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Abstract

LATTICE POLYNOMIALS AND POLYTOPES

Jacob M. Farinholt, PhD

George Mason University, 2020

Dissertation Director: Dr. James Lawrence

A polyhedron, expressed in its canonical form as the intersection of half-spaces, is im-

plicitly defined with respect to a particular “component-wise” partial order. This partial

order on Rn is a distributive lattice. While a polyhedron with this partial order may not

be a sublattice of Rn, it may still nevertheless retain some of its lattice structure. This

thesis characterizes and classifies polyhedra in Rn according to how much lattice struc-

ture is retained. This is done by investigating their closure under convex clones of lattice

polynomials. In addition, we investigate the join irreducibles of join semilattice polytopes,

and show that they necessarily form faces of the polytope. We then characterize various

attributes of these “join irreducible faces.”



Chapter 1: Introduction

1.1 Background

Linear programming refers to the process of optimizing a linear function over Rn given a

set of linear constraints. The canonical form of a linear program is given by the following:

Minimize f(x)

Subject to Ax ≤ b,

where x = (x1, x2, . . . , xn)t is a vector in Rn, f(x) =
∑n

i=1 cixi for some vector c =

(c1, c2, . . . , cn)t ∈ Rn, A is an m × n real matrix, and b is a vector in Rm. Many differ-

ent problems can be characterized as linear programs, including mission planning, resource

optimization, network flow, and so forth; and hence the application area is wide.

The collection of constraints in a linear program define a convex polyhedron in Rn. The

component-wise partial order on Rn imparts a natural lattice structure on this space. While

previous efforts have characterized the collection of polyhedra that completely preserve this

lattice, this dissertation provides initial progress on generalizing these results by attempting

to determine just how much structure from the lattice is preserved by a given polyhedron.

On the other hand, lattice programming, an area of operations research pioneered by

Arthur Veinott, concerns itself with characterizing how an optimal solution to a program

changes as global parameters change whenever the problem domain is a lattice [17]. This

often provides valuable qualitative information without significant computational overhead.

More precisely, lattice programming aims to determine when an optimal solution s = s0t ∈

Rn of the program mins∈Lt f(s, t) is increasing in the parameter t ∈ Rm, where Lt is a
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lattice, and f(s, t) is a subattitive real function, that is, it satisfies

f(a ∨ b) + f(a ∧ b) ≤ f(a) + f(b), (1.1)

for all a,b ∈ Rn × Rm.

Linear programming overlaps with lattice programming only when the polytope that

defines the linear constraints is also a sublattice of Rn. As we shall see later (and as was

proved originally by Veinott [16]), this only occurs under rather strict conditions, and hence

the role of lattice programming within linear programming is rather limited.

Nevertheless, it is of interest to the author to consider how much of the lattice structure

is preserved by a polytope in Rn. While the global constraints of a lattice program are

(not surprisingly) assumed to be a lattice, in certain applications, the full structure of the

lattice may not be utilized. If we relax the condition that the constraints form a lattice,

then we may find that certain aspects of lattice programming may have a wider range of

applicability within the framework of linear programming.

To that end, this thesis is dedicated largely to the study of polytopes, their closure under

various lattice polynomials, and characterizations therein. Before introducing any new

results, we provide necessary background material in the remaining sections of this chapter.

Chapter 2 investigates the clone lattice over Rn and motivates the study of convex geometry

to characterize certain properties of this lattice. Chapter 3 completely characterizes the set

of all convex clones of lattice polynomials on any finitely-generated free distributive lattice.

Using the motivation from Chapter 2 and the results from Chapter 3, Chapter 4 then shows

exactly when a convex lattice polynomial clone over Rn can be represented by a convex

polyhedron, or more precisely, when a polyhedron is closed under a lattice polynomial

clone. In Chapter 5 we step away from clone theory, and restrict ourselves to the study of

join semilattice polytopes and their join irreducibles. Finally, in Chapter 6 we will discuss

conclusions and possible avenues of future research.
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1.2 Polytopes and Posets

Recall that a partially ordered set, or poset, is a set A, along with a binary relation (called

the partial order) ≤ that is reflexive, antisymmetric, and transitive. That is to say:

(i) For all x ∈ A, x ≤ x,

(ii) For all x, y ∈ A, if x ≤ y and y ≤ x, then x = y,

(iii) For all x, y, z ∈ A, if x ≤ y and y ≤ z, then x ≤ z.

Any totally ordered subset of a poset is called a chain. A poset (A,≤) satisfying the

property that for any pair x, y ∈ A there exists a greatest lower bound (called the meet

and denoted x ∧ y) is called a meet semilattice. The meet semilattice is called complete if

every arbitrary subset (not just pairs) of elements of A has a greatest lower bound in A.

Likewise, one satisfying the property that for any pair x, y ∈ A there exists a least upper

bound (called the join and denoted x ∨ y) is called a join semilattice. The join semilattice

is complete if every arbitrary subset of A has a least upper bound in A. A poset that is

both a meet and join semilattice is called a lattice. A lattice is complete if it is both a

complete join semilattice and a complete meet semilattice. In particular, every finite lattice

is trivially complete. As another example, we have the following known result, which is a

common exercise in introductory courses on this topic, the proof of which we include for

completeness:

Proposition 1.2.1. Every complete meet semilattice with a greatest element is a complete

lattice.

Proof. Let S be a complete semilattice with greatest element, and for each x ∈ S, let

↑ x := {y ∈ S | x ≤ y}. Now let B be any subset of S, and let Bu denote the upper bounds

of B, that is, Bu := {x ∈ S | x ≥ b for all b ∈ B} = ∩b∈B ↑ b, which is necessarily nonempty
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since S contains a greatest element. But then

∨
B =

∧
Bu =

∧(⋂
b∈B
↑ b

)
. (1.2)

Hence S is closed under arbitrary joins, making S a complete lattice.

Alternatively, a lattice may be equivalently defined algebraically as a set A with two

binary operations, ∧ and ∨, satisfying the following three identities for all a, b, c ∈ A:

commutativity :

a ∨ b = b ∨ a

a ∧ b = b ∧ a,
(1.3)

associativity :

a ∧ (b ∧ c) = (a ∧ b) ∧ c

a ∨ (b ∨ c) = (a ∨ b) ∨ c,
(1.4)

and absorption:

a ∧ (a ∨ b) = a ∨ (a ∧ b) = a. (1.5)

Another property that lattices satisfy, which can be derived from repeated applications of

the absorption identity is idempotence:

a ∧ a = a

a ∨ a = a.

(1.6)

To see that idempotence is derived from the absorption identity, note that the absorption

identity holds for all b ∈ A, and hence we may let b = a ∨ c for some c ∈ A. Then by the
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absorption identity we have:

a = a ∨ (a ∧ (a ∨ c)) = a ∨ a. (1.7)

The identity a = a ∧ a can be obtained similarly.

Proposition 1.2.2. These binary operators give rise to a partial order from the two equiv-

alent relations:

a ≤ b ⇔ a ∧ b = a ⇔ a ∨ b = b. (1.8)

Proof. We will explicitly show this for the meet operator. The argument for the join operator

follows a nearly identical argument. To see that this partial order is reflexive, observe that

a = a ∧ a⇔ a ≤ a. (1.9)

To see that it is antisymmetric, observe that x ≤ y ⇔ x = x ∧ y and y ≤ x ⇔ y = x ∧ y.

And hence

x = x ∧ y = y. (1.10)

To see that it is transitive, observe that x ≤ y ⇔ x = x ∧ y and y ≤ z ⇔ y = y ∧ z, and

hence

x ≤ y ⇔ x = x ∧ y

= x ∧ (y ∧ z)⇔ y ≤ z

= (x ∧ y) ∧ z

= x ∧ z ⇔ x ≤ z.

(1.11)

Algebraically, a semilattice may alternatively be defined as a set A with a single binary

operator ∗ that is commutative, associative, and idempotent.
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Let L be a lattice, and let a, b ∈ L be distinct elements. The element b is said to cover

a if a ≤ b and if a ≤ c ≤ b for some c ∈ L, then either c = a or c = b. A lattice is bounded

if it contains a greatest element 1 and least element 0. The atoms of a bounded lattice L

are the elements that cover 0, and the coatoms are the elements covered by 1.

For any lattice L = (L,∧,∨), there always exists a unique dual lattice L∗ = (L,∨,∧)

obtained by reversing the partial order. That is a ≤ b in L if and only if b ≤ a in L∗. The

meet operator in L becomes the join operator in L∗, and conversely. Likewise, if L contains

a 0 and 1 element, then the atoms of L are the coatoms of L∗ and the coatoms of L are the

atoms of L∗.

Let (A,≤) be any poset and let B ⊆ A. Then clearly (B,≤) is a poset, with partial

order inherited from A. However, if (A,≤) is a (semi-)lattice and B ⊆ A, it is generally

not the case that (B,≤) is also a (semi-)lattice. We note that, for simplicity, if the partial

order is clear, we will often denote a poset (A,≤) simply by the set A.

Recall that a topological space is a set T and a collection τ of open subsets of T (the

topology) satisfying:

• The empty set and T are both in τ ,

• τ is closed under finite intersection, and

• τ is closed under arbitrary union.

Observe that the union is idempotent, commutative, and transitive, and hence the topology

is a complete join semilattice, with join given by union. Moreover, the topology contains a

least element, φ, and hence by the dual of Proposition 1.2.1, it follows that the topology is

necessarily a complete lattice.

Another example, which will play a prominent role throughout the remainder of this

dissertation, is the following. Consider the set Rn with the component-wise partial order.

That is, for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we have x ≤ y if and only if (iff)

xi ≤ yi for all 1 ≤ i ≤ n. It is straightforward to see that there exist well-defined meet

and join given by x ∧ y = (z1, . . . , zn) and x ∨ y = (v1, . . . , vn) where zi = min(xi, yi) and
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Figure 1.1: An example of a meet and join of two elements in R2 under the component-wise
partial order.

vi = max(xi, yi) for all 1 ≤ i ≤ n (see Figure 1.1). We see, then, that Rn with this partial

order is, in fact, a lattice, which we will denote Ln. With a little effort, one can show that

this lattice is distributive, that is, it satisfies one (and hence both) of the following two

(equivalent) properties: For all x,y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (1.12)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). (1.13)

However, Ln is not complete. Consider the line l in L2 given by the set x = y. It is a totally

ordered, but unbounded subset of Ln. So Ln contains neither
∧
l nor

∨
l.

A polyhedron in Rn is defined as the intersection of finitely many closed half-spaces in

Rn. If in addition, this intersection is bounded, then the polyhedron is called a polytope.

Equivalently (albeit quite surprisingly), a polytope may also be defined as the convex closure

of finitely many points in Rn.

For any vector a ∈ Rn and real number b, the closed half-space Ha,b is given by the set

of all x ∈ Rn such that 〈a,x〉 ≤ b. But then if a polyhedron P in Rn is the intersection of
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closed half-spaces, P = Ha1,b1 ∩Ha2,b2 ∩ · · · ∩Hak,bk , then we may write

P = PA,b = {x ∈ Rn | Ax ≤ b}, (1.14)

where A is a k × n matrix satisfying At = [a1,a2, . . . ,ak], and b = (b1, b2, . . . , bk)
t ∈ Rk.

That is to say, the columns of At are the vectors ai that define the half-spaces, and the

entries in b are the associated bi. We note in particular that the partial order ≤ in Equation

(1.14) is the component-wise partial order described above. Hence, one may be led to believe

that there might be some relationship between polyhedra and this particular partial order

that may be leveraged to characterize and classify polyhedra, or conversely, we may be able

to utilize polyhedra to better understand and characterize new order-theoretic attributes of

this partial order on Rn.

With a goal of doing precisely this, we are interested in analyzing polyhedra within the

component-wise partial order (Rn,≤) on Rn defined above. More precisely, let P be any

polyhedron in Rn. Then since P ⊆ Rn, it follows that (P,≤) is a well-defined partially

ordered set. We now have an entirely new avenue from which to study polyhedra. What

properties of the poset (Rn,≤) carry over to (P,≤)? What are necessary and sufficient

conditions on P such that (P,≤) also forms a lattice?

Let us give an example. Define a cone C in (R3,≤) by the collection of vectors x =

(x1, x2, x3) satisfying x1, x2, x3 ≥ 0 and

x1 + x2 ≥ x3

x1 + x3 ≥ x2 (1.15)

x2 + x3 ≥ x1.

(Recall that a cone C ⊆ Rn is a convex set satisfying the condition that, for any x,y ∈ C,

αx + βy ∈ C for all α, β ≥ 0.) It is a straightforward exercise to see that C is closed under
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component-wise join: If x,y ∈ C, then so is x∨y. However, C is not closed under component-

wise meet. For example (1, 6, 7) and (6, 1, 7) are both in C, but (1, 6, 7)∧(6, 1, 7) = (1, 1, 7) 6∈

C. Thus, C is a subsemilattice of L3 (viewed as a join semilattice), but not a sublattice of

L3. One is naturally led to ask what other closure properties remain on C? To answer this

question, we turn to universal algebra.

1.3 Algebras on Polyhedra

In what follows, we will use the term “algebra” in the very general sense given by Birkhoff

[2] which served as a prequel to the area now known as universal algebra. Namely, we define

an algebra A = [A,F ] to be a pair, where A is some nonempty set and F a collection of

finitary operations (maps) onto A. More precisely, let I ⊆ N+ be some (possibly infinite)

subset of the positive integers, and for each k ∈ I let F (k) be some collection of maps

f (k) : Ak → A. Let F =
⋃
k∈I F

(k). Then [A,F ] defines an algebra. We say that maps of

the form f (k) have “arity” k, or are “k-ary” maps on A.

For example, any lattice L is an algebra with two commutative and associative bi-

nary operations: f(x, y) = x ∧ y and g(x, y) = x ∨ y that satisfy the absorption rela-

tion f(x, g(x, y)) = g(x, f(x, y)) = x. Similarly, a semilattice is an algebra with only one

commutative and associative binary operation. A complemented lattice is a bounded lat-

tice with an additional unary operation c(x) = ẋ satisfying the relation f(c(x), x) = 0

and g(c(x), x) = 1 for all x ∈ L. A group with 0 is an algebra with an associative bi-

nary operation f(x, y) = x ∗ y and a unary operation g(x) = −x satisfying the relation

f(x, g(x)) = f(g(x), x) = 0. Consequently this notion of an algebra is an abstraction of

many general algebraic concepts.

Likewise, the notion of a homomorphism between algebras naturally generalizes the

standard group, ring, lattice, etc. definitions of a homomorphism. Namely, if A = [A,FA]

and B = [B,FB] are two algebras, then a map h : A → B is a homomorphism if for each

9



fA ∈ FA and corresponding fB ∈ FB of, say, arity k, we have:

h(fA(a1, a2, . . . , ak)) = fB(h(a1), h(a2), . . . , h(ak)). (1.16)

Given an algebra A = [A,F ], a subalgebra T ⊆ A is a subset T ⊆ A that is closed with

respect to the operations of F , or F -closed. In the example in the previous section, we saw

that the cone C is not a subalgebra of the algebra [R3, {∧,∨}] obtained from the lattice

L(3). However, C is a subalgebra of [R3,∨]. Thus, more generally, to say that a polyhedron

P satisfies some closure properties on a partially ordered set (Rn,≤) is equivalent to saying

that there is some algebra on Rn defined with respect to the partial order that admits

a subalgebra on P. It is interesting to consider whether the algebraic properties of a

polyhedron either determine or are determined by its combinatorial properties.

For the sake of comparison, consider the following example. Let O be the poset cone in

L3 given by the collection of x = (x1, x2, x3) ∈ R3 having all nonnegative entries:

x1 ≥ 0

x2 ≥ 0 (1.17)

x3 ≥ 0

This cone corresponds to the nonnegative orthant in R3,

O = Cone ((1, 0, 0), (0, 1, 0), (0, 0, 1)) . (1.18)

It is not too difficult to verify that O is closed under both meet and join, and hence is a

sublattice of L3. Compare this with the cone C defined in the previous section, which is

only a subsemilattice of L3. However, we may equivalently write C as

C = Cone ((1, 1, 0), (0, 1, 1), (1, 0, 1)) . (1.19)

10



Figure 1.2: The cone C from Eq. (1.20).

In many ways, C and O are similar, even though their algebras are different. For

example, they are both cones generated by three linearly independent vectors in R3, and

their face posets are isomorphic. However, by writing both as systems of linear inequalities,

we see that there are some distinguishing features. To make the representation of C more

consistent with O, we may rewrite it as

x1 + x2 − x3 ≥ 0

x1 − x2 + x3 ≥ 0 (1.20)

−x1 + x2 + x3 ≥ 0.

The left-hand side of each inequality defining O has only one variable, whereas the left-

hand side of each inequality defining C in Eq. (1.20) has three variables. All of the variables

defining O have positive scalars, whereas in the above representation of C each row has a

variable with a negative scalar. It is perhaps the linear relations defining the polyhedra

that determine the properties of their algebra. Indeed, in what follows, we will show that

it is in fact only the signs of these scalars that determine when a given poset polyhedron is

a sublattice of Ln.
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There is yet another direction that can be pursued in studying algebras on polyhedra.

Thus far, we have considered the cases in which we have imposed an algebra on Rn and then

studied and compared the algebraic properties that are inherited by various polyhedra in

Rn. Alternatively, given a poset polyhedron, one may consider classifying it according to its

universal algebra. That is to say, can we leverage the (combinatorial, geometric) properties

of a given poset polyhedron P to infer a characterization/classification of all algebras on

P? While we do not hope to provide such an analysis in its entirety in this thesis, it is our

hope that some of the initial groundwork towards such an analysis can be provided herein.

To perform such an analysis, we must leverage an area of universal algebra known as clone

theory. Before we do this, however, we provide some historical context.

1.4 Post’s Logic System

In 1920, a paper by Emil Post [11] developed an algebraic framework for the study of

Boolean logic. This initial result was greatly expanded by him in another paper in 1941

[13]. In that paper, it was shown that logical propositions on a system of variables could be

uniquely identified by their corresponding truth tables. As such, these propositions do not

depend on their particular representation as compositions of basic propositional functions,

with two propositions (that is, Boolean functions) on n variables being equivalent if the

corresponding truth tables for these functions were identical.

For example, it is a straightforward exercise to verify that the two Boolean functions

f(x, y) and g(x, y) on two variables x, y are equivalent, where f(x, y) = (y ∧ ¬ x) ∨ (x ∧

y ∧ ¬ x) ∨ (¬ y ∧ ¬ x) and g(x, y) = ¬ x (here, the notation “¬ x” means the complement

of x in a Boolean lattice). The right-hand side of both of the above equations is called a

proposition or formula in logic terms. Post’s defining observation that motivated the entire

paper was the fact that, because the two propositions generate the exact same truth tables,

they correspond to the same function on two variables (though, obviously, in the above

example the two functions on two variables end up actually only depending on the first
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variable - a property not obvious from the formulation of f(x, y) but trivial to see once its

equivalence with g(x, y) is established).

His work had a profound influence on both logic and universal algebra, as it ultimately

demonstrated that the underlying structure of propositional functions coincided with the

free Boolean algebra Ω generated by a countably infinite set X = {x1, x2, . . . } of variables.

While Post’s results were written for logicians and suffer from a lack of standard nomen-

clature in lattice theory and universal algebra at the time they were written, other authors

have since made the mathematical formalism more explicit [1]. Separately, Post developed

a more general m-valued logic system [12] (that is, a logic system whose propositions may

have an integral number m ≥ 2 of different truth values as opposed to the standard 2-valued

“true,” “false” Boolean system), which begged the question of whether the algebraic struc-

ture in the Boolean case could be applied more generally. The underlying algebra of these

m-valued systems was developed by Rosenbloom [15] and further refined by Epstein [6].

Of particular note in [13] was that, in addition to mapping logic propositions to functions

on a Boolean algebra, he further classified these functions into what he called distinct

“classes,” and demonstrated that these classes formed a lattice ordered by inclusion.

1.5 Universal Algebras and Clones

Generalizing Post’s original results to more general algebras has become an area of consid-

erable investigation in the field of universal algebra, and sometime in the 1960s this area of

research became known as “clone theory.” More specifically, we have the following definition

[8]:

Definition 1.5.1. For a set A and integer n ≥ 0, let O
(n)
A denote the set of n-ary operations

on the set A, and set OA :=
⋃
n>0O

(n)
A . A subset C ⊆ OA is called a clone if it contains all

of the projection mappings πki : Ak → A : (x1, x2, . . . , xk) 7→ xi, and is closed with respect

to functional composition (also sometimes referred to as the “superposition” of operations):
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For f ∈ O(n)
A

⋂
C and f1, f2, . . . , fn ∈ O(k)

A

⋂
C, the k-ary operation f(f1, f2, . . . , fn) defined

by setting

f(f1, f2, . . . , fn)(x1, x2, . . . , xk) := f(f1(x1, . . . , xk), . . . fn(x1, . . . , xk)), (1.21)

is also in C.

The base set A in the above definition is usually referred to as the signature set. Clones

provide a way to study the behavior of algebras independent from their signatures. Almost

all research in the study of clones are with respect to algebras having a finite signature set

|A| <∞. Some well-known examples of clones are:

• For any signature set A, the set OA is a clone, as is the set JA of all projections on

A. These are called the full clone and trivial clone, respectively.

• Given an algebra A = (A,F ), where F is a family of finitary operations on A, the set

of finitary homomorphisms
⋃
n>0 Hom(An,A) is a clone on A, called the centralizer

clone of A.

• A function f on A is said to be idempotent if f(x, x, . . . , x) = x for all x ∈ A. The

collection of all idempotent functions is a clone on A.

• Given a partially ordered set (A,≤), all operations on A monotone in each variable

with respect to that partial order form a clone, called the clone of that partial order.

It is known that, on any given domain of signatures A, the set of all clones of A forms a

complete lattice with respect to inclusion, denoted LA. This lattice is clone theory’s main

object of study. For |A| = 1 the lattice has only one element. For |A| = 2 we have the case

characterized by Post. The lattice is countably infinite, has 8 atoms and 5 coatoms, and is

infinite only because of the existence of 8 infinite chains. Interestingly, however, moving to

|A| ≥ 3, very little is known about the corresponding lattice, as it is no longer countable,

and there are no nontrivial lattice identities satisfied by LA [5]. Even less still is known
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about the cases when A has infinite cardinality. A relatively recent review article on clones

on infinite sets can be found in [7].
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Chapter 2: The Clone Lattice, Galois Connections, and

Polyhedra

Recall from Section 1.1 that one of the primary goals of this dissertation is to characterize

how much of the lattice structure from Rn with the component-wise partial order may be

preserved by a given polyhedron. In order to do this, we will leverage clone theory, but

we would like to make the connection between clones on Rn and polyhedra a bit more

explicit. This chapter will do this by leveraging a tool used heavily in clone theory - the

Galois connection Inv - Pol between sets of finitary functions and sets of relations. With

this structure in place, we can directly relate polyhedra to clones that preserve them.

2.1 Closure Operators and Closure Systems

Before we get into the main result of this section, we will take a slight detour to discuss

closure operators and closure systems in more detail. These are well-known concepts, dating

back to at least 1936 [3], but we review them here for completeness. In what follows, we

will use the notation P(S) to denote the power set of S, that is, the collection of all subsets

of S.

Definition 2.1.1. A closure system on a set S is a family F ⊆ P(S) of subsets of S closed

under arbitrary intersection and containing S.

Definition 2.1.2. A closure operator h on a set S is a map h : P(S)→ P(S) that satisfies,

for all A,B ∈ P(S):

(1) A ⊆ h(A) (extensive)

(2) A ⊆ B ⇒ h(A) ⊆ h(B) (isotone)
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(3) h(h(A)) = h(A) (idempotent)

It is well known that closure operators and closure systems are cryptomorphic. More

precisely, for each closure operator h on a set S, there exists a unique corresponding closure

system Fh on S given by the fixed points of h:

Fh = {A ∈ P(S) | h(A) = A}. (2.1)

Conversely, for each closure system F on S, we may define a corresponding closure operator

hF on S satisfying, for any subset K ⊆ S,

hF (K) =
⋂
{A ∈ F | K ⊆ A}. (2.2)

It is straightforward to see that the elements of a closure system, ordered under inclusion,

form a complete meet-semilattice, with partial order given by set inclusion. By definition, a

closure system on a set S contains a greatest element, namely, S, and hence by Proposition

1.2.1, a closure system is also a complete lattice.

2.2 Galois Connections

A powerful tool for studying the clone lattice is Galois connections. Most notably, Galois

connections were used to characterize the set of all coatoms of the clone lattice when the

signature set A was finite [14]. These are well-known concepts, and we will briefly review

them here. A brief introduction on this material can be found in [4], and the topic is also

covered in [9].

Definition 2.2.1. Let X and Y be nonempty sets. A pair of operators α : P(X ) → P(Y)

and β : P(Y)→ P(X ) is called a Galois connection between X and Y if for all X,X1, X2 ⊆

X and Y, Y1, Y2 ⊆ Y, the following hold:

(1) X1 ⊆ X2 ⇒ α(X1) ⊇ α(X2),
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(2) Y1 ⊆ Y2 ⇒ β(Y1) ⊇ β(Y2), and

(3) X ⊆ βα(X) and Y ⊆ αβ(Y ).

It is relatively easy to see that Galois connections give rise to closure operators.

Proposition 2.2.2. Let α − β be a Galois connection between sets X and Y. Then βα :

P(X )→ P(X ) and αβ : P(Y)→ P(Y) are closure operators on X and Y, respectively.

Proof. That βα and αβ satisfy the extensive and isotone properties of closure operators

follows immediately from definition. We need only show idempotence. To do this, we first

show that for all Y ⊆ Y, we have βαβ(Y ) = β(Y ). To see this, note that by property (3)

of the definition of Galois connections, we have that Y ⊆ αβ(Y ). But then from property

(2) of Galois connections it follows that βαβ(Y ) ⊆ β(Y ). But by applying property (3) to

β(Y ) we get that β(Y ) ⊆ βαβ(Y ), giving us the desired equivalence. Now for any X ⊆ X ,

let Y = α(X). Then since βαβ(Y ) = β(Y ), it follows that βαβα(X) = βα(X), and hence

βα satisfies idempotence, as we wanted to show. Similarly αβ satisfies idempotence, and

hence both βα and αβ are closure operators on X and Y, respectively.

Suppose α − β is a Galois connection between X and Y as above. Let LβαX and LαβY

be the closure systems corresponding to the closure operators βα and αβ, respectively. As

we have already shown, a closure system, ordered under inclusion, is a complete lattice.

A well-known result about Galois connections is that these lattices are connected. More

precisely:

Theorem 2.2.3 ([4]). The lattices LβαX and LαβY are dually isomorphic. The dual isomor-

phisms are α : LβαX → LαβY and β : LαβY → LβαX .

We now introduce the notion of a relation.

Definition 2.2.4. Let A be any set. A k-ary relation ϕ on A is a subset ϕ ⊆ Ak. The set

of all k-ary relations on A is denoted R
(k)
A . The collection of all finitary relations on A is
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given by

RA :=
⋃
k∈N+

R
(k)
A . (2.3)

Let f ∈ OA be an n-ary function on A. Then for any m ∈ N+, we may extend f to a

function f : (Am)n → Am that acts component-wise. Namely for each m-tuple a in Am we

denote by a(i) the i-th component of a. Then for a1,a2, . . . ,an ∈ Am we define

f



a1(1) a2(1) · · · an(1)

a1(2) a2(2) · · · an(2)

...
...

...

a1(m) a2(m) · · · an(m)


:=



f(a1(1), . . . ,an(1))

f(a1(2), . . . ,an(2))

...

f(a1(m), . . . ,an(m))


. (2.4)

Definition 2.2.5. Let f ∈ OA be an n-ary map on a set A and let ϕ ∈ RA be a k-ary

relation on A. Then f is said to preserve ϕ, or equivalently that ϕ is an invariant relation

or that f is a polymorphism of ϕ if for all a1,a2, . . . ,an ∈ ϕ we have

f(a1,a2, . . . ,an) ∈ ϕ. (2.5)

We are now ready to define the two particular Galois connections of interest to us:

Pol - Inv.

Definition 2.2.6. For any F ⊆ OA and R ⊆ RA we define:

Inv F := {ϕ ∈ RA | ∀ f ∈ F, f preserves ϕ} (2.6)

Pol R := {f ∈ OA | ∀ ϕ ∈ R, f preserves ϕ}. (2.7)

As we mentioned at the beginning of this chapter, we are interested in using closure

operators as a means to better characterize properties of clones. We now have the structure

to do this. The universal algebra OA on a set A and the set RA of all relations on A will
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play the role of X and Y in the Galois connection Pol - Inv. Observe that, for any set of

relations R ⊆ RA on a set A, the set Pol R is a clone. Consequently, for any subset F ⊂ OA,

its closure Pol Inv F is a clone. Unfortunately, however, it is known [8] that, except when

|A| < ∞, not every clone can be expressed in such a way. Nevertheless, because every set

of relations determines a clone, it may be illuminating to characterize classes of clones by

sets of relations that generate them under Pol.

Indeed, our goal is not to characterize all clones. Rather, in the next chapter we will

be restricting ourselves to convex clones of lattice polynomials. Thankfully, restricted sets

M⊆ X may inherit much of the Galois α− β closure:

Theorem 2.2.7 ([4]). If M⊆ X , then the operator pair α− βM given by

α : P(M)→ P(Y), X 7→ α(X) (2.8)

βM : P(Y)→ P(M), Y 7→ M∩ β(Y ), (2.9)

forms a Galois connection between M and Y. A subset M ⊆ M is Galois-closed under

βMα if and only if M = M ∩ X for some X ∈ LβαX . Furthermore LαβMY ⊆ LαβY and

αβαβM = αβM.

2.3 Clones on Rn and Polyhedra

In what follows, our signature set, or base set A on which we are defining finitary maps

f ∈ OA and relations ϕ ∈ RA, will be Ln = (Rn,≤) (recall that this is the space Rn with

the component-wise partial order). Thus, for simplicity, we will drop the subscript A, using

the notation O := OA and R := RA. Recall that a polyhedron PA,b in Rn is defined with

respect to an m× n matrix A and vector b ∈ Rm:

PA,b := {x ∈ Rn | Ax ≤ b}. (2.10)
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Consequently every polyhedron is a relation on Ln. That is, PA,b ∈ R, and hence we may

consider clones on Ln of the form Pol PA,b. This is the collection of all finitary maps on

Ln that preserve PA,b. We see now why clones provide the necessary key to characterizing

the extent to which a given polyhedron preserves the lattice structure on Ln.

Consider the following example. Let d = (1, 1)t ∈ R2. Then the closed half-space Hd,0

is the collection of all x ∈ R2 satisfying x1 + x2 ≤ 0. Observe that for any pair a,b ∈ Hd,0,

their component-wise meet a ∧ b is also in Hd,0 (See Fig. 2.1).

Now let f : R2 → R be the min function on R; that is, f(a, b) = min(a, b). Note that f

is a binary map on R, and Hd,0 defines a relation on R2. We may extend f as in (2.4) to a

map from (R2)2 to R2. Let a = (a1,a2)
t and b = (b1,b2)

t be two elements of Hd,0. Then

we may consider:

f

a1 b1

a2 b2

 =

f(a1,b1)

f(a2,b2)

 =

min(a1,b1)

min(a2,b2)

 = a ∧ b. (2.11)

As we can see, the binary min function on pairs of elements in R acts as the component-

wise meet operator over relations in R2. As we have already discussed, Hd,0 is preserved by

component-wise meet, and hence f ∈ Pol Hd,0. Moreover, every relation in Inv Pol Hd,0 is

necessarily preserved by component-wise meet. In other words, a necessary condition for a

polyhedron PA,b to be in Inv Pol Hd,0 is that it be preserved by component-wise meet.

We see, then, that the Inv-Pol connection between finitary functions and relations on R

is a powerful tool that allows us to both characterize the collection of functions that preserve

a polyhedron, and classify polyhedra according to the functions that preserve them.

The fact that functions on R operate component-wise on relations in Rn immediately

gives us the following useful result.

Lemma 2.3.1. Let f : Rk → R be any k-ary function on R. If f preserves relation Rm in

Rm and relation Rn in Rn, then f preserves the relation Rm ×Rn in Rm+n.
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Figure 2.1: The closed half-space x1 + x2 ≤ 0. The map that defines the component-wise
meet operation preserves this half-space.

Let us look at another example. Consider the polytope given in Figure 2.2. It is easily

seen to be preserved by neither component-wise meet nor component-wise join. However,

as we will see, it is preserved by the ternary “median” function

m(x1,x2,x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3), (2.12)

where the meet and join are the component-wise meet and join operators. In fact, we may

completely characterize all polyhedra that are preserved by the median function m.

In order to do this, we will first state the following result, a much stronger version of

which will be stated and proved in Chapter 4 (Corollary 4.1.5) and so we will omit the proof

here.

Lemma 2.3.2. Suppose a polyhedron P is preserved by the median function m. Then every

affine shift k + P is also preserved by m.

With the above Lemma, we may now show the following.

Lemma 2.3.3. Suppose x,y, z ∈ R2. Then m(x,y, z) ∈ conv(x,y, z).
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Figure 2.2: A polytope in R2 that is preserved by neither component-wise meet nor
component-wise join.

Proof. By Lemma 2.3.2, we may assume without loss of generality that x = (0, 0)t. Let

us suppose, without any loss of generality, that x1 ≤ y1 ≤ z1. Then we may write y1 =

(1 − k1)x1 + k1z1 for some k1 ∈ [0, 1]. Now, if x2 ≤ y2 ≤ z2 or z2 ≤ y2 ≤ x2, then

m3(x,y, z) = y and hence is in conv(x,y, z). Supposing this is not the case, then, we have

four possible remaining orderings on x2, y2, and z2. We will explicitly work through one

of the cases here, but the remaining three cases follow an almost identical argument. Let

us suppose that x2 ≤ z2 < y2, so that m(x,y, z) = (y1, z2)
t. Note that, if z1 = 0, then

x1 = y1 = z1 and hence, m(x,y, z) = z ∈ conv(x,y, z), so let us assume that z1 > 0. Note

also that we may write z2 = (1− k2)x2 + k2y2 for some k2 ∈ [0, 1). We want to show that

there exist a1, a2, a3 ≥ 0,
∑

i ai = 1, such that a1x + a2y + a3z = m(x,y, z). Thus, we need

to find such an a1, a2, a3 that satisfy

a1x1 + a2y1 + a3z1 = y1 (2.13)

a1x2 + a2y2 + a3z2 = z2. (2.14)
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Since by assumption we have x1 = x2 = 0 the above simplifies to

a3z1 = (1− a2)y1 (2.15)

a2y2 = (1− a3)z2. (2.16)

Recalling that y1 = (1 − k1)x1 + k1z1 for some k1 ∈ [0, 1] and z2 = (1 − k2)x2 + k2y2 for

some k2 ∈ [0, 1), we may reduce the above further:

a3z1 = (1− a2)k1z1 (2.17)

a2y2 = (1− a3)k2y2. (2.18)

Since z1, y2 6= 0 by assumption, we reduce the above further:

a3 = (1− a2)k1 (2.19)

a2 = (1− a3)k2. (2.20)

Solving, we find that a3 = 1− 1−k1
1−k1k2 and a2 = (1−k1)k2

1−k1k2 . It is easily seen that for all k1 ∈ [0, 1]

and k2 ∈ [0, 1), we have a2, a3 ≥ 0 and a2 + a3 ≤ 1. Letting a1 = 1 − (a2 + a3), we obtain

the desired result. The remaining cases to consider are (z2 ≤ x2 < y2), (y2 < x2 ≤ z2), and

(y2 < z2 ≤ x2). Following the same approach as above for these cases, we may conclude

that, in all cases, m(x,y, z) ∈ conv(x,y, z), as we wanted to show.

We immediately have:

Corollary 2.3.4. Every convex polyhedron in R2 is preserved by m.

Leveraging Lemma 2.3.1, we may now begin characterizing polyhedra in Rn for n > 2

that are preserved by m.
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Proposition 2.3.5. Let P be a convex polyhedron in R2 and let Q = P × Rn−2 in Rn.

Then Q is preserved by m.

Proof. This result follows immediately from Corollary 2.3.4 and Lemma 2.3.1.

We may now prove the following:

Theorem 2.3.6. Let m be the median function from Eq. (2.12), and let P be any poly-

hedron. Then P ∈ Inv m if and only if it is the intersection of the inverse images of its

projections onto the two-dimensional coordinate planes.

Proof. First let us suppose that a convex polyhedron P is the intersection of the inverse

images of its projection to the two-dimensional coordinate planes. Then P is a finite inter-

section of polyhedra of the form given in Proposition 2.3.5, and hence is closed under m.

Conversely, suppose P is preserved by m. We want to show that P is the intersection of

the inverse images of its projection to the two-dimensional coordinate planes. By Corollary

2.3.4, the result holds trivially when P resides in R2. We prove the more general case when

P resides in Rn for any n ≥ 2 inductively. That is, suppose the inductive hypothesis holds

for n = k for some k > 2. Now consider the case of n = k+1. Let D denote the intersection

of the inverse images of the projection of P to the two-dimensional coordinate planes. We

want to show that P = D. Clearly, P ⊆ D. Let x ∈ D. Let Πî denote the coordinate

projector that excludes the i-th coordinate (not to be confused with the projectors from

clone theory). Observe that Πî[P] is a convex polyhedron in Rk, and since P is preserved

by m, so is Πî[P]. By the inductive hypothesis, it follows that Πî(x) ∈ Πî[P]. Then there

exists some vector pi ∈ P such that for all l ∈ [n]\{i}, pil = xl. We may identify vectors

pj and pk in P defined similarly, where i, j, k are all distinct. But m(pi,pj ,pk) = x. Since

P is preserved by m by assumption, it follows that x ∈ P, and hence D ⊆ P. Thus, P = D,

concluding the proof.

As we can see, the median function is a ternary function that is constructed from com-

positions of component-wise meet and join operators. Moreover, there are many polyhedra
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that are preserved by this function, while being preserved by neither component-wise meet

nor join. Consequently, it is possible for polyhedra to preserve some of the structure from

the component-wise lattice Ln = (Rn,≤) without necessarily being a sublattice of Ln. In

the next chapter, we will make precise what is meant by “lattice structure.” In particular,

we will introduce the concept of lattice polynomials, and consider the collection of convex

clones generated by lattice polynomials.
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Chapter 3: Convex Clones of Lattice Polynomials on a Free

Distributive Lattice

Given a lattice L and variables x1, x2, . . . , xn ∈ L, recall that a lattice polynomial in the

variables x1, x2, . . . , xn is defined as follows:

(1) x1, x2, . . . , xn are lattice polynomials,

(2) if p and q are lattice polynomials in x1, x2, . . . , xn, then so are p ∨ q and p ∧ q, and

(3) every lattice polynomial is formed by finitely many applications of (1) and (2).

Now let FD(n) be the free distributive lattice on n generators g1, g2, . . . , gn. This is the

lattice of equivalence classes of lattice polynomials over n generators, where two lattice

polynomials are equivalent if they define the same function Ln → L on every distributive

lattice L. Hence, for any distributive lattice L, it follows that the set FD(n) forms a clone

over L, which we will denote by LP.

Recall that an upper semi-ideal, or up-set, of a lattice L is any subset S ⊆ L such that

if p ∈ S and q ≥ p, then q ∈ S. The lower semi-ideals, or down-sets, are defined dually. A

composition ideal on FD(n) is a semi-ideal that is also a clone. More precisely, an upper

composition ideal is a set J ⊆ FD(n) which

(1) contains the generators gi,

(2) is an upper semi-ideal, and

(3) is closed under functional composition.

Let S ⊆ FD(n), and let 〈S〉↑ denote the smallest (upper) composition ideal containing

S. Observe that 〈∅〉↑ = {p ∈ FD(n) | ∃ i ∈ [n] such that p ≥ gi} is the smallest upper
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composition ideal. For k = 1, . . . , n− 1 define

hk :=
∨

1≤i<j≤k+1

(gi ∧ gj). (3.1)

For k = 1, . . . , n− 1, let J↑k = 〈hk〉↑, and define J↑n = 〈∅〉↑. In [10], it was shown that every

upper composition ideal of FD(n) is of the form J↑k for k = 1, . . . , n.

It follows from duality that the lower composition ideals are given by J↓k , where

J↓n = 〈∅〉↓ := {p ∈ FD(n) | ∃ i ∈ [n] such that p ≤ gi}, (3.2)

and for k = 1, . . . , n− 1, Jk = 〈fk〉↓, where

fk :=
∧

1≤i<j≤k+1

(gi ∨ gj). (3.3)

Observe that for k = 1, h1 is the meet operator and f1 is the join operator, and hence

h1 < f1. Then the upper composition ideal J↑1 includes all lattice polynomials larger than

meet, as well as their closure under composition. We see then, that J↑1 is the clone of

all lattice polynomials on FD(n). Likewise, J↓1 is also the clone of lattice polynomials on

FD(n), so they define the same convex clone. Observe also that J↓n ∩ J↑n is simply the set

of generators, or equivalently, the projectors onto the generators.

In the case k = 2, by distributing join over meet we see that

h2 = (g1 ∧ g2) ∨ (g1 ∧ g3) ∨ (g2 ∧ g3) (3.4)

= (g1 ∨ g2) ∧ (g1 ∨ g3) ∧ (g2 ∨ g3) (3.5)

= f2. (3.6)
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The lattice polynomial h2 = f2 is commonly referred to as the median. Now, we observe

that hk−1 ≤ hk for all 1 < k ≤ n− 1. This is because we may always express hk as

hk = hk−1
∨
i∈[k]

(gi ∧ gk+1). (3.7)

By duality, it follows that fk ≤ fk−1 for all 1 < k ≤ n− 1. Thus, we have shown:

Lemma 3.0.1. The lattice polynomials hk and fk defined in (3.1) and (3.3), respectively,

satisfy the order relation

fn−1 ≤ fn−2 ≤ · · · ≤ f2 = h2 ≤ · · · ≤ hn−2 ≤ hn−1. (3.8)

We also have the following result that applies to all lattice polynomials.

Lemma 3.0.2. Lattice polynomials in FD(n) are monotone under composition.

Proof. Let p, q ∈ FD(n) and suppose p ≤ q. Then for any f1, f2, . . . , fk ∈ FD(n), it

follows that p(f1, f2, . . . , fk) ≤ q(f1, f2, . . . , fk). Furthermore, if fi ≤ ri for all i ∈ [k], then

q(f1, f2, . . . , fk) ≤ q(r1, r2, . . . , rk).

Definition 3.0.3. Let L be any poset and let S ⊆ L be any subset of L. We say that S is

convex in L if for all s1, s2 ∈ S with s1 ≤ s2, the set [s1, s2]L is also in S, where

[s1, s2]L := {f ∈ L | s1 ≤ f ≤ s2}. (3.9)

A clone of lattice polynomials in FD(n) will be called convex if it is convex as a subset

of FD(n).

Proposition 3.0.4. Let C be any convex clone of lattice polynomials in FD(n). Then

C = 〈C〉↑ ∩ 〈C〉↓.

Proof. Clearly C ⊆ 〈C〉↑ ∩ 〈C〉↓. Let f ∈ (〈C〉↑ ∩ 〈C〉↓). Lemma 3.0.2 implies that every

element in 〈C〉↑\C is greater than or equal to some element in C, and every element in
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〈C〉↓\C is less than or equal to some element in C. Consequently, either f ∈ C or there

exists a c1, c2 ∈ C such that c1 ≤ f ≤ c2. But since C is convex in FD(n) by assumption,

the latter case then implies that f ∈ C, and hence 〈C〉↑∩〈C〉↓ ⊆ C. Thus C = 〈C〉↑∩〈C〉↓,

as we wanted to show.

The next result follows trivially from Proposition 3.0.4 and the containment property

J↑n ⊆ · · · ⊆ J↑1 and J↓n ⊆ · · · ⊆ J↓1 .

Corollary 3.0.5. All convex clones of lattice polynomials in FD(n) can be expressed as

J↑i ∩ J
↓
k for i, k ∈ [n].

We note trivially that, since J↓1 = J↑1 , it follows from the containment property that

J↓i = J↓i ∩ J
↑
1 , and J↑k = J↓1 ∩ J

↑
k for all i, k ∈ [n].

In Figure 3.1 we draw the entire lattice of convex clones of the lattice polynomials on

the free distributive lattice FD(n). Let C be any collection of lattice polynomials. Then

we use the notation 〈C〉c to denote the convex lattice polynomial clone generated by C. We

have the following result:

Corollary 3.0.6. Let p be a lattice polynomial that is minimally in J↓i ∩ J
↑
k (that is, p ∈

J↓i ∩ J
↑
k , and there is no convex lattice polynomial clone C ⊂ J↓i ∩ J

↑
k containing p). Then

J↓i ∩ J
↑
k = 〈{p}〉c.

Proof. On the one hand, clearly 〈{p}〉c ⊆ J↓i ∩J
↑
k . On the other hand, since all convex lattice

polynomial clones are of the form J↓i ∩J
↑
k by Corollary 3.0.5, it follows that 〈{p}〉c = J↓r ∩J↑s

for some r ≤ i and s ≤ k. By our minimality assumption, the result follows.

While little is known about the full clone lattice over nearly any signature set with more

than two elements, what we have shown is that when the signature set is a distributive lat-

tice, then it is possible to completely characterize all convex subclones of the clone of lattice

polynomials over this set. In the next chapter, we investigate combinatorial and geometric

methods of characterizing these clones within the framework of lattice polynomials in Rn.
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Figure 3.1: The lattice of convex clones of lattice polynomials on the free distributive lattice
FD(n).
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Chapter 4: Convex Lattice Polynomial Clones on Rn

In the previous chapter, we showed that all convex lattice polynomial clones on a distributive

lattice are the intersection of finitely generated composition ideals. In this chapter, we

will alternatively characterize each convex lattice polynomial clone C over R by instead

characterizing the set of all polyhedra in Inv C. By a lattice polynomial over R, we are

specifically referring to finitary maps p : R × R × · · · × R → R that can be expressed as a

finite composition of pairwise min and max operations. Note that, given a relation S ⊆ Rn,

then a k-ary lattice polynomial on R is extended to a k-ary lattice polynomial on Rn as in

Eq. (2.4). In so doing, f is a lattice polynomial over Rn with the component-wise partial

order. Let LP be the set of all such lattice polynomials over R. Then a set P of polyhedra

is said to determine the clone C ⊆ LP if PolLP P = C, where PolLP is the restriction of

the set of all finitary maps on R to the set LP of lattice polynomials.

Recall from Chapter 2 that any polyhedron P in Rn is a relation on Ln. In keeping

with the same terminology from Chapter 2, we will say that a k-ary map f : (Ln)k → Ln

preserves P, or that P is preserved by f , if for any x1,x2, . . . ,xk ∈ P, f(x1,x2, . . . ,xk) ∈ P.

4.1 Problem Space Reduction

In order to find representative polyhedra, we first provide several results on the properties

of lattice polynomials that we will leverage to reduce our problem space significantly. We

provide the following definition.

Definition 4.1.1. Let A and B be two convex sets in Rn. We say that A∩B is a nontrivial

intersection if dim(A ∩B) = min(dim(A), dim(B)).
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Proposition 4.1.2. Suppose f : (Rn)k → Rn satisfies

f [h(x1), h(x2), . . . , h(xk)] = h[f(x1,x2, . . . ,xk)], (4.1)

for every positive homothety h. Let P be any polyhedron in Rn. Then P is preserved by f

if and only if each bounding half-space of P is preserved by f .

Proof. The first direction is trivial. If each half-space is preserved by f , then so is their

finite intersection. Conversely, let Ha,b = {x ∈ Rn | 〈a,x〉 ≤ b} be any half-space in Rn. We

will show that if there is any set of vectors x1, . . . ,xk ∈ Ha,b such that f(x1, . . . ,xk) 6∈ Ha,b

and Bε is any ε-ball having nontrivial intersection with Ha,b at its boundary, then Bε∩Ha,b

contains such a set.

Let x1, . . . ,xk be defined as above. Let q ∈ Ha,b be on the boundary of the half-space,

and define the half-space S := {x ∈ Rn | 〈a,x〉 ≤ 0}, so that Ha,b = q + S. Then we

may expand each xi = q + si for some si ∈ S. By our assumption on f , it follows that

f(x1, . . . ,xk) = q + f(s1, . . . , sk), and hence f(x1, . . . ,xk) 6∈ Ha,b ⇔ 〈a, f(s1, . . . , sk)〉 > 0.

Now, choose an appropriate q∗ on the boundary of Ha,b and δ > 0 such that each

q∗ + δsi ∈ Bε ∩Ha,b. Then f [(q∗ + δs1), . . . , (q
∗ + δsk)] = q∗ + δf(s1, . . . , sk), and hence

〈a, f [(q∗+ δs1), . . . , (q
∗+ δsk)]〉 = b+ δ〈a, f(s1, . . . , sk)〉 > b. Hence f [(q∗+ δs1), . . . , (q

∗+

δsk)] 6∈ Ha,b.

It follows that if Ha,b is not preserved by f , then the nontrivial intersection of Ha,b with

any other half-space necessarily contains a collection of vectors that violate the preservation.

It follows from contraposition that if a polyhedron is preserved by f , then so are each of

the half-spaces defining it.

We now show that lattice polynomials all share the property of the function f given in

the above proposition.
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Lemma 4.1.3. Let f be any t-ary lattice polynomial and h any positive homothety. Then

f [h(x1), h(x2), . . . , h(xt)] = h[f(x1, . . . ,xt)]. (4.2)

Proof. Observe that for all k,x,y ∈ Rn and α > 0,

k + (x ∧ y) = {ki + min(xi, yi)}i (4.3)

= {min((ki + xi), (ki + yi))}i (4.4)

= (k + x) ∧ (k + y). (4.5)

Likewise,

k + (x ∨ y) = (k + x) ∨ (k + y). (4.6)

In a similar manner, we observe that

α(x ∧ y) = {αmin(xi, yi)}i (4.7)

= {min(αxi, αyi)}i (4.8)

= (αx) ∧ (αy). (4.9)

Likewise,

α(x ∨ y) = (αx) ∨ (αy). (4.10)

Since any lattice polynomial is a finite composition of meets and joins, the above properties

extend to any lattice polynomial.

It follows from Proposition 4.1.2 and Lemma 4.1.3 that we may infer the lattice poly-

nomial polymorphisms of an arbitrary polyhedron, that is, the lattice polynomials that

preserve the polyheldron, by studying instead the lattice polynomial polymorphisms of

its bounding half-spaces. In fact, because lattice polynomials act independently on each

34



coordinate, we may generalize Lemma 4.1.3 further in a way that permits a further re-

duction to considering only lattice polynomial polymorphisms of half-spaces of the form

Sa := {x ∈ Rn | 〈a,x〉 ≤ 0}, where a ∈ {−1, 0, 1}n. We provide the following generalization

of scalar multiplication.

Definition 4.1.4. Let x,y ∈ Rn. The Schur product of x and y is given by xy :=

{xiyi}ni=1 ∈ Rn. That is to say, the Schur product of two vectors is the component-wise

product of the two.

Following a nearly identical proof to that of Lemma 4.1.3, we have the following corollary.

Corollary 4.1.5. Let f be any t-ary lattice polynomial. Then

f [(k + βx1), . . . , (k + βxt)] = k + βf(x1, . . . ,xt), (4.11)

for all k,x1, . . . ,xt ∈ Rn and β ∈ (Rn)+.

Let β ∈ (Rn)+ (that is, β has all strictly positive entries). Let β−1 := {β−1i }ni=1. Observe

that, for any a,x ∈ Rn,

〈a,x〉 = 〈aβ, β−1x〉. (4.12)

Now, given any a ∈ Rn, define the vector qa ∈ (Rn)+ as

qai :=


|ai|−1, if ai 6= 0,

1, otherwise.

(4.13)

It then follows from Corollary 4.1.5 that

〈a, f(x1, . . . ,xt)〉 ≤ 0 (4.14)

⇔ 〈aqa,q
−1
a f(x1, . . . ,xt)〉 ≤ 0 (4.15)

⇔ 〈aqa, f(q−1a x1, . . . ,q
−1
a xt)〉 ≤ 0, (4.16)
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for all x1, . . . ,xt ∈ Rn and any t-ary lattice polynomial f .

Observe that aqa ∈ {−1, 0, 1}n. It follows that the lattice polynomial polymorphisms of

a half-space Sa are determined by the sign vector associated with a. Consequently, we may

reduce ourselves further to considering only lattice polynomial polymorphisms of half-spaces

of the form Sa = {x ∈ Rn | 〈a,x〉 ≤ 0}, where a ∈ {−1, 0, 1}n.

4.2 Some Representatives

Let us now consider several half-spaces of the form Sa = {x ∈ Rn | 〈a,x〉 ≤ 0}, where

a ∈ {−1, 0, 1}n. We note that, since there are n2 distinct convex clones in FD(n), but 3n

sign vectors (that is, vectors in {−1, 0, 1}n), not every sign vector corresponds to a unique

convex clone.

Proposition 4.2.1. The half-space S−1 in Rn given by x = (x1, x2, . . . , xn)t ∈ Rn such

that x1 + x2 + · · ·+ xn ≥ 0 is preserved by hk if and only if k ≥ n.

Proof. Recall that

hk :=
∨

1≤i<j≤k+1

(xi ∧ xj) (4.17)

is a polynomial defined on k+1 variables x1,x2, . . . ,xk+1 ∈ Rn. If hk(x1,x2, . . . ,xk+1) = y,

then each yj is given by the second largest value from the (possibly multi-) set {x1,j , x2,j , . . . , xk+1,j},

where the notation xi,j refers to the j-th entry in xi.

Let us first suppose that k ≥ n. We now show that there necessarily exists an index

i ∈ [k+ 1] such that xi ≤ y. To see this, first note that for each j ∈ [n], there are n vectors

xi1 ,xi2 , . . . ,xin such that xi1,j , xi2,j , . . . , xin,j ≤ yj . Let us suppose for contradiction that

there exists no index i ∈ [k + 1] such that xi ≤ y. It follows that for each vector xi there

exists at least one j such that the entry xi,j > yj . But because each yj is the second largest

element in the set {x1,j , x2,j , . . . , xk+1,j}, it follows that for each j there exists exactly one

vector xi such that xi,j > yj . However, there are k + 1 > n vectors but j only runs from 1
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through n, so this cannot occur.

Hence there necessarily exists a vector xi from the set {x1,x2, . . . ,xk+1} such that

xi ≤ y. Now, since
∑n

j=1 xi,j ≥ 0 and each yj ≥ xi,j , it follows that
∑n

j=1 yj ≥ 0 as well, so

that S−1 is preserved by hk whenever k ≥ n.

Conversely, for any positive integer k < n, it is always possible to find a collection of

k + 1 vectors x1,x2, . . . ,xk+1 in Rn such that there exists no index i ∈ [k + 1] satisfying

xi ≤ hk(x1,x2, . . . ,xk+1). This is done by assuring that for each vector xi there exists at

least one j such that the entry xi,j > yj , where y = hk(x1,x2, . . . ,xk+1). Consequently,

S−1 is not closed over hk for all k < n, concluding the proof.

The following is a straightforward generalization of the above proposition.

Corollary 4.2.2. Let a ∈ {−1, 0, 1}n contain no positive entries and m strictly negative

entries. Then Sa is preserved by hk if and only if k ≥ m.

By duality, we also have the following result.

Corollary 4.2.3. Let a ∈ {−1, 0, 1}n contain no negative entries and m strictly positive

entries. Then Sa is preserved by fk if and only if k ≥ m.

Corollaries 4.2.2 and 4.2.3 only address some of the polymorphisms of the half-space Sa

when a contains only non-positive or non-negative entries. The following result shows us

that, whenever k ≥ 2, these results completely determine the invariance of Sa under hk and

fk for all a ∈ {−1, 0, 1}n.

Proposition 4.2.4. Suppose a has at least one positive entry and at least two negative

entries. Then Sa is not preserved by hk for all k ≥ 2. Equivalently, if a has at least one

negative entry and at least two positive entries, then Sa is not preserved by fk for all k ≥ 2.

Proof. We will prove the first part of the proposition, as the second part follows from duality.

Without loss of generality, let us suppose the first three entries of a are given by −1, −1,

and 1, respectively. Then define the vectors x1 = (1, 0, 1, 0, . . . , 0)t, x2 = (2, 0, 2, 0, . . . , 0)t,
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and x3 = (0, 2, 2, 0, . . . , 0)t. And if k > 2, we let x4 = · · · = xk+1 = (0, 0, . . . , 0)t. We

see that x1, . . . ,xk+1 ∈ Sa. Calculating, we find that hk(x1, . . . ,xk+1) = (1, 0, 2, 0, . . . , 0)t,

which is not in Sa.

Thus far we have provided conditions under which a half-space is preserved by either

hk or fk for each k. If a half-space is preserved by a set of lattice polynomials, then it is

also preserved by their functional composition. Thus, if a half-space is preserved by, say hk

for some k, then it is also preserved by the clone 〈hk〉 generated by hk. Note that this is

slightly different than saying it is preserved by the convex clone generated by hk and it is

certainly different than saying it is preserved by J↑k = 〈hk〉↑, the upper composition ideal

generated by hk, which is the closure under composition of 〈hk〉 with all lattice polynomials

p greater than or equal to some lattice polynomial in 〈hk〉. However, we are able to resolve

this with the following result.

Lemma 4.2.5. Let a be any sign vector with only nonpositive entries. If p is any lat-

tice polynomial polymorphism of the half-space Sa, then Sa is preserved by 〈p〉↑, the upper

composition ideal generated by p.

Dually, let a be any sign vector with only nonnegative entries. If p is any lattice polyno-

mial polymorphism of the half-space Sa, then Sa is preserved by 〈p〉↓, the lower composition

ideal generated by p.

Proof. This follows from the fact that for any half-space Sa for which a contains only

nonpositive entries, if x ∈ Sa and y ≥ x, then y ∈ Sa. Since p ≤ q, we have that

p(x1,x2, . . . ,xk) ≤ q(x1,x2, . . . ,xk) for all x1,x2, . . . ,xk ∈ Sa. But since p(x1,x2, . . . ,xk) ∈

Sa by assumption, it follows that q(x1,x2, . . . ,xk) ∈ Sa.

As already discussed, since Sa is preserved by p, it is necessarily preserved by the clone

〈p〉. Now let q be a lattice polynomial in 〈p〉↑, the upper composition ideal generated by p.

Then by monotonicity of lattice polynomials, it follows that there is a lattice polynomial

r ∈ 〈p〉 such that r ≤ q. Since Sa is preserved by r, it follows that it is preserved by q.
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We now have enough to prove our culminating result of this chapter, which characterizes

many classes of polyhedra preserved by convex clones of lattice polynomials.

Theorem 4.2.6. Let PA,b be a polyhedron in Rn. Then we have the following.

(1) For all k ∈ [n], PA,b ∈ Inv J↑k if and only if for each row a of A, either

(a) a has one positive entry and at most one negative entry, or

(b) a has no positive entries and at most k negative entries.

Dually, PA,b ∈ Inv J↓k if and only if for each row a of A, either

(a’) a has one negative entry and at most one positive entry, or

(b’) a has no negative entries and at most k positive entries.

(2) Suppose PA,b can be expressed as PA,b = Q ∩ R for some Q ∈ Inv J↓i and some

R ∈ Inv J↑j . Then PA,b ∈ Inv J↓r ∩ J↑s for all r ≥ i and s ≥ j.

(3) PA,b ∈ Inv J↓2 ∩ J
↑
2 if and only if each row a of A has at most two nonzero entries.

Proof. Not that for part (1) we only need to prove the first part (up until “Dually”), as

the second part follows from duality. Thus, to prove part (1), first note that a polyhedron

P is preserved by J↑1 = J↓1 if and only if P is a sublattice of Rn, the characterization of

which was proved by Veinott [16]. Namely, PA,b is preserved by J↑1 = J↓1 if and only if each

row a of A has at most one positive entry and at most one negative entry. Of course, by

the containment properties J↑k+1 ⊆ J↑k and J↓k+1 ⊆ J↓k , if any bounding half space of PA,b

is preserved by J↑1 = J↓1 , it is necessarily preserved by all other convex lattice polynomial

clones. Hence, if case (a) of part (1) holds for a given row ai of A, then the bounding half-

space Hai,bi is preserved by all convex lattice polynomial clones. If case (b) holds in part

(1), then the result follows from Corollary 4.2.2. Conversely, if PA,b is preserved by J↑k , then

in particular it is preserved by hk. By Corollary 4.2.2, it follows that if a row a in A has no
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positive entries, then it has at most k negative entries, and it follows from Proposition 4.2.4

that if a row a in A has one positive entry then it can have at most one negative entry and

if it has more than one negative entry, then it can have no positive entries. Consequently,

either (a) or (b) are satisfied, concluding the proof for part (1).

For part (2), observe that J↓r ∩ J↑s ⊆ J↓i ∩ J
↑
j for all r ≥ i and s ≥ j, and hence

Inv J↓i ∩ J
↑
j ⊆ Inv J↓r ∩ J↑s for all r ≥ i and s ≥ j. Hence it suffices to show that PA,b ∈

J↓i ∩ J
↑
j , as the rest follows from containment. Now, let p be any k-ary lattice polynomial

in J↓i ∩ J
↑
j and x1,x2, . . . ,xk ∈ PA,b. Then p(x2, . . . ,xk) ∈ Q since p ∈ J↓i and Q is

preserved by J↓i . Likewise p(x2, . . . ,xk) ∈ R since p ∈ J↑j and R is preserved by J↑j . Hence

p(x2, . . . ,xk) ∈ Q ∩R. Thus, PA,b ∈ Inv J↓i ∩ J
↑
j .

To prove part (3), suppose first that PA,b is preserved by J↓2 ∩ J
↑
2 . Then in particular

it is preserved by h2 = f2. Let a be any row of A and consider the bounding half-space

Sa. Note that Corollary 4.2.2 implies that if a row a of A has no positive entries, then

the bounding half-space Sa is preserved by h2 = f2 if and only if it has at most 2 negative

entries. Corollary 4.2.3 implies that if a row a of A has no negative entries, then Sa is

preserved by f2 = h2 if and only if it has at most 2 positive entries. From Proposition 4.2.4

it follows that if a has exactly one negative entry, then it can have at most one positive

entry, and if a has exactly one positive entry, then it can have at most one negative entry.

Hence, if Sa is preserved by J↓2 ∩J
↑
2 , it follows that a must have at most two nonzero entries.

Conversely, if a has at most two nonzero entries, then if both are positive or both

negative, it follows from Corollaries 4.2.2 and 4.2.3 that Sa is preserved by f2 = h2, and

hence preserved by the clone 〈h2〉. Moreover, from Lemma 4.2.5, we see that if there are

lattice polynomials p, q ∈ 〈h2〉 and some lattice polynomial s such that p ≤ s ≤ q, then Sa is

also preserved by s (if both entries are negative, this follows from the fact that s ≥ p and if

both entries are positive, this follows from the fact that s ≤ q) and hence Sa is preserved by

the convex lattice polynomial clone generated by f2 = h2, which is given by J↓2 ∩J
↑
2 . If there
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are two nonzero entries of opposite sign, or only one nonzero entry, then Sa is preserved by

J↑1 = J↓1 and hence preserved by all lattice polynomial clones, thus concluding our proof of

part (3).

As an interesting aside, we note that a consequence from the proof of part (3) of the above

theorem is that a polyhedron is preserved by h2 if and only if it is preserved by the convex

lattice polynomial clone generated by h2. In turn, this implies that the characterization of

polyhedra in part (3) is in fact equivalent to the class of polyhedra described in Theorem

2.3.6.

Unfortunately, we do not currently have enough tools to determine whether the converse

of part (2) in Theorem 4.2.6 holds. This ultimately points to some of the limitations of

using Galois Pol-Inv connections over infinite sets. As mentioned in Section 2.2, for every

set R of relations, the set Pol R is a clone, but not every clone may be expressed as Pol R

for some set of relations R. What this means here is that the most we can say is that

J↓i ∩ J
↑
j ⊆ PolLP Inv J↓i ∩ J

↑
j , and hence we cannot leverage the dual isomorphism of

Theorem 2.2.3. In particular, the lattice of lattice polynomial clones on R may not even be

a sublattice of the lattice of Galois closed sets of lattice polynomial clones on R.

We note that part (3) of Theorem 4.2.6 is a particular exception to the above discussion.

That is, part (3) is equivalent to saying the converse of part (2) holds in the case of J↓2 ∩J
↑
2 .

In general, however, this is likely not the case. There is no reason to believe that, simply

because a half-space Sa is preserved by the convex lattice polynomial clone 〈C〉c = 〈C〉↓ ∩

〈C〉↑, it is therefore necessarily preserved by either 〈C〉↓ or 〈C〉↑. Indeed, suppose p ∈ J↓i ∩J
↑
j

is chosen as in Corollary 3.0.6 so that J↓i ∩ J
↑
j = 〈{p}〉c = 〈{p}〉↓ ∩ 〈{p}〉↑. We note that, in

particular, contrary to the i = j = 2 case, for i, j > 2, a half-space Sa cannot be preserved

by both fi and hj . While being preserved by either hj or fi suffices, we cannot yet rule out

the possibility that there is an Sa that is preserved by 〈{p}〉c but is preserved by neither fi

nor hj .
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While Theorem 4.2.6 is not a complete characterization of all polyhedra preserved by

convex lattice polynomial clones, this nevertheless significantly generalizes the results of

Veinott [16], and we hope this may serve as a first step in generalizing lattice programming

and broadening the applicability of this area to linear programming.
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Chapter 5: Join Irreducibles of Polytopes

In this chapter, we wish to characterize polytopes in Rn by their join irreducible elements.

We will once again restrict ourselves to considering the component-wise join, as in previous

chapters. Unless specified otherwise, when a polytope or polyhedron is referred to as a “join

semilattice,” it is to be assumed that the join operator is the component-wise join. That

is, it is to be assumed that the polytope or polyhedron is a subsemilattice of Ln = (Rn,≤).

Before characterizing the join irreducibles, it is helpful to recall their definition:

Definition 5.0.1. Let L be a join semilattice. An element x ∈ L is join irreducible if

whenever x = y ∨ z in L, then either x = y or x = z. In a meet semilattice, meet

irreducibles are defined dually.

We note that the term “join irreducible” is not synonymous with minimal. An element

x is minimal in L if there exist no other y ∈ L such that y < x. Clearly, every minimal

element is join irreducible, but the converse is not true in general.

We note that Theorem 14 of [16] provides an irreducible representation of polyhedral

sublattices of Rn. In that article, the representation was called irreducible because the

elements of the representation (the tangent half-spaces defining the polyhedral sublattice)

were both meet and join irreducible in the lattice of closed convex sublattices of Rn. In this

chapter, we are interested instead in characterizing the elements that are join irreducible in

a join semilattice polytope P. Thus, while the objects of study in [16] and this Chapter are

similar (polyhedral sublattices vs. polyhedral join semilattices), the irreducible elements

characterized in [16] and those characterized in this Chapter differ significantly.

In what follows, we will establish the following notation. Let S be any subset of Rn.

Denote by Pi1,i2,...,ik(S) the coordinate projection of S onto its i1, i2, . . . , ik coordinates,

and let P−1i1,i2,...,ik
(Pi1,i2,...,ik(S)) denote the inverse image of the coordinate projection. For
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simplicity, if k = n − 1, then we may choose to express Pi1,i2,...,ik(S) ≡ Pĵ(S), where

{j} = [n]\{i1, i2, . . . , ik}.

With this notation, we may now characterize necessary and sufficient conditions for an

element of a join semilattice polytope to be join irreducible. An important observation

for the remainder of this chapter is that, if P is any polytope in Rn and s ∈ P, then

P−1
ĵ

(Pĵ({s})) ∩P is a chain, that is, a totally ordered subset, and since P is bounded, this

chain has a least element, min{P−1
ĵ

(Pĵ({s})) ∩ P}.

5.1 A Characterization of Join Irreducibles

We begin this section with the following result, once again noting that the join operator of

interest is the component-wise join.

Proposition 5.1.1. Let P be a polytope in Rn that is also a join semilattice. If an element

k in P is join irreducible, then it is the least element in P−1
î

(Pî({k}))∩P for some i ∈ [n].

Proof. Let x be the least element in P−1
î

(Pî({k}))∩P and y the least element in P−1
ĵ

(Pĵ({k}))∩

P for some i, j ∈ [n]. Since x ≤ k and y ≤ k, and x and y each agree with k on n − 1

coordinates, it is straightforward to see that k = x ∨ y. But by assumption, k is join

irreducible, and hence either x = k or y = k.

An almost immediate consequence of the above proposition is the following proposition,

which completely characterizes the join irreducibles in a polytope.

Proposition 5.1.2. Let P be a polytope in Rn that is also a join semilattice. An element k

in P is join irreducible in P if and only if there is at most one coordinate i ∈ [n] for which

k 6= min{P−1
î

(Pî({k})) ∩ P}.

Proof. If k is join irreducible in P then the result follows immediately from Proposition

5.1.1. Conversely, suppose there exists at most one coordinate i ∈ [n] for which k 6=
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min{P−1
î

(Pî({k}))∩P}. Let us suppose for contradiction that k is not join irreducible. Then

there exists x,y ∈ P\{k} such that x∨y = k. Note that, since k = min{P−1
ĵ

(Pĵ({k}))∩P}

for all j ∈ [n]\{i} it is necessarily the case that xi < ki. Otherwise, by minimality, we would

necessarily have x = min{P−1
ĵ

(Pĵ({x}))∩P} = min{P−1
ĵ

(Pĵ({k}))∩P} = k for all j ∈ [n],

and hence x = k. But if xi < ki, then we must have yi = ki, and hence again by minimality,

it follows that y = k, giving us our desired contradiction.

An immediate corollary to Proposition 5.1.2 is the following result when we restrict

ourselves to the case of R2.

Corollary 5.1.3. Let P be a polytope in R2 that is also a join semilattice. Then for any

k ∈ P and i ∈ {1, 2}, the element min{P−1
î

(Pî({k}))∩P} is join irreducible in P. Moreover,

every element k ∈ P that is not itself join irreducible, may be expressed as the join of exactly

two join irreducibles, namely

k = min{P−1
1̂

(P1̂({k})) ∩ P} ∨min{P−1
2̂

(P2̂({k})) ∩ P}. (5.1)

We mentioned at the beginning of this chapter the difference between join irreducible

and minimal elements. We may characterize this difference another way with the following

result.

Lemma 5.1.4. Let P be any polytope in Ln = (Rn,≤). An element k ∈ P is minimal in

P if and only if k = min{P−1
î

(Pî({k})) ∩ P} for every coordinate i.

Proof. Suppose k = min{P−1
î

(Pî({k})) ∩ P} for every coordinate i. Then if x ∈ P is less

than k, then each coordinate xi ≤ ki with at least one coordinate j satisfying xj < kj , a

contradiction. Conversely, if k is minimal, then there exists no x < k in P, and hence every

coordinate ki of k is minimal. The result follows.
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We note that, in the above lemma, we did not need to assume that P was a semilattice

in Rn. That it was a poset sufficed.

Combining Proposition 5.1.2 and Lemma 5.1.4, we may generalize Corollary 5.1.3. Be-

fore doing so, we provide the following notation which will be utilized in the next result.

For an element k ∈ Rn, we let Hki
denote the hyperplane {x ∈ Rn | xi = ki}. That is, it

is the hyperplane that fixes the i-th coordinate as ki.

Proposition 5.1.5. Let P be a join semilattice polytope in Rn. Then any element x ∈ P

may be expressed as the join of at most n join irreducibles in P.

Proof. For each coordinate i, consider the polytope P ∩ Hxi . If x is minimal in P ∩ Hxi ,

then there is at most one coordinate, namely i, for which x 6= min{P−1
î

(Pî({x})) ∩ P}.

Then by Proposition 5.1.2, it follows that x is join irreducible, and we are done. Suppose,

then, that x is not minimal in P ∩ Hxi . Since P ∩ Hxi is a polytope, and hence bounded,

it follows that there necessarily exists at least one minimal element k ∈ P ∩ Hxi . Since x

is not minimal by assumption, we may choose k such that k ≤ x. Then there is at most

one coordinate, namely i, for which k 6= min{P−1
î

(Pî({k}))∩P}, and hence by Proposition

5.1.2, it follows that k is join irreducible. For each coordinate i, enumerate each such join

irreducible element found in this way by ki. Observe that, for each i, we have kii = xi and

kij ≤ xj for all j 6= i. It follows that k1 ∨ k2 ∨ · · · ∨ kn = x. Hence, x may be expressed as

the join of n (not necessarily distinct) join irreducibles.

For illustrative purposes, consider the polytope P from Figure 5.1, given by

P = conv




1

0

0

 ,


0

1

0

 ,


1

1

0

 ,


1

1

1


 . (5.2)

It is easy to see that P is a join semilattice. The join irreducibles are all of the
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Figure 5.1: The polytope PA,b from Eq. (5.2).

points on the plane conv
(
(1, 0, 0)t, (0, 1, 0)t, (1, 1, 1)t

)
. Perhaps somewhat counterintu-

itively, the point (1, 1, 1)t is join irreducible even though it is also the greatest element.

The point x = (1, 1, 0)t is not join irreducible, so following the method from the proof

of Proposition 5.1.5, we begin by finding a minimal element in the polytope P ∩ Hx1 =

conv
(
(1, 0, 0)t, (1, 1, 0)t, (1, 1, 1)t

)
. There is exactly one: (1, 0, 0)t. Similarly, we find a min-

imal element in the polytope P ∩ Hx2 = conv
(
(0, 1, 0)t, (1, 1, 0)t, (1, 1, 1)t

)
. Once again,

there is exactly one: (0, 1, 0)t. Both (1, 0, 0)t and (0, 1, 0)t are join irreducible, and already

we see that (1, 0, 0)t∨ (0, 1, 0)t = (1, 1, 0)t, so we do not need to consider the last case. Nev-

ertheless, for the sake of this example, we may consider finding a minimal element in the

polytope P ∩ Hx3 = conv
(
(1, 0, 0)t, (0, 1, 0)t, (1, 1, 0)t

)
. In this case all of the points along

the edge conv
(
(1, 0, 0)t, (0, 1, 0)t

)
are minimal and less than x = (1, 1, 0)t, so we may pick

any one of them as our join irreducible. Again, only two join irreducibles were necessary.

In fact, it does not take too much effort to see that any point in this polytope that is not

itself a join irreducible may be decomposed as the join of exactly two join irreducibles.

Note that, because Propositions 5.1.1 and 5.1.2 apply to polytopes, which are bounded,
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Figure 5.2: A point x in the half-space Ha,b for a = (1,−1, 0)t and b = 0. Since the first

coordinate of a is positive, P−1
1̂

(P1̂(x)) ∩Ha,b has a maximum but no minimum; since the

second coordinate is negative, P−1
2̂

(P2̂(x)) ∩ Ha,b has a minimum but no maximum; and

since the third coordinate is zero, P−1
3̂

(P3̂(x)) ∩Ha,b never intersects the boundary of Ha,b

and so it has neither a maximum nor a minimum.

their proofs implicitly assumed that min{P−1
î

(Pî(x)) ∩ P} existed. This was only for con-

venience, and the same result can easily be restated to apply to half-spaces as well, as long

as we acknowledge that in this case, P−1
î

(Pî(x))∩H may be totally or partially unbounded

when H is a half-space and x ∈ H, and hence min{P−1
î

(Pî(x)) ∩H} may not always exist

in this case. More precisely, we have the following:

Corollary 5.1.6. Let H be a half-space in Rn that is also a join semilattice. An element k

in H is join irreducible in H if and only if there is at most one coordinate i ∈ [n] for which

k 6= min{P−1
î

(Pî({k})) ∩H}.

An immediate consequence of the above corollary is that some join semilattice polyhedra

do not have join irreducibles. The half space {x ∈ Rn | x1 ≥ 0} is one such example. In
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turn, given an arbitrary join semilattice polyhedron, we cannot assume that every element

may be decomposed as the join of join irreducibles. Hence, Proposition 5.1.5 cannot be

generalized to join semilattice polyhedra.

Nevertheless, it is now straightforward to see the requirements for a half-space to contain

join-irreducibles. Let Ha,b := {x ∈ Rn | 〈x,a〉 ≤ b}. Then for any k ∈ Ha,b and i ∈ [n],

we consider P−1
î

(Pî({k})) ∩ Ha,b. There are exactly three possible cases, depending on

the sign of ai. Namely, when ai > 0, then P−1
î

(Pî({k})) ∩ Ha,b has a maximum but no

minimum; when ai < 0, then P−1
î

(Pî({k})) ∩Ha,b has a minimum but no maximum; and

when ai = 0, then P−1
î

(Pî({k})) ∩Ha,b has neither. See Figure 5.2 for an example. Thus,

we may equivalently reformulate the above Corollary:

Corollary 5.1.7. The half-space Ha,b contains join irreducibles if and only if a has at

most one nonnegative entry. Moreover, if Ha,b contains join irreducibles, they are exactly

the boundary of Ha,b.

By a similar argument, we may say the following:

Corollary 5.1.8. The half-space Ha,b contains minimal elements if and only if a has all

negative entries. Moreover, if Ha,b contains minimal elements, they are exactly the boundary

of Ha,b.

By the above discussion, we see that it is not the values themselves, but the signs

of the entries in the vector a defining the half-space that determine the existence of join

irreducibles and minimal elements. More precisely, to each half-space Ha,b we may associate

another half-space Ssgn(a) := {x ∈ Rn | 〈x, sgn(a)〉 ≤ 0}, where sgn(a) ∈ {−1, 0, 1}n is the

sign vector of a. Then the next result follows immediately.

Corollary 5.1.9. The half-space Ha,b in Rn contains join irreducibles if and only the half-

space Ssgn(a) contains join irreducibles, or equivalently if and only if sgn(a) contains at least

n − 1 negative entries. Similarly, the half-space Ha,b in Rn contains minimal elements if
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and only the half-space Ssgn(a) contains minimal elements, or equivalently, if sgn(a) = −1.

The join irreducibles of both Ha,b and Ssgn(a) coincide with their boundaries when they exist.

Of course, if k is join irreducible in H for some half-space H, then it is also join irre-

ducible in H1∩H2∩· · ·∩Hm, where we set H1 = H. So now we may consider decomposing a

polytope into its join irreducibles. Recall that a half-space Ha,b is preserved by component-

wise join if and only if a has at most one strictly positive entry. However, Ha,b contains join

irreducibles if and only if a contains at most one nonnegative entry. Therefore is it certainly

possible to have a join semilattice polytope that is an intersection of hyperplanes, none of

which satisfy the conditions of the above Corollary. Take for example the unit n-cube in Rn.

It is a join semilattice (indeed, it is a sublattice of Rn), but none of its bounding half-spaces

satisfy the conditions of Corollary 5.1.7. Does that mean that the n-cube contains no join-

irreducibles? Quite to the contrary, one easily sees that the join irreducibles are precisely

the intersection of the n-cube with its n coordinate axes. This provides the intuition for

our characterization of the join irreducibles of an arbitrary join semilattice polytope in Rn.

Definition 5.1.10. A nonempty face F of a join semilattice polytope P is called a join

irreducible face if all of its elements are join irreducible in P, and if F ′ is another face in

P all of whose elements are join irreducible in P and F ⊆ F ′, then F = F ′.

The second part of the above definition imparts a maximality requirement on the face.

Of course, if F is a face, all of whose elements are join irreducible in P, then any subface of

F will also only contain join irreducibles, and hence it is of particular interest to characterize

the maximal such sets. We will set up our next result in the following way. Let P = PA,b be

a polytope in Rn with bounding half-spaces Ha1,b1 , . . . ,Ham,bm . For each half-space Hai,bi ,

denote by Hi the corresponding boundary hyperplane. Any face F other than the interior

of a full-dimensional polytope (that is, any proper face) lies tangent to a maximal subset

of these hyperplanes: F ⊆ Hi1 ∩ · · · ∩Hij . Thus, for any proper face F , we may associate a

matrix A, the rows of which correspond to the vectors a1, . . . ,aj. We will denote this face

by FA. Then we have the following result.
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Theorem 5.1.11. Let P be a join semilattice polytope in Rn. Then the join irreducible

faces of P are precisely the proper faces FA with associated matrix A satisfying

(a) at most one column of A contains only nonnegative entries, and

(b) if any row of A is removed, then condition (a) will not be satisfied.

Proof. Condition (b) excludes subfaces of join irreducible faces, so that the maximality

requirement of Definition 5.1.10 is satisfied.

For Condition (a), we may assume without loss of generality that the rows of A, denoted

a1,a2, . . . ,aj, are all in {−1, 0, 1}n, and that the face FA is the collection of points x ∈ Rn

satisfying Ax = 0. Now, suppose Condition (a) is satisfied. Without loss of generality,

suppose the first n − 1 columns each contain a −1, and let k = maxi{ain}. Then if x is

in FA, so that Ax = 0, it follows that 〈k,x〉 = 0, where k = (−1,−1, . . . , k)t. But then

x is an element of the boundary of the half-space Hk,0. Since k satisfies the conditions of

Corollary 5.1.7, it follows that x is a join irriducible of Hk,0, and hence a join irreducible of

Hk,0 ∩Ha1,0 ∩ · · · ∩Haj,0 = Ha1,0 ∩ · · · ∩Haj,0, so that x is a join irreducible element of P.

Conversely, let us suppose FA is a join irreducible face of P, and assume for contradiction

that at least two columns of A contain only nonnegative entries. Once again, without

loss of generality, we may assume that b = 0 and each ai ∈ {−1, 0, 1}n, so that each

Hai
= {x ∈ Rn | 〈x,ai〉 = 0}. Let us assume even further without loss of generality

that it is the first two columns of A that contain only nonnegative entries. Now there

are exactly two cases we need to consider. The first case is that (mini{ai1},mini{ai2}) =

(0, 0), and the second case is that (mini{ai1},mini{ai2}) = (0, 1). Note that the case

(mini{ai1},mini{ai2}) = (1, 0) follows a nearly identical argument to the second case, and

the case that (mini{ai1},mini{ai2}) = (1, 1) is excluded by the assumption that P is a join

semilattice (and hence each ai can have at most one strictly positive entry).

For the first case, observe that 0 ∈ FA, and there are α1, α2 < 0 such that (α1, 0, . . . , 0)t,

and (0, α2, 0, . . . , 0)t are both elements of FA. However, (α1, 0, . . . , 0)t ∨ (0, α2, . . . , 0)t = 0,

and hence 0 is not join irreducible, a contradiction.
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For the second case, observe once again that 0 ∈ FA, and there is an α1 < 0 such

that (α1, 0, . . . , 0)t is an elements of FA. Also, there is necessarily an α2 < 0 such that

(0, α2, . . . , 0)t is an interior point in P. But then (α1, 0, . . . , 0)t ∨ (0, α2, . . . , 0)t = 0, and

hence 0 is not join irreducible, a contradiction.

It follows that if FA is a join irreducible face of P, then Condition (a) must be satisfied,

concluding the proof.

An immediate consequence of the above theorem is the following.

Corollary 5.1.12. Let P be a join semilattice polytope in Rn with dim(P) ≥ 2. If FA is a

join irreducible face of P, then dim(FA) ≥ 1.

Proof. If, on the contrary, dim(FA) = 0, so that FA is a vertex, then in particular, A will be

an n×n matrix. Condition (b) of Theorem 5.1.11 implies that removing any row will result

in a matrix with at least two columns containing only nonnegative entries. It follows that

each row must contain at least one negative entry in a position different from any other row.

Since A has n rows, it follows that every column of A contains at least one negative entry,

and furthermore, if one row is removed, then at most one column of A will contain only

nonnegative entries, which violates condition (b), giving us our desired contradiction.

A nearly identical argument to that of Theorem 5.1.11 proves the following.

Corollary 5.1.13. Let P be a join semilattice polytope in Rn. Then the faces of P that

contain only minimal elements in P are precisely the proper faces FA with associated matrix

A such that every column of A contains at least one negative entry. The face is a maximal

face of minimal elements if in addition, removing any row of A causes this condition to fail.

In particular, from the above we see that Corollary 5.1.12 does not necessarily hold in

the case of faces of minimal elements. Indeed, a minimal element may arise as the least

element in a join irreducible face.

52



5.2 Join-Closed Join Irreducible Faces

Suppose P is a join semilattice polytope, and let J ⊆ P be the collection of join irreducibles.

As we have shown in the previous section, the join irreducibles of P can be grouped into

join irreducible faces. Let us supposed further that each one of these faces is closed under

the join operation. That is to say, if F ⊆ J is such a face and f1, f2 ∈ F , then f1 ∨ f2 ∈ F .

Note that, since f1 and f2 are both join irreducible in P, it follows that f1 ∨ f2 is either f1

or f2. In other words, such a face is necessarily totally ordered, and hence dimF ≤ 1. We

know by Corollary 5.1.12 that it cannot be a vertex, and hence such a face is necessarily

an edge. We will call such faces of P join-closed join irreducible faces. We note that the

term “join irreducible” faces refers to the fact that all of the elements in these faces are join

irreducible in P. However, we will shortly see that these join-closed join irreducible faces

are join irreducible in another sense as well.

Let Jn be the set of all join subsemilattices of Ln = (Rn,≤). Observe that if F,G ∈ Jn

are both join subsemilattices of Ln, then the set

F ∨J G := {f ∨ g | f ∈ F, g ∈ G}, (5.3)

is also a join subsemilattice of Ln. Note that, because each F ∈ Jn is a join subsemilattice

(and hence join-closed as a subset of Ln), it follows that F ∨J F = F . Associativity and

commutativity of the operator ∨J defined in (5.3) are easily seen to hold, and hence (Jn,∨J)

is a well-defined join semilattice. The partial order is given by F ≤ G⇔ F ∨J G = G.

For example, consider the simplest case of (J1,∨J). Let A be any subset of R, and

suppose a, b ∈ A. Then a ∨ b = max{a, b} ∈ A, and hence every subset of R is a join

subsemilattice of L1. So J1 = P(R), the set of all subsets of R. However, the join operation

∨J is very different from set union. For example, let A = {(0, 1) ∪ {2}} and let B = [1, 2).

Then A ∨J B = [1, 2]. More generally, if A,B ⊆ R are both nonempty and there exists an

x ∈ A such that x < y for every y ∈ B, then A∨JB = (A∪B)\{x ∈ A | x < y for all y ∈ B}.
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Note that the empty set ∅ is trivially a join subsemilattice of Ln. Moreover, since the

elements in F ∨J G in Eq. (5.3) are pairwise joins of elements from F and G, then if either

F or G is empty, then so must be F ∨J G. In other words, ∅ ∨J G = ∅ for all G ∈ Jn, and

hence ∅ is the unique maximal element in the join semilattice (Jn,∨J).

Now if the set J of join irreducible faces of the join semilattice polytope P are also

join-closed, then they are also elements of Jn, as is the polytope P. It is thus of interest to

consider the structure of the subsemilattice 〈J ,∨J〉 generated by J and its relation to P.

We first make the following observation.

Lemma 5.2.1. Let P ⊆ Rn be a join semilattice polytope. Let J be the set of join irreducible

faces of P and suppose all of these faces are join-closed. Then P has a least element.

Proof. Suppose for contradiction that there does not exist a least element in P. Note that

every minimal element in P is the least element in a join-closed join irreducible face. Hence

there are finitely many minimal elements in P. Let x1,x2, . . . ,xk be the set of minimal

elements in P. Since we are assuming there is no least element, it follows that k ≥ 2. Then

let z = 1
k (x1 + x2 + · · · + xk). By convexity, z ∈ P. However, none of the xi are ≤ z

and hence z cannot be expressed as the join of join irreducibles, contradicting Proposition

5.1.5.

Thus, the restriction that the set J of join irreducible faces of a join semilattice polytope

P all be join-closed implies that P necessarily has a least element. However, we will now

show that the set J viewed as poset has no least element.

Proposition 5.2.2. Suppose P is a join semilattice polytope with dim(P) ≥ 2. Suppose the

set J of join irreducible faces of P are all join-closed. Then J contains no least element.

Proof. Suppose for contradiction that J does contain a least element F ∗. Since dim(P) ≥ 2,

it follows that P contains elements that are not join irreducible. Moreover, since every join

irreducible face is greater than or equal to F ∗, it follows that there exists an element x of
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P that is not join irreducible such that the only join irreducible elements less than x are in

F ∗.

To see this, consider the least element x∗ of F ∗. It is strictly less than any join irreducible

element k from any other join irreducible face K ∈ J \{F ∗}. Then for each K ∈ J \{F ∗}

there exists a sufficiently small ε-ball around x∗ such that its intersection with P contains

no elements greater than or equal to any element in K. We choose our x to be a non join

irreducible element of the intersection of all of these ε-balls with P.

By Proposition 5.1.5, x can be expressed as the join of join irreducibles, but since x is

not itself join irreducible, it must be expressed as the join of at least two join irreducibles.

Since the only join irreducibles less than or equal to x are in F ∗, it follows that x is a join of

join irreducibles from F ∗. But since F ∗ is join-closed, it follows that x ∈ F ∗, a contradiction

since x is not join irreducible.

Note that the subsemilattice 〈J ,∨J〉 is finite (and hence complete). It follows from

Proposition 5.2.2 that 〈J ,∨J〉 has no least element. Let us add a zero element to 〈J ,∨J〉

and call the resulting space KP . Then by the dual of Proposition 1.2.1, it follows that KP

is, in fact, a lattice. Note that, by construction, the join-closed join irreducible faces J of P

are precisely the join irreducible elements of KP (providing somewhat of a double meaning

to the “join irreducible” part of the term “join-closed join irreducible faces”).

We stress that KP is well-defined if and only if each face in J is join-closed. Suppose

we extend the definition (5.3) of the operator ∨J to arbitrary subsets of Ln and not just

join subsemilattices. In this larger space, the operator is still easily seen to be commutative

and associative, but it is not, in general, idempotent. Hence this join operator on the larger

space defines a semigroup, but not a semilattice. For this reason, we must restrict ourselves

to considering join semilattice polytopes P such that their join irreducible faces J are all

join-closed.

A simple example of how idempotence fails in the more general setting may be found

by considering the triangle P = conv{(1, 0)t, (0, 1)t, (1, 1)t}. In this example, the only join

irreducible face is A = conv{(1, 0)t, (0, 1)t}, and P = A∨JA. In other words, each element
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of P is a join of at most two elements from the same join irreducible face.

For the remainder of this section, unless otherwise specified, we will assume that P is a

join semilattice polytope, and all of its join irreducible faces are join-closed. Furthermore,

with a slight abuse of notation, we may choose to omit the subscript J in the join operator

∨J. We have the following result.

Proposition 5.2.3. KP is a distributive lattice.

Proof. Each nonzero element of KP may be expressed as the join of elements in J . Let

K1,K2,K3 ∈ KP and for each Ki let Fi ⊆ J be chosen such that Ki = ∨Fi (we use the

notation ∨Fi to denote the join of all of the elements in Fi). For each Fi define

F̂i := {F ∈ J ∪ {0} | ∃ G ∈ Fi such that F ≤ G}. (5.4)

In particular, 0 is an element of every F̂i. Clearly, Ki = ∨F̂i, and furthermore,

Ki ∨Kj =
∨(
F̂i ∪ F̂j

)
. (5.5)

Note that, for every element G in KP less than or equal to Ki, there exists a corresponding

subset G ⊆ F̂i such that G = ∨G. In turn, the meet Ki ∧ Kj is given by the join of the

elements that F̂i and F̂j have in common. More precisely,

Ki ∧Kj =
∨(
F̂i ∩ F̂j

)
. (5.6)

56



It then follows that

K1 ∨ (K2 ∧K3) =
∨(
F̂1 ∪ (F̂2 ∩ F̂3)

)
=
∨(

(F̂1 ∪ F̂2) ∩ (F̂1 ∪ F̂3)
)

= (K1 ∨K2) ∧ (K1 ∨K3).

(5.7)

Proposition 5.2.4. Let P be a join semilattice polytope, and let J denote the set of join

irreducible faces of P. Suppose each face in J is join-closed. Then

P =
⋃
F⊆J

( ∨
F∈F

F

)
. (5.8)

Proof. Proposition 5.1.5 showed us that every element of P can be expressed as the join of

join-irreducible elements. Theorem 5.1.11 showed us that the join-irreducible elements of P

are faces of P. If each join irreducible face is join-closed, then it follows that each element

of P may be expressed as a join of join irreducible elements, each element of which is from

a different join irreducible face. The result follows.

Hence, when the join irreducible faces are all join-closed, we can consider “building up”

the polytope P from the elements of KP .

Another immediate consequence of Proposition 5.2.4 is the following refinement of

Proposition 5.1.5 when each of the join irreducible faces is join-closed.

Corollary 5.2.5. Let P be a join semilattice polytope in Rn with join irreducibles, and let

J denote the set of join irreducible faces of P. Suppose each element of J is join-closed.

Then each element of P can be expressed as the join of at most min{n, |J |} join irreducibles.
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Figure 5.3: The polytope PA,b from Eq. (5.9) and its corresponding decomposition in terms
of join irreducibles.

Consider for example the polytope PA,b in R2, where

A =



0 1

−1 1

−1 0

1 −1


, b =



2

1

0

0


. (5.9)

By looking at A, we see that there are three join-irreducible faces; namely, those tangent

to the lines −x = 0, −x+ y = 1, and x− y = 0, which we label F1, F2, and F3, respectively.

Observe that F1 ≤ F2, as F1 ∨ F2 = F2. A consequence of this is that F1 ∨ F2 ∨ F3 =

F2 ∨ F3 6= P. Additionally, note that F1 ∨ F3 is not convex, as F3 ⊆ F1 ∨ F3 (see Figures

5.3 and 5.4).

In the previous example, the polytope was a subset of R2, but it had three join irre-

ducible faces. An interesting consequence of Corollary 5.2.5 is that since the number of join

irreducible faces was larger than the dimension, there must be an order relation between
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Figure 5.4: The lattice KP , where J is the set of join irreducible faces of PA,b from Eq.

(5.9).

at least two of the faces. Otherwise there would exist an element in P that required a

minimum of three join irreducible elements to characterize it, violating Corollary 5.2.5.

In Theorem 5.1.11, we characterized the join irreducible faces. Building off of this, we

may completely characterize the join-closed join irreducible faces.

Theorem 5.2.6. Let P be a join semilattice polytope in Rn. Then the join irreducible faces

of P that are also join-closed are precisely the proper faces FA of P with associated matrix

A satisfying

(a) At most one column of A contains only nonnegative entries,

(b) If any row of A is removed, then condition (a) will not be satisfied.

(c) Each row of A has at most two nonzero entries, and if a row contains exactly two

nonzero entries, then they are of opposite signs.

Proof. From Theorem 5.1.11 we know that a proper face is join irreducible if and only

if conditions (a) and (b) are satisfied. Now let Ha,b denote a half-space with boundary

hyperplane given by H. Then H = Ha,b ∩ H−a,−b, and hence H is join-closed if and only
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Figure 5.5: The unit 3-cube D. The join irreducibles are the edges on the coordinate axes
(colored in blue). Their pairwise joins are colored in grey. The join of all three is the entire
cube.

if both Ha,b and H−a,−b are join-closed. Condition (c) then follows immediately from this

and Corollary 4.2.3 for the case k = 1.

Recall that a half-space Ha,b is join-closed if and only if its negative half-space H−a,−b

is closed under meet, or “meet-closed.” Consequently the hyperplane H = Ha,b ∩H−a,−b is

join-closed if and only if it is also meet-closed. Thus, an immediate consequence of part (c)

of Theorem 5.2.6 is that the join-closed join irreducible faces of P are necessarily meet-closed

as well.

For example, consider the unit 3-cube D in R3. Its join irreducible faces are the

line segments F1 = conv{(0, 0, 0)t, (0, 0, 1)t}, F2 = conv{(0, 0, 0)t, (0, 1, 0)t}, and F3 =

conv{(0, 0, 0)t, (1, 0, 0)t} (see Figure 5.5). Observe that F1 = FA1 has associated face matrix

A1 given by

A1 =

−1 0 0

0 −1 0

 . (5.10)

Each row of A1 corresponds to a join-closed hyperplane (satisfying condition (c) of Theorem
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Figure 5.6: The lattice KD, where J is the set of join irreducible faces of the three cube D.

5.2.6). Additionally, only the last column contains only nonnegative entries, but if either

row is removed there will be two columns with nonnegative entries, so Conditions (a) and

(b) of Theorem 5.2.6 are also satisfied.

Our next result places a lower bound on the number of join irreducible faces of a polytope

P when all of them are join-closed and P has maximal dimension.

Proposition 5.2.7. Let P ⊆ Rn be a join semilattice polytope with dim(P) = n. Let J be

the set of join irreducible faces of P and suppose all of these faces are join-closed. Then

|J | ≥ n.

Proof. By Lemma 5.2.1, we know that P must have a least element, denoted x∗. Since P is

full-dimensional, it follows that x∗ is the intersection of at least n facets, Ha1 ,Ha2 , . . . ,Had

for some d ≥ n. Since x∗ is clearly join irreducible, it is an element of a join irreducible

face. Since all join irreducible faces of P are join-closed by assumption, it follows from

Theorem 5.2.6 that n − 1 of the facets defining x∗ and having nonempty intersection,

say Ha1 ,Ha2 , . . . ,Han−1 , are join-closed, and their intersection defines a join-closed join
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irreducible face. In particular, because each of these Hai is join-closed, it follows that

each corresponding ai has at most one negative entry. Consequently, the corresponding

face matrix A defined by these n − 1 facets has exactly one column which contains only

nonnegative entries.

Moreover, x∗ is a minimal element, and hence there exists another facet Han such that

the face matrix A∗ for x∗ defined from these n facets satisfies the requirement of Corollary

5.1.13; namely, every column of A∗ contains at least one negative entry.

Note that it immediate follows from the assumption that all join irreducible faces are

join-closed (and hence have dimension 1) that an must have at most one negative entry,

and it must correspond to the column in A with only nonnegative entries. To see that an

cannot have more than one negative entry, note that, otherwise, it would be possible to

construct a face matrix A′ corresponding to the intersection of fewer than n − 1 of these

facets that satisfied the criteria of Theorem 5.1.11, and would thus be a join irriducible face

of dimension > 1. Since all join-closed join irreducible faces have dimension 1, we see that

this cannot happen, and thus, an must have at most one negative entry.

Now, it is straightforward to see that by removing any row from A∗ gives us a matrix

that satisfies the criteria of Theorem 5.2.6, and hence corresponds to a join-closed join

irreducible face. There are n such combinations, and hence P has at least n join-closed join

irreducible faces, as we wanted to show.

The following is a consequence of the above Proposition.

Proposition 5.2.8. Suppose as in the above Proposition that P is full-dimensional in Rn

with join irreducible set J such that all elements of J are join-closed. Then

1. There exist elements in P that must be expressed as the join of exactly n join irre-

ducibles, and

2. If |J | = n, then the largest element ∨J in the lattice KP is P.

Proof. The first result follows from the fact that, since there are necessarily n join irreducible
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faces all sharing the least element of P, then these n join irreducible faces are all non-

comparable.

The second result also follows from the fact that all of the join irreducible faces have the

least element of P in common. In particular, not only do we recover all the elements of P

that must be expressed as the join of exactly n join irreducibles, but whenever an element

z of P can be expressed as an element of k < n join irreducibles, then we may simply join

n− k copies of x∗ to the decomposition, and then z ∈ ∨J .

An immediate consequence of this is the following.

Corollary 5.2.9. Suppose as in the above Proposition that P is full-dimensional in Rn with

join irreducible set J such that all elements of J are join-closed. Then largest element ∨J

in the lattice KP is P if and only if |J | = n.

Additionally, when P is full-dimensional in Rn with join irreducible set J containing

only faces that are join-closed satisfying |J | = n, then the join irreducible faces have no

order relation between them, so that KP ' 2N ' 2[n], where N is the join irreducible face

set of the n-cube in Rn, and [n] denotes a set on n elements.
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Chapter 6: Conclusion

Lattice programming studies how the optimal solution to a problem changes in a dynamic

environment when the problem domain is a lattice. When exact solutions are not required,

then the ability to do this is particularly valuable, as it can be far easier (with respect to

computational resources) than recomputing the optimal solution at each time step.

Polyhedra are defined implicitly with respect to the component-wise partial order in the

formalism:

PA,b = {x ∈ Rn | Ax ≤ b}. (6.1)

Hence, when considering the overlap between lattice programming and linear program-

ming, this partial order provides a natural framework from which to do so. Namely, we

may consider polyhedra that are themselves lattices with respect to this partial order. Un-

fortunately, as was shown by Veinott [16], the overlap between lattice programming and

linear programming within this framework is rather limited.

As a first step in attempting to generalize and extend lattice programming to be appli-

cable to a wider range of linear optimization scenarios, we investigated how much more of

an overlap there could be by relaxing the constraint that the domain be a lattice. When a

polyhedron is a lattice, it is preserved by meet and join, and all compositions therein. But,

as we have shown, it is possible for some polyhedra to be preserved by some but not all

lattice polynomials. Hence it is possible for these polyhedra to retain some of the lattice

structure in a manner that is made well-defined through the use of convex lattice polyno-

mial clones. Thus the opportunity is opened to begin investigating the extent to which

this relaxation of full lattice structure will permit a generalization or extension of lattice

programming to a wider range of linear programming problems. This, however, will be

reserved for future work.
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In Veinott’s same paper [16] that greatly motivated the work in this dissertation , another

topic that was briefly addressed was that of irreducibles. In his work, Veinott was specifically

pointing to the fact that polyhedral sublattices of Rn could be described in terms of a

primitive set of irreducible elements in the lattice of convex sets, since the defining half

planes are both join and meet irreducible in this lattice. The consideration by Veinott

on irreducibles led this author to consider what the join irreducibles of a join semilattice

polytope might look like.

Indeed, as we were able to show, the join irreducible elements always form faces of the

corresponding polytope. Furthermore, if the join irreducible faces are all join-closed, then

we may “build up” the entire polytope via joins of these join irreducible faces (which also

happen to only be edges of the polytope). We discovered these properties in much the same

way we went about characterizing the preservation of polyhedra under various convex lattice

polynomial clones. Namely, we identified each of these faces with a particular matrix A

and, once again, found that the characterization of join irreducible faces, and in particular

the join-closed join irreducible faces, was determined by the associated sign vectors.

An interesting observation is that criteria (c) in Theorem 5.2.6 implies that At is the

incidence matrix of a directed graph. This follows immediately from the fact that a non-

interior face is preserved by join if and only if it is also preserved by meet. Hence, as Veinott

proved in [16], the associated matrix is an incidence matrix for a generalized network flow

graph. However, criteria (a) and (b) place restrictions on the associated graph. More

precisely, they imply that the corresponding graph is one that has (a) at most one vertex

that is either isolated or is a sink, and (b) if any edge is removed, then there is necessarily

more than one vertex that is either isolated or a sink. In particular, criteria (b) implies

that every vertex has at most a single edge leaving the vertex.

While the study of join irreducibles certainly revealed some interesting structure, these

results are hardly the end. Over the course of this research, we have studied and character-

ized polyhedra preserved by a variety of different lattice polynomials, whereas in the study

of join irreducibles, we needed to restrict ourselves to polyhedra that were preserved by
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join. An interesting question is whether we may generalize the notion of join irreducibility

further. Namely, suppose a polytope P is preserved by a k-ary lattice polynomial p. Then

we may call an x in P a p-irreducible element if whenever x = p(y1,y2, . . . ,yk) for some

y1,y2, . . . ,yk ∈ P, then x ∈ {y1,y2, . . . ,yk}. When does a p-closed polyhedron P contain

p-irreducibles? Can there be interior elements that are p-irreducible? Are there lattice poly-

nomials p for which there exists no polyhedron preserved by p that contains p-irreducibles?

We believe these are all interesting questions that are worth pursuing in future work.
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