

our planet, which represents a hazard to life on Earth (Farnocchia et al. 2013). An 

asteroid has the potential to cause havoc to the global climate if it collides with Earth. In 

addition, asteroids can also impact large areas of land or water near their point of contact 

with Earth, which can damage buildings, animals, vegetation, and human populations. 

Some 66 Ma ago, a large impactor between 10 to 90 kilometers in diameter struck 

Chicxulub, Mexico (Pope et al. 1997) with catastrophic environmental effects. According 

to the report (Pope et al. 1997), the impactor's shockwave deposited large amounts of 

rock and soil on the planet's atmosphere, causing a global climate change, which led to 

the extinction of dinosaurs and most of the planet’s large animals (Napier 2015). 

Although such events are frequent in nature, a more recent incident, specifically, the 

Chelyabinsk impact in Russia on February 15, 2013, highlighted the importance of 

protecting our planet from future near-Earth objects (NEO) (Popova et al. 2013).   



2 
 

Significantly, as many scientific studies show, the impacts of NEOs have 

contributed to mass extinctions and evolution (Chiarenza et al. 2020; Pope et al. 1994; 

Rampino, Caldeira, and Prokoph 2019). Moreover, research demonstrates that NEOs will 

continue to hit Earth at irregular intervals in the future (Perna et al. 2015). Impactors 

range from benign fireballs to large airbursts, the largest of which can cause tragic 

destruction on the ground. However, these large airbursts are very unlikely to occur in 

any given lifetime, and they are probably randomly distributed in time. For events 

involving harmless fireballs, the methods of civil defense are sufficient for saving human 

lives. For more massive airbursts, changing the path of these near-Earth objects reaching 

Earth's vicinity is the appropriate solution. Additionally, for global catastrophic events 

that cause mass extinctions, there is currently no technology that is capable of avoiding 

disaster.  

 Global organizations have undertaken dozens of research studies and many 

scientific explorations to mitigate the potential impact of near-Earth objects. Programs, 

like NASA's NEO Survey, for instance, assist in educating the public and is an important 

tool in gaining support for impact mitigation decision-making in the United States 

(Arentz et al. 2010; Larson 2006).  At the same time, numerous NASA-funded 

astronomer teams are constantly searching for potentially hazardous Near-Earth objects, 

whose orbits periodically bring them within 30 million miles of the Earth's orbit. At 

NASA, the Planetary Defense Coordination Office not only supports these search 

programs, but they also, in line with the United States’ National Near-Earth Object 

Preparedness Strategy and Action Plan policies (Daou and Johnson 2019), plan and 
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coordinate responses to prepare for an NEO event. As part of NASA's planetary defense 

strategy, the Center for Near-Earth Object Studies at Jet Propulsion Laboratory (JPL), 

analyzes the data collected on near-Earth objects and publishes the data and types 

discovered (Yeomans et al. 2001; Yeomans, Chesley, and Chodas 2010). Numerous 

efforts can be undertaken to mitigate the hazard of potential asteroid impacts, including 

emergency response planning, civil defense, slow-push or pull methods, kinetic impact, 

deflection mission concept studies, and nuclear detonation. As part of their defense 

strategy, the European Union's (EU) NEOShield Project is considering kinetic impactor 

options, the latest deflection techniques, and gravity-tractor methods. At present, the 

EU’s Department of Energy's national laboratories are responsible for studying the 

impact effects of these strategies.  Meanwhile, NASA’s Planetary Defense Coordination 

Office (PDCO) is also collaborating with other US Government agencies, as well as other 

national and international agencies, to ensure the detection of potentially hazardous 

objects (Johnson 2016). As a result of this disunity, much of the work of many distinct 

Planetary Defense (PD) experts around the world is not unified or synchronous. 

 Currently, information about detecting, characterizing, and mitigating NEO 

threats is dispersed throughout different multiple branches, organizations, and countries 

due to the lack of structured architecture. This dispersion can cause errors at the time of 

crisis, resulting in miscalculated mitigation efforts. There are three relevant aspects for 

integrating the resources and producing cohesive solutions to PD mitigation: 1) data and 

information identification, 2) communication and international engagement, and 3) 

knowledge base.  
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1) Data/Information Identification: Detecting and processing data about whether an 

NEO poses a real impact threat, such as the characterization of the PHA’s 

spatiotemporal occurrence, is the first step in any PD effort. The recognition of 

capabilities within different organizations for data processing and simulation is 

the pinnacle in any mitigation plan. The objective is to identify information that 

can be connected to support coordinated observations, verify observations (or 

extensions of physics-based models), and produce appropriate mitigation plans.   

2) Communication and International Engagement: The ability to leverage 

international capacities for observation, data processing, simulation development, 

knowledge sharing, and actionable solutions is critical in threat mitigation. Some 

PD-related missions have incorporated international collaboration, notably 

OSIRIS-Rex (Garner 2015) and DART (Talbert 2017). To avoid the risks caused 

by different countries implementing their own mitigation strategies to the same 

hazard, it's critical to establish a communication mechanism among nations with 

mitigation capacity. 

3) Knowledge Base: The percentage of a PHA striking Earth within the next five to 

ten years has decreased over time owing to continuous research into large space 

rocks. However, the next 100 to 300 years is less predictable. With efficiency and 

a higher probability of success, the research presented in this dissertation suggests 

the formation of a data/knowledge base that combines research findings and 

expert knowledge to confront future PHAs with speed and efficacy (Shams et al. 

2019). 
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Knowledge discovery is essential to the overall success of how research is 

conducted in the Planetary Defense industry. Despite its importance, knowledge 

discovery has been explored heavily due to its highly complex implementation. There are 

several steps that are needed to be taken, which include understanding the PD domain, 

available data sources, and preparation of data. Once the industry is equipped with a 

multinational database that integrates data from agencies, such as NASA, ESA, JAXA, 

Minor Planet Center, and other authentic open-source communities, then this allows the 

knowledge discovery to be highly valuable. A multinational database that integrates data 

from the stated sources is a challenge far beyond the scope of this research, as it requires 

authorization and acceptance of all agencies to work together. In this defense, the scope 

was reduced to build a proof of concept that integrates a few selected data sources that 

are open to the public. These data sources are mentioned in Chapter 3. Several 

experiments have been conducted with this proof-of-concept, data-fused database that has 

shown signs of several benefits. 

Several whitepapers in the western countries have outlined the challenges that are 

related to the problem of unorganized and scattered data. These challenges affect how 

research is conducted, resulting in either incomplete data or calculations that must 

incorporate a higher margin of error (Franke and Nielson 1991; Lodha and Franke 1997; 

Remondino 2003; Yang, Deng, and Chen 2005; Zhao et al. 2000). To address this issue, 

this dissertation used several data fusion techniques to demonstrate how merged data can 
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produce a bigger picture, improve knowledge discovery, and reduce the level of 

inaccuracies. A proper data fusion implementation not only provides scientists with a 

new way to approach a problem, but it also improves the capability of enhanced data 

discovery. In planetary defense, in general cases, if someone plans to calculate NEO 

coordinates, they must rely on a specific observatory dataset. Further, if the satellite 

trajectory is added to the calculations, then this becomes an additional challenge. 

However, this type of analysis can be done with ease if a data-fused database is utilized. 

Fusion techniques are also experiencing a steady growth in the scientific 

community due to their importance. The way industries implement fusion techniques 

varies according to the needs of domains. For instance, Jusoh and Almajali (2020) 

discuss several fusion techniques and approaches developed in the robotics, military, and 

health care field in the United States. Castanedo (2013) also reviewed several 

classification data fusion techniques that can be implemented to complement numerous 

data sources with each other. In a more recent study, Ntumba, Gore, and Awanyo (2021) 

applied data fusion techniques to predict Apophis Asteroid Flyby’s optimal trajectories. 

Along with data fusion, they also applied a neural network model to track and predict 

asteroids’ orbits. There are several additional studies discussed in Chapter 2.2 that 

demonstrate data fusion in detail, along with data and information sources, strategies, and 

its challenges. 

 

Interfaces have long played an essential role in the progress of information 

science, assisting users in locating required information quickly and accurately from vast 
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data. This has subsequently altered the way people search for and obtain knowledge. In 

addition to general search engines (e.g., Google, Bing), multiple vertical domain search 

engines have been developed to give a customizable searching feature for users from 

specific domains or with similar information goals. Given the volume of search requests, 

it makes sense to save users time by indexing pages in just one or two domains at a time. 

The crawling and data storage are linked to a specific domain, so saving time for 

individuals who want information using the available searching capabilities is beneficial. 

Data discovery refers to the process of identifying and extracting meaningful 

information from data sources for analysis (Curry 2016). The challenge is that data can 

be scattered across different platforms, which creates a fragmented view of reality. Data 

analysts need to spend significant amounts of time collecting and compiling all this 

disparate data into one place to make sense of it. This is where search interfaces come in: 

They provide a way for users to explore their planetary defense-related data with ease and 

speed, no matter how dispersed or complex it may be. With a powerful set of tools at 

hand, these interfaces enable you to find the insights hidden within your data.  

The discovery of information regarding how to improve data management and 

information access in the current, widely dispersed format is one of the primary aims of 

this dissertation. Search interfaces provide users with different ways to search for 

relevant documents within a specific domain or across multiple domains. Searching for 

information in a particular domain can be enabled by vertical-specific crawlers, which 

make it possible to discover and extract metadata and content related to near-Earth 

potential hazardous objects. However, crawlers can only traverse publicly accessible web 
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pages and neglect private data sources, such as databases and application program 

interfaces (APIs), which cannot be accessed through crawling due to privacy reasons. 

This research discusses how search APIs can provide efficient access to data from 

different sources with a minimal number of calls to the API compared with accessing an 

entire website or application program interface (API) service. 

One of the problems addressed in this dissertation is to assist researchers who lack 

information access capabilities. These "information curators" usually work on specific 

aspects of domain data management within their organization's working context, which 

restricts them from performing more extensive metadata indexing those cross 

organizational lines beyond their boundaries.  

In the United States, there are currently three ground-based NEO search projects 

to monitor, track, and find NEOs via visualization. The Planetary Society recognizes the 

danger that asteroids and comets pose (Pelton 2021), which is why they have been using 

data visualization technologies for over a century, as a way to convey complicated 

information in a graphical or pictorial format. Data visualization aids in the 

understanding of why things occur as well as the comparison of various patterns and 

trends that might impact future events. These programs must be successful since, 

although over 1800 potentially hazardous objects have been recorded (size > 140 m), this 

number is growing every year. Data visualization tools would help the planetary defense 

community by giving them a better picture of what is going on in space and helping them 

respond more quickly if an asteroid or comet was headed towards Earth. 
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There are several tools that can be used to visualize the presence of potentially 

hazardous objects. One way is through data visualization, which helps us understand why 

things are happening, as well as compare different patterns and trends that could inform 

future outcomes. Another tool for visualization is 3D modeling software, which allows 

scientists to create simulations of potential impacts on Earth should a NEO event occur. 

These tools will help scientists predict where these objects, based on their size and 

trajectory, might land so they can prepare accordingly to minimize potential damage. 

One of the most well-known uses of 3D modeling involves (Willis et al. 2015) a 

physical science technician at NASA’s Johnson Space Center in Houston, Texas, who 

created a 3D model of the Stardust capsule after it returned from comet 81P/Wild 2 

(Stephan et al. 2008). This 3D model gave scientists greater insight into how the material 

inside the capsule is arranged. It also provides more insight into what comets are made of 

and is helping us understand our origins as humans. 3D modeling can also be used to 

create visualizations of the solar system to help scientists understand how it is organized. 

This research also provides a 3D visualization tool to view the orbital path of selected 

celestial objects in a WebGL-built solar system. Chapter 4 provides in-depth detail 

regarding the various approaches and techniques relating to the Planetary Defense 

Knowledge Gateway framework.  

This dissertation proposes an interoperable planetary defense knowledge gateway 

framework that uses data mining, information integration, and visualization techniques to 

solve the challenges identified earlier. The proposed framework is designed to allow 

planetary defense researchers to access, query, and visualize data from disparate sources 
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using a single interface. In addition, the framework utilizes a modular approach to allow 

for future expansion and integration of new data sources.  The modular approach also 

allows for different stakeholders, such as government agencies and private companies, to 

contribute data to the planetary defense community without having to share their 

proprietary data. Finally, the proposed framework includes a set of algorithms that utilize 

both supervised and unsupervised learning techniques to automatically classify planetary 

defense data. These algorithms are designed to allow planetary defense researchers to 

quickly identify relevant data when searching for information. 

 

1.1 Objectives 

The primary objective of this dissertation is to design and develop a framework to 

facilitate the integration, visualization, and analysis of dispersed PD information. The 

objective is associated with the following research tasks: 

1. Conduct a comprehensive literature review to identify 1) the types of data and 

information that are used in PD domain, 2) existing data integration and 

fusion approaches, systems, and tools, and 3) current data visualization 

systems. 

2. Design an automated data pipeline with multiprocessing capabilities for the 

PD domain. This will be used to capture the semantics of PD data and 

information, which will facilitate the integration of heterogeneous PD data 

sets. This dissertation attempts to use data integration techniques to merge 
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data from various sources, and data fusion techniques to transform data that 

are in incompatible formats. 

3. Develop a prototype system that incorporates the integrated data model and 

utilizes existing data management approaches, systems, and tools to support 

the integration, visualization, and analysis of PD data. 

4. Evaluate the prototype system using real-world PD data sets. This evaluation 

will help to assess the effectiveness of the proposed system in supporting PD 

decision making tasks. 

    

1.2 Dissertation Organization 

The remainder of this dissertation is organized as follows: Chapter 2 provides an 

overview of literature related to this dissertation. This chapter is divided into four 

sections. The first section identifies the type of data and information that are used in PD 

domain. The second section discusses existing approaches, systems, and tools for data 

integration and fusion. The third section presents current data visualization systems. 

Finally, the fourth section discusses existing approaches for three-dimensional trajectory 

data management and mining. Chapter 3 describes the design of the proposed data fusion, 

data model, and data framework. Chapter 4 elaborates on the details of a parallelism-

related study that was conducted and describes the approach taken for celestial object 

coordinates accuracy verification. Chapter 5 provides a detailed description of the 

prototype system that has been developed to support the integration, visualization, and 

analysis of PD data sets. Furthermore, Chapter 5 also elaborates on the approach taken to 
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optimize memory and GPU for smooth visualization. Chapter 6 provides a 

comprehensive introduction of the prototype system. Chapter 7 presents the conclusions 

of this dissertation and future work. 
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2. LITERATURE REVIEW 

2.1 Types of Data and Information in Planetary Defense Domain 

 The United States’ National Near-Earth Object Preparedness Strategy and Action 

Plan identifies possible outcomes from potential impacts by NEA, which depends on the 

objects' characteristics (Daou and Johnson 2019). One project related to data 

identification is the Arcetri Near-Earth Object Precovery Program (ANEOPP), which 

focuses on identifying NEO’s in images from previous "archival materials"(Boattini et al. 

2001). Another project is the NEOWISE mission (NASA), which shows data for all year 

2015, outspanning the development of the first-ever set of data by combining all publicly 

available exposures from both the AllWISE and NEOWISE-Reactivation (NEOWISER) 

mission phases (Mainzer et al. 2014). In addition, ground-based planetary radar systems, 

such as the Arecibo Observatory and the Goldstone Solar System Radar (GSSR) facility, 

located in Puerto Rico and California, U.S. respectively, contribute to the high precision 

physical and orbital characterization of planetary bodies. From astrometry measurements 

to surface structure or subsurface composition, these facilities provide data for NASA 

projects and missions, including contributions to OSIRIS Rex, LRO, Cassini, 

Clementine, Mars Exploration Rovers (MERs), InSight, MESSENGER, and more 

(Usikov 2013).  

The planetary defense community relies on data and information from multiple 

sources to identify, track, and characterize asteroids that could potentially impact Earth. 

These data include optical, radar, and infra-red observations (Binzel et al., 2002; Mainzer 
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et al., 2011; Chodas et al., 2013). The planetary defense community also uses data from 

numerical simulations to study the physical effects of an asteroid impact (Chyba et al., 

1993; Harris & D'Alessio, 1998; Melosh et al., 2000). Finally, the planetary defense 

community relies on data from impact simulations to study the regional and global effects 

of an asteroid impact (Atkinson et al., 1997; Lewis et al., 2001; Melosh et al., 2002).  

Instruments are also a critical part of missions fundamental to perform a physical 

characterization of a potential impactor to mitigate the risk of near-Earth object impacts. 

These instruments and missions need to be included as part of a PD data source for future 

access to a comprehensive catalog of instruments used in past missions. These current 

capabilities will assist international space agencies in taking steps towards the creation of 

instrument advancements in the pursuit of reaching higher expectations for mitigation 

capabilities. One PD mission that will launch in the year 2022 is the Psyche mission 

(Snyder et al. 2020). The plan for this mission is to reach a unique, metal asteroid that is 

currently orbiting the Sun, and is located between planets Mars and Jupiter, the fourth 

and fifth planets from the Sun.  

To guarantee the mitigation study team is well informed, scientists need a place to 

archive, discover, access, and integrate all the critical elements from the various funded 

resources. As mentioned earlier, this data is being collected by the variety of detection 

methods that the NASA NEO Survey employs. There needs to be a capability where all 

the data may be categorized and organized. Currently, there are multiple databases spread 

across multiple agencies in the United States, with one acting as the major center for data 

storage. The data is available to the global PD user community as well as the contributing 
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facilities to promote the monitoring of existing NEOs and the discovery of new NEOs. 

Data storage is an important step within the mitigation process and having the necessary 

information accessible and easy to find is held as a high priority for this project. Across 

the databases, at least the linkage should be added to deploy a system of systems (SoS) 

framework. Table 1 shows a summary of databases hosted across the nation. 

 

Table 1. List of Planetary Defense Databases 

Database Description 

Minor Planet Center One of the worldwide locations for receipt and 
distribution of positional measurements of minor 
planets, comets, and outer irregular natural 
satellites of the major planets. 

Asteroid Lightcurve DB Listing of asteroid lightcurve parameters and other 
information, such as estimated diameters, phase 
slope parameters (G), albedos, and flawed (Wagner 
et al. 2009). 

NASA Jet Propulsion 
Laboratory Small-Body 
Database 

Collection of all International Astronomical Union-
identified NEOs and comets. 

Sentry Online Risk Table Lists potential future Earth impacts events that the 
JPL Sentry System has detected. 

 

Overall, the observational capability of the NEO program is vast and diversified. 

These facilities also serve websites with detailed information about the specific 

instrumentations and methodologies. Forming strong connections with other partner 

organizations, such as the European Space Agency and Japan Aerospace Exploration 
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Agency, would result in a gain of observational capability and foster an attitude of 

cooperation when faced with a challenge from a NEO. 

In summary, an integrated data resource discovery engine is essential for 

applications like the Planetary Defense Knowledge Gateway, as it encourages researchers 

to collaborate and share their findings with the entire PD community. It provides benefits, 

such as a) a secure, more reliable environment; b) an effective way of sharing 

information and resources; and c) providing the capability of accessing documents at any 

time. There are numerous data resource tools that help users to share and receive files 

from local computers via the Internet or a local network. These solutions can be applied 

to share various kinds of files, such as documents, videos, and images. Most file-sharing 

services have evolved into immersive collaboration platforms. Some of the biggest 

service providers of these services include the following: Google Drive, Microsoft 

OneDrive, Box, Dropbox, and SugarSync. In the education field, many institutes have 

used at least one form of a digital repository to provide data to the public. To illustrate, 

Figshare is one of the tools used by numerous organizations and institutes, such as the 

University of Adelaide, to preserve and share the community's research outputs, 

including figures, datasets, code, posters, and presentations (Singh 2011). 

 

2.2 Existing Data Integration and Fusion Approaches, Systems, and Tools 

With the recent global catastrophe caused by the Chelyabinsk impact in Russia, 

there has been a tremendous spike of interest devoted to developing data fusion strategies 

for our future generation PHA/PHO mitigation scientists, which will benefit tomorrow’s 
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scientists with readily available knowledge from one primary source. As De Juan and 

Tauler (2019) note, data fusion allows data sets that present an enormous diversity to 

concatenate in terms of size and behavior. There are many reasons why it is beneficial to 

have data infused into one platform. De Angelis et al. (2015) discusses the importance of 

consistency and relevancy of data during urgent events. The researchers observe that 

fields geared towards epidemics are progressively based on as many diverse sources of 

information as possible. Although realistically, it is not cumbersome to produce outputs 

consistently with all relevant available data during a crisis, it can become challenging to 

integrate information from many heterogeneous sources of data—especially when the 

complexity of the model is high. Intriguing research questions in the planetary domain 

can be answered quicker, with higher accuracy, by incorporating data fusion techniques 

(Castanedo 2013). An integrated data-infused resource encourages researchers to 

collaborate and share their findings with the entire PD community. It provides benefits, 

such as a) a secure, more reliable environment; b) an effective way of sharing 

information and resources; and c) providing the capability of accessing documents at any 

time.  

The planetary defense community has developed numerous approaches, systems, 

and tools for data integration and fusion. These approaches, systems, and tools include 

the Integrated Planetary Protection Knowledgebase (IPKB) (Stokes et al., 2009), the 

Small Body Environmental Data System (SBEDS) (Farnocchia et al., 2013), the Multi-

Mission Archive at Space Telescope Science Institute (MAST) (Jenness et al., 2015), and 
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the Center for Near Earth Object Studies (CNEOS) Information System (Tricarico, 

2005).  

The IPKB is a knowledge management system that was developed to support data 

integration and fusion in the planetary defense domain. The IPKB uses the Semantic Web 

Technologies (SWT) to represent data and information in the form of ontologies. The 

ontologies are used to reason about the data and information. The IPKB also uses the 

rule-based approach to infer new knowledge from the existing data and information. 

The SBEDS is a data management system that was developed to support the 

storage, retrieval, and analysis of planetary defense. The SBEDS uses a relational 

database to store planetary defense data. The SBEDS also provides an interface that 

allows users to query the planetary defense data. 

The MAST is a data archive that was developed to support the storage, retrieval, 

and analysis of astronomical data. The MAST stores planetary defense data in the form of 

images, spectra, and time series data. The MAST also provides an interface that allows 

users to query the planetary defense data. 

The CNEOS Information System is a data management system that was 

developed to support the storage, retrieval, and analysis of planetary defense data 

(Chodas 2015). The CNEOS Information System uses a relational database to store 

planetary defense data. The CNEOS Information System also provides an interface that 

allows users to query the planetary defense data. 

Bringing together heterogeneous datasets poses several conceptual and technical 

questions, particularly when considering different existing analytical approaches and 
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developing appropriate metrics for evaluation. Understanding these potential challenges, 

along with the complexities surrounding different kinds of heterogeneity in the data, is 

key to creating viable data fusion approaches. Here are some of the limitations that PD-

researchers need to consider when considering data fusion: 

1. Semantic heterogeneity— databases shown in Table 1 are different data sets 

referring to the same phenomena. However, are they sharing the same 

"values"? NASA, ESA, and MPC use different observation satellites to 

capture Near-Earth Asteroid coordinates. So, "Which dataset trumps the other 

ones?:" This is one of the most asked questions while performing data fusion. 

2. Temporal heterogeneity –data sources may be static or dynamic. Stationary 

data sets are snapshots of phenomena at a point in time. Dynamic data may be 

"streaming" data that reflects a phenomenon continuously or with larger time 

intervals. The interval parameters might not be the same, so finding out which 

interval to pick is vital for a successful fusion. 

3. Modeling Heterogeneity—most of the data gathered are from sensors and 

devices that capture analog and digital phenomena based on an underlying 

model. The nature of this abstraction itself matters when fusing data to 

understand what one should expect when they combine the data. For instance, 

are the underlying assumptions compatible? 

4. Infrastructure Heterogeneity—large data sets may not be captured due to 

storage/power/bandwidth limitations, and data may be corrupted due to 

infrastructure issues. Data may be incomplete due to operational and systems 
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issues. Some data sources are offered in XML format, while others are in 

JSON format. Some are provided as APIs, while for others, we might have to 

connect to their telnet system to retrieve their data. These are also additional 

challenges that we need to consider. 

 

2.3 Data Visualization 

According to the 2010 US National Research Council (NRC) report Defending 

Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies (Board and 

Council 2010), four broad mitigation options were identified, including civil defense, 

kinetic, tractor, and nuclear. Civil defense (evacuating specific areas) may be sufficient 

for a small object approach, but a blast deflection of some kind will be required for large 

objects. In between, a kinetic impactor that imparts momentum onto the NEO could be 

employed, or a gravity tractor that pulls the NEO over a long period could be used if 

there is enough warning time.  

 

Table 2. Short-warning mitigation techniques comparison 

Methods Technology development 
requirement 

Residual issues 

Kinetic Impact Research the feasibility and 
effect of an impact 

Question of whether the 
asteroid might be 
inadvertently fragmented; 
More warning time is 
required; Kinetic impactors 
cannot deal with as large of 
asteroids as NED deflection 
can 
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Gravity tractor The mass of the asteroid Gravity tractors might not 
be useful for the large 
asteroids of over 500 
meters in diameter (Bonilla 
2015) 

NED Deflection Research the feasibility and 
interaction between the 
NED's detonation products 
and the asteroid that 
requires research 

Question of whether the 
asteroid might be 
inadvertently fragmented 

 

 

In Table 2, we summarize three methods, including Kinetic Impactor, Gravity 

tractor, Nuclear Engineering and Design (NED) Deflection. For kinetic impact, the 

principle is that the NEO is deflected following a hit from an impactor spacecraft. For the 

gravity tractor (GT), the idea is to use a spacecraft hovering above an asteroid and relying 

on the small gravitational attraction to change the object's orbital path ever-so-slightly. 

For nuclear methods, NED deflection is conducted by nuclear explosions triggered at a 

distance, on the surface, provoking the ejection of rocks from the object, which, in turn, 

reacts by a small deflection. The first line of defense lies on remote observations for 

NASA's Near-Earth Object (NEO) Survey for detecting the existence of potentially 

hazardous asteroids. According to the Near-Earth Object Program (Yeomans et al. 2001), 

the NEO Survey has recognized and classified over 90 percent of NEAs that are over one 

kilometer in diameter. This achievement is mostly due to the varied detection methods 

that are engaged by the Survey and by the computational ability to process and store 

enormous datasets to correctly catalog the threat that each asteroid may represent to the 

Earth. Apart from recognizing the existence of the asteroid, these observations can also 
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regulate and govern the essential properties of the asteroid. With the physical and 

chemical properties in the database, the PD community is better equipped to design an 

efficient mitigation plan. The purpose of observational capabilities study is to exemplify 

some facilities that are steering observational study and how the amplified partnership of 

these facilities can best inform the mitigation segment of PD. These connections and 

collaborations are a vital component of the architecture framework. Within the scope of 

this research, several methods of observation/characterization were identified: Telescopic 

Detection, Space Detection, and In-situ Missions.  

Telescopic detection is the main method of observing and detecting NEOs. Being 

the most cost-effective choice, telescopic detection can provide us with tracking ability 

and physical characteristics at a fraction of the cost of radar systems and space 

telescopes. Space Observation is a method for characterizing NEOs because the telescope 

is in space and has a much farther reach. Very few space telescopes exist due to cost. A 

notable space characterization project is NASA's NEOWISE project, which allows 

precise approximations of their diameters, which, in turn, allows the NEOWISE team to 

debias diameter estimates across the detected NEO population. Although majorly for 

physical characterization, Space observation has detected NEOs. In-situ Missions are 

crucial to conducting (near) real-time research of an asteroid. The capability to land a 

spacecraft on a moving asteroid to collect real-time data as well as retrieve geological 

samples is imperative to truly understand the physical and chemical composition of 

asteroids. 
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In the US, there are currently three ground-based NEO-search programs to 

monitor, track, and discover NEOs via some form of visualization. In addition to that, 

external organizations have also contributed to the visualization field of PD to track and 

monitor the solar system, PHA/PHO, and the health of other planets. Some of the most 

highly acknowledged tools are mentioned in Table 3. 

 

Table 3. List of applications that provides solar system visualization services 

Tools Description 
NASA Eyes on 
the SOLAR 
SYSTEM 

Free application for the MS-Windows and MAC that lets users 
travel throughout the solar system and fly alongside the 
spacecraft—both current and historical ("NASA's Eyes," n.d.). 

Celestia 
The free space simulator for the MS-Windows, MAC, and Linux 
allows the user to visualize and explore the universe in three-
dimension ("Celestia: Home," n.d.). 

WorldWide 
Telescope 

WWT offers the viewer imagery from the world's best ground and 
space-based telescopes, information, and stories from multiple 
sources, and mixes it all into an immersive media experience 
("WorldWide Telescope Web Client," n.d.). 

Universe 
Sandbox 

Physics-based space simulator for the MS-Windows, MAC, and 
Linux. It merges gravity, climate, collision, and material 
interactions to reveal the beauty of our universe and the fragility of 
our planet ("Universe Sandbox," n.d.). 

 

Kerbal Space 
Program 

Space Program Simulator that allows the user to build and fly 
rockets and space planes, get them into orbit, and perform 
scientific experiments from space. During its development, NASA 
collaborated with KSP's developers to create an in-game mission 
mirroring NASA's Asteroid Redirect Mission ("Kerbal Space 
Program - Create and Manage Your Own Space Program," n.d.). 

 

Furthermore, there are numerous other data visualization systems that have been 

developed to support the visual analysis of planetary defense data. These systems include 
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the Small Body Information System (SBIS) (Farnocchia et al., 2015), the Jet Propulsion 

Laboratory Asteroid Tracker (JPLAT) (Mommert et al., 2014), and the University of 

Arizona Lunar and Planetary Laboratory Asteroid Tracker (LPLAT) (Howell et al., 

2006). 

The SBIS is a data visualization system that was developed to support the visual 

analysis of planetary defense data. The SBIS uses the Google Maps API to visualize 

planetary defense data. The SBIS also allows users to query the planetary defense data. 

The JPLAT is a data visualization system that was developed to support the visual 

analysis of planetary defense data. The JPLAT uses the Google Earth API to visualize 

planetary defense data. The JPLAT also allows users to query the planetary defense data.

 The LPLAT is a data visualization system that was developed to support the 

visual analysis of planetary defense data. The LPLAT uses the Google Maps API to 

visualize planetary defense data. The LPLAT also allows users to query the planetary 

defense data. 

2.4 Three-dimensional Trajectory Data Management and Mining 

The issue of searching and managing two-dimensional data has been analyzed 

extensively. There are several publications on how to evaluate queries when the attribute 

values at each time t are known for sure. Emrich et al. (2012) presents a method for 

representing and querying uncertain spatio-temporal data in an efficient manner. The 

researchers further propose novel approximation methods to predict the uncertain 

movement of things as a follow-up to their work (Emrich et al. 2012). These strategies 

allow for efficient and effective filtering while query evaluation uses a hierarchical index 
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structure. In another study (Niedermayer et al. 2013), the researchers suggest a sampling 

technique that employs Bayesian inference to ensure that observed paths reflect the data 

in the database. 

These solutions are tailored to: 1) two-dimensional data that is 2) located on the 

surface of the earth. These existing solutions for large-scale trajectory database 

management and mining cannot be directly applied to stellar bodies and their trajectories.  

There is a lack of research or expertise on mining potentially hazardous trajectories of 

stellar bodies (Tsumoto and Hirano 2010). 

There are two main challenges when it comes to managing and mining large sets 

of stellar body trajectories: 

1) The three-dimensional nature of space: Most trajectory data management 

solutions are designed for two-dimensional data. This means that they cannot be directly 

applied to data that exists in three-dimensional space. 

2) The movement of stellar bodies is not constrained by the surface of the earth: 

The trajectories of stellar bodies are not limited to the surface of the earth. This means 

that traditional methods for managing and mining trajectory data (such as those 

mentioned above) cannot be used. 

Given the size and complexity of such data sets, it is not trivial to develop 

solutions for managing and querying them effectively (Jiang 2015). This dissertation 

discusses the challenges associated with managing and querying three-dimensional 

trajectories and propose several possible solutions. 
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The first challenge is because three-dimensional trajectory data are typically too 

large to be stored in a traditional relational database management system (RDBMS). 

Thus, it is necessary to use a more scalable database solution, such as a NoSQL database 

(Kim et al. 2020). However, NoSQL databases are often less efficient when it comes to 

query processing, due to their lack of support for advanced query optimization techniques 

(NICA et al. 2019). 

The second challenge is that three-dimensional trajectory data are typically too 

complex to be queried using traditional SQL queries. This is because SQL was designed 

for two-dimensional data and does not support the type of query operations that are 

typically required for three-dimensional trajectory data. For example, SQL does not 

support queries that involve spatio-temporal computations, such as finding all trajectories 

that pass within a certain distance of a given point in space at a given time. 

To address these challenges, numerous possible solutions have been proposed. 

One solution is to use a graph database, such as Neo4j (Drakopoulos, Gourgaris, and 

Kanavos 2018), to store and query three-dimensional trajectory data. Graph databases are 

well suited for storing and querying complex data structures, such as three-dimensional 

trajectories. They also support efficient query processing, due to their support for 

indexing and query optimization. 

Another solution is to use a MapReduce framework, such as Hadoop, to process 

three-dimensional trajectory data. MapReduce is a scalable batch processing framework 

that is well suited for processing large amounts of data. It is also efficient, due to its 

parallel processing capabilities (Thusoo et al. 2009). 
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A third solution is to use a stream processing framework, such as Apache Storm, 

to process three-dimensional trajectory data (Shieh et al. 2017). Stream processing is a 

type of real-time data processing that is well suited for handling large amounts of data. It 

is also efficient, due to its ability to process data in parallel. 

Each of these solutions has its own advantages and disadvantages. In general, 

graph databases are more efficient for query processing, but they may not be able to 

handle the large amount of data that is typically associated with three-dimensional 

trajectory data. MapReduce frameworks are scalable and can handle large amounts of 

data, but they are less efficient for query processing. Stream processing frameworks are 

efficient for query processing, but they may not be able to handle the large amount of 

data that is typically associated with three-dimensional trajectory data. 

In conclusion, there is a lack of research or expertise available on mining three-

dimensional trajectories. Given the size and complexity of such data sets, it is not trivial 

to develop solutions for managing and querying them effectively. However, several 

possible solutions have been proposed, each with its own advantages and disadvantages. 

Further research is needed to determine the best way to manage and query three-

dimensional trajectories effectively. 
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3. DATA FUSION AND DATA FRAMEWORK 

3.1 Data Description 

The data adopted by this dissertation are listed in Table 4 with detailed 

information. 

 

Table 4. Data sources used in the study. 

Dataset Organization 
& Data 
Source 

Output Parameters Related 
Product 

Role 

Small-Body 
Database 

NASA JPL 
Horizons 
Web-Interface 

Formatted 
HTML/Plai
n 
text/downlo
ad 

Settings by 
observer 
location and 
time span 

Generate 
ephemerid
es for 
solar-
system 
bodies 

Data-fusion/NEO 
model visualizations 
Parameters accepted: 
ephemeris type/target 
body/location/time 
span/table 
settings/display output 

Close 
Approach 
Data 

NASA 
CNEOS Close 
Approaches 

CSV/ 
Excel/ 
REST API 

Nominal dist 
and H limit 

Close 
approaches 
to the 
Earth by 
NEOs 

Data-
fusion/Visualization/ 
Knowledge base 
Parameters accepted: 
near future/distance/ H 
limit 

Sentry 
Impact Risk 

NASA 
CNEOS 
Impact Risk 
Data 

CSV/ 
Excel/ 
REST API 

Observation 
time/ 
probability/ 
Palermo 
scale/ H 
value 

Highly 
automated 
collision 
monitoring 
system that 
continually 
scans for 
future 
impact 

Visualization/ 
Communication 
Parameters accepted: 
Object designation/ 
probability/diameter/s
cale 

Orbits and 
Discoveries 

Minor Planet 
Center 

JSON/HTM
L 

Frequencies/ 
Date 

Minor 
Planet 
Center 
orbits and 
discoveries 
online 
browser 

Visualization 
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SBDB Small-Body 
Database 

API 
endpoints 

Similar to 
NASA JPL 
Horizons 

Method of 
requesting 
machine-
readable 
data 

Visualization/web app 

DAMIT DAMIT 
asteroid 
models 

Tar.gz Asteroid 
Attributes 

3D shapes Visualization 

NHAT NASA/JPL 
NHATS Data 
API 

JSON/HTM
L 

Asteroid 
Attributes 

Observatio
n and 
Radar 
details 

Visualization 

 

 
3.1.1 JPL Horizons Small-Body Database 

JPL's small-body database contains orbital elements and physical parameters for 

all known asteroids and most recent comets. The small-body database search engine is 

used to generate the required custom tables of orbital and physical data for all asteroids 

and comets in this dissertation. As a proof of concept, a table of orbital elements for 

Bennu, 67P, and PDC 2019 was generated using this tool. Output can be displayed in the 

browser, accessed via web API, or optionally downloaded in CSV format. To assure that 

this data source works with the data-fusion strategies, we created a python script to 

download the dataset via their provided web API connection automatically. The Small-

Body Database Browser will be used to view data for a specified asteroid or comet. This 

tool will allow us to visualize the orbit diagram of a potentially hazardous object, its 

discovery circumstances, and its selected known physical parameters. Figure 1a displays 

the orbital elements variable, while Figure 1b shows the orbital determination parameters 

associated with "Bennu" retrieved from NASA JPL Small-Body Database Browser.  
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Figure 1: (a) Bennu's orbital elements referenced on 2011-Jan-01. (b) Orbit Determination Parameters 
referenced at the same Epoch 

 

3.1.2 CNEOs Close Approach Data 

Although a "close" passage astronomically can be far away in human terms 

(millions or even tens of millions of kilometers), near-Earth objects can occasionally 

approach close to the Earth. CNEOS Earth Approach software detects predicted Earth 

close approaches for all known NEOs, in both the past and the future, and tabulates the 

close approach data organized by time. The close-approaches data will be accessed via 

their HTTP API services. This API provides access to current close-approach data for all 

asteroids and comets in JPL's SBDB. The only limitation to using this data source is that 

by default, the query parameter is set up to only retrieve NEO less than 0.05 au 

(astronomical unit) in the next 60 days, sorted by date. This data source was also used in 

the data-fusion proof-of-concept application as an initial prototype. The sample data 

output is returned in JSON format, as shown in Figure 2. 

(a) (b) 
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Figure 2. Sample JSON output retrieved from CNEOS close-approach API endpoints 

 

3.1.3 CNEOs Sentry Impact Data 

Sentry is a highly automated collision monitoring system that continually scans 

the most current asteroid catalog for possibilities of future impact with Earth over the 

next one hundred years. Whenever a potential impact is detected, it will be analyzed, and 

the results will be published to the Sentry database. A summary of all known potential 

impacts can be found on the main Sentry page ("Sentry: Earth Impact Monitoring," n.d.). 

The table quantifies the risk posed by the tabulated objects, using both the Torino Scale, 

which was designed primarily for public communication of impact risk; and the Palermo 

Scale, which was designed for technical comparisons of impact risk. A Palermo Scale 

value less than zero and a Torino Scale value of zero indicate a risk below the 

background level, which is the average risk from the entire NEO population. This data 

source will be essential to the visualization tool, as the objects with the highest impact 

probability are retrieved from this database first before automatically scanning the other 

data sources for additional visualization information. This source provides the following 

information: object designation, year range, potential impact, impact probability, 

velocity, magnitude, estimated diameter, Palermo scale minimum, Palermo scale 
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maximum, and Torino scale. Table 3. Describes the field outputs that will be used in this 

dissertation from the Sentry Impact Risk DB. 

 

Table 5. Sentry Risk Impact field outputs a summary 

 
 
 
3.1.4 Minor Planet Orbit and Discovery Data 

The MPC discovery circumstances datasets will be used to visualize the discovery 

details for minor planets numbered (1) to (5000)—a list of all provisional designations 
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belonging to a specific minor planet that can be found using Minor Planet Center's 

interactive designation converter ("Minor Planet Designations," n.d.). This dataset returns 

the discovery date of an object in YYYY MM DD form and Name Ref. (the reference to 

the citation accompanied by the naming of the object). An example of a returned citation 

for 5000 is shown in Figure 3. 

 

 

Figure 3. Minor Planet Center Interactive Designation Converter returning citation for IAU (5000). 

 

3.1.5 SBDB 

The SBDB Database is a small-body database that provides a way of requesting 

machine-readable data on a specified small body within JPL’s SSD/CNEOS Small-Body 

Database. The SBDB includes object identification and naming information, orbital data, 

and selected physical data for all known asteroids and comets within the solar system. It 

also contains rich ancillary data such as close approach and virtual impactor information. 

All the orbits are computed by JPL’s Solar System Dynamics (SSD) group. The SBDB 

provides complete data for each object, that is, from the designation and orbit number to 

physical properties. Data may be accessed in real-time or by requesting a bulk download 
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of an entire region or all regions. In addition to positional and photometric measurements, 

the database includes normalized radar cross-sections (RCS) and effective optical 

diameters for most objects. Also provided are some ancillary data (e.g., diameter-to-

diameter ratios, albedo measurements), along with information on close approaches and 

virtual impactors.  These objects can be defined either by a specific SBDB designation or 

by a JPL-designated identifier. For example, the object designated "433 Eros" is also 

known as 1969 NA and 206039, while 99942 Apophis is also known as 2004 MN4 and 

2006 SQ372. The positional data are part of a space-based frame and include (but are not 

limited to) Earth-centered inertial coordinates in the J2000 frame, with a nominal epoch 

of J2000.0; heliocentric ecliptic coordinates; and B1950 ecliptic coordinates. Orbital data 

include orbital elements that describe both the orbit shape and the argument of perihelion. 

For some objects, shape models are available as well. Photometric data include standard 

photometric parameters such as total magnitudes and colors in various filters and bands 

and the number of every certain type of observation (e.g., radial velocity measurements, 

occultations, eclipses). Physical properties may also be included: diameters, masses, 

albedos, densities, and radar cross-sections. The physical properties are commonly 

derived from the photometric data; however, they may also be provided in tabular form 

or as modeled values. The orbit data products include the orbital elements (e.g., semi-

major axis, eccentricity) of an object's orbit around the Sun. It is most often implemented 

as a database, although it may also be delivered in other forms (e.g., an FTP site). The 

data are available periodically or by request for bulk download. Most of such orbits have 

been computed at the Minor Planet Center (MPC) using very precise techniques, making 
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use of all observations on hand. However, some orbits are too incomplete for this method 

to be used. All other small bodies that meet the size and orbit characteristics for cataloged 

status but do not have sufficiently well-defined orbits are considered unconfirmed until 

their orbits can be computed. Orbit determination using various techniques continues 

throughout the lifetime of each object, and gaps in data coverage may result in temporary 

unconfirmed status (see: IAU Resolution 6). 

3.1.6 DAMIT 

DAMIT is a database that consists of asteroid models that were derived using the 

light-curve inversion method developed by (Kaasalainen et al. 2004; Kaasalainen and 

Torppa 2001), combined, in some cases, with other inversion techniques. Light-Curve 

Inversion is a technique in the field of astronomical photometry. It involves taking a light 

curve from an observed asteroid and using data from other sources to generate a possible 

model for an asteroid's shape. The inversion process starts with a light curve observed for 

a particular interval, typically spanning one or two orbital cycles. The observed 

magnitude at each point in this light curve is then inverted into the brightness that would 

be observed if another hypothetical asteroid was rotating in place on that arc. This gives 

rise to an "inverted" light curve which can then be compared to the original light curve.  

Inversion is sometimes called "intensity mapping," although intensity mapping typically 

refers to the use of a single light curve, with intensity mapped at each point rather than 

brightness. 
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DAMIT uses the following technologies: web apps, MATLAB scripts, IDL 

scripts, web services, all currently running on Linux servers. DAMIT allows the user to 

select any object in the database and output detailed information about it. DAMIT 

contains detailed information for 3303 asteroids with 5715 models and four tumblers with 

known light curves, rotation periods, and amplitudes. The asteroid data are downloadable 

in FITS format, while the light-curve parameters are available via web services. A brief 

description of each model is also recorded in DAMIT's database, including information 

about which papers published its creation. DAMIT provides a unique interface to search 

for objects by the period range and other search criteria. 

 

DAMIT is a project of the IOTA Asteroid Lightcurve Data Exchange (ALDEx). 

ALDEx provides access to light-curve data that have been obtained for asteroids and 

comets using ground-based telescopes. Access to light-curve data is provided via web 

services. The DAMIT interface allows the user to select any object in the database and 

output detailed information about it. As an example, below are some images of Phaethon 

taken with GMOS at Gemini North, including an image of the asteroid's light curve 

obtained with the Gemini Multi-Object Spectrograph (GMOS) and a graphical 

representation of its rotation period. 
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Figure 4: Visualization of 3200 Phaethon 3D render in the DAMIT Platform  

  

3.1.7 NHAT 

NHATs stands for Near-Earth Object Human Space Flight Accessible Targets 

Study. This study began in September 2010 by the Planetary Science Division at NASA 

Headquarters in Washington, D.C., U.S. The purpose of the project is to identify any 

known NEOs, particularly NEAs, that might be accessible by future human space flight 

missions. To monitor these asteroids, (Barbee 2014) developed a system that locates and 

analyzes new NEAs and those with updated orbits from the JPL SBDB. This automated 

process executes daily, and the results are distributed to the astronomy community and 

the general public to aid in the prioritization of telescope time allocation. The initial 
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phase of the study was independently performed by the Goddard Space Flight Center and 

Jet Propulsion Laboratory (JPL) (Perozzi et al. 2010). These objects are accessible with a 

single Hohman transfer, meaning it would take less than six months for an object to travel 

from low Earth orbit (LEO) to the object to be visited.  

The first phase of the project included a complete survey of all NEAs whose 

orbits could be accessed by future human space flight missions, as well as NEAs that had 

been detected up through 2013. The objects were then divided into different access 

classes based on how much delta-v it takes to rendezvous with them. The classes range 

from "easily accessible" (Shang and Liu 2017) to reachable only with a "major technical 

feat" (Farquhar et al. 2002; Perozzi, Rossi, and Valsecchi 2001). Almost all of the objects 

in NHATS are in access-class 1 or 2, meaning they can be reached by a vehicle that is 

already going to a NEO and uses less than about 10% of its fuel. NHATS identified 17 

NEAs that fall into access-class 1 and 2. Phase 1 was validated by both JPL and GSFC 

independently with very similar answers. Phase 1 found there to be about two dozen 

NEA accessible by human space flight missions, depending on the technology used, such 

as solar electric propulsion (SEP) and ion rockets. The study also found that access-class 

1 and 2 objects were more numerous than any other, with about half of the NEAs in 

NHATS coming from classes 1 and 2. 

A study conducted by Barbee, Mink, and Adamo (2011), showed that here are 

three things that a NEA must do before it can be considered a NHATS qualifying NEA: 

1) Earth departure C(sub 3) energy < = 60 km(exp 2)/s(exp 2); 2) total mission delta-v < 

= 12 km/s (including an Earth flyby for a total delta-v of 12 km/s); 3) and a maximum 



39 
 

estimated size > = 30 m. Of the 765 NEAs which passed the Phase II trajectory filter, a 

total of 590 NEAs also satisfied the further constraint of maximum estimated size > = 30 

m. The NHATS study found that Atiras (aphelion < 0.983 AU), Atens (aphelion > 0.983 

AU, alpha < 1.0 AU), Apollos (perihelion < 1.017 AU, alpha > 1.0 AU), and Amors 

(1.017< perihelion < 1.3 AU) orbit families are the most accessible with only 11% of 

known Apollos passing the NHATS qualification criterion, 31% of known Aten's 

passing, 456% of known Apollo's passing, and 116% of known Amor's passing. These 

simple statistics demonstrate that NEAs like Atens (aphelion > 0.983 AU, alpha < 1.0 

AU) orbit possesses a feature that makes them accessible to human space flight missions 

like the Comet Surface Sample Return (CSSR) and Near-Earth Asteroid (NEA) Scout 

missions.  

In a recent study conducted by (Michel et al. (2016)), the researchers were able to 

produce the first photometric result of the survey started in 2013. The purpose of the 

study was to find out NEAs' rotational periods, light curve amplitudes, and shapes. Two 

other centers also performed the first phase of the NHATS survey for validation 

purposes.  

 

3.2 Method and Dataset Relationship 

It is critical to have a domain ontology, or at least a vocabulary repository, to 

provide a common understanding of specific domains that can be communicated between 

people and applications. This is especially true for the planetary defense community 

because it is highly inter-disciplinary when it comes to knowledge integration and 
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mitigation. Due to the lack of established ontology for planetary defense knowledge 

integration, we constructed a vocabulary repository of 146 concepts describing the 

semantics of the information related to NEO observation, NEO characterization, NEO 

impact modeling, and decision support and mitigation. These vocabularies range from 

sample NEOs (e.g., Bennu) to observatories (e.g., Arecibo Observatory), from impact 

modeling (e.g., airburst modeling) to disruption strategies (e.g., NED Deflection). 

Vocabularies are initially sorted by number and alphabet when displayed with abstracted 

description. Most descriptions are statements with references, as discussed in the 

methodology section for vocabulary repository construction, which is listed at the end of 

the glossary so that users can trace back to the original links or publications for detailed 

information. The search function is enabled to find specific vocabularies, as indicated in 

Figure 5a. The result shows all relevant records and not only entries that contain 

keywords in the phrase, but also those that involve the keywords in their descriptions. 

Ontology associated with Smart Search supports related search suggestions, 

offering convenience for users to explore other possible keywords from the vocabulary 

repository. As Figure 5b demonstrates, related searches for "model" are 

"VARIATIONAL_ANALYSIS," "PHYSICS BASED_MODEL," and 

"HIGH_FIDELITY_SIMULATION," etc. All relatives are followed by a score indicating 

relevancy which, based on Yang et al. (2017), is pre-calculated for the relations among 

vocabularies within PD ontology. The general process of generating these correlations is 

to establish a pairing relationship between every two words using PD OWL and use 

scores to indicate the closeness between the two. As Figure 9b illustrates, the weight for 



41 
 

"model" and "high_fidelity_simulation" is 0.75, which was used for ranking the related 

search results in Figure 5a. 

 

Figure 5a. Search results of "Bennu" within integrated glossary for knowledgebase ontology. 

 

Figure 5b. Example showing Related Searches calculated for "model." 

 

The proposed framework in this dissertation offers an interactive three-

dimensional visualization tool. As a proof-of-concept, this tool used precise data fusion 

methods written in python to merge asteroid data from JPL Horizons, ESA S2P, and 
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NASA 3D Resources. Firstly, the object was fetched from the JPL Horizons Small-

Bodies telnet system, via our python script, using the usage command shown in Figure 6. 

After downloading the object-related contents, another python script gets triggered to 

parse the downloaded NASA JPL data into JSON format. Then the data gets stored in the 

local typical data service instance. Additional steps will need to be taken to integrate the 

other data sources into the data fusion method. Figure 8 shows a quick architectural 

overview of the future data fusion process. 

 

Figure 6. Connection to JPL Horizons Small-Bodies DB 

 

 

Figure 7. Architectural overview of the data-fusion process 
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The six primary data sources stated in Table 2 had to be incorporated into the 

unified data storage platform. These data sources had several commonalities that were 

taken under consideration during the data collection step. Commonalities, such as 

numbered id, object name, and citation code, were common across all organizations since 

all observations need to be submitted to Minor Planet Center first. The MPC is 

responsible for the designation of minor bodies in the solar system: minor planets, 

comets, and natural satellites. The MPC is also responsible for the efficient collection, 

computation, checking, and dissemination of astrometric observations and orbits for 

minor planets and comets. Once the numbered id was retrieved, several actions were 

needed to access related data from different sources, some of which only allowed the 

system to collect the data via FTP/SFTP; other sources were accessed via API or direct 

web download. Manual data collection would have been vastly time-consuming since 

there are over 26,000 registered near-Earth objects, with new objects getting discovered 

daily. An automated route had to be taken that would capture the object id and follow 

several preformulated instructions to collect the data in an organized manner. To get to 

that stage, a database had to be architected with all the necessary tables that would host 

the data. Figure 8 visualizes the UML diagram that was associated with the unified 

database.  
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Figure 8: Planetary Defense Knowledge Gateway ERD 

3.3 Considered Data Fusion Parameters 

Data fusion is the process of combining data from multiple data sources to 

provide a complete understanding or representation of the data (Qi et al. 2020). This 

dissertation discusses the multi-data source data fusion methodology, which uses 

combined analysis on different types of data to determine most physical and surface 

properties (De Juan and Tauler 2019). An advantage of using multi-data methodology is 

that one can characterize an asteroid in a single coherent inversion that yields remarkable 

results. The use of this technique eliminates the need for multiple independent analyses to 

derive accurate parameters, such as shape and rotation state, about an asteroid's orbit and 
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orientation (i.e., spin axis). Multi-data sources also allow the characterization of asteroids 

with different shapes and rotation states. Furthermore, this method uses more data 

sources to derive a complete set of physical properties. 

The study of properties of near-Earth asteroids (NEAs) provides great insight to 

the understanding of the early Solar System formation and evolution as well as the threat 

potentialities to life on this planet (Warner and Stephens 2019). In general, using multi-

data sources, such as interferometry radar, to determine the size, mass, and spin state of a 

NEA allows us to understand its composition. Understanding the composition of NEAs 

can lead us to determine their origin and provide insight into the early Solar System 

formation and evolution (Reddy et al. 2015). The study of these properties also allows us 

to predict potential impact events that may occur in the future. Studying an asteroid's 

composition that has been affected by space weathering gives us a better understanding 

of the effects of space weathering on its potential impact on energy. A multi-data source 

data fusion methodology that is presented in this dissertation is the combined analysis of 

wind, and light curve disc resolved images (Nachouki and Quafafou 2008). The use of 

this methodology can yield highly accurate estimates on shape, spin state, and albedo by 

eliminating the need for multiple independent analyses. The major parameters that can be 

derived using this methodology are the asteroid's size, mass, and rotational state. 

Radar data is used to determine an oblate spheroid shape of asteroids by 

combining the results from both direct Doppler delay measurements and interferometry 

data (Cox 1972). The use of these different techniques allows for an oblate spheroid 

shape to be determined. It has been found that radar interferometry yields a higher quality 
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data set in determining an asteroid's properties than direct Doppler delay measurements 

alone. 

Using the Light-Curve Inversion method from the DAMIT dataset, hundreds of 

asteroids with different shapes and sizes have been derived using multi-data sources, such 

as interferometry and wind images, to determine the most accurate results (Ďurech, 

Sidorin, and Mikko Kaasalainen 2010). The use of multi-data sources allows for a more 

efficient data analysis that can yield highly accurate physical properties about an 

asteroid's shape, rotation state, and albedo. Combined analysis on different types of data 

to derive physical properties provides a better understanding of these asteroids' origin, 

composition, and evolution. 

Shape modeling consists of two processes: Finding the rotation state (polar 

orientation) and orientation (spin axis) of an asteroid (Hanuš et al. 2011). An NEA’s 

rotation state is calculated by analyzing its geometry represented with light curve disc 

resolved images (Ďurech et al. 2016). Once this is done, it can be rotated to align to an 

astrometric model with an azimuth angle measured from the west (az = 90°). If this 

rotation state doesn't match any of the rotation states modeled from the light curve disc 

resolved images, it is considered as a previously unknown rotation state.  

Orientation can be derived using at least three different methods: stellar 

occultation timings, mid-infrared thermal radio matching, and optical interferometry 

techniques. Timing of an NEA's stellar occultations yields an accurate estimation of an 

NEA’s size and shape. The most accurate results are possible when using a statistically 

significant number of stellar occultations. For example, in one study, results indicated 
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that for an NEA with an albedo of 0.15, the standard deviation on its half-light radius is 

approximately 2%. The mid-infrared thermal radio matching method provides a 

consistent estimation of shape and size. An important factor in the mid-infrared thermal 

radio matching method is the constraining factor on an NEA’s rotation state 

(Kaasalainen, Ďurech, and Sidorin 2014). However, this method can only be used for 

asteroids that have either a spheroidal shape or triaxial ellipsoidal shape, since it requires 

an assumption of symmetry. In another example, an NEA with an albedo of 0.15 and a 

triaxial ellipsoidal shape with dimensions of 20×8×8 km was determined to have an 

obliquity between 30° degree and 40°, the spin axis between 330° degree and 120°, the 

longitude of ascending node (λ) between 40° degree and 270°, an argument of perihelion 

(ω) between 0° degree and 10°, and right ascension of the ascending node (β) between 

60° degree and 110° degrees. The optical interferometry technique is sensitive to the 

orientation of an NEA's axis-of-symmetry and spin axis.  

The determination of an NEA's albedo is important since it allows us to determine 

the effect of space weathering on its potential impact energy and predict its orbital 

evolution. An NEA's surface properties such as color, composition, and texture can be 

derived from the study of multi-band photometry. The photometric colors of an NEA are 

usually measured in the visible wavelength range (0.35–1.05 μm), while its thermal 

properties are derived by observing the mid-infrared wavelengths (3–100 μm). It is 

important to note that analyzing multi-band photometry data on its own may not be able 

accurate since optical brightness does not directly correspond to the object's thermal 
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properties. However, if both photometry and thermal data are available, it is possible to 

determine the albedo of an NEA. 

Albedos for Main-belt Asteroids (MBA) and Near-Earth Asteroids (NEA) derived 

from spaceborne observations, such as Wide-field Infrared Survey Explorer (WISE), 

NEOWISE, Spitzer and Herschel Space Observatory, have been published in the 

NASA/JPL Planetary Data System. 

The size, shape and rotational state of a NEO can also be derived from ground-

based observations, such as radar or Optical Interferometry. In addition to photometric 

data, NEAs reflect radio waves at frequencies between 1-20 MHz. The presence of a 

NEA’s radio emission can be attributed to the different mechanisms that produce it. One 

mechanism is electron cyclotron maser emission caused by electrons accelerated in an 

electromagnetic field during a single or multiple interactions with plasma waves. Another 

source of this radiation is free-free emission, which arises from a collision between a fast 

magnetosonic wave and a slower ion-acoustic one. The last mechanism for this emission 

is non-thermal bremsstrahlung in which an energetic charged particle interacts with the 

ambient plasma and gains energy in during its collision. Note that observations in 

frequencies above the decimeter range provide more information about an NEA’s surface 

properties than those at lower frequencies since the electromagnetic wave is attenuated by 

the surface as it propagates. 

Disk-integrated photometry is the most abundant source of data on NEOs. This 

observation method is most often used for NEAs with an albedo of 0.07 or higher, which 

are detectable at optical wavelengths even during the night. For period determination, a 



49 
 

single lightcurve covering the full rotation is sufficient. However, a set of such 

lightcurves at different phase angles is required to determine the asteroid's shape, spin 

state, and spectrum.  Kaasalainen and Torppa's (2001) Light-Curve Inversion method has 

been reviewed in numerous studies. Since then, the method has been widely used, and 

several improvements were introduced by various researchers (Ďurech et al. 2016; 

Kaasalainen, Ďurech, and Sidorin 2014). These studies are available at the Database of 

Asteroid Models from Inversion Techniques (DAMIT) (Ďurech, Sidorin, and Mikko 

Kaasalainen 2010). The reliability of method was proved by comparing its results with 

independent data, such as laboratory asteroid models (Müller et al. 2005), adaptive-optics 

(AO) images (Pravec et al. 2006), stellar occultations (Ďurech, Sidorin, and M. 

Kaasalainen 2010), and (433) Eros (Kaasalainen, Torppa, and Piironen 2002). 

3.4 Data Pipeline 

Data pipelines are a set of data-processing steps that are built on top of each other 

so that the output of one operation feeds into the next downstream operation (Quemy 

2019). It transforms and organizes raw observation data from multiple sources into forms 

that can be ingested by analysis tools. The goal of this process is to efficiently integrate 

data sources used in this research. The data pipeline is an important aspect for many 

researchers in the planetary sciences. It collects, assembles, and manages datasets for use 

by tools that detect orbital features. To efficiently integrate data sources from CNEOs 

JPL, Sentry, NHATs, DAMIT, Minor Planet Center, the system uses an analysis pipeline 

written in bash. In summary, this processes individually attributed asteroid data that are 

later inserted into the PostGRES SQL database. The Data pipeline uses reduction 
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techniques, and other methods for performing quality trimming, read mapping, and 

Baseline data filtering that are discussed in this section.  

The data pipeline has 4 different stages. The downloading stage has its bash 

script, which performs certain tasks to the input dataset at each stage. The first step is 

sbdb_data.sh, followed by close-approaches_data.sh, sentry_data.sh, nhats_.sh, and 

finally DAMIT.sh. Each stage calls the script that is beneath it in an orderly fashion, 

which is shown in Figure 9.  

Figure 9. Data Pipeline Diagram 

 

There are a few of the data reduction techniques that are used in bash data 

pipelines. The first is quality trimming. In this method, some of the values of the 

measured quantities have been discarded from both the input and output datasets to 

minimize ambiguity and increase the precision of the database. This reduces noise for 
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downstream processing. The read mapping technique is a process of mapping a set of 

reads to their respective locations on a sequence alignment for future analysis on the 

sequence alignment (Xin et al. 2013). For this pipeline, read mapping involves mappings 

from our input file to our aligned file, scanned on two-reads files as well as on single-

reads files which are then saved as positional mapped files. Baseline data filtering is 

another technique that has been implemented in Bash data pipelines. This method of 

filtering is applied to the baseline, which is a set of observations over time of an object 

passing through Earth’s atmosphere. The idea behind this technique is that objects with 

low albedos will be brighter in the baseline dataset because of atmospheric scattering 

while high albedo objects will be darker (Harris et al. 1989). These outliers must then be 

removed before post-processing. 

The first step of the data pipeline is to pass our input file (SBDB_Query.api) with 

the following fields, shown in Table 6, into the download_sbdb.sh bash script. This script 

calls the API, then zips the output data inside the rawdata folder that gets generated 

during the Create phase of the pipeline. This script performs a three-way merge of the 

data from all the remaining data sources into a single file and adds an additional column 

to each row which is a unique identifier for each asteroid. This is then piped into the next 

stage that downloads data from CNEOs Close Approach dataset.  
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Table 6. Parameters passed to each data sources 

Data sources Parameters 

SBDB full_name,pdes,name,class,neo,pha,moid,moid_jup, 

epoch,e,a,q,i,om,w,ma,tp,per,n,ad,first_obs, 

last_obs,n_obs_used,H,M1,diameter,density, 

extent,rot_per,GM,pole,albedo,BV,UB,IR,spec_T,spec_B 

 

Close-Approach Date-min, date-max, dist-max, full_name 

Sentry * (all) 

NHATs * (all) 

DAMIT * (all) 

 

 

The second, third, and fourth step of the data pipeline is to pass our input from 

close_approach, sentry, and NHATs datasets into the download bash script. This script 

calls the respective APIs with cURL. The main.py Python script performs post-

processing on the Sentry data files, merging the data into multiple files in rawdata.  

The fifth step of the data pipeline is to pass the DAMIT input URL into the 

DAMIT_data.sh bash script, which calls the DAMIT/scripts/DAMIT_downloader.py 

Python script. The DAMIT_downloader.py Python script downloads all 3-Dimensional 

asteroid model files from the website for this project and saves them in a directory called 

shapes/.  
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The final step of the data pipeline is to pass our input file (DAMIT_output/assets/) 

into a final sh script called DAMIT_final.sh which calls the 

DAMIT/scripts/DAMIT_preprocessor.py Python script, whereby it performs some post-

processing on all the asteroid models. The final product is saved as rawdata/shapes. 

 

3.5 Data Models 

This research was mainly built with consideration around loosely coupled design 

principles. Future researchers would be able to leverage the current system's models to 

integrate new data sources. It would be possible to write a new model that extracts data 

from a different source without having to rewrite a lot of the existing code. The Django 

framework also allows for easy integration with advanced machine learning algorithms. It 

also encourages good programming practices, such as writing readable and well-

commented code. Django has carefully designed many of its components to be pluggable, 

meaning that they can be swapped out for alternative implementations without changing 

the surrounding code (Alchin, Kaplan-Moss, and Vilches 2013). One of Django's most 

significant decisions is to use the template system as its primary I/O layer. This decision 

significantly increases the freedom Django programmers have when constructing their 

applications; it does not tie them to any database or data output format. Django uses the 

database layer as its primary storage mechanism (Holovaty and Kaplan-Moss 2009). This 

layer is completely agnostic on how data gets displayed; it typically relies on an external 

system (such as the Django template system) to “render” data back into HTML. 
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Django models are the data structures, processes, and various tooling for 

managing content types in Django; they are the way Django interacts with databases. 

Models are also designed to be separate from views (template layer) (Alchin et al. 2013). 

Django treats models as regular Python classes. These classes allow encapsulation of 

both data and the various operations that may be performed upon it. Each model maps to 

a single database table. Each row in the database table is represented by an instance of the 

appropriate Django model class, and each field on the model corresponds to a column in 

that table. One can define custom methods and foreign keys for models. Django has built-

in support for many common field types and provides mechanisms to define custom field 

types. When a model is created, Django creates a table for it with some fields 

automatically. One can use in_bulk() to query objects from certain models and sort 

through all of the objects of the target model. Default objects are loaded into memory 

when needed.  

As default, Django loads only what one needs, but if querying is done then objects 

are loaded into memory completely. Django provides a few base classes that are helpful 

when building custom models. Django models rely on a few primitive behaviors from 

Python, such as defining custom constructors and deconstructing objects into fields. 

Every model class inherits from the Model base class, which provides default behavior 

common to all models. When one wants to add or edit data in tables, they can use Django 

forms. Forms are used for both editing existing data and for creating new data in the 

database.  
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The Planetary Defense Knowledge Gateway framework leverages seven custom 

models. These models are ObjectType, OrbitClass, SpaceObject, CloseApproach, 

SentryEvent, NHATSObject, and ShapeModel. The ObjectType model accepts Enum 

parameters that are either an asteroid or a comet. Comets are further classified into three 

types: long period, Halley type, or Encke-type. The OrbitClass model is designed to 

capture the orbit classification of an object in its type and subclass. For example, if the 

object orbits around the Sun, between the inner region of an asteroid belt and near 

Jupiter's orbit, then it is considered a Main-Belt Asteroid. SpaceObject is a model that 

captures information about near-Earth objects stored in SBDB. This model identifies and 

stores object name, orbit class, object type, basic orbital elements, and diameter. The 

CloseApproach model captures close approach of near-Earth objects with the Earth. For 

this model, one must input a date and time as well as details about velocity and distance 

between near-Earth and its nearest point of closest approach to the Earth. The 

SentryEvent model is designed to capture information on objects that have been flagged 

by Sentry as potential impact threats. This model captures information, such as object 

name, Sentry Object of Interest number, and Sentry Risk Assessments. NHATS Object 

model is designed to capture the NASA-designated near-Earth objects that will become 

candidates for close missions during the next launch window and has a predicted 

encounter date less than 20 years in the future. This model captures information, such as 

object name, NHATS Object of Interest number, and NHATS identification date. The 

ShapeModel is designed to capture information on shape models through its type and 

subclass. For example, irregular (oval cross-section), spherical (perfect sphere), conical 
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(cone-shape with half-angle less than 60 degrees), and contact binary. Figure 10 shows a 

visual representation of the hierarchical structure of the data model designed for the 

Planetary Defense Knowledge Gateway framework.  

 

Figure 10: Django Data Model Design 

 

The framework leverages Django Admin capability which allows the 

administrator to access and manage database content through a visual interface. The 

Planetary Defense Knowledge Gateway framework's model classes accept all the 

available options as described in the ObjectType, OrbitClass, SpaceObject, 

CloseApproach, SentryEvent, NHATSObject, and ShapeModel objects. The framework 

also provides a few pre-defined descriptions that return detailed object diameters 
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composition and classes so one can visualize the data to determine if it is an impactor or 

not. This framework uses multiple inheritances for its model classes, so changes are 

reflected across all inherited models. This way, model classes can be modified in one 

place, and it has a cascading effect on all models.  

3.6 Result 

For research topics that rely on data sources that are scattered amongst different 

organizations, it is difficult for systems to return data quickly. Traditional ways involve 

working with one database at a time to retrieve the dataset required to proceed to the next 

data source. This causes a delay since the data calls are being made in a synchronous 

fashion. A better approach is to use a data structure that relies on a scheduled automation 

tool to retrieve related datasets daily and upload them into one unified data storage 

system. In this dissertation, a system was designed that leveraged a bash data pipeline 

with an intricate Django solution incorporated with Postgres Database. Figure 11 shows a 

visual difference between a traditional approach and a unified data structure solution. The 

planetary defense community will find this method of storing and retrieving data useful 

because it will allow for quicker access to the data that is necessary for research. In 

addition, the planetary defense community can use this system to visualize the data in a 

way that is helpful for understanding the potential threat of an asteroid. By using this 

system, the planetary defense community will be able to take advantage of a) increased 

retrieval speed for planetary defense research, b) reduced need for manual intervention, 

and c) scheduled execution for data pipeline. 
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(a) 

 

(b) 

Figure 11 Synchronous Storage and Unified Storage: (a) synchronous storage with multi-data source indexing, 
(b) unified storage with data retrieved via automated asynchronous indexing 
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4. PARALLELING THE FUSION PROCESS USING PYTHON 

In the last few decades, we have seen a major shift in terms of computing power 

and capabilities. Computers and other devices that we use to compute information are 

now incomparably more powerful than they were just a decade ago. This change has been 

largely driven by changes in how processors work internally as well as an increased focus 

on parallel processing—which is what allows computers to do more things at once. 

Parallel processing systems allow for tasks, such as image recognition, data mining, 

rendering graphics, and other similar tasks, to be broken up into smaller parts and 

processed simultaneously so that they can be completed much faster than if these tasks 

were done one after another sequentially (in series).  

Traditional scientific application software, on the other hand, is typically 

sequential, with each process occurring one after another. This limits the amount of 

parallelism that a program can utilize because there is no way for a task to begin until its 

predecessor has completed it. Parallel programming presents an exciting new opportunity 

to not only make use of the full potential of hardware resources, but also to rethink how 

we write our scientific applications.  

Given the opportunity for such a paradigm shift, scientists and engineers need to 

be aware of how efficiently their current programs can be parallelized. Not only because 

it is an important part of putting high-performance computing (HPC) to work but also 

because parallel computing results in less code that needs to be written and maintained, 

making the life of a scientist easier.  
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In a variety of astronomical disciplines, parallel computing has been utilized. 

Supercomputers have been adapted to handle computationally demanding simulation 

code and physical modeling. N-Body simulations of massive star and galaxy clusters, 

radiative transfer, plasma simulation around pulsars, galaxy formation and mergers, and 

cosmology are just a few examples (Singh, Browne, and Butler 2013). However, many of 

the astronomical image processing and complicated data analysis activities are still done 

serially. One of the reasons for this is the inherent and perceived complexity of parallel 

programming. Another explanation could be that day-to-day astronomical data processing 

activities do not take an exceptionally long period to complete. Despite this, there are a 

few parallel modules dedicated to astronomical image processing. 

In this chapter, parallel data processing techniques was explored to parse and 

process the data that feeds the Planetary Defense Knowledge Gateway. To execute more 

complex astronomical activities at a faster rate, a few instructions for parallel processing 

on multicore machines was proposed. In addition, this chapter also discusses parallel data 

processing and the numerous alternative solutions available. It also focuses on the 

implementation process behind the Planetary Defense Knowledge Gateway data 

processing. Furthermore, three different astronomical data processing examples are 

benchmarked. 

4.1 Parallel Data Processing 

In general, parallel code is much more complex than serial code. Debugging is an 

issue only for parallel programs where many processes depend on results from other 

processes. However, parallel processing of enormous datasets is not an issue. Moving to 
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parallel coding not only requires engineers to have a proper set of hardware and software 

tools, but also requires them to rethink how they write their code. A parallel program 

requires multiple cores or computational nodes to execute. The first thing that comes to 

mind when attempting to solve a problem in parallel is how to divide it up into subtasks 

that may be handled simultaneously. 

In general, task parallelism vs. data parallelism are two methods for achieving 

parallelization. Each computing node may execute the same or diverse code in parallel in 

the case of task parallelism. The input data is distributed across the computing nodes, and 

the same code processes the data elements in parallel in data parallelism. Data parallelism 

is easier to implement and more appropriate for most astronomical data processing 

applications. This research chose data parallelism as the primary data processing 

technique. Given an N-processor or computing node system, the speedup that may be 

obtained by dividing a problem across many processors (compared to a single processor) 

is: 

Equation 1 

𝑆 =
𝑇!
𝑇"

 

Correspondingly, T1 and TN are the code runtime for one and N processors. TN is 

dependent on the number of computing nodes and the fraction of serial code. The total 

runtime of parallel code can be expressed using Amdahl’s Law (Gustafson 2011). 

Equation 2 

𝑇" =	𝑇# +	
𝑇$
𝑁 +	𝑇%&'( 
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Where Ts depicts the execution time of the serial fraction of the code, Tp 

represents the runtime of code that can be parallelized, and Tsync is the time for 

input/output operations. The efficiency of the parallel code execution depends on the 

level of code optimization. As such, a lower fraction of serial code would result in better 

efficiency. If we can keep N constant, then we can achieve better performance by either 

increasing the fraction of parallel code or decreasing the synchronization time.  

Multiprocessing has been used in this research instead of multithreading to 

achieve parallelism. Threads are sections of code that the operating system can schedule. 

The operating system creates the appearance of running many threads in parallel, but it 

switches between them rapidly (time-division multiplexing). In the case of multicore 

machines, threads operate on separate cores at the same time. In distinction to multiple 

threads, multiple processes are defined as having distinct memory and state from the 

master process that calls them (multiple threads utilize the same state and memory). 

Parallel programming is most often done in C, C++, and FORTRAN. However, 

interpreted languages like Python, Perl, and Java have provided software adaptations. 

This chapter focuses on Python as the major language of choice with the main objective 

focused on scientists' time, ease of use, and code reusing abilities. 

 

4.2 Multiprocessing in Python 

Python supports both multi-threading and multiprocessing. The operating system 

manages the scheduling and switching of the threads, rather than Python's interpreter. 
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Python has a feature called the GIL (Global Interpreter Lock) that restricts the number of 

active threads to one, even if numerous cores or processors are available (GIL Python 

n.d.). As soon as the running thread releases the GIL, it can perform I/O operations or 

interpretive period checks. During this time, waiting threads may execute for a few 

milliseconds. This hurts multi-threaded applications, resulting in longer execution times. 

The performance of Python on multicore machines deteriorates because the Python 

interpreter wants to run a single thread at a time, whereas the operating system will 

schedule the threads across all available processor cores. 

A more convenient way to achieve parallel execution is to utilize Python's built-in 

multiprocessing module. Parallelization could also be achieved by vectorizing the 

computations in NumPy(NumPy n.d.). Vectorization is a more efficient and optimized 

technique of replacing explicit iterative loops in the Python code. However, not all 

functions in Numpy or SciPy can be parallelized. To carry out this study, my co-

researchers and I utilized the multiprocessing native module. For comparison, we've 

created parallel code to process the application’s multi-source, integrated dataset. 

Although there are several multiprocessing methods to distribute tasks, this paper only 

focuses on shared memory or symmetric multiprocessing (SMP) techniques(Kota and 

Oehler 2005). The first approach was to use the multiprocessing Pool/Map 

(multiprocessing - Process-based parallelism n.d.) class, and the second was to create 

individual processes using the Process class. The following sections go through how 

these two techniques were used in detail. 
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The Pool/Map Technique: Out of the two native multiprocessing approaches, the 

Pool/Map technique is simpler to implement and execute. A Pool/Map approach 

generates a pool of worker processes and returns a list of items, as depicted in Figure 12a. 

With the built-in map function, a function can be applied to every iterable item in Python, 

as shown in Figure 12b. The map function is extended to the multiprocessing module and 

can be used with the Pool class to execute worker processes in parallel, as shown in 

Figure 12c. The import function adds the multiprocessing module into the procedure, 

mp.count_cpus gets the number of CPUs on the system, Pool creates a pool of ncpus 

processes, and Pool's map method iterates over the input element list in parallel, mapping 

each element to a worker function.  

 

Figure 12a: Example of a typical Python iterative function 
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Figure 12b: Example of a Python Map function 

 

Figure 12c: Pool/Map multiprocessing code 

 

The Process/Queue Approach: Although the Pool/Map technique is simpler to 

implement, it only allows one argument as an input parameter. If one wants to send 

multiple arguments, then there are two ways it can be done: packing arguments in a tuple 
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or use process class in conjunction with a queue. An example Python code listing for 

Process/Queue approach is shown in Figure 13. The Process class is used to start parallel 

processes, and input data is placed on the send queue for processing in smaller amounts. 

Each worker process selects the next piece of data on the send queue after completing the 

previous one. The output result is put on the receive queue, and then read at the end for 

post-processing. Notice the argument 'STOP,' which is called to stop running processes. 

During the benchmarking phase, we have identified that the Process/Queue technique 

performs better than the Pool/Map approach in certain conditions. 

 

Figure 13: Process/Queue Implementation in Python 
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4.3 Asteroid Accuracy Verification 

Although the calculations are handled by the SpaceKit.js library, to verify the 

accuracy of the data being passed to the framework, it is crucial to calculate the positions 

of the planets, the orbital elements, and physical attributes of the objects. The following 

section explains how to calculate the positions of the major planets. Positions of other 

celestial bodies such as comets and asteroids were also computed for accuracy-check. 

The heuristics were based on the following three principles: (1) redundant data, (2) 

contradictory data, and (3) anomalous data. Redundant data is data that is present in more 

than one source. Contradictory data is data that contradicts other data in the same or 

different sources. Anomalous data is data that does not follow the expected pattern. 

 

The heuristics were applied to the observational data, catalog data, and expert 

knowledge. The observational data was verified using the duplicate detection heuristic, 

which identifies duplicate data based on a combination of the source, object ID, and 

observation time. The catalog data was verified using the duplicate detection heuristic 

and the consistency heuristic, which checks for consistency between the data in the 

different sources. The expert knowledge was verified using the relevance heuristic, which 

checks whether the expert knowledge is relevant to the task at hand. The tool indicated 

timescales in Julian Day Number. The observation EPOCH time from Horizons was 

saved, and the difference against real-time Julian Day Number was calculated. The time, 

as well as the orbital elements, was utilized to compute the planet's position indicated in 
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Tables 7 and 8. 

 

Table 7: List of orbital elements 

Type of orbital elements  Variables  Description  
Primary orbital elements  N  Longitude of the ascending node  

  i  The inclination to the plane of the Earth’s orbit  
  w  Argument of perihelion  
  a  Semi-major axis, or mean distance from Sun  
  e  Eccentricity  
  M  Mean anomaly  

Related orbital elements  w1  Longitude of perihelion  
  L  Mean longitude  
  Q  Perihelion distance  
  P  Orbital period  

 

Table 8: Orbital elements of the Sun and the other major planets. 

  N  i  w  a  e  M  
Sun  0.0  0.0  282.9404 + 

4.70935 × 10−5 × d
  

1.000000 (AU)  0.016709 − 1.151 
× 10−9 × d  

356.0470 + 
0.9856002585 
× d  

Mercury
  

48.3313 
+ 3.245
87 × 10
−5 × d  

7.0047 
+ 5.00 × 10−8 × d

  

29.1241 
+ 1.01444 × 10−5 ×

 d  

0.387098  (AU)  
  

0.205635 
+ 5.59 × 10−10 × d  

168.6562 + 
4.0923344368 
× d  

Venus  76.6799 
+ 2.465
90 × 10
−5 × d  

3.3946 
+ 2.75 × 10−8 × d

  

54.8910 
+ 1.38374 × 10−5 ×

 d  
  

0.723330 (AU)  
  

0.006773 − 1.302 
× 10−9 × d  

48.0052 + 
1.6021302244 
× d  

Mars  49.5574 
+ 2.110
81 × 10
−5 × d  

1.8497 − 1.78 × 
10−8 × d  

286.5016 
+ 2.92961 × 10−5 ×

 d  

1.523688  (AU)  
  

0.093405 
+ 2.516 × 10−9 × d  

18.6021 + 
0.5240207766 

× d  
  

Jupiter  100.454
2 

+ 2.768
54 × 10
−5 × d  

1.3030 − 1.557 ×
 10−7 × d  

273.8777 + 
1.64505 × 10−5 × d

  

5.20256 (AU)  
  

0.048498 + 
4.469 × 10−9 × d  

19.8950 + 
0.0830853001 

× d  
  

Saturn  113.663
4 

+ 2.389
80 × 10
−5 × d  

2.4886 − 1.081 ×
 10−7 × d  

339.3939 
+ 2.97661 × 10−5 ×

 d  

9.55475 (AU)  0.055546 − 9.499 
× 10−9 × d  

316.9670 + 
0.0334442282 
× d  

Uranus  74.0005 
+ 1.397
8 × 10−5

 × d  

0.7733 
+ 1.9 × 10−8 × d  

96.6612 
+ 3.0565 × 10−5 × 

d  
  

19.18171 − 1.55 × 10−
8 × d (AU)  

0.047318 
+ 7.45 × 10−9 × d  

142.5905 + 
0.011725806 ×
 d  

Neptune  131.780
6 

+ 3.017
3 × 10−5

 × d  

1.7700 − 2.55 × 
10−7 × d  

272.8461 − 6.027 
× 10−6 × d  

30.05826 
+ 3.313 × 10−8 × d  (A

U)  

0.008606 
+ 2.15 × 10−9E−9 

× d  

260.2471 + 
0.005995147 ×
 d  
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To compute the planet’s position in 3-dimensional space, the framework used the 

following equations: 

Equation 3 

	
𝑥ℎ	 = 	𝑟	 ∗ 	(cos(𝑁) ∗ cos(𝑣 + 𝑤) − sin(𝑁) ∗ sin(𝑣 + 𝑤) ∗ cos(𝑖))	
𝑦ℎ	 = 	𝑟	 ∗ 	 (sin(𝑁) ∗ cos(𝑣 + 𝑤) + cos(𝑁) ∗ sin(𝑣 + 𝑤) ∗ cos(𝑖))	
𝑧ℎ	 = 	𝑟	 ∗ 	(sin(𝑣 + 𝑤) ∗ sin(𝑖)) 

 
The following formula was used to convert N_Epoch to N (today’s epoch), where 

the epoch is expressed as a year with fractions. 

Equation 4 

 

𝑁	 = 	𝑁)*+(, + 	0.013967	 ∗ 	 (	2000.0	 − 	𝐸𝑝𝑜𝑐ℎ	) 	+ 	3.82394𝐸 − 5	 ∗ 	𝑑 

 

 

4.4 Results and Experiments  

Parallel processing could resolve a variety of astronomical data issues. Out of 

which, one was chosen for benchmarking purposes. To evaluate the benchmark scores, 

three devices with various configurations were utilized. The configuration of the 

machines utilized in this test is shown in Table 9. One of the machines was overclocked 

to 2.66 GHz and was running the Ubuntu 16.10 operating system. The 2017 MacBook 

Pro core i7 was running Monterey OS. Lastly, two cloud VMs were used, running 
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Ubuntu 16.10, with a similar setup to the first machine. For the astronomical data 

processing, SBDB and DAMIT data were used.  

 

Table 9: Hardware and software configuration of the benchmark testing machines 

Machines Processor Memory Operating Systems 
Desktop Machine Intel Core i5 Quad-

Core 2.66GHz 
16 GB Ubuntu 16.10 

Macbook Pro Intel Core i7 2.9 
GHz Quad-Core 

16 GB  MacOS Monterey 

Azure VM Standard_D4 8 
CPU cores 

28 GB Ubuntu 16.10 

Azure VM Standard D96s v5 
96 vCPUs 

284 GiB Ubuntu 16.10 

 

 

Coordinate Transformation Problem: Two built-in functions were used, 

specifically, xyz2rd() and rd2xyz(), to transform cartesian coordinates to sky coordinates, 

and vice-versa. These functions can only process transformation at a single given time. 

Processing these transformations, for over a million records retrieved from the SBDB 

database serially, is not an efficient approach. Therefore, the functions were re-written for 

multicore machines to process a large input of datasets in parallel. These updated 

functions leveraged modules such as: multiprocessing and Parallel Python. 

These functions read input files with either (x, y, z) coordinates or (RA, DEC) 

values, and the output transform coordinates. The speedup factor, as shown in Figure 14 

for xyz2rd() and rd2xyz(), is plotted against the number of processes. For this test, over 

one million input coordinates were fed into the program with guided scheduling. We 
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identified that the best performance was achieved when the number of processes defined 

in the script equaled the number of cores on the machine. The Standard_D4 8 Core Azure 

VM showed better speedup than both other machines combined. As the number of 

processes increases beyond the number of cores, the speedup factor flatters out. 
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Figure 14: Coordinate transformation benchmark. 

 

Downloading dataset benchmark: The stated machines were also used in 

conjunction to test how long it takes to download 1.2 million objects from numerous 

sources from start to finish. As shown in Figure 15, by applying batch processing 

1 1.8 2.9 3 3.1 3 2.8 2.71 1.8 2.9 4.3 6 6.1 5.9 6
1 1.8 3 4.5 6.9 8.5 10

72.1

1 1.8 2.5 2.4 2.6 2.5 2.4 2.40

10

20

30

40

50

60

70

80

1 2 4 6 8 10 12 96

Ba
tc

h 
Pr

oc
es

si
ng

Number of Processes

Coordinate Transformation 
Benchmark

Intel Core i7 2.9 GHz Quad-Core

Standard_D4 8 CPU cores

Standard D96s v5 96 vCPUs

Intel Core i5 Quad-Core 2.66GHz



73 
 

techniques, downloading datasets can be drastically sped up with powerful machines such 

as the Standard D96s v5. It took approximately 31 minutes to download and process data 

completely. On the other side of the spectrum, it took approximately 4 hours and 28 

minutes to achieve the same result when the Intel Core i5 machine was used to conduct 

the study.  

 

 

Figure 15: Downloading full dataset benchmark. 

There are numerous different kinds of web APIs that are used today by many 

different organizations, but there are some universal API design principles and patterns 

that have been agreed upon as the most efficient ways to build APIs. There are three 
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common styles of designing an API: RPC/SOAP, REST, and Hypermedia. While RPC 

(Remote Procedure Call) is more efficient for single calls (for example, if you need to get 

the current status of your account), it's not very good at providing a standardized 

communication framework for multiple resources (such as retrieving all of your account's 

transactions) (Bu n.d.). Hypermedia provides that capability but lacks the standardization 

of media formats (Bornman and von Solms 1993). The REST API design pattern rather 

than SOAP or RPC-based Web services include flexibility, speed, efficiency, 

modifiability, and ease of use (Sohan et al. 2017).  

The name “REST” stands for Representational State Transfer, which describes 

how data can be transferred from one location to another in an internet environment. 

With RESTful APIs, HTTP requests are used to GET, PUT, POST, or DELETE data 

(henceforth referred to as HTTP verbs), and URIs (or Uniform Resource Identifiers) are 

used to identify data. The Planetary Defense Knowledge Gateway processes and feeds 

RESTful APIs as the primary method of data distribution. Since data is the main 

component of the APIs, in this chapter, the architecture will be introduced first, followed 

by API endpoints and descriptions. 

Before diving into the API endpoints and descriptions, it is important to present a 

high-level architecture of overall data flow. It supports data manipulation to the backend 

PostGRES database. It also supports the application layer. 

Figure 16 shows the overall architecture with emphasis on the RESTful API Web 

Service component. API definitions are necessary to implement communication between 

an API and its clients. These definitions can be written in YAML or Java, but they both 
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have issues that prevent them from being truly universal. First, YAML allows you to 

describe your API, but it doesn't come with a standard that ensures backward 

compatibility. Second, Java is the most common language used for describing APIs, but 

it's simply not very human-readable. The best option is to use the Django REST 

framework, a standard Python library that provides the developers with a lot of tools for 

building APIs. Django REST Framework (DRF) is an API framework that provides a 

convenient, powerful, and flexible way of developing APIs. It is loosely based on 

Django's class-based generic views, so it's easy to understand for people familiar with 

Django. DRF aims to simplify the development of Web APIs by reducing boilerplate and 

enforcing sensible defaults. It does this through an intuitive URL routing system, which 

allows your API URLs to mirror the structure of your app's models. This makes DRF 

well-suited for building modern hypermedia RESTful APIs that are compatible with 

mobile clients, single-page applications, and other web clients. 
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Figure 16: Planetary Defense RESTful Web Service Architecture 

 

To serve the purpose of benefiting both the Planetary Defense Knowledge 

Gateway and the external Planetary Science community, a search web interface is also 

created that will be covered in Chapter 4. This interface leverages Django framework to 

keep the consistency and independence. In a DRF API, resources are modeled as Django 

models and can be specified using the class-based generic views. The API class is 

defined in the app's API module and defines two methods: GET, which is used to return 

data from the resource; and POST, for handling client input related to creating new data 

on the server. Defining endpoints for RESTful APIs is done by implementing a single 
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function in each API. My co-researchers and I exposed GET to the public, and restricted 

POST requests only to the administrators of our application. The exposed APIs and the 

data passed via Django views are shown in Table 10. 

 

Table 10: APIs via Django Views and Associated Data Flow 

Status Type URL Description 

Exposed API /api/objects/<slug> Returns a list of NEOs as a 
JSON response 

Exposed API /api/objects/search/?q=<search> Returns a list of NEOs as a 
JSON response | accepts 
search parameter 

Exposed API /api/category/<category>/orbits Returns a list of NEOs as a 
JSON response | accepts 
category search parameter 

Exposed API /api/category/<category> Returns an object category as 
a JSON response | accepts 
category parameter 

App-Only View /asteroid/random Returns a random asteroid as a 
view 

App-Only View /asteroid/<slug> Returns a detailed asteroid 
view 

App-Only View /comet/<slug> Returns a detailed comet view 
App-Only View /asteroid/<slug>/shape Returns a detailed asteroid 

view that has an associated 
DAMIT data 

App-Only View /category/<category> Returns a list of category view 
App-Only View /solar-system Returns and populates the 

solar system visualization tool 
App-Only View /classifications Returns and populates the 

solar system visualization tool 
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5. INTERACTIVE NEO SEARCH ENGINE AND THREE-DIMENSIONAL 
VISUALIZATION ANALYTICS 

 
5.1 Data Visualization Analytics Workflow 

The probability of asteroids striking the earth and causing serious damage is very 

remote, but the devastating consequences of such an impact suggest that we should 

closely study asteroids to understand their composition, structures, sizes, physical traits, 

and future trajectories. By doing so, it is possible to make intelligent mitigation plans 

ahead of time. One way in which this can be done is by leveraging 3D visualization tools 

that allow users to view asteroids orbital path, shape models, raw materials, and so on. 

With the growing popularity of the WebGL standards, several open-source 3D engines 

based on HTML5 have emerged. Three.js is one of the most prevalent engines, owing to 

its simplicity of use and broad 3D file format compatibility. In this section, we show how 

open-source libraries, such as Three.js (Dirksen 2013) and Spacekit.js (Ian Webster n.d.), 

are used to power the Planetary Defense Knowledge Gateway's 3D visualization tool. 

This tool is integrated with the search engine, which allows users to visualize over 
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1,400,000 indexed celestial objects. Figure 17 shows the technical architecture of the 

visualization tool research. 

Figure 17: Visualization Tool Technical Route  
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Three.js is an open-source JavaScript library that makes it easy to create 3D 

animations and interactive graphics in the browser. It provides a wide range of 3D-related 

features, including support for powerful WebGL rendering, physics, audio, image 

loading, scene graph management, network communications, and much more. Three.js 

has extensive cross-browser compatibility and is available for both Firefox and Chrome 

browsers on desktop platforms. In addition, it can also be used to render asteroids in 

mobile browsers. Using Three.js reduces workload compared to developing custom 

visualization tools from scratch, as it takes care of the graphics rendering and provides a 

high degree of flexibility.  

SpaceKit.js is a JavaScript library that provides an easy way of creating and 

managing scenes consisting of multiple bodies within the browser environment. This 

library generalizes work that is currently used on Asterank, Meteor Showers, and Ancient 

Earth. It comes with several features such as collision detection capabilities for planetary 

defense simulations. In addition, SpaceKit gives users access to several simulation-ready 

asteroids that can be used for detailed studies.  

 
5.2 Data Transition Workflow 

This research adopts Promise and fetch technology for data transmission. A 

Promise is a proxy for a value that may be available now, or in the future. Promises are 

used in Node.js and JavaScript to add asynchronous capabilities to code. Fetch is a 

JavaScript library that can be used to asynchronously access resources as an alternative to 

XMLHttpRequest, including the browser's IndexedDB and Web SQL databases. The data 
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is transmitted in JSON format. The code for file request using these two methods is 

shown in Figure 18. 

 

Figure 18: Data Transfer Model  

5.3 Interaction Design 

In this dissertation, the visualization tool mainly uses mouse and keyboard 

interactions. Mouse and keyboard interactions are done through event listeners that are 

added to any buttons or other widgets. Mouse interactions can manipulate the position of 

objects, as well as control camera movements. Keyboard inputs can be used for scrolling, 
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zooming in and out, rotating the camera, and panning around. There are also several 

features that can be accessed through configurable keyboard shortcuts: change distance to 

asteroids, adjust asteroids size and color and change asteroids orbit parameters.  

 

Figure 19: Interaction design model 

 

5.4 Memory Optimization Approach 

When an asteroid model is displayed on the web, the browser becomes the 

rendering container. The maximum amount of memory that may be utilized by the 

browser is rather limited. When the system's tolerance is exceeded, the browser will 

nudge the user to restart the computer to avoid it from crashing. Aiming to address the 
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forementioned difficulty, this dissertation utilizes the Clone approach. When an item is 

cloned, only one copy of the cloned object is kept in memory, and the cloned object does 

not require any additional space. The number of objects in the scene is used to determine 

which clone should be displayed. The number of reused models accounts for around 80-

90 percent of the total number of asteroid models rendered at once. The memory 

consumption may be considerably reduced when the Clone Method is utilized. 

Furthermore, we can reduce memory usage even further by utilizing Three.js's built-in 

Dispose() function. When we tried several variations, we discovered that when the model 

is dynamically loaded, the memory will cease expanding. As a result, it may guarantee 

that adequate memory is used. This dissertation also employs LPM technology to break 

down and simplify the model, and then sends it to the front-end for preliminary 

rendering. Procedures such as those may be utilized to assure that the form of the model 

is unaltered, and that the web page's typical rendering occurs. 

5.5 GPU Optimization Approach 

Drawcall is the method that CPU uses to call graphics programming, and it is 

used by GPU to execute the rendering operation. The browser will carry out one frame's 

worth of rendering each time. When the operation of Drawcall becomes more difficult or 

there are a large number of vertices in the scene, the Drawcall count will rise, and 

rendering time will grow, lowering FPS. The above issue may be addressed by applying 

the Three.js' Merge approach. The Merge strategy merges numerous distinct geometries 

into a single form to minimize the number of geometries in the scene. Materials must also 

be assigned once the geometry is completed. The materials are different depending on the 
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object type, but models of the same type have the same material. As a result, we may 

combine all models of the same material into one geometry and generate the mesh when 

merging. Therefore, the number of model objects in the scene will drop from tens of 

thousands to just a few, resulting in significant reduction on Drawcalls. 

5.6 Results and Experiments 

There are several tests and experiments that were conducted to determine if there 

is any significant difference in terms of data handling and benchmark performance. In 

terms of data handling capability testing, three visualization tools were considered – the 

planetary defense mitigation gateway (PDKG), CNEOs JPL, and Asterank. The first test 

was a frames-per-second test, which is a measure of how fast a tool can render images. 

The second test was a data handling experiment, which is a measure of how well a 

browser can handle data requests without causing significant frames-per-second 

fluctuation or resulting in a browser crash. The frames-per-second test was conducted by 

averaging the frame rate of three consecutive tests. In Figure 20, the PDKG tool is shown 

to have a significantly higher frame rate than the other two tools. In terms of data 

handling, the PDKG tool is able to handle data requests at a rate that is orders of 

magnitude higher than the other two tools. 
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Figure 20: Visualization/Data Handling Capacity  

 

The second set of experiments was conducted using the lighthouse score, 

selenium test, ease of access, and the total number of features comparison. For this set of 

tests, six visualization tools were considered - planetary defense mitigation gateway 

(PDKG), CNEOs JPL, Asterank, NASA Eyes, Worldwide Telescope, and the Kerbal 

Space Program. The lighthouse score is a measure of how well a tool can perform in 

terms of speed, SEO, and accessibility. The selenium test is a measure of how well a tool 

can handle dynamic content. The ease of access score is a measure of how easy it is for 

users to find and use the features of a tool. The total number of features score is a 

measure of the total number of functionalities provided by each of the visualization tools. 

Figure 21 shows the results of the lighthouse score experiment, with the PDKG tool 
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having a significantly higher score than the other two tools. In terms of the selenium test, 

the PDKG tool was able to handle dynamic content at a rate that is orders of magnitude 

higher than all the tools tested except Asterank. In terms of the total number of features, 

the PDKG tool is significantly higher than all the other tools, and comparable to Asterank 

with a total of 17 features. The Asterank tool has a total of 19 features, while the CNEOs 

JPL and NASA Eyes tools have a total of 14 and 8 features respectively.  

 

 

Figure 21: Benchmark Testing  

 

In conclusion, the planetary defense mitigation gateway (PDKG) visualization 

tool is superior to other visualization tools in terms of performance, data handling 

capability, SEO score, ease of access score, and the total number of features provided. 
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The planetary defense mitigation gateway (PDKG) is a powerful visualization tool that 

can be used to visualize data sets of any size and complexity. 
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6. SYSTEM INTRODUCTION 

Planetary Defense Knowledge Gateway provides an easy-to-use interface where 

users can query for over 1,400,000 celestial object datasets, explore random objects, 

review search results, view categories based on orbital classifications defined by NASA 

PDS, and interact with several types of visualization tools. 

6.1 Data Discovery Queries 

The large volumes of structured data currently available, from various 

organizations, such as NASA, MPC, and ESA, to open data portals data, present new 

opportunities for progress in answering many important scientific questions. However, 

finding relevant data is difficult due to the scattered nature of information available on 

the web. While search engines have addressed this problem for web documents, there are 

many new challenges involved with supporting the discovery of domain-specific 

structured data. In this section, this research demonstrates how the Django REST API-

powered PDKG search engine addresses some of these challenges by providing a user 

interface that enables users to explore metadata about datasets using celestial object 

keywords.  

Over the last few years, scientists and governments have been publishing datasets 

that were previously hidden from public access. This move towards transparency has 

opened opportunities for answering questions of all kinds in an increasingly data-driven 

world where knowledge is crucial to progress (Castelo et al. 2021). The availability of 

these scientific observations provides new insights into many important planetary defense 
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research questions issues, including closeness to the Earth. Finding useful data may be 

difficult, as data are scattered across many sources and repositories. Several techniques 

have been developed to organize and index data collections to tackle this issue: From 

specialized repositories like NASA Open Data (NASA Open Data Portal n.d.), which 

gathers data from other NASA archives, to the Minor Planet Center Data Portal (IAU 

Minor Planet Center n.d.). While these are a big step toward making data discovery 

easier, they have one major drawback: They do not provide a solid method for connecting 

data from various genuine sources with common formats. This severely restricts a user's 

ability to communicate information demands. 

These queries are enabled, in part, by a Django REST API-powered framework 

that we developed to extract useful information from the actual datasets. This includes 

not only the unique ID assigned by the Minor Planet Center, but also their slug name 

identified by NASA. Users can explore large dataset collections through an easy-to-use 

interface that guides them in the process of specifying complex queries. In the following 

sections, we give an overview of the user interface and features of the gateway and 

discuss a few use cases that we will present during our demonstration. Users will be able 

to interact directly with the PDMG to query over 1,400,000 datasets.  

Users can query the indices by specifying keywords (see Figure 19(a)). Users 

search for datasets by specifying the celestial object name, unique ID, or the slug name 

defined in the Small-Body Database (SBDB). To see search results, users would have to 

select a filtered option from the dynamic dropdown (see Figure 17). Inspired by Google 

Search Engine's "Feeling Lucky" feature, this application also provides similar 
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functionality to view a random object (see Figure 22(b)). The header navigation can be 

found on the top right corner of the gateway's home page. The navigation bar has quick 

access to the Search, and the Categories page (see Figure 22(c)). 

 

 

Figure 22: Components of the PDMG’s user interface: search input field (a); view a random object (b); 
Navigation bar – Categories (c) 

6.2 Search Result 

Datasets, unlike web documents that may be summarized with short meta 

descriptions, have many components to consider when assessing their relevance. As a 

result, search results must be presented in an easy-to-understand format. Figure 23 shows 

the search results when the term 'PF184' is entered. On the top, there is a container that 

identifies the size and classifies the type of asteroid being displayed on the screen (see 

Figure 21(a)). A two-dimensional representation of the asteroid's orbit path relative to the 
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major planets is shown in that same container, located on the right side. Based on the 

asteroid's physical characteristics and orbital elements, several key facts are computed on 

the client side. Those computations then populate the Key Facts, Similar Objects & 

References, and Map Comparison containers (see Figure 23(c,d,e)). The orbital elements 

are used to determine the category of the asteroid that was searched. Furthermore, the 

Sentry-provided merged data are utilized to identify whether the object can be hazardous 

or not. The diameter and the magnitude of the asteroid are used to compute the object's 

comparable size. If the asteroid has comparable orbits to other asteroids in the database, 

three objects with similar paths are displayed in the Similar Objects area. The References 

section provides dynamic links to access the object's external information sources. The 

Map Comparison component loads the map with Google Maps JavaScript API and draws 

the impact circle based on the object's physical characteristics. The Orbital Elements, 

Physical Characteristics, and Derived Characteristics are all retrieved from the database 

without using any DOM manipulations. 
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Figure 23: Components of the Searched Result: Classification of the asteroid (a) and orbit diagram(b); key facts 
(c); similar objects and references (d); map comparison (e); orbital elements(f), physical characteristics (g); and 
derived characteristics (h) 

6.3 View Category 

The Categories page can be divided into two parts: Asteroids with known shapes, 

and categories with orbital classifications defined by NASA Planetary Data System. 

Asteroids with known shapes are those that have been derived using the Light-Curve 

Inversion method, combined with other inversion techniques in some cases. The system 

currently possesses 1,609 asteroids with known shapes, accounting for 0.1% of objects. 

Table 11 is a list of categories and their descriptions that have been established by NASA 

Planetary Data System (PDS). The categories link may be utilized to navigate the user to 

a more detailed category view (see Figure 24(a,b)). 
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Figure 24: Asteroids with known shapes (a); categories defined by the NASA Planetary Data System (b) 
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Table 11: List of categories and descriptions established by NASA PDS 

 
Orbital Classification Description 
Unclassified Comet Comets whose orbits do not match any defined orbit class 
Chiron-type Comet Chiron-type comet, as defined by Levison and Duncan 

(TJupiter > 3; a > aJupiter) 
Encke-type Comet Encke-type comet, as defined by Levison and Duncan 

(TJupiter > 3; a < aJupiter) 
Halley-type Comet Halley-type comet, classical definition (20 y < P < 200 y) 
Hyperbolic Comet Comets on hyperbolic orbits (e > 1.0) 
Jupiter-family Comet Jupiter-family comets, as defined by Levison and Duncan (2 

< TJupiter < 3) 
Parabolic Comet Comets on parabolic orbits (e = 1.0) 
Amor-class Asteroid Near-Earth asteroid whose orbits are similar to that of 1221 

Amor (a > 1.0 AU; 1.017 AU < q < 1.3 AU) 
Apollo-class Asteroid Near-Earth asteroids whose orbits cross the Earth's orbit 

similar to that of 1862 Apollo (a > 1.0 AU; q < 1.017 AU). 
Asteroid Asteroid orbit not matching any defined orbit class 
Aten-class Asteroid Near-Earth asteroid orbits similar to that of 2062 Aten (a < 

1.0 AU; Q > 0.983 AU) 
Centaur-class Asteroid Objects with orbits between Jupiter and Neptune (5.5 AU < 

a < 30.1 AU) 
Hyperbolic Asteroid Asteroids on hyperbolic orbits (e > 1.0) 
Interior-Earth Asteroid Asteroids with orbits contained entirely within the orbit of 

the Earth (Q < 0.983 AU) 
Inner Main-belt 
Asteroid 

Asteroids with orbital elements constrained by (a < 2.0 AU; 
q > 1.666 AU) 

Main-belt Asteroid Asteroids with orbital elements constrained by (2.0 AU < a 
< 3.2 AU; q > 1.666 AU) 

Mars-crossing Asteroid Asteroids that cross the orbit of Mars constrained by (1.3 
AU < q < 1.666 AU; a < 3.2 AU) 

Outer Main-belt 
Asteroid 

Asteroids with orbital elements constrained by (3.2 AU < a 
< 4.6 AU) 

Parabolic Asteroid Asteroids on parabolic orbits (e = 1.0) 
Jupiter Trojan Asteroids trapped in Jupiter's L4/L5 Lagrange points (4.6 

AU < a < 5.5 AU; e < 0.3) 
Trans-Neptunian Object Objects with orbits outside Neptune (a > 30.1 AU) 
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6.4 Detailed Category View and Orbit Explorer 

The following page (see Figure 25) also replicates the look of the search result 

page, with the top container that resembles that in Figure 22(a). The only difference can 

be seen in Figure 25(a), where the system returns the total percentage of objects matching 

the same object classification. For example, when Asteroids with Known Shapes are 

selected, then the string returns: "There are 1,609 asteroids with known shapes of this 

type in the database out of 1,143,406 total, accounting for 0.1% of objects." A filtered 

search container can be found on the left side of the page (see Figure 25(b)). The objects 

listed on that container are linked with the orbit explorer visualization tool (see Figure 

25(c)). Hovering over a specific object triggers the orbit explorer to also highlight the 

orbital path of the object. There are a few built-in capabilities on the orbit explorer to 

choose a particular day or speed up/slow down how quickly time passes in the tool. One 

can also expand the orbit explorer to full screen, add additional objects to the explorer 

view for further analysis (see Figure 26).  
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Figure 25: Classified objects / total objects in percentage (a); search container (b); orbit explorer (c) 

 

Figure 26: Full-Screen Orbit Explorer 
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6.5 Close-Approach 

A close approach is defined as an asteroid within 0.05 AU from Earth on a 

trajectory that will bring it closer than 0.05 AU to our planet in the next couple of years. 

The close approach table can be found in the search results screen. If an object is labeled 

as a near-Earth object or potentially hazardous, the gateway pulls data from the database's 

close-approach table. The system iterates through the close-approach table and calculates 

the total number of close approaches predicted in the coming decades (see Figure 27(a). 

It also displays a table that lists out the date, distance from Earth in (km), and Velocity 

(see Figure 27(b)). This information can be used to predict the future path of an asteroid.  

 

Figure 27: N number of close approaches predicted in the coming decades (a); close-approach table (b) 
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6.6 Shape Model and Artistic Rendering 

There are currently 1,609 asteroids with known shapes models in the system. 

These shape models can be found on the search result page. If the gateway identifies that 

the database contains a shape model for the selected object, then the system automatically 

appends the rendered image of the model to the page (see Figure 28(a). Users can also 

view and interact with the shape model in 3D (see Figure 28(b). For example, a rendered 

shape model for Juno is shown in Figure 29.  

 

Figure 28: Juno’s rendered image (a); link to view interactive 3D model of Juno (b) 
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Figure 29: Interactive 3D view of Juno 

 
The application also compares the size of objects against approximate Earth 

landscapes. For example, In Figure 30, an artistic rendering of Hathor is contrasted 

against a rough landscape rendering of New York City in the backdrop. This 

approximation is intended for full-resolution desktop browsers. The asteroid's form, 

color, and texture are imaginary. 
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Figure 30: Artistic Rendering of Hathor 
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7.  CONTRIBUTIONS AND CONCLUSION 

 
7.1 Contributions 

To recall, the primary challenge that this dissertation addressed is that information 

on detecting, characterizing, and mitigating NEO threats is presently scattered. There is a 

lack of structured architecture, integration, and interoperability in the planetary defense 

domain. The solution proposed in this dissertation is an interoperable framework for 

planetary defense data integration and visualization. This framework can be used to 

connect disparate pieces of information, support coordinated observations, verify 

observations (or extensions of physics-based models), and produce appropriate 

visualizations. 

The approach taken in this dissertation was to first develop a scalable data-fusion 

framework to integrate dispersed and diverse information residing at different 

organizations. Although this framework can incorporate data sources from any 

organization that provides their data sets in a format that can be ingested by the 

framework, such as. JSON, .CSV, ASCII formats. For this dissertation, we focused on 

data sources that are particularly popular in the planetary defense domain. The data 

fusion framework was designed to overcome many of the challenges associated with 

integrating information from these disparate sources, including the lack of a common 

ontology, the use of different standards and formats, and the variety of access 

mechanisms.  
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To resolve the issue of inefficient processes and decisions made on incomplete 

data, this dissertation also focused on multiprocessing techniques, comprehensive data 

modeling, and data inaccuracies verification. The multiprocessing techniques consisted of 

three main techniques: (1) a data pre-fetching technique to minimize data retrieval 

latency, (2) an in-memory caching technique to improve data access performance, and (3) 

a query parallelization technique to speed up the execution of complex queries. The 

comprehensive data modeling considered the different types of information that needed 

to be integrated, such as observational data, catalog data, and expert knowledge. The data 

inaccuracies verification was performed using a set of heuristics that were designed to 

identify errors in the data. The data inaccuracies verification was performed using a set of 

heuristics that were designed to identify errors in the data. The heuristics were based on 

the following three principles: (1) redundant data, (2) contradictory data, and (3) 

anomalous data. 

This dissertation also identified challenges related to discrepancies between PD 

data formats. To resolve discrepancies between PD data formats, this dissertation 

proposed a four-step data pipeline. The first step is to detect the discrepancies between 

the PD data formats. The second step is to automatically generate transformations to map 

the detected discrepancies to a common format. The third step is to automatically verify 

the generated transformations. The fourth and final step is to load the data into a common 

format that can be used by the Planetary Defense Knowledge Gateway (PDKG).  

We then demonstrated how the data-fusion framework could be used to develop 

the Planetary Defense Knowledge Gateway (PDKG). The PDKG is a platform that 



103 
 

enables users to access, visualize, and analyze integrated, and interoperable planetary 

defense data. The PDKG was designed to address the needs of three different user 

groups: (1) planetary defense experts, (2) planetary defense decision-makers, and (3) the 

general public. The PDKG was developed using web-based technologies and standards so 

that it can be easily deployed and accessed by users from any location with an internet 

connection. Furthermore, the PDKG incorporates a modular design so that new 

functionality can be added as needed. For example, if a new planetary defense data 

source becomes available, it can be added to the PDKG by simply adding a new module 

to the system. The next step was to incorporate a set of visualization tools that could be 

used to explore and analyze the integrated planetary defense information. This set was 

designed to support both scientific analysis and public outreach. To facilitate scientific 

analysis, the tool provides a variety of ways to filter, aggregate, and visualize the data. To 

support public outreach, the visualization tool includes a set of predefined views that 

show the most important information in an easily understandable way. Table 12 shows a 

summary of problems and solutions that were addressed in this dissertation. 

 

Table 12: Problems and Contributions addressed in this dissertation 

 
Problems Contributions 
Heterogeneity of the situation 
Data are dispersed throughout different 
organizations (Yang et al., 2017) 
 

(3) Developed a data-fusion framework to 
integrate dispersed and diverse information 
residing at different organizations.   
 

Lack of structured architecture, 
integration, and interoperability 

(4) Multiprocessing techniques have been 
applied to process large datasets that were 
utilized in the system. 
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- Resulting in inefficient processes and 
decision made on incomplete data (Wu 
et al., 2014) 
 

(3.5) Comprehensive Data Model 
(4.3) Data Inaccuracies verification 
 

Diversity of data and information for 
PD research 
- Discrepancy between PD data 
formats and lack of visibility (Yang et 
al., 2017) 
- Lack of collaboration and data fusion 
among different data sources (Yang et 
al., 2019) 
 

(3.4) Data pipelines have been developed 
with loosely-coupled architecture in mind. 
This will allow future integration to be 
applied seamlessly. 
(6) Designed an API-driven keyword-
centric NEOs search engine that allows 
users to search from 1,143,406 celestial 
objects.  
 

Future threats mitigation 
Lack of visualization technologies that 
offer interactive simulation (Shams et al. 
2019) 
 

(5) Several visualization tools have been 
provided to analyze Near-Earth approaches 
in a three-dimensional environment.  
 

 

 

7.2 Conclusion 

The Planetary Defense Knowledge Gateway framework involves the integration 

of data, information, and knowledge from a wide variety of agencies and organizations 

throughout the world. Efficient integration of such resources in a seamless fashion, and 

its communication among stakeholders, will be critical for mitigating a potential threat to 

our planet by a near-Earth object. This dissertation has presented a data-fusion 

framework that can be used to support the detection, characterization, and mitigation of 

potentially hazardous asteroids. The data-fusion framework was used to develop the 

Planetary Defense Knowledge Gateway (PDKG), a platform that enables users to access, 

visualize, and analyze integrated, and interoperable planetary defense data. The PDKG 

was designed to address the needs of three different user groups: (1) planetary defense 
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experts, (2) planetary defense decision-makers, and (3) the general public. The PDKG 

was developed using web-based technologies and standards so that it can be easily 

deployed and accessed by users from any location with an internet connection. 

Furthermore, the PDKG incorporates a modular design so that new functionality can be 

added as needed. The data-fusion framework and planetary defense knowledge gateway 

are effective for supporting planetary defense activities. The data-fusion framework is 

scalable and can be used to support planetary defense activities. 

 
7.3 Solution Impact 

The data-fusion framework and planetary defense knowledge gateway are 

valuable assets that can be used to protect Earth from potentially hazardous asteroids. If 

the PD-related communities, agencies, and/or organizations adapt the system, then they 

can use the PDKG to make better-informed decisions about planetary defense mitigation 

strategies. In addition, the data-fusion framework and planetary defense knowledge 

gateway can be used to support public outreach efforts by providing the public with easy 

access to planetary defense information. Which also can help raise awareness about the 

importance of planetary defense. The PDKG can also act as a central repository for API 

discovery and open-source research sharing if properly leveraged by the PD 

communities. Furthermore, the system provides a mechanism for public participation in 

dynamic visualization studies. The planetary defense knowledge gateway has the 

potential to significantly improve the way planetary defense data is managed and used. 
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7.4 Future Research 

The planetary defense domain is an evolving field with new data sources, 

methods, and technologies being developed all the time. The PDKG has the potential to 

expand future research in several areas.  For example, automatic semantic annotation of 

planetary defense data sources can be used to improve the usability of the PDKG. In 

addition, new data sources can be integrated into the system as they become available. 

Furthermore, the visualization tool can be enhanced to support more advanced analysis 

and public outreach efforts. Finally, the PDKG can be extended to support other 

planetary defense activities such as planetary hazard identification, risk assessment, and 

mitigation. 

To keep up with the latest advances, the PDKG must be updated on a regular 

basis with fresh information. To support this continuous update process, the PDKG will 

need to deploy a set of automated tasks that are designed to keep the system up-to-date 

with the latest planetary defense data. These tasks include fetching new data from 

planetary defense data sources, processing the data, and updating the PDKG database. 

Future research will aim to incorporate a dynamic mitigation scenario simulation based 

on rocket trajectory and deflection variables into the visualization tool. Currently, our 

tool only supports 4D (x, y, z, and time variables), and the "uncertainty" variable is 

absent from the system. The research will concentrate on incorporating the trajectory's 

unpredictability.  
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Future research will also involve improving the web crawler, enhancing search 

performance, and inviting domain experts to evaluate the findings concerning the 

interactive smart search module. By applying the structure as is, additional research will 

include adding data from other sources after minor modifications are made. This will 

allow the program to provide further information that may be useful to researchers. 

Latent semantic analysis techniques will be used to enhance our planet defense 

knowledge base.  

It will also be beneficial to evaluate the effectiveness of the data-fusion 

framework and planetary defense knowledge gateway. The evaluation shall consist of 

two parts: (1) a user study and (2) a performance assessment. The user study will be 

conducted with planetary defense experts from NASA, JPL, and other institutions. The 

performance assessment will be conducted to assess the scalability of the data-fusion 

framework. In summary, the research will be continued to push and develop the Planetary 

Defense community’s knowledge while also organizing the complicated system to 

improve efficiency for emergency response. 
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