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ABSTRACT 

INDIVIDUALIZED PREDICTION OF THIRD-PARTY PUNISHMENT BEHAVIOR 

FROM INTRINSIC FUNCTIONAL BRAIN CONNECTIVITY 

Ko-Tsung Hsu, M.S. 

George Mason University, 2019 

Thesis Director: Dr. Frank Krueger 

 

A robust human society is developed normally on the ground of social cooperation, serving 

a critical role in human relationships. Importantly, social cooperation is subjected to the 

establishment of social norms. To maintain human society, third-party punishment (TPP) 

as a consistently sanctioning behavior facilitates the enforcement of social norms. At the 

psychological level, TPP is based on blame which is an amalgam of intent and harm to 

victim and the offender’s intention in violating social norms. At the neural level, TPP 

behavior builds on the interaction of the salience network (determining the degree of norm 

violation), default-mode network (determining the degree of blame), and central-executive 

network (determining the degree of punishment). Although task-based functional magnetic 

resonance imaging (fMRI) has been extensively used to investigate individual differences 

in the propensity to punish, whether TPP behavior can be predicted through task-free fMRI 

based on resting-state functional connectivity (RSFC) remains open. The goal of this study 

was to apply multivariate prediction analysis (MVPA) to RSFC patterns of large-scale 
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brain networks to predict individual difference in TPP behavior measured with a TPP 

exchange game. The findings demonstrated that RSFC between the default-mode network 

(DMN) and the central-executive network (CEN) predicted TPP behavior, indicating a 

signal transmission from blame (DMN) to punishment behavior (CEN). In conclusion, 

investigating the individual difference in TPP behavior based on RSFC provides us with a 

new comprehensive understanding of sustaining cooperation and enforcement of social 

norms in human society. 
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1. THEORETICAL BACKGROUND 

1.1 Introduction 

 Cooperation is an essential component to function in normal human society (Fehr 

& Fischbacher, 2004a). Therefore, facilitating widespread cooperation in human society 

becomes an issue worth discussing in the field of psychology. So far, many studies have 

engaged in this intriguing field and shed light on principle factors sustaining cooperation 

in human society (Fehr, Fischbacher, & Gächter, 2002). Social punishment and reciprocity 

are factors involved in functioning normality of human society; for instance, both factors 

facilitate cooperation between human beings. Within established social norms, social 

cooperation can be promoted under legal enforcement of rules (Fehr & Fischbacher, 2004b; 

Zhong, Chark, Hsu, & Chew, 2016). To sustain social cooperation in human society, 

punishment based on normative legitimacy of the rules against norm violators is an 

approach to enforcing social norms. Costly punishment refers to the use of one own’s 

resources to enforce social norms without obtaining any obvious benefits (Fehr & 

Fischbacher, 2004a). Norm violators (i.e., offenders) are not only punished by the victims 

themselves (defined as costly second-party punishment, SPP), but also by witnesses 

(defined as the third-party punishment, TPP) who are not victims of the norm violation 

(Bendor & Swistak, 2001; Sober, Wilson, & Wilson, 1999). On the one hand, in SPP, 

second parties who experience unfair treatment or norm violation experience negative 

emotions (e.g., anger, disgust, aversion, and frustration) may lead to punishment (Pillutla 



2 

 

& Murnighan, 1996). On the other hand, third parties who are not affected economically, 

physically, or psychologically by the norm violators are also willing to punish when they 

witness a norm violation (Fehr & Fischbacher, 2004b; Henrich, 2006). Therefore, third-

party punishment (TPP) enhances the scope of investigation into the motivation of norm 

violators compared with the SPP, which mostly emphasizes on decision making through 

emotions (Baumgartner, Götte, Gügler, & Fehr, 2012). 

 

1.2 Economic Games as Instruments to Measure Third-Party Punishment 

 A number of different experimental paradigms —hypothetical crime scenarios 

(Glass, Moody, Grafman, & Krueger, 2016) and norm-enforcement economic games (Fehr 

& Camerer, 2007)— are used to establish neuropsychological factors of TPP. As for 

hypothetical crime scenarios, participants are given examples of crime narratives and asked 

to make a punishment decision in accordance to the blameworthiness of these crime 

scenarios.  

 As for norm-enforcement economic games, a modified version of the ultimatum 

game (UG) has been utilized to explore TPP behavior (Civai, Corradi-Dell’Acqua, Gamer, 

& Rumiati, 2010). In this game, third parties observe offers of money between proposers 

and receivers based on an endowment and decide whether to punish the proposers based 

on the fairness of offer by spending a portion of their endowment (i.e., costly punishment) 

(Brown, 1991). By definition, this scenario is designated as the TPP, a selective extension 

of the SPP where the second party retaliating against the proposers as unfair or norm 

violation occurred (Brown, 1991; Hoffman, 2014; Krueger & Hoffman, 2016) (Figure 1). 
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Figure 1. Illustration of the Third-Party Punishment Game. 

Third-party punishment game includes three roles. Proposers share offers with receivers, receivers have to accept the 

proposers’ offers, and third parties witnessing the proposers’ offers decide whether to punish the proposers. 

 

 

 

1.3 Neuropsychological Model of Third-Party Punishment 

A heuristic model of TPP states that the magnitude of TPP behavior is driven by 

blame, which is based on the proposer’s intent and the amount of harm inflicted onto the 

victim (Krueger & Hoffman, 2016) (Figure 2A). 
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Figure 2. Neuropsychological Model of Third-Party Punishment. 

(A) Neuropsychological factors of the third-party punishment including harm (shown in red), intent and blame (shown 

in blue), and punishment (shown in green). (B) Three neural networks in the brain are responsible for driving punishment 

behavior, including the salience network (SN) (red), default-mode network (DMN) (blue), and central-executive network 

(CEN) (green). Abbreviations: AI, anterior insula; dACC, dorsal anterior cingulate cortex; Amyg, amygdala. mPFC, 

medial prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior 

cingulate cortex; TPJ, temporoparietal junction. dlPFC, dorsolateral prefrontal cortex; PPC, posterior parietal cortex. The 

figure is taken from Krueger and Hoffman (Krueger & Hoffman, 2016). 

 

 

 

 Three large-scale brain networks are associated with TPP behavior (Krueger & 

Hoffman, 2016) (Figure 2B). The salience network (SN) —comprised of anterior insula 

(AI), dorsal anterior cingulate cortex (dACC), and amygdala (Amyg)— is involved in 

processing of aversive sensations. The SN begins with detecting the occurrence of a norm 

violation (dACC) and generating an aversive response (AI). Subsequently, Amyg 

determines the extent of aversive emotion based on the severity of harm that is caused to 

the receivers. 
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Afterward, SN modulates the engagement of a second network, the default mode network 

(DMN), generally involved in processing autobiographical memory, self-monitoring, and 

mentalizing (Bressler & Menon, 2010). The medial prefrontal cortex (mPFC) is a core 

brain region of the DMN network, integrating emotional processes related to harm to the 

receivers and is also in charge of processing social cognition related to the intent of 

proposers. The mPFC integrates two pathways into a reasonable assessment of blame 

(Krueger & Hoffman, 2016). Specifically, the harm-integrating portion is apparently 

processed through the ventromedial prefrontal cortex (vmPFC), which has functional 

connectivity with the SN (Krueger & Hoffman, 2016). The intention-integrating portion is 

processed by the dorsomedial prefrontal cortex (dmPFC) which has functional connectivity 

with the regions of posterior cingulate cortex (PCC; in charge of self-referential processes), 

and temporoparietal junction (TPJ; in charge of inferring proposers’ intentions, beliefs, or 

desires in others) (Treadway et al., 2014). 

Finally, the central-executive network (CEN) is involved in processing the 

information of context-dependent assessments for higher-order cognition and decision 

making (Bressler & Menon, 2010). Punishment decisions result from converting a blame 

signal through the dorsolateral prefrontal cortex (dlPFC) in the CEN (Bellucci et al., 2017). 

In addition, before making a punishment decision, the posterior parietal cortex (PPC) 

constructs a scale of punishment for the dlPFC to select an appropriate punishment decision 

(Buckholtz et al., 2008). 

TPP behavior heavily relies on DMN because impartial witnesses are not directly 

affected by the social norm violation (i.e., unfair offer) and, therefore, tend to focus on the 
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proposer’s intention instead of the outcome related to the receiver (i.e., victim). Hence, 

DMN is served as a major neural component when making a TPP punishment decision, 

engaging the CEN (Buckholtz et al., 2008). Simply put, TPP behavior is mostly driven by 

the signal from DMN rather than SN, implying that punishment decisions are driven by 

brain regions of DMN related to inferring proposer’s intentions. 

 

1.4 Resting-State Functional Magnetic Resonance Imaging 

The blood oxygen level dependent (BOLD) signal of functional magnetic 

resonance imaging (fMRI) is a representative signal that indicates the extent of neural 

activity (Ogawa, Lee, Kay, & Tank, 1990). The amount of oxygen in the blood is associated 

with relative neural activity; therefore, changes in the ratio of oxygenated hemoglobin/de-

oxygenated hemoglobin can lead to fluctuation of the BOLD signal. Oxygenated 

hemoglobin has diamagnetic property and does not distort the surrounding magnetic field, 

whereas deoxygenated hemoglobin has paramagnetic property and distorts the surrounding 

magnetic field during fMRI (Pauling & Coryell, 1936). Because of the different magnetic 

susceptibility of oxygenated and de-oxygenated hemoglobin, the BOLD signal either 

decreases or increases depending on the hemodynamic response in a given brain region.  

Brain functions can be quantified via task-based fMRI studies that correlate 

experimental conditions or behavioral performance with neural activation, as indexed by 

changes in BOLD signals (Ogawa, Lee, Kay, & Tank, 1990). Task-based fMRI, combined 

with a TPP paradigm, has been previously used in a number of studies (Bellucci et al., 2017; 



7 

 

Buckholtz et al., 2008; David, Hu, Krüger, & Weber, 2017; Ginther et al., 2016; Sun, Tan, 

Cheng, Chen, & Qu, 2015).  

RS-fMRI (i.e., intrinsic functional connectivity) provides an appealing alternative 

to characterize neurodiversity of TPP behavior by scanning individuals while they lie in 

the scanner with no specific instructions except to close their eyes, relax, and hold still (van 

den Heuvel & Hulshoff Pol, 2010). RS measures can be acquired quickly (5-10 min), 

consistently, and reliably, yielding large sample sizes and good compliance in adolescents, 

enabling developmental studies using a single imaging dataset.  

RS-fMRI observed at rest refers to the functional integration of brain areas that is 

represented by coherent low-frequency (0.01–0.1 Hz) BOLD fluctuations in distant grey 

matter regions (Biswal, Yetkin, Haughton, & Hyde, 1995). Using a variety of MR scanners 

(e.g., vendors, field strengths) and analysis techniques (e.g., seed methods, independent 

component analysis, clustering), RS studies have consistently reported that anatomically 

separated, but functionally linked brain regions show a high level of ongoing FC during 

rest. Such networks are often called RS networks (Fox et al., 2005).  

Several functionally linked sub-networks have been identified (Beckmann, DeLuca, 

Devlin, & Smith, 2005; Damoiseaux et al., 2006), including SAN, DMN, CEN, 

sensorimotor network (SMN), and occipital network (OccN). Those networks are stable 

across time and strikingly similar to the networks activated by a broad spectrum of task-

based studies (Kelly, Biswal, Craddock, Castellanos, & Milham, 2012).  

Two different methods exist to measure RS-fMRI, including model-dependent 

methods (e.g., seed method) (D. Cordes et al., 2000; Fransson, 2005) and model-free 
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methods (e.g., independent component analysis; ICA) (Beckmann et al., 2005; Calhoun, 

Adali, Pearlson, & Pekar, 2001). For the seed method as a model-dependent method, the 

RS-fMRI time-series of a selected region of interest (ROI) is correlated with the resting-

state time-series of other brain regions (Jiang, He, Zang, & Weng, 2004) (Figure 3). 

 

 

 

 

Figure 3. Illustration of the Seed Method Identifying Resting-State Functional Network. 

(A) To determine the functional connectivity between the seed voxel and randomly selected voxel, the BOLD signals of 

each voxel were recorded during the resting-state functional scan. (B) The resting-state time-series of the seed voxel is 

correlated with the resting-state time-series of the randomly selected voxel. If the correlation between two voxels’ BOLD 

signal is relatively high, then these two voxels were recognized as having a high level of functional connectivity and vice 

versa. (C) Functional connectivity maps can be constructed by correlating all other voxels in the brain with the seed 

voxel, indicating that survival voxels are highly correlated and having a high level of functional connectivity. 

 

 

 

Model-free methods to identify intrinsic FC include principal component analysis 

(PCA) (Friston, 1998), ICA (Beckmann et al., 2005; Calhoun et al., 2001), hierarchical 

clustering (Dietmar Cordes, Haughton, Carew, Arfanakis, & Maravilla, 2002; Wang & Li, 
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2013), and Laplacian clustering (Thirion et al., 2006). Among these approaches, ICA is the 

most commonly used method (Damoiseaux et al., 2006). For instance, ICA has been used 

to identify RSFC networks, including SAN (Seeley et al., 2007), DMN (Supekar et al., 

2010), and CEN (Sridharan, Levitin, & Menon, 2008) (Figure 4). 

 

 

 

 

Figure 4. Resting Brain Networks Identified Through Independent Component Analysis. 

The central-executive network responsible for determining the degree of punishment is shown in blue. The salience 

network responsible for determining the degree of norm violation is shown in yellow. The default-mode network 

responsible for determining the degree of blame is shown in red. The figure is taken from Menon (Menon, 2011). 

 

 

 RS activity predicts both task-evoked activity and behavior (van den Heuvel & 

Hulshoff Pol, 2010). Support for a neural basis of RS-fMRI comes from 

electrophysiological studies showing a strong association between spontaneous BOLD 
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fluctuations and fluctuations in neuronal spiking (Sadaghiani et al., 2010). Further, concern 

about subjects’ resting cognitions (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012), 

mood (Harrison et al., 2008), instruction (maintain eyes open or closed (Van Dijk et al., 

2010), and other factors (substance withdrawal (Cole et al., 2010), drowsiness (Sämann et 

al., 2011), and sleep (Horovitz et al., 2009) have been addressed by the moderate-to-high 

test-retest reliability of intrinsic activity and intrinsic FC. Therefore, FC patterns are a 

powerful predictor of a person’s age (Dosenbach et al., 2010), memory (Yamashita, 

Kawato, & Imamizu, 2015), and even personality traits (Yamashita et al., 2015). 

  

1.5 Prediction-Analytics Framework 

In a prediction-analytics framework, a model relating measures (whole-brain RSFC 

patterns) to phenotypic variables is learned from a training dataset via multivariate 

prediction analysis (MVPA) (i.e., multivariate classification and regression methods) 

(Kelly et al., 2012). The predictive model is then applied to an independent test dataset to 

predict phenotypes. The resulting predictions are compared to the true phenotypes to 

estimate how well the model generalizes to the test dataset. Meaningful information can be 

extracted from the learned model by using feature selection methods to reduce the input 

variables to only those essential for prediction. MVPA has been applied to fMRI and RSFC 

data. Complementary to inferential statistics that measure the likelihood of such 

relationships arising by chance, MVPA evaluates the significance of an entire RSFC 

pattern using a single statistic without correcting for multiple comparisons and measures 

how well a model generalizes to independent data (out-of-sample generalization) 
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(Richiardi, Achard, Bunke, & Ville, 2013). MVPA has identified RSFC neuromarkers for 

disorders such as Alzheimer’s disease (Dai et al., 2012), schizophrenia (Shen, Wang, Liu, 

& Hu, 2010), and autism (Anderson et al., 2011) and also for age (Dosenbach et al., 2010), 

personality traits (Hahn et al., 2015), and prosocial behavior. However, this framework has 

not been applied to predict individual variation in TPP behavior. 

 

1.6 Study Goal and Hypotheses 

Whether RS-fMRI can be utilized to predict individual difference in TPP behavior 

based on RSFC is still an open question. Therefore, the goal of this study was to apply 

MVPA to RSFC patterns to predict individual difference in TPP behavior measured with a 

TPP exchange game. On the behavioral level, we hypothesized that TPP behavior increases 

with more unfair offers and decreases in comparision to SPP, since TPP is based on blame, 

which is more driven by the intent than outcome in relation to an unfair offer. On the neural 

level, we hypothesized that individual differences in average TPP behavior can be 

predicted by the RSFC between DMN and CEN, because changes in blame (DMN) 

determine the adjustment of punishment (CEN). 
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2. METHODS 

2.1 Participants 

Fifty-two healthy volunteers (28 females, 24 males, Mean (M) = 23.5, Standard 

Deviation (SD) = 3.20) participated for financial compensation. All participants were right-

handed, had normal or corrected-to-normal vision, and were enrolled either at the 

University of Mannheim or at the University of Heidelberg in Germany. Participants were 

excluded from this study, if they met one of the following conditions: having any metal 

parts in the body like prostheses, nails, valvular transplant, pacemaker or implants, record 

of operation on head or heart, artificial lenses, therapeutic patches (e.g., nicotine, 

hormones), non-removable piercing, large area tattoos or permanent make-up – grounded 

on a preliminary brief psychological survey. Further, only German speaking participants, 

aged between 19 and 31 years, with no history of epilepsy or agoraphobia as well as no 

pregnant women were allowed to participate in this study. 

The study, approved by the local ethics committee, was conducted in accordance 

with the ethical guidelines and principles of the Declaration of Helsinki. After being 

informed about the procedure of the study, written consent was obtained from participants. 

They were told that their participation was voluntary and that they could dropout at any 

time point during the study. Participants received 25€ as financial compensation in addition 

to the monetary units (MU) earned from the economic games that were converted into fiat 

money at the end of the study.  
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2.2 Paradigm 

In this study, each participant was required to complete three economic games, 

including the dictator game (DG) (Kahneman, Knetsch, & Thaler, 1986), the TPP game 

(Fehr & Fischbacher, 2004b), and the SPP game (Forsythe, Horowitz, Savin, & Sefton, 

1994) (Figure 5).  

 

 

 

 

Figure 5. Setup of Dictator Game, Second-Party, and Third-Party Punishment Game. 

(A) In the dictator game, proposers share an offer that must be accepted by receivers. (B) In the third-party punishment 

game, third parties —observing proposers as witnesses sharing an offer that must be accepted by receivers— decide 

whether to punish proposers based on unfairness of the offer. (C) In the second party punishment game, proposers share 

an offer with responders and responders decide whether to punish proposers based on the unfairness of the offer. 

 

 

 

The DG game was conducted as a control game, where participants played the role 

of proposers (i.e., dictator) and were asked to share their MUs (maximum: 12 MUs) with 
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receivers who had to accept their offers (Figure 5A). Afterward, participants completed 

two costly punishment games in a counter-balanced manner to examine TPP and SPP.  

For the TPP game, participants were assigned to the role of a third party, who 

witnessed a series of seven random offers by proposers ranging from fair to unfair (6:6; 

7:5; 8:4; 9:3; 10:2; 11:1; 12:0) to receivers (as describes in DG game) (Figure 5B). At the 

beginning of the game, the proposer and third party were assigned equally with 6 MUs. 

Proposers received additional 12 MUs that they could share with receivers. As impartial 

third parties, participants could either keep all MUs or punish proposers based on the 

witnessed offers. The MUs used for punishment by the third parties were tripled in value 

to reduce the proposers’ payoff. 

For a fair offer, the prosper, for example, keeps 6 MUs and sends 6 MUs to the 

receiver. The third party would not punish the proposer, therefore, keeping the original 6 

MUs (Figure 6A). For an unfair offer, the proposer, for example, keeps 12 MUs (having 

now a total of 18 MUs) and sends 0 MUs to the receiver (Figure 6B). The third party would 

punish the proposer using the maximum of 6 MUs (having now a total of 0 MUs). The 

MUs used for punishment will be tripled in value to reduce proposer’s payoff; therefore, 

the maximum deduction on the proposer would be 18 MUs (having now a total of 0 MUs). 

Consequently, the MUs owned by each player would be 0 MU.  
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Figure 6. Third-Party Punishment based on Fairness of Offer. 

(A) Fair offer: Third party decides not to punish the proposer based on the observation of a fair offer (6:6) shared with 

the receiver. (B) Unfair offer: Third party decides to punish the proposer based on the observation of an unfair offer 

(12:0) shared with the receiver. 

 

 

 

Finally, participants in the SPP game acted as responders and were asked to decide 

whether to punish the proposers based on seven randomly received offers ranging from fair 

to unfair (6:6; 7:5; 8:4; 9:3; 10:2; 11:1; 12:0) (Figure 5C). If responders decided to punish 

proposers, each MUs that they spent were then tripled in value and used to reduce the 

proposers’ payoff. 

 

2.3 Procedure 

For the behavioral part of the study, participants were asked to complete the 

economic games (DG, TPP, SPP) as well as surveys with demographic questions (e.g., 

gender, education) using the Qualtrics online platform (https://www.qualtrics.com). 

 For the neuroimaging part of the study, they completed a structural MRI and an RS-

fMRI scan, each lasting about 10 minutes. During the resting scan, participants were 

https://www.qualtrics.com/
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instructed to keep their eyes on the cross-hair displayed on a screen in front of them and 

not fall asleep or to think systematically about a specific topic.  

 

2.4 Behavioral Data Analyses 

The behavioral data analyses were carried out using SPSS 24.0 (IBM Corp, 2016) 

with alpha set to p <0.05 (two-tailed). First, the means and standard errors for the average 

punishment as well as for each of the seven offers were calculated. Second, to identify the 

effects of variations in fairness of offers and type of punishment, a repeated measure 7 x 2 

analysis of variance (ANOVA) on punishment behavior was calculated with Offer (6:6, 

7:5, 8:4, 9:3, 10:2, 11:1, 12:0) and Type (TPP vs. SPP) as within-subjects factors. Third, a 

one-way ANOVA on TPP behavior with Offer (6:6, 7:5, 8:4, 9:3, 10:2, 11:1, 12:0) as a 

within-subjects factor was performed to determine the slope in punishment from most fair 

offer (i.e., 6:6) to most unfair offer (i.e., 12:0). Finally, a paired-samples t-test was 

computed to compare the average punishment behaviors between TPP and SPP. 

 

2.5 MRI Data Acquisition 

Brain images were collected using a Siemens Trio-3T MRI scanner (Siemens 

Medical Systems, Erlangen, Germany) with a 32-channel head coil. For each participant, 

a high-resolution anatomical scan of the entire brain was collected using a T1-weighted 3D 

magnetization prepared rapid acquisition with gradient echo (MP-RAGE) sequence: time 

of repetition (TR), 2300 ms; TE, 3.03 ms; flip angle, 9°; number of slices, 192; field of 

view (FOV), 256 mm; matrix size, 256 x 256; voxel size, 1 x 1 x 1 mm. The blood oxygen 
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level-dependent (BOLD) signal for functional images was measured using a T2-weighted 

gradient EPI with the following parameters: TR, 2000 ms; TE, 30ms; flip angle, 80°; 

thickness, 3mm; number of slices, 36; FOV, 192 mm; matrix size, 64 x 64 mm; voxel size, 

3 x 3 x 3 mm. The first five scans of the EPI were discarded to minimize T1 effects. 

 

2.6 Neuroimaging Preprocessing 

The MRI data analysis was performed using the Statistical Parametric Mapping 

Toolbox (SPM 12, Wellcome Trust Centre for Neuroimaging, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) running under Matlab R2018a 

(Mathworks Inc., Natick, MA, USA). Pre-processing of the EPI images included the 

following steps. To allow signal equilibrium, the first ten volumes of functional images 

were discarded. Afterward, the functional images were bias-corrected for field 

inhomogeneity. Subsequently, the slice-timing method was performed on functional 

images, using interpolation to correct the time point of each functional image. Next, all 

functional images were aligned to the mean image for movement correction to reduce the 

artifact during the imaging. Functional images were then co-registered to their anatomical 

images, and both anatomical images and functional images were spatially normalized to 

MNI template through deformation fields derived from anatomical segmentation 

(resampling voxel size was 2 × 2 × 2 mm3). Lastly, functional images were smoothed with 

isotropic Gaussian kernel of 4 x 4 x 4 mm3 full width at half maximum (FWHM) to increase 

the ratio of signal-to-noise. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Artifact of functional images was detected and excluded using the ART toolbox 

(https://www.nitrc.org/projects/artifact_detect/) based on the following criteria. First, head 

displacement in x, y, or z-direction greater than 2 mm from the previous frames was 

rejected. Second, rotational displacement greater than 0.02 radians from the previous frame 

was rejected. Third, compared with the intensity of the mean image, global mean intensity 

in the functional images greater than 3 standard deviations was rejected. Subsequently, 

those outliers were included as nuisance regressors within the first-level general linear 

model. Ultimately, high-frequency noise and linear drift artifacts were removed by 

implementing the band-pass filter (0.01-0.1 Hz). 

 

2.7 Resting-State Functional Connectivity Analyses 

The RSFC was determined based on the Dosenbach’s atlas, consisting of 142 

(ROIs, nodes) (Dosenbach et al., 2010) (Figure 7). The distance among pairs of ROIs was 

at least greater than 10-mm. The ROIs (n=142) were subdivided into five pre-defined 

RSFC networks: cingulo-opercular network (CON) (overlapping with SN), sensorimotor 

network (SMN), default-mode network (DMN), frontoparietal network (FPN) 

(overlapping with CEN), and occipital network (OccN).  

https://www.nitrc.org/projects/artifact_detect/
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Figure 7. Five Resting-State Brain Networks Defined by the Dosenbach’s Atlas. 

Region of interest (n=142) taken from the Dosenbach’s Atlas can be subdivided into five RSFC networks: sensorimotor 

network (yellow), occipital network (indigo), cingulo-opercular network (red), default mode network (green), and 

frontoparietal network (cyan). Abbreviation: RSFC, resting-state functional connectivity. 

 

 

 

For each participant, the BOLD signal of all voxels residing in every ROI was 

averaged. Between each pair of ROIs, the network edge was defined as functional 

connectivity and FC between edges was calculated by the Pearson correlation coefficient 

using the Functional Connectivity (CONN) toolbox (https://www.nitrc.org/projects/conn). 

The Pearson’s correlation coefficients were transformed into Fisher’s z values to represent 

the degree of FC. For each participant, a correlation matrix with 10,082 unique connections 

was created, which were subsequently used in the multivariate regression analyses (i.e., 

prediction-analytics framework). 

 

https://www.nitrc.org/projects/conn
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2.8 Multivariate Regression Analyses  

For the multivariate regression analyses to predict variations in participants’ 

average TPP behavior, a support vector machine (SVM) algorithm was implemented for 

training and testing the prediction models, using the sci-kit-learn toolbox (https://scikit-

learn.org/stable/) in Python (https://www.python.org/). A total of 15 predictive models 

were computed, including five intra-network models (i.e., intra-network RSFC: CON-

CON, SMN-SMN, DMN-DMN, FPN-FPN, and OccN-OccN) and ten inter-network 

models (i.e., inter-network RSFC: CON-SMN, CON-DMN, CON-FPN, CON-OccN, 

SMN-DMN, SMN-FPN, SMN-OccN, DMN-FPN, DMN-OccN, FPN-OccN).   

A leave-one-subject-out cross-validation (LOSOCV) approach was implemented 

for each prediction model. For every iteration, the SVM algorithm was used to train the 

data on a training set, where one of the participants was left out. Because of the high-

dimensionality of the features (ROI-to-ROI FCs coefficients, n=10,082), a feature selection 

approach was applied, where five percent of the strongest correlations between the features 

and the targets (i.e., TPP behavior) were kept as the most relevant features. The RSFC 

matrix of the left-out participant served as a testing set for the prediction the TPP behavior. 

This iteration was repeated n times (n = total number of participants). Therefore, n models 

were generated, yielding each time a behavioral prediction for each participant.  

The standardized mean squared error (SMSE) was used to assess the performance 

of a model, i.e., the error of the algorithm’s performance divided by the targets’ variance. 

A permutation (n=1000) approach was implemented to determine the significance of each 

model. For each permutation, every cross-validated model was run with randomly 

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.python.org/)
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permuted targets. The number of SMSE scores lower than true targets was calculated 

(nperm); and the p-value was computed by dividing this number by the total number of 

permutations (i.e., p = (1 + nperm)/(1 + 1,000)). 

 

2.9 Network Ranking Procedure for Determining the Best Prediction Model 

To compare the regression model performances between the 15 pre-defined 

networks (i.e., five intra-networks and ten inter-between networks), a 15*15 p-value matrix 

was constructed by applying paired-samples t-tests that compared the distributions between 

the original and permutation-based prediction errors for each network. A significant p-

value indicated whether the prediction error for one network is significantly greater than 

that for another one. From the obtained p values can be inferred how significantly a given 

network predicts TPP behavior in comparison to all other networks. Therefore, a sorting of 

p-values allows a ranking of networks, in which a network that predicts the target behavior 

better than the maximum number of other network pairs will be ranked the highest. 
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3. RESULTS 

3.1 Results for Behavioral Analyses 

The means and standard errors of mean for the average punishments across offers 

as well as for each offer for each costly punishment type (TPP and SPP) are displayed in 

Figure 8. The two-way ANOVA revealed a main effect for the factors Offer 

(F(6,306)=4.71, p<0.035) and Type (F(1,51)=30.44, p<0.001), but not significant 

interaction effect for Offer x Type (F(6,306)=0.65, p=0.648). For the factor Offer, 

punishment increased linearly from the fairest offer (i.e., 6:6) to the most unfair offer (i.e. 

12:0) (F(1,51)=48.89, p <0.001). For the factor Type, participant punished on average less 

in the TPP game compared to the SPP game (t(51)=-2.17, p<0.035). 
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Figure 8. Behavioral Results for Third-Party and Second-Party Punishment. 

Costly punishment behavior (mean ± standard error mean) increased linearly from the fairest offer to the most unfair 

offer. Participant punished on average for third-party punishment (TPP) compared to second-party punishment (SPP) 

(*p<0.05). 

 

 

 

3.2 Results for Prediction Analyses  

Prediction Performance. A prediction framework (i.e. machine-learning 

algorithm) was applied to predict participants’ TPP behavior based on RSFC of 15 

networks (i.e., five intra-networks and ten inter-networks) using the Dosenbach’s atlas 

(Dosenbach et al., 2010) (Figure 9).  



24 

 

 

Figure 9. Results for Prediction Performances for Third-Party Punishment Behavior. 

The significance of performance (i.e., standard mean square error, SMSE, red dot line) for the 15 cross-

validated prediction models (five intra-networks and ten inter-networks) based on the permutation approach 

are shown. *p < 0.05; **p < 0.01; ***p < 0.001. CON, cingulo-opercular network; SMN, sensorimotor network; DMN, 

default mode network; FPN, frontoparietal network; OccN, occipital network. 

 

 

 

The performances of the 12 cross-validated network models were significantly 

better than chance for predicting the average TPP behavior: CON (SMSE=0.96, p<0.002), 

CON-DMN (SMSE=0.89, p<0.001), CON-FPN (SMSE=0.93 p<0.05), CON-OccN 

(SMSE=0.96, p<0.01), CON-SMN (SMSE=0.93, p<0.002), DMN (SMSE=0.88, p<0.005), 

DMN-FPN (SMSE=0.83, p<0.001 ), DMN-OccN (SMSE=0.97, p<0.05), DMN-SMN 

(SMSE=0.91, p<0.001), FPN (SMSE=0.86, p<0.001), FPN-OccN (SMSE=0.97, p<0.001), 

SMN (SMSE=0.95, p<0.01). 
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Network Ranking Procedure. Table 1 shows the 15*15 p-value matrix that 

resulted from comparing the distributions of the cross-validated and permutation-based 

prediction errors between the 15 networks (i.e., five intra-networks and ten inter-between 

networks). 

 

 

 
Table 1. P-Value Matrix for Ranking Performance of Models. 

 

CON, cingulo-opercular network; SMN, sensorimotor network; DMN, default mode network; FPN, frontoparietal 

network; OccN, occipital network. 

 

 

 

After applying the network ranking procedure, allowing to determine the network 

that predicts the target behavior better than the maximum number of other network pairs, 

the DMN-FPN inter-network ranked the highest, indicating that the RSFC between these 

two networks predicted the average TPP behavior the best (Figure 10). 
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Figure 10. Resting-State Functional Connectivity of Best Model Predicting Third-Party Punishment Behavior. 

Resting-state functional connectivities (edges) between regions of interests (ROIs, nodes) of the default-mode network 

(shown in green) and the frontoparietal network (shown in indigo) shown in sagittal view (A), axial view (B), and coronal 

view (C) predicts best the average third-party punishment behavior. The name for each ROI (given by a number) can be 

seen in Table S1. L, left; R, right.
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4. DISCUSSION 

The goal of the study was to investigate the prediction of individual differences in 

average TPP behavior based on RSFC —combining a TPP game and a prediction-analytics 

framework. On the one hand, the behavioral results revealed that the amount of punishment 

—increasing with the degree of unfairness— was less in TPP than in SPP. On the other 

hand, the neuroimaging results indicated that RSFC between DMN and FPN (overlapping 

with CEN) predicted best the individual differences in average TPP behavior. 

The first hypothesis —TPP behavior increasing with the observation of more unfair 

offers in the TPP game— was confirmed. The proposed neuropsychological model 

indicated that punishment behavior hinges on blame, which is based on the unfair outcome 

to the receiver and the intent of the proposer (Krueger & Hoffman, 2016). Our findings are 

supported by previous investigations, indicating a linear association between the degree of 

unfairness and amount of punishment (Jordan, Mcauliffe, & Rand, 2015; Stallen et al., 

2018; Wu et al., 2014; Zhong et al., 2016). Furthermore, findings from other economic 

exchange games (e.g., SPP game) confirm this behavioral pattern, implying consistency of 

this phenomenon among different game paradigms (Fehr & Fischbacher, 2004b; 

Gummerum & Chu, 2014; McCall, Steinbeis, Ricard, & Singer, 2014; Stallen et al., 2018).  

Further, our findings also demonstrated that the average costly punishment 

behavior was significantly lower in TPP than in SPP, which also has been sown in previous 

studies (Buckholtz & Marois, 2012; Zhou, Jiao, & Zhang, 2017). For SPP behavior, the 

second party is directly affected by the unfair offers made by the proposer; and, therefore, 
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the punishment behavior is more driven by harm (i.e., unfair outcome). For TPP behavior, 

in contrast, the third party is not directly affected by the unfair offers, putting the focus on 

the intention of the proposer, which probably reduces costly punishment in TPP compared 

to SPP.  

The second hypothesis —individual differences in average TPP behavior can be 

predicted by the interaction of RSFC between DMN and CEN— was confirmed. The 

results showed that RSFC between DMN and CEN (i.e., FPN) predicted best individual 

differences in average TPP behavior. TPP behavior engages three interacting large-scale 

networks. The SN (associated with aversive self-related emotional experiences that guide 

behavior) detects social norm violations (dACC), responds by generating an aversive 

experience (AI), and provides an emotional signal coding for the severity of harm (Amyg). 

The DMN (associated with social cognition, mentalizing, and theory of mind, ToM 

(Premack & Woodruff, 1978) is anchored in mPFC. This network assesses blame by 

integrating harm to the victim via the vmPFC’s inter-network connectivity with SN 

(allowing the experience of feelings congruent with another’s emotional situation, affective 

ToM) with the intent of the perpetrator evaluated via the dmPFC’s intra-network 

connectivity with regions associated with self-referential processing (PCC) and inferring 

intentions in others (TPJ; understanding others’ mental states and feelings, cognitive ToM). 

The CEN (anchored in the dlPFC and associated with higher-order cognition and decision 

making) converts the blame signal from the DMN into an actual decision, selecting a 

punishment (when focusing on the perpetrator) or compensation (when focusing on the 

victim) that fits the norm violation.  
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Previous research employing task-based fMRI has shown that both DMN 

(associated with inferring someone’s intention) and CEN (associated with the 

determination of the appropriate punishment amount) are engaged in TPP (Heekeren, 

Wartenburger, Schmidt, Schwintowski, & Villringer, 2003; Schleim, Spranger, Erk, & 

Walter, 2011). Presumably, prior to converting blame into punishment, the mPFC anchored 

in DMN needs to integrate intention-integrating signals from TPJ and harm-integrating 

signals from vmPFC into an assessment of blame (Krueger & Hoffman, 2016). TPP is more 

driven from inferring the intention of the proposers, leading to a lower punishment 

behavior in comparison to SPP. According to previous task-based fMRI research, a higher 

engagement of the social inference system anchored in DMN is required (Buckholtz & 

Marois, 2012; Krueger, Hoffman, Walter, & Grafman, 2014) to assess the intentions of 

others (Harris, Todorov, & Fiske, 2005). 

After integrating these two signals, the CEN converts blame assessment into an 

appropriate punishment decision (Bellucci et al., 2017), where the PCC constructs a scale 

of punishment for the dlPFC to select an appropriate punishment decision (Buckholtz et 

al., 2008). Previous evidence has shown that that the magnitude of TPP punishment 

correlates proportionally to the activation in the right dlPFC, a core brain region of CEN 

engaged in determining the appropriate punishment (Buckholtz et al., 2008). In sum, RSFC 

between DMN and FPN (i.e., CEN), significantly involved in signal conversion from 

blame to punishment, accounts for individual differences in TPP. 

Although those findings provide us with a comprehensive understanding of the 

neural architecture underlying TPP behavior; however, some limitations exist that have to 
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be addressed in future research. First, future studies investigating TPP behavior based on 

RSFC using task-free fMRI need to be investigated in larger study samples. As a result, 

larger study samples will allow multivariate regression models to accomplish better 

accuracy and lower error as well as lower variance. Second, the prediction of costly 

punishment was based on measurements at a single time-point at the day of the experiment. 

Future studies should investigate whether RSFC can also predict TPP behavior at different 

time-points in the future —characterizing temporally stable consistency of the underlying 

RSFC.  

In summary, the behavioral results demonstrated that the amount of TPP increased 

as the offer became increasingly unfair and the amount of punishment in the TPP was less 

than SPP. Furthermore, RSFC between DMN and CEN predicted individual differences in 

TPP behavior. The process of signal conversion from blame into punishment engages the 

interaction between DMN (i.e., inferring the intentions and goals of others) and CEN (i.e., 

determining the appropriate punishment). In conclusion, investigating individual 

differences in costly punishment behavior allow comprehensive understandings for 

sustaining cooperation and fulfilling enforcement of social norms in human society. 

Furthermore, in our research, behavioral analysis and prediction-analytics framework were 

conducted on the normal participants. Consequently, with these observed results and 

established prediction-analytics frameworks, investigating individual difference with 

social disorder disease become possible. 
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5. APPENDIX 

 
Table S1. Characteristics of 142 ROIs defined by Dosenbach’s Atlas. 

Characteristics (i.e., coordinates, hemisphere, label, and network) for each region of interest (ROI) of the Dosenbach’ 

Atlas are shown. 

 
MNI-corrdinates hemisphere    

number x y z left/right  ROI label (abbr.) ROI label network 

1 6 64 3 right VMPFC ventromedial prefrontal cortex default 

2 29 57 18 right aPFC anterior prefrontal cortex fronto-parietal 

3 -29 57 10 left aPFC anterior prefrontal cortex fronto-parietal 

4 0 51 32 - mPFC medial prefrontal cortex default 

5 -25 51 27 left aPFC anterior prefrontal cortex default 

6 9 51 16 right VMPFC ventromedial prefrontal cortex default 

7 -6 50 -1 left VMPFC ventromedial prefrontal cortex default 

8 27 49 26 right aPFC anterior prefrontal cortex cingulo-opercular 

9 42 48 -3 right vent-aPFC ventral anterior prefrontal cortex fronto-parietal 

10 -43 47 2 left vent-PFC ventral prefrontal cortex fronto-parietal 

11 -11 45 17 left VMPFC ventromedial prefrontal cortex default 

12 39 42 16 right VLPFC ventral lateral prefrontal cortex fronto-parietal 

13 8 42 -5 right VMPFC ventromedial prefrontal cortex default 

14 9 39 20 right ACC anterior cingulate cortex default 

15 46 39 -15 right VLPFC ventral lateral prefrontal cortex default 

16 40 36 29 right DLPFC dorsolateral prefrontal cortex fronto-parietal 

17 23 33 47 right sup-front superior frontal gyrus default 

18 34 32 7 right VPFC ventral prefrontal cortex cingulo-opercular 

19 -2 30 27 left ACC anterior cingulate cortex cingulo-opercular 

20 -16 29 54 left sup-front superior frontal gyrus default 

21 -1 28 40 left ACC anterior cingulate cortex fronto-parietal 

22 46 28 31 right DLPFC dorsolateral prefrontal cortex fronto-parietal 

23 -52 28 17 left VPFC ventral prefrontal cortex fronto-parietal 

24 -44 27 33 left DLPFC dorsolateral prefrontal cortex fronto-parietal 

25 51 23 8 right vFC ventral frontal cortex cingulo-opercular 

26 38 21 -1 right AI anterior insula cingulo-opercular 

27 9 20 34 right dACC dorsal anterior cingulate cortex cingulo-opercular 

28 -36 18 2 left AI anterior insula cingulo-opercular 

29 40 17 40 right dFC dorsal prefrontal cortex fronto-parietal 

30 -6 17 34 left basal-ganglia basal ganglia cingulo-opercular 

31 0 15 45 - mPFC medial prefrontal cortex cingulo-opercular 
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32 58 11 14 right frontal frontal lobe sensorimotor 

33 -46 10 14 left vFC ventral frontal cortex cingulo-opercular 

34 44 8 34 right dFC dorsal prefrontal cortex fronto-parietal 

35 60 8 34 right dFC dorsal prefrontal cortex sensorimotor 

36 -42 7 36 left dFC dorsal prefrontal cortex fronto-parietal 

37 -55 7 23 left vFC ventral frontal cortex sensorimotor 

38 -20 6 7 left basal-ganglia basal ganglia cingulo-opercular 

39 14 6 7 right basal-ganglia basal ganglia cingulo-opercular 

40 -48 6 1 left vFC ventral frontal cortex cingulo-opercular 

41 10 5 51 right pre-SMA pre-supplementary motor area sensorimotor 

42 43 1 12 right vFC ventral frontal cortex sensorimotor 

43 0 -1 52 - SMA supplementary motor area sensorimotor 

44 37 -2 -3 right mid-insula middle insula cingulo-opercular 

45 53 -3 32 right frontal frontal lobe sensorimotor 

46 58 -3 17 right PreCG precentral gyrus sensorimotor 

47 -12 -3 13 left thalamus thalamus cingulo-opercular 

48 -42 -3 11 left mid-insula middle insula sensorimotor 

49 -44 -6 49 left PreCG precentral gyrus sensorimotor 

50 -26 -8 54 left parietal parietal lobe sensorimotor 

51 46 -8 24 right PreCG precentral gyrus sensorimotor 

52 -54 -9 23 left PreCG precentral gyrus sensorimotor 

53 44 -11 38 right PreCG precentral gyrus sensorimotor 

54 -47 -12 36 left parietal parietal lobe sensorimotor 

55 33 -12 16 right mid-insula middle insula sensorimotor 

56 -36 -12 15 left mid-insula middle insula sensorimotor 

57 -12 -12 6 left thalamus thalamus cingulo-opercular 

58 11 -12 6 right thalamus thalamus cingulo-opercular 

59 32 -12 2 right mid-insula middle insula cingulo-opercular 

60 59 -13 8 right temporal temporal lobe sensorimotor 

61 -30 -14 1 left mid-insula middle insula cingulo-opercular 

62 -38 -15 59 left parietal parietal lobe sensorimotor 

63 52 -15 -13 right IT inferior temporal gyrus default 

64 -47 -18 50 left parietal parietal lobe sensorimotor 

65 46 -20 45 right parietal parietal lobe sensorimotor 

66 -55 -22 38 left parietal parietal lobe sensorimotor 

67 -54 -22 22 left PreCG precentral gyrus sensorimotor 

68 -54 -22 9 left temporal temporal lobe sensorimotor 

69 41 -23 55 right parietal parietal lobe sensorimotor 

70 42 -24 17 right post-insula posterior insula sensorimotor 

71 11 -24 2 right basal-ganglia basal ganglia cingulo-opercular 
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72 -59 -25 -15 left IT inferior temporal gyrus default 

73 1 -26 31 right PC precuneus default 

74 18 -27 62 right parietal parietal lobe sensorimotor 

75 -38 -27 60 left parietal parietal lobe sensorimotor 

76 -30 -28 9 left post-insula posterior insula cingulo-opercular 

77 -24 -30 64 left parietal parietal lobe sensorimotor 

78 51 -30 5 right temporal temporal lobe cingulo-opercular 

79 -41 -31 48 left post-parietal posterior parietal cortex sensorimotor 

80 -4 -31 -4 left PC precuneus cingulo-opercular 

81 54 -31 -18 right fusiform fusiform gyrus cingulo-opercular 

82 -41 -37 16 left temporal temporal lobe sensorimotor 

83 -53 -37 13 left temporal temporal lobe sensorimotor 

84 28 -37 -15 right fusiform fusiform gyrus default 

85 -3 -38 45 left PreC  precuneus cortex default 

86 34 -39 65 right SPL superior parietal lobule sensorimotor 

87 8 -40 50 right PreC  precuneus cortex cingulo-opercular 

88 -41 -40 42 left IPL inferior parietal lobe fronto-parietal 

89 58 -41 20 right parietal parietal lobe cingulo-opercular 

90 -8 -41 3 left PC precuneus default 

91 -61 -41 -2 left IT inferior temporal gyrus default 

92 -28 -42 -11 left Occ occipital lobe default 

93 -5 -43 25 left PC precuneus default 

94 9 -43 25 right PreC  precuneus cortex default 

95 43 -43 8 right temporal temporal lobe cingulo-opercular 

96 54 -44 43 right IPL inferior parietal lobe fronto-parietal 

97 -55 -44 30 left parietal parietal lobe cingulo-opercular 

98 -35 -46 48 left post-parietal posterior parietal cortex fronto-parietal 

99 42 -46 21 right ST superior temporal gyrus cingulo-opercular 

100 -48 -47 49 left IPL inferior parietal lobe fronto-parietal 

101 -41 -47 29 left AG angular gyrus cingulo-opercular 

102 -59 -47 11 left temporal temporal lobe cingulo-opercular 

103 -53 -50 39 left IPL inferior parietal lobe fronto-parietal 

104 5 -50 33 right PreC  precuneus cortex default 

105 -18 -50 1 left Occ occipital lobe occipital 

106 44 -52 47 right IPL inferior parietal lobe fronto-parietal 

107 -5 -52 17 left PC precuneus default 

108 10 -55 17 right PC precuneus default 

109 -6 -56 29 left PreC  precuneus cortex default 

110 -32 -58 46 left IPS intra−parietal sulcus fronto-parietal 

111 -11 -58 17 left PC precuneus default 
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112 32 -59 41 right IPS intra−parietal sulcus fronto-parietal 

113 51 -59 34 right AG angular gyrus default 

114 -34 -60 -5 left Occ occipital lobe occipital 

115 36 -60 -8 right Occ occipital lobe occipital 

116 46 -62 5 right temporal temporal lobe occipital 

117 -48 -63 35 left AG angular gyrus default 

118 -52 -63 15 left TPJ temporoparietal junction cingulo-opercular 

119 -44 -63 -7 left Occ occipital lobe occipital 

120 19 -66 -1 right Occ occipital lobe occipital 

121 11 -68 42 right PreC  precuneus cortex default 

122 17 -68 20 right Occ occipital lobe occipital 

123 -36 -69 40 left IPS intra−parietal sulcus default 

124 39 -71 13 right Occ occipital lobe occipital 

125 -9 -72 41 left Occ occipital lobe default 

126 45 -72 29 right Occ occipital lobe default 

127 29 -73 29 right Occ occipital lobe occipital 

128 -2 -75 32 left Occ occipital lobe default 

129 -29 -75 28 left Occ occipital lobe occipital 

130 -16 -76 33 left Occ occipital lobe occipital 

131 -42 -76 26 left Occ occipital lobe default 

132 9 -76 14 right Occ occipital lobe occipital 

133 15 -77 32 right Occ occipital lobe occipital 

134 20 -78 -2 right Occ occipital lobe occipital 

135 -5 -80 9 left postOcc posterior occipital lobe occipital 

136 29 -81 14 right postOcc posterior occipital lobe occipital 

137 33 -81 -2 right postOcc posterior occipital lobe occipital 

138 -37 -83 -2 left postOcc posterior occipital lobe occipital 

139 -29 -88 8 left postOcc posterior occipital lobe occipital 

140 13 -91 2 right postOcc posterior occipital lobe occipital 

141 27 -91 2 right postOcc posterior occipital lobe occipital 

142 -4 -94 12 left postOcc posterior occipital lobe occipital 
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