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ABSTRACT 

ESSAYS ON THE DRUG DISCOVERY INNOVATION SYSTEM 

Alfred Sarkissian, Ph.D. 

George Mason University, 2017 

Dissertation  Director: Dr. David M. Hart 

 

Despite the increase in scientific, monetary, and human resources devoted to drug 

discovery R&D, the annual number of FDA-approved drugs has been almost unchanged 

for decades. This study seeks clues to the R&D productivity paradox by exploring the 

drivers and barriers to innovation in the pharmaceutical industry. The main focus is on 

the contribution of science and knowledge form external sources to innovation. 

The first essay uses patent data and provides evidence in support of the “foundational 

view” of creativity that a deep grasp of domain knowledge is most important in 

developing new ideas.  

Patent-based models of firm inventive output indicate a curvilinear (first negative then 

positive) pattern for the contribution of codified scientific knowledge to inventive output. 

This finding implies that firms need to assimilate and utilize scientific knowledge across 

multiple inventions. The use of diverse knowledge components in innovation is positively 

related to quality-weighted inventive output. However, a firm’s reliance on knowledge 
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components different form own inventions, negatively influences both inventive output 

and quality-weighted inventive output. 

Essay 2 examines breakthrough innovations (i.e. Orange Book patents) for clues about 

what makes inventions underpinning a drug product different from other inventions. The 

results indicate that inventions with fewer applications (i.e. less general or with citations 

across different technology classes) have a higher probability of entering the Orange 

Book. Broader legal scope also boosts the probability of an invention being an Orange 

Book patent. This finding might be caused by inventors carving out larger legal 

protection for more valuable inventions. In terms of knowledge recombination, higher 

technological knowledge diversity reduces the probability of an invention being an 

Orange Book patent, while technological knowledge distance (i.e. not coming from the 

patent’s technology class) increases the probability of being an Orange Book patent. 

These results are in line with the “tension view” of creativity, which emphasizes the need 

for distant or diverse knowledge for generating new ideas. 

The third essay draws on a survey of experts that explores the drivers and barriers to 

innovation from their perspective. The respondents possess nuanced knowledge of broad 

R&D spending and drug approval trends. Some barriers to innovation that they perceive 

are accentuated by the “molecular reductionist” drug discovery paradigm. Moreover, the 

essay provides evidence of several systemic failures. Lack of change in the fundamental 

rules of the game has created a “lock-in/path dependency failure” in which the innovation 

system has failed to adapt expeditiously. Deficiencies in firm capability development 

have lead to “transition failures”. Hard (i.e. regulatory) and soft (i.e. cultural) institutional 
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failures, along with “regulatory capture” are also evident in the responses and other data. 

In line with the “foundational” view of creativity, respondents ranked “depth of 

knowledge” higher than “diversity of knowledge” for innovation. The latter result is in 

line with the insights form essay 1. 

These systemic failures provide a starting point for formulating policy interventions to 

improve the innovative output of the drug discovery innovation system. 
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CHAPTER ONE: INTRODUCTION - THE DRUG DISCOVERY PARADOX 

 

 

Abstract 

Despite the increase in scientific, monetary, and human resources devoted to drug 

discovery the annual number of FDA-approved drugs has been almost unchanged for 

decades. This observation, coupled with the importance of drug discovery for emerging 

health challenges (e.g. superbugs) indicates the importance of developing better 

knowledge of the drug discovery innovation issues. This chapter outlines the R&D 

efficiency paradox of the pharmaceutical sector and briefly discussed some related topics. 

Keywords: Eroom’s Law, Pharmaceutical Innovation; Drug Discovery 

1.1 Eroom’s Law  
Despite tremendous improvement in the science and technology underpinning 

drug discovery, improvements in R&D management, and copious R&D investments, 

there has been little change in the critical output of the industry which is the number of 

new drugs approved by the FDA (Austin, 2006). 

The paradoxical phenomenon of declining R&D efficiency (i.e. the number of 

new FDA-approved drugs per billion US dollars of R&D spending1) has been 

characterized in different ways. Scannell et al. (2012) coin the term “Eroom’s Law”; i.e. 

“Moore’s Law” backwards; to refer to the anomaly of halving the number of new FDA-

                                                
1 Scannell et al. (2012) use PhRMA Annual Survey of 2011 for R&D cost data 
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approved drugs2 per billion US dollars of R&D spending about every 9 years since 1950 

(figure 1). The trend has remained the same since the 1950s. In a similar line, some 

commentators have divided the industry into an “Era of Abundance” (pre-2005) and an 

“Era of Scarcity” (post-2005). Measuring R&D productivity in terms of fifth year product 

sales per billion dollars of R&D expenditure, there has been a 70% decline in R&D 

productivity (Reuters, 2015). 

As figure 1 depicts, the decline rate is almost the same across different 10-year 

segments (panel b). Moreover, the trend seems to be robust to various assumptions on 

average delay between R&D spending and drug approval (panel c) (Scannell et al., 2012). 

A number of causes underlying the phenomenon are briefly discussed here. 

 

                                                
2
 New molecular entities and new biologics 
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Figure 1 The Eroom’s Law in Pharmaceutical R&D 

Source: Scannell et al. (2012) 
* Prescription Drug User Fee Act (PDUFA)3 
 

a)  “Better than the Beatles” Problem  

The “better than the Beatles” problem refers to the situation where a large stock 

of approved drugs exists and new drugs have only a modest incremental benefit over 

what is already available (Scannell et al., 2012). Many diseases have been satisfactorily 

                                                
3 The Prescription Drug User Fee Act (PDUFA) was enacted in 1992 to authorize the FDA to collect fees 
from companies that produce certain human drug and biological products. User fees have helped expedite 
the drug approval process. 
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tackled, limiting the innovation space for big medical breakthroughs (Ding et al., 2014a). 

Examining R&D projects of over 28,000 compounds since 1990, Pammolli et al. (2011)  

report a shift form therapeutic areas with better chance of drug approval (e.g. 

genitourinary drugs) to areas with lower historical approval rates (e.g. 

immunomodulatory agents). The latter areas correspond with “unmet therapeutic needs 

and unexploited biological mechanisms” with higher risk of failure (Pammolli et al., 

2011). In terms of the impact of failed innovation on innovative output, Khanna et al. 

(2016) examine voluntary patent expirations (i.e., patents expiring due to non-payment of 

renewal fees) in 97 pharmaceutical firms in the 1980-2002 period and report that the 

number, importance, and timing of small failures are associated with a decrease in patent 

count but an increase in forward citations to patents. 

Based on the aforementioned arguments, less innovation opportunities coupled 

with harder diseases to tackle may have lead to reduced quantitative output of drugs. 

b)  “Cautious Regulator” Problem 

The “cautious regulator” problem emanates from the reduced risk tolerance of 

regulatory agencies and the concomitant increase in R&D compliance costs. R&D 

efficacy shows a decrease in the early 1960s after the 1962 Kefauver Harris amendment 

to the Federal Food, Drug, and Cosmetic Act of the 1962. The Act required 

demonstration of efficacy for the first time and raised the safety hurdle (Scannell et al., 

2012). Jensen (1987) examines a panel data of 28 firms in the time period of 1969 

through 1979 and observes that an increase in regulatory stringency decreases the 

expected number of new drug discoveries. 
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c) “Throw Money at it” Tendency 

High returns, uncertain processes, and intense competition have given rise to the 

“throw money at it” tendency (Scannell et al., 2012). Some empirical research dealing 

with R&D spending is relevant here. At the country level, Lichtenberg and Virabhak 

(2002) use “Triadic Patent Families”, i.e. sets of patents covering a single invention filed 

together in Europe, Japan and the US, to explore various dimensions of technical change 

in healthcare technologies. They observe that R&D and accumulated knowledge (i.e. 

patent stock) are important determinants of patenting with elasticities of 0.43 and 0.79, 

respectively. Jensen (1987) reports a positive correlation between a firm’s R&D intensity 

and its probability of discovering a new drug while firm size, did not significantly affect 

the marginal productivity of research expenditures. Finally, Penner-Hahn and Shaver 

(2005) scrutinize the international R&D expansion activities, research capabilities, and 

patent output of 65 Japanese pharmaceutical firms in the period 1980-1991. They observe 

that firms benefit from international R&D only when they have existing research 

capabilities in the underlying technologies.  

To sum up, these studies indicate that while more R&D spending may lead to 

higher output, there are important moderating effects such as existing research 

capabilities.  

d)  “Basic Research Brute Force” Bias 

The “basic research–brute force” bias refers to the overconfidence in basic 

research and screening methods to yield safe and effective molecules for clinical trials 

(Scannell et al., 2012). Current drug discovery is impossible without utilizing 
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sophisticated modeling and computation. Computational approaches are thought to have 

the potential to reduce the cost of drug development dramatically by boosting the set of 

feasible targets (Yao et al., 2009).  

This is partly because of the popularity of “molecular reductionism” as well as the 

commercial managers’ quest for efficiency. In molecular reductionism genetics and 

molecular biology are the preferred ways of understanding biological systems. 

Automation had worked in other industries hence it was tempting to move away from 

“unpredictable” animal-based screening to a more efficient method (adapted from 

Scannel et al., 2012). 

e)  “Low-hanging Fruit” Problem 

The “low-hanging fruit” problem reflects the issue of continued exploitation of 

drug targets that are more technically malleable. While the “better than the Beatles” 

problem means the fruit that has already been picked reduces the value of the remaining 

fruit, the “low-hanging fruit” problem contends that easy-to-pick fruit is gone. It is less 

important than the “better than the Beatles” problem because decades-worth of new drug 

targets is thought to be available for exploitation. Moreover, therapeutic benefit may 

come from interaction of multiple proteins rather than a single target (Scannell et al., 

2012). 

f)  Other Trends Impacting Innovative Output 

Potential market has been shown to impact innovative output. Acemoglu and Linn 

(2004) scrutinize the impact of (potential) market size on the entry of new drugs and 

pharmaceutical innovation. They construct a population-based potential market size 
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based on U.S. demographic trends and report a large effect of potential market size on the 

entry of nongeneric drugs and new molecular entities (NMEs)4. They observe that all 

nongenerics respond to current market size, while current and five-year leads of market 

size impart the strongest influence on new molecular entities and generics. They contend 

that pharmaceutical research responds to anticipated market size changes with a lead of 

10–20 years. This strand of research may overlap with “better than the Beatles” problem 

in the sense that drugs exist for many ailments and by extension patient populations.  

The Innovation strategy of the pharmaceutical sector is changing with knowledge 

acquisition superseding knowledge creation (Cardinal and Hatfield, 2000). There seems 

to be a shift away from the vertically integrated model with a strong blockbuster 

orientation towards more incremental and follow-on innovations, greater specialization, 

and focused R&D. This is meant to utilize established competencies (e.g. in marketing), 

boost efficiency, and create synergies (Petrova, 2014). Duplicative and nonproductive 

investments have emerged as the upshot (Bennani, 2011). The “patent cliff” may also 

play a role in this regard (Petrova, 2014). The “patent cliff” refers to the expiration of 

patents on highly profitable drugs of several major pharmaceutical companies. For 

instance, in 2011, Pfizer lost patent protection on Lipitor, its most profitable product 

accounting for 27 percent of its total revenues in 2006. The main challenge ensuing from 

the patent cliff is replacing these expiring drugs. According to one estimate, companies’ 

                                                
4 The term NME or NCE (new chemical entities) refers to active ingredients being marketed for the first 
time in the U.S. (Drug Approvals and Databases > Drugs@FDA Glossary of Terms.” Accessed April 9, 
2016. http://www.fda.gov/Drugs/InformationOnDrugs/ucm079436.htm.) 
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new product revenues will only replace 26%of the expiring-patent revenues (Lo and 

Naraharisetti, 2013).  

According to Scannell et al. (2012) the primary “causes” have led to some 

secondary symptoms: the narrow clinical search problem (i.e. looking for a specific 

outcome rather than looking for broader positive serendipitous outcomes form drug 

trials); the big clinical trial problem (i.e. in terms of number of patients involved); the 

multiple clinical trial problem (i.e. number of trials per drug has increased), and the long 

cycle time problem. 

1.2 Scientific and Technological Advances 
There have been major advancements in the plethora of scientific and 

technological inputs into the drug discovery process in the past 60 years. A review of 

these advances gives more perspective to the paradox of Eroom’s Law. New inventions 

such as biotechnology, computational drug design, and scientific advances such as better 

knowledge of disease mechanisms have opened new vistas for drug discovery. 

Combinatorial chemistry has boosted the number of potential synthesizable molecules per 

chemist per year by about 800 fold (Scannell et al., 2012). Combinatorial chemistry can 

be characterized as “the industrialization of chemistry”. While the underlying science of 

chemistry is the same, the means of carrying it out has changed. Instrumentation, robotics 

and extensive use of computers are incorporated into the process to analyze large 

quantities of data (Geysen et al., 2003). 

Biotechnology is a science-based activity, drawing crucially on public research 

carried out in universities and government laboratories. It is a set of technologies applied 
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in various industries such as pharmaceutical manufacturing or agriculture. Some 

pharmaceutical firms draw upon a number of biotechnologies (Niosi, 2011). 

DNA sequencing speed has increased a billion times since the first genome 

sequencing in the 1970s (Scannell et al., 2012). As a case in point, there is a world-wide 

endeavor underway to catalogue mutations in several cancer types that most probably 

will be conducive to the development of new diagnostic, prognostic and therapeutic 

targets. The possibility of screening numerous gene targets quickly and at minimal costs 

is a major driver of this technology because cancer treatment can potentially be 

transformed by the emergence of small molecule inhibitors and antibodies against genes 

(Meldrum et al., 2011). 

Finally, current drug discovery practices draws on sophisticated modeling and 

computation techniques such as text mining for new drug leads, modeling molecular 

pathways and predicting drug combination efficacy (Yao et al., 2009).  

1.3 R&D Management 
The R&D process management knowledge has gained substantially in terms of 

understanding sources of project overruns, financial returns, portfolio management, and 

cost controls through outsourcing (Scannell et al., 2012). The current drug discovery 

process, a heritage of the 1960s, is cumbersome, inefficient and pricey; hence, in need of 

major overhaul. Major drug developers are in the process of bringing significant change 

in the prevailing R&D models (Kaitin, 2010). 

Pharmaceutical mergers, acquisitions and strategic alliances have been the subject 

of some studies. According to Mittra (2007) mergers, acquisitions and strategic alliances 
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are a set of related strategies that provide alternatives for innovation management and 

productivity improvement. Firm-specific factors and environmental differences lead to 

differing desired mix of internal R&D and external knowledge sourcing. Large 

companies have the potential to shift from the “blockbuster small-molecule R&D model” 

to a biologics-based paradigm; however, the process is gradual and evolutionary, 

proceeding at different speeds in different companies (Mittra, 2007).  

The small-molecule R&D model refers to the R&D model of developing 

conventional drugs that are small, well-defined and stable chemical structures, amenable 

to characterization by analytical methods (Declerck, 2012). Biologics on the other hand, 

have high molecular weight and are the result of processes in living cell cultures (see 

table 1 for a comparison of these two types of drugs). 

As an example, So et al. (2011) explore how an amalgam of scientific and 

economic issues has thwarted new antibacterials development in the past few decades 

despite a growing global problem of resistance to existing antibiotics. Numerous 

bottlenecks along the pharmaceuticals value chain can be a potential intervention point. 

They suggest multisectoral collaboration as a solution in drug lead5 identification and 

optimization. Moreover, neglected disease areas can get a boost from “product 

development partnerships and South–South innovation platforms”. Decoupling product 

sales from the firms’ return on investment is touted as a solution towards attaining the 

double goals of innovation and access. This is because firms with an extensive portfolio 

                                                
5 Chemical compound with likely therapeutic properties 
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prefer to focus on other therapeutic areas at the expense of new antibiotics that have 

lower expected returns on investment. 

This short review points to the advances of R&D management knowledge, further 

making the R&D productivity decline a paradoxical phenomenon.  
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Table 1 Small Molecule Drugs versus Biologicals 

Characteristic Small molecule drugs Biological drugs 

Size - Small (single molecule) 
- Low molecular weight  

- Large (mixture of related 
molecules) 
- High molecular weight  

Structure Simple, well defined, independent of 
manufacturing process 

Complex (heterogeneous), defined 
by the exact manufacturing process 

Modification Well defined Many options 

Manufacturing - Produced by chemical synthesis 
- Predictable chemical process 
- Identical copy can be made 

- Produced in living cell culture 
- Difficult to control from starting 
material to final API 
- Impossible to ensure identical 
copy 

Characterization Easy to characterize completely Cannot be characterized 
completely the molecular 
composition and heterogenicity 

Stability Stable Unstable, sensitive to external 
conditions 

Immunogenicity Mostly non-immunogenic Immunogenic 

Source: “Home - GaBI Online - Generics and Biosimilars Initiative.” Accessed April 5, 
2017. http://www.gabionline.net/Biosimilars/Research/Small-molecule-versus-biological-
drugs.  

 

1.4 R&D Spending 
The pharmaceutical industry’s R&D spending relative to its sales revenues is 

larger than other U.S. industries. The real drug R&D has burgeoned between threefold 

and sixfold in the course of the past quarter century (Austin, 2006). Likewise, according 

to the Pharmaceutical Research and Manufacturers of America (PhRMA, 2016), 

biopharmaceutical industry’s R&D per employee investments is 12 times more than other 

manufacturing industries. Moreover, the R&D investment growth rate (25%) has also 
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been the highest across all industries between 2000 and 2012. The biopharmaceutical 

sector accounts for about 17% of all R&D spending in the U.S. business sector; 

representing the largest share of business R&D spending (PhRMA, 2016). 

Figure 2 depicts the increase in R&D spending in the past two decades and figure 

3 compares different industries based on their R&D spending as a percentage of sales. 

Figure 4 depicts the geographical breakdown of R&D expenditure. As evident, especially 

beginning 2000, the U.S. has consistently out-spent other important world regions in 

pharmaceutical R&D. 

 

 
Figure 2 R&D Investment by PhRMA Member Companies 

Source: PhRMA (2016) 
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Figure 3 R&D as a Percentage of Sales 

Source: PhRMA (2016) 
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Figure 4 Geographic Breakdown of R&D Expenditure 

Source: EFPIA (2017) 

 

1.5 Conclusion 
The pharmaceutical industry account presented in this chapter contradicts the 

traditional narrative of R&D, invention and innovation where more resources is expected 

to lead to more innovative output. Moreover, the crucial welfare enhancing role of the 

innovative output of the industry, calls for a close examination of innovation in the 

pharmaceutical industry for potential clues to the problems. 

The remainder of this dissertation will try to explore some factors impacting 

innovative output of the pharmaceutical sector based on patenting data. Moreover, an 
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attempt will be made to ascertain the differences between patented inventions 

underpinning a drug product and other patents. Finally, drawing on the innovation 

systems literature and expert opinion, the broad systemic issues driving or hindering 

innovation will be explored. 
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CHAPTER TWO: EXPLORING THE DRIVERS OF INNOVATION IN THE 

PHARMACEUTICAL SECTOR - THE IMPACT OF KNOWLEDGE 

RECOMBINATION 

Abstract 

This study seeks to ascertain the drivers of inventive output (i.e. patenting by 

firms) in the pharmaceutical sector with special attention to the way different types of 

knowledge is combined. The results indicate a robust curvilinear; first negative and then 

positive; relationship between reliance on codified scientific knowledge (enshrined in 

patent references) and inventive output. Moreover, knowledge diversity positively 

impacts quality-weighted inventive output while knowledge heterogeneity (i.e. based on 

distance or differentness from own inventions) negatively influences both inventive 

output and quality-weighted inventive output. The Latter results are in line with the 

foundational view of creativity that contends a deep grasp of domain knowledge is 

important in developing breakthrough innovations. Nuanced subsample analysis revealed 

that for firms primarily active in the pharmaceutical sector higher knowledge diversity in 

inventive output does not improve performance. Moreover, pre-1995 reliance on codified 

science was associated with higher inventive output.  

Keywords: Pharmaceutical Innovation; Patents; Triadic Patent Families; Science 

Intensity; Knowledge Diversity; Knowledge Heterogeneity (Distance) 
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2.1 Introduction 
Drugs, as the output of the pharmaceutical industry, have a direct bearing on the 

people’s healthcare. Moreover, healthcare and availability of therapeutics are crucial 

issues in the definition of welfare and democracy in the new century. However, during 

the past decades the pharmaceutical industry has experienced profound scientific, 

technological and institutional change affecting the whole spectrum of the value chain 

(McKelvey and Orsenigo, 2001). Nonetheless, a paradoxical parallel phenomenon is the 

declining R&D efficiency: the number of new FDA-approved drugs per billion inflation-

adjusted U.S. dollars of R&D spending has halved about every 9 years since 1950 

(Scannell et al., 2012).  

Patents have long been recognized as a rich source of data pertaining to 

innovation and technological change. They contain detailed technical information and 

provide long historical records. Moreover, unlike other sources of economic data, patent 

information is disclosed voluntarily (Hall et al., 2001). The pharmaceutical industry is 

probably one of the few industries where product innovation can be adequately protected 

against imitation by patents. This is because small variation of a molecular structure can 

dramatically change its pharmacological properties (McKelvey et al., 2004).  

There has been rapid growth in the reliance of patented technology on U.S. 

scientific papers (Narin et al. 1997). Furthermore, the patent-to-paper citation trend is 

more pronounced in the bioscience-related inventions (Branstetter and Ogura, 2005). 

Finally, with the increase in the science and technology pool that underpin drug discovery 

innovation (e.g. better knowledge of disease mechanisms and faster gene sequencing), 
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examining how science and knowledge recombination impacts innovative output is in 

order. 

This essay draws on patent data to examine how codified scientific knowledge 

(i.e. enshrined in non-patent references within patents) and knowledge recombination (i.e. 

diversity and heterogeneity of knowledge) impact the innovative output of a panel of 

firms active in pharmaceutical patenting.  

2.2 Literature Review 
This section briefly reviews a number of relevant empirical studies on innovation 

in the pharmaceutical sector. First a few more general notes on the literature are 

discussed then the roles of science and “knowledge recombination” in innovation are 

introduced. 

Regarding outcome variables, the literature can be divided into three categories. 

Some use patent counts as a proxy of innovation (e.g. Lichtenberg and Virabhak, 2002; 

Penner-Hahn and Shaver, 2005). A second group utilizes actual FDA drug substance 

approval (NME) as their dependent variable (e.g. Jensen, 1987; Graves and Langowitz, 

1993; Toole 2012). Finally, a few studies have used both patent counts and approval rates 

(e.g. Cardinal and Hatfield, 2000).  

In terms of contents, diverse issues have been examined. For instance, Graves and 

Langowitz (1993) examine the innovative output (NCEs) of 16 pharmaceutical firms over 

19 years (1969-1987) and observe that the pharmaceutical industry suffers decreasing 

returns to scale in R&D. They notice a strong correlation between R&D budgets and firm 
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size and mention that the wave of mergers in the industry may yield less innovative 

productivity.  

Cardinal and Hatfield (2000) use three measures for innovative productivity: 

patents, drug enhancement approvals (incremental innovations), and new drug approvals 

(i.e. NCEs or radical innovations). They observe that having an R&D laboratory boosts 

the productivity of drug enhancements, but has a negative impact on new drug 

productivity; however, having an R&D laboratory in the proximity of corporate 

headquarters enhances new drug productivity. They contend that proximity might be 

important for the integration of R&D with strategic product innovation goals. 

Finally, Nesta and Saviotti (2005) study the relationship between the firm’s 

knowledge base coherence and innovative performance. Coherence refers to 

complementarity between the firm’s scientific and technological competencies. They find 

a strong link between these two properties and the firms’ innovative performance 

measured by the annual citations weighted patents. 

2.2.1 Role of Science in Pharmaceutical Innovation  
The front-page of a U.S. patent contains two types of references, i.e. patent and 

non-patent references (NPR/NPLs6), which are meant to help the examiner evaluate the 

novelty, non-obviousness and the applicability of inventions (i.e. patentability 

requirements). Moreover, these references can be used in evaluating the validity of the 

patent claims (Van Looy et al., 2007). The distinction between patent and non-patent 

references has been used to study the interaction of science and technology. Science 
                                                
6 Non-patent literature (NPL or NPR) is mostly scientific references other than patents. The US patent 
document has a “references cited” section that divides the references into “US patent documents”, “foreign 
patent documents” and “other publications”.  
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intensity of a patent can be proxied as the number of non-patent reference (ideally 

separating scientific publications) (Callaert et al., 2006).  

Patent literature can anticipate novelty. Non-patent literature, especially in 

technological areas closely related to the application, can foresee the inventive step (i.e. 

the invention should not be trivial or obvious to a skilled person in the particular field of 

expertise) (Sternitzke, 2007). 

In an oft-quoted study on the contribution of public science7 to industrial 

technology, Narin et al. (1997) track NPLs of U.S. patents and observe a rapid growth in 

the dependence of patented technology on U.S. papers. Referencing U.S.-authored 

research papers had tripled over the six-year period (1987-1988 and 1993-1994) of their 

data, while there was only a 30% growth in the number of patents over the period.  

Patent-to-paper citations are more prevalent in the “bio nexus” (Branstetter and 

Ogura, 2005). Moreover, young and developing technological fields will cite more 

scientific papers. Hence, new or science-based fields are more appropriate for such 

studies (Van Looy et al., 2007). 

Table 2 depicts selected studies dealing with science and pharmaceutical 

innovation using patent data8. In the patent literature, prior art refers to all available 

information on the invention and patent family refers to interrelated patents covering the 

same invention in different countries. The Ward and Dranove (1995) study is interesting 

in the sense they dissect the pharmaceutical sector research process. They examine the 

link between basic and applied research in the pharmaceutical sector by dividing R&D 

                                                
7 Originating from academia, government and other Federal government funded institutions 
8 Ward and Dranove (1995) do not use patent data 
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into three stages: government-funded basic research, publication in medical journals, and 

industry-funded applied R&D. Moreover, they directly link journal articles to industrial 

R&D. 

As a hint of diversity of approaches in the literature, the unit of analysis runs the 

whole gamut of patent, firm, industry (or technology domain) and country. Likewise, in 

terms of methods, some studies have used descriptive statistics while others have drawn 

on more complex methods. However, regardless of methodological rigor, valuable 

insights have been obtained.  

In terms of the link between science and inventive output9 of the firm, a few 

nuances are noteworthy. There is positive relationship between using more scientific 

knowledge in inventions and inventive output in high-tech domains like biotechnology 

and pharmaceuticals but not necessarily so in other domains (Van Looy et al., 2003; 

Branstetter and Ogura, 2005). Moreover, there is a positive link between science citations 

and the generation of inventions that pass FDA approval (i.e. based on linking drugs to 

patents that underpin drugs) (Branstetter and Ogura , 2005). However, there might be 

tradeoffs between producing good science and impactful patents for firms. In the words 

of Gittelman and Kogut (2003) “scientific ideas are not simply inputs into inventions” 

due to different “selection logics”. They observe that firms cluster their inventive 

endeavors around important internal or external scientific discoveries; however, these 

invention clusters are associated with less cited patents. In other words, for firms active in 

                                                
9 Strictly speaking, in the pharmaceutical sector, patent output is inventive output and FDA approved drugs 
are innovative output.  
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both publishing and patenting, important scientific papers are negatively associated with 

high-impact innovations (Gittelman and Kogut, 2003). 

In terms of the NPL composition, the majority are journal references (50% to 55% 

on WoS) with “at least 42% of all USPTO non-journal references referring to scientific 

knowledge”. On top of patent references, 40% of non-journal references also refer to 

technological information (Callaer et al., 2006).  
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Table 2 Selected Studies Examining Science, Technological Knowledge and 

Pharmaceutical Innovation 
Study Question Unit of 

Analysis 

Dependent 

Variable(s) 

Method Science 

intensity 

Sample Representative 

Results 

Ward and 
Dranove 
(1995) 

How does 
information 
flow across 
pharmaceuti
cal research 
process 
(NIH 
funded 
research-
publications
-Industry 
R&D) 

Disease 
category/
year 

NIH 
Expenditur
es; Medical 
journal 
articles in 
MEDLINE; 
Industry 
R&D 
Expenditur
es 

2 stage 
GLS 

Journal 
articles 

No patent 
data used 

Government funded 
basic research, with 
a lag, generates 
industry-funded 
applied research. 1% 
increase in NIH 
Expenditures boost 
industry R&D by 
0.57-0.76% in same 
therapeutic area. 
Cumulative effect of 
other NIH 
categories is an 
increase of 1.26-
1.71%. 

Narin et 
al. (1997) 

What is the 
contribution 
of public 
science to 
industrial 
Technology
? 

Patent Descriptive Descripti
ve 

Scientific 
papers in 
non-patent 
references  

430,226 
non-patent 
references 
from 
397,660 US 
patents 
issued in 
1987-1988, 
and 1993-
1994. 

Rapid growth in the 
dependence of 
patented technology 
on U.S. papers 

Gittelma
n and 
Kogut 
(2003) 

How does 
firm’s 
science 
capability 
(publication 
citations) 
impact the 
production 
of highly 
cited patents 
in the 
biotechnolo
gy field? 

Firm Cumulative 
forward 
citations to 
a patent 
(the first 
U.S. patent 
in the 
family) 

Negative 
Binomial
; controls 
for 
patent 
family 
by using 
first US 
patent in 
the 
family 

Mean 
number of 
citations 
to non-
patent 
literature 
across all 
of its 
patents. 

Publications 
and patents 
of 116 
biotechnolog
y firms 
during the 
period 1988–
1995. 
(scientific 
literature 
1988–1994; 
patents 
1992–1995) 

Important scientific 
papers are 
negatively 
associated with 
high-impact 
innovations 
(publication 
citations having a 
negative impact on 
patent citations) 

Van 
Looy et 
al. (2003) 

Does 
science-
technology 
interaction 
help in 
developing 
new 
technology? 

Country Per capita 
number of 
patents 
(country 
level) in a 
certain 
technologic
al field 

Variance 
analysis 
(ANOV
A); no 
mention 
of patent 
family 
control 

Number 
of 
references 
in patents 
to 
scientific 
articles 

Granted 
USPTO-
patents for 
the period 
1992-1996. 

Positive 
relationships for 
high tech domains 
like biotechnology, 
pharmaceuticals, 
organic fine 
chemistry and 
semiconductors for 
other domains no 
relationship was 
found. 

Branstett What drives Firm Number of Fixed “ The log Patents • Positive 
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er and 
Ogura 
(2005) 

the surge in 
patents 
citing 
academic 
science? 

citations; 
number of 
approved 
new drugs; 
number of 
citations 
made by 
patents to 
publication
s; Sales 

effects 
negative 
binomial
; Cobb-
Douglas 
producti
on 
function; 
mute on 
patent 
family 
control 

of the 
number of 
citations 
to 
academic 
science 
made by 
the cohort 
of patents 
applied 
for in year 
t 

granted 
1983-1999 
(CHI 
Research) 
Publications 
1981-1997 
(Institute for 
Scientific 
Information) 
 

link between 
science citations 
and the generation 
of inventions that 
pass FDA 
approval. 
• Increased 
use of the 
knowledge 
generated by 
university-based 
scientists (esp. in 
bio nexus). 

Callaer et 
al. (2006) 

Examining 
non-patent 
references’ 
to assess 
their 
usefulness 
as an 
indicator of 
science and 
technology 
link  

Patent Number 
and nature 
of non-
patent 
references 
in patents 

Descripti
ve 
statistics; 
no 
mention 
of patent 
family  

Number 
and nature 
of non-
patent 
references 
in patents 

Two 5,000 
samples of 
non-patent 
references 
from the 
USPTO and 
the EPO 
databases 
(granted 
patents 
applied 1991 
-2001)  

• The 
majority of NPR 
are journal 
references (50% 
to 55% on WoS) 
• Differ by 
technology field 
• USPTO 
contain less 
journal and more 
non-journal 
references than 
expected. For 
EPO, vice versa. 
• At least 
42% of all 
USPTO non-
journal references 
refer to scientific 
knowledge. 

Markiewi
cz (2006) 

How does 
firm-
specific 
characteristi
cs such as 
experience, 
knowledge 
stock, 
network 
position, or 
organization
al focus, 
impact 
innovative 
performanc
e? 

Firm Count of 
citations to 
non-patent 
prior art 

Negative 
binomial 
model; 
no talk 
of patent 
family 
control 

Count of 
citations 
to non-
patent 
prior art in 
the patent 

Data from a 
panel of 83 
bio/pharma 
firms during 
the 1975-
1995 period 
 

• More in-
house basic 
science research 
and collaboration 
with university 
scientists are 
associated with 
more exploitation 
of published 
scientific research 
• More 
citations to 
published 
scientific research 
and a faster pace 
of knowledge 
exploitation are 
associated with a 
superior 
economics 
performance for 
the firm. 

Van 
Looy et 
al. (2007) 

How does 
science 
intensity of 

Country Technologi
cal 
Productivit

“Multipl
e 
regressio

Number 
of 
references 

USPTO 
patents 
granted to 8 

Science and 
technology 
relationship is bi-
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patents 
relate to 
technologic
al 
performanc
e (country 
level)?  

y (number 
of patents 
per million 
inhabitants) 

n”; no 
talk of 
patent 
family 
control 

to 
scientific 
literature* 
per 100 
patents 

European 
countries 
1992-1996 

directional and 
reciprocal 
(“technological 
productivity at T+2 
is largely associated 
with past 
technological 
productivity (T), a 
positive and 
significant 
relationship with 
scientific 
productivity is 
observed and vice 
versa.) 

Azoulay 
at al. 
(2015)  

What is the 
impact of 
public R&D 
investments 
on private-
sector 
patenting? 

Disease/s
cience/ti
me (DST) 

Patenting 
by private 
sector 
biopharmac
eutical 
firms  

Quasi-
Maximu
m 
Likeliho
od 
Poisson; 
No talk 
of patent 
family 

non-patent 
references 

USPTO 
Chemicals 
and Drugs 
/Medical 
patents 1980 
and 2012 

A $10 million boost 
in NIH funding 
leads to a net 
increase of 2.3 
patents 

* Prior art is all the available information on the invention 

2.2.2 Knowledge Recombination and Innovation  
The recombinant view of innovation contends that new knowledge is created by 

the combination of new components or new combinations of existing components. One 

of the earliest references to this idea is traced to Schumpeter’s research (Phene et al., 

2006).  

A strand of innovation literature has focused on the degree of differentness of 

knowledge components used in the recombination process. Different terms and proxies 

have been defined and used. Knowledge diversity, knowledge distance, and knowledge 

heterogeneity are among the common terms. For the purposes of this study, in line with 

the literature, knowledge diversity is defined with reference to the set of knowledge 

components that have been used by the firm in inventive efforts. For instance, Kaplan and 

Vakili (2015) draw on technological diversity in their study. Knowledge heterogeneity is 
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defined in terms of differentness along the set of knowledge components not in line with 

the firm’s extant technological expertise10. The term heterogeneity is borrowed from Tsai 

(2017) who defines heterogeneity in terms of knowledge available for recombination on 

innovative outcomes at the organizational level.  

In addition to the degree of differentness of knowledge components, the 

technological space of a firm can also be classified based on the source (or locus) of the 

knowledge. Technologically distant knowledge comes from outside the industry and 

technologically proximate knowledge is sourced from within the industry (Ahuja and 

Lampert, 2001). 

In terms of theoretical stance, there are two competing positions. The “tension 

view” asserts that deep knowledge can lead to myopia to the extent that the recombination 

of distant or diverse knowledge is needed in order to see new ideas (Kaplan and Vakili, 

2015). Diverse sources of knowledge are more likely to come from dissimilar contexts; 

hence, more likely to be novel and nonredundent to the firm (Phene et al., 2006). 

Innovations building on diverse knowledge sources (e.g. patents from different 

technology fields) are expected to lead to original outcomes (Squicciarini et al., 2013). At 

the firm level, experimenting with novel knowledge helps stave off the “familiarity trap”; 

i.e. preference for the refinement of familiar technologies rather than exploring new ones 

(Ahuja and Lampert, 2001). 

On the other hand, according to the “foundational” view of creativity, a deep 

understanding of the foundations, assumptions and weaknesses of a particular knowledge 

                                                
10 The literature has tended to refer to this as knowledge distance 
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domain helps detect anomalies hence conducive to breakthrough innovations. Wide 

recombination can be disadvantageous to innovation because only a penetrating attempt 

can produce breakthroughs (Kaplan and Vakili, 2015). Rather than being independent of 

the past, even the most radical innovations are grounded in the past. A frame of reference 

to the past provides coherence and resonance with the intended audience. Moreover, 

without knowing the discipline, going beyond it might be a tall order (Weisberg, 1999). 

To sum up, the degree of differentness of knowledge components used in 

innovation has been studied in various contexts and research designs. In addition, the 

degree of familiarity (i.e. depth vs. breadth) with knowledge components and the locus of 

knowledge components (form inside or outside firm/country) can be other dimensions. 

Finally, the impact of diversity and heterogeneity of knowledge on innovative output may 

be contingent upon various organizational factors. 

2.3 Research Question and Hypotheses 
Major advancements in scientific and technological inputs into the drug discovery 

process coupled with the R&D productivity paradox, calls for examining the link 

between scientific and technological knowledge recombination and innovative output of 

firms. Hence, the research question of this study: “How does codified science use and the 

knowledge recombination profile of firms impact innovative output?” 

The unit of analysis is “firm-year-patent11”, in line with the literature focusing on 

firm patenting. For instance, the units of analysis in Fabrizio (2009) is firm-year and 

firm-patent class-year. The focus on patents gives us the chance to look at the earlier 

                                                
11 More specifically “patent family” 
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stage of the innovation pipeline. New drug and drug enhancement innovations are more 

representative of directed research. Patents, on the other hand, are more closely 

associated with earlier stages of the research endeavor (Cardinal and Hatfield, 2000). 

Thus, using patents helps edge closer to the discovery phase of drugs. Moreover, there is 

not much variation in annual FDA-approved new drugs (“broadly flat” since the 1950s 

according to Scannell et al., 2012) and firms filing the drug applications. For instance, 

according to Munos (2009) half of the approved NMEs since 1950 are produced by 21 

companies; ironically, half of these companies do not exist today. 

The first hypothesis examines the link between codified science and inventive 

output. The literature reviewed here indicates that firstly, biopharmaceutical inventions 

rely on academic science more than other fields (Branstetter and Ogura, 2005; Van Looy 

et al., 2003). Hence, it is tempting to assume that more reliance on scientific knowledge 

in the inventive process, will lead to higher quantitative output of inventions. However, 

utilization of science in the inventive process calls for certain capabilities. For instance, 

Markiewicz (2006) observes that in-house basic science research and collaboration with 

university scientists (i.e. “absorptive capacity-related activities”) are related to more 

exploitation of published scientific research.  

Small number of backward citations per patent may indicate an invention in a 

relatively new technology area with few sources of information available. Alternatively, 

it can reflect failure to cite relevant prior art (Lanjouw and Schankerman 2001). It is a 

reasonable assumption that the former case would be a rare occurrence as breakthroughs 
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do not happen frequently (hence the term). If the latter holds, the patent has less chance 

of passing patent office examination.  

Combining the absorptive capacity notion with the recombinant view of 

innovation, bits of codified science are considered components of potential new 

combinations; however, there needs to be a certain critical mass of components to allow 

for experimentation and capacity building. Unless a certain critical mass (of components 

and capabilities) is achieved there will be no increased inventive output. Hence,  

Hypothesis 1: Higher reliance on codified science in inventions, ceteris paribus, 

will improve firms’ inventive output only after fulfilling a certain threshold.  

The second hypothesis is based on the properties of the knowledge used in the 

inventive process. Knowledge diversity refers to different knowledge components that 

the firm is using in inventive efforts. Drawing on the recombinant view and the 

foundational view of creativity, diverse knowledge components can be assembled into 

many innovations, if the firm has already used these knowledge components and has 

knowledge of their properties. Hence: 

Hypothesis 2a: Technological knowledge diversity, ceteris paribus, will be 

associated with higher inventive output. 

Knowledge heterogeneity refers to differentness along the set of knowledge 

components not in line with the firm’s extant technological expertise; hence, less familiar 

to the firm. As such, most probably, they will be recombined into fewer innovations. 

Based on the tension view these components of knowledge can help the firm break the 

familiarity trap and lead to original outcomes (Kaplan and Vakili, 2015; Ahuja and 
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Lampert, 2001; Squicciarini et al., 2013). This chimes with the common view in the 

literature that local search is expected to be associated with exploitation rather than 

exploration (Kaplan and Vakili, 2015). In other words, given the effort required in 

recombining these knowledge components, it can be expected that the output would be of 

higher quality at the expense of quantitative output. Hence: 

Hypothesis 2b: Knowledge heterogeneity, ceteris paribus, will be associated with 

higher quality inventive output. 

Patent data will be used to test these hypotheses. The remainder of this section 

will deal with operationalizing the aforementioned concepts. Inventive output (dependent 

variables) will be measured by the firm’s annual patent family output. Annual patent 

family output weighed by forward citations (i.e. of the first US patent of the family in the 

first 7 years) will proxy quality weighted innovative output.  

Non-patent references will be used to proxy codified science which refers to the 

scientific knowledge expressed in journal papers, books, texts, and other technical media. 

A successful recombination is proxied by the grant of a patent. Knowledge diversity and 

heterogeneity are measured by the patent references of the focal patent. Hence, a more 

accurate term would be “technological” knowledge diversity/heterogeneity (in the spirit 

of Kaplan and Vakili, 2015).  

The patent originality index, commonly used as a measure of technological 

knowledge diversity, captures the breadth of the technology fields on which a patent rests 

and is constructed as follows (Squicciarini et al., 2013).  
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Equation 1 The Originality Index 

����������	
 = 1 −  � �
����

�
 

 

�
� is the percentage of citations made by patent p to class j out of the n� IPC 

four-digit (or seven-digit) patent classes in the patents cited in the patent p.  

 

The patent radicalness index is used to proxy for the technological knowledge 

heterogeneity (or distance). Radicalness (à la Shane) measures the degree to which a 

patent builds on (through backward citations) a diversified array of technologies; i.e. 

patents from fields other than own assigned field (Johnstone et al., 2015). It is specified 

as follows: 

 

Equation 2 The Radicalness Index 

Radicalness� =  � CTj/n�;  IPC�'
()

'
≠  IPC� 

 

CTj is the count of IPC four digit codes of patent j cited in patent p that is not 

assigned to patent p, out of n IPC classes in the backward citations counted at the most 

disaggregated level available (up to the 5th hierarchical level). The higher the ratio, the 

more diversified the range of technologies underlying the patent (Squicciarini et al., 

2013).  
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2.4 Data 
To test the hypotheses, firm level patenting data and firm level financial data (for 

control variables) were required12. The OECD Patent Quality Indicators database and its 

Triadic Patent Families database (February 2016 release) were used for main patent data 

and indicators. The LENS13 patent search engine and the COMETS14 (Connecting 

Outcome Measures in Entrepreneurship, Technology, and Science) patent assignee data 

files were used for comparison and verification of assignees (i.e. patent owners at filing).  

The Compustat database (by the Wharton Research Data Services: WRDS) was 

the source of financial data. It is more reliable and comprehensive than alternative data 

sources (i.e. PhRMA and NSF data) for the pharmaceutical industry (Golec and Vernon, 

2008). 

To extract pharmaceutical patents, patents assigned to the international patent 

class (IPC) A61K, representing pharmaceutical patents, were selected. This patent class 

excludes patents on cosmetics (Squicciarini et al., 2013; Schmoch, 2008). This yielded 

117,442 observations. 

The concept of “Triadic Patent Families” was used to identify unique inventions. 

A patent family is a set of related patents linked by one or more patents called priority 

filings that have been filed in several countries (Squicciarini et al., 2013). The priority 

patent of a patent family is the first patent application filed for the invention of each 

family (Criscuolo, 2006). Triadic families have been filed in the U.S., Europe and Japan. 

Drawing on the OECD Triadic Patent Families (TPF) concept, 80,683 patents were 

                                                
12 A more detailed data construction account is available in appendix A. 
13

 “The Lens.” Accessed April 11, 2017. https://www.lens.org/lens/.  
14

 “COMETS.” Accessed April 11, 2017. http://www1.kauffman.org/COMETS/.  
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identified. After assignee verification, 56,804 patents remained in the sample. To 

construct the panel and link to Compustat, assignees with five or greater years of 

patenting activity (1170 assignees) were selected.  

Figure 5 depicts the usable data points after merging financial data (total of 631 

firms). The complete list of firms is available in Appendix A. The final data set, 

comprising of 29,554 patents (i.e. in firm-year-Triadic-Patent-Family unit of analysis), is 

unbalanced and firm data points are not necessarily chronologically complete (e.g. 1998, 

1999, 2010, 2011, 2012). 

Figure 6 depicts the Global Industry Classification (GIS)15 of the firms, indicating 

the diversity of firms contributing to the pharmaceutical invention pool. These firms may 

not be a member of pharmaceutical industry associations such as PhRMA. This indicates 

one advantage of the bottom-up sample building (i.e. starting from a patent pool rather 

than a list of companies) used in this study. 

 

  

                                                
15 The GIS is an industry taxonomy developed in 1999 by MSCI and S&P for the global financial 
community use. It consists of 11 sectors, 24 industry groups, 68 industries and 157 sub-industries 
(Wikipedia). 
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Figure 5 Years of Data for Total Panel Firms (total firms=631) 
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Figure 6 Firms by Global Industry Classification (GIC) Groups 
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NPL per year for each firm over total prior art of the firm in the same year, normalized by 

the number of patent families the company has in the same year.  

 

Equation 3 Basic Regression Model 

+��,��-./ =  01 + 034&6���,-��	./ +  0�7+8���,�-��	./ + 097+8���,�-��	./�  
+  0:�;�<��=�����,-/ +  0>�;�?@A�;	./ + 0B��������./
+  0C4�D�E��./ +  F/  + G.  +  H 

 

Equation 4 NPL Intensity 

 NPL IntensityMN = (� 7+8./  ÷ � +��; <��
./

) ÷ � +��,�� R�@���,-./ 
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Table 3 Variables and Definitions 

Variable Definition 

Dependent variable 

+��,��-./ The count of the number of Triadic Patent Families of 
firm i in year t  

S,��ℎ�,D+��,��-./ The citations weighted first patents of Triadic Patent 
Families of firm i in year t. Calculated (Trajtenberg, 
1990):  

S,��ℎ�,D+��,��-./ =  �(1 + CM)
(U

.V3
 

Explanatory Variables 

7+8���,�-��	./ NPL intensity for the patents of firm i in year t.  

7+8���,�-��	./�  The quadratic term of NPL intensity 

��������./ Average originality index of the patents of firm i in 
year t 

4�D�E��./ Average radicalness index of the patents of firm i in 
year t 

Control Variables 

4&6���,-��	./ Is the contemporaneous ratio of R&D expenditures on 
sales calculated per year per firm 

�;�<��=�����,-/ Logarithm of annual sales of all panel firms active in 
year t 

�;�?@A�;	./ Logarithm of number of employees of firm i in year t  

F/  Year fixed effect 

G. Firm fixed effect 

 

A brief note on control variables is useful. R&D intensity and employment of 

firms represent firm-level control variables. According to Austin (2006) there is a 

relatively close positive relationship between pharmaceutical firms’ current R&D 

expenditure and current sales. The relative stability of the relationship implies that firms 
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find it most profitable to invest a steady portion of any additional sales revenues in their 

own drug research. A large number of studies have dealt with the impact of different 

R&D lags on patenting performance and concluded that R&D lags are “very poorly 

identified due to the high within-firm correlation in R&D”. Also, previous research has 

indicated that inclusion of firm [fixed] effects may turn lags insignificant. As an upshot 

of these studies, it is almost “de rigueur” to use contemporaneous R&D to predict 

patenting performance (Somaya et al., 2007). This study controls for the 

contemporaneous R&D intensity (R&D/Sales) instead of straight R&D expenditures as a 

measure taking account of also the sales of the firm. This is a variation of the 

abovementioned argument. 

The annual employment size represents the size of the firm. A vast literature has 

dealt with the impact of firm size on innovation, for the purposes of this study, suffice it 

to say that, some studies have explored a direct link between firm size and innovation 

Most of these studies are motivated by the seminal work of Joseph Schumpeter. He 

espoused two different takes on the relationship between firm size and innovation during 

his career. He first exhorted that the entrepreneur outside the firm (i.e. small entities) is 

important in innovation. This is position is known as “Schumpeter Mark I”; “widening” 

or “creative destruction”. Later, he emphasized the importance of large firms in 

promoting innovation via endogenous innovative processes. This is referred to as 

“Schumpeter Mark II”; “deepening” or “creative accumulation” (Acs and Audretsch, 

1988; Breschi et al., 2000). Other studies have explored the moderating effect of e.g. 

market structure and technological regimes, or have proposed nonlinear inverted-U 
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shaped relationship between firm-level R&D effort and number of competitors (Peneder 

and Wörter, 2013). 

“Total annual sales” of panel firms is meant to be a proxy variable for the market 

size in that year. Admittedly, it is a noisy proxy since some firms are not strictly speaking 

exclusively in the pharmaceutical industry. However, it may somehow be indicative of 

resources available from cognate industries (e.g. chemicals) that also patent in 

pharmaceutical fields. At the estimation level, including year dummies may effectively 

cancel it out16. Emphasis on market goes as far back to Schmookler’s seminal work, 

“Invention and Economic Growth”, economists have emphasized the importance of profit 

incentives and target market size in innovation. To emphasize this point, Shmookler titles 

two chapters “The amount of invention is governed by the extent of the market” 

(Acemoglu and Linn, 2004).  

Firm fixed effects are dealt with in the panel fixed effect estimation model. Year 

dummies are included to control all industry-level changes affecting all firms (Fabrizio, 

2009) such as economic cycles or new technology emergence (e.g. biotechnology). 

In addition to the abovementioned variable, subsample analyses will be conducted 

to test pre-1995 science intensity based on a dummy variable representing patenting 

activity before 1995. Moreover, a dummy variable for biotechnology firms will test the 

possible difference in biotechnology firms’ inventive output.  

In terms of estimation method, Poisson and negative binomial regression have 

been applied to patent count data in previous studies (Hall and Ziedonis, 2001; Gittelman 

                                                
16 Courtesy of a colleague 
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and Kogut, 2003). The Poisson distribution assumption is that the dependent variable has 

equal mean and variance. When the data is overdispersed, the assumption does not hold 

and the negative binomial analysis is commonly used (Penner-Hahn and Shaver, 2005). 

The Stata overdispersion test based on a straight negative binomial regression 17 on both 

dependent variables indicates that overdispertion exists (e.g. for patent family count: 

Likelihood-ratio test of alpha=0: chibar2(01) = 6543.65 Prob>=chibar2 = 0.000). This is 

consistent with Gittelman and Kogut (2003) who mention that patent citations exhibit a 

great deal of overdispersion therefore they use a negative binomial model. They also use 

cluster regression models for robustness checks hence the same strategy is adopted here. 

In terms of functional form, the expected number of patents applied for during a 

year is usually conceived as “an exponential function of the firm’s R&D spending and 

other characteristics” (Hall and Ziedonis, 2001); hence, the logarithmic transformation in 

most models in the literature. However, Somaya et al. (2007) transform all “size-

dependent variables” by logs. Consequently, employment is log transformed. The 

“annual sales” is log transformed to reduce its skewness and bring it closer to other 

variables. 

2.6 Results and Discussion 
Analysis was conducted by Stata statistical software package version 12.0. For 

practical and theoretical reasons, size of the coefficients will not be interpreted. Firstly, 

main variables are indices (e.g. originality and radicalness) and ratios (science intensity). 

Secondly, the dataset is comprised of proxy variables for a complex phenomenon and 

                                                
17 “nbreg” no fixed effects or clustering) 
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some are consciously manipulable (e.g. number of non-patent references). Hence, stating 

a magnitude of relationship could project an image of false accuracy or causality. To 

illustrate the latter point, according to Callaert et al. (2006) “in absolute terms, USPTO 

patents hold approximately 3 times more references on average than EPO patents” that 

could reflect the broader differences in “rationale of citing prior art”. In other words, 

same invention might be patentable with varying number of backward citations even in 

one patent office due to examiner preferences and idiosyncrasies18. Finally, there are 

studies only looking at the direction of relationships with no attempts at coefficient size 

interpretations such as Gittelman and Kogut (2003).  

Table 4 depicts summary statistics of the variables based on Stata panel summary 

command19 decomposing the standard deviation into between and within components20. 

For example, looking at the first entry, the average number of patent families for all year-

patent rows of data (N =4940) is about 9.3. The average annual number of patent per each 

631 firms varied between 1 and 47.54. The within refers to the deviation from each firm’s 

average, i.e. some firms deviated from their average -39.9 to 94 patents. T-bar refers to 

the average number of years the variable was observed for each firm (Adapted from 

Schüpbach, 2014).  

Table 5 contains the pairwise correlation of variables. The negative correlation 

between employment and NPL intensity may indicate that larger firms on average cite 

less codified scientific material (e.g. journal papers).  

                                                
18 There is a literature on examiner inserted backward citations 
19 xtsum 
20

 https://www.stata.com/manuals13/xtxtsum.pdf  
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Table 6 depicts the results. Negative binomial panel with firm fixed effects and 

negative binomial with firm clustered errors (for robustness checks) were run on the two 

types of dependent variables. Models 1 and 4 are the main models because they include 

year dummies and are based on the two types of dependent variables. The first hypothesis 

regarding the impact of codified science is supported across all models, indicating that 

there is a negative significant association and then a positive significant association of 

incorporating codified science into inventions. The initial negative impact is in line with 

arguments that large numbers of backward citations are associated with more incremental 

innovations (Squicciarini et al., 2013). Drawing on the recombination analogy, the latter 

phase positive impact could be due to the assimilation of a larger pool of scientific 

knowledge (i.e. building blocks of innovation) in the inventive efforts; hence, being able 

to make a larger number of inventions.21  

Hypothesis 2a based on the knowledge diversity argument is not supported in the 

main model (1) based on count dependent. The variable (originality) is positively and 

significantly associated with better quality-weighted inventive output (model 4). An 

explanation behind the observation could be that assimilation and recombination of 

diverse knowledge components is challenging but when achieved leads to better quality 

inventive output.  

Hypothesis 2b based on the knowledge heterogeneity argument is not supported 

as formulated. In fact, the reverse relationship holds with heterogeneous knowledge 

                                                
21 As mentioned earlier, coefficient size interpretation is not sough here. Coefficients indicate the impact of 
independent variables on the outcome variables’ “log of expected counts” or “log counts”; e.g. in model 1 
one unit increase in NPL intensity reduces log of expected counts of patent families by 4.607 (statistically 
significant at the 1% level) before the critical mass is achieved. 
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recombination significantly associated with reduced inventive output in both outcome 

variables. One reason for this could be that drawing on heterogeneous knowledge (i.e. 

distant or not close with the firm’s extant technological expertise), requires more time 

and resources which in turn reduces the inventive output of the firm. 

A brief note on the control variables is in order. If we focus on model 1 and 4, 

employment is negatively associated with inventive output but not with quality weighted 

output. It might be that smaller firms have less inventive output but the quality of their 

output does not differ from large firms. Given the R&D intensive nature of innovation in 

the sector, this observation seems plausible. The annual sales variable is not significant. 

The explanation could be because of its poor proxy quality or being cancelled out by year 

fixed effects. One explanation on the usefulness of such a variable would be a cross 

subsidization argument. Given the fact that not all firms come from the pharmaceutical 

sector (about 24% from outside), some financial resources may be transferred to the 

pharmaceutical inventive efforts from other sectoral activities. Likewise, the constructed 

R&D intensity measure does not show any significance. Measurement and variable 

construction issues aside, a real explanation could be that in the R&D-intensive 

pharmaceutical sector, it does not differentiate inventive output of firms.  
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Table 4 Summary Statistics 

Variable  Mean Std. Dev. Min Max Observations 

+��,��-./ O 4.592308 9.29794 1 137 N =4940 

 B 4.537825 1 47.54054 N=631 

 W 6.010186 -39.9482 94.05177 T-bar=7.82884 

+��,��-./ 
Weighted by 7-
year citations O 39.32733 85.92369 1 1460 N=4940 

 B 38.0221 1 325.973 N=631 

 W 64.52015 -283.646 1248.354 T-bar=7.82884 

<��=�� ���,-/ O $54,700,000.00 $47,700,000.00 $10,237.56 $155,000,000.00 N=4940 

 B $36,000,000.00 $10,237.56 $155,000,000.00 N=631 

 W $38,100,000.00 -$46,400,000.00 $173,000,000.00 T-bar=7.82884 

4&6 W��,-��	./ O 16.67462 441.4469 -90.3846 25684.4 N=4367 

 B 361.2019 -16.2359 8666.188 N=593 

 W 327.6426 -7442.21 17034.89 T-bar=7.36425 

Employment O 18.61606 37.55868 0.002 361.796 N=4043 

 B 29.33049 0.007333 343.9965 n=567 

 W 9.478934 -81.3815 117.2185 T-bar=7.13051 

7+8 W��,�-��	./ O 0.251009 0.250072 0 1 N=4934 

 B 0.175546 0 0.946429 n=631 

 W 0.192682 -0.40051 1.144114 T-bar=7.81933 

��������./ O 0.838273 0.113728 0 0.981557 N=4885 

 B 0.074331 0.394531 0.962883 n=631 

 W 0.095405 0.034581 1.232804 T-bar=7.74168 

4�D�E��./ O 0.270516 0.187558 0 1 N=4885 

 B 0.123775 0 0.732303 n=631 

 W   0.153606 -0.26529 1.121602 T-bar=7.74168 

* O=Overall; B=Between; W=Within; Dollar amounts are in millions; Employment is in 
thousands 
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Table 5 Pairwise Correlations 

Variable Correlation (Significance) 

4&6 W��,-��	./ 7+8 W��,�-��	<��=�� ���,-
Employm
ent ��������./ 4�D�E��

4&6 W��,-��	./ 1 
7+8 W��,�-��	./ 0.0044 1 

(0.7731) 
<��=�� ���,-/ 0.0072 0.0590 1 

(0.6342) (0.0000) 
Employment -0.0190 -0.2062 -0.0413 1 

(0.2413) (0.0000) (0.0087) 
��������./ 0.0198 0.0746 0.2712 -0.0840 1 

(0.1937) (0.0000) (0.0000) (0.0000) 
4�D�E��./ -0.0135 0.0765 -0.0660 0.0092 0.23 1 

(0.3737) (0.0000) (0.0000) (0.5620) (0.0000) 
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Table 6 Regression Results – Full Sample 
 (1) (2) (3) (4) (5) (6) 

Dependent Variable Number of Patent Families Weighted Number of Patent Families (first US patent 7-year 

citations) 

Variables Neg. 

Binomial 

Panel (Fixed 

Effects) 

Neg. 

Binomial 

Panel (Fixed 

Effects) 

Neg. Binomial 

(Clustered Errors) 

Neg. Binomial 

Panel (Fixed 

Effects) 

Neg. Binomial Panel 

(Fixed Effects) 

Neg. Binomial 

(Clustered Errors) 

4&6 W��,-��	./ -0.0000224 -0.0000113 -0.0000333*** 0.00000395 0.000011 -0.0000114** 

 (0.0000337) (0.000034) (0.00000681) (0.0000316) (0.0000319) (0.00000498) 

7+8 W��,�-��	./ -4.607*** -4.609*** -7.810*** -2.628*** -2.966*** -8.179*** 

 (0.219) (0.220) (0.488) (0.196) (0.207) (0.597) 

7+8 W��,�-��	./
2 3.571*** 3.549*** 6.880*** 1.730*** 2.227*** 6.825*** 

 (0.272) (0.273) (0.546) (0.244) (0.256) (0.653) 

Natural log_<��=�� ���,-/  0.129 0.156*** 0.0729 0.0393 0.0453*** -0.0431 

 (0.115) (0.00866) (0.106) (0.126) (0.00833) (0.0795) 

Natural log _Employment -0.141*** -0.175*** 0.148*** -0.0101 -0.0596*** 0.0264 

 (0.0191) (0.0170) (0.0153) (0.00972) (0.00921) (0.0186) 

��������./  0.144 0.583*** 1.670*** 0.334** 0.438*** 2.165*** 

 (0.149) (0.146) (0.236) (0.148) (0.145) (0.280) 

4�D�E��./  -0.244*** -0.321*** -1.315*** -0.211*** -0.202** -0.910*** 

 (0.0855) (0.0850) (0.175) (0.0790) (0.0821) (0.185) 
Year Dummies Yes No Yes Yes No Yes 
Constant 0.0879 -0.136 -0.673 -1.268 -0.402*** 1.117 
 (1.371) (0.160) (1.051) (1.533) (0.153) (0.874) 
lnalpha   -0.982***   0.00612 
   (0.0921)   (0.0335) 
Observations 3,740 3,740 3,787 3,740 3,740 3,787 
Wald chi2(43)/(7) 1654.49 1201.03 1712.05 1310.39 458.58 2713.44 
Prob > chi2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Log likelihood -5937.3553 -6111.1785 -8475.2234 -12840.66 -13241.817 -16261.001 
Number of Firms (gvkey) 493 493 (540) 493 493 (540) 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1; gvkey is Compustat unique firm code
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To explore some of the aforementioned nuances and results, a subsample analysis 

was conducted. Table 7 depicts the details of this effort. An important subsample would 

be the firms primarily active in the pharmaceutical sector (models 1 and 2). This was 

achieved by separating firms active in the “Pharmaceuticals, Biotechnology & Life 

Sciences” industry group based on the GIC industry classification. Four firms were 

missing this designation in the dataset and were excluded from the regression.  

Another nuance would be the impact of longer history of inventive activity or 

more experienced (models 5 and 6). This was achieved by separating firms with 20 years 

of patenting data; however, the eventual analysis has firms with minimum of 13 years of 

observations due to other missing data. This analysis could be important for two reasons. 

Firstly, a longer period of activity could potentially point to hidden regularities in 

innovative activities. Secondly, these firms could be different because of history, survival 

or other attributes not fully accounted for in the models. In all four models the curvilinear 

relationship between science intensity and inventive output still holds. However, the 

knowledge diversity proxy is not significant in all models, even the model based on 

quality weighted output. This may indicate for pharmaceutical firms, the ability to 

recombine diverse knowledge does not give them an edge in inventive output. In other 

words, this ability is pervasive and a qualifier for inventive activity.  

Hypothesis 2a based on the knowledge diversity argument is not supported in the 

main model (1) based on count dependent. The variable (originality) is associated with 

better quality-weighted inventive output (model 4). An explanation behind the 

observation could be that assimilation and recombination of diverse knowledge 
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components is challenging but when achieved leads to better quality inventive output. 

The negative impact of knowledge heterogeneity on inventive output is observable in 

three models. It is only not significant in the model based on quality weighted output for 

all pharmaceutical firms. Hence, recombining heterogeneous knowledge can be assumed 

to negatively impact inventive output possibly because of the effort involved. 

Another interesting analysis would be to see how science intensity might have 

changed in the wake of the 1990s scientific and technological advances. To this end a 

dummy variable representing pre-1995 inventive activities was created and interacted 

with the science intensity variable (models 3 and 4). First wave of biotechnology drugs 

were granted FDA approval in the 1990s (see figure 1). Results indicate that before 1995 

higher science intensity was associated with more and better quality inventive output. 

One explanation could be that science intensity increased over time and without 

assimilating and utilizing a critical mass it does not have any advantage in inventive 

activities.  

The last subsample analysis pertains to biotechnology firms. A dummy variable 

was created for firms active in biotechnology22. Model 7 run on quality weighted 

inventive output23 indicates that biotechnology firms have a better performance within 

the broader pharmaceutical sector. This is consistent with arguments in the literature 

touting biotechnology firms as the innovative engine of the pharmaceutical sector (e.g. 

                                                
22 i.e. assignment to the GIC Industries Code of 352010 
23 The model would not run on the count dependent variable because some firms have only one output per 
year (i.e. “constant within group” dropping of biotechnology dummy). 
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Perova, 2014 trifecta model24). However, they have less total output. This point is 

corroborated by summing the total citations weighted dependent variables for 

biotechnology (i.e. 49774) and non-biotechnology (i.e. 117565) firms, and a significant t-

test of weighted dependent variable based on a biotechnology dummy. The first activity 

year for biotechnology firms is 1982, versus 1977 for non-biotechnology firms. 

One caveat of the abovementioned results is that prior art25 on patent documents 

contain citations inserted by the patent examiner (Fabrizio, 2009). The data used in this 

study does not distinguish between examiner and applicant cited prior art. However, the 

underlying argument of characterizing inventions based on cited prior art can still be 

valid. For instance, the argument would be that firms with inventions underpinned by 

larger NPLs (i.e. either determined by examiner or inventors) have better inventive output 

performance than those firms not meeting the unknown threshold. Even if we manage to 

separate inventor and examiner citations, the inventor might be able to base the invention 

on larger number of fragmented codified science references (e.g. journal articles) or a few 

broader science references covering more ground. Hence, the issue of qualitative contents 

of cited prior art arised which is rarely addressed in studies. This might be another issue 

why coefficient interpretation might be redundant.  

 

                                                
24 Simple model depicting division of labor between: biotech firms (doing applied research and 
biomolecule design), public institutions (creating new fundamental knowledge and mapping the scientific 
landscape) and large pharma firms (doing clinical trials, manufacturing and commercialization) (see 
Appendix A). 
25 As a reminder, NPL intensity; originality and radicalness indices are all based on references cited on the 
patent document. 
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Table 7 Subsample Regression Results – Negative Binomial Panel Fixed Effects 
 (1) (2) (3) (4) (5) (6) (7) 

 Only Pharmaceutical Sector Pre-1995 Science Intensity (all 

sample) 

Pharma Sector Firms with 20 or 

more years of patenting* 

Biotech Dummy 

(Pharma Sector) 

Dependent Variable Count Weighted Count Weighted Count Weighted Weighted 

4&6 W��,-��	./ -0.0000217 0.00000306 -0.0000169 0.00000617 0.0721 0.0614 0.00000185 

 (0.0000333) (0.0000304) (0.0000347) (0.0000327) (0.0526) (0.0627) (0.0000301) 
7+8 W��,�-��	./ -5.351*** -3.350*** -2.258*** -1.549*** -9.967*** -8.025*** -3.380*** 

 (0.258) (0.232) (0.0986) (0.0882) (0.741) (0.784) (0.233) 

7+8 W��,�-��	��
2 4.239*** 2.471***   9.960*** 7.711*** 2.481*** 

 (0.308) (0.277)   (1.023) (1.032) (0.276) 
Natural log_<��=�� ���,-/  0.140 0.0228 0.113*** 0.00544 0.00161 -0.0742 0.0186 
 (0.128) (0.140) (0.00978) (0.0102) (0.192) (0.206) (0.140) 
Natural log _Employment -0.170*** 0.00242 -0.184*** -0.0548*** -0.145*** 0.0251 0.0153 
 (0.0203) (0.0117) (0.0170) (0.00921) (0.0446) (0.0319) (0.0136) 

���������� 
0.0241 0.236 0.153 0.148 -0.00760 0.459 0.206 

 (0.182) (0.183) (0.144) (0.143) (0.358) (0.424) (0.184) 

4�D�E���� -0.178* -0.133 -0.327*** -0.186** -0.421** -0.471* -0.138 

 (0.104) (0.0979) (0.0853) (0.0823) (0.214) (0.252) (0.0979) 
Pre-1995 *7+8 W��,�-��	./   0.793*** 0.854***    
   (0.176) (0.161)    
Pre-1995 Dummy   -0.496*** -0.453***    
biotechnology       0.139* 
       (0.0727) 
Year Dummies Yes Yes No No Yes Yes Yes 
Constant 0.0107 -1.037 0.884*** 0.492** 1.293 -0.190 -1.022 
 (1.526) (1.697) (0.194) (0.202) (2.242) (2.444) (1.697) 
Observations 2,758 2,758 3,740 3,740 589 589 2,758 
Wald chi2(43)/(8)/(44) 1528.83 1139.31 1128.60 434.25 845.96 657.55 1143.75 
Prob > chi2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Log likelihood -4511.6966 -9778.8654 -6134.7675 -13248.24 -1571.5376 -2898.5852 -9777.0282 
Number of Firms 374 374 493 493 25 25 374 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1; * given financial data availability the minimum number of observations turns out to be 
13 
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2.7 Conclusion 
This study explored the inventive output of firms active in pharmaceutical 

patenting. The first observation was that about one quarter of firms contributing to the 

pool of pharmaceutical inventions have primary activity outside the pharmaceutical 

industry. This might be especially important as the pool of inventions represent Triadic 

Patent Families. 

Robust support was observed for the non-linear; first negative and then positive; 

association of science-intensity to the inventive output of firms. Moreover, knowledge 

diversity was positively associated with quality-weighted inventive output while 

knowledge heterogeneity negatively influenced both inventive output and quality-

weighted inventive output. The latter results are in line with the foundational view of 

creativity that contends a deep grasp of domain knowledge is important in developing 

breakthrough innovations. Nuanced subsample analysis revealed that for firms primarily 

active in the pharmaceutical sector higher knowledge diversity in inventive output did not 

improve performance. This may indicate the ability to recombine diverse knowledge as a 

necessary and pervasive capability for inventive activities. Moreover, pre-1995 reliance 

on codified science was higher, indicating a possible shift to higher science intensity of 

innovative activities in the past few decades.  

In terms of strengths, a relatively new dataset by OECD was used in the study. 

Moreover, the bottom-up approach of starting from a patent pool lent useful insight on 

patenting from outside the pharmaceutical sector. Focusing on triadic patent families 

helped capture more valuable inventions underpinning real innovations. While the study 
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drew on constructed proxies for complex phenomena such as science utilization in 

innovation, the conceptual framework can be tested in future studies. 

In terms of shortcomings, the construction of the proxy variables in the form of 

indices and averages may have dampened the explanatory power of underlying variables. 

This could be accentuated for the originality and radicalness indices that in original form 

are complex constructs. Additionally, the dataset did not allow distinguishing between 

examiner and applicant inserted references.  

The sample patents were all assigned to the A61K IPC patent class. Therefore 

models do not control for technology class as it is customary in some studies. There are 

technical problems in controlling for technology field based on patent classes. The IPC 

classification is updated periodically and is based on the economic importance; i.e. 

industry and profession; as opposed to the technical focus of the U.S. classification based 

on structure and function of the invention (Lerner, 1994). The IPC is more desirable in 

economic research. However, unlike the U.S. classification, there is no main IPC class to 

which the patent is assigned to, making controlling for IPC class problematic. It can be 

argued that patent classes may altogether be a poor choice for controlling pharmaceutical 

innovation fields. For instance, thalidomide was initially used in the late 1950s and early 

1960s for the treatment of nausea in pregnant women. As it later transpired in the 1960s, 

thalidomide resulted in severe birth defects. The use of thalidomide was banned in most 

countries at that time; however, it proved useful for leprosy and later, multiple myeloma 

(Kim and Scialli, 2011). This shows how the application of a drug substance has changed 

dramatically over time. 
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Finally, a brief note on future research is useful. Most of the variables used in the 

study are proxies of complex phenomena. Hence, searching for appropriate instruments 

could be an interesting foray for quantitative research. Moreover, in depth understanding 

of the abstract notions of knowledge diversity and heterogeneity as well as the use of 

scientific knowledge in the inventive process requires qualitative research such as case 

studies. 
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CHAPTER THREE: FROM BENCH TO BEDSIDE – DETERMINANTS OF 

BREAKTHROUGH DRUG DISCOVERY 

Abstract 

This study adopts a different approach in studying the determinants of 

breakthrough innovation by focusing on patents underlying successful drug products. 

Hence, 5381 Orange Book patents were matched with pharmaceutical patents to examine 

the profile of valuable inventions in the pharmaceutical sector. Results indicate that 

inventions with fewer applications (i.e. citations across different technology classes) have 

higher probability of entering the Orange Book. Broader legal scope boosts the 

probability of being an Orange Book patent. This might be because inventors carve out 

larger legal protection for more valuable inventions. In terms of knowledge 

recombination, higher technological knowledge diversity reduces the probability of being 

an Orange Book patent while technological knowledge distance (i.e. not coming from the 

patent’s technology class) increases the probability of being an Orange Book patent. 

Regarding collaborative inventions, being assigned to multiple entities does not have a 

significant impact on the probability of being an Orange Book patent while being 

assigned to different organizational types reduces the probability of being an Orange 

Book patent. Subsample analyses reveal differences between drug substance patents and 

Orange Book patents as well as knowledge recombination before the year 1995.  
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Keywords: Pharmaceutical Innovation; Patents; Orange Book; Breakthrough 

Innovations 

3.1 Introduction 
The pharmaceutical sector is a unique industry with a profound impact on 

people’s health and quality of life. It is substantially more coupled with science, and more 

regulated than other industries. With an annual growth rate of 4-7%, it is fast approaching 

the US$1 trillion market size. At the same time, it faces serious challenges in the 

fundamentals of the industry. Innovation and marketing are the complementary pillars of 

the industry. Subpar innovation will lead to reduced sales and eventually less resources 

for innovation (Ding et al., 2014a). Since firms play a vital role in innovation and 

production of drugs, the broader societal outcomes will be higher prices and fewer 

therapies for new health challenges such as drug resistant bacteria.  

A combination of factors makes innovation in the pharmaceutical sector more 

challenging and volatile: finite patent protection, long drug development cycles (4–16 

years), high failure rates, soaring costs of developing and launching drugs, and huge post-

launch market risks (e.g. withdrawal on safety concerns e.g. Vioxx®26). While at first 

sight these issues may deter R&D investments, the pharmaceutical sector leads all other 

sectors in R&D spending. Consequently, R&D portfolio management is complicated; for 

instance, in 2010, R&D expenditure of GlaxoSmithKline (GSK) stood at over 6 billion 

USD in a total of 147 R&D projects across 13 therapeutic areas in different stages of 

                                                
26 Rofecoxib (branded as Vioxx, Ceoxx, and Ceeoxx) was an NSAID marketed by Merck and one of the 
most widely used drugs ever to be withdrawn from the market. It received FDA approval on May 20, 1999 
and was withdrawn on September 30, 2004 after it transpired that it increased heart attack and stroke risk in 
long-term use (Wikipedia).  
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development (Ding et al., 2014b). Knowledge of high potential innovations’ 

characteristics could help in R&D management processes.  

Revolutionary discoveries in diverse disciplines such as life sciences, engineering, 

informatics, and optimization are utilized to identify naturally occurring compounds, 

design new ones, or alter the existing ones (Petrova, 2014). In fact, the history of the 

pharmaceutical industry can be viewed as an evolutionary adaptation to major 

endogenous and exogenous technological and institutional “shocks” (McKelvey et al., 

2004). However, in the face of all scientific and technological advances, the annual FDA-

approved drug output of the industry has been almost flat for decades (Scannell et al., 

2012). Hence, studies characterizing successful innovations can potentially help adjust 

the innovative efforts for better performance. 

In the spirit of Kelley et al. (2013), this research is based on the assumption that 

an examination of high-potential inventions can improve our understanding about the 

underlying features of innovations that revolutionize industries and assist in attaining 

societal goals. Having detailed knowledge of successful innovations would be useful in 

handling the pressure for continuous innovation.  

Given the knowledge-intensity of innovation in pharmaceuticals, exploring the 

knowledge content of innovations is an important foray of the study. The literature is rife 

with studies defining valuable, successful, or breakthrough innovation based on forward 

citation of patents (e.g. top 1% cited patents in own technology field and filing cohort) 

(e.g. Phene et al., 2006; Squicciarini et al., 2013). This study uses a different approach by 
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focusing on patents underpinning successful drug products, in other word, inventions 

with actual applications rather than citations received.  

While a different approach, a parallel can also be drawn between this approach 

and citations-based breakthrough definitions. The main pharmaceutical patent dataset of 

this study contains 120,594 patents while there are 5,381 total Orange Book patents in the 

dataset (about 4.4%). However, not all Orange Book patents are from the main 

pharmaceutical patent class (IPC A61K); focusing on patents assigned to the 

pharmaceutical patent class (3,870) Orange Book patent occurrence is even rarer at about 

3.2%. Hence, the Orange Book patents represent rare, successful inventions worthy of 

breakthrough label.  

Another justification is the existence of studies using specific sets of inventions as 

breakthroughs. For instance, Fontana et al. (2012) use R&D 100 awards as their source of 

breakthrough inventions. R&D 100 awards are organized by the Research & 

Development magazine. Since 1963, every year 100 significant new products available 

for sale or licensing in the preceding year are introduced and awarded (Fontana et al., 

2012).  

The FDA’s Orange Book or the “Approved Drug Products with Therapeutic 

Equivalence Evaluations” publication lists the drug products approved on the basis of 

safety and effectiveness.27 New drug applications (NDAs) are required to include relevant 

patent information which is published in the Orange Book after approval.28 These patents 

                                                
27 http://www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm (Accessed April 11, 2016) 
28 http://www.fda.gov/Drugs/DevelopmentApprovalProcess/ucm079031.htm (Accessed April 11, 2016) 
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are directly related to approved drugs; hence, will serve as an important benchmark 

against which to assess other comparable innovations. 

This essay attempts to ascertain the differences between successful innovations 

(i.e. patents listed in the Orange Book) and pharmaceutical inventions not used in drug 

products. While, strictly speaking, patents represent inventions, the fact that Orange Book 

patents are directly related to drug products, makes them a very good proxy for 

innovations. 

3.2 Literature Review 
A multitude of terms have been used to characterize important technological 

innovations: radical, revolutionary, breakthrough, discontinuous and disruptive are 

among the most drawn upon terms. Breakthrough or radical innovations launch new 

practices that are noticeably better than the prevailing ones in some important aspects. 

These innovations may have the potential to create new markets, seed follow-up 

innovations, and create competitive advantage for firms or nations (Arts et al., 2013). 

Most extant studies have defined breakthrough innovation based on patent forward 

citations. This brief literature review tackles the issues of the theoretical lens of studies, 

scope of inventions, and the properties and sources of knowledge. 

3.2.1 Theoretical Lens 
In terms of theoretical lens, most studies dealing with breakthrough innovations 

have adopted an approach called “innovation as a search process”. Innovation as 

organizational search and learning emanates from attempts to open the black box of the 

innovation production function. Several types of search mechanisms have been 
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envisioned such as recombinatory, cognitive and experiential search (Ahuja et al., 2008). 

The recombinatory search has been exhorted as an ultimate source of novelty by many 

scholars (Fleming, 2001). A prominent early reference to recombination can be traced to 

Schumpeter (1939). In defining innovation, he resorts to the production function notion. 

He states that, in the economic sense production is “nothing but combining productive 

services”. He extends this notion to innovation by mentioning that “innovation combines 

factors in a new way, or that it consists in carrying out new combinations …” (p. 27).  

Within the recombinant search approach to innovation, a number of recurring 

themes are prominent. From one perspective the literature can be divided into two 

strands: those focused on the impact of organizational factors on the chances of 

developing breakthrough innovation, and those exploring issues pertaining to the 

properties of knowledge such as the breadth and sources of knowledge recombined in the 

innovation process (adapted from Kelley et al, 2013; Verhoeven et al., 2016).  

The studies on organizational factor highlight the importance of controlling for 

organizational effects in innovation studies. For instance Baba and Walsh (2010) 

highlight how Sankyo Pharmaceuticals, despite temporal lead, abandoned the 

development of statins in response to an adverse observation. This left room for Merck to 

take the lead. They put down this decision on organizational differences in risk 

assessment. 

3.2.2 Properties of Knowledge 
The diversity and distance of knowledge have been tackled under the knowledge 

recombination theoretical lens. While the literature has operationalized these concepts 
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very differently, a simple generalization would be that knowledge diversity pertains to 

the number of different components of knowledge assembled to create the invention. 

Knowledge distance refers to the degree of differentness of the knowledge components 

used in the inventive effort. Differentness can be with reference to the focal invention 

(the focus in this study) or the organizational repertoire.  

The distance and diversity of knowledge are related to two competing theories of 

creativity. According to the “tension view”, deep knowledge can lead to myopia to the 

extent that the recombination of distant or diverse knowledge is needed for generating 

new ideas. On the other hand, according to the “foundational” view of creativity, 

developing a deep understanding of the foundations, assumptions and weaknesses of a 

particular knowledge domain helps detect anomalies that can lead to breakthrough 

innovations. Too distant and diverse recombination can be disadvantageous to innovation 

because only a penetrating attempt can produce breakthroughs (Kaplan and Vakili, 2015). 

Weisberg (1999) brings up the analogy of “knowing the territory” and states that you 

need to know the discipline to be able to go beyond it.  

As an example of research with theoretical implications, Dunlap-Hinkler et al. 

(2010) explore the impact of firms’ prior experience with innovation on the likelihood of 

success in breakthrough innovation. Examining 1,496 FDA new drug approvals (1993 - 

2002), they conclude that success in nongeneric incremental innovation does not have a 

significant influence on breakthrough chances; previous experience in generics 

significantly reduced the likelihood of having a breakthrough innovation29. They reason 

                                                
29 New molecular entities (NMEs) 
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that a solid foundation in generic incremental innovation thwarts breakthrough 

performance. 

In terms of knowledge diversity, the most common proxy of knowledge diversity 

is based on patent backward citations that measure the diversity of the technology fields 

(i.e. patent classes) on which a patent rests. Kaplan and Vakili (2015) identify patents 

originating new topics in a specific nanotechnology area by developing a text-based 

measure of novelty (i.e. cognitive novelty). In contrast to the received theory of 

recombination, they observe that patents seeding new topics are more likely to be 

associated with local search (i.e. a narrower domain with less knowledge diversity), while 

economic value (i.e. measured by patent forward citations) requires broader 

recombination. As a practical lesson, they mention that transforming novel ideas into 

economically useful ones requires bridging wide recombination and local search. 

According to Ardito et al. (2016) for a patent being an established technology (i.e. 

proxied by patent’s backward citations count) has an inverted U-shaped effect on the 

likelihood of becoming a breakthrough technology (i.e. based on forward patent 

citations). Knowledge diversity negatively influenced the relationship.  

In terms of knowledge distance, Egli et al. (2015) attempt to uncover the patent 

indicators explaining the diffusion of climate change mitigation technologies. They use 

patent grants, applications, patents owned by commercial entities, and risk finance as 

dependent variables (figures form 2000-2010) and construct independent variables based 

on figures from 1990-2000. Moreover, technologies with more knowledge distance in the 
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1990’s had slower diffusion in the 2000’s and were less cited by private (i.e. commercial 

firms) patent applicants. However, they were more popular with risk finance in the 2000s.  

3.2.3 Scope of the Invention 
The scope of an invention can be explored from a number of perspectives. The 

invention application30, legal, and technological scopes are introduced here.  

The application scope is defined here as the utilization of the invention in other 

inventions. This can be proxied by the number of different technology classes in which 

the patent is cited (i.e. diverse citations based on citing patents’ classes). This is known in 

the literature as the generality of the patent. For instance, Youtie et al. (2008) use the 

term breakthrough innovation and general purpose technology (GPT) synonymously. 

General purpose technologies are pervasive in multiple sectors, are amenable to continual 

technological improvements, and stimulate complementary investment by adopting 

sectors (Schultz and Joutz, 2010). Youtie et al. (2008) case study pertains to 

nanotechnology with ICT comparisons. Using patent data, they observe that 

nanotechnology shows similar ‘‘pervasiveness’’ levels to that of ICT which is considered 

to be an existing general purpose technology (Youtie et al., 2008). Egli et al. (2015) 

observe that their measure of industrial generality of a whole patent class (e.g. biofuels) 

in environmental technologies is robustly correlated with subsequent diffusion of 

technology by having a positive impact on the dependent variables of patent grants, 

applications, patents owned by commercial entities, and risk finance. 

                                                
30 Application meaning use not the notion of patent application 
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The legal scope of a patent is defined in terms of its claims. A patent document 

represents a set of inventive components in the form of claims (OECD, 2009). The claims 

comprise the core section of a patent and define the legal scope of the invention for which 

protection is conferred (Archontopoulos et al., 2007). Barring some noise in this measure, 

such as the tendency to inflate the number of claims by some applicants and changes 

made during the examination process, they are used as a measure of legal scope (OECD, 

2009). Empirical research has reported positive association between number of claims 

and breakthrough innovation (i.e. based on patent citations) (Kaplan and Vakili, 2015; 

Singh and Fleming, 2010). 

Finally, the technological scope of the invention refers to the patent classes the 

patent has been assigned by the examiner. Technological scope proxies the different 

technological areas the patented invention is relevant for. It is also known as the “patent 

scope” in the literature and is often associated with the technological and economic value 

of the patent (Squicciarini et al., 2013). In a broad study Kelley et al. (2013) observe that 

breakthrough inventions (top 1% cited patents) tend to be based on greater technological 

scope (i.e. the patent scope or the patent classes the patent is assigned to). Lerner (1994) 

observes that technological scope affects the valuations of privately held venture-backed 

biotechnology firms with “a one standard deviation increase in average” scope being 

associated with “a 21% increase in the firm's value”.  

3.2.4 Physical Sources of Knowledge 
Another strand of literature deals with the sources of knowledge components used 

in the inventive endeavor. There are studies emphasizing the importance of knowledge 
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from outside the firm’s organizational and technological boundaries for innovation 

(Phene et al., 2003). Some studies have tackled the issues surrounding accessing 

knowledge from outside the innovative entity under the “boundary spanning” label. 

Without external knowledge integration, gains from internal technology development 

efforts might not be sustainable (Rosenkopf and Nerkar, 2001). Pharmaceutical firms are 

increasingly turning to external R&D in the course of restructuring and pipeline 

optimization. Licensing, acquiring, and alliances are three routes for this (Wuyts, 2014). 

Higgins and Rodriguez (2006) observe that acquisitions seem to effectively supplement a 

firm’s internal R&D efforts and R&D-focused alliances.  

Dunlap-Hinkler et al. (2010) observe that products developed as a result of joint 

ventures and alliances were more likely to be breakthroughs. Laursen and Salter (2006) 

report that “searching widely and deeply” is related to innovative performance in a 

curvilinear way (i.e. inverted U-shaped). Search breadth refers to the number of sources 

of knowledge or information used in the course of the innovation (e.g. suppliers, 

customers, universities, etc.). Search depth is defined as the intensity of using “different 

search channels or sources of innovative ideas”. 

To conclude this literature review a number of observations is in order. In terms 

of the dependent variable used in the studies, citations-based measures (e.g. top 1% cited 

patents) are common but other variables such as actual FDA new drug approvals, patent 

applications, grants and risk finance, are occasionally used. Regarding independent 

variables, two broad themes can be detected: those mainly exploring the impact of 

organizational-level issues and processes (e.g. alliances) on technology breakthroughs 
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and those concerned with knowledge structures underpinning breakthrough innovations 

(e.g. knowledge diversity) (adapted from Kelley et al, 2013; Verhoeven et al., 2016).  

3.3 Research Question and Hypotheses 
This study seeks to ascertain “how patents underlying successful drug products 

differ from other patents?” Given rising R&D costs and stagnant new drug approvals, any 

improved knowledge of the inventions that have actually been incorporated into a drug 

product can have important managerial implications. The unit of analysis is the invention 

(proxied by the patent). The hypotheses have been grouped into the three categories of 

application breadth (or generality) of the invention, legal and technological scope of the 

invention, and knowledge recombination profile. 

A preliminary note is necessary before formulating the hypotheses. As mentioned 

earlier, a patent document contains references to relevant information (or prior art). 

Patents are issued by an authorized agency granting time-bound exclusive rights to 

inventions. The granting process includes examination for novelty, inventive activity and 

industrial applicability. Moreover, the references cited by the inventors can be altered by 

the examiner. A patent can be cited on other patents as prior art. This discussion 

highlights three important actors whose actions impact inventive output and quality. The 

inventors31 are the formulators of inventions, examiners as gatekeepers and quality 

controllers, and other inventors citing the patents in their patents are the ultimate arbiters 

of quality, application and utility of the inventions. 

                                                
31 A catch-all for all involved on their side including attorneys drafting the patent text 



67 
 

3.3.1 Application Breadth or Generality 
The first hypothesis draws on the notion of general purpose technologies (GPTs). 

Widespread adoption of a core technology is the upshot of similar decisions on a variety 

of actors that see a potential in the technology (Youtie et al., 2008). GPTs can be 

“process technologies, product-related or organizational transforming technologies” 

(Liebenau, 2007).  

Feldman and Yoon (2012) examine a number of characteristics of GPTs regarding 

the Cohen– Boyer patented invention for recombinant DNA (US 4237224 Process for 

Producing Biologically Functional Chimeras). They observe that Cohen–Boyer related 

patents exhibit characteristics of a GPT: i.e. technological complementarity and “wide 

scope of applicability”.  

Only “composition” or “method of use” patents are allowed for listing in the 

Orange Book. These patents cover “the drug compound, specific formulations of the 

drug, or methods of treating certain diseases by administering the drug.” “Process 

patents” covering “methods for making” the drug compound, are not allowed (Barkoff, 

2006). Per patent listing regulation: 

“… such patents consist of drug substance (ingredient) patents, drug product 

(formulation and composition) patents, and method of use patents. Process patents are 

not covered by this section and information on process patents may not be submitted to 

FDA.”32 

Combining these arguments, we can expect that inventions listed in the FDA’s 

Orange Book or the “Approved Drug Products with Therapeutic Equivalence 

                                                
32 https://www.fda.gov/OHRMS/DOCKETS/98fr/PATENT.pdf  
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Evaluations”, cover more specific inventions hence are less likely to exhibit general 

purpose technology characteristics especially a wide scope of applicability across 

technology fields. Hence: 

Hypothesis 1: The broader the applications of an invention across technology 

fields, ceteris paribus, the lower the probability of being an Orange Book patent. 

A tentative parallel can be drawn between generality and knowledge distance and 

diversity. Knowledge distance and diversity measure the different technological 

components used in the invention. This is done by the inventors and examiners. 

Generality refers to the different technological fields in which the invention has been 

used (i.e. cited by other patents). Hence, generality materializes in terms of the decisions 

of other inventors33.  

The pervasiveness (scope of applicability) and continual technological 

improvements of GPTs can be tracked by patent generality index and forward citations 

respectively (Schultz and Joutz, 2010). 

Squicciarini et al. (2013) construct the generality index based on the first 5-year 

citation window (since publication of the patents) as follows. It is based on the notion of 

the Hirschman-Herfindahl Index (HHI) and relies on information concerning the number 

and distribution of forward citations and the technology classes (IPC) of the citing 

patents. It is calculated as follows and is defined between zero and one (reproduced form 

Squicciarini et al., 2013):  

                                                
33 Baring examiner citations 
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Let X be the focal patent with 	. patents citing the focal patent, with i = 1, …, N. 
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Equation 5 The Generality Index 
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The denominator is equal to \.� ∗ 7 

As such the generality of a patent reflects the decisions of other inventors in terms 

of the application and utility of the invention.  

3.3.2 Legal and Technological Scope of the Invention 
Two hypotheses are formulated based on the technological and legal scopes of the 

patent.  

We would hypothesize that a broader patent scope is associated with 

breakthrough innovation designation if our dependent variable was based on forward 

citation count. However, given the fact that our breakthrough definition is based on 
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application in a drug product, it is expected to see a more focused legal and technological 

scope.  

A few arguments will be used to illustrate the possible relationship. To begin 

with, the number of claims is “associated with the technology or product “space” being 

protected” (Lanjouw and Schankerman, 2001). Moreover, “a product patent claims 

actual physical objects such as machines or molecules”, while a process patent is about 

methods or steps for accomplishing a task. “Process patents normally require a 

description at a higher level of abstraction” (Surden, 2011). Therefore, most probably, a 

drug product can be claimed in fewer statements or claims and would protect a more 

defined technological space.  

A patent examiner may ask the patent applicant to restrict the invention scope (i.e. 

because “two or more independent and distinct inventions are claimed in a single 

application”.34 If this is required for an Orange Book patent, the patentee will have to 

choose between “a drug; a key intermediate for making the drug; methods of making the 

drug; a drug metabolite; and methods of treating patients using the drug”. Claims 

pertaining drug patents are supposed to be more valuable; hence, in the event of a 

restriction requirement, they are often selected over other claims (Andres, 2015). This 

process will further restrict the number of claims per patent by breaking up broad patents. 

Hence:  

Hypothesis 2: The broader the legal protection of a patent, ceteris paribus, the 

lower the probability of being an Orange Book patent. 

                                                
34 http://piersonpatentlaw.com/what-is-a-patent-restriction-requirement-under-37-cfr-1-142/  
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Turning to the technological scope, Lerner (1994) developed a proxy based on the 

International Patent Classification (IPC) scheme. He counts the number of first four digits 

of the IPC classes the patent is assigned to as an indicator of technological scope.  

The relationship between technological scope and Orange Book listing is 

probability similar to the generality index but from the examiner point of view. In other 

words, the examiner decides on the “envisioned applicability” of the invention and 

assigns the patent to the patent classes. The larger the number of patent classes the patent 

is assigned to, the broader the scope of applications. According to Lerner (1994) 

examiners have “a strong incentive” for careful classification of the patent because 

eventually they return to these classifications for prior art search.  

Hypothesis 3: The broader the “envisioned applicability” of an invention, ceteris 

paribus, the lower the probability of being an Orange Book patent. 

3.3.3 Knowledge Recombination Profile 
Knowledge recombination is examined in three dimensions in this study: 

diversity, distance (or heterogeneity) and boundary spanning.  

Knowledge diversity and knowledge distance represent various degrees of 

differentness of knowledge used in an invention. While knowledge diversity refers to the 

“breadth” of the technology fields on which a patent relies, knowledge distance 

represents drawing on knowledge components from fields other than its own (adapted 

from Egli et al., 2015). Hence, the latter scores higher on the “differentness” scale.  

The “foundational” view of creativity and the concept of “better than the Beatles” 

are used to formulate the hypotheses on knowledge diversity and distance. The “better 
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than the Beatles” problem refers to the practical situation where many diseases have been 

satisfactorily tackled, hence a large stock of approved drugs exists and new drugs have 

only a modest incremental benefit over what is already available (Scannell et al., 2012; 

Ding et al., 2014a). This is an indication of tightening innovation opportunities; hence, a 

more in-depth and focused mastery of knowledge is needed to improve chances of 

breakthrough innovation. These dynamics is also consistent with the “foundational” view 

of creativity calling for deep knowledge of the discipline for innovation (Weisberg, 

1999). Evoking the recombinant view, while innovation still requires new knowledge 

building blocks, their degree of differentness should be such that the inventors can 

assimilate them and recombine into a differentiated invention. This is a reasonable 

expectation if the new knowledge comes from the vicinity of the knowledge35 previously 

experimented with. Hence: 

Hypothesis 4: The higher the technological knowledge diversity of a patent, 

ceteris paribus, the higher the probability of being an Orange Book patent. 

As an extension of the aforementioned argument, given the fact that 

technologically distant knowledge comes from fields other than the patent’s, its degree of 

differentness may preclude a seamless recombination; hence:  

Hypothesis 5: The higher the technological knowledge distance of a patent, 

ceteris paribus, the lower the probability of being an Orange Book patent. 

Consistent with extant literature, the originality and radicalness indices are used to 

proxy knowledge diversity and distance, respectively. The patent originality index refers 

                                                
35 This hypothesis is based on the originality index; hence, in comparison with the radicalness index, 
includes patent classes from the same class as the focal patent.   
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to the breadth of the technology fields on which a patent relies and is constructed based 

on backward citations as follows (Squicciarini et al., 2013): 

 

Equation 6 The Originality index 
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�
� is the percentage of citations made by patent p to class j out of the n� IPC 

four-digit (or seven-digit) patent classes in the patents cited in the patent p.  

The patent radicalness index is used to proxy for the technological knowledge 

distance of a patent’s knowledge base. Radicalness (à la Shane) measures the degree to 

which a patent builds on (through backward citations) a diversified array of technologies; 

i.e. patents from fields other than own assigned field (Johnstone et al., 2015). It is 

specified as follows: 

 

Equation 7 The Radicalness Index 

Radicalness� =  � CTj/n�;  IPC�'
()

'
≠  IPC� 

 

CTj is the count of IPC four digit codes of patent j cited in patent p that is not 

assigned to patent p, out of n IPC classes in the backward citations counted at the most 

disaggregated level available (up to the 5th hierarchical level). The higher the ratio, the 
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more diversified the range of technologies underlying the patent (Squicciarini et al., 

2013).  

“Boundary spanning” activities is another dimension of knowledge 

recombination. The competitive dynamics of drug discovery is also important in this 

argument. Successful and continuous new drug introductions comprise the essence of 

sustainable competitive advantage for pharmaceutical firms. The shift from random 

screening to targeted rational drug design, “the discovery process has become more 

systematic”, attracting entrants that compete in a race towards targeting a finite set of 

publicly known diseases. First to reach the market will enjoy a reputation effect, and 

without alternatives, market domination (Petrova, 2014). Some industry commentators 

have faulted the industry for developing too many “me-too” drugs36 a term that can be 

traced back to the 1960’s. However, the distinction between breakthrough and “me-too” 

drugs can be misleading as the majority of the latter have been in clinical development 

before the approval of the class breakthrough drug. Hence, the term “development races” 

better describes new drug development here than “post hoc imitation” (DiMasi and 

Paquette, 2004). A trifecta model of drug development is developing whereby public 

institutions create fundamental knowledge, biotech firms do applied research and large 

firms engage in clinical trials, large scale manufacturing, or commercialization. However, 

there is still rivalry between these organizations in terms of racing for patents (Petrova, 

2014). 

                                                
36 Minor variations of the original drug using a similar action mechanism (Petrova, 2014) 
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No matter what mode of innovation (breakthrough or trifecta) is considered, there 

appears be an incentive to engage in collaborative patenting only in second best or 

generic technology areas. Hence: 

Hypothesis 6: Joint assigned patents, ceteris paribus, will have lower probability 

of being an Orange Book patent. 

Patent indicators are used extensively here hence a note on their validity is useful. 

A few studies have addressed the issue. Based on a sample of 214 influential inventions 

in biotechnology, Arts et al. (2013) examine various indicators to ascertain how they 

distinguish these inventions from less important inventions. They contend that multiple, 

complementary indicators offer a better picture. Moreover, they also observe that “ex-

post” indictors (i.e. those based on forward citations that indicate impact) perform better 

than “ex-ante” indicators (i.e. those showing dissimilarity or novelty with respect to prior 

art) in identifying important inventions (67% correct classification versus 79% 

respectively). Likewise, Verhoeven et al. (2016) develop ex-ante measures of 

technological novelty based on patent classification and citations. Validating the measure 

against R&D 100 awards and EPO’s37 refused patent applications, they state that 

inventions detected as novel by the measures are overrepresented in the former group and 

underrepresented in the latter group.  

The study proposed here uses both ex-post (generality index and forward 

citations) and ex-ante indicators. 

                                                
37 European Patent Office (EPO) 
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3.4 Data 
Patent indicators and the main sampling frame of the study come from the OECD 

Patent Quality Indicators database (March 2017 edition). The OECD Triadic Patent 

Families database (March 2017 edition) was used to extract patent family data. The 

COMETS38 (Connecting Outcome Measures in Entrepreneurship, Technology, and 

Science) patent assignee data file was used to extract assignee and organization type data.  

In addition to general patent data, the list of Orange Book patents was also 

needed. Per §314.53 of the “Code of Federal Regulation”, an applicant who submits to 

FDA a New Drug Application (NDA) or an amendment or supplement to it, must submit 

patent information on “…drug substance (active ingredient) patents, drug product 

(formulation and composition) patents, and method-of-use patents.” 39 Requests to 

remove a patent from the Orange Book can be from the “NDA holder/patent owner, or 

from a third party”.40 One important caveat here is that for patent delisting information 

was not available for this study. Consequently, we do not know if patents delisted for 

reasons other than natural patent term expiration were different from other Orange Book 

patents. However, if there is any such bias, accounting for it might be difficult as 

delisting dynamics might be at work continuously and impossible to control for. A 

                                                
38

 “COMETS.” Accessed April 11, 2017. http://www1.kauffman.org/COMETS/.  
39

 “eCFR — Code of Federal Regulations.” Accessed May 31, 2017. https://www.ecfr.gov/cgi-bin/text-
idx?SID=95ebb262091c1069eef2566d32e40394&mc=true&node=se21.5.314_153&rgn=div8.  
40

 “Orange Book Listings and Delistings”. Accessed May 31, 2017. 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUK
Ewie-7-
s65rUAhXB3SYKHQWQBmIQFggkMAA&url=http%3A%2F%2Freport.nat.gov.tw%2FReportFront%2F
report_download.jspx%3FsysId%3DC09602410%26fileNo%3D006&usg=AFQjCNH54a8fzVDXt5LxjS5l
ZUVXiKXAvg&sig2=DbLRpFe3eyOLTkPFL1-s4g 
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parallel can be drawn with studies based on FDA approved drugs when some approved 

drugs are withdrawn from the market because of catastrophic adverse effects. 

To obtain Orange Book patents, a Freedom of Information (FOI) request was filed 

with the FDA on June 3, 2016.41 As a result, patents from 1984 through 2014 Orange 

Book listings were obtained. In addition to these patents, the current Orange Book online 

patent file was also downloaded (April 3, 2017)42 and added to the list.  

Dropping duplicates yielded 5830 Orange Book patents. Of these 449 did not 

match the OECD Patent Quality Indicators database and were not used in the analysis. 

Likewise, reissue and design patents in the Orange Book were also dropped from the 

dataset because they were not in the OECD Patent Quality. A reissue patent is a patent 

issued in lieu of the remainder term of a patent “deemed wholly or partly inoperative or 

invalid”43. There were only 105 reissue patents. Design patents (six in the data) cover 

only aesthetic aspects of a product and are almost never used in innovation studies. Given 

the negligible percentage of these patents in the sample, there is little concern their 

exclusion would bias results. The Orange Book online patent file has a drug substance 

flag, yielding 634 drug substance patents for the sample.  

An important issue to explore is the technology field of the Orange Book patents. 

We would expect them to be assigned to the pharmaceuticals IPC class (A61K). Figure 7 

depicts the technology fields of the Orange Book patents. A noticeable issue is that only 

                                                
41 It is not clear why FDA requires an FOI request for material that has been published previously. All the 
material could have been online like the current patent file. 
42 Accessed April 3, 2017. https://www.fda.gov/downloads/Drugs/InformationOnDrugs/UCM163762.zip  
43

 Resources, MPEP. “MPEP.” Accessed May 31, 2017. 
https://www.uspto.gov/web/offices/pac/mpep/s1401.html.  
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about 72% of patents are assigned to the “pharmaceuticals” technology field. More 

details of what is contained in the other fields can be found in appendix B. 

 

 

Figure 7 Orange Book Patents by Technology Field (Total= 5381) 

 

Figure 8 depicts the technology fields of drug substance patents. These are more 

reflective of the type of inventions we would expect to see. These patents, predictably, 

are from more tightly related fields. An interesting point is that only 56% are from the 

pharmaceutical patent field. 
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Figure 8 Drug Substance Patents by Technology Field (Total= 634) 

 

Another issue to explore would be to see how these patents are related based on 

the patent family concept. Such an exploration can reveal cognate patents that reflect the 

same underlying invention or are closely related. The OECD Triadic Patent Families 

database (March 2017 edition) was used to extract family information. However, 95544 

patents were not listed in the database (i.e. were not Triadic). This observation is also 

important since Triadic patents are commonly assumed to be of higher value than non-

Triadic patents. The remaining 4,426 patents hail from 2,281 patent families based on 

figure 9. Almost half (48.5%) of the listed patents have a family member in the Orange 

book. Another observation is that of the patents coming from same patent family, some 

are not in the Orange Book.  

                                                
44 955 of the total 5381. In terms of drug substance patents only 35 were not listed. 
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Figure 9 Orange Book Patents by Number of Family (4426 patents in 2281 Families) 

 

 

Figure 10 Drug Substance Patents by Number of Family (599 patents in 422 

Families) 
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Figure 10 depicts the family status of drug substance patents. Of the 634 drug 

substance patents, 35 are not in the OECD Triadic database. The remaining 599 patents 

come from 422 patent families. One important observation from this exercise is that 

organizations list patents representing similar inventions. Even for the drug substance 

patents that are supposed to reflect more concrete inventions, 29.5% of the patents have a 

family member in the drug substance patent sample. Tentative explanations would be 

listing patents with different expiration dates or trying to show a larger number of patents 

in the Orange Book45. The family-based breakdown of the sample is important because it 

indicates that a number of patents either reflect the same invention or closely related 

inventions.  

Based on the COMETS dataset46, the 3339 Orange Book patents with 

organization ids are assigned to 778 entities. 66 entities supply at least 10 patents to the 

Orange Book and 372 entities contribute only one patent. While the majority of the patent 

assignees are firms, there are other entities such as hospitals and universities among the 

assignees. Figure 11 depicts the organization type of Orange Book assignees for the 3338 

patents with available organization type information. The 371 drug substance patents 

with organization ids are assigned to 165 entities of which 91 entities have only one drug 

substance patent in the sample. An observation here is that the patent ownership is more 

dispersed than all orange book patents. Figure 12 depicts organization type of these 

                                                
45 The incentives for listing Orange Book patents have not been addressed in this study. 
46 Based on the unique organization id in the COMETS database. Admittedly, there might be some coding 
errors here, however, given the lack of a better database for cleaned assignee names, COMETS is used 
here.  
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entities. Figure 13 and 14 depicts the top 10 Orange Book and drug substance patenting 

entities, respectively.  

After extracting the Orange Book patents and leaving out duplicates, the resulting 

patent list was merged with the OECD Patent Quality Indicators database (March 2017 

edition). To construct the comparison sample, patents assigned to the IPC patent class 

A61K were kept (i.e. technology field 16 in the OECD Patent Quality Indicators 

database) (Squicciarini et al., 2013; Schmoch, 2008). This yields 120,594 patents for the 

comparison set of which only 81,715 are triadic. Depending on the type of regression run, 

the sample size varies based on missing values. 

 

 

Figure 11 Orange Book Assignee Organization Type (3338 Patents) 
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Figure 12 Drug Substance Assignee Organization Type (371 Patents) 

 

 

Figure 13 Top 10 Orange Book Patenting Entities (Based on COMETS dataset) 
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Figure 14 Top 10 Drug Substance Patent Assignees (Based on COMETS dataset) 

 

3.5 Methods 
Given the binary nature of the dependent variable (i.e. patent listed in the Orange 

Book or not), logistic or probit regression are the appropriate estimation methods. A 

comparison between the probit and logistic regression methods indicates that probit 

regression is preferred for the data.47 In probit regression, the probability of a 

breakthrough innovation is defined as follows:  

 

Equation 8 Probit Breakthrough Probability 

Pr (Y = 1|X) =  Φ(Xjβ) 

where Φ is the cumulative normal distribution 

                                                
47 “Difference of   84.150 in BIC' provides very strong support for current model” [i.e. probit]. This is for 
the main regression model on all sample.   
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The regression model can be summarized as follows: 

 

Equation 9 Basic Regression Model 

Y∗ =  β1 +  β3MW�l,��;�-. + 0�.m���@-. +  09. +��,��_�E;A,. +  0:.G�@��	_��o,.
+ 0>.`����_8��. + 0B. pqD_m��-. +  0C.7+8_E��-.  
+ 0r.7F,��_GqD_m��-. +  0t. ����������	. +  031.  4�D�E���,--.
+ 031. `,�,�����	. +  033. 4,�,q��. +  F/ +  G/ +  H 

 

Table 8 depicts the variable definitions and the hypotheses they represent. 

Estimations will be done using the Stata statistical package version 12.0.   
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Table 8 Variables and Definitions 
Variable Definition Reason for Inclusion 

Dependent variable 

F Binary dependent variable: F = 1 if the patent is in the Orange 
Book, otherwiseF = 0  

 

Explanatory Variables 

m���@-. Number of claims of patent i Hypothesis 2 

+��,��_�E;A,. Cumulative number of distinct 4-digit IPC subclasses (Lerner, 
1994) 

Hypothesis 3 

��������. The originality index of patent i  Hypothesis 4 

4�D�E��. The radicalness index of patent i Hypothesis 5 

`,�,�����	. The generality index of patent i Hypothesis 1 

multi_assignee Dummy variable =1 if patent assigned to more than one entity Hypothesis 6 

diff_org_type Dummy variable =1 if patent assigned to different organization 
types (e.g. Univ. and Firm) 

Hypothesis 6 

Control Variables 

W�l,��;�-. Number of inventors More inventors have more 
knowledge and more impact 
(Keijl et al., 2016) 

4,�,q��. Count of years during which a granted patent has been kept 
active (Squicciarini et al., 2013)  

Measure of value 

`����_8��. Normalized number of days elapsed between application and 
granting date (Squicciarini et al., 2013) 

Controls for unobservable 
applicant behavior (Popp et 
al., 2004); applicants 
accelerate grant proceedings 
for their most valuable patents 
(Harhoff and Wagner, 2009) 

pqD_m��-. Patent references of the patent. Backward citations per patent is 
normalized based on the maximum value received by patents in 
the same year-and-technology cohort (Squicciarini et al., 2013) 

Indicates technology intensity, 
i.e. knowledge form other 
patents (Callaert et al., 2006) 

7+8_E��-. Non-patent references. Number of NPL citations divided by 
cohort maximum (Squicciarini et al., 2013) 

Measure of science intensity 

G�@��	_��oeM The family size (i.e. the number of patent offices at which a 
given invention has been protected) of patent i based on OECD 
calculations. It is normalized by the maximum in cohort and 
Winsorized to correct for extreme values (Squicciarini et al., 
2013) 

Measure of economic value  

7F,��_GqD_m��-. Forward citation of patent i 7 years since publications 
normalized by cohort maximum (Squicciarini et al., 2013)  

Measure of value and  follow-
up technological improvement 

F/ Year dummies Vintage of technology 

G. Entity dummies Organizational effects 
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3.6 Results and Discussion 
Table 9 shows summary statistics for the variables. The negative values of the 

grant lag coefficients are because of normalization (see table 8). Table 10 depicts the 

pairwise correlation of the variables. After patent and non-patent literature correlation 

(0.5874), the second biggest positive correlation is for generality and patent scope (0.319). 

This is in line with the argument that they represent the applicability of the invention 

from the perspective of other inventors (generality) and the examiner (scope), 

respectively. Another notable observation is the largest negative correlation between 

radicalness and patent scope (-0.3665). Which is again intuitive: the more radical the 

invention, the more limited the envisioned applications by the examiner. 

Table 11 depicts the regression results. Five models were run. Model 1 is based 

on all sample with year dummies, the second model is run on a subsample of patents by 

entities in the Orange Book with “10 and more patents in the Orange Book”. This 

subsample is meant to control for entity48 fixed effects. The third model is the same as the 

second except for using clustered errors for robustness check. The forth model is run on a 

subsample controlling for the first U.S. patent of the patent family. This is meant to 

control for possible duplicate patents in a patent family. The last regression is clustered 

errors model for robustness check of the fourth model. Year dummies are included across 

the board to control for the vintage of the technology. 

                                                
48

 “Organization” or “entity” are used interchangeably in this essay. As mentioned earlier, the patents are 
not just assigned to firms. 
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There is broad support for the first hypothesis. Broader actual applications of an 

invention (i.e. generality index), lowers the probability of being an Orange Book patent. 

The inverse relationship becomes stronger with entity and patent family controls. 

The second hypothesis is not supported. In fact, some models indicate the 

opposite relationship, i.e. in model 5 one more claim boosts the probability of being an 

Orange Book patent by the miniscule amount of 0.0684% at the 5% level of significance. 

Hence, either number of claims is not related to Orange Book listing probability or has a 

negligible effect. A logical explanation is that the number and breadth of claims is 

determined by the patent drafter’s approach and comparable inventions can be drafted in 

fewer, broad claims or many more, narrower claims49. Some studies have used proxies 

for the length of claims (e.g. number of words or statements); however, such measures 

were not available for this study. 

There is support for the third hypothesis in three models. Model 4 controls for 

organization and patent family (i.e. possible duplicate inventions) effects. It indicates one 

IPC class more assigned to the patent reduces the probability of being an Orange Book 

patent by 1.86% (at the 1% level of significance). 

Hypothesis four is not supported in fact the opposite is observed in all models. 

Higher technological knowledge diversity (i.e. originality index) reduces the probability 

of being an Orange Book patent. Likewise, hypothesis five is not supported and the 

opposite is observable with higher technological knowledge distance of a patent boosting 

                                                
49 Effective starting late 2007, rule 5/25 limits the number of total claims to 25 and independent claims to 5. 
This effect is not specifically controlled for in the hypothesis testing but time dummies are included present 
in models as delineated earlier. Mean claims of all Orange Book patents with filing dates of 2007 and 
earlier is 20.7 (SD 21.26) and the same number for filing dates of after 2007 is 19.1 (SD 19.1).  
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the probability of being an Orange book patent. The relationship is consistent in all 

models. These two hypotheses were formulated based on the foundational view of 

creativity; however, the observations are more in line with the tension view.  

To test hypothesis six, two dummy variables were constructed representing 

patents assigned to more than one entity (“multi_assignee”) and patents assigned to 

different entities (“diff_org_type” e.g. a firm and a university). The results are depicted in 

table 12. The dummy variable representing jointly assigned (i.e. “multi_assignee”) 

ownership is not significant. The dummy variable representing the patent assigned to 

different organizational types (i.e. “diff_org_type”) is significant at the 10% level 

indicating being assigned to different organizational types reduces the probability of 

being an Orange Book patent by 1.05%. This is in line with the hypothesis. Co-assigned 

patents come from small-scale collaborative R&D in which dividing the intellectual 

property is not possible. Moreover, they have certain disadvantages such as slowing the 

market entry decision, need for complex contractual provisions to cover contingencies, 

and need for all assignees to be on infringement suits in the U.S. legal system (Kim et al., 

2016). These issues lend credence to the regression results, since assignees would like to 

have sole ownership of important patents if the aforementioned issues are of significance 

to them. Among drug substance patents, there are only 14 patents assigned to more than 

one entity and only 2 with different organizational types. Assuming drug substance 

patents are more important than other Orange Book patents, this is another evidence 

corroborating the argument.  
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A note on control variables is also useful. More inventors results in a slight 

reduction on probability of being an Orange Book patent in only model one. 

Theoretically, the reason can be that Orange Book patents are the result of smaller and 

more focused R&D projects or the inventions are split into a number of patents. Having a 

larger family size (i.e. wider geographical scope) improves the probability of being an 

Orange Book patent. The relationship exists across all models. Grant lag coefficient is 

significant in two models indicating Orange Book patents are granted faster if we do not 

control for organization effects. The coefficient is negative because due to the index 

construction a higher index reading is associated with less lag.  

More patent citations improve the probability of being an Orange Book patent in 

four models. Non-patent literature is significant in only one model (which does not 

control for organization and patent family effects) with a negative coefficient. It might be 

that commercially valuable inventions are first patented; hence, not much directly related 

scientific prior art would be there to underpin them.  

Seven-year forward patent citations boost the probability of being an Orange 

Book patent in four models. As mentioned earlier, this is in line with the literature using 

forward citations as a measure of value. In terms of renewal, intuitively, keeping the 

patents in effect (renewed) boosts the probability of being an Orange Book patent 

(significant in all models).  

A final point is that the size of the coefficients is really small; hence, the impact 

of the issues discussed here are small. The biggest impacts pertain to “generality” and 
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“originality” in the models controlling for both organization and family effects (models 4 

and 5).  

A caveat on the construction of the subsample of Organizations with ten or more 

patents in the Orange Book is that it may represent a specific set of organizations. 

However, this was done to enable organization fixed effect controls. Given the large 

number of entities in the main sample, fixed effects on the main sample could lead to 

biased estimates. 

 

Table 9 Summary Statistics for All Patents 

Variable Obs Mean Std. Dev. Min Max 

Inventors 83390 3.142 2.267 1.000 33 

Claims 125935 15.832 14.336 1.000 397 

Patent scope 125975 2.761 1.390 1.000 15 

Family size 125975 10.132 8.438 1.000 56 

Grant lag 125975 1122.712 672.110 -252.000 8117 

Bwd cits 125975 19.890 27.686 0.000 268 

NPL cits 125975 20.025 27.906 0.000 196 

FWD cits 7yr 125975 12.942 25.390 0.000 1090 

Generality 102469 0.551 0.220 0.000 0.958 
Originality 120091 0.820 0.163 0.000 0.988 
Radicalness 120202 0.289 0.239 0.000 1.000 
Renewal 125975 8.818 4.414 0.000 29 
Filing Date 125975   8.944 1976 2016 

* Showing only three decimal points 
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Table 10 Pairwise Correlation Matrix 

 

Invento

rs Claims 

Patent 

scope 

Family 

size 

Grant 

lag 

Bwd 

cits 

NPL 

cits 

FWD cits 

7yr 

Generali

ty 

Originali

ty 

Radicaln

ess 

Renew

al 

Inventors 1.000 
           Claims 0.051 1.000 

          Patent 

scope 0.164 0.031 1.000 
         Family 

size 0.203 0.093 0.148 1.000 
        Grant lag 0.039 0.059 0.097 -0.044 1.000 

       Bwd cits 0.097 0.198 0.055 0.170 0.165 1.000 
      NPL cits 0.027 0.142 0.132 0.070 0.202 0.587 1.000 

     FWD cits 

7yr 0.095 0.157 0.084 0.262 0.005 0.301 0.202 1.000 
    Generality 0.133 0.054 0.319 0.089 0.099 0.109 0.164 0.183 1.000 

   Originality 0.114 0.093 0.193 0.088 0.147 0.279 0.246 0.108 0.231 1.000 
  Radicalnes

s -0.137 0.001* -0.367 -0.216 0.029 0.066 0.078 -0.054 0.003* 0.174 1.000 
 Renewal -0.047 0.053 -0.045 0.088 0.128 -0.178 -0.146 0.082 -0.004* -0.058 0.011 1.000 

All significant at the p<0.01 except for those marked * 
  



93 
 

Table 11 Probit Regression Results (Dependent Variable: Orange Book Patent=1; Average Marginal Effects) 
 (1) (2) (3) (4) (5) 

Variables Year Dummies Year/Org. Dummies† Year Dummies, Org. 

Clustered Errors (88)† 

Year/Org. Dummies_ 

First Patent† 
Year Dummies, Org. Clustered 

Errors (88)_ First Patent† 

Inventors -0.000780** -0.00167 0.000792 -0.00240 -0.00111 
 (0.000352) (0.00166) (0.00289) (0.00276) (0.00457) 
Claims (Hyp 2) 0.000338*** 0.000350 0.000496** 0.000181 0.000684** 
 (0.0000421) (0.000218) (0.000198) (0.000364) (0.000328) 
Patent scope (Hyp 3) -0.00807*** -0.00736* -0.00827 -0.0186*** -0.0129 
 (0.000750) (0.00396) (0.00610) (0.00635) (0.0106) 
Family size 0.00377*** 0.00736*** 0.00633*** 0.0116*** 0.00935*** 
 (0.0000856) (0.00136) (0.000583) (0.00136) (0.000883) 
Grant lag -0.0000124 -0.0000163 -0.0000253** -0.0000547 -0.0000656*** 
 (0.00000166) (0.00000795) (0.0000128) (0.0000134) (0.0000208) 
Bwd cits 0.000510*** 0.000411** 0.000485 0.000507* 0.00116* 
 (0.0000376) (0.000189) (0.000308) (0.000290) (0.000603) 
NPL cits -0.000286*** -0.0000443 -0.0000501 0.000403 0.000584 
 (0.0000398) (0.000195) (0.000342) (0.000325) (0.000638) 
FWD cits 7yr 0.000234*** 0.000239** 0.000241 0.00113*** 0.00168*** 
 (0.000023) (0.000113) (0.000152) (0.000250) (0.000244) 
Generality (Hyp 1) -0.0456*** -0.0640*** -0.0930*** -0.151*** -0.206*** 
 (0.00390) (0.0228) (0.0189) (0.0345) (0.0271) 
Originality (Hyp 4) -0.0257*** -0.0697** -0.0721* -0.150*** -0.187*** 
 (0.00521) (0.0296) (0.0393) (0.0468) (0.0696) 
Radicalness (Hyp 5) 0.00801** 0.0596*** 0.0630** 0.0861*** 0.137*** 
 (0.00395) (0.0211) (0.0262) (0.0326) (0.0429) 
Renewal 0.00934*** 0.0148*** 0.0179*** 0.0219*** 0.0280*** 
 (0.000446) (0.00335) (0.00297) (0.00415) (0.00464) 
Log likelihood -10713.995 -1431.9638  -987.19745  
Log pseudolikelihood   -1641.5188  -1181.7711 
LR chi2 4623.78 1053.15  966.35  
Wald chi2   1493.45  1021.20 
Pseudo R2 0.1775 0.2689 0.1689 0.3286 0.2415 
Sensitivity 2.63% 18.75% 5.92% 40.50% 29.68% 
Specificity 99.82% 98.91% 99.18% 96.06% 96.74% 
Correctly classified 95.05% 90.66% 89.83% 86.20% 84.28% 
Linktest (_hatsq P>|z|) 0.000 0.251 0.116 0.021 0.162 
Hosmer-Lemeshow 
(Prob > chi2) 

0.2175 0.7355 0.8888 0.0541 0.3246 

Observations 66,537 5,912 6,067 3,146 3,245 

Average Marginal Effects; Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1; For sensitivity/specificity analysis: predicted Pr(D) >= .5;  
† Only single assignee patents used; Entities with 10 and more patents in the Orange Book 
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Table 12 Jointly Assigned Patents (Dependent Variable: Orange Book Patent=1) 
 (1) (2) 

Variables Multi Assignee-Year 

Dummies 
Different Org.-Year Dummies 

Inventors -0.000736** -0.000751** 
 (0.000354) (0.000353) 
Claims (Hyp 2) 0.000338*** 0.000338*** 
 (0.0000421) (0.0000421) 
Patent scope (Hyp 3) -0.00806*** -0.00806*** 
 (0.000750) (0.000750) 
Family size 0.00377*** 0.00377*** 
 (0.0000856) (0.0000856) 
Grant lag -0.0000124*** -0.0000124*** 
 (0.00000166) (0.00000166) 
Bwd cits 0.000508*** 0.000508*** 
 (0.0000376) (0.0000376) 
NPL cits -0.000282*** -0.000280*** 
 (0.0000399) (0.0000399) 
FWD cits 7yr 0.000233*** 0.000233*** 
 (0.000023) (0.000023) 
Generality (Hyp 1) -0.0455*** -0.0455*** 
 (0.00390) (0.00390) 
Originality (Hyp 4) -0.0257*** -0.0257*** 
 (0.00521) (0.00521) 
Radicalness (Hyp 5) 0.00808** 0.00811** 
 (0.00395) (0.00395) 
Renewal 0.00935*** 0.00936*** 
 (0.000446) (0.000446) 
multi_assignee (Hyp 6) -0.00436  
 (0.00387)  
diff_org_type (Hyp 6)  -0.0105* 
  (0.00546) 
Log likelihood -10713.351 -10712.06 
LR chi2 4625.07 4627.65 
Pseudo R2 0.1775 0.1776 
Sensitivity 2.63% 2.63% 
Specificity 99.82% 99.82% 
Correctly classified 95.05% 95.05% 
Linktest (_hatsq P>|z|) 0.000 0.000 
Hosmer-Lemeshow (Prob > chi2) 0.3318 0.3815 
Observations 66,537 66537 
Average Marginal Effects; Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1; For sensitivity/specificity 
analysis: predicted Pr(D) >= .5 
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3.6.1 Drug Substance Patents  
A subsample analysis was done on the drug substance patents flagged in the 

online Orange Book patent file. Table 13 depicts the models run on all sample and other 

Orange Book patents. These patents are more representative of the type of inventions that 

could potentially change the actual drug output of the industry. Moreover, strictly 

speaking, the hypotheses were formulated to characterize these inventions.  

Model 1 indicate that, compared with other patents, broader legal protection 

(claims) boosts the probability of being a drug substance patent. Other variables of 

interest cease to have any significance. This might be because of the large pool of 

heterogeneous patents that the small number of drug substance patents (643) is compared 

against. 

Focusing on the models run on Orange Book patents, four models indicate that 

hypothesis one does not hold. Broader application of an invention across technology 

fields (i.e. generality index) boosts the probability of being a drug substance patent. This 

might be related to the wide potential applicability of an active chemical substance.  

Hypothesis two regarding the breadth of the legal protection of a patent still does 

not hold. There is evidence for the opposite, i.e. broader legal protection (i.e. number of 

claims) boosts the probability of being a drug substance patent in two models. These 

models do not control for family effects. If we take out duplicate family patents the effect 

dissipates. 

Hypothesis three is no longer supported, with broader “envisioned applicability” 

of an invention boosting the probability of being a drug substance patent in models 3 and 

4 controlling for family effects. This is consistent with the change in actual application 
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impact in this subsample analysis (hypotheses one). On the conceptual level, this might 

be evidence that the claim made here that the generality index and patent scope represent 

the same fundamental issue of applicability of the invention from the perspective of 

different parties (i.e. other inventors and the examiner). 

Interestingly, hypothesis four is supported in models 3 and 5 (al the 5% level of 

significance with large coefficients) that do not control for organization effect. This 

means higher technological knowledge diversity (i.e. originality index) increases the 

probability of being a drug substance patent when we disregard organization fixed 

effects50. Likewise, model 2 and 3 support hypothesis five, in other words, higher 

technological knowledge distance reduces the probability of being a drug substance (at 

the 10% level and 1% level respectively) patent if we do not control for patent family 

effects. Partial support for these two hypotheses indicates the general logic of hypothesis 

formulation was sound. These observations yield tentative support for the foundational 

view. 

 

                                                
50 It might be organization fixed effects make estimates volatile, hence, the clustered models have 
significant coefficients (models 3 and 5). 
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Table 13 Probit Regression (Dependent Variable Drug Substance Patents; Average Marginal Effects) 
 (1) (2) (3) (4) (5) 

Variables Year Dummies Year/Org. Dummies†-  Year Dummies, Firm 

Clustered Errors (600)†-  

Year/Org. Dummies_ 

First Patent† 
Year Dummies, Firm Clustered 

Errors (435)_ First Patent† 

Sample All Orange Book Orange Book Orange Book-1
st
 patent Orange Book-1

st
 patent 

Inventors 0.000602*** 0.0315*** 0.0225*** 0.0360*** 0.0349*** 
 (0.000112) (0.00593) (0.00344) (0.00745) (0.00531) 
Claims (Hyp 2) 0.0000616*** 0.000930* 0.000660** 0.00108 0.000771 
 (0.0000151) (0.000547) (0.000331) (0.000808) (0.000590) 
Patent scope (Hyp 3) -0.000311 0.00704 0.00477 0.0368** 0.0254** 
 (0.000319) (0.0119) (0.00740) (0.0171) (0.0111) 
Family size 0.000646*** 0.00174 0.00204*** 0.00425** 0.00272** 
 (0.0000408) (0.00124) (0.000729) (0.00190) (0.00110) 
Grant lag -0.000000521 0.0000265 0.0000138 -0.000082** -0.0000614** 
 (0.000000678) (0.0000229) (0.0000135) (0.0000359) (0.0000249) 
Bwd cits 0.0000115 -0.00191*** -0.00154*** -0.00200** -0.00176*** 
 (0.000015) (0.000577) (0.000330) (0.000854) (0.000528) 
NPL cits -0.0000208 -0.0000928 -0.0000117 0.000690 0.000716 
 (0.0000155) (0.000535) (0.000376) (0.000924) (0.000606) 
FWD cits 7yr 0.0000267*** -0.000366 0.0000683 0.00152** 0.00117*** 
 (0.00000831) (0.000317) (0.000209) (0.000630) (0.000375) 
Generality (Hyp 1) 0.000554 0.439*** 0.248*** 0.478*** 0.305*** 
 (0.00222) (0.0911) (0.0482) (0.109) (0.0703) 
Originality (Hyp 4) -0.00168 0.0722 0.206** 0.0696 0.302** 
 (0.00323) (0.115) (0.103) (0.141) (0.128) 
Radicalness (Hyp 5) 0.000297 -0.130* -0.122*** -0.0693 -0.109 
 (0.00197) (0.0743) (0.0467) (0.104) (0.0667) 
Renewal 0.00179*** 0.0191** 0.0148*** 0.0376*** 0.0342*** 
 (0.000234) (0.00888) (0.00479) (0.0136) (0.00866) 
Log likelihood -1911.7904 -448.11945  -234.59784  
Log pseudolikelihood   -778.198  -480.41456 
LR chi2 855.31 379.40  338.74  
Wald chi2   345.12  386.33 
Pseudo R2 0.1828 0.2974 0.2151 0.4193 0.3218 
Sensitivity 0.00% 44.19% 19.03% 72.12% 60.51% 
Specificity 100.00% 93.09% 98.04% 87.63% 90.73% 
Correctly classified 99.29% 82.27% 86.18% 81.92% 81.48% 
Linktest (_hatsq P>|z|) 0.052 0.937 0.356 0.821 0.086 
Hosmer-Lemeshow (Prob > chi2) 0.2346 0.5914 0.1411 0.5575 0.8387 
Observations 55139 1207 2344 614 1,150 

Average Marginal Effects; Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1; For sensitivity/specificity analysis: predicted Pr(D) >= .5; † Only single 
assignee patents used 
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3.6.2 Pre-1995 Knowledge Recombination  
Another subsample analysis was conducted to see how the impact of the 

applicability of the invention and knowledge recombination has changed over time with a 

1995 cutoff point. This is motivated by the 1990s changes such as the emergence of 

biotechnology-based therapies. Also, for the first time, R&D productivity hit one drug 

per billion R&D spending (Scannell et al., 2012). To this end, a dummy variable was 

constructed to represent the filing years of 1995 and before that. Per table 14, this dummy 

variable was interacted with respective variables of interest and run on a subsample of 

first family patents to control for possible family effects. 

Results indicate that before the year 1995, higher generality index boosts the 

probability of being an Orange Book patent (significant at the 1% level). Likewise, 

higher originality index before 1995 increases the probability of being an Orange Book 

patent (significant at the 1% level). However, higher radicalness index reduces the 

probability (significant at the 10% level). 

This analysis indicates that the knowledge recombination profile of Orange Book 

patents as well as the diversity of their applications (proxied by the generality index) has 

changed with regard to the 1995 cutoff point. However, exploring the robustness of this 

observation or the reasons behind this is beyond the scope of the present study. 
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Table 14 Pre-1995 Knowledge Recombination (Probit: Orange Book Patent=1) 
 (1) (2) (3) 
Variables Pre-1995 Generality - 

Clustered Errors (5335) 

-First Patent 

Pre-1995 Generality - 

Clustered Errors (5335) -

First Patent 

Pre-1995 Generality - 

Clustered Errors 

(5335) -First Patent 

Inventors -0.000573 -0.000627 -0.000734 
 (0.000593) (0.000590) (0.000593) 
Claims (Hyp 2) 0.000209*** 0.000210*** 0.000216*** 
 (0.0000731) (0.0000732) (0.0000733) 
Patent scope (Hyp 3) -0.00814*** -0.00817*** -0.00825*** 
 (0.00136) (0.00136) (0.00136) 
Family size 0.00428*** 0.00429*** 0.00429*** 
 (0.000293) (0.000296) (0.000295) 
Grant lag -0.000001 -0.000000471 -0.000000722 
 (0.0000025) (0.00000251) (0.00000252) 
Bwd cits 0.000574*** 0.000585*** 0.000558*** 
 (0.000083) (0.0000837) (0.0000829) 
NPL cits -0.000265*** -0.000262*** -0.000282*** 
 (0.0000962) (0.0000945) (0.0000953) 
FWD cits 7yr 0.000508*** 0.000495*** 0.000498*** 
 (0.0000577) (0.0000577) (0.0000578) 
Generality (Hyp 1) -0.0796*** -0.0353*** -0.0358*** 
 (0.00820) (0.00548) (0.00548) 
pre_1995_general 0.0806***   
 (0.0107)   
Originality (Hyp 4) -0.0375*** -0.0799*** -0.0372*** 
 (0.00756) (0.0111) (0.00776) 
Radicalness (Hyp 5) 0.0159** 0.0155** 0.0254*** 
 (0.00703) (0.00704) (0.00899) 
pre_1995 -0.0173*** -0.0343*** 0.0288*** 
 (0.00593) (0.0110) (0.00418) 
Renewal 0.00471*** 0.00475*** 0.00494*** 

 (0.000492) (0.000498) (0.000496) 
pre_1995_original  0.0735***  
  (0.0134)  
pre_1995_radical   -0.0200* 
   (0.0103) 
Log pseudolikelihood -4486.1491 -4501.5759 -4513.841 
Wald chi2 1125.34 1162.46 1182.23 
Pseudo R2 0.2009 0.1981 0.1960 
Sensitivity 3.66% 3.52% 3.74% 
Specificity 99.80% 99.77% 99.80% 
Correctly classified 95.28% 95.25% 95.28% 
Linktest (_hatsq P>|z|) 0.001 0.000 0.000 
Hosmer-Lemeshow 
(Prob > chi2) 

0.4419 0.3366 0.8021 

Observations 29,596 29,596 29,596 
Average Marginal Effects; Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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3.7 Conclusion 
The aim of this study was to see how patents underlying successful drug products 

differ from other pharmaceutical patents. A series of analysis was conducted based on the 

Orange Book patents as well as the drug substance patents therein.  

To begin with, a few descriptive observations are noteworthy. Drawing on the 

patent family concept, it was observed that nearly half of Orange Book patents and about 

30% of drug substance patents have other patent family members in the Orange Book. 

This indicates that a smaller set of inventions underpin the Orange Book drugs Moreover, 

ownership of drug substance patents is more dispersed in comparison with all Orange 

Book patents. Finally, Orange Book patent come from diverse technology fields while 

some are closely related to pharmaceutical products (e.g. organic chemistry) some are 

less intuitive. 

Results indicate the actual breadth of applications of an invention (generality) 

lowers the probability of being an Orange Book patent. Likewise, broader “envisioned” 

applicability (patent scope) of the invention reduces the probability of being an Orange 

Book. These observations indicate Orange Book patents have more focused applications 

than other patents.  

Broader legal scope boosts the probability of being an Orange Book patent. This 

might be because inventors carve out larger legal protection for more valuable inventions.  

In terms of knowledge recombination, higher technological knowledge diversity 

reduces the probability of being an Orange Book patent while technological knowledge 

distance of a patent increases the probability. 
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Regarding collaborative inventions, being assigned to multiple entities does not 

have a significant impact on the probability of being an Orange Book patent while being 

assigned to different organizational types reduces the probability of being an Orange 

Book patent. This might be because organizations tend to collaborate on less valuable 

inventions and conduct more important projects by themselves for competitive purposes. 

A subsample analysis on drug substance patent versus Orange Book patents 

indicates different dynamics. Broader applications (i.e. generality) boosts the probability 

of being a drug substance patent. This may indicate active chemical substances have 

broader applications than other inventions. Similarly, broader “envisioned” applicability 

of an invention boosts the probability of being a drug substance patent. 

In terms of knowledge recombination profile, higher technological knowledge 

diversity (i.e. originality index) increases the probability of being a drug substance patent. 

However, higher the technological knowledge distance reduces the probability of being a 

drug substance patent.  

The combined observations regarding knowledge recombination indicate when 

focusing on the Orange Book patents, the tension view on creativity is more relevant 

while the drug substance patents within the Orange Book show traces of the foundational 

view.  

A subsample analysis was conducted on the way breadth of application 

(generality) and knowledge recombination impacted the probability of being an Orange 

Book before 1995. Results indicate that for pre-1995 patents, increasing breadth of 

application (generality) boosts the probability of being an Orange Book patent more than 
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post 1995 patents. For knowledge recombination, for pre-1995 patents, more knowledge 

diversity boosts the probability of being an Orange Book patent while more distant 

recombination reduces the probability of being an Orange Book patent. Hence, over time 

three has been changes in the profile of patents that end up in the Orange Book. 

A note on shortcomings and future research is in order. For a start, marginal 

effects are mostly very small. Moreover, the research was based on the assumption that 

Orange Book patents represent a set of valuable inventions against which other patents 

can be benchmarked. However, there is little information on the politics and incentives of 

listing a patent in the Orange Book by applicants as well as the FDA. The existence of 

multiple patents of the same family and listing of some design patents are issues pointing 

to the need for more information in this regard.  

Another issue is that some patent indicators are proxy measures and are meant to 

represent complex concepts such as knowledge diversity and distance. The Originality 

index (knowledge diversity proxy) counts all bits of knowledge based on IPC patent class 

regardless of being in the same class as the citing patent or not. Hence, it is a noisy 

measure of familiarity with knowledge components and there is some indicator overlap 

with radiclaness. It would be desirable to find other measures to corroborate the 

observations. Some indices such as originality and radicalness are complex mathematical 

constructs and difficult to interpret. Standardized, and up-to-date assignee names are hard 

to come by and introduce unnecessary measurement errors in quantitative, large sample 

studies.  
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CHAPTER FOUR: DRUG DISCOVERY INNOVATION: A SYSTEMIC VIEW 

Abstract 

An expert opinion survey was conducted to explore the barriers and drivers of 

drug discovery innovation. Some top drivers and barriers to innovation are negatively 

influenced or caused by the “molecular reductionist” drug discovery paradigm. The 

barriers to innovation show traces of several systemic level failures. Lack of change in 

the fundamental rules of the game has created a “lock-in/path dependency failure” in 

which the innovation system has failed to adapt expeditiously. Deficiencies in firm 

capability development have led to “transition failures”. Moreover, hard (i.e. regulatory) 

and soft (i.e. cultural) institutional failures, along with “regulatory capture” are 

observable. Respondents possess nuanced knowledge of broad R&D spending and drug 

approval trends. They consider the overall drug approval rate and R&D spending to be 

stagnant.  

Keywords: Innovation System; Drug Discovery; Eroom’s Law, Survey 

4.1 Introduction 
The pharmaceutical industry is fundamentally dependent on innovation. Cutting 

edge research, new knowledge creation, new drug development, and improving existing 

drugs are the driving forces behind the industry. The occasional success in developing a 
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new therapy for an untreated condition is the industry’s defining hallmarks (Petrova, 

2014). 

The pharmaceutical industry can be characterized as a system or network because 

of the multiplicity of actors in the innovative endeavors; e.g. firms, universities, research 

organizations, financiers, regulatory entities and consumers. Moreover, in the course of 

the past few decades the global pharmaceutical industry has experience significant 

changes in technology (e.g. the emergence of biotechnology), demand (e.g. cost-

containment imperatives) and institutions (e.g. patent law) (Mckelvey et al., 2004) that 

make a systemic analysis desirable.  

However, the industry faces numerous challenges. For over a decade the industry 

has been scrutinized for its unsustainable drug discovery and development model, feeble 

innovative output, focus on incremental rather than radical innovation, excessive 

regulation, and lack of venture capital investment. At the same time, solutions are few 

and far between (Tait, 2007). For instance, no effort in the past 60 years has had a 

meaningful impact on the innovative output. The industry needs to invent a new R&D 

model. According to Jean-Pierre Garnier, the former chief Executive Officer of 

GlaxoSmithKline, “R&D productivity is the number one issue”. Without addressing this 

issue, probably, no other solution will work (Munos, 2009).  

The combination of these issues calls for a holistic perspective in the analysis of 

the pharmaceutical sector. This study adapts the “innovation systems” approach to 

address the underlying challenges of innovation in the pharmaceutical sector.  
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4.2 Conceptual Framework 
This study draws on the “innovation systems” conceptual framework; hence, a 

brief introduction of the framework is in order. It is worth mentioning that the innovation 

systems literature is vast and the aim of this section is to introduce what is relevant for 

the current study. First systemic levels and dimensions of analysis are introduced, then 

two broad and complementary perspectives in innovation systems (i.e. structural vs. 

functional) analysis is delineated. 

4.2.1 Systemic Levels of Analysis 
Innovation systems can be conceptualized at different levels of analysis, e.g. 

national, regional, sectoral, or technological; however, creation, diffusion, and use of 

knowledge underpin all conceptualization levels. The initial conception of the approach 

was at the national level and other levels of analysis were inspired by the initial works 

(Carlsson et al., 2002; Lundvall et al., 2009).  

Innovation systems can also be analyzed from different dimensions. A common 

dimension is the physical or geographical aspect. Sometimes the level of interest is a 

specific country or region. Many policies and regulatory frameworks materialize at the 

national level; therefore, the national level is a salient level of analysis. In other instances, 

the aspect of interest may be a specific sector or a particular technology. With the advent 

of information technology most economic activities may have an international dimension 

as well. Another dimension is time. A snapshot of a dynamic innovation system will 

inevitably be different depending on the time horizon of the analysis (Carlsson et al., 

2002).  
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In defining the national innovation systems (NIS or NSI) a distinction can be 

made between a narrow definition and a broad definition. The narrow definition focuses 

on science and technology, and encompasses those institutions that are directly involved 

in promoting the acquisition and dissemination of knowledge and are the main sources of 

innovation. The broad conception includes learning, innovation and competence-building 

at various levels of aggregation (Lundvall et al., 2009). According to the broad definition, 

the “narrow” institutions are embedded in the wider context of the socio-economic 

system, including economic policies, and are influenced by the broader contextual 

institutions in the rate, direction and relative success of innovative endeavors (Freeman, 

2002). Hence, a national innovation system can be defined as “that set of distinct 

institutions which jointly and individually contribute to the development and diffusion of 

new technologies and which provides the framework within which governments form and 

implement policies to influence the innovation process.” In other words, “it is a system of 

interconnected institutions to create, store and transfer the knowledge, skills and 

artifacts, which define new technologies” (Carlsson, 2006). The national dimension of the 

system does not emanate solely from the innovation policy aspect but also from shared 

language, culture, national policies and legal and regulatory frameworks that influence 

the innovative milieu (Carlsson, 2006). 

Beginning from the early 1990s, the interest at the regional level promulgated 

related concepts such as “learning regions”, “innovative milieus”, “industrial districts”, 

and “local productive systems”. In addition to the general systems of innovation 

literature, the regional innovation system (RIS) also draws on the regional science 
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tradition that emphasized both the role of proximity and location specific rules and 

norms. While there is no generally accepted definition of an RIS, it is usually 

conceptualized as “a set of interacting private and public interests, formal institutions, 

and other organizations that function according to organizational and institutional 

arrangements and relationships conducive to the generation, use, and dissemination of 

knowledge” (Doloreux and Parto, 2005). The assumption is that these forces incentivize 

firms in the specific region to develop forms of capital in line with norms, values, and 

interactions within the community and reinforce the regional innovative capabilities. The 

regional innovation system concept sets forth detailed analysis of the interplay of 

innovation, learning and the economic performance of particular regions (Doloreux and 

Parto, 2005). 

According to Malerba (2002) “sectors” offer a crucial level of analysis for the 

study of innovation and production. There are two main approaches to studying sectors. 

The first one revolves around the industrial economics literature that puts little emphasis 

on the role of non-firm organizations, knowledge production and learning activities. The 

second approach is much more heterogeneous and provides detailed empirical insights 

into the workings of the sectors, mostly from a single dimension such as competencies, 

production features and innovation; hence, lacking an integrated sectoral analysis. The 

sectoral innovation systems (SIS) approach is an attempt at providing a multidimensional, 

integrated and dynamic view of sectors. It offers a dynamic, coherent and 

multidimensional take on sectors. A sectoral system is “a set of products and the set of 

agents carrying out market and non-market interactions for the creation, production and 
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sale of those products”. The system encompasses a specific knowledge base, 

technologies, inputs and demand (Malerba, 2002).  

The complexity of technology development and the required multilevel 

interaction can be cast under the innovation systems concept, thus forming the 

technological innovation system (TIS) approach. Technology development is contingent 

upon interrelated processes with roots in various economic fields of activity and a 

multiplicity of actors and institutions. Moreover, the broader context of the technology 

includes adjacent sectors (figure 15) (Wirth and Markard, 2011). The original conception 

of the technological system was in terms of a network of agents interacting under a 

particular institutional infrastructure that are involved in the generation, diffusion and 

utilization of a specific technology. This definition facilitated the specification of the 

system at different levels of analysis such as technology in the sense of a knowledge 

field, a product or an artifact, a set of related products, and artifacts with a particular 

function (e.g. health care or transport) (Carlsson et al., 2002). 
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Figure 15 National, Sectoral, and Technological Innovation Systems: Boundary 

Relationships  

Source: Hekkert et al. (2007) 

TSIS: Technology Specific Innovation System; SSI: Sectoral System of Innovation; NSI: National System of 
Innovation 

 

At the national level the complexity of the innovation system may be quite 

extreme with huge number of actors, networks and institutions. However, with the 

reduced number of structural components at the level of a technology-specific innovation 

system, a dynamic analysis is more realistic (Hekkert et al., 2007). 

Drawing on the aforementioned arguments, this study is closer to a sectoral 

system study with the physical dimension largely bound to the U.S. and a cross-sectional 

time dimension. 
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4.2.2 Structural versus Functional Perspectives 
The systems perspective can further be divided into two complementary 

perspectives of the functional perspective and the structural approach (see e.g. Bleda and 

del Río, 2013). 

Policy analysis under a structural perspective focuses on the problems related to 

the structural make-up of the innovation system. In other words, deficiencies in system 

components and their interaction is the focus of attention rather than their impact on 

system performance (Bleda and del Río, 2013). Structural elements are relatively stable 

over time hence reflect the static aspect of the system. They change faster at the early 

stages of an innovation system formation; as the system gets established, changes become 

slow and can only be perceptible from a historical perspective (Suurs et al., 2010). 

The structural elements of an innovation system are depicted in table 15. 

Technology is regarded as a structural component as well as the upshot of the system. In 

other words, technology development and diffusion is the ultimate goal of the system but 

at the same time technology is introduced by actors and evolves in the system (adapted 

from Hellsmark and Jacobsson. 2009). It is worth noting that Edquist and Hommen 

(2008) add the notion of “constituents” as an intermediate concept to the structure of the 

system. The constituents of an innovation system include both components and the 

relations among them. The components and the relations form a “whole” different from 

their “individual” properties. Differing constituents yield different institutional set-ups 

(adapted from Edquist, 2005). 
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Table 15 Structural Entities of an Innovation System 

Entity Definition 

Technology Consists of artifacts (e.g. machinery), coded knowledge (e.g. 

patents) and tacit knowledge (embodied in people) 
 

Actors Individuals, firms, and organizations influencing technology 
development 
 

Networks Are non-market relations between actors and can be for learning 
(e.g. university-industry links) or political (i.e. aimed at changing 

institutions) purposes 
 

Institutions Norms, beliefs, routines, rules, standards, etc. that shape and 
regulate the relationships and interactions in the system 

Source: Hellsmark and Jacobsson (2009) 
 

Another strand of literature focuses on what actually “happens” (i.e. processes) in 

the innovation system (Edquist, 2004) rather than its mere structure. Functions or 

activities are the main processes of an innovation system that contribute to the 

overarching goal of the system which is the development, diffusion and utilization of 

innovations (Sisko et al., 2013). These functions also yield a basis for performance 

evaluation and the comparison of system dynamics across systems (Bergek et al., 2008). 

There is an interaction between the structural configuration of a system and the 

system’s functional profile (Suurs and Hekkert, 2009). Individuals and organizations 

carry out the activities and institutions provide incentives or obstacles towards the 

attainment of these functions. Additionally, grasping the relationship between 

components and activities is necessary in the comprehension and explanation of 

innovation processes (Edquist, 2004). Table 16 depicts the system functions commonly 

evoked in innovation system studies. 
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Each system function can be attained through different mechanisms. Moreover, it 

is also possible to come up with activities that contribute negatively to a system function 

(Suurs et al., 2010). The analysis of system functions helps locate “inducement” and 

“blocking” mechanisms. Inducement mechanisms promote the development of a TIS (e.g. 

price change in favor of a technology), while blocking mechanisms are market or 

systemic failures (e.g. institutional deficiencies) that thwart the development of the 

innovation system (Sisko et al., 2013). Features of the structural components as well as 

the larger contextual issues may also be at fault with blocking mechanisms. Hence, the 

working of a TIS is only partly driven by internal dynamics of the system (Bergek et al., 

2008). For instance, in the emerging TIS of “IT in home care”, examples of inducement 

mechanisms are growth potential and government R&D policy; blocking mechanisms are 

absence of standards and poor demand articulation. Mapping the relations between these 

mechanisms and the functional profile of the system is useful in decision-making (Bergek 

et al., 2008). Table 17 depicts a number of systemic failures posited by various authors. 

Transition, Transition and learning failure have been used to refer to the same 

phenomenon in the literature (Klein Woolthuis et al., 2005).  

This study draws on the functional perspective, the concept of blocking and 

inducing mechanisms to explore the drivers and barriers to drug discovery in the U.S. 

pharmaceutical industry. Moreover, the structural aspects of the system are also touched 

upon through a survey instrument.  
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Table 16 Functions of a Technological Innovation System (TIS) 

Function  Definition 

Knowledge 
development and 
diffusion 

Usually placed at the center of a TIS; it is concerned with the 
knowledge base of the TIS (globally) and the performance of the local 
TIS is measured against 
 

Influence on the 
direction of search 

Refers to mechanisms influencing the direction of search in terms of 
competing technologies, applications, markets, business models, etc. 
 

Entrepreneurial 
experimentation 

An innovation system without vibrant experimentation will stagnate. 
Variety of experimentation also matters, e.g.: number of new entrants; 
number of different types of technology applications; the breadth of 
technologies used 
 

Market formation For the overall TIS, the market proceeds through “nursing markets” 
providing a “learning space” to a “bridging market” and finally 
developing into mass markets. 
 

Legitimation Social acceptance and compliance with relevant institutions; the 
formation of new industries requires legitimacy. 
 

Resource mobilization For the evolution of a TIS, mobilization of a range of different 
resources (e.g. competence/human capital; financial capital; 
complementary assets) is needed 
 

Development of positive 
externalities 

The generation of positive external economies is a key process in the 
formation and growth of a TIS. External economies or free utilities 
may be pecuniary or non-pecuniary.  

Source: Bergek et al., 2008 
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Table 17 Examples of Systemic Failures 

Systemic failure Definition 

Infrastructural failures Physical infrastructure (such as IT, telecom, and roads) and the 
science and technology infrastructure needed for the functioning of 
the actors in the innovation system 
 

Transition/ Capabilities/ 
Learning failures 

Inability of firms to adapt to new technological developments 
 

Lock-in/path 
dependency failures 

Inability of complete (social) systems to adapt to new technological 
paradigms 
 

Hard institutional failure 
(formal institutions) 

Failures in the framework of regulation and the general legal system 
 

Soft institutional failure 
(informal institutions) 

Failures in the social institutions such as political culture and social 
values 
 

Strong network failures Missing out on new outside developments because of close links 
between actors 
 

Weak network failures 
(dynamic 
complementarities’ 
failure) 

Lack of linkages between actors leading to insufficient use of 
complementarities, interactive learning, and new idea generation 
 

Source: Klein Woolthuis et al. (2005) 

 

4.3 Historical Evolution of the Pharmaceutical Sector 
While a thorough investigation of the historical evolution of the industry is 

beyond the focus of this study, a brief review is useful.  

The evolution of the industry in the early periods not only molded the institutions 

but also shaped firms’ organizational capabilities that have implications to this day 

(Henderson et al., 1999). Previous studies have discussed the history of the modern 

pharmaceutical industry in terms of a number of time periods or epochs (e.g. Henderson 

et al., 1999; McKelvey et al., 2004; Malerba and Orsenigo, 2015). 
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The pharmaceutical industry came into being in the late nineteenth century as a 

subset of the emergent chemical sector (Malerba and Orsenigo, 2015). The first epoch, 

corresponding to the early stages of the industry spanning the period 1850 to 1945 and is 

characterized by a lack of in-house R&D and no tight linkages to science. Mass 

production of pharmaceutical began in the late nineteenth century in the U.K. and the 

U.S. Little new drug development occurred and the research, if any, was based on 

primitive methods. However, starting the 1930s, the emerging sectoral system contained 

firms, universities, and to some extent regulatory players. Universities provided basic 

science and trained chemists. Since early days some companies (e.g. Merck and Pfizer) 

were innovators while others (e.g. Bristol-Myers and Warner-Lambert) focused on 

imitation and inventing around (McKelvey et al., 2004). The structural aspects of the 

system set in during this period.  

The second epoch, or the “random screening” period was the golden age of 

pharmaceuticals that ran from 1945 to early 1980s (or 1945 to 1990s according to 

Henderson et al., 1999). The random screening approach entailed randomly assessing 

natural and chemical compounds in test tubes and live laboratory animals for potential 

therapeutic properties. This method was devised because of lack of specific and detailed 

knowledge on disease mechanisms (McKelvey et al., 2004). A turning point in terms of 

patent protection occurred in 1946 with the granting of a patent for streptomycin51. 

Before that antibiotics were denied patents because they were deemed “naturally 

occurring substances”. This marked the beginning of patent regime tightening (Malerba 

                                                
51 First antibiotic effective against TB 
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and Orsenigo, 2015). In addition to patent protection, firm-specific tacit knowledge and 

skills of screening also functioned as a mechanism to protect economic returns 

(McKelvey et al., 2004). The patent institution and firm-specific tacit knowledge that 

help perpetuate the interests of established players might have made the system 

susceptible to lock-in/path dependency failures. To sum up, this period was driven by 

R&D which led to many drug discoveries. Firms enjoyed high profitability and many 

medical and pharmaceutical knowledge developments occurred in this period (McKelvey 

et al., 2004).  

The third epoch heralded a knowledge revolution that brought about the “guided 

search” learning regime. Advances in molecular biology increased understanding of the 

roots of diseases as well as the way drugs work. Molecular genetics and recombinant 

DNA technologies also joined the revolution in mid-course and opened new avenues for 

innovation. However, new knowledge did not have any automatic influence on the 

competitiveness of existing firms as they incorporated it into their conventional small 

molecule discovery. For instance, they automated screening for new drug targets. The 

emergence of new biotechnology firms (NBFs) was the most apparent crystallization of 

the changes (McKelvey et al., 2004). In summary, while new knowledge and actors 

entered the innovation system, main actors adopted and incorporated the new knowledge 

into their extant routine. Hence, continuing the “lock-in/path dependency failures” 

preconditions. 

Finally, Malerba and Orsenigo (2015) label the first decade of the new century the 

“winter of discontent”. In the 1990s the pharmaceutical industry witnessed good 
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economic and financial performance, and enjoyed respect in the civil and policy circles. 

However, the turn of the century marked a dramatic change of fortune with declining 

innovativeness, public perception reversal emanating from drug withdrawals, intellectual 

property (IP) disputes, and drug price hikes (Malerba and Orsenigo, 2015). In short, this 

period is a manifestation of numerous systemic failures that has intertwined causes hence 

making innovation system studies in this sector highly desirable. 

4.4 Institutional Set-up 
The innovation systems concept is an institutional approach “par excellence”. 

Serious scholars in the realm of technology development have always been aware of the 

impact of institutions in molding technology advancement efforts (Nelson and Nelson, 

2002). The institutional set-up can harbor an important selection mechanism of products 

and organizations. In this line, a couple of studies highlighting the importance of broad 

institutional issues in pharmaceutical innovation are reviewed here. 

The pharmaceutical industry was born in Switzerland and Germany, in part, due 

to their strength in university research and scientific training in related fields. In the U.S., 

the WWII government investment in commercial penicillin development and chemical 

structure analysis shaped the industry. The successful commercial development of 

penicillin showcased the commercial potential of drug development leading to 

pharmaceutical companies’ development of internal R&D capabilities and large R&D 

investments. Generally speaking, four crucial areas have been instrumental in the 

institutional set-up: public support for health research; intellectual property (IP); product 

approval procedures, and healthcare system and reimbursement structure. Despite 
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differences in nature and amount, nearly every government supports health-related 

research. With drugs being a regulated product, approval procedures have a huge impact 

on development cost and firm competitive position. Finally, healthcare and 

reimbursement systems vary widely between countries. These impact the potential of 

capturing rent from innovation. Fragmented health care markets and subsequent low 

buyer bargaining power allowed better innovation rent capturing in the U.S. (Henderson 

et al. 1999).  

Henderson et al. (1999) explore the impact of the molecular biology revolution on 

the pharmaceutical industry evolution. They mention that different national innovation 

systems may suit the promotion of different types of innovations. Competence destroying 

innovations (e.g. the case of biotechnology) call for the formation of new organizational 

and institutional forms; hence, they tend to emerge in locations favorable to institutional 

flexibility and variety. In contrast, in competence enhancing innovations; e.g. rational 

drug design; the relative differences among countries can be linked to the strength of 

existing institutional arrangements such as strong links to universities or other issues 

impacting new technology access.  

From a dynamic approach, Mckelvey et al. (2004) observe changing actors, 

relationships, and networks over time through the lens of sectoral innovation systems 

(SSI). The actors and their relationships are embedded in and affected by contextual 

factors such as public policy and legal systems. A few features of the system they 

highlight are as follows. First, system development was not conscious and the self-

organization started from extant institutions and organizations. Second, despite 
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fragmentation, there is also integration; for instance, new biotechnology firms (NBFs) 

could not flourish without public funding of academic research and the contracts and 

demand from large firms. Third, while the system is not entirely coherent and at rest, it is 

self-sustaining, with agents engaging in complementary functions. Fourth, the trends 

cannot be simply compartmentalized as processes of deepening division of labor or 

processes of horizontal or vertical integration. Division of labor and integration are taking 

place at the same time. Moreover, agents are changing their functions and position in the 

networks. For instance, universities not only specialize in their core activities (i.e. 

teaching and research), but they also diversify downstream into commercializing their 

new products which requires the creation of new incentives and organizational forms. 

Finally, the SSI changes over time in response to different exogenous shocks and internal 

learning and selection processes. For instance, the thalidomide case52 led to tough product 

approval procedures that changed R&D costs, industry structure, drug prices, and 

competitiveness of firms and industries (Mckelvey et al., 2004). 

To sum up, innovative output and specialization pattern of the industry can be 

influenced by the host national innovation system based on unique institutional incentives 

and barriers.  

4.5 Research Question 
According to Sisko et al. (2013) a TIS analysis can be conducted in three steps. 

Firstly, the structure of the system in terms of comprising components is identified. Then, 

                                                
52 Thalidomide was widely used in the late 1950s and early 1960s for the treatment of nausea in pregnant 
women. As it later transpired in the 1960s, thalidomide resulted in severe birth defects. The use of 
thalidomide was banned in most countries at that time; however, it proved useful for leprosy and later, 
multiple myeloma (Kim and Scialli, 2011). 
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the performance of the functions of the system is evaluated. Finally, inducement and 

blocking mechanisms are identified from the preceding steps that lay the ground for 

crafting policies. Consistent with this logic, steps two and three can be conflated into a 

single research question for the present study: “what aspects of the pharmaceutical 

innovation system drive or hinder innovation in drug discovery?” The study does not 

seek to conduct a broad mapping of the innovation system but it seeks to pursue the more 

focused objective of exploring possible reasons behind the productivity paradox in the 

pharmaceutical sector. Hence, it is more focused on the functional aspect of the system 

and identification of possible systemic failures. However, structural elements are not 

completely ignored.  

As such, the present research is not a traditional hypothesis testing endeavor but 

more of an exploratory study that elucidates crucial aspects of the drug discovery 

innovation system. Moreover, it complements the preceding two essays by bringing in the 

voices of those involved in innovative endeavors. This is a crucial effort since 

quantitative analysis of patent data may miss important underlying dynamics of 

innovation. As an example of a qualitative study on systemic issues, Swan et al. (2007) 

conduct a three-year exploratory study in the U.K. and U.S. biomedical sectors to identify 

factors facilitating and impeding innovation projects across contexts. The first phase of 

their study involved an interview-based survey with a range of individuals representing 

key stakeholder groups who had significant experience of working in early-stage 

biomedical innovation projects. The second phase consisted of longitudinal case studies 

of innovation projects representing different approaches to organizing biomedical 
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innovation. Likewise, Sisko et al. (2013) in a study of the inducement and blocking 

mechanisms in the Finish life sciences innovation system, draw on 33 qualitative 

interviews with senior managers and decision-makers. 

4.6 Data and Methods 
This study draws on both primary and secondary sources of data and information. 

According to Sauermann and Roach (2013) surveys are important sources of data in 

innovation studies. Hence, a concise online survey of inventors and experts in the drug 

discovery field was conducted to produce firsthand valuable insights on many aspect of 

the innovation system. Given the complexity of the issue at hand and low response rates, 

this primary data is augmented with existing studies, datasets, statistics and commentaries 

on the pharmaceutical innovation system. The secondary sources not only complement 

the primary sources, but they also can offer reference points to interpret, validate, and 

qualify the primary data where necessary.  

Given the nature of the issue at hand, the study does not draw on quantitative 

methods and statistical inference. Descriptive statistics will be drawn upon as 

appropriate. 

4.6.1 Survey Instrument  
To collect primary data, a concise survey instrument was developed drawing 

largely on Scannell et al. (2012) and the innovation system literature. Appendix C depicts 

the instrument. There are 12 substantive questions53 on the instrument. Two questions 

deal with the “background” of the respondents in terms of field of specialization and 

                                                
53 One is consenting to the terms, the other asks for relevant comments to the study making total 14 
questions 
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position. Fields of specialization were taken from the FDA therapeutic areas54 used in 

reporting approved drugs. 

Question 4 asks the respondent to rank up to five “drivers of innovation” from 

among eight options presented to them. The options (depicted in table 18) were 

developed from the literature and were presented in a dropdown menu format. The 

respondent could also suggest and rank own options.  

  

                                                
54 FDA therapeutic areas will be used: “New FDA Approved Drugs By Medical Area | CenterWatch.” 
Accessed July 10, 2016. http://www.centerwatch.com/drug-information/fda-approved-drugs/therapeutic-
areas. 
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Table 18 Drivers of Innovation: Response Options 
Driver Justification Approx. Match to 

Functions 

R&D investment Basic resource input into 
innovation; Crux of Eroom’s Law  
 

Resource mobilization 

Basic science (e.g. scientific 
publications) 

Knowledge-base of pharmaceutical 
innovation  
 

Knowledge development and 
diffusion 

Skilled R&D scientists Basic requirement of innovation 
especially in a science-based area 
 

Resource mobilization 

Good R&D management Good “ba” (Nonaka, 1998); 
appropriate internal direction for 
search 
 

Influence on the direction of 
search (here, the emphasis is 
on “internal guidance” from 
corporate strategy and not 
influence form policy 
incentives) 

Collaborative R&D with other 
outside entities (e.g. universities) 

Trifecta model (Petrova, 2014); 
Kaitin and DiMasi (2011) 
 

Resource mobilization (in 
terms of accessing 
complementary 
competences); Knowledge 
development and diffusion; 
Development of positive 
externalities 

The diversity of knowledge 
available to the inventors (e.g. 
enzymology, toxicology, 
etc.) 

“Tension” view on creativity; 
(Kaitin and DiMasi, 2011) 
 

Resource mobilization  

The depth of specialized knowledge 
available to the inventors 

“Foundational” view on creativity 
(Kaitin and DiMasi, 2011) 
 

Resource mobilization  

Market size of the drug Market pull arguments of 
innovation; Acemoglu and Linn 
(2004) 

Market formation 

 

R&D investment was offered as a driver of innovation based on the Errom’s Law 

of rising corporate R&D spending and almost flat output as articulated by Scannell et al. 

(2012). Basic science reflects the science-intensity of pharmaceutical innovation. For 

instance, as mentioned previously, Ward and Dranove (1995) divide R&D into the three 
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stages of government-funded basic research, publication in medical journals, and 

industry-funded applied R&D.  

The “Skilled R&D scientists” option is offered as another basic ingredient of 

innovation. The inclusion is especially important given the new paradigm of drug 

discovery based on automation (e.g. high throughput screening of drug targets) and 

taking the human judgment out of the R&D search process. In the words of Scannell et al. 

(2012) if the logic is that “automation, systematization and process measurement have 

worked” in other industries, what is the point in relying on the random efforts of 

“chemists and biologists”. 

Good R&D management was included in the option list because of the importance 

of context and incentive structure in the performance and outcome of human resources. 

For instance, Nonaka and Konno (1998) contend that knowledge is embedded in shared 

spaces called “ba”, a word borrowed from Japanese philosophy. Ba can be physical (e.g. 

office), virtual (e.g. teleconference), mental (e.g. shared experiences or ideals) or a 

combination of these. Ba is a platform for advancing individual or collective knowledge. 

They offer the SECI model of knowledge creation consisting of socialization (i.e. sharing 

tacit knowledge), externalization (i.e. expression of tacit knowledge in comprehensible 

form), combination (i.e. transformation of explicit knowledge into more complex forms) 

and internalization (i.e. conversion of explicit knowledge into organization’s tacit 

knowledge). They contend that support of knowledge creation required understanding of 

the delicate characteristics of the ba. Likewise, according to Johnson (1996) resolving 

problems, competing effectively and diversifying a company requires building on human 
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resource capabilities. For an effective technical organization, core competence is not a 

stagnant research area but represents the cutting edge of the field and striving to exploit it 

towards organizational goals. In his words “good R&D management is tolerant of 

failures and near misses and determined to try again”.  

Collaboration in R&D was raised because of the studies arguing for a new model 

of drug discovery based on a network of innovation stakeholders—including large and 

small pharmaceutical and biotechnology companies, academic research centers, contract 

research organizations, public–private partnerships, and patient groups— sharing the 

risks and rewards of the innovations. Some believe there is already a shift towards this 

(Kaitin and DiMasi, 2011; also see Petrova’s (2014) trifecta model). 

The inspiration for options raising the “diversity of knowledge” and the “depth of 

specialized knowledge” available to the inventors comes from the “tension” and 

“foundational” views on creativity. The former asserts that deep knowledge can lead to 

myopia to the extent that the recombination of distant or diverse knowledge is needed in 

order to see new ideas, while the “foundational” view touts a deep understanding of the 

knowledge domain as a prerequisite to generate breakthrough innovations (Kaplan and 

Vakili, 2015).  

Finally, the “market size of the drug” reflects the intuitive importance of the 

existence of a market as a driver of innovation which is also empirically examined (see 

e.g. Acemoglu and Linn, 2004). 
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Six questions tried to construct a profile of the innovation system structure. Table 

19 depicts the questions and their implications for the structure and function of the 

innovation system.  

 

Table 19 Questions Dealing with the Innovation System Structure 
Question Justification Structural Entity Approx. Implications for 

System Functions 
List three most important 
public R&D funding 
entities (e.g. NIH) 
 

Capture most important 
public funders; can have 
policy implications by 
helping identify most 
important funders  
 

Actor Resource mobilization 

List three most important 
private R&D funding 
entities (i.e. funding 
outside R&D such as a 
venture capital company 
or big companies) 
 

Capture most important 
private funders. Interesting 
to see large firms vs. 
venture capital role in the 
eyes of practitioners 
 

Actor Resource mobilization 

List three most important 
producers of basic 
research (e.g. a specific 
university) 
 

Can have policy 
implications in terms of 
identifying successful 
entities/programs 
 

Actor Knowledge development 
and diffusion 

List three most enabling 
legislations or 
regulations 
 

Has clear policy 
implications by identifying 
successful initiatives 
 

Institution Influence on the direction 
of search 

List three most 
burdensome legislations 
or regulations (i.e. 
hindering innovation) 
 

Has clear policy 
implications by identifying 
legislative barriers to 
innovation 
 

Institution Influence on the direction 
of search 

List top three new 
companies in your area 
of expertise and reason 
for inclusion in this list 
(e.g. for new technology 
development; for new 
market creation; etc.) 

Identifies most innovative 
entities; Can have policy 
implications by tracing the 
sources of their success 

Actor; 
Technology (if 
identified by the 
respondent) 

Entrepreneurial 
experimentation 
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One question tried to put the Eroom’s Law (see Scannell et al, 2012) to the test. 

This attempt was done very subtly by asking respondents to judge corporate R&D 

spending and new drug approval trends (i.e. if decreasing, stagnant, increasing or they 

have no information). However, they were asked to choose their own time frame (i.e. past 

five years, past decade, past few decades) for assessing the trends. New drugs were meant 

to include new biologics and R&D spending was supposed to reflect inflation adjusted. 

One question asked respondents to rank nine barriers to innovation with the 

option to add own choices. The barriers offered for ranking and their justification is 

depicted in table 20. 
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Table 20 Barriers to Innovation: Response Options 
Barrier Justification Functions 

Availability of good 
drugs for many 
diseases 

“Better than the Beatles” problem: a large stock of approved drugs exists and new 
drugs have a modest incremental benefit over what was already available (Scannell et 
al., 2012). 
 

Market formation 

Over-cautious 
regulation for safety 

Ratcheting up of regulatory burden in response to past drug failures and reduced risk 
tolerance of regulatory agencies (Scannell et al., 2012). 
 

Influence on the direction of search; 
Resource mobilization 

Inflated R&D wages Meant to reflect cost pressure on R&D spending Resource mobilization 
Designing drug 
substances with a 
single or narrow 
therapeutic benefits 

Over time there has been a shift form looking broadly for therapeutic benefits in active 
agents to designing molecules for precise effects (Scannell et al., 2012). 
 

Market formation 

Complex clinical trials “Better than the Beatles” problem and cautious regulators increased the complexity of 
medical practice (Scannell et al., 2012). 
 

Resource mobilization 

Reduced quality of 
published science 

Knowledge is the main input of R&D; Poor basic science will negatively impact the 
government-funded basic research, publication in medical journals, and industry-
funded applied R&D cycle (adapted from Ward and Dranove, 1995). 
 

Knowledge development and 
diffusion 

Patented or proprietary 
research tools 

Patents on research tools such as sequencing methods and “reach-through” licensing 
practices in which upstream research tool owner seeks control and royalties from 
downstream applications (Burk and Lemley, 2003) may have negative impact on 
innovation. 
 

Resource mobilization; Knowledge 
development and diffusion 

Lack of inter-
organizational 
collaboration in R&D 

Given importance of division of labor and cooperation in the trifecta model, lack of 
collaboration can be an important barrier to innovation. 
 

Development of positive 
externalities 

Companies pursuing 
the same drug targets 

Flip side of automation and new drug discovery approach of molecular reductionism 
(see e.g. Scannell et al., 2012). 
With the shift from random screening to targeted rational drug design, “the discovery 
process has become more systematic” (Petrova, 2014). 
There are “development races” for new drug development that are the reason for 
having “me-toos” (DiMasi and Paquette, 2004). 

Market formation; Resource 
mobilization (R&D for same targets 
that lead to inflated industry level 
R&D spending); Influence on the 
direction of search (lack of guidance 
or guiding towards one target may 
lead to this problem) 

 



129 
 

Respondents were given the chance to share any comments related to “boosting 

innovation and lifting barriers to innovation”. Finally, they were asked to rate their 

responses in terms of generalizability across other therapeutic areas.  

The recruitment/invitation email, with the survey link, contained the George 

Mason University’s Internal Review Board (IRB) approval number, giving it an 

authoritative air. The instrument was preamble by a consent form approved by the IRB 

informing the respondent of the anonymity of the responses, risks, benefits, the voluntary 

nature of the survey, and contact information of the researcher. The SurveyMonkey 

platform was used for the survey but was customized with the university logo. Different 

features such as dropdown menus were used to make the survey user-friendly.  

4.6.2 Respondents  
The unsolicited online survey invitation was sent to potential respondents 

extracted from drug substance patent inventors, managers/founders of new firms (from 

angel.co with “drug discovery” and “drug development” tags as of May 2017), speakers 

on two drug discovery/development conferences (one held one upcoming), one small 

pharmaceutical consultant network with open member profiles, and LinkedIn 

professional profiles with “drug discovery” skill tags. Email invitations were sent to those 

individuals whose email address could be found on the internet. Some emails were 

constructed based on institutional email formats hence more of these invitations did not 

go through because the email addresses were not correct. Drug substance patents came 

from the online Orange Book patent files downloaded June 22, 2016 and April 3, 2017 
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were used to extract respondents. The patent files have a drug substance flag. About 3200 

names55 from 710 patents were sifted through. About 27% of names were duplicates. 

In deciding who is eligible for participation, the LinkedIn and/or institutional 

profile of the individual were examined for evidence of work in the field of drug 

discovery and U.S. residency. U.S. residence or experience is emphasized because 

“institutional/ country-specific factors” provide crucial incentives and “selection 

processes” that “shape” the pharmaceutical innovation system of each country 

(McKelvey, et al., 2004). Moreover, having U.S. specific responses would be crucial for 

policy-relevance.  

The inclusion criteria for drug patent inventors were low, i.e. they automatically 

qualified for having contributed to a drug-substance invention and being a U.S. resident 

at the time of the invention56. The construction of the sample was itself subject to 

learning and adjustment; it was more strictly applied for LinkedIn respondents because 

“drug discovery” skills might have been loosely endorsed by others. R&D 

project/research/group management or leadership experience was one of the main criteria 

for inclusion in the sample for LinkedIn members. Academic and non-profile sector 

individuals were mostly selected for experience in industry or depth of their experience. 

Given scale of manual work, there is some margin of error hence the instrument upfront 

asked respondents to mention their position. LinkedIn search was done among experts 

based in the U.S. It seems the search list retuned people based on proximity in my 

                                                
55 Estimates are based on rows of data in my excel sheet. Given non-standardized names on patents, 
working with inventor names is not easy. 
56 City and State of inventors are mentioned on the U.S. patent. 
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network. However, from the first round of survey invitations, a couple of highly 

networked and experienced people sent me a LinkedIn connection invitation which 

helped with the search. In other words, this made me embedded in some very relevant 

networks. Premium membership was required for the searches which at the time of search 

(July 23, 2017 through September 1, 2017) required searching the directory for “drug 

discovery” skills tag.  

An interesting observation is that out of about 721 LinkedIn profiles examined as 

potential respondents, 31 were also in the drug substance patent inventors. This is another 

concrete indication that LinkedIn profiles can be very relevant for extracting potential 

respondents.  

There is no known accepted population of respondents for this survey and there 

were numerous biases in constructing the potential respondent list, most important of all 

would be the ability to find a relevant email address. Some of these biases emanate from 

limited resources; for instance, if we accept LinkedIn as one source of potential 

respondents, not all LinkedIn profiles with “drug discover” skills were examined. 

Moreover, the drug patent inventor list was constructed over a long period of time 

(stating June 2016) with several months of break. Some email addresses might have 

become publicly available after the email address search on the internet. Overall, the 

practice should be viewed as an exercise in contacting experienced people in the field for 

their valued positions and observations regarding innovation in the sector, much like a 

qualitative study based on elite interviews.  
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Many studies in the innovation systems genre are not quantitative. For instance, to 

study the antecedents of the NIS concept, Sharif (2006) conducts interviews 12 

interviews and holds 5 informal conversations. Suurs et al. (2010) draw on digitalized 

media, historical reports, and expert interviews to study the formative stage of a 

technological innovation system in the energy sector. Finally, Swan et al. (2007) 

scrutinize innovation mechanisms at the project level in the biomedical field in the U.K. 

and U.S. using 97 interviews (44 U.K.; 53 U.S.). 

Table 21 depicts the details of the potential respondents and response rates. The 

invitation to LinkedIn, conference and forum potential respondents were addressed by 

first name (in few exception titles such as Prof., Dr. was used). The rest of the invitations 

were generic (i.e. starting: “Dear respondent”). With the exception of the upcoming 

conference speakers, all addressed invitations have much higher response rate. However, 

higher response rate might be due to informing them that questions are independent and 

they can skip any question they find burdensome. Moreover, timing was broken down 

into realistic, pessimistic and a fast track set of questions that were deemed potentially 

interesting for the respondents (e.g. drivers and barriers to innovation and R&D trend). 

The upcoming conference speakers’ zero response rate is noteworthy and could be 

because the conference was not held yet.  

One reminder was sent seven or eight days after the original invitation. Forum 

faculty received a reminder nine days after initial invite and 41 LinkedIn potential 

respondents had not received a reminder at the time of extracting this data (9/4/2017). 
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The reminders were not individually addressed. First batch of invitations were sent on 

July 12, 2017 and the last were sent on August 31, 201757. 

A note on response rate is in order. According to Sauermann and Roach (2013) 

online surveys often exhibit lower response rates of around 10–25%. Also, according to 

Pew Research Center (May, 2017) the telephone poll response rates has been declining 

for decades and currently stands at about 9%. The total response rate of around 9% is 

closer to the lower end of the spectrum reported by Sauermann and Roach (2013) but 

given the fact that the study was pitched as “part of a doctoral study”, higher 

organizational position of respondents compared with the researcher (i.e. experienced 

R&D managers, etc. versus a doctoral candidate), survey subject matter (i.e. industry-

level innovation related issues pitched to technical people), one round of reminders, and 

vacation time (there were a number of automated holiday email responses), the lower 

response rate might be justified. 

  

                                                
57 The survey may be open beyond this date and still collecting possible responses. 



134 
 

 

Table 21 Potential Respondents and Response Rates 

Source 

Potenti

al 

respon

dents 

(Email

s sent) 

Bounced 

Emails(app

roximate) 

Responses 

(click 

through) 

Response 

Rate (click 

through) % 

Adjusted 

Sent 

Emails* 

Adjusted Response 

Rate (click 

through)* % 

New Firms 66 1 4 6.06 65 6.15 
New Firms 
(generated) 19 3 1 5.26 16 6.25 
Drug substance  
(Known, Executive) 194 14 7 3.61 180 3.89 
Drug substance 
(Known, Academic) 37 4 5 13.51 33 15.15 
Drug substance  
(Known, Other) 218 17 6 2.75 201 2.99 
Drug substance 
(Generate, 
Executive) 140 53 7 5.00 87 8.05 
Drug substance 
(Generate, 
Accademic+Other) 170 52 2 1.18 118 1.69 

Consultant Network 31 4 4 12.90 27 14.81 

Forum Faculty 40 0 9 22.50 40 22.50 
Upcoming 
Conference 
Speakers 27 1 0 0.00 26 0.00 
LinkedIn 
(Executive) 365 35 42 11.51 330 12.73 
LinkedIn 
(Academic) 82 2 20 24.39 80 25.00 

Total 1389 185 107 7.70 1204 8.89 
* Adjusted for bounced emails (i.e. emails that did not go through); Some respondents only 
consented but did not respond to any questions; hence, the term “click through”.  

 

Overall 107 consented and started the survey but 15 of these did not respond any 

substantive questions. Two background questions were asked from the respondents. The 

first asked them to identify up to three specializations. Figure 16 depicts the field of 

specialization of those who responded to this question and figure 17 depicts a word cloud 

from SurveyMonkey export tool. In the words of one of the respondents, “medicinal 
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chemistry” is the field developing drugs and was missing from the list. The reason is that 

the list of specialization came from the FDA drug categorization rather than disciplinary 

specialization. However, the cloud indicates the respondent pool is highly relevant with 

“medicinal chemistry” taking center stage and “drug discovery” and “drug development” 

respectively taking prominent positions in the word cloud. As depicted in figure 16, 

oncology, pharmacology/toxicology, and “infections and infectious diseases” are 

respectively the most prevalent main specialization of the respondents. 

Figure 18 depicts the organizational position of the respondents. A noteworthy 

issue is that 81.5% of potential respondents are corporate R&D managers, entrepreneurs, 

or consultants. People holding these positions are in the best position to judge the drivers 

and barriers to corporate innovation. The existence of four CEOs among the respondents 

is also noteworthy. While not all of the people went ahead with all sections of the survey 

questions, this analysis offers a general profile of the people reached at for the survey.  
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Figure 16 Main Field of Specialization of Respondents (Responses are cleaned and 

standardized for bottom panel) [Q: What is your main field of specialization? 

(Choose up to three in order of expertise if applicable or add yours)] 
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Figure 17 Word Cloud of Fields of Specialization (Based on most important words 

and phrases respondents used to describe their specialization from SurveyMonkey 

Export Tools) 
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Figure 18 Organizational Position of Respondents [Q. What is your current 

position? (Optional; select all that applies)] 
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4.7 R&D and Innovation Trends 
The term “Eroom’s Law” coined by Scannell et al. (2012), refers to the 

paradoxical phenomenon of declining efficiency of R&D since 1950. They estimate that 

the number of FDA-approved drugs58 per billion US dollars of R&D spending halved 

about every 9 years since 1950. Similarly, Munos (2009) points out that the new-drug 

output has been essentially constant despite efforts to boost the numbers. The reason may 

simply be the limitations of the prevailing R&D model. 

It would be instructive to see what the subjective views of industry insiders would 

be about these observed R&D and innovation trends. This is especially important as their 

perceptions and beliefs will be the prime driver of decisions impacting these trends and 

outcomes. To this end, question 11 was devised to have responders judge R&D and drug 

approval trends. An innovative approach was used by allowing them to choose the time 

frame within which they could make a judgment (i.e. judging trend over five years, a 

decade, decades). Overall, 54 responders has some input for this exercise. 

Figure 19 depicts the results of the exercise. Overall, a slim majority of the 

responders vote along the lines of the Eroom’s Law in terms of new drug approval trend. 

Regarding R&D spending, the majority view is that the spending is stagnant. While this 

is not in line with the Eroom’s Law long term trend, R&D spending figures of the recent 

years, indeed, confirm this trend. This is especially more cogent as the majority tended to 

judge the trend over the five-year time period.  

Understandably, most responders were more comfortable to pass judgment on 

shorter periods of five years and a decade for both R&D and drug approval trends. 

                                                
58

 New molecular entities and new biologics 
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Longer term judgments would require more effort on their parts. Some respondents 

would not have as much high-level experience of the industry with longer time periods. 

These results point to the fact that the overall judgment of the respondents has: 

firstly, largely been reflective of what has actually been going on in the industry, 

secondly, their information is generally current and finally, there appears to be not much 

bias in their rendition of what the facts and figures show. 

This broad reporting may mask very specific reasons for the responses hence a 

closer look at the comments some responders left is instructive. Table 22 depicts the 

comments along with an attempt at linking them to systemic failures. Regarding drug 

approval, some comments hinted at improved approvals for a few recent years. Two 

comments hinted at the “better than the Beatles” problem with the move into more 

difficult drug discovery areas. In a similar vein, another comment mentions that there are 

more approvals for “small” drugs. Difficulty and cost of clinical trial has been mentioned 

in two comments. Problems of big companies in conducting creative R&D and the 

doubtful sustainability of their business model have also been mentioned. Finally, one 

comment raises the important issue of better translational research.  

In terms of R&D spending, high cost of R&D and clinical trials, less emphasis on 

in-house R&D and more on acquiring early-stage products, and less spending on research 

than development, are important issues raised in the comments. 
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Table 22 Responder Comments for R&D Spending and Drug Approval Trends (16 

responders) 

Category Responder Comment (with some rewording) Note System 

Failure(s) 

Drug 

Approval 

New drug approvals decline with the move into 
more difficult areas. 

Hints at 
“better than 
the Beatles” 

Transition 
failure 

 We are seeing more approvals but for “small” 
drugs with narrow and orphan indications 

Narrow 
targets? 

Transition 
failure/ Hard 
institutional 
failure  

 9 out of 10 drugs fail in clinical trial – need for 
better translational research 

Translational 
research 
weakness 

Transition 
failure/ Hard 
institutional 
failure  

 95% of small molecule drugs fail in the clinical 
trials  CAR-T cells are interesting but very 
expensive for patients 

Hint at new 
technology or 
paradigm 

Transition 
failure/ Hard 
institutional 
failure 

 2015 was a strong year and 2016 was less 
successful 

  

 Large companies have enjoyed decreasing 
ability to conduct creative R&D; one major 
reason is senior management’s lack of insight 

R&D 
management 
issues 

Transition 
failure/ Soft 
institutional 
failure 

 New drug approval increase is only for last 
year  

Only recent 
year increase 
in drug 
approvals, 
may be 
temporary 

 

 The percentage of prescriptions filled by 
patented drugs has decreased to about 10%. 

Hints at 
“better than 
the Beatles” 

Transition 
failure 

 New drug approvals increasing slowly Improvement 
(if any) is of 
recent years 

 

 At least ten years are needed from the lab to 
approval; hence, approvals are based on ten 
year-old innovations 
New drug approvals in Hematology-oncology 
has accelerated 

There might 
be a large lag 
between 
discovery and 
approval. A 
long time 
needed to see 

Hard 
institutional 
failure 
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if Eroom’s 
Law has 
changed. 

R&D 

Spending 

R&D spending in big companies is stagnant, 
but there is an increase in venture capital based 
discovery/development 

Data shows 
discovery 
investment By 
VC more flat; 
development a 
bit up 

Transition 
failure/ Soft 
institutional 
failure 

 R&D costs have risen exponentially; hence, the 
science current dollars buy is less than ten 
years ago. 

 Hard 
institutional 
failure 

 In-house R&D spending is lower because 
companies seek to source early-stage assets 
from start-ups, universities and innovation 
centers. 

Hint at 
“acquisition 
of pipeline”  

Transition 
failure/ Soft 
institutional 
failure 

 Research spending is decreasing but 
development (clinical trials) spending is 
increasing because of clinical trial costs.  

Hint at 
reduced 
discovery 
spending and 
increased 
development 
spending 

Hard 
institutional 
failure 

Other R&D return on investment declines with the 
move into more difficult areas 

Maybe Return 
driven 
industry may 
have less 
incentive to 
invest in 
discovery 

Transition 
failure 

 Trends cast doubt over the sustainability of the 
pharmaceutical business model 

 Transition 
failure/ Soft 
institutional 
failure/ Hard 
institutional 
failure 

 There are many “deferred funding” notices 
which are ominous signs 

 Hard 
institutional 
failure 
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Figure 19 R&D Spending and New Drug Approval Trends 
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4.8 Drivers of Innovation 
This section discusses some important drivers of innovation in the pharmaceutical 

sector. A close examination of these issues can help identify systemic failures responsible 

for the R&D productivity decline. 

4.8.1 Prioritizing Drivers of Innovation: Survey Insights 
Respondents were offered eight drivers of innovation extracted from the literature 

and asked to choose and rank up to five of them. They could also suggest and rank their 

own options. 92 respondents completed this question.  

Figure 20 depicts the ranking of different drivers of innovation. A useful approach 

to analyzing the data is to see within each rank what drivers were the top choices. R&D 

investment, skilled R&D scientists, and basic science respectively got the top three most 

responses for the top driver of innovation. There is a variety of estimates on the cost of 

drug development, with some estimate embroiled in controversy and claims of 

overestimation. For instance, Adams and Brantner (2006) attempted to replicate DiMasi 

and colleagues (“The Price of Innovation” J. Health Econ. 2003; 22 (2):151-85) estimate 

of $868 million; however, their estimates came out between $500 million to more than $2 

billion, depending on the therapy or the developing firm. They caution against the use of 

a single estimate by policymakers.  

Table 23 depicts the drivers entered by responders. “Unmet medical need” was 

mentioned six times that somehow related to the existence of a market. “Innovation 

culture” and “easier approval process” are other most frequently cites drivers. Few 

responders attempted to enter other choices. This may indicate the choices offered to 
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them were acceptable and comprehensive. Alternatively, it may indicate they were not 

willing to expend time to proffer their own drivers. 

Another important way to analyze the results would be to tally the total 

responses59 for each driver hence summarizing overall importance. Figure 21 depicts this 

attempt. Drivers suggested by the respondents were cleaned and included in the tally. 

This approach renders “skilled R&D scientists” the top ranked driver followed by “R&D 

investment” and “good R&D management”. These results are intuitive especially the 

closeness of votes for “R&D investment” and “skilled R&D scientists” is notable and 

may be indicative of their mutual dependence for synergistic outcome. “Basic science” 

and “collaborative R&D” rank fourth and filth respectively. Another interesting 

observation is that the depth of specialized knowledge received more votes than the 

diversity of knowledge. A note of caution here is that these are all basic ingredients of 

innovative activities and all should be present in a synergistic way to lead to a positive 

outcome. 

The fact that “skilled R&D scientists” is the top voted driver of innovation is at 

odds with the dominant paradigm of drug discovery based on automation (e.g. high 

throughput screening of drug targets) and “basic research–brute force”. Such mentality is 

observable in some industry commentaries. For instance, Andrew Grove, former Intel 

CEO, draws parallels between e-commerce efficiencies and advocates for “an “e-trial” 

system along similar lines” to speed up clinical trials (Grove, 2011). Others have 

criticized such parallels because of the “simplicity and predictability of semiconductor 

                                                
59 Like tallying votes 
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physics versus “biology’s mysteries” (Scannell et al., 2012). These discussions can be 

symptomatic of transition failure and soft institutional failure. 
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Figure 20 Ranking Drivers of Innovation (Y-axis is ranks; data labels are responses) 
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Unmet Medical Need 6 1, 2 
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* 0 denotes not in and rank and entered as an additional driver; responses have 
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Figure 21 Drivers of Innovation Based on Overall Responses (Total=443) 
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Two survey questions asked the respondents to identify the most important public 

and private sources of R&D funds. NIH and venture capital were the top ranked choices 

(see Appendix C tables 1a and 2a for the full list). Consequently, a close examination of 

these sources is in order. 

The knowledge base of the biopharmaceutical companies comes much more from 

government spending than from business finance (Lazonick and Tulum, 2011). Figure 22 

depicts NIH funding for the 1950-2019 period. The year 2003 witnessed a peak in NIH 

funding as a share of GDP even after adjusting for the Biomedical Research and 

Development Price Index (BRDPI) inflation. NIH funding grew by 15% between 2003 

and 2010 but real funding decreased 1.5% in this period based on inflation adjustment 

and decreased 11.4% after BRDPI inflation adjustment. As evident, the NIH budget 

started to stagnate after 2003 and went into decline in 2010. At the same time, the cost of 

biomedical research has increased rapidly (Boadi, 2014). 

Gant application success rate is another important measure to examine. Figure 23 

shows the success rate of NIH Research Project Grant (R01)60 equivalent and research 

project grant applications. The upshot of the rise in applications and reduced or flat 

approval rates is reduced resources for experimentation at early stages of technology 

development.  

Figure 24 depicts grants by career stage of applicants. Post-2003, a sharp 

downward trend for both new and established investigators is observable. However, the 

                                                
60 The original and oldest grant mechanism of NIH that funds pojects in line with the NIH mission (“NIH 
Research Project Grant Program (R01) | Grants.nih.gov.” Accessed August 14, 2017 
https://grants.nih.gov/grants/funding/r01.htm.). 
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downward trend is reduced and seems to flatten beginning 2011. While the gap between 

established and first-time applicant has declined, per figure 25, the “cumulative 

investigator rate”61 has also declined from 43% to 31% (Lauer, 2016). 

 

 

Figure 22 NIH Funding, FY 1950–2019 

Source: Boadi (2014); NIH funding figures through FY 2014 are based on total 
budget authority. Projected NIH funding figures for FY 2015 through FY 2019 are based 
on data from the Congressional Budget Office. 

 

  

                                                
61 “the likelihood that unique investigators are funded over a 5 year window” (Lauer, 2016). 
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Figure 23 NIH R01 Equivalent and Research Project Grants Applications (Top 

Panel: Reviewed and Awarded; Bottom Panel: Success Rates)  

Source: Extracted from https://report.nih.gov/displayreport.aspx?rid=665  
*Excludes awards made with American Recovery and Reinvestment Act (ARRA) funds. R01-

equivalent awards include R01, R23, R29, R37 and RF1 activity codes. Research projects are defined as 
activity codes DP1, DP2, DP3, DP4, DP5, P01, P42, PN1, PM1, R00, R01, R03, R15, R21, R22, R23, R29, 
R33, R34, R35, R36, R37, R50, R55, R56, R61, RC1, RC2, RC3, RC4, RF1, RL1, RL2, RL9, RM1, UA5, 
UC1, UC2, UC3, UC4, UC7, UF1, UG3, UH2, UH3, UH5, UM1, UM2, U01, U19, and U34. 

 

0

10000

20000

30000

40000

50000

60000

1
9

7
0

1
9

7
2

1
9

7
4

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

Number of Grants

R01 Equivalent Grants Reviewed

R01 Equivalent Grants Awardedd

Research Project Grants Reviewed

Research Project Grants Awarded

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

1
9

7
0

1
9

7
2

1
9

7
4

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

Success Rates

R01 Equivalent

Research Project Grants



152 
 

 

 

Figure 24 Success Rates of New R01-Equivalent Grants by Career Stage of 

Investigator 

Source: NIH Data Book: https://report.nih.gov/nihdatabook/index.aspx  
* New or type 1 application is submitted for funding for the first time.; First-time investigator is a 

the Contact Principal Investigator who is a first time is a first time investigator. 
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Figure 25 NIH Research Project Grant Applicants, Awardees and Cumulative 

Investigator Rate 

Source: Lauer (2016) 

 

Turning to venture capital, it is worth mentioning that venture capital refers to 

“equity or equity-linked investment” in privately held companies. Funds are raised from 

other individuals or entities. VCs assume an active role in the investments (e.g. as a 

director, advisor, or manager of the firm). As a related institution, angel investors are 

individuals and entities that mainly invest their own funds in new start-up firms 

(Williams, 2013). Some reports claim “angel investors are the first stop in a new era of 

drug development”. One reason is that big pharmaceutical companies are increasingly 
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shunning the riskier phases of product development and seek safer bets with products at a 

more developed stage62.  

Figure 26 depicts venture capital investments in relevant industries reported in the 

MoneyTree™ healthcare sector. The overall trend of the investments shows a slight 

uptick in recent years, mostly driven by biotechnology investments. Per figure 27, more 

investment goes into development rather than discovery. The picture indicates preference 

for drug development than drug discovery. This might be logical since the perceived drug 

discovery risk/return profile might be higher in comparison with drug development.  

 

 

Figure 26 Quarterly Venture Capital Investments Q1 2002-Q1 2017 (in millions; 

deflated by GDP price index, base year 2009) 

Source: Extracted from PwC/CBInsights MoneyTree™ data explorer63  

  

                                                
62

 “Angel Investors Are the First Stop in a New Era of Drug Development — NewsWorks.” Accessed 
September 14, 2017. http://www.newsworks.org/index.php/local/the-pulse/103720-angel-investors-are-the-
first-stop-in-a-new-era-of-drug-development.  
63 Accessed July 1, 2017 from http://www.pwc.com/moneytree  
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Figure 27 Drug Discovery/Development Quarterly Venture Capital Investments Q1 

2002-Q1 2017 (in millions; deflated by GDP price index, base year 2009) 

Source: Extracted from PwC/CBInsights MoneyTree™ data explorer64 

 

  

                                                
64 Accessed July 1, 2017 from http://www.pwc.com/moneytree  
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A brief conclusion of this analysis is that corporate R&D productivity has been on 

the decline. At the same time, VC investments prefer later stage investment with less risk. 

Finally, NIH funding which lays the foundation of the biopharmaceutical knowledge base 

has been on the decline and cannot keep up with rising applications.  

b) R&D Employment 

Skilled R&D scientists ranked as the top important driver of innovation based on 

vote tally of the survey (figure 20). Per 2013 figures, the pharmaceuticals and medicines 

(NAICS 3254) industry ranked second in terms of domestic R&D employment with 

117,000 employees (software publishers ranked first). However, in terms of 

compensation (figure 28) it ranks first by a noticeable margin (Shackelford and Moris, 

2016).  

In terms of overall employment rate, between 2009 and 2013, the U.S. 

biopharmaceutical sector eliminated at least 156,000 American jobs. This included 

cutting R&D departments, reducing sales teams, and eliminating redundancies in post-

merger workforces. A few explanations have been offered for this. First, there is the 

intuitive impact of mergers and acquisitions that lead to duplicate organizational 

positions (e.g. two marketing managers). The second trend is reduced sales force because 

of changing customer base. While in the past physicians had a large say in prescriptions, 

with healthcare reform, payers and government entities hold more sway. Patent 

expiration and marketing ethics are other issues at play. For instance, GSK was criticized 

for “hawking” the blockbuster asthma medication Advair that could have led to 

overutilization and deaths. The final trend is preference for pipeline acquisition that 
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reduces the need for in-house R&D. Many firms are focusing on deals or licensing 

agreements to exploit existing or development stage drugs.65  

Presuming these trends hold, R&D employment reduction coupled with “pipeline 

acquisition” rather than internal R&D could potentially explain the flatter R&D spending 

post-2010. This may superficially tackle the symptoms of the Erooms’s Law (i.e. reduced 

R&D spending coupled with even flat innovative output can improve the look of R&D 

productivity). However, the underlying feeble R&D productivity of big 

biopharmaceutical firms will still hold.  

  

                                                
65

 “3 Major Trends Driving Layoffs in Biotech and Pharma | BioPharma Dive.” Accessed September 6, 
2017. http://www.biopharmadive.com/news/3-major-trends-driving-layoffs-in-biotech-and-
pharma/399484/. 
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Figure 28 Annual Employee Compensation per Domestic Full-time Equivalent R&D 

Employee in 2013 

Source: Shackelford and Moris (2016) 
 

4.9 Barriers to Innovation 
A survey question was devised to construct a list of the most important barriers to 

innovation. These can help identify systemic issues underlying the Eroom’s Law. 

54 responders had some form of input for this exercise. Figure 29 depicts the 

rankings of the most important barriers and figure 30 tallies the votes for each barrier of 

innovation put to the test. Per figure 29, the top ranked barriers to innovation is 

availability of good drugs for many diseases. This is related to the “better than the 

Beatles” problem identified in the literature and restricts the space for innovation. The top 
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ranked barrier in rank 2 is “complex clinical trials”. The literature has documented the 

increasingly complex, time-consuming and costly clinical trial procedures over the past 

few decades (see e.g. Scannell et al., 2012). This barrier also appears as the most 

prominent in rank 3.  

In terms of tallies of responses for all barriers, “complex clinical trials” is the top-

ranked barrier. Pursuing same drug targets by companies and “designing drug substances 

with a single or narrow therapeutic benefits” are tied for the second highest ranked 

barrier. The “lack of inter-organizational collaboration in R&D” wins the third highest 

responses as a barrier to innovation. 

Respondents were able to enter their own barriers to innovation. Table 24 depicts 

their responses. In comparison with the drivers of innovation there are more entries by 

respondents here. This can reflect the higher complexity of barriers or the responders’ 

that were patient enough to proceed to the last questions, were also willing to devote 

more time to leaving a thorough response. Entries can be categorized into cost, funding, 

legal, management, policy, and R&D related issues. A review of noteworthy issues raised 

is useful. In terms of funding, lack of public funding for early translational research has 

been raised and the fact that NIH funding is not enough for this purpose. In terms of legal 

issues, lack of drug pricing regulation is mentioned twice. Regarding overall managerial 

issues, risk aversion and short-termism in drug discovery and R&D is the single most 

frequently mentioned theme. It is also detectable in the overall national policy level 

issues. 
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In the R&D function category, the issue of “disease etiology” can be detected in 

three comments. It seems despite advances in the science of human biology, there is still 

much room for advancement. Finally, the fact that the “reductionist/target-based” is 

flawed has been raised by two respondents. 
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Figure 29 Ranking Barriers to Innovation (Y-axis is ranks; data labels are 

responses) 
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Figure 30 Barriers to Innovation Based on Overall Responses (Total=205) 
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Table 24 Responder Proposed Barriers to Innovation (29 responders) 
Category Subcategor

y 

Comment Frequency Rank System Failure 

Cost Cost Huge Cost in Novel Drug 
Development 

1 2 Transition failure/ 
Hard institutional 
failure/ Soft 
institutional failure 

Funding Science/ 
Translational 
Research 

Lack of Public Funding for 
Translational Research 

1 1 Hard institutional 
failure 

Funding Shortage Funding 1 1 Hard institutional 
failure/ Soft 

institutional failure 
Funding Short-

termism 
Investor Short-termism 1 4 Soft institutional 

failure 
Human 

Resource 

Pay/Strategy Clinical Scientists Displacing Drug 

Discovery Scientists 

1 3 Soft institutional 

failure 
Human 
Resource 

Quality High Quality Scientist Shortage 1 5 Hard institutional 
failure 

Law Bureaucracy Rampant Bureaucracy 1 4 Hard institutional 

failure 
Law Pricing Lack of Legal Drug Pricing/ 

Counter-productive Financial 
Incentives 

2 1, 5 Hard institutional 
failure 

Law Tort Legal Environment for Tort Cases  1 3 Hard institutional 

failure 
Management Feedback Management Decisions without 

Scientist Input 
1 4 Soft institutional 

failure 
Management Risk/Short-

termism 

Risk Aversion/Short-termism in 

Drug Discovery/R&D 
Investment/Big 
Companies/Management 

8 1, 2, 4, 

3, 1, 4, 
3, 4 

Soft institutional 

failure 

Management Strategy Corporate Lack of Agility/ 

Commitment 

2 3, 5 Soft institutional 

failure/ Transition 
failure 

Management Strategy Poor R&D Leadership in Big 
Companies 

1 1 Soft institutional 
failure/ Transition 
failure 

Management Strategy Excessive Merging 1 4 Hard institutional 
failure/ Soft 
institutional failure 

Management  Innovation Happens in Cash-

strapped Universities and start-up; 
Big Companies Doctor R&D Funds 

1 3 Soft institutional 

failure/ Hard 
institutional failure 

Policy  Unhealthy Incentives/ Federal Level 
Bias Against innovative 
Approaches/Researchers 

2 1, 5 Hard institutional 
failure 
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Policy/Manag
ement 

Short-
termism 

US Economic Model [Short-term 
Profits?] 

1 4 Soft institutional 
failure/ Hard 
institutional failure 

R&D Risk High Cost and High Risk 1 3 Transition failure/  
Soft institutional 
failure/ Hard 
institutional failure 

R&D Science Weak Knowledge of Disease 
Etiology/ Human Biology 

3 1, 1, 5 Transition failure 

R&D Science Target Identification Challenges 1 1 Transition failure 

R&D Science Unpredictability of Clinical Efficacy 1 1 Transition failure 

R&D Science Drug Toxicity Test  Failure 1 1 Transition failure 

R&D Science Lack of Pharmacodynamic 
Biomarkers  for Clinical Trial 
Decision Making 

1 2 Transition failure 

R&D Science Drug Leads  Optimization 
Challenges 

1 2 Transition failure 

R&D Science Drug Candidate Safety Assessment 
Problems 

1 5 Transition failure 

R&D Science/Tran
slational 

Research 

Lack of Translational Models 1 1 Transition failure 

R&D Science; 
"Better than 
the Beatles" 

Easy Targets Addressed 1 1 Transition failure 

R&D Short-
termism 

Short required turn-around time for 
projects 

1 1 Soft institutional 
failure 

R&D Short-
termism 

Volatile R&D Priorities (caused by 
management turnover) 

1 2 Soft institutional 
failure 

R&D Short-

termism 

Incremental Innovation Focus 1 5 Soft institutional 

failure 
R&D Strategy Reductionistic/Target-based 

Medicinal Chemistry Flawed 
2 2, 3 Soft institutional 

failure 
R&D Strategy Regimentation of Drug R&D 

(Scientists not Free to Explore New 
Hypotheses).  

1 2 Soft institutional 

failure 

R&D Strategy Research vs Clinical Trial Trade-off 
(Research often stopped for clinical 

trial leading to low innovation for 
next trial wave) 

1 3 Soft institutional 
failure 

R&D Strategy Focus on Process instead of Science 1 4 Soft institutional 
failure 
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4.10 Systemic Failures and Eroom’s Law  
This section will try to seek some explanations for the decline in the R&D 

productivity based on the survey responses, extant literature and data. The systemic 

failure framework addressed earlier is an appropriate framing device. Admittedly, given 

the broad, intertwined issues dealt with here, some issue may straddle multiple 

categories. 

4.10.1 Lock-in or Path Dependency Failures  
Lock-in or path dependency failures refer to problems of a complete social system 

to adapt to new technological paradigms. Lock-in involves a “complex composition of 

causes” including other failures such as network failures and capability failures (Klein 

Woolthuis et al., 2003). While the aim here is not to consider the whole societal level 

issues contributing to the drug discovery productivity problem, this label is still 

appropriate for exploring issues at the supra-firm level.  

a) Early-stage Technology Development 

Early-stage technology development and experimentation is thwarted because of 

restricted early stage funding from all major players and other systemic failures. Per 

figure 31, major funders in the early stages of a venture are government, VC and big 

pharmaceutical companies. As depicted in the previous section, NIH budget has been on 

the decline while overall grant applications have been rising. The upshot of this trend is 

stagnant or reduced success rates in getting NIH grants. This is counterintuitive since flat 

drug approval rates per Eroom’s Law would call for more early stage experimentation. 

This is especially problematic because VC tends to invest in drug development rather 
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than discovery. Moreover, the survey identified numerous issues with firm R&D strategy 

such as short-termism and risk-aversion. 

A gap in funding for “very early” translational research was also identified by 

survey respondents which could be a legitimate policy intervention point for the NIH. 

 

 

Figure 31 Funding Model of the U.S. Biopharmaceutical Startups 

Source: Lazonick and Tulum (2011) 
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b) Restricted Entrepreneurial Experimentation 

An innovation system faces uncertainty regarding technologies, applications and 

markets. Entrepreneurial experimentation is a source of uncertainty reduction by 

inquiring into new technologies and applications as a learning process to sift through 

what works and what does not. Lack of vibrant experimentation will lead to stagnation. 

The number and variety of experiments can be mapped regarding the number of new 

entrants and diversifying incumbents, number of different types of applications, and 

technologies used (Bergek et al., 2008).  

The industry is still dominated by firms established before WWII. In contrast to 

the impact of microelectronics on computing and related industries, radical technological 

upheavals in the biomedical sector seem to be reinforcing rather than undermining the 

incumbents (Cockburn and Henderson, 1999). 

In the U.S., biotechnology heralded in the first wave of new entrants. The first 

biotech startup was Genentech established in 1976 and presented the model for other new 

biotechnology firms (NBFs) (Mckelvey et al., 2004). The majority of the firms could not 

turn into fully integrated drug producers and lack of complementary competencies, 

especially in clinical trial, marketing and distribution, and dealing with regulatory 

agencies has thwarted the growth of these companies (Cockburn and Henderson, 1999; 

Mckelvey et al., 2004). With few exceptions; e.g. Genentech and Amgen; most of these 

companies have functioned as a research company, doing contract research for or with 

established pharmaceutical companies, or supply intermediate products (Mckelvey et al., 

2004).  
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While Disruptive technology in life sciences has breached the barriers to entry, 

new entrants have had to tune their innovation strategies to the prevailing model run by 

the MNCs. Regulatory and market barriers to entry have precluded them from competing 

on their own terms and developing an alternative innovation trajectory (Tait, 2007). 

According to Munos (2009) analysis66, there are more than 4,300 companies 

active in drug innovation, but only 261 entities (6%) have registered at least one NME 

since 1950; of which, only 32 (12%) have been in existence for the entire span of 59 

years. With 229 (88%) of organizations either failing, being merged, acquired, or getting 

into M&A deals, there has been substantial turnover in the industry. Of the 261 

organizations, only 105 exist today, whereas 137 have disappeared through M&A and 19 

were liquidated. The 32 evergreen firms comprises of 23 smaller companies with unique 

innovative foci. A number of them (Novo Nordisk, Ferring, Grifols, Ucb, Endo and 

Purdue) are focused on a particular disease area or therapeutic strategy; some are not 

solely focused on drugs and have moved into products and services too (Bausch and 

Lomb, and Allergan); some are home-country bound (Takeda, Santen, Eisai, Angelini 

and Orion) while others are conglomerates (Boehringer–Ingelheim, Solvay, Baxter and 

Carter–Wallace); and some focus on generics (Teva and Mission Pharmacal) (Munos, 

2009).  

Another important observation by Munos (2009) is the close correlation between 

expected NME output, calculated based on a Poison estimation, and the number of 

companies. He argues, if the NME output of drug companies has been constant (figure 

                                                
66 Analyzing data 1950-2008 
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32), the only way to increase the overall industry output would be to increase the number 

of companies. The relationship is nonlinear and explains 95% of variation in expected 

NME output. However, there has been a surge of M&A activity starting more than a 

decade ago. Hence, so far while new drug discovery technologies or platforms have been 

developed, the whole system does not appear to be benefiting from them. 

 

 

Figure 32 The Dynamics of Innovation 
* Red line is the number of companies 
* The expected NME output and the number of companies are closely correlated in a nonlinear relationship 
that explains 95% of the changes in expected NME output by changes in the number of companies. 

 

4.10.2 Hard and Soft Intuitional Failure  
Two questions in the survey dealt with enabling and burdensome legislations or 

regulations (see appendix C for full details). An important observation was that some 

items were mentioned as both a burden and enabler. Most notable are the FDA core 

legislations, Hatch-Waxman Act, and patent law. This observation points to the 
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complexity of regulating this sector, the double-edged nature of some policies, and 

probably ill-conceived or poorly implemented regulations. 

Numerous issues straddle the hard and soft institutional failures. It means both 

laws on the book and social and political culture impact them. For instance, abuse of 

policy incentives is due to poor conception/implementation but also predatory culture of 

policy targets. A number of them are explored here.  

a)  “Pisano Puzzle” 

In addition to the Eroom’s law, the biopharmaceutical (BP) sector is beset by 

another idiosyncrasy, i.e. the “Pisano puzzle”. The “Pisano puzzle” refers to the US 

biotech boom in the pre-2008 economic crisis despite 10–20 year time-frame for product 

development and the lack of profitability of the industry as a whole. Lazonick and Tulum 

(2011) justify the term “Pisano puzzle” by posing the question of “why would Money 

from venture capitalists and big pharma flow into an industry in which profits are so hard 

to come by?” They conclude that the U.S. biopharmaceutical business model relies on a 

knowledge base funded by the NIH. Moreover, various complementary government 

subsidies especially the Orphan Drug Act (ODA) provisions are also drawn upon. M&A 

and IPOs67 allow venture capitalists and established firms that invest in BP startups to 

extracts returns on their investments long before the commercialization of a drug. In 

many cases the startup never develops a commercial drug. The existence of a speculative 

stock market allows for IPOs of startups.  

                                                
67 Initial Public Offering (of the company stock) 
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At the expense of R&D, stock buybacks and dividends have been used by 

established corporations to distribute cash to shareholders. Buyback of stock raises stock 

prices with the prime beneficiary being corporate executives that gain from exercising 

their stock options (Lazonick and Tulum, 2011). 

b) Abuse of Policy Incentives 

Policy incentives are in place to induce innovation in certain areas but they have 

been open to abuse.  

The Orphan Drug Act (ODA) of 1983 offered incentives for the development of 

treatments for particular types of diseases (i.e. conditions with small market size and 

those with a prevalence of less than 200,000) through clinical trial support (grants and 

contracts), tax credit of 50% for clinical testing costs, and a seven-year exclusive right to 

market the orphan drug for the approved use. (Kesselheim, 2011). Examining 2002 

orphan drug designations with 352 FDA-approvals Wellman-Labadie and Zhou (2010) 

report “commercial and ethical abuses” with 9% of orphan drugs having blockbuster68 

status, at least 14 discontinued products recycled as orphan drugs, 32% of orphan 

designations relating to cancer indicating focus on lucrative niches rather than 

unaddressed or under-addressed diseases, and multiple orphan designations for the same 

active agent.  

Avery (2008) has examined a couple of loopholes in the original Orphan Drug 

Act. “Reverse payments” refers to the situation where the patent holder would pay the 

challenger for a settlement that would keep the challenger out of the market. Another 

                                                
68 Popular drug with at least $1 billion annual sales 
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tactic has been to launch “authorized generics” in anticipation of generic entry into the 

market. An authorized generic drug is made by the original drug holder with the 

distribution outsourced to a licensee with own packaging and FDA identification number; 

or basically the branded drug marketed as generic at lower price. Even the reform 

provisions in the Medicare Modernization Act of 2003 failed to stem these practices 

(Avery, 2008). 

Pediatric patients respond to drugs differently than adults; hence, prescription of 

drugs without clinical trials may be underdosed, ineffective, or even dangerous for 

pediatric patients. To incentivize pediatric studies, the FDA Modernization Act of 1997 

offered six months of market exclusivity time, starting at the end of the drug’s patent-

protected period. After the enactment, many companies started pediatric trials 

(Kesselheim, 2011). The Food and Drug Administration Amendments Act (FDAAA) of 

2007 renewed and amended the original Act (Rivera and Hartzema 2014). This policy has 

also been beset by misconduct. Overcompensating manufacturers, getting pediatric 

exclusivity for popular among adults, methodological flaws and poor quality of trial 

(Kesselheim, 2011), and blockbuster drugs acquiring pediatric exclusivity (Rivera and 

Hartzema, 2014) are among the problems.  

To recap, in the words of Kesselheim (2011), while these incentives attract 

interest from drug developers, they are also prone to misuse. 

c) Regulatory Capture 
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The Regulatory capture theory, attributed to George Stigler, refers to a situation in 

which regulatory agencies become dominated by the industries they were charged with 

regulating.69 There is evidence for this phenomenon in the pharmaceutical industry. 

In reauthorizing the Prescription Drug User Fee Act (PDUFA) in 1997, the 

congressional debate was expanded to modernization of the entire FDA. The main 

mission of the FDA changed from “ensuring that drugs are safe and effective” to include 

“promoting the public health by promptly and efficiently reviewing clinical research and 

taking appropriate action ... in a timely manner.” To balance the dual and conflicting 

roles, FDA has been asked to consult a range of interest groups including pharmaceutical 

companies. Some believe this is an implicit exhortation to cooperate with sponsors for 

timely approval of drug applications (Zelenay, 2005).  

Staying on the PDUFA Act, Moynihan (2002) has tracked the fate of 

GlaxoSmithKline’s alosetron (Lotronex), a drug for irritable bowel syndrome. Once, 

hailed as a potential blockbuster, it was voluntarily withdrawn in late 2000 in the wake of 

serious adverse events, including deaths70. He observes that the drug has been approved, 

withdrawn, and approved again. Outside critics claim it is a case of regulatory capture 

because per PDUFA Act of 1992, companies pay fees for drug approvals. A former 

insider (Dr Paul Stolley) believes there is detrimental corporate influence in the FDA 

(Moynihan, 2002). 

                                                
69

 “Regulatory Capture.” Accessed October 15, 2017. http://www.investopedia.com/terms/r/regulatory-
capture.asp. 
70 This is not meant to track the fate of the drug as it seems it is in use for only women with severe IBS. 
“Due to the serious GI adverse reactions associated with this drug, treatment should be restricted to female 
patients for whom the benefit-to-risk balance is most favorable” (https://www.drugs.com/lotronex.html).  
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Regarding orphan drug development, Rzakhanov (2008) observes that orphan 

drug development tends to be dominated by biotechnology firms (74% of entities) 

especially larger and more successful biotechnology firms (i.e. with better market value, 

higher R&D expenditures, and cash reserves).  

On the research side, there was controversy surrounding the Tufts Center for the 

Study of Drug Development (CSDD) estimate of the cost of bringing a drug to market. 

CSDD assessed the total cost at $2.6 billion by including in the calculations “an estimate 

of $1.2 billion in returns that investors forego on that money during the 10-plus years a 

drug candidate spends in development”. There was criticism of this serving as a potential 

excuse for the industry to justify high drug prices.71  

The ability to perpetuate the rules of the game by old players might be the reason 

why new drug discovery technologies and system shocks have not imparted change in the 

tripartite of the innovation system itself, its markets, and the regulatory system to bring 

about a disruptive change. 

4.10.3 Transition Failures  
Responders alluded to numerous problems relate to firm level strategy and 

capabilities (e.g. table 24) in the course of the survey. For instance, managerial decision 

making without scientists input, poor R&D leadership, and lack of corporate agility and 

commitment to innovation reflect the broader strategic management issues. Examples of 

more technical issues are target identification challenges, weak knowledge of disease 

etiology/ human biology, and toxicity test failures. Problems in these areas will have a 

                                                
71

 “Tufts Study Finds Big Rise In Cost Of Drug Development | Chemical & Engineering News.” Accessed 
September 18, 2017. http://cen.acs.org/articles/92/web/2014/11/Tufts-Study-Finds-Big-Rise.html. 
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detrimental effect in the R&D productivity. The issue of current R&D model limitations 

has also been raised by Munos (2009).  

While the aforementioned issue pertain to big established firms, it was already 

discussed (in the lock-in failure section) that new biotechnology firms could not turn into 

fully integrated drug producers and lack of complementary competencies, especially in 

clinical trial and marketing, thwarted their growth (Mckelvey et al., 2004). This effect 

can be related to the “regulatory capture” discussed earlier. For instance, the rules of the 

game perpetuated by the established firms might deter the development of certain 

capabilities by new entrants. For instance, the CEO of Novo Nordisk recently mentioned 

that the documentation submitted to FDA for two new insulin therapies contained 

millions of pages that if printed and stacked would be taller than the Empire State 

Building (Scannell et al., 2012). This particular case illustrates how smaller firms may 

not have the resources to meet the regulatory burden. On the other hand, this may be 

another example of regulatory capture: cautious and excessive regulation to deter new 

entrants without the experience and resources to meet the requirement. 

4.11 Recommendations and Generalizability of Survey Responses 
Table 25 depicts the responders’ comments for “boosting innovation and lifting 

barriers to innovation”. 30 respondents had some input for the question. A few comments 

are worth mentioning upfront. Firstly, one responder believed the options offered in the 

survey did not reflect the most important issues. The responder’s comments and 

articulations in other sections of the survey lead to the tentative conclusion that he/she 

preferred to see more issues about the human side of the innovation and creativity and 
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broader systemic issues (e.g. “counter-productive incentive” ensuing from the flawed 

drug payment system). Another responder commented that the definition of innovation 

for this question was not clear as innovation can be without clear purpose (e.g. academic) 

or more application-oriented that drives drug discovery. The assumption for the question 

was dug discovery innovation as emphasized in the consent section and in other 

questions. 

Comments in table 25 have been tentatively assigned labels for ease of analysis. 

Some may clearly fall between two stools or be multifaceted. The barriers include 

comments along the lines of funding, governance, market, and pricing. In terms of 

funding the risk aversion issues is raised not only in VC funding but also in NIH 

practices. Along the same line, avoidance of early-stage funding has been mentioned as 

an issue. The need for translational research funding is emphasized. Moreover, 

problematic review procedures disadvantaging real innovators and new investigators and 

restricted appeal mechanisms for NIH grant applicants have been emphasized in one 

comment. 

In terms of governance shortcomings, in addition to predatory rent-seeking 

behavior, the issue of high university overhead and competition from professional grant 

writing has been raised as constraints for faculty research funding. Moreover, mergers 

have been hinted as a problem in terms of reducing diversity of approaches being 

experimented in the market. 

In terms of market, it is mentioned that current incentives push the efforts towards 

orphan drugs to charge higher prices. Finally, comments on pricing seem to be at 
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different directions one calling for easier payments by insurance companies the other 

emphasizing the unsustainable and predatory pricing practices. 

Turning to drivers of innovation, in terms of financial resources, more 

government funding for research and incubator projects, and more incentives for drug 

discovery to companies, are raised. Collaboration along the academia, government, and 

industry, and public-private lines, and pre-competitive stage has been called for. In terms 

of human resources, the need for a critical mass of R&D scientists and an organizational 

culture conducive to innovation are emphasized. Finally, various aspects of the market 

(monetary value, patient medical need, potential size) are emphasized. 

Some comments seem to be raising conflicting issues. For instance, one calls for 

more exclusivity the other calls for more government role or socialization of the practice. 

These may ensue for the complex nature of innovation with incentives having both 

positive and negative consequences. Frequently, the right balance needs to be struck to 

get the desired results. Moreover, responders depending on their organizational position 

or experience may advocate for or against an instrument or approach. 
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Table 25 Comments Regarding Boosting Innovation and Lifting Barriers 

Catego

ry Subcategory Comments 

Frequen

cy 

Barrier Funding Public Funding for Translational Research is Missing 1 
Barrier Funding Society Should Be Willing to Foot the Cost of Drug Development 1 
Barrier Funding Relax SEC Rules for Company Funding 1 
Barrier Funding Big Companies Kill Small Companies with their Finacial Advantage 1 
Barrier Funding Reinstating NIH Grant Appeal Procedures  1 
Barrier Funding Open Grants to New Investigators (Increase Transparency in Grant Process) 1 
Barrier Funding Restoring SBIR Grants and Reducing Delays 1 
Barrier Funding Risk Aversion in Funding (VC and NIH)/VC Does not Fund Early-stage Biopharma 2 

Barrier Funding 
Government Funding For Small Companies (Private Funding of Development Goes after 
Innovations that Support the Desired ROI)/ (e.g. More SBIR) 2 

Barrier Governance 
Focus on Quick Financial Rewards a Real Barrier (focus should be on goals of improving human 
health and maintain a profit). 1 

Barrier Governance No Real Commitment to Innovation 1 
Barrier Governance High University Overhead; Faculty Disadvantaged by Professional Grant Writers 1 
Barrier Governance Reduce Mergers to Have More Diverse Approaches 1 
Barrier Governance Displace “Share Price or Share Holder Value” As Top Priority 1 
Barrier Governance Socialize Medicine 1 
Barrier Governance Predatory VC after All Value (at the Expense of the Real Innovator) 1 
Barrier Market Current Regulation Pushes Towards “Orphan Markets To Charge Higher Prices” 1 
Barrier Pricing Facilitate  Drugs Reimbursement by Insurance Companies  1 
Barrier Pricing US Innovation Based on Predatory, Unsustainable Pricing 1 
Driver Collaboration More Collaborative Research; Academia, Government, and Industry/Public-Private 3 
Driver Collaboration R&D and Drug Development Communication 1 
Driver Collaboration More “Pre-competitive Collaborations” Needed 1 
Driver Funding More Government Incentives for Drug Discovery to Companies 1 
Driver Funding Increase Budget for Government Research Funders such as NIH and NSF 1 
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Driver Funding More Funding of Incubators 1 
Driver Funding More Basic and Applied Science Funding 1 
Driver Governance Social Pressure on  Companies to Boost Domestic R&D Spending 1 
Driver Governance Innovation Requires the Right Mix of Time, IP, Leadership and Patience 1 

Driver 
Human 
Resources Scientist Ability and Freedom for Innovative Thinking & Cross-fertilization of Ideas 1 

Driver 
Human 
Resources Increase R&D Employees 1 

Driver Market Better Knowledge of Unmet Patient Needs 1 
Driver Market Increased Exclusivity for Innovative Therapies (e.g Expanded Hatch-Waxman) 1 
Driver Market Need for Continual Innovation based on Health Paradigm Shifts and Emerging Infectious Agents 1 
Driver Market “Potential Market Value Drives” Investments Because Clinical Trials are Expensive 1 

Driver Market 
Innovation can be General (e.g. Academic Research) and not Directed to Discovery- Big 
Companies Need an Economic Reason to Bridge the Gap 1 
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A final question asked the respondents to assess the generalizability (or 

applicability) of their responses across other therapeutic areas. The position of the 

question at the very end was meant to capture their assessment after completing all 

questions. Figure 33 depicts the responses. Over 90% of responders (49 responders) 

considered their responses being generalizable to a large extent. Only 4 responders think 

their responses are generalizable “to some extent”. The only negative response came with 

a comment reminding that their field of work is “independent of therapeutic areas”. 

Hence, it can be assumed the negative response is meant to be in the affirmative. 

The generalizability of responses may alleviate the need to break down the 

responses across therapeutic (or maybe institutional) lines. The high generalizability of 

the responses can be indicative of the success of the survey instrument in capturing 

general drug discovery innovation drivers and barriers. 

From the responder side, given the fact that responders mostly report more than 

one specialization, they may have knowledge of the common drivers and barriers of 

innovation across therapeutic areas. 
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Figure 33 Generalizability of Responses (Total=54) 

 

4.12 Discussion 
Table 26 depicts a mapping of selected arguments and observations onto the 

functions of innovation systems. This brief discussion seeks to trace some higher level 

systemic failures form the survey findings and extant literature.  

The fact that there has been no major change in the major NME applicants leads 

to “lock-in/path dependency failures”. Moreover, since most new biotechnology firms did 

not develop complementary capabilities (e.g. marketing or regulatory approval skills) and 

found a niche in the shadows of older pharmaceutical players, can be held as signs of 

“transition failures”. These two failures are closely connected as the former refers to 

adaptation problem at the broader system level while the latter connotes adaptation 

shortcoming at the firm level. 
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Evidence of hard institutional failure is present in the abuse of market exclusivity 

incentives, artificially high drug prices, and the seeming control of rules of the game by 

big companies. As a case in point, the legislative failure in the realm of pricing has long 

been discussed. According to Lazonick and Tulum (2011), in 1990 President George 

H.W. Bush vetoed a Congressional bill aimed at keeping drug prices down. Recent 

debates have focused on using Plan D of Medicare to negotiate prices. All along, the 

counterargument by the pharmaceutical companies has been that regulating prices will 

cut profits, subsequently reduce R&D resources and diminish innovation.  

On the drug price and innovation link, the argument of the big pharmaceutical 

companies is that without the potential revenues, risking large sums for drug 

development would not be desirable. A question in response could be how much do big 

companies contribute to innovation? For example, the risk of developing a promising 

hepatitis C drug was taken by Pharmasset; however, only after the Gilead’s acquisition, 

pricing strategy changed based on corporate greed.72 Lack of price control coupled with 

exclusivity incentives (e.g. Orphan Drugs) and patent protection leads to concentration of 

competition in certain areas. With the “winner take all” phenomenon, secrecy and 

duplication follows. After the conclusion of the “development race”, there is a winner 

and a number of “me-too” drugs as a result of parallel development races73. First to reach 

the market will enjoy a reputation effect, and without alternatives, will enjoy market 

domination (Petrova, 2014). In a similar vein, Pammolli et al. (2011) believe the R&D 

                                                
72

 “Yes, We Can Lower Sky-High Drug Prices — Other Countries Have Done It - LA Times.” Accessed 
October 26, 2017. http://www.latimes.com/business/lazarus/la-fi-lazarus-drug-prices-20170725-story.html. 
73 According to DiMasi and Paquette (2004) the majority of “mee-too” drugs have been in clinical 
development before the approval of the class leading drug. 
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productivity decline is related to the concentration of R&D investments in areas with 

unmet therapeutic needs and high risk of failure. 

Another evidence of hard institutional failure could be the pursuit of “same drug 

targets” by companies as a problem. A form of industry-level policy making and 

prioritization effort could potentially reduce this duplication. Risk-aversion, short-

termism, and predatory VC and merger behavior can be symptomatic of soft institutional 

failure (i.e. political culture and social values). In a similar line, “complex clinical trials” 

emerged as the top barrier based on tallies of responses. Getting a proper balance 

between safety regulation and manageable clinical trials can be an important regulatory 

debate.  

Moreover, the emphasis on collaboration along multiple dimensions of public-

private and academic-government-industry triple helix can indicate a weak network 

failures problem. A weak network failure refers to insufficient linkages between 

companies with complementary capabilities and other knowledge infrastructure such as 

universities. This situation precludes interactive learning and new idea formation (Klein 

Woolthuis et al., 2005).  

The issue of regulatory capture is also raised in the literature. For instance, on the 

industry side, Rzakhanov (2008) reports that orphan drug development tends to be 

dominated by biotechnology firms (74% of entities) especially larger and more successful 

biotechnology firms (i.e. with better market value, higher R&D expenditures, and cash 

reserves). On the research side, for instance, there was controversy surrounding the Tufts 

Center for the Study of Drug Development (CSDD) estimate of the cost of bringing a 
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drug to market. CSDD assessed the total cost at $2.6 billion by including in the 

calculations “an estimate of $1.2 billion in returns that investors forego on that money 

during the 10-plus years a drug candidate spends in development”. There was criticism 

of this serving as a potential excuse for the industry to justify high drug prices.74 Finally, 

even starting at the congressional level, some research indicates regulatory capture. For 

instance, the Prescription Drug User Fee Act (PDUFA) expanded the main mission of the 

FDA from “ensuring that drugs are safe and effective” to include “promoting the public 

health by promptly and efficiently reviewing clinical research and taking appropriate 

action ... in a timely manner.” To balance the dual and conflicting roles, FDA has been 

asked to consult a range of interest groups including pharmaceutical companies. Some 

believe this is an implicit exhortation to cooperate with sponsors for timely approval of 

drug applications (Zelenay, 2005). Ability to perpetuate the rules of the game by old 

players might be the reason why new drug discovery technologies and system shocks 

have not imparted change in the tripartite of the innovation system itself, its markets, and 

the regulatory system to bring about a disruptive change.  

  

                                                
74

 “Tufts Study Finds Big Rise In Cost Of Drug Development | Chemical & Engineering News.” Accessed 
September 18, 2017. http://cen.acs.org/articles/92/web/2014/11/Tufts-Study-Finds-Big-Rise.html. 
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Table 26 Assessment of Innovation System Functions 
Function  Insights from the Survey  Verdict 

Knowledge development and 
diffusion 

• 5 universities were deemed most important 
source of basic research (Harvard, Stanford, 
MIT, UCSF, JHU) 

• Reductionism flawed 
 

• Still top basic research producers 
are universities  

• Translational research required 
• R&D strategy of reductionism 

and target-based drug discovery 
flawed but preferred by corporate 
sector 

 
Influence on the direction of 
search 

• Most enabling legislations: Bayh–Dole Act; 
FDA; Hatch-Waxman Act; Patent Law; NIH 
Funding Bills; Orphan Drug Act; Small 
Business Innovation Research (SBIR) 
program 

• Most burdensome legislations: FDA; Patent 
Law; European Laws (related to 
reimbursement of drug costs; EMA; 
EUMEA); Hatch-Waxman Act; 
Medicaid/Medicare; Animal Safety Laws; 
Clinical Trials for FDA Approval; Stem Cell 
Research Limitations; Slow 
funding/Underfunding at/for NIH (one 
comment for slow funding other for 
underfunding) 

• Companies pursuing same drug targets 
 

• Same legislations enabling and 
hindering (right amount of 
incentive to the right target is 
needed) 

• Enabling legislations are 
incentives; burdensome 
legislations are mostly 
regulatory. 

•  Avenues for new research are 
restricted (stem cell/clinical trial 
regulations) 

• Industry level policies could help 
cut redundant efforts 

Entrepreneurial 
experimentation 

• Start-ups in gene-editing and gene-therapy 
areas are noteworthy based on respondents 

• Funding grants not going to new 
investigator/innovator; no recourse  

• Early-stage funding shortage  
• Need to reduce mergers  
 

• New technology may be creating 
new wave of entrants and 
therapeutics (gene-editing); like 
the biotech wave of the past. 

• No change in major payers and 
rules of the game and entrants 
play by old rules of the game  

 
Market formation • Unmet medical needs (as opposed to 

monetary size of the market) is also 
important 

 

• Prices might be artificially 
inflated  

Resource mobilization • Reduced discovery spending and increased 
development spending 

 

• VC prefers development stage 
and biotechnology 

• Public research spending on the 
decline since 2003 

• A gap in early stage discovery 
either exists or forming 

 
Development of positive 
externalities 

• Doubt over the sustainability of the 
pharmaceutical business model  

• More Collaborative Research; Academia, 
Government, and Industry/Public-Private 
 

• Vicious circle of unsustainable 
dynamics 

• Weak network failures (dynamic 
complementarities’ failure) 

Institutional issues • Risk-aversion and short-termism • Hard institutional failure (formal 
institutions) 

• Soft institutional failure 
(informal institutions) 
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4.13 Conclusion 
This study attempted to ascertain some of the barriers and drivers of innovation in 

drug discovery that were closely connected to the Eroom’s Law. Extant literature, 

existing data, and a survey specifically designed for the study, were used to construct a 

profile of the innovation system.  

Respondents showed nuanced knowledge of R&D spending and drug approval 

trends. The overall vote for drug approval was stagnant, in line with the Eroom’s Law. 

Regarding R&D spending, the majority view is that the spending is stagnant. While not in 

line with the Eroom’s Law long term trend, R&D spending figures of the recent years, 

indeed, confirm this trend. 

Based on counting total responses, the top three drivers of innovation are “skilled 

R&D scientists”, “R&D investment”, and “good R&D management”. Likewise, the top 

three barriers were deemed to be “complex clinical trials”, “designing drug substances 

with a single or narrow therapeutic benefits” tied with “companies pursuing the same 

drug targets”, and “lack of inter-organizational collaboration in R&D”.  

The story behind the top drivers is intuitive and clear: to innovate in the science-

based drug discovery field, you need skilled scientists, good investment and insightful 

management. However, the barriers, understandably, may represent a more complex 

dynamics. Clinical trials represent an important bottleneck in advancing drugs to the 

market and its size and complexity has grown over the decades. There are a number of 

reasons for this including the ‘better than the Beatles” problem of existing good drugs 

and the urge to go beyond them, cautions regulation, and even marketing effects (e.g. the 

drug was tested on thousands of patients) (see Scannell et al., 2012). The second ranked 
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barriers to discovery can be linked to the new paradigm of molecular reductionism 

entailing similar corporate libraries of compounds and “brute force screening” methods 

(see Scnnell et al., 2012). Ironically, if the next barrier of “lack of inter-organizational 

collaboration in R&D” was to be truly addressed, firstly, more knowledge building 

blocks from diverse (e.g. academic, non-profit, and corporate; foreign and domestic, etc) 

organizations could be combined for innovative solutions and, secondly, probably 

redundant activities would be reduced75. The “depth of specialized knowledge” was 

mentioned more in the pool of responses than the “diversity of knowledge”; hence, 

indicating traces of the foundational view. 

Survey results, the literature, and secondary data point to some systemic failures 

that can be the basis for policy intervention. There is evidence of “lock-in/path 

dependency failures” by which the system has not managed to change in all aspects to 

exploit novel technologies to the fullest extent. New biotechnology firms may have had 

“transition failures” for not developing competencies for independent existence and 

competition. Instead, they seem to play second fiddle in the trifecta model. This latter 

effect may also be linked to both hard (i.e. regulatory) and soft (i.e. cultural) institutional 

shortcomings that have let regulatory capture and perpetuation of the old rules of the 

game. 

The survey results contain some intuitive and confirmatory results such as the 

continuing importance of universities in basic science production and the role of NIH as a 

public source of research funds. However, it also contains some more specific and 

                                                
75 Depending on how secrecy for competitive advantage would be mitigated 
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nuanced findings. For example, the lack of funding for translational research, shortage of 

early-stage funding, high university overhead, and opaque review procedures at granting 

agencies can be the seeds of further inquiries. 

One of the shortcomings of the study might be the small respondent pool and 

incomplete responses. However, the study does not fall under the conventional survey 

research purview as there is no clear population of interest that can be used as a sampling 

frame. In fact it can be argued that the research only involved innovators and no attempt 

was made to engage a vast array of players and beneficiaries of the innovation system 

such as practitioners, patients, policymakers, and even citizens not currently on 

medication (as both future beneficiary of the system and funder of the system by tax 

money).  
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CHAPTER FIVE: CONCLUSION AND POLICY IMPLICATIONS 

New drug discovery plays a key role in the continued health and welfare of the 

population. Moreover, a whole industry has been build around drug discovery and 

development. However, the historical trend of drug discovery output of the industry has 

been stagnant despite increasing resources allocated to research and development. This 

has been dubbed the “Eroom’s Law”, the Moore’s law revered, given its paradoxical 

nature.  

Several arguments have been set forth as possible explanations76. First, there is 

the issue of increasing stock of available safe and effective drugs for many ailments. This 

makes opportunities for innovation scarce. Second, drugs are highly regulated for safety 

and effectiveness reasons. Over years, the regulatory retched has been gearing up in 

response to adverse effects or higher expectations of safety and effectiveness. The 

increasing stock of therapies is also contributing to tighter regulation. A new therapy is 

held against higher standards when therapies exist while the regulator might be willing to 

be easy on a therapy for an untreated disease. 

Third, patent protection is effective in the pharmaceutical sector. Moreover, there 

are a number of market exclusivity incentives in place for development of certain drugs. 

These issues, coupled with a lack of effective drug price regulation, have triggered a race 

                                                
76 Mostly drawing on Scannell et al. (2012) 
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for drug development where the winner reaps big benefits and being a runner-up is not 

rewarding. The “winner takes all” mentality has led to massive investments in R&D in 

the hopes of being the winner.  

Finally, there has been a move towards mechanistic rationalization of the 

discovery process as a backlash to the previous era’s apparent serendipitous discovery 

processes. Molecular reductionism has tried to displace the human judgment form the 

early phases of discovery and has not improved the overall discovery process. 

With the aforementioned background, the present study attempted to uncover the 

drivers and barriers of drug discovery. Given the complexity of the issue, insights form 

three levels of analyses were developed. First, firm-level drivers of innovative output 

were explored based on patent data. Second, breakthrough innovations were examined 

for inklings into their characteristics that could help adjust R&D processes for better 

performance. Finally, the analysis was broadened to the whole innovation system level by 

means of an expert opinion survey.  

Firms are the main innovative units of the innovation system. Understanding the 

drivers of innovation in these units can help identify possible causes of the Eroom’s Law. 

A panel dataset was built by starting form patents assigned to the pharmaceutical 

international patent class (A61K). An observation was that about one quarter of firms 

contributing to the pool of pharmaceutical inventions come from outside the 

pharmaceutical industry.  

Drug discovery has been a science-based endeavor since inception of the modern 

day industry. However, the scientific and technological advances of recent decades have 
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not changed the innovative output of the industry. Motivated by these observations, the 

use of codified science in inventive out of firms was examined. The results indicate a 

curvilinear first negative and then positive; relationship between reliance on codified 

scientific knowledge (enshrined in patent references) and inventive output. This may 

indicate that firms needs to assimilate scientific knowledge and spread their use over a 

number of inventions rather than regurgitate the scientific knowledge in a small set of 

inventions. 

Another foray is the knowledge recombination profile of firms. Knowledge 

diversity positively impacts quality-weighted inventive output while knowledge 

heterogeneity (i.e. based on distance or differentness from own inventions) negatively 

influences both inventive output and quality-weighted inventive output. These results are 

in line with the foundational view of creativity that contends a deep grasp of domain 

knowledge is important in developing breakthrough innovation.  

Certain groups of firms may display systematic differences form their peers. 

Hence, nuanced subsample analysis revealed that for firms primarily active in the 

pharmaceutical sector higher knowledge diversity in inventive output does not improve 

performance. This may indicate that such a capability is pervasive among the firms hence 

does not differentiate the inventive output. 

Moreover, the influence of a driver of innovation may change over time. Before 

the year 1995, reliance on codified science boosted the inventive output in comparison 

with post 1995. This can also be in line with science intensity of patents becoming 

pervasiveness hence having reduced differentiating capacity. 
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Turning to breakthrough innovation study, compared with the dominant literature, 

a different approach was used by defining breakthrough in terms of inclusion of a patent 

in the Orange Book. A first observation is that about 28% of patents listed in the Orange 

Book are not assigned to the pharmaceutical IPC patent class (A61K). This may indicate 

the spillover effect of invention in cognate areas, the generic properties of some chemical 

inventions, or at a mundane level, the fuzzy nature of chemical patent classifications. 

Moreover, almost half (48.5%) of the Orange Book listed patents have a family member 

in the Orange book, indicating that a smaller pool of inventions underpin the Orange 

Book patent set. 

Results of the analysis indicate that inventions with fewer applications (i.e. based 

on generality index) have higher probability of entering the Orange Book. Broader legal 

scope boosts the probability of being an Orange Book patent. This might be because 

inventors carve out larger legal protection for more valuable inventions. In terms of 

knowledge recombination, higher technological knowledge diversity reduces the 

probability of being an Orange Book patent while technological knowledge distance (i.e. 

not coming from the patent’s technology class) increases the probability of being an 

Orange Book patent.  

A tentative look at the effect of co-assigned patent reveals that being assigned to 

multiple entities does not have a significant impact on the probability of being an Orange 

Book patent while being assigned to different organizational types reduces the probability 

of being an Orange Book patent.  



193 
 

A subsample analyses revealed differences between drug substance patents and 

Orange Book patents. Broader invention applications (i.e. generality) boosts the 

probability of being a drug substance patent. This may indicate active chemical 

substances have broader applications than other inventions. Similarly, broader 

“envisioned” applicability (i.e. patent scope) of an invention boosts the probability of 

being a drug substance patent. In terms of knowledge recombination profile, higher 

technological knowledge diversity (i.e. originality index) increases the probability of 

being a drug substance patent. However, higher technological knowledge distance 

reduces the probability of being a drug substance patent.  

The combined observations regarding knowledge recombination indicate that 

when focusing on the Orange Book patents, the tension view on creativity is more 

relevant while the drug substance patents within the Orange Book show traces of the 

foundational view.  

While insights from firm inventive output and breakthrough innovations are 

useful, tackling the Eroom’s Law needs a boarder systemic perspective and input from 

experts. Expert opinion was garnered by means of an online survey. Regarding Eroom’s 

Law, the majority of respondents believed new drug approval rate was stagnant (41.5%), 

a close proportion (39.6%) of them implied there was an uptick in recent years. In terms 

of R&D spending, the majority believed it is stagnant. This is in line with R&D spending 

figures of recent years. 

Based on counting total responses of respondents, the top three drivers of 

innovation were “skilled R&D scientists”, “R&D investment”, and “good R&D 
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management”. Likewise, the top three barriers were deemed to be “complex clinical 

trials”, “designing drug substances with a single or narrow therapeutic benefits” tied with 

“companies pursuing the same drug targets” for the second place, and “lack of inter-

organizational collaboration in R&D” ranked third. The top ranked items in this exercise 

point to the shortcomings of molecular reductionism paradigm of drug discovery. To 

begin with, automation and high throughput screening techniques attempt to reduce the 

human judgment in drug discovery. But respondents have ranked skilled scientists as the 

top driver of innovation. Likewise, the barriers of “designing drug substances with a 

single or narrow therapeutic benefits” and “pursuing the same drug targets” are the 

symptoms of the same molecular reductionist paradigm. Therefore, the R&D model of 

the industry reduces the role of the top driver of innovation and accentuates (or creates) a 

number of barriers to innovation.  

The barriers can be linked to several systemic level failures such as “lock-in/path 

dependency failures”, “transition failures”, and both hard (i.e. regulatory) and soft (i.e. 

cultural) institutional failures. Moreover, there are traces of “regulatory capture”. These 

systemic failures might be the reason why previous policy interventions have failed to 

meaningfully change the Eroom’s Law. Likewise, they can also indicate new directions 

for policy intervention. Table 27 depicts the systemic failures and some examples.  

Table 28 depicts the insights form the study regarding the impact of knowledge 

recombination and science use on innovative output. Results of the survey are 

particularly interesting in that experts ranked basic science, depth of knowledge and 

diversity of knowledge in the respective order as drivers of innovation. While matching 
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the broad theoretical view is tentative, it is interesting that expert opinion and firm panel 

data results match the foundational view. Moreover, the Orange Book patent profiles are 

more in line with the tension view, which is consistent with the classic breakthrough 

conception of resting on radical (i.e. different form the norm) ideas. 

The fact that policy interventions have not significantly impacted the drug 

discovery performance has another set of policy formulation implications. To begin with, 

any initiative aimed at the innovative output of the industry should comprise of a mix of 

synergistic policies. Moreover, the effectiveness of each policy, and importantly the 

policy mix, may change over time hence there is a need for policy adjustments. For 

instance, per one survey respondent comment, there is a gap in translational research 

funding. If this is indeed the case, an effective policy apparatus should identify and 

address this gap. Finally, an independent policy apparatus is required to stave off 

regulatory capture.  

A few points on the shortcomings are also in order. The patent indicators may not 

always quite fit and characterize the complex phenomenon (e.g. knowledge diversity in 

innovation) under study. Especially, when moving up the conceptualization ladder from 

the invention to the firm level, this issue is more apparent. However, the final essay 

brings in the voices of experts to remedy this situation. Perhaps, a bigger proviso is that 

the study was formulated from the perspective of the innovator. However, the drug 

discovery innovation has more actors and interest groups such as patients, physicians, 

policy makers, and any member of the community as a potential beneficiary or 
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contributor (e.g. by tax) at some point in life. Such a broad take on innovation was 

beyond the scope of the present study.  
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Table 27 Systemic Failures and Examples 

Systemic failure Examples 

Lock in path dependence - Restricted funding for early-stage technology development: 
Reduced NIH funding; VC, Big pharma risk aversion and short-
termism; gap in translational research 

- Restricted entrepreneurial experimentation: Industry/rules of 
game dominated by established firms (barriers to entry); surge 
of M&A activity 
 

Hard and Soft Intuitional 
Failure 

- “Pisano Puzzle” (speculative finance in biotech) 
- Abuse of policy incentives (e.g. pediatric exclusivity for 

popular among adults 
- Regulatory capture: Prescription Drug User Fee Act (PDUFA); 

GSK’s alosetron (Lotronex), a drug for irritable bowel 
syndrome, has been approved, withdrawn, and approved again. 
 

Transition Failures - Technical issues (e.g. target identification) 
- Managerial issues (e.g. poor R&D leadership) 
- Lack of capability development for biotech firms 

 

Table 28 Knowledge and Science Recombination Impact on Innovative Output  

 Panel of Firms Breakthrough 

Innovations 

Survey 

Science Intensity Curvilinear (negative 
then positive) 

No impact Basic science ranks 
higher than depth and 
diversity of 
knowledge 

Knowledge Diversity  Positive for quality 
of innovations 

Negative Depth of knowledge 
ranks higher than 
knowledge diversity 
and lower than basic 
science 

Knowledge 
Distance/Heterogeneity 

Negative for 
quantity and quality 
of innovations 

Positive Knowledge diversity 
ranks third. 

Theoretical Explanation Foundational view Tension view Foundational view 
* Survey results are based on total responses for main drivers of innovation put to the test 
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APPENDIX A – CHAPTER TWO SUPPLEMENTAL INFORMATION 

a) The Trifecta Model 

 

Figure 1a The Trifecta Model of Innovation 

Source: Petrova (2014) 

 

b) Data Construction Details 

There are several patent datasets available, each with its own merits and 

drawbacks. The NBER patent data project was developed over a decade, involving 

multiple researchers, institutions, and financial resources and was meant to be made 
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accessible to researchers. It includes detailed information on approximately 3 million 

U.S. patents granted between January 1963 and December 1999. Moreover, it has a 

reasonably broad match of patents to Compustat (i.e. the financial data of all firms traded 

in the U.S. stock market) (Hall et al., 2001). Later, the dataset was expanded to include 

patents up to 2006.77 The biggest advantages of the NBER dataset is matching patents to 

firm level data in the Compustat database. According to Golec and Vernon (2008) the 

Compustat-based data series are more reliable and comprehensive than the alternative 

data series (i.e. PhRMA and NSF data) for the pharmaceutical industry. However, a 

major drawback of the NBER dataset is the fact that it is not current and stopped in 2006. 

OECD Patent Datasets is another data source that contains patent quality 

indicators and patent families. It is more recent than the NBER, contains various patent 

level indicators including the originality and radicalness indices, and is being updated 

continually. The February 2016 release of the dataset is at hand and will be used in this 

study. The OECD Patent Datasets (i.e. OECD Patent Quality Indicators database, 

February 2016” and “OECD Triadic Patent Families database, February 2016”) will be 

used for patent data and indicators. The Compustat database (by the Wharton Research 

Data Services: WRDS) will be used for firm level financial data. Other datasets have 

been used to complement certain aspects of the data and will be introduced as they are 

drawn upon. 

The construction of the dataset began form the OECD USPTO patent quality file. 

The file contains both granted patent and patent application data (total rows of 

                                                
77

 “Patent Data Project.” Accessed April 11, 2016. 

https://sites.google.com/site/patentdataproject/Home.  
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observations 9,229,908). Since some granted patents have their application in the data 

file, only granted patent data was kept for the study. Another advantage of focusing on 

granted patents is that a granted patent has passed a certain threshold of invention quality 

(i.e. USPTO examination). Dropping patent applications yields 5,015,706 rows of data. 

The data file was explored for non-unique PATSTAT (i.e. the European Patent 

Office (EPO) Worldwide Patent Statistical Database) patent application identifiers. There 

we two patents under certain duplicate application-IDs. The oldest patents seem to have 

been withdrawn; hence, the latest patents were kept (167 observations were dropped in 

this process). 

To focus on pharmaceutical patents, patents in the technology field 16 were 

retained (yielding 117,442 observations). Technology field 16 contains patents that have 

been assigned to the international patent class (IPC) A61K that represent pharmaceutical 

patents. It excludes patents on cosmetics (Squicciarini et al., 2013; Schmoch, 2008). 

To boost the chances of having unique inventions in the dataset, the concept of 

“Triadic Patent Families” is used. A patent family is a set of related patents linked by 

one or more patents called priority filings that have been filed in several countries 

(Squicciarini et al., 2013). The priority patent of a patent family is the first patent 

application filed for the invention of each family (Criscuolo, 2006). Triadic families have 

been filed in the U.S., Europe and Japan. Hence, the patent sample resulting from the 

aforementioned steps was merged with the OECD Triadic Patent Families (TPF) database 

(February 2016 release) to identify patent families. This procedure revealed that 80,683 
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patents were in both OECD Quality and OECD Triadic Patent Families (TPF) datasets 

(hence, are Triadic) and 36,759 were non-Triadic and excluded from the dataset. 

The first and last members (patents) of each family were tagged. 39500 patents 

had the same first and last patent (i.e. single USPTO granted patent of the family). In 

determining the first filing of each family, if there were more than one identical filing 

years (e.g. two patents with filing year 1999), first granted patent by patent number was 

tagged. For the last filing of the family, the last granted patent was tagged if there were 

tied patents on the filing year. The first patent tag will be used to construct the final 

sample after working on assignees as delineated in the following paragraphs. 

The patent assignee files in the OECD Patent Dataset were deemed too unwieldy 

and non-standardized to work with. Hence, the resulting patent list form the 

abovementioned procedure was searched in the LENS78 patent search database. The 

COMETS79 (Connecting Outcome Measures in Entrepreneurship, Technology, and 

Science) patent assignee data files were drawn upon for some comparison and checking 

of assignees. A good point about the COMETS was that it has an assignee type 

designation (e.g. firm, academic, etc.) that helps in identifying patents assigned to firms. 

The problem with the lens “applicant” field was that it sometimes lists all “applicants” 

including inventors rather than the “assignee” of the patent. As a result, it required 

cleaning and parsing to separate the assignee. The LENS downloaded filet was cleaned 

by OpenRefine and manually to yield an acceptable assignee list. The manual phase was 

tedious and time-consuming sometimes involving Googling names to find out about 

                                                
78

 “The Lens.” Accessed April 11, 2017. https://www.lens.org/lens/.  
79

 “COMETS.” Accessed April 11, 2017. http://www1.kauffman.org/COMETS/.  
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name changes. An attempt was made to keep assignees as distinct as possible. For 

instance, if firm A is independent and then merges into firm B, its patents are not 

subsumed under firm B. If there is an entry for firm A and B in the Compustat, they both 

are independent entries. The logic is that a merger creates both qualitative and 

quantitative change in the firm; hence, the innovative dynamics of firm A and firm B 

many be different from the dynamics of the resulting merged entity. 

The resulting assignee file was merged with the patent file constructed earlier 

from the OECD patent datasets. 56,804 patents were in both files. The remaining 11,366 

were only in master data (e.g. non-firm entities including individuals). The next step was 

to tag unique assignee names (7118) and (arbitrarily) choose assignees with five or 

greater years of patenting activity (1170). This was done for the practical purpose of 

easing the next step of linking assignees to the Compustat database as well as focusing on 

assignees that have some history of patenting hence more likely to show regularity in 

innovation for statistical analysis. 

After identifying assignees with five or more years of patenting, their name was 

searched in the Compustat. If there was a hit, the unique Compustat firm key (gvkey) was 

obtained to extract their available financial data. Figure 2a depicts the numbers of years 

of data (usable data points) after merging financial data with patent data for the total of 

631 firms as depicted. Financial data might not be available for all years; hence, the loss 

of some data points. Joint assigned patents were assigned to both assignees listed. The 

complete list of firms is available in Appendix A. The final data set, comprising of 
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29,554 patents, is unbalanced and firm data points are not necessarily chronologically 

complete (e.g. 1998, 1999, 2010, 2011, 2012). 

Another interesting issue to explore about the panel of firms would be their 

primary industrial activity. Figure 3a depicts the Global Industry Classification (GIS)80 of 

the firms. A few seeming anomalies might be worth mentioning here. The energy sector 

firm is the French-based “ELF AQUITAINE SA” active in the petroleum and gas sector. 

The Materials companies include familiar names such as DOW CHEMICAL, DU PONT, 

and ROHM AND HAAS; as well as other chemical companies. The capital goods group 

consists of companies such as 3M CO, GENERAL ELECTRIC CO, MITSUI & CO LTD 

and some holding companies such as the Korean SK HOLDINGS CO LTD. The 

Commercial & Professional Services firms consist of KOKEN LTD (a Japanese company 

focused on occupational health and safety products) and NELSON RESEARCH & DEV 

CO (a small consultancy). The “Consumer Durables & Apparel” group includes 

SEKISUI CHEMICAL CO LTD (focused on high performance plastics for medical and 

other uses); UNITIKA LTD (Japanese firm focused on advanced materials used in a 

variety of industries), and LVMH MOET HENNESSY LOUIS V (also known as LVMH, 

is a French conglomerate). The Food & Staples Retailing company is ALLIANCE 

BOOTS PLC, which was a multinational pharmacy-led health and beauty group 

(Wikipedia). The “Food, Beverage & Tobacco” firms include diverse names such as 

NESTLE SA/AG, JAPAN TOBACCO INC, and MORINAGA MILK INDUSTRY 

                                                
80 The GIS is an industry taxonomy developed in 1999 by MSCI and S&P for the global financial 
community use. It consists of 11 sectors, 24 industry groups, 68 industries and 157 sub-industries 
(Wikipedia). 
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CORP. The “Household & Personal Products” group includes companies such as 

PROCTER & GAMBLE CO, L'OREAL SA, and NUTRITION 21 INC. The Diversified 

Financials company is Inspired Capital plc (formerly Renovo Group plc), an SME 

financial solutions company. Finally, the Technology Hardware & Equipment group 

includes names such as FUJIFILM HLDGS CORP, EASTMAN KODAK CO, and 

HITACHI LTD. 
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Figure 2a-A Years of Data for Total Firms (total firms=631) 
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Figure 3a-A Firms by Global Industry Classification (GIC) Groups 
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the patent count (i.e. firm-year-patent) actually represents the Triadic Patent Family count 

of the firm per year. Triadic patents are deemed more valuable and one patent per family 

improves chances of having unique inventions.  

 

c) List of Panel Firms 

Firm Name 

Years 

of 

Data 

Beginn

ing 

Year 

End 

Year 

GIC 

Grou

ps 

GIC 

Industr

ies 

GIC 

Sector

s 

GIC Sub-

Industries 

Count

ry HQ 

JOHNSON & 
JOHNSON 37 1978 2014 3520 352020 35 35202010 USA 

PFIZER INC 37 1977 2013 3520 352020 35 35202010 USA 

MERCK & CO 37 1977 2013 3520 352020 35 35202010 USA 
PROCTER & 
GAMBLE CO 34 1978 2012 3030 303010 30 30301010 USA 

3M CO 34 1977 2012 2010 201050 20 20105010 USA 
BRISTOL-MYERS 
SQUIBB CO 33 1981 2013 3520 352020 35 35202010 USA 
GLAXOSMITHKLIN
E PLC 33 1980 2014 3520 352020 35 35202010 GBR 

SCHERING-PLOUGH 31 1978 2008 3520 352020 35 35202010 USA 
BAXTER 
INTERNATIONAL 
INC 31 1980 2014 3510 351010 35 35101010 USA 
ABBOTT 
LABORATORIES 29 1980 2012 3510 351010 35 35101010 USA 

WYETH 28 1978 2008 3520 352020 35 35202010 USA 
KYOWA HAKKO 
KIRIN CO LTD 27 1987 2013 3520 352020 35 35202010 JPN 

DOW CHEMICAL 27 1980 2012 1510 151010 15 15101020 USA 

NESTLE SA/AG 27 1983 2014 3020 302020 30 30202030 CHE 
TAKEDA 
PHARMACEUTICAL 
CO 27 1987 2013 3520 352020 35 35202010 JPN 
SHIONOGI & CO 
LTD 26 1987 2012 3520 352020 35 35202010 JPN 
TEVA 
PHARMACEUTICAL
S 26 1986 2012 3520 352020 35 35202010 ISR 

ALLERGAN INC 25 1988 2012 3520 352020 35 35202010 USA 
SUMITOMO 
DAINIPPON 
PHARMA CO 25 1987 2012 3520 352020 35 35202010 JPN 
AJINOMOTO CO 
INC 25 1987 2012 3020 302020 30 30202030 JPN 
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ELAN CORP PLC 25 1984 2010 3520 352010 35 35201010 IRL 

NOVO NORDISK A/S 25 1988 2013 3520 352020 35 35202010 DNK 

GENENTECH INC 25 1984 2008 3520 352010 35 35201010 USA 

AMGEN INC 25 1986 2013 3520 352010 35 35201010 USA 
ROHM AND HAAS 
CO 24 1981 2008 1510 151010 15 15101050 USA 
DU PONT (E I) DE 
NEMOURS 24 1978 2012 1510 151010 15 15101020 USA 
CHUGAI 
PHARMACEUTICAL 
CO LTD 23 1987 2011 3520 352020 35 35202010 JPN 

AKZO NOBEL NV 23 1984 2010 1510 151010 15 15101050 NLD 

TEIJIN LTD 22 1987 2011 1510 151010 15 15101010 JPN 
ROCHE HOLDING 
AG 22 1993 2014 3520 352020 35 35202010 CHE 

BAYER AG 21 1993 2013 3520 352020 35 35202010 DEU 
TORAY 
INDUSTRIES INC 21 1987 2012 1510 151010 15 15101010 JPN 
PHARMACIA & 
UPJOHN INC 21 1978 1999 3520 352020 35 35202010 USA 
WARNER-
LAMBERT CO 20 1980 1999 3520 352020 35 35202010 USA 
MEIJI SEIKA 
KAISHA LTD 20 1987 2008 3020 302020 30 30202030 JPN 
VERTEX 
PHARMACEUTICAL
S INC 20 1990 2014 3520 352010 35 35201010 USA 
IMMUNOMEDICS 
INC 20 1985 2012 3520 352010 35 35201010 USA 
NIPPON KAYAKU 
CO LTD 20 1987 2010 1510 151010 15 15101050 JPN 

ALZA CORP 20 1978 2000 3520 352020 35 35202010 USA 

NOVARTIS AG 19 1996 2014 3520 352020 35 35202010 CHE 
IONIS 
PHARMACEUTICAL
S INC 19 1992 2012 3520 352010 35 35201010 USA 
RHONE-POULENC 
RORER 19 1978 1996 3520 352020 35 35202010 USA 
NEKTAR 
THERAPEUTICS 19 1994 2013 3520 352020 35 35202010 USA 

CELGENE CORP 19 1993 2012 3520 352010 35 35201010 USA 

ALKERMES PLC 18 1990 2013 3520 352010 35 35201010 IRL 
AMYLIN 
PHARMACEUTICAL
S INC 18 1990 2010 3520 352010 35 35201010 USA 

CEPHALON INC 18 1993 2010 3520 352010 35 35201010 USA 
NISSAN CHEMICAL 
INDUSTRIES 18 1988 2013 1510 151010 15 15101020 JPN 

DAIICHI 18 1987 2005 3520 352020 35 35202010 JPN 
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PHARMACEUTICAL 
CO 
GILEAD SCIENCES 
INC 17 1990 2013 3520 352010 35 35201010 USA 
NITTO DENKO 
CORP 17 1987 2013 1510 151010 15 15101050 JPN 
IDERA 
PHARMACEUTICAL
S INC 17 1994 2011 3520 352010 35 35201010 USA 
KOWA SPINNING 
CO LTD 17 1987 2008 2010 201050 20 20105010 JPN 

XOMA CORP 17 1987 2012 3520 352010 35 35201010 USA 

UCB SA-NV 17 1989 2012 3520 352020 35 35202010 BEL 

ASTRAZENECA PLC 17 1996 2012 3520 352020 35 35202010 GBR 
FRESENIUS SE & CO 
KGAA 17 1989 2011 3510 351020 35 35102015 DEU 

SOLVAY SA 17 1990 2008 1510 151010 15 15101020 BEL 

PHARMACIA CORP 17 1981 2002 3520 352020 35 35202010 USA 
FUJISAWA 
PHARMACEUTICAL 
CO 17 1987 2003 3520 352020 35 35202010 JPN 
SUNTORY 
HOLDINGS LTD 17 1994 2011 

    
JPN 

SANTEN 
PHARMACEUTICAL 17 1996 2012 3520 352020 35 35202010 JPN 

KAO CORP 16 1988 2011 3030 303020 30 30302010 JPN 
REGENERON 
PHARMACEUTICAL
S 16 1994 2012 3520 352010 35 35201010 USA 

CSL LTD 16 1995 2012 3520 352010 35 35201010 AUS 

KURARAY CO LTD 16 1988 2011 1510 151010 15 15101010 JPN 
AMERICAN 
CYANAMID CO 16 1978 1993 3520 352020 35 35202010 USA 

SYNTEX CORP 16 1978 1993 3520 352020 35 35202010 PAN 
SHIN-ETSU 
CHEMICAL CO LTD 16 1988 2011 1510 151010 15 15101050 JPN 
MALLINCKRODT 
INC 16 1982 2000 3510 351010 35 35101010 USA 

SEPRACOR INC 16 1990 2008 3520 352020 35 35202010 USA 

INCYTE CORP 16 1994 2013 3520 352010 35 35201010 USA 
YAKULT HONSHA 
CO LTD 16 1989 2010 3020 302020 30 30202030 JPN 

IMMUNOGEN INC 15 1992 2012 3520 352010 35 35201010 USA 

TOKUYAMA CORP 15 1994 2010 1510 151010 15 15101050 JPN 
NISSHIN SEIFUN 
GROUP INC 15 1987 2005 3020 302020 30 30202030 JPN 

BASF SE 15 1998 2012 1510 151010 15 15101020 DEU 

HUMAN GENOME 15 1994 2010 3520 352010 35 35201010 USA 
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SCIENCES INC 

H LUNDBECK A/S 15 1997 2012 3520 352020 35 35202010 DNK 

NEUROGEN CORP 15 1990 2007 3520 352010 35 35201010 USA 
KYORIN HOLDINGS 
INC 15 1996 2012 3520 352020 35 35202010 JPN 
MITSUBISHI 
CHEMICAL HLDGS 
CO 15 1987 2002 1510 151010 15 15101020 JPN 
ASTELLAS 
PHARMA INC 14 2000 2013 3520 352020 35 35202010 JPN 

ORION CORP 14 1994 2008 3520 352020 35 35202010 FIN 

SKYEPHARMA PLC 14 1996 2012 3520 352020 35 35202010 GBR 
BECTON 
DICKINSON & CO 14 1985 2007 3510 351010 35 35101010 USA 

SANOFI 14 2000 2013 3520 352020 35 35202010 FRA 

EISAI CO LTD 14 2000 2013 3520 352020 35 35202010 JPN 

FMC CORP 14 1982 2010 1510 151010 15 15101030 USA 

CHIRON CORP 14 1987 2005 3520 352010 35 35201010 USA 
NIPPON SHINYAKU 
CO LTD 14 1994 2009 3520 352020 35 35202010 JPN 
AETERNA 
ZENTARIS INC 14 1995 2012 3520 352010 35 35201010 USA 

BIOGEN INC 14 1999 2013 3520 352010 35 35201010 USA 

NEUROSEARCH A/S 14 1996 2009 3520 352010 35 35201010 DNK 
ASTEX 
PHARMACEUTICAL
S INC 14 1996 2011 3520 352010 35 35201010 USA 
EGIS 
PHARMACEUTICAL
S 13 1997 2012 3520 352020 35 35202010 HUN 

SEIKAGAKU CORP 13 1997 2013 3520 352020 35 35202010 JPN 
BAUSCH & LOMB 
HLDGS  -REDH 13 1985 2012 3510 351010 35 35101020 USA 
KAKEN 
PHARMACEUTICAL 
CO LTD 13 1989 2014 3520 352020 35 35202010 JPN 
HISAMITSU 
PHARMACEUTICAL 
CO 13 2000 2013 3520 352020 35 35202010 JPN 
SMITHKLINE 
BEECHAM (UK) PLC 13 1986 1999 3520 352020 35 35202010 GBR 
MORINAGA MILK 
INDUSTRY CORP 13 1991 2010 3020 302020 30 30202030 JPN 
TAISHO 
PHARMACEUTICAL 
HLDGS 13 1998 2011 3520 352020 35 35202010 JPN 
ONO 
PHARMACEUTICAL 
CO LTD 13 2000 2014 3520 352020 35 35202010 JPN 
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GENZYME CORP 13 1996 2009 3520 352010 35 35201010 USA 
FUJIFILM HLDGS 
CORP 13 1992 2010 4520 452020 45 45202030 JPN 
JAPAN TOBACCO 
INC 13 1993 2012 3020 302030 30 30203010 JPN 
ARBUTUS 
BIOPHARMA CORP 13 1995 2013 3520 352010 35 35201010 CAN 

BIOGEN INC-OLD 13 1982 2002 3520 352010 35 35201010 USA 
MITSUI 
CHEMICALS INC 13 1994 2011 1510 151010 15 15101010 JPN 

KUREHA CORP 13 1990 2007 1510 151010 15 15101010 JPN 
ENZON 
PHARMACEUTICAL
S INC 13 1992 2009 3520 352010 35 35201010 USA 

PHARMA MAR SA 12 1996 2010 3520 352010 35 35201010 ESP 
SMITHKLINE 
BECKMAN CORP 12 1977 1988 3520 352020 35 35202010 USA 
LILLY INDS INC  -
CL A 12 1980 1995 1510 151010 15 15101050 USA 
MARINA BIOTECH 
INC -OLD 12 1985 2010 3520 352010 35 35201010 USA 
RIGEL 
PHARMACEUTICAL
S INC 12 1999 2012 3520 352010 35 35201010 USA 

LIPOSOME CO INC 12 1985 1999 3520 352010 35 35201010 USA 

SQUIBB CORP 12 1977 1988 3520 352020 35 35202010 USA 
EMISPHERE 
TECHNOLOGIES 
INC 12 1993 2013 3520 352020 35 35202010 USA 
MILLENNIUM 
PHARMACEUTICAL
S 12 1995 2007 3520 352010 35 35201010 USA 
MOCHIDA 
PHARMACEUTICAL 
CO 12 1994 2012 3520 352020 35 35202010 JPN 
NEUROCRINE 
BIOSCIENCES INC 12 1995 2011 3520 352010 35 35201010 USA 

L'OREAL SA 12 1999 2010 3030 303020 30 30302010 FRA 

NICOX SA 12 1998 2009 3520 352010 35 35201010 FRA 

KANEKA CORP 11 1996 2009 1510 151010 15 15101010 JPN 

AVENTIS SA 11 1993 2003 3520 352020 35 35202010 FRA 

IDEXX LABS INC 11 1998 2011 3510 351010 35 35101010 USA 

FIDIA SPA 11 1999 2012 2010 201060 20 20106020 ITA 
PHARMACYCLICS 
INC 11 1995 2012 3520 352010 35 35201010 USA 
INSPIRE 
PHARMACEUTICAL
S INC 11 1998 2010 3520 352020 35 35202010 USA 

KISSEI 11 1998 2011 3520 352020 35 35202010 JPN 
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PHARMACEUTICAL 
CO LTD 
NOVELION 
THERAPEUTICS INC 11 1989 2007 3520 352010 35 35201010 CAN 
SK HOLDINGS CO 
LTD 11 1999 2012 2010 201050 20 20105010 KOR 

KANEBO LTD 11 1987 2001 3030 303020 30 30302010 JPN 

EXELIXIS INC 11 2002 2012 3520 352010 35 35201010 USA 

RECORDATI SPA 11 1989 2001 3520 352020 35 35202010 ITA 
ALBANY 
MOLECULAR RESH 
INC 11 2000 2012 3520 352030 35 35203010 USA 
NPS 
PHARMACEUTICAL
S INC 10 1993 2007 3520 352010 35 35201010 USA 
ASAHI KAGAKU 
KOGYO CO LTD 10 2004 2014 1510 151010 15 15101010 JPN 

PLIVA DD 10 1997 2007 3520 352020 35 35202010 HRV 

SYNTHELABO SA 10 1989 1998 3520 352020 35 35202010 FRA 
MITSUBISHI 
TANABE PHARMA 10 2003 2012 3520 352020 35 35202010 JPN 

IMMUNEX CORP 10 1986 2001 3520 352010 35 35201010 USA 
ZYMOGENETICS 
INC 10 1999 2009 3520 352010 35 35201010 USA 
BOSTON 
SCIENTIFIC CORP 10 2001 2012 3510 351010 35 35101010 USA 
BIOMARIN 
PHARMACEUTICAL 
INC 10 2003 2012 3520 352010 35 35201010 USA 
PONIARD 
PHARMACEUTICAL
S INC 10 1987 2003 3520 352010 35 35201010 USA 
LIGAND 
PHARMACEUTICAL 
INC 10 1995 2012 3520 352010 35 35201010 USA 
BAVARIAN NORDIC 
AS 10 1998 2011 3520 352010 35 35201010 DNK 

GUERBET SA 10 1989 2008 3510 351010 35 35101020 FRA 
SEKISUI CHEMICAL 
CO LTD 10 1987 2011 2520 252010 25 25201030 JPN 
AVADEL 
PHARMACEUTICAL
S -ADR 10 1995 2008 3520 352020 35 35202010 IRL 

DANONE 10 2000 2011 3020 302020 30 30202030 FRA 

IPSEN SA 10 2002 2014 3520 352020 35 35202010 FRA 
DOW CORNING 
CORP 10 1985 1998 1510 151010 15 15101050 USA 

SK CHEMICALS 10 1996 2012 1510 151010 15 15101010 KOR 

SHIRE PLC 10 1997 2011 3520 352010 35 35201010 IRL 
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FOREST 
LABORATORIES  -
CL A 10 1983 2013 3520 352020 35 35202010 USA 

VERNALIS PLC 10 1999 2010 3520 352010 35 35201010 GBR 

ACTELION LTD 10 2000 2011 3520 352010 35 35201010 CHE 

MYLAN NV 10 1983 2010 3520 352020 35 35202010 GBR 
OSI 
PHARMACEUTICAL
S INC 10 1999 2009 3520 352010 35 35201010 USA 
JOHNSON 
MATTHEY PLC 10 1989 2010 1510 151010 15 15101050 GBR 
KIRIN HOLDINGS 
CO LTD 10 1988 2005 3020 302010 30 30201010 JPN 

DURECT CORP 10 2000 2010 3520 352020 35 35202010 USA 

CURIS INC 10 1998 2012 3520 352010 35 35201010 USA 

SUZUKEN CO LTD 10 1993 2009 3510 351020 35 35102010 JPN 

SURMODICS INC 10 1998 2011 3510 351010 35 35101010 USA 
SYNTA 
PHARMACEUTICAL
S CORP 10 2004 2013 3520 352010 35 35201010 USA 
CV THERAPEUTICS 
INC 9 1995 2006 3520 352010 35 35201010 USA 
ARENA 
PHARMACEUTICAL
S INC 9 1999 2012 3520 352010 35 35201010 USA 

VESTAR INC 9 1984 1993 3520 352020 35 35202010 USA 
HENKEL AG & CO 
KGAA 9 1991 2009 3030 303010 30 30301010 DEU 
ISHIHARA SANGYO 
KAISHA LTD 9 1987 2009 1510 151010 15 15101020 JPN 
GREEN CROSS 
CORP 9 1987 1996 3520 352020 35 35202010 JPN 

WELLCOME PLC 9 1986 1994 3520 352020 35 35202010 GBR 

DEPOMED INC 9 1996 2012 3520 352020 35 35202010 USA 
GENETICS 
INSTITUTE INC 9 1987 1995 3520 352010 35 35201010 USA 

MEDAREX INC 9 1998 2008 3520 352010 35 35201010 USA 
ARRAY 
BIOPHARMA INC 9 2001 2012 3520 352010 35 35201010 USA 
ZERIA 
PHARMACEUTICAL 
CO LTD 9 1996 2010 3520 352020 35 35202010 JPN 

MEDIVIR AB 9 1996 2011 3520 352010 35 35201010 SWE 
SYNAPTIC 
PHARMACEUTICAL 
CORP 9 1992 2001 3520 352010 35 35201010 USA 
ONYX 
PHARMACEUTICAL
S INC 9 1995 2011 3520 352010 35 35201010 USA 
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KARO PHARMA AB 9 1997 2010 3520 352010 35 35201010 SWE 
EASTMAN KODAK 
CO 9 1985 1994 4520 452020 45 45202030 USA 

TSUMURA & CO 8 1989 2005 3520 352020 35 35202010 JPN 

YUHAN CORP 8 1995 2011 3520 352020 35 35202010 KOR 
DYNAVAX 
TECHNOLOGIES 
CORP 8 2001 2011 3520 352010 35 35201010 USA 

ARQULE INC 8 1996 2012 3520 352010 35 35201010 USA 
PALATIN 
TECHNOLOGIES 
INC 8 2000 2012 3520 352010 35 35201010 USA 
ALNYLAM 
PHARMACEUTICAL
S INC 8 2003 2012 3520 352010 35 35201010 USA 

MITSUI & CO LTD 8 1990 2009 2010 201070 20 20107010 JPN 
UBE INDUSTRIES 
LTD 8 1987 2009 1510 151010 15 15101020 JPN 

DELSITE INC 8 1986 2002 3030 303020 30 30302010 USA 

DYAX CORP 8 2000 2012 3520 352010 35 35201010 USA 

DEGUSSA AG 8 1989 2001 1510 151010 15 15101020 DEU 
VECTURA GROUP 
PLC 8 1998 2009 3520 352020 35 35202010 GBR 
APRICUS 
BIOSCIENCES INC 8 1998 2012 3520 352020 35 35202010 USA 
ASHLAND GLOBAL 
HOLDINGS INC 8 1991 2010 1510 151010 15 15101050 USA 
BIOCHEM PHARMA 
INC 8 1992 2000 3520 352010 35 35201010 CAN 
ACORDA 
THERAPEUTICS INC 8 2004 2012 3520 352010 35 35201010 USA 
RECKITT 
BENCKISER GROUP 
PLC 8 1993 2009 3030 303010 30 30301010 GBR 
TELESTA 
THERAPEUTICS INC 8 1995 2011 3520 352010 35 35201010 CAN 

TERUMO CORP 8 1989 2005 3510 351010 35 35101010 JPN 
TARO 
PHARMACEUTICL 
INDS LTD 8 1998 2011 3520 352020 35 35202010 ISR 

BEIERSDORF AG 8 1989 2010 3030 303020 30 30302010 DEU 
MOLECULAR 
BIOSYSTEMS INC 8 1987 1997 3510 351010 35 35101010 USA 
REPROS 
THERAPEUTICS INC 8 1994 2009 3520 352020 35 35202010 USA 
SUCAMPO 
PHARMACEUTICAL
S INC 8 2006 2013 3520 352020 35 35202010 USA 
DONG A SOCIO 
HOLDINGS CO LTD 8 1999 2009 3520 352020 35 35202010 KOR 
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SEATTLE GENETICS 
INC 8 1999 2012 3520 352010 35 35201010 USA 
MATEON 
THERAPEUTICS INC 8 1992 2011 3520 352010 35 35201010 USA 

CYGNUS INC 8 1989 1997 3510 351010 35 35101010 USA 
TASLY 
PHARMACEUTICAL 
GROUP 8 2002 2011 3520 352020 35 35202010 CHN 

CETUS CORP 8 1984 1991 3520 352010 35 35201010 USA 

ALMIRALL SA 8 2003 2012 3520 352020 35 35202010 ESP 

SCHERER (R P)/DE 8 1985 1997 3520 352020 35 35202010 USA 
ALLIANCE 
PHARMACEUTICAL 8 1987 2007 3520 352030 35 35203010 USA 
SCICLONE 
PHARMACEUTICAL
S INC 8 1993 2010 3520 352020 35 35202010 USA 
SALIX 
PHARMACEUTICAL
S LTD 7 2004 2012 3520 352020 35 35202010 USA 

ABBVIE INC 7 2008 2014 3520 352010 35 35201010 USA 
LEXICON 
PHARMACEUTICAL
S INC 7 2006 2012 3520 352010 35 35201010 USA 
EPIX 
PHARMACUETICAL
S INC 7 2000 2008 3520 352010 35 35201010 USA 
MIRATI 
THERAPEUTICS INC 7 2005 2011 3520 352010 35 35201010 USA 

NYCOMED ASA 7 1990 1996 3520 352010 35 35201010 NOR 

MEDTRONIC PLC 7 1989 2009 3510 351010 35 35101010 IRL 
GUILFORD 
PHARMACEUTICAL 
INC 7 1995 2002 3520 352020 35 35202010 USA 
SMITH & NEPHEW 
PLC 7 1993 2010 3510 351010 35 35101010 GBR 
COLGATE-
PALMOLIVE CO 7 1989 2010 3030 303010 30 30301010 USA 

MEDICINES CO 7 2005 2013 3520 352020 35 35202010 USA 
ARIAD 
PHARMACEUTICAL
S INC 7 2000 2011 3520 352010 35 35201010 USA 

NIPRO CORP 7 1999 2008 3510 351010 35 35101020 JPN 
CORCEPT 
THERAPEUTICS INC 7 2000 2013 3520 352020 35 35202010 USA 

ANORMED INC 7 1997 2005 3520 352020 35 35202010 CAN 

L'AIR LIQUIDE SA 7 2000 2011 1510 151010 15 15101040 FRA 
ADDEX 
PHARMACEUTICAL
S SA 7 2004 2012 3520 352010 35 35201010 CHE 



216 
 

NIPPON SODA CO 
LTD 7 1989 2011 1510 151010 15 15101020 JPN 

CORIXA CORP 7 1995 2004 3520 352010 35 35201010 USA 
HOKURIKU 
SEIYAKU CO LTD 7 1987 2001 3520 352020 35 35202010 JPN 

SHOWA DENKO KK 7 1987 2009 1510 151010 15 15101020 JPN 

ICOS CORP 7 1994 2002 3520 352010 35 35201010 USA 

ADOLOR CORP 7 1997 2010 3520 352020 35 35202010 USA 

MEDIGENE AG 7 1999 2012 3520 352010 35 35201010 DEU 
MEDICIS 
PHARMACEUT CP  -
CL A 7 2000 2010 3520 352020 35 35202010 USA 
SUNESIS 
PHARMACEUTICAL
S INC 7 2003 2012 3520 352010 35 35201010 USA 
GLENMARK 
PHARMACEUTICAL
S LTD 7 2005 2011 3520 352020 35 35202010 IND 

VIRBAC CORP 7 1994 2004 3520 352020 35 35202010 USA 
IDENIX 
PHARMACEUTICAL
S INC 7 2002 2012 3520 352010 35 35201010 USA 

ANDRX CORP 7 1995 2004 3520 352020 35 35202010 USA 

NOF CORP 7 1994 2009 1510 151010 15 15101020 JPN 
UNIGENE 
LABORATORIES 
INC 7 2001 2010 3520 352010 35 35201010 USA 
BIOCRYST 
PHARMACEUTICAL
S INC 7 1994 2011 3520 352010 35 35201010 USA 

STRYKER CORP 7 1995 2011 3510 351010 35 35101010 USA 
SWEDISH ORPHAN 
BIOVITRUM AB 7 2001 2011 3520 352010 35 35201010 SWE 

AVON PRODUCTS 7 2000 2010 3030 303020 30 30302010 GBR 

TRANSGENE 7 1996 2004 3520 352010 35 35201010 FRA 
ACHILLION 
PHARMACEUTICAL
S 7 2005 2012 3520 352010 35 35201010 USA 
EVONIK 
INDUSTRIES AG 7 2005 2012 1510 151010 15 15101050 DEU 

ECOLAB INC 7 1991 2011 1510 151010 15 15101050 USA 

ANGES MG INC 7 2001 2011 3520 352010 35 35201010 JPN 
NIHON NOHYAKU 
CO LTD 7 1993 2012 1510 151010 15 15101030 JPN 
CELTRIX 
PHARMACEUTICAL
S 7 1991 1998 3520 352020 35 35202010 USA 
ZEALAND PHARMA 
AS 7 2000 2009 3520 352010 35 35201010 DNK 
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UNITIKA LTD 7 1990 2007 2520 252030 25 25203030 JPN 
PIRAMAL 
ENTERPRISES LTD 7 2005 2012 3520 352020 35 35202010 IND 
WEST 
PHARMACEUTICAL 
SVSC INC 7 1994 2003 3510 351010 35 35101020 USA 
ONCOLYTICS 
BIOTECH INC 7 1999 2011 3520 352010 35 35201010 CAN 

BIOTEST AG 7 1989 2012 3520 352010 35 35201010 DEU 

MANNKIND CORP 7 2005 2011 3520 352010 35 35201010 USA 
MITSUBISHI 
PHARMA CORP 7 1999 2005 3520 352020 35 35202010 JPN 
ACADIA 
PHARMACEUTICAL
S INC 7 2002 2013 3520 352010 35 35201010 USA 
NOVEN 
PHARMACEUTICAL
S INC 7 1991 2008 3520 352020 35 35202010 USA 
RANBAXY 
LABORATORIES 
LTD 7 2002 2011 3520 352020 35 35202010 IND 

PENNWALT CORP 7 1981 1987 1510 151010 15 15101020 USA 
GENERAL 
ELECTRIC CO 6 2002 2011 2010 201050 20 20105010 USA 
CADILA 
HEALTHCARE LTD 6 2001 2011 3520 352020 35 35202010 IND 
BAYER SCHERING 
PHARMA AG 6 1999 2007 3520 352020 35 35202010 DEU 

SICOR INC 6 1989 1999 3520 352020 35 35202010 USA 
CTI BIOPHARMA 
CORP 6 1995 2006 3520 352010 35 35201010 USA 
PROGENICS 
PHARMACEUTICAL 
INC 6 1995 2011 3520 352010 35 35201010 USA 

INTERMUNE INC 6 2005 2010 3520 352010 35 35201010 USA 

DIC CORPORATION 6 1987 2002 1510 151010 15 15101050 JPN 
SANGAMO 
THERAPEUTICS INC 6 1999 2013 3520 352010 35 35201010 USA 

SCIOS INC 6 1993 2001 3520 352010 35 35201010 USA 

SYNGENTA AG 6 1999 2009 1510 151010 15 15101030 CHE 
FUISZ 
TECHNOLOGIES 
LTD 6 1992 1998 3520 352020 35 35202010 USA 

BIONOMICS LTD 6 2003 2010 3520 352010 35 35201010 AUS 
MEMORY PHARMA 
CORP 6 2002 2007 3520 352010 35 35201010 USA 
DR REDDY'S 
LABORATORIES 
LTD 6 1999 2007 3520 352020 35 35202010 IND 
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LONZA GROUP AG 6 1999 2010 3520 352030 35 35203010 CHE 
INFINITY 
PHARMACEUTICAL
S INC 6 2007 2012 3520 352010 35 35201010 USA 

ASTRA AB 6 1993 1998 3520 352020 35 35202010 SWE 

ALTANA AG 6 2000 2005 1510 151010 15 15101050 DEU 
UNITED 
THERAPEUTICS 
CORP 6 2000 2011 3520 352010 35 35201010 USA 
THRESHOLD 
PHARMACEUTICAL
S 6 2003 2009 3520 352010 35 35201010 USA 

ICAGEN INC 6 2001 2010 3520 352010 35 35201010 USA 
3-DIMENSIONAL 
PHARMACEUTICAL 6 1995 2001 3520 352020 35 35202010 USA 

CJ CORP 6 2002 2010 2010 201050 20 20105010 KOR 

ROBINS (A.H.) CO 6 1982 1988 3520 352020 35 35202010 USA 
ENDO 
INTERNATIONAL 
PLC 6 1999 2012 3520 352020 35 35202010 IRL 

XENOPORT INC 6 2004 2010 3520 352020 35 35202010 USA 
CHEMOCENTRYX 
INC 6 2005 2010 3520 352010 35 35201010 USA 
KOSAN 
BIOSCIENCES INC 6 2001 2006 3520 352010 35 35201010 USA 

NOVOGEN LTD 6 1999 2006 3520 352020 35 35202010 AUS 

LUPIN LTD 6 2004 2011 3520 352020 35 35202010 IND 
RESPIRERX 
PHARMACEUTICAL
S 6 1994 2011 3520 352020 35 35202010 USA 

CURAGEN CORP 6 1997 2002 3520 352010 35 35201010 USA 
ANTISENSE 
THERAPEUTICS 
LTD 6 2004 2010 3520 352020 35 35202010 AUS 

CELL GENESYS INC 6 1994 2002 3520 352010 35 35201010 USA 
COLEY 
PHARMACEUTICAL 
GROUP 6 2001 2006 3520 352010 35 35201010 USA 
PRANA 
BIOTECHNOLOGY 
LTD 6 2000 2008 3520 352010 35 35201010 AUS 
SCOTIA HOLDINGS 
PLC 6 1994 1999 3520 352020 35 35202010 GBR 
ROHTO 
PHARMACEUTICAL 
CO LTD 6 1989 2012 3520 352020 35 35202010 JPN 
ONCOTHERAPY 
SCIENCE INC 6 2006 2012 3520 352010 35 35201010 JPN 

TARGACEPT INC 6 2004 2011 3520 352010 35 35201010 USA 
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MEDA AB 6 2000 2009 3520 352020 35 35202010 SWE 

PERSTORP AB 6 1989 1998 1510 151010 15 15101020 SWE 
ANADYS 
PHARMACEUTICAL
S INC 6 2002 2010 3520 352010 35 35201010 USA 

CYTOKINETICS INC 6 2003 2009 3520 352010 35 35201010 USA 

VIVUS INC 6 1997 2009 3520 352020 35 35202010 USA 

ZOETIS INC 6 2007 2013 3520 352020 35 35202010 USA 
JUNIPER 
PHARMACEUTICAL
S INC 6 1993 2003 3520 352020 35 35202010 USA 
AMICUS 
THERAPEUTICS INC 6 2004 2012 3520 352010 35 35201010 USA 
CELL PATHWAYS 
INC 6 1994 2000 3520 352020 35 35202010 USA 
ASKA PHARM CO 
LTD 6 2003 2009 3520 352020 35 35202010 JPN 
CELLTECH GROUP 
PLC 6 1998 2003 3520 352010 35 35201010 GBR 
CASI 
PHARMACEUTICAL
S INC 6 1995 2008 3520 352010 35 35201010 USA 
YM BIOSCIENCES 
INC 6 2003 2011 3520 352010 35 35201010 CAN 

GRACE (W R) & CO 6 1978 1997 1510 151010 15 15101050 USA 
SUMITOMO 
CHEMICAL CO LTD 6 1987 2011 1510 151010 15 15101020 JPN 

CALPIS CO LTD 6 1996 2006 3020 302020 30 30202030 JPN 

INSITE VISION INC 6 1993 2000 3520 352020 35 35202010 USA 
CYCLACEL 
PHARMACEUTICAL
S 5 2006 2012 3520 352010 35 35201010 USA 
DENKI KOGYO CO 
LTD 5 1989 2009 4520 452010 45 45201020 JPN 
KEY 
PHARMACEUTICAL
S INC 5 1980 1985 3520 352020 35 35202010 USA 

AVIGEN INC 5 1997 2007 3520 352010 35 35201010 USA 
SUVEN LIFE 
SCIENCES LTD 5 2005 2010 3520 352020 35 35202010 IND 

TULARIK INC 5 1997 2002 3520 352010 35 35201010 USA 
ALEXION 
PHARMACEUTICAL
S INC 5 2003 2011 3520 352010 35 35201010 USA 
CENES 
PHARMACEUTICAL
S PLC 5 1998 2007 3520 352020 35 35202010 GBR 
CSPC 
PHARMACEUTICAL 
GROUP 5 2004 2011 3520 352020 35 35202010 HKG 
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ACTIVE BIOTECH 
AB 5 1999 2005 3520 352010 35 35201010 SWE 

BTG PLC 5 1993 1997 3520 352020 35 35202010 GBR 
AVANIR 
PHARMACEUTICAL
S INC 5 1997 2007 3520 352020 35 35202010 USA 
ZIMMER BIOMET 
HOLDINGS INC 5 2000 2011 3510 351010 35 35101010 USA 
NIPPON 
CHEMIPHAR CO 
LTD 5 1999 2008 3520 352020 35 35202010 JPN 

HEMOSOL CORP 5 1994 2002 3520 352010 35 35201010 CAN 

BTG INC 5 1994 2000 4520 452020 45 45202010 USA 

GENTA INC 5 1996 2008 3520 352010 35 35201010 USA 

MEDEVA PLC 5 1994 1998 3520 352020 35 35202010 GBR 

WYETH LTD 5 1997 2001 3520 352020 35 35202010 IND 
PROMETIC LIFE 
SCIENCES INC 5 2004 2011 3520 352010 35 35201010 CAN 
MILES 
LABORATORIES 
INC 5 1981 1986 3520 352020 35 35202010 USA 
PRONOVA 
BIOPHARMA ASA 5 2005 2010 3520 352020 35 35202010 NOR 

GENAERA CORP 5 1991 1999 3520 352010 35 35201010 USA 

GLYCOMED INC 5 1990 1994 3520 352020 35 35202010 USA 
MITSUI TOATSU 
CHEMICALS INC 5 1988 1994 1510 151010 15 15101010 JPN 

CONNETICS CORP 5 1995 2004 3520 352020 35 35202010 USA 
ORCHID PHARMA 
LTD 5 2003 2010 3520 352020 35 35202010 IND 
COR 
THERAPEUTICS INC 5 1994 2000 3520 352010 35 35201010 USA 

GERON CORP 5 1997 2004 3520 352010 35 35201010 USA 
OTSUKA HOLDINGS 
CO LTD 5 2008 2013 3520 352020 35 35202010 JPN 

VICAL INC 5 1996 2012 3520 352010 35 35201010 USA 
ENZO BIOCHEM 
INC 5 1998 2009 3520 352030 35 35203010 USA 

TELIK INC -OLD 5 2002 2011 3520 352010 35 35201010 USA 

FISONS PLC 5 1989 1994 3510 351020 35 35102010 GBR 
MAXIM 
PHARMACEUTICAL
S INC 5 1995 2002 3520 352010 35 35201010 USA 
OXFORD 
BIOMEDICA LTD 5 1996 2008 3520 352010 35 35201010 GBR 
AGOURON 
PHARMACEUTICAL
S INC 5 1992 1997 3520 352010 35 35201010 USA 
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STERLING DRUG 
INC 5 1981 1986 3520 352020 35 35202010 USA 
BLOCK DRUG  -CL 
A 5 1987 1996 3510 351010 35 35101020 USA 
INNATE PHARMA 
SA 5 2004 2012 3520 352010 35 35201010 FRA 

MERCIAN CORP 5 1998 2005 3020 302010 30 30201020 JPN 

OMEROS CORP 5 2006 2011 3520 352020 35 35202010 USA 

ALK-ABELLO A/S 5 2004 2010 3520 352020 35 35202010 DNK 
ID BIOMEDICAL 
CORP 5 1998 2004 3520 352010 35 35201010 CAN 
NORSK HYDRO 
ASA 5 1989 1997 1510 151040 15 15104010 NOR 

SEARLE (G.D.) & CO 5 1979 1984 3520 352020 35 35202010 USA 

KIKKOMAN CORP 5 1996 2010 3020 302020 30 30202030 JPN 

ALIZYME PLC 5 1998 2004 3520 352010 35 35201010 GBR 

SUNSTAR INC 5 1990 2006 3030 303020 30 30302010 JPN 

LION CORP 5 1988 2013 3030 303010 30 30301010 JPN 

NITROMED INC 5 1998 2003 3520 352020 35 35202010 USA 

PROBI AB 5 2000 2008 3520 352010 35 35201010 SWE 

VASOGEN INC 5 1998 2003 3520 352010 35 35201010 CAN 

MERCK SERONO SA 5 2000 2005 3520 352010 35 35201010 DEU 
CORVAS 
INTERNATIONAL 
INC 5 1991 1998 3520 352010 35 35201010 USA 
MORISHITA JINTAN 
CO LTD 5 2000 2012 3030 303020 30 30302010 JPN 
METABASIS 
THERAPEUTICS INC 5 1999 2008 3520 352010 35 35201010 USA 
SIGA 
TECHNOLOGIES 
INC 5 2004 2010 3520 352010 35 35201010 USA 
ARCHER-DANIELS-
MIDLAND CO 5 1996 2008 3020 302020 30 30202010 USA 

MEDICINOVA INC 5 2005 2012 3520 352010 35 35201010 USA 
MEITO SANGYO CO 
LTD 5 1995 2008 3020 302020 30 30202030 JPN 
ATRIX 
LABORATORIES 
INC 5 1991 1999 3520 352020 35 35202010 USA 
LVMH MOET 
HENNESSY LOUIS V 5 1992 2007 2520 252030 25 25203010 FRA 
MITSUBISHI 
RAYON CO LTD 5 1987 1992 1510 151010 15 15101010 JPN 
KING 
PHARMACEUTICAL
S INC 5 1998 2008 3520 352020 35 35202010 USA 

HOECHST AG 5 1994 1998 3520 352020 35 35202010 DEU 
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ALCHEMIA LTD 5 2003 2011 3520 352010 35 35201010 AUS 

SUGEN INC 5 1994 1998 3520 352010 35 35201010 USA 
ARCH CHEMICALS 
INC 5 2002 2010 1510 151010 15 15101050 USA 

LABOPHARM INC 5 2000 2006 3520 352020 35 35202010 CAN 
SAREPTA 
THERAPEUTICS INC 5 1997 2002 3520 352010 35 35201010 USA 

GENVEC INC 5 1998 2006 3520 352010 35 35201010 USA 
AMOREPACIFIC 
CORP 5 2006 2011 3030 303020 30 30302010 KOR 
YUNGSHIN 
GLOBAL HOLDING 
CORP 5 2002 2006 3520 352020 35 35202010 TWN 
SHAMAN 
PHARMACEUTICAL
S INC 4 1991 1996 3520 352010 35 35201010 USA 
FH FAULDING & CO 
LTD 4 1990 1999 3520 352020 35 35202010 AUS 
EMERGENT GROUP 
INC 4 2005 2010 3510 351020 35 35102010 USA 
EASTMAN 
CHEMICAL CO 4 1995 2008 1510 151010 15 15101020 USA 
NEUREN 
PHARMACEUTICAL
S LTD 4 2002 2008 3520 352020 35 35202010 AUS 

ASAHI KASEI CORP 4 1987 1991 1510 151010 15 15101010 JPN 

DIATIDE INC 4 1994 1998 3520 352010 35 35201010 USA 

GALENICA AG 4 1996 2008 3520 352020 35 35202010 CHE 

ARADIGM CORP 4 1997 2002 3520 352020 35 35202010 USA 
BONE CARE 
INTERNATIONAL 
INC 4 1998 2002 3520 352020 35 35202010 USA 
RIBI IMMUNOCHEM 
RESEARCH INC 4 1991 1998 3520 352010 35 35201010 USA 

WOCKHARDT LTD 4 2001 2012 3520 352020 35 35202010 IND 
MITSUBISHI GAS 
CHEMICAL CO 4 1990 2007 1510 151010 15 15101020 JPN 
NEUTEC PHARMA 
PLC 4 1998 2005 3520 352010 35 35201010 GBR 

REPLIGEN CORP 4 1992 2000 3520 352010 35 35201010 USA 
ANACOR 
PHARMACEUTICAL
S INC 4 2007 2011 3520 352010 35 35201010 USA 
RAPTOR 
PHARMACEUTICAL 
CORP 4 2006 2009 3520 352010 35 35201010 USA 
PHARMING GROUP 
NV 4 1998 2006 3520 352010 35 35201010 NLD 
ALPHA BETA 
TECHNOLOGY INC 4 1988 1994 3520 352020 35 35202010 USA 
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NOVAVAX INC 4 1995 2008 3520 352010 35 35201010 USA 

SHISEIDO CO LTD 4 1989 1992 3030 303020 30 30302010 JPN 

CANON INC 4 1992 2011 4520 452020 45 45202030 JPN 
CELLEGY 
PHARMACEUTICAL
S -OLD 4 1998 2002 3520 352020 35 35202010 USA 

ZILA INC 4 1990 2002 3520 352020 35 35202010 USA 

BIOCON LTD 4 2003 2008 3520 352010 35 35201010 IND 

INTERCELL AG 4 2003 2012 3520 352010 35 35201010 AUT 
OXIS 
INTERNATIONAL 
INC 4 1996 2000 3520 352010 35 35201010 USA 
PHARMACOPEIA 
INC 4 2002 2007 3520 352010 35 35201010 USA 

CIPLA LTD 4 2007 2011 3520 352020 35 35202010 IND 
K V 
PHARMACEUTICAL  
-CL A 4 1994 2002 3520 352020 35 35202010 USA 
GENTIUM SPA  -
ADR 4 2005 2010 3520 352010 35 35201010 ITA 

HITACHI LTD 4 1991 2009 4520 452030 45 45203010 JPN 
ATHEROGENICS 
INC 4 1998 2003 3520 352020 35 35202010 USA 
HERON 
THERAPEUTICS INC 4 1989 1998 3520 352010 35 35201010 USA 
OREXIGEN 
THERAPEUTICS INC 4 2005 2010 3520 352020 35 35202010 USA 
GELTEX 
PHARMACEUTICAL
S INC 4 1993 1998 3520 352010 35 35201010 USA 

BIOMET INC 4 2003 2009 3510 351010 35 35101010 USA 
SANGSTAT 
MEDICAL CORP 4 1995 2000 3520 352010 35 35201010 USA 

ELF AQUITAINE SA 4 1991 1994 1010 101020 10 10102010 FRA 

PHARMOS CORP 4 1993 2002 3520 352020 35 35202010 USA 
KALOBIOS 
PHARMACEUTICAL
S INC 4 2009 2012 3520 352010 35 35201010 USA 
CHELSEA 
THERAPEUTICS 
INTL 4 2005 2010 3520 352010 35 35201010 USA 

OREXO AB 4 2005 2013 3520 352020 35 35202010 SWE 
TITAN 
PHARMACEUTICAL
S INC 4 1996 2012 3520 352020 35 35202010 USA 
STARPHARMA 
HLDGS LTD 4 2001 2007 3520 352020 35 35202010 AUS 

SSP CO LTD 4 1998 2003 3520 352020 35 35202010 JPN 
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CREATIVE 
BIOMOLECULES 
INC 4 1991 1995 3520 352010 35 35201010 USA 

CRUCELL NV 4 2004 2010 3520 352010 35 35201010 NLD 
ENCYSIVE 
PHARMACEUTICAL
S INC 4 1994 2000 3520 352010 35 35201010 USA 

CENCO INC 4 1977 1980 
    

USA 
ABRAXIS 
BIOSCIENCE INC 4 2006 2009 3520 352010 35 35201010 USA 
MICRO 
THERAPEUTICS INC 4 1996 2002 3510 351010 35 35101010 USA 

PHOTOCURE ASA 4 1999 2008 3520 352020 35 35202010 NOR 
POWDERJECT 
PHARMACEUTICAL
S 4 1998 2002 3520 352010 35 35201010 GBR 

OPKO HEALTH INC 4 2008 2012 3520 352010 35 35201010 USA 

MEDIVATION INC 4 2008 2012 3520 352010 35 35201010 USA 
POINT 
THERAPEUTICS INC 4 1998 2001 3520 352010 35 35201010 USA 
VANDA 
PHARMACEUTICAL
S INC 4 2007 2013 3520 352010 35 35201010 USA 

GENFIT 4 2004 2010 3520 352030 35 35203010 FRA 
CUBIST 
PHARMACEUTICAL
S INC 4 1999 2013 3520 352010 35 35201010 USA 

HERCULES INC 4 1983 2001 1510 151010 15 15101020 USA 
ARALEZ 
PHARMACEUTICAL
S INC 4 2000 2010 3520 352020 35 35202010 CAN 

HAUSER INC 4 1993 2001 1510 151010 15 15101050 USA 
ARROWHEAD 
PHARMACEUTICAL
S 4 2011 2014 3520 352010 35 35201010 USA 
BIO-RAD 
LABORATORIES 
INC 4 1999 2006 3520 352030 35 35203010 USA 

STEMCELLS INC 4 1994 1997 3520 352010 35 35201010 USA 
NORTHFIELD 
LABORATORIES 
INC 4 1999 2005 3520 352010 35 35201010 USA 

COMPUGEN LTD 4 2006 2009 3520 352030 35 35203010 ISR 
IMCLONE SYSTEMS 
INC 4 1999 2007 3520 352010 35 35201010 USA 

MAXYGEN INC 4 2000 2006 3520 352010 35 35201010 USA 

LEK DD 4 1996 2002 3520 352020 35 35202010 SVN 
NOVA 
PHARMACEUTICAL 4 1986 1991 3520 352020 35 35202010 USA 
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CORP 

INHIBITEX INC 4 2001 2010 3520 352010 35 35201010 USA 
BIO REFERENCE 
LABS 4 1999 2004 3510 351020 35 35102015 USA 

CYTOGEN CORP 4 1988 1998 3520 352010 35 35201010 USA 

DENDREON CORP 4 2000 2007 3520 352010 35 35201010 USA 

NUTRITION 21 INC 4 1995 2005 3030 303020 30 30302010 USA 
IRONWOOD 
PHARMACEUTICAL
S INC 4 2007 2011 3520 352010 35 35201010 USA 

COVIDIEN PLC 4 2006 2011 3510 351010 35 35101010 IRL 

APHTON CORP 4 1993 2001 3520 352010 35 35201010 USA 

PHARMASSET INC 4 2002 2010 3520 352010 35 35201010 USA 
CONJUCHEM 
BIOTECH INC 4 1999 2003 3520 352010 35 35201010 USA 
PRAECIS 
PHARMACEUTICAL
S INC 4 1996 2001 3520 352010 35 35201010 USA 
CASCADIAN 
THERAPEUTICS INC 4 2002 2012 3520 352010 35 35201010 USA 
CHONG KUN DANG 
HLDGS CORP 4 1998 2010 3520 352020 35 35202010 KOR 
TAKARA 
HOLDINGS INC 4 1991 2001 3020 302010 30 30201020 JPN 
SILENCE 
THERAPEUTICS 
PLC 4 2003 2010 3520 352010 35 35201010 GBR 
ARYX 
THERAPEUTICS INC 4 2002 2008 3520 352020 35 35202010 USA 

DIADEXUS INC 4 2001 2010 3520 352010 35 35201010 USA 

BIODEL INC 3 2005 2009 3520 352020 35 35202010 USA 
DAEWOONG 
PHARM CO LTD 3 2007 2013 3520 352020 35 35202010 KOR 
BIOSPHERE 
MEDICAL INC 3 1999 2006 3520 352010 35 35201010 USA 
GENESIS 
RESEARCH & 
DEVELOPMT 3 1999 2002 3520 352010 35 35201010 NZL 
TOYO SUISAN 
KAISHA LTD 3 1999 2012 3020 302020 30 30202030 JPN 
NEOPHARM INC-
OLD 3 1998 2009 3520 352010 35 35201010 USA 
RADIUS HEALTH 
INC 3 2007 2011 3520 352010 35 35201010 USA 

TERCICA INC 3 2004 2007 3520 352010 35 35201010 USA 
PROXIMAGEN 
GROUP PLC 3 2008 2010 3520 352010 35 35201010 GBR 

ENDOCYTE INC 3 2006 2011 3520 352020 35 35202010 USA 

ACUSPHERE INC 3 1998 2001 3520 352020 35 35202010 USA 
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INDEVUS 
PHARMACEUTICAL
S INC 3 1989 1998 3520 352010 35 35201010 USA 

HESKA CORP 3 1995 2000 3520 352020 35 35202010 USA 
LARGE SCALE 
BIOLOGY CORP 3 1997 1999 3520 352010 35 35201010 USA 
VALEANT 
PHARMACEUTICAL
S -OLD 3 1999 2008 3520 352020 35 35202010 USA 
PTC 
THERAPEUTICS INC 3 2005 2010 3520 352010 35 35201010 USA 
HARBOR 
DIVERSIFIED INC 3 2006 2009 3520 352010 35 35201010 USA 
INSPIRED CAPITAL 
PLC 3 2005 2007 4020 402010 40 40201040 GBR 
MOLECULAR 
INSIGHT 
PHARMACTLS 3 2003 2009 3520 352010 35 35201010 USA 

BIOGAIA AB 3 2007 2009 3520 352010 35 35201010 SWE 
GLOBEIMMUNE 
INC 3 2009 2012 3520 352010 35 35201010 USA 

COCENSYS INC 3 1995 1997 3520 352020 35 35202010 USA 
MERRIMACK 
PHARMACEUTICAL
S 3 2008 2012 3520 352010 35 35201010 USA 

INNOGENETICS SA 3 2000 2002 3520 352010 35 35201010 BEL 

BIOMERIEUX 3 2003 2007 3510 351010 35 35101010 FRA 

LAVIPHARM SA 3 1999 2002 3520 352020 35 35202010 GRC 
HALOZYME 
THERAPEUTICS INC 3 2006 2010 3520 352010 35 35201010 USA 
SONUS 
PHARMACEUTICAL
S INC 3 1994 2004 3520 352010 35 35201010 USA 
HELIX BIOMEDIX 
INC 3 2002 2008 3520 352010 35 35201010 USA 
ARDEA 
BIOSCIENCES INC 3 2009 2011 3520 352010 35 35201010 USA 
PANACEA BIOTEC 
LTD 3 2002 2009 3520 352010 35 35201010 IND 
MATRIX 
PHARMACEUTICAL 
INC 3 1994 1997 3520 352010 35 35201010 USA 
TOYAMA 
CHEMICAL CO LTD 3 2004 2007 3520 352020 35 35202010 JPN 

FAES FARMA SA 3 2000 2008 3520 352020 35 35202010 ESP 
BIODELIVERY 
SCIENCES INTL 3 2007 2012 3520 352020 35 35202010 USA 
XENOVA GROUP 
PLC 3 1995 2001 3520 352010 35 35201010 GBR 

LIFECELL CORP 3 1993 2000 3520 352010 35 35201010 USA 
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WILEX AG 3 2004 2006 3520 352010 35 35201010 DEU 
BANYU 
PHARMACEUTICAL 
CO LTD 3 1987 2002 3520 352020 35 35202010 JPN 
TORRENT 
PHARMACEUTICAL
S LTD 3 2002 2008 3520 352020 35 35202010 IND 

SYMRISE AG 3 2006 2012 1510 151010 15 15101050 DEU 

MEDICURE INC 3 2000 2006 3520 352010 35 35201010 CAN 
ASCENT 
PEDIATRICS INC 3 1994 1996 3520 352020 35 35202010 USA 
FENNEC 
PHARMACEUTICAL
S INC 3 2005 2011 3520 352010 35 35201010 USA 
FIVE PRIME 
THERAPEUTICS INC 3 2010 2012 3520 352010 35 35201010 USA 
VICURON 
PHARMACEUTICAL
S INC 3 2001 2003 3520 352010 35 35201010 USA 

AMERSHAM PLC 3 2000 2002 3510 351010 35 35101010 GBR 

CENTOCOR INC 3 1988 1995 3520 352010 35 35201010 USA 
THERAVANCE 
BIOPHARMA INC 3 2010 2012 3520 352020 35 35202010 CYM 

GENMAB AS 3 2007 2009 3520 352010 35 35201010 DNK 
BIOCOMPATIBLES 
INTL PLC 3 2001 2007 3510 351010 35 35101010 GBR 
NYMOX 
PHARMACEUTICAL 
CORP 3 1998 2007 3520 352010 35 35201010 BHS 

FREUND CORP 3 1996 1999 2010 201060 20 20106020 JPN 
CARDIOME 
PHARMA CORP 3 1999 2005 3520 352020 35 35202010 CAN 
LG LIFE SCIENCES 
LTD 3 2002 2011 3520 352020 35 35202010 KOR 
SPECTRUM 
PHARMACEUTICAL
S INC 3 2002 2011 3520 352010 35 35201010 USA 

GTX INC 3 2007 2011 3520 352010 35 35201010 USA 

ACRUX LTD 3 2004 2013 3520 352020 35 35202010 AUS 

CYTRX CORP 3 1993 2007 3520 352010 35 35201010 USA 
HANWHA 
CHEMICAL CORP 5 1998 2012 1510 151010 15 15101010 KOR 

ACAMBIS PLC 3 1999 2002 3520 352010 35 35201010 GBR 
LA JOLLA 
PHARMACEUTICAL 
CO 3 1999 2001 3520 352010 35 35201010 USA 
REXAHN 
PHARMACEUTICAL
S INC 2 2007 2010 3520 352010 35 35201010 USA 
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CONCERT 
PHARMACEUTICLS 
INC 2 2011 2012 3520 352010 35 35201010 USA 

LIPOCINE INC 2 2011 2012 3520 352020 35 35202010 USA 

AGENNIX AG 2 2004 2006 3520 352010 35 35201010 DEU 
PORTOLA 
PHARMACEUTICAL
S INC 2 2010 2011 3520 352010 35 35201010 USA 
AMBIT 
BIOSCIENCES CORP 2 2011 2012 3520 352010 35 35201010 USA 
RICHARDSON-
VICKS INC 2 1983 1984 3030 303020 30 30302010 USA 
SUPERNUS 
PHARMACEUTICAL
S INC 2 2007 2011 3520 352020 35 35202010 USA 
NELSON RESEARCH 
& DEV CO 2 1980 1985 2020 202010 20 20201030 USA 

CIMA LABS INC 2 1998 1999 3520 352020 35 35202010 USA 
GW 
PHARMACEUTICAL
S PLC 2 2011 2012 3520 352020 35 35202010 GBR 
BIOGLAN PHARMA 
PLC 2 1997 1999 3520 352020 35 35202010 GBR 

TANOX INC 2 1997 2000 3520 352010 35 35201010 USA 
ENANTA 
PHARMACEUTICAL
S INC 2 2010 2011 3520 352010 35 35201010 USA 

MONSANTO CO 2 1998 1999 1510 151010 15 15101030 USA 

GRIFOLS SA 2 2009 2010 3520 352010 35 35201010 ESP 
WAKAMOTO 
PHARMACEUTICAL 
CO 2 2003 2006 3520 352020 35 35202010 JPN 
AVIRAGEN 
THERAPEUTICS INC 2 2009 2011 3520 352010 35 35201010 USA 

PROBIODRUG AG 2 2011 2012 3520 352010 35 35201010 DEU 

AMBRX INC-REDH 2 2012 2013 3520 352010 35 35201010 USA 
CONNAUGHT 
BIOSCIENCES INC 2 1984 1987 3520 352010 35 35201010 CAN 

AB SCIENCE 2 2011 2012 3520 352020 35 35202010 FRA 
AXYS 
PHARMACEUTICAL
S INC 2 1996 2000 3520 352020 35 35202010 USA 
ZENYTH 
THERAPEUTICS 2 1997 2003 3520 352010 35 35201010 AUS 
JCR 
PHARMACEUTICAL
S CO LTD 2 2008 2010 3520 352020 35 35202010 JPN 

ZALICUS INC 2 2004 2005 3520 352010 35 35201010 USA 

MACROGENICS INC 2 2012 2013 3520 352010 35 35201010 USA 
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CYTOTOOLS AG 2 2005 2009 3520 352010 35 35201010 DEU 
SEQUUS 
PHARMACEUTICAL
S INC 2 1993 1997 3520 352020 35 35202010 USA 
MAP 
PHARMACEUTICAL
S INC 2 2005 2008 3520 352020 35 35202010 USA 

BIOPURE CORP 2 1999 2001 3520 352010 35 35201010 USA 
GENELABS 
TECHNOLOGIES 
INC 2 2000 2001 3520 352010 35 35201010 USA 
NIKKEN 
CHEMICALS CO 
LTD 2 1999 2000 3520 352020 35 35202010 JPN 

CERUS CORP 2 1998 1999 3510 351010 35 35101020 USA 
SCINOPHARM 
TAIWAN LTD 2 2009 2010 3520 352020 35 35202010 TWN 
CUMBERLAND 
PHARMACEUTICAL
S 2 2009 2010 3520 352020 35 35202010 USA 
SUN PHARMA 
ADVANCED 
RESEARCH 2 2008 2010 3520 352020 35 35202010 IND 
CHOONGWAE 
HOLDINGS CO LTD 1 2009 2009 3520 352020 35 35202010 KOR 
QUARK 
PHARMACEUTICAL
S -REDH 1 2005 2005 3520 352010 35 35201010 USA 

CAMPINA AG 1 1994 1994 
    

DEU 
CYDEX 
PHARMACEUTICAL
S-REDH 1 2006 2006 3520 352020 35 35202010 USA 
XENETIC 
BIOSCIENCES PLC 1 2013 2013 3520 352010 35 35201010 GBR 
ALLERGY 
THERAPEUTICS 
PLC 1 2005 2005 3520 352020 35 35202010 GBR 
SKW TROSTBERG 
AG 1 1999 1999 1510 151010 15 15101020 DEU 
SUMMIT 
THERAPEUTICS 
PLC 1 2012 2012 3520 352010 35 35201010 GBR 
ICN 
PHARMACEUTICAL
S  -OLD 1 1984 1984 3520 352020 35 35202010 USA 
ASAHI HOLDINGS 
INC 1 2012 2012 1510 151040 15 15104040 JPN 
ESPERION 
THERAPEUTICS INC 1 2012 2012 3520 352010 35 35201010 USA 

XENCOR INC 1 2011 2011 3520 352010 35 35201010 USA 

NUTRAMAX 1 1994 1994 3030 303020 30 30302010 USA 
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PRODUCTS INC 

DENTSPLY 
INTERNATIONAL 
INC 1 1981 1981 

    
USA 

NEURODERM LTD 1 2014 2014 3520 352020 35 35202010 ISR 
LIGHT SCIENCES 
ONCOLOGY-REDH 1 2005 2005 3520 352010 35 35201010 USA 

KOKEN LTD 1 1987 1987 2020 202010 20 20201060 JPN 
GIST-BROCADES 
(KONINKLIJ) NV 1 1997 1997 3510 351020 35 35102010 NLD 

EURAND NV 1 2008 2008 3520 352020 35 35202010 NLD 
XENON 
PHARMACEUTICAL
S INC 1 2012 2012 3520 352010 35 35201010 CAN 
LIXTE 
BIOTECHNOLOGY 
HOLDINGS 1 2011 2011 3520 352010 35 35201010 USA 
ONCONOVA 
THERAPEUTICS INC 1 2011 2011 3520 352010 35 35201010 USA 

SAMYANG CORP 1 2011 2011 3020 302020 30 30202030 KOR 
OMRIX 
BIOPHARMACEUTI
CALS 1 2007 2007 3520 352010 35 35201010 USA 

OSCOTEC INC 1 2011 2011 3520 352020 35 35202010 KOR 
BURCON 
NUTRASCIENCE 
CORP 1 2008 2008 1510 151010 15 15101050 CAN 

DEPUY INC 1 1997 1997 3510 351010 35 35101010 USA 

MCNEIL CORP 1 1977 1977 2010 201060 20 20106020 USA 
SIRTRIS 
PHARMACEUTICAL
S INC 1 2006 2006 3520 352020 35 35202010 USA 
ALLIANCE BOOTS 
PLC 1 2001 2001 3010 301010 30 30101010 GBR 
HEMAGEN 
DIAGNOSTICS INC 1 1994 1994 3510 351010 35 35101010 USA 
AUSPEX 
PHARMACEUTICAL
S INC 1 2012 2012 3520 352010 35 35201010 USA 
OSIRIS 
THERAPEUTICS INC 1 2006 2006 3520 352010 35 35201010 USA 
BIONUMERIK 
PHARMA -REDH 1 2002 2002 3520 352010 35 35201010 USA 
HANMI PHARM CO 
LTD 1 2011 2011 3520 352020 35 35202010 KOR 
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d) List of Firms with at least 20 Years of Data Points and Assigned to the 

“Pharmaceuticals, Biotechnology & Life sciences” Industry Group 

Firm Name 

Years 

of 

Data 

Beginn

ing 

Year 

End 

Yea

r 

GIC 

Grou

ps 

GIC 

Indust

ries 

GIC 

Secto

rs 

GIC 

Sub-

Industrie

s 

Coun

try 

HQ 

MERCK & CO 37 1977 2013 3520 352020 35 35202010 USA 
JOHNSON & 
JOHNSON 37 1978 2014 3520 352020 35 35202010 USA 
PFIZER INC 37 1977 2013 3520 352020 35 35202010 USA 
BRISTOL-MYERS 
SQUIBB CO 33 1981 2013 3520 352020 35 35202010 USA 
GLAXOSMITHKLI
NE PLC 33 1980 2014 3520 352020 35 35202010 GBR 
SCHERING-
PLOUGH 31 1978 2008 3520 352020 35 35202010 USA 
WYETH 28 1978 2008 3520 352020 35 35202010 USA 
TAKEDA 
PHARMACEUTIC
AL CO 27 1987 2013 3520 352020 35 35202010 JPN 
KYOWA HAKKO 
KIRIN CO LTD 27 1987 2013 3520 352020 35 35202010 JPN 
TEVA 
PHARMACEUTIC
ALS 26 1986 2012 3520 352020 35 35202010 ISR 
SHIONOGI & CO 
LTD 26 1987 2012 3520 352020 35 35202010 JPN 
AMGEN INC 25 1986 2013 3520 352010 35 35201010 USA 
SUMITOMO 
DAINIPPON 
PHARMA CO 25 1987 2012 3520 352020 35 35202010 JPN 
ELAN CORP PLC 25 1984 2010 3520 352010 35 35201010 IRL 
ALLERGAN INC 25 1988 2012 3520 352020 35 35202010 USA 
GENENTECH INC 25 1984 2008 3520 352010 35 35201010 USA 
NOVO NORDISK 
A/S 25 1988 2013 3520 352020 35 35202010 DNK 
CHUGAI 
PHARMACEUTIC
AL CO LTD 23 1987 2011 3520 352020 35 35202010 JPN 
ROCHE HOLDING 
AG 22 1993 2014 3520 352020 35 35202010 CHE 
BAYER AG 21 1993 2013 3520 352020 35 35202010 DEU 
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PHARMACIA & 
UPJOHN INC 21 1978 1999 3520 352020 35 35202010 USA 
IMMUNOMEDICS 
INC 20 1985 2012 3520 352010 35 35201010 USA 
ALZA CORP 20 1978 2000 3520 352020 35 35202010 USA 
VERTEX 
PHARMACEUTIC
ALS INC 20 1990 2014 3520 352010 35 35201010 USA 
WARNER-
LAMBERT CO 20 1980 1999 3520 352020 35 35202010 USA 

 

e) Selected Stata Codes 

Main Regression: 

Count dependent variable: 

xtnbreg  firm_year_patent xrd_intensity   NPL_intensity_year_firm 

NPL_intensity_year_firm_quad  ln_annual_sales  ln_emp  originality_firm_year 

radicalness_firm_year i.filing, fe 

Weighted dependent variable: 

xtnbreg  weignted_firm_year_fwd_cits7 xrd_intensity   NPL_intensity_year_firm 

NPL_intensity_year_firm_quad  ln_annual_sales  ln_emp  originality_firm_year 

radicalness_firm_year i.filing, fe 

Dependent variable: 
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Count dependent variable: 

by filing gvkey patent_no, sort: gen numberofpat1=_n 

gen numberofpat2=1 if numberofpat1 ==1 

by filing gvkey: egen firm_year_patent=count(numberofpat2) 

label variable firm_year_patent "Number of patents per year per firm" 

drop numberofpat2 numberofpat1 

Weighted dependent variable: 

*** first seven year citation 

sort filing gvkey 

by filing gvkey: egen firm_year_fwd_cits7=sum(fwd_cits7) 

*** dependent variabale (wieghted) based on 1+citation (Trajtenberg, 1990)  

gen weignted_firm_year_fwd_cits7=firm_year_patent+firm_year_fwd_cits7 

label variable weignted_firm_year_fwd_cits7 "Weighted patent per year by 7-

year patent citations" 

NPL intensity per year per firm 
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** total priorart per year per firm 

sort filing gvkey patent_id 

by filing gvkey: egen prior_art_per_year_firm=total (prior_art) 

label variable prior_art_per_year_firm "Number of Priorart per year per firm" 

** NPL intensity per year per firm 

gen 

NPL_intensity_year_firm=(NPLs_year_firm/prior_art_per_year_firm)/firm_year_patent 

label variable NPL_intensity_year_firm "NPL intensity per year per firm" 

Originality 

*** Average Originality per year per firm 

sort filing gvkey patent_id 

by filing gvkey: egen originality_firm_year=mean (originality) 

label variable originality_firm_year "Average originality per year per firm" 

Radicalness 

*** Average radicalness per year per firm 



235 
 

sort filing gvkey patent_id 

by filing gvkey: egen radicalness_firm_year=mean (radicalness) 

label variable radicalness_firm_year "Average radicalness per year per firm" 
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f) Summary Statistics 
Variable  

Mean Std. Dev. Min Max Observations 

+��,��-./ O 
4.592308 9.29794 1 137 N =4940 

 B 

 

4.537825 1 47.54054 N=631 
 W 

 

6.010186 -39.9482 94.05177 T-bar=7.82884 

+��,��-./ 
Weighted by 7-
year citations O 

39.32733 85.92369 1 1460 N=4940 
 B 

 

38.0221 1 325.973 N=631 
 W 

 

64.52015 -283.646 1248.354 T-bar=7.82884 
���,-./ O 

$276,770.30 $3,557,326.00 -$3.94 $120,000,000.00 N=4866 
 B 

 

$2,721,706.00 $0.00 $67,200,000.00 N=627 
 W 

 

$1,507,908.00 -$48,400,000.00 $52,800,000.00 T-bar=7.76077 
<��=�� ���,-/ O 

$54,700,000.00 $47,700,000.00 $10,237.56 $155,000,000.00 N=4940 
 B 

 

$36,000,000.00 $10,237.56 $155,000,000.00 N=631 
 W 

 

$38,100,000.00 -$46,400,000.00 $173,000,000.00 T-bar=7.82884 
R&D O 

$5,530.57 $20,801.85 $0.02 $453,046.00 N=4527 
 B 

 

$16,303.99 $0.10 $188,818.40 N=611 
 W 

 

$10,010.18 -$104,136.00 $309,493.60 T-bar=7.40917 
4&6 W��,-��	./ O 

16.67462 441.4469 -90.3846 25684.4 N=4367 
 B 

 

361.2019 -16.2359 8666.188 N=593 
 W 

 

327.6426 -7442.21 17034.89 T-bar=7.36425 

Employment O 
18.61606 37.55868 0.002 361.796 N=4043 

 B 

 

29.33049 0.007333 343.9965 n=567 
 W 

 

9.478934 -81.3815 117.2185 T-bar=7.13051 
7+8 W��,�-��	./ O 

0.251009 0.250072 0 1 N=4934 
 B 

 

0.175546 0 0.946429 n=631 
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 W 

 

0.192682 -0.40051 1.144114 T-bar=7.81933 

Originality O 
0.837312 0.138998 0 0.981557 N=4833 

 B 

 

0.077937 0.394531 0.962883 N=631 
 W 

 

0.122307 0.010771 1.231843 T-bar=7.65927 
��������./ O 

0.838273 0.113728 0 0.981557 N=4885 
 B 

 

0.074331 0.394531 0.962883 n=631 
 W 

 

0.095405 0.034581 1.232804 T-bar=7.74168 

Radicalness O 
0.27727 0.225914 0 1 N=4833 

 B 

 

0.129694 0 0.701256 n=631 
 W 

 

0.196969 -0.3487 1.129558 T-bar=7.65927 
4�D�E��./ O 

0.270516 0.187558 0 1 N=4885 
 B 

 

0.123775 0 0.732303 n=631 
 W 

  0.153606 -0.26529 1.121602 T-bar=7.74168 

* O=Overall; B=Between; W=Within; Dollar amounts are in millions; C; Employment is in 
thousands  
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APPENDIX B – CHAPTER THREE SUPPLEMENTAL INFORMATION 

a) Technology Fields of Orange Book Patents 

Figure 1b depicts the technology fields of the Orange Book patents. A noticeable 

issue is that only about 72% of patents are assigned to the “Pharmaceuticals” technology 

field. About 16 % of the patents have been assigned to the “Organic fine chemistry” field, 

7% to the “Medical technology”, and 2.43% to the “Biotechnology” fields. While these 

fields are related to pharmaceutical and drug products, the incidence of some technology 

fields is not intuitive; hence, taking a closer look is useful. An example of “Electrical 

machinery, apparatus, energy” patent is US 8269128 titled “Vacuum switch tube” which 

was submitted for a product with “AEROSOL, FOAM” application.81 The “Audio-visual 

technology” patent is US 8021344 titled “Medicament delivery device configured to 

produce an audible output” which is related to drug application. The 

“Telecommunications” patent US 8226610 is assigned to class A61M5 “Devices for 

bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; 

Accessories thereof, e.g. filling or cleaning devices, arm rests” and is titled “Medical 

injector with compliance tracking and monitoring”. An example for “Computer 

technology” is US 8978966 titled “Dose counters for inhalers, inhalers and methods of 

assembly thereof”, and an example for the “IT methods for management” is US 8731963 

“Sensitive drug distribution system and method”. The “Optics” patent is called 

                                                
81 The exact reason or incentives for listing patents in the Orange Book is not tackled in this study. 
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“Projection screen” (US 4057323) and was quoted with application for an antidepressant 

(Bupropion) in the 8th edition of Orange Book (1988). An example of “handling” 

technology, is US 8122917 “Apparatus and method for dispensing foam”. A number of 

patents are seemingly far removed from what is expected to be in the Orange Book for 

instance, the “Machine tools” patent is titled “Reversible micromachining locator” (US 

5944329); the “Engines, pumps, turbines” patents are titled “Apparatus for controlling 

rotational speed of prime mover of construction machine” (US 4955344) and 

“Component arrangement for outboard motor” (US 6062927); and “other special 

machines” patent is “Arrow mounted self-retracting sight” (US 4105209).  

 

Figure 1b Orange Book Patents by Technology Field (Total= 5381) 
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The “Furniture, games” patent is more intuitively titled “Balance and coordination 

exercise device” (US 4828251). Finally, examples of the “Other consumer goods” field 

are “Inhaler device” (US 8474447), and “Nicotine dispenser with polymeric reservoir of 

nicotine” (US 4800903). 
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APPENDIX C – CHAPTER FOUR SUPPLEMENTAL INFORMATION 

Survey Instrument 
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Survey Results 

a) Sources of public and private R&D funds. 

Table 1c Most Important Public R&D Funding Entities (59 responses) 

Entity Frequency 

NIH 58 

NSF 22 

DOD 16 

Foundations/Individual Trusts 7 

Gates Foundation 7 

Welcome Trust 5 

Biomedical Advanced Research and Development Authority (BARDA) 3 

DARPA 3 

Innovative Medicines Initiative (IMI) 3 

National Cancer Institute's (NCI) 3 

SBIR/STTR 3 

State Economic Development/Entities 3 

Cancer Research UK 2 

Disease-specific Foundations/Organizations 2 

Howard Hughes Medical Institute 2 

Medical Research Council (MRC) 2 

Alzheimer's Foundation 1 

American Diabetes Association (ADA) 1 

Department of Veterans Affairs 1 

FDA 1 

fNIH 1 

Funding Agencies 1 

Grant Organizations e.g. Gates Foundation 1 

Juvenile Diabetes Research Foundation (JDRF) 1 

NSA 1 

Patient Advocacy Organizations 1 

Philanthropy 1 

Public Universities 1 

Small Business Administration 1 

University Seed Funds 1 

Venture Philanthropy Partners 1 

WHO partnerships - IAVI, GAVI, MMV 1 

* A few items listed as example were separated and entered as an independent entry e.g. 
“foundation such as Gates” was separated into Foundations and Gates Foundation 

 



254 
 

Table 2c Most Important Private R&D Funding Entities (54 responses) 

Entity Frequency 

Venture Capital 25 

Big Pharma 24 

Gates Foundation 10 

Angel Investors (i.e. individuals investing own funds) 9 

Foundations 9 

JVs/Collaborations/Big Pharma Partnerships/Private Collaborations  4 

Biotech 4 

Johnson & Johnson (J&J) 4 

Philanthropies 4 

Atlas Ventures 3 

High Net Worth/Individual investors 3 

Howard Hughes Medical Institute (HHMI) 3 

Michael J. Fox Foundation 3 

Early Stage Venture/Early stage venture capital companies 2 

Flagship Pioneering 2 

Juvenile Diabetes Research Foundation (JDRF) 2 

Medium-sized Pharmaceutical/biotech companies 2 

Private Equity 2 

Third Rock Ventures 2 

Venrock 2 

Welcome Trust 2 

Alphabet (Google) 1 

Bristol-Myers Squibb  1 

Cantor Fitzgerald 1 

Celgene 1 
CurePSP (An organization offering services for neurodegenerative diseases to 
patients, researchers, etc.) 1 

Eli Lilly 1 

Kleiner Perkins Caufield & Byers 1 

Medicines for Malaria Venture (MMV) 1 

NEA 1 

Non-profit Research Institutions  1 

Novartis 1 

Novo Nordisk 1 

OrbiMed Advisors 1 

Patient Advocacy Foundations 1 

Pfizer 1 

Pharma Funds  1 

Pharma Licensees 1 
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Robert Wood Johnson Foundation (RWJF) 1 

SV Life Science Advisors 1 

Takeda 1 

Tau Consortium 1 

 

b) Most Enabling Legislations or Regulations 

One question asked respondents to list three most enabling legislations. 33 

responders had some input for this question and in total 31 legislations or Acts were 

identified from the exercise (table 3c). A responder posed the rhetorical question of if 

there were any enabling legislations. The top ranked is the Bayh–Dole Act. FDA core 

legislation, Hatch-Waxman Act, and the “Patent Law” are tied for the second rank. The 

emphasis on “Patent Law”, i.e. intellectual property protection, by responders 

corroborates the focus of previous essays on patent data and the importance of patents in 

the pharmaceutical industry. Other aforementioned legislations were identified in the 

literature and this exercise further validates their importance.  

A few surprising mentions are present: two apparently foreign referenced 

legislations (i.e. European Medicines Agency (EMA) and Health Canada), the 

international ICH council, and “Foreign Visas”. ICH was created in 1990 with the 

mission of greater harmonization of worldwide drug registration82. These responses may 

indicate the global nature of the pharmaceutical industry, immediate foreign base of a few 

respondents inadvertently included in the pool of respondents83. A few phrases were 

ambiguous (e.g. “IPO treaty” or “Health Care Law”) and could not be reconciled with 

                                                
82 http://www.ich.org  
83 As mentioned earlier US-based respondents were the intended targets.  
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any legislation. The phrase of many “generics ruling by Supreme Court” may be a fruitful 

lead but is beyond the scope of this study.  
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Table 3c Three Most Enabling Legislations / Regulations 

Act/Regulation 

Frequen

cy 

Bayh–Dole Act 8 

FDA 6 

Hatch-Waxman Act 6 

Patent Law 6 

NIH Funding Bills 5 

Orphan Drug Act 5 

Small Business Innovation Research (SBIR) program 5 

21st Century Cures Act 4 

Biologics Price Competition and Innovation Act (Biosimilars Act) 2 

European Medicines Agency (EMA) 2 

Prescription Drug User Fee Act of 1992 (PDUFA) 2 

Accelerated Approval Program 1 

American Innovation Act 1 

Antibiotic Development to Advance Patient Treatment (ADAPT) Act 1 

Breakthrough Therapy Designations 1 

Foreign Visas 1 

GAIN Act 1 
Guidance on the Codevelopment of Two or More New Investigational Drugs for Use in 
Combination  1 

Health Canada 1 

“Health Care Law” 1 
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 
Human Use (ICH) 1 

“IPO treaty” 1 

Jumpstart Our Business Startups (JOBS) Act  1 

Myriad generics ruling by supreme court 1 

NIH clinical trials publication 1 

NIH training grants 1 

NSF funding 1 

Pharmaceuticals and Medical Devices Agency (PMDA) 1 

R&D tax credit 1 

State funds for early stage research, e.g. Ben Franklin funds 1 

Tax Free IND 1 

* Those phrases in quotes could not be linked to a known regulation or Act; ICH was only 
mentioned by acronym and there is a slight chance that it is misconstrued here. 
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c) Most Burdensome Legislations or Regulations 

One question asked respondents to identify three most burdensome legislations or 

regulations. 30 responders offered some input for this question. Some issues are very 

general and some more specific (table 4c). The foreign; (i.e. EU, Canada and “Price 

Controls Abroad”) regulations raised are also of special note. As mentioned before, this 

could indicate a few respondents having primary experience abroad and/or the 

interconnected nature of the innovation systems. The latter point is visible by the 

presence of multinational pharmaceutical firms in the innovation system.  

The top ranked burdensome regulation raised is broad FDA rules and regulations 

with two respondent referring to it as “21 CFR” which stands for the “Code of Federal 

Regulations” Title 21 governing the FDA, the Drug Enforcement Administration (DEA), 

and the Office of National Drug Control Policy (ONDCP).84 While the respondents were 

not asked for details of why the regulations are burdensome, these may be symptomatic 

of discontent with a slow bureaucracy. “Patent Law” related issues are second highest 

ranked in the list. Moreover, the issue of copyright and “confidentiality in competitive 

environment” are other issues that are related to intellectual property. This is not 

surprising as intellectual property protection is a double-edged sword with positive and 

negative effects on innovation. One respondent aptly raised the “IP perverse incentives”. 

These references indicate the potential abuse of intellectual property issues in the 

pharmaceutical sector.  

                                                
84

 https://en.wikipedia.org/wiki/Title_21_of_the_Code_of_Federal_Regulations  
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The Hatch-Waxman and Bayh–Dole Acts have been mentioned as both an 

enabling and a burdensome legislation. Given the complex incentive mechanism for 

exclusivity and the abuse potential, this is an expected observation. One responder 

mentioned “Limited NCE Exclusivity Period” indicating that striking the right balance 

between exclusivity and subsequent innovation by other parties is important. 

Clinical trial related regulations also figure prominently especially if we pool 

mentions of “Animal Safety Laws” and “Clinical Trials for FDA Approval”. Stem cell 

research regulations were mentioned twice. Given the apparent popularity of gene-editing 

technologies (i.e. from list of top firms mentioned by responders), stem cell research 

restriction would naturally be raised here.  

There are traces of financing and corporate law issues in some responses (i.e. 

Corporate Tax Structure, Finance Law, and Sarbanes–Oxley Act). Section 806 of the 

Sarbanes-Oxley Act is aimed at protecting corporate whistleblowers and has been used in 

cases related to pharmaceutical firms (e.g. Bio-Rad Laboratories Inc. for violations of the 

Foreign Corrupt Practices Act, and Progenics Pharmaceuticals Inc. for inaccurate 

representations about the results of a clinical trial).85
 Exploring the contents of these 

legislation or the reason why these were deemed burdensome can be avenues for future 

research. 

 

  

                                                
85

 https://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act  
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Table 4c Three Most Burdensome Legislations / Regulations 

Barrier Frequency 

FDA 9 

Patent Law 5 

European Laws (related to reimbursement of drug costs; EMA; EUMEA) 3 

Hatch-Waxman Act 3 

Medicaid/Medicare 3 

Animal Safety Laws 2 

Clinical Trials for FDA Approval 2 

Stem Cell Research Limitations 2 
Slow funding/Underfunding at/for NIH (one comment for slow funding other for 
underfunding)  2 

American Innovation Act 1 
Anything Sans Safety and Efficacy (responder’s original comment was that safety is the 
only real priority and safety and efficacy are the foundation of regulation; hence, implying 

that other regulation is burdensome) 1 

Banning Medicare drug price negotiation 1 

Bayh–Dole Act 1 

Price Competition and Innovation Act (Biosimilars Act) 1 

Confidentiality in competitive environment 1 

Conflict of interest regulations 1 

Copyright (i.e. copyright by journal vs. open access) 1 

Corporate Tax Structure 1 

Finance Law 1 

Flawed Center for Scientific Reviews and Lack of Recourse 1 

Health Canada 1 

Health Insurance Portability and Accountability Act (HIPPA) 1 

Limited NCE Exclusivity Period 1 

Limits on Collaboration 1 

NIH Rules 1 

Physician Payments Sunshine Act (PPSA) 1 

Price Controls Abroad 1 
Regulations that discourage the adoption of new manufacturing technologies for approved 
drugs 1 

Requirements for large patient safety data bases 1 
Sarbanes–Oxley (SOX) Act (2002 Act meant to protect investors  against fraudulent 
corporate accounting) 1 

Stanford Vs Roche 1 

Underfunding of SBIR program by Congress 1 
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New Firms Identified By Survey Respondents 

One question in the survey asked respondent to “List top three new companies” in 

their area of expertise and the reason for inclusion in this list “(e.g. for new technology 

development; for new market creation; etc.)”. A “new company” was defined as 

“independent, for-profit” entity that was “established no more than 10 years ago”. 

Overall 87 entities were listed. Not all names came with the reason for inclusion; 

moreover, not all names met the instructions (one research center and one university). 

Table 5c depicts the firms cited more than once. Most are noted for new technology 

possibly because new technologies and products are more noticeable than creating new 

markets. Four out of the eight firms do not meet the age definition in the question, 

indicating some respondents did not heed the instructions; however, we may argue that 

probably respondents considered these firms noteworthy in some respect. Among the 

remaining four, the top cited is CRISPR86 Therapeutics, established in 2014 and is a gene-

editing company working on transformative gene-based medicines based on own 

proprietary CRISPR/Cas9 gene-editing platform87. CRISPR-Cas9 is a technology that 

enables genome editing by “removing, adding or altering sections of the DNA sequence”. 

It is supposed to be “faster, cheaper and more accurate” than previous techniques and has 

                                                
86 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 
87

 “CRISPR.” Accessed September 10, 2017. http://www.crisprtx.com/about-us/overview.php. 
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a broad range of potential applications.88 Editas Medicine is also focused on gene-editing 

especially exploring repairing broken genes and mutations in DNA.89 

Kite Pharma is focused on curing cancer by developing engineered cell therapies 

expressing either a chimeric antigen receptor (CAR) or a T cell receptor (TCR). They 

hope to bring a paradigm shift in cancer treatment by their dual platform.90 CAR T cells 

recognize proteins expressed on the “surface” of the cancer cell whereas TCRs can 

“recognize tumor-specific proteins on the inside of cells”.91 From these few cases, it 

seems gene-editing work is popular with the respondents.  

Finally, “Third Rock Ventures” was mentioned twice in by the respondents but it 

is a venture capital firm rather than a traditional drug discovery firm.  

  

                                                
88

 “What Is CRISPR-Cas9? | Facts | Yourgenome.org.” Accessed September 10, 2017. 
https://www.yourgenome.org/facts/what-is-crispr-cas9. 
89

 “Company Overview | Editas Medicine.” Accessed September 10, 2017. 
http://www.editasmedicine.com/company-overview. 
90

 “Kite Pharma.” Accessed September 10, 2017. http://www.kitepharma.com/. 
91

 “T Cell Receptor Technology (TCRs) | Juno Therapeutics.” Accessed September 10, 2017. 
https://www.junotherapeutics.com/the-science/tcr-technology/. 
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Table 5c Top Three New Companies Identified in the Survey More Than Once  

Name Reason 

Freq

uency 

Establ

ished 

CRISPR 

Therapeutics 
New technology (gene editing) 
 

5 2014 

Genentech New technology (drug pipeline; innovation) (Long term 

fundamental research) (Excellence in science and 
technology) 
 

4 1976 

Celgene  3 1986 
Editas Medicine New technology (leaders in genome editing)(gene editing) 4 2013 
Gilead  2 1987 
GSK (Glaxo) New technology (Strimvelis, Cell & gene therapy) 

 
2 2000 

Kite Pharma New technology (expanding T-cell therapy) 2 2009 
Third Rock 
Ventures 

New companies in new areas; Innovative funding models 
 

2 2007 

* Statements in parentheses represent what respondents mentioned 
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