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density-based analysis with ε = 5Å is shown every 2K MMC steps (red lines).

(d)-(f) Energy vs. lRMSD from the native structure are plotted for system

with PDB ID 1ail for conformations in ΩE,C in (d) and for the end points

of the MMC trajectories in (e). These results are obtained with AMW and

NORM. (f) also shows the energetic and lRMSD ranking of the top 10 populous

cluster representatives after a short high-resolution refinement. (g)-(i) Energy

vs. lRMSD from the native structure are plotted for system with PDB ID

1ail for conformations in ΩE,C in (g) and for the end points of the MMC

trajectories in (h). These results are obtained with the Rosetta score 3 energy

function and NORM. (i) also shows the energetic and lRMSD ranking of the top

10 populous cluster representatives after a short high-resolution refinement. 55

5.1 (a) Proportional cooling scheme used for the reactive temperature setting

is shown. Temperatures go down from T0 to T14. (b) The corresponding

acceptance probabilities, under the Metropolis criterion, are shown, using

δE = 10 kcal/mol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 (a) Minimum lRMSDs to the goal structure are plotted as a function of tree

size and compared among global bias schemes. No local bias is employed in

the expansion procedure. (b) Global bias schemes are additionally compared

in terms of path diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 (a) Minimum lRMSDs to goal are plotted as a function of tree size and

compared among bias schemes. Local bias is employed in the expansion

procedure.(b) Global bias schemes are additionally compared in terms of

path diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Step size is measured as the lRMSD between a parent and child in the tree

structure. The distributions of step sizes in the exploration is highlighted on

one selection transition for CaM, over all global bias schemes when using no

local bias in the expansion procedure. . . . . . . . . . . . . . . . . . . . . . 80

5.5 Depth is compared across the three different local schemes considered in the

expansion procedure. The global bias schemes considered are (a) QUAD and

(b) COMBINE90−10. The comparison is highlighted on three selected transitions. 81

xiii



5.6 Depth (a) and breadth (b) are compared when using the second discretization

layer (’with USR’ in legend) over not using it (’without USR’). The ’without

USR’ setting is the baseline setting where no local bias is employed in the ex-

pansion procedure. The global bias scheme considered here is COMBINE90−10.

The comparison is highlighted on the same three selected transitions. . . . . 82

5.7 These graphs illustrate the effects of our reactive temperature scheme. This

illustrates that while we sacrifice some of the breadth of our search tree, the

reactive scheme is able to locate conformations closer to the goal state. This

is more pronounced for the larger system (AdK). . . . . . . . . . . . . . . . 84

5.8 Three paths for CaM are highlighted. Start and goal structures are in red

and blue, respectively. Selected conformations in the path are drawn in a

red-to-blue interpolated scheme. . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Pseudo-free energies along ∆R are shown for sampled paths connecting 1cfd

to 1cll and vice versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.10 A path capturing the transition from 1ake to 4ake is shown here. Start and

goal structures are in red and blue, respectively. Selected conformations in

the path are drawn in a red-to-blue interpolated scheme. . . . . . . . . . . . 87

6.1 Left: A representative of the ON (GTP-bound) state of Ras (PDB id: 1qra).

Right: A representative of the OFF (GDP-bound) state (PDB id: 4q21).

The reactant (GTP) and product (GDP) are shown, as well. The two loop

regions that undergo a structural change in the ON to OFF transition and

(reverse) are shown color-coded in red (left) and blue (right). . . . . . . . . 100

6.2 The left panel shows the minimum cost paths (in terms of energy) for the

wildtype sequence between the OFF and ON states. This plot is rendered in

the PCA space created by our EA algorithm for sampling. The right panel

shows the energetic profile of the lowest-cost paths when transitions from the

ON state to the OFF state for the wild type and Q61L mutant sequences. 102

7.1 A cartoon example of the CPR algorithm. The left side shows the initial

interpolated path in blue, with the highest energy conformation shown in

red. This structure undergoes an energy minimization, resulting in the blue

point. A new path is now constructed via the blue point. The right panel

illustrates the next iteration of the algorithm . . . . . . . . . . . . . . . . . 117

xiv



7.2 CPU time demands of the sampling stage, shown in hours, is an average

over three independent executions of SPIRAL for each setting considered.

For each protein, three settings are considered depending on the εmin value

utilized during sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Energy profiles of conformational paths computed between 1ake and 4ake of

AdK (top) and of CaM (bottom). The red paths are those computed with

CPR, and the green ones are computed by SPIRAL. . . . . . . . . . . . . . 131

xv



Abstract

PROBABILISTIC ALGORITHMS FOR MODELING PROTEIN STRUCTURE AND DY-
NAMICS

Kevin P Molloy, PhD

George Mason University, 2015

Dissertation Director: Dr. Amarda Shehu

This thesis proposes novel probabilistic algorithms to address critical open problems in

computational structural biology regarding the relationship between structure, dynamics,

and function in protein molecules. The focus on protein modeling research is warranted

due to the ubiquity and central role of proteins in life-critical processes in the living cell.

A study of protein molecules is important for understanding our biology and health. Many

disorders in the sick cell are proteinopathies, where a protein disrupts a chemical process,

causing the cell to deviate from its intended biological activity. However, unlike other

life-critical macromolecules, such as DNA and RNA, where significant information about

activity can be extracted from knowledge of the ordering of the constitutive building blocks,

proteins exhibit a more complex relationship between the order of building blocks, the

structures arising from spatial arrangements of the building blocks in three-dimensional

space, and the determination from such arrangements of biological activity. Since studies

of proteins pose exceptional challenges in wet laboratories, the work presented in this thesis

proposes powerful algorithms to complement wet-laboratory research on understanding the

relationship between structure, dynamics, and function in protein molecules.



Specifically, this thesis addresses three main problems that permeate protein model-

ing research. The first problem, known as “from-structure-to-function,” asks how to infer

the function of a protein from knowledge of its active structure. The second problem,

known as “from-sequence-to-structure,” relates to the open question of how to predict the

biologically-active structure of a protein when provided information on the identities and or-

der of constitutive building blocks. The third problem advances the current computational

treatment of proteins to alleviate assumptions of their rigidity and instead model them as

dynamic macromolecules switching between structures to tune their biological activity. The

objective here is to model protein dynamics efficiently by computing the molecular motions

employed in structural transitions among diverse functionally-relevant states of a protein.

The algorithmic techniques employed in this thesis span machine learning, computa-

tional geometry, and stochastic optimization. In particular, we combine computational

geometry and machine learning in a novel framework to infer the function of a protein from

knowledge of its structure. In our treatment of the de novo structure prediction problem,

we employ and investigate in detail an adaptive stochastic optimization framework capa-

ble of balancing between search breadth and depth in the exploration of a high-dimensional

and nonlinear search space. We pursue such frameworks further and propose novel robotics-

inspired probabilistic algorithms to model protein dynamics. In particular, in our treatment

of structure and dynamics, we exploit analogies between protein modeling and the motion

planning problem in robotics, which allow us to employ relevant concepts from motion plan-

ning algorithms and propose powerful algorithms capable of handling highly-constrained

articulated systems with hundreds or thousands of continuous and discrete variables.

This thesis advances protein modeling research by extending the size and complexity

of systems that can be modeled, as well as the detail and accuracy with which relevant

biological questions can be answered. For instance, algorithms proposed here to model

structural transitions are now able to explain the impact of sequence mutations on protein

function. Just as important, the algorithmic techniques proposed in this thesis are of general

utility to other domains in computer science focusing on extending optimization algorithms

for vast and nonlinear search spaces of complex systems.



Chapter 1: Introduction

This thesis proposes novel algorithms to unravel the relationship between structure, dynam-

ics, and function in protein molecules. The focus on proteins is warranted for three main

reasons. First, proteins play a central role in virtually every chemical process in the living

cell [6]. Second, many disorders in the sick cell are already characterized as proteinopathies,

where a protein that is central to a chemical process deviates from its intended biological

activity [7–10]. Third, unlike other life-critical macromolecules such as DNA and RNA,

where significant information about biological activity can be extracted from knowledge of

the order of the constitutive building blocks, in proteins there is a more complex relation-

ship between the order of building blocks, their arrangement in three-dimensional space

under physiological conditions, and the determination from such an arrangement of bio-

logical activity or protein function [11]. For these reasons, a study of protein molecules is

both central to molecular biology and our health. More importantly, studies of proteins

pose exceptional challenges both in the wet and dry laboratories. In this thesis, we focus

on the computational challenges, as our goal is to propose algorithms to complement and

aid wet-laboratory investigations.

Specifically, this thesis addresses three main problems that currently permeate protein

modeling research in computational biology. The first problem, which we address in chap-

ter 3, relates to the open question of how to infer what the function of a given protein

is when provided information on the placement of its building blocks in three-dimensional

space under physiological conditions, otherwise known as protein structure. This is often

known as the “from-structure-to-function” question in computational biology, and in chap-

ter 3 we propose a machine learning approach to address this problem. The second problem,

which we address in chapter 4, relates to the open question of how to predict the struc-

ture of a protein when provided information on the identities and order of building blocks

1



in the protein chain. This is often known as the “de novo structure prediction problem”

and we investigate a robotics-inspired stochastic optimization framework for its ability to

balance computational efficiency and accuracy when addressing this problem. The third

problem, which we address and study in detail in chapters 5, 6, and 7 advances the current

computational treatment of proteins to alleviate assumptions of their rigidity. Indeed, in

chapter 5, we model proteins as dynamic macromolecules, and propose a novel robotics-

inspired tree-based search framework to compute motions of proteins between two distinct

functionally-relevant structures. We pursue this line of investigation deeper in chapter 6,

where we demonstrate the promise of combining continuous and discrete modeling in ex-

tracting information about structural transition in healthy and aberrant forms of a protein

central to many human cancers. In chapter 7 we pursue further a novel algorithmic frame-

work for the computation of structural transitions in proteins and identify both important

advances and remaining challenges.

It is worth noting that the problems addressed in this thesis remain open in computa-

tional biology. More importantly, they pose interesting and challenging settings for novel

algorithmic research. In this way, while the research described in this thesis is driven by

specific open questions in computational and molecular biology, the algorithms described

here make important contributions in computer science, as the study of biologically-realistic

systems such as proteins exposes challenging systems where novel modeling and simulation

algorithms need to be devised. Such a setting is unforgiving; not only do the algorithms

need to be computationally efficient, but they also have to be able to perform well on real-

istic systems and generate data that can be trusted to make decisions. It is worth noting

that computational research in macromolecular modeling research has recently gained an

important place in science; all 2013 Nobel laureates in chemistry represented computational

research in macromolecular modeling and simulation.

The foundation of this thesis is that protein structure determines protein function. This

was demonstrated early, by Anfinsen’s experiments [12]. The central role of protein struc-

ture is not surprising, as biological activity of a protein molecule is the result of binding with
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small molecules or docking onto other macromolecules, including proteins. The process of

binding or docking relies on strong geometrical and chemical complementarity of two molec-

ular structures. Thus, the strong relationship between structure and function in proteins

justifies a mechanistic treatment of protein molecules, under which the physiological/native

three-dimensional (3d) structure of a protein determines to a great extent protein function.

In many studies focused on extracting information about the function of a protein iden-

tified in some organism, structure is seemingly circumvented. Instead, the function of an

unknown target protein is often inferred from that of a known protein with a highly similar

(more than 15% identical) sequence to the target. This is the basis of comparative model-

ing, an area of computational biology that is now well-developed and mature, greatly due to

the rigor and effectiveness of dynamic programming algorithms capable of comparing two

strings. In fact, nowadays, the majority of methods used for genome-wide functional annota-

tion are based on sequence comparisons and use sequence alignment to identify homologous

(ancestor-sharing) proteins. Well-known sequence alignment tools include BLAST [13],

PROSITE [14, 15], and PFAM [16, 17]. These tools have become indispensable, given that

genome sequencing efforts utilizing high-throughput technologies are now elucidating mil-

lions of protein-encoding sequences lacking any functional characterization [18,19].

It is important to note that the inference of functional similarity from sequence simi-

larity does not remove considerations of structure. Instead, two proteins of highly similar

sequences have highly similar structures, and it is similarity of structures that indeed allows

one to infer functional similarity. More importantly, the exquisite role of structure can be

better appreciated on cases where functional similarity occurs despite low sequence simi-

larity. Sequence-based function inference may miss detecting similar proteins where either

early branching points (in such case the proteins are referred to as remote homologs) or con-

vergent evolution has resulted in high sequence divergence while largely preserving structure

and function. The presence of remote homologs was identified as early as 1960, when Perutz

and colleagues showed through structural alignment that myoglobin and hemoglobin have

similar structures but different sequences [20]. Since then, many sequence-based methods
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have been offered to extend the applicability of sequence alignment tools to detect remote

homologs [21–23]. The most successful ones, relying on statistical models learned over

multiple aligned sequences, have been shown to improve upon methods based on pairwise

sequence comparison but still fail to recognize remote homologs with sequence identity less

than 25% [24]. It is worth noting that about 25% of all sequenced proteins are estimated

to fall in this category.

In chapter 3 we advance the argument of how to infer function similarity from struc-

ture similarity for remote homologs. We proceed utilizing a structure-based method rather

than a sequence-based one. Because structure is under more evolutionary pressure to be

preserved than sequence, methods that compare structures allow effectively casting a wider

net at detecting related proteins for functional annotation. Structure-based function infer-

ence promises to detect remote homologs and expand options for assigning function to a

novel protein sequence. While many methods exist to determine whether two structures

are similar, they are computationally demanding and not amenable to a high-throughput

setting where a protein structure with unknown function is potentially compared against a

database of protein structures with known functional annotations. One of the contributions

of the work in this thesis is a novel representation of protein structure that allows expedient

comparison of two protein structures. When coupled with a state-of-the-art machine learn-

ing method, this representation allows prediction of protein function from a given protein

structure.

While structure-based function prediction is in principle now viable, it takes considerably

more effort in the wet laboratory to elucidate structure, that is the native 3d arrangement

of the amino-acid building blocks in a protein, than to determine sequence, that is the

identity and order of amino acids that constitute a protein chain. There are currently

no high-throughput experimental technologies for protein structure determination. While

great progress is being made (for instance, as of November 2014, the Protein Data Bank [25]

contains 100, 000 protein structures), the gap between known protein structures and known

protein sequences has grown at an exponential rate. This is illustrated in Figure 1.1. For
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this reason, computational research in protein structure determination plays an important

complementary role to wet-lab technologies.
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Figure 1.1: Comparing the growth in cataloged protein sequences in UniProt (red line) to
determined protein structures in the PDB (blue line).

In chapter 4 we address the problem of protein structure prediction. Specifically, we

address a more challenging setting and focus on proteins where sequence similarity cannot

be used as a means to infer structure from a known protein to the target one (the latter

is the domain of template-based modeling). Instead, we address template-free or de novo

protein structure prediction. In particular, we approach the problem under the umbrella

of stochastic optimization and focus on the analysis of novel algorithmic components to

balance conflicting objectives when navigating a vast, high-dimensional space in search of

lowest-energy minima possibly containing the native protein structure. A detailed treatment

of this problem and our work on it is provided in chapter 4.

While the problem of de novo structure prediction is often characterized as the holy
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grail of computational biology, it is often addressed in a somewhat simplified view of pro-

teins. While there was early evidence from Feynmann and Schroedinger that proteins,

like many physics-based systems, are not rigid but rather dynamic molecules [26, 27], we

now have experimental evidence that many proteins exploit a menu of thermodynamically-

stable structures through which to modulate their function and act as dynamic molecular

machines [28–32]. The elucidation of series of structures that a protein uses to transition

between two functionally-relevant ones, also known as a (structural) transition pathways is

important not only for a detailed system’s understanding but also in practical health-related

settings. There are many proteins where mutations do not remove the ability of a protein

to occupy functionally-relevant structures but instead modify transition pathways, making

it harder or easier for a protein to transition between two or more important functional

states. While the computation of such pathways has predominantly been the domain of

molecular dynamic methods, such methods are typically computationally-impractical. In

this thesis, we pursue an alternative approach that gains inspiration from a related problem

in algorithmic robotics, known as robot motion planning.

In chapter 5 we demonstrate the ability of a novel, tree-based robotics-inspired algorithm

to compute physically-realistic motions of a protein between two given functionally-relevant

structures. We then pursue a more general setting and adapt roadmap-based algorithms

to compute multiple paths. In particular, in chapter 6 we realize the relationship between

a roadmap constructed to map the connectivity among computed low-energy structures of

a protein and a markov state model. By employing Markov state theory we are able to

quantify differences in transition pathways between healthy and aberrant forms of a protein

central to human cancer and are thus able to obtain an explanation for how sequence

mutations impact protein function. The last chapter in this thesis, chapter 7, identifies

some remaining challenges and charts possible advances in this direction.

Before we begin, we relate some preliminaries in chapter 2 on protein geometry and

theoretical foundations of protein biophysics that justify the computational approach pur-

sued in this thesis. After relating our work on each of the three main problems addressed
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in this thesis, we conclude in chapter 8 with some introspection and possible future work

for computer science researchers interested in the challenges arising in protein modeling

research.
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Chapter 2: Preliminaries

This chapter outlines preliminaries on protein geometry and energetics that are essential

to understanding the state of the art in protein modeling. The chapter concludes with

methods for evaluating and comparing protein structures, which are essential for validation

of some of the algorithms presented in this thesis.

2.1 Protein Geometry and Representation

Proteins are chains of amino acids. Each amino acid type consists of the common backbone

atoms, N,Cα, C,O, and the side-chain atoms. Side-chain atoms are what differentiate the

different types of amino acids. An arrangement of a protein’s atoms is referred to as a

conformation. In computational biology literature, the terms structure and conformation

are routinely interchanged. However, the term conformation is more general than structure.

It is the equivalent of configuration and state in system modeling research. While the

structure of a protein is uniquely described by listing the cartesian coordinates of its atoms,

a conformation relates more to the choice of representation of a protein chain. This may

include modeling only certain atoms of each amino acids (for instance, the central Cα

atom or all backbone atoms of each amino acid), whether doing so by selecting cartesian

coordinates as parameters/variables of the representation or other variables (for instance,

angles defined over bonds connecting atoms in a chain). The term conformation is related

to that of configuration.

Small proteins can be comprised of thousands of atoms and therefore can have thousands

of DOFs. To reduce the complexity, many protocols reduce the DOFs to the set of dihedral

angles over the backbone atoms. This is shown in Figure 2.1. The bond lengths and

bond angles are held at constant values, which is commonly referred to as the idealized
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Figure 2.1: A coarse-grained protein representation where the dihedral angles, φ and ψ,
represent the only variables or degrees of freedom (DOFs) in this model. Side-chain config-
urations are represent by the R1, R2 and R3 groups. This figure has been produced with
the visual molecular dynamics (VMD) software [2].

representation or idealized geometry model [33]. This representation defines 2n DOFs for

a protein consisting of n amino acids.

2.2 Protein Energy

In a thermodynamics treatment [12, 34], the sought native structure of a target protein

sequence theoretically resides at the bottom of a global minimum of the protein energy

surface [12]. An energy function sums the physical interactions among atoms in a protein

chain and allows associating an internal energy value with a protein conformation. The

protein energy surface is multi-dimensional but funnel-like, with the native state residing

at the deepest minimum. Though steep, the surface is not smooth but rather rugged

due to structural frustrations (that is, slight changes in structure causing large energetic

jumps) [35].

It is worth noting that thermodynamics theory relates the native state of a protein to

the lowest free-energy state. This state consists of a set of highly-similar structures, and

free energy includes not just the average potential energy of a state but also a measure

of its diversity (through the notion of entropy). However, estimating free energy is an

open area of research [34–36], ripe with more inaccuracies due to additional challenges with
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measuring entropy, and thus avoided by most computational treatments. Instead, as in most

treatments, in this thesis the energy surface is sampled one point at a time, with a point

corresponding to a conformation with an associated internal energy value. This approach

necessitates that one obtain a good map of the lowest-energy regions of the energy surface

before concluding where the native state resides.

Design of internal energy functions is currently an open area in computational biology

and chemistry. As in system modeling, we do not have access to the energy function nature

uses. We also cannot rely on quantum mechanical calculations to rigorously measure the po-

tential energy for chains of more than 3 amino acids. Hence, all protein (and, more generally,

macromolecular) modeling research relies on imperfect, semi-empirical energy functions. A

detailed treatment of the computational chemistry process through which such functions

are designed is beyond the scope of the work presented in this thesis. However, many

studies (including our own, presented in this thesis) demonstrate that all protein energy

functions have inaccuracies and often lead simplistic optimization methods to deep minima

that do not correspond to the native structure of a protein [37]. This is particularly the

case when employing expedient low-resolution protein representations, where low energies

are associated with conformations sometimes 4−8Å away from the known native structure

of a protein sequence [38–41].

In this thesis, we plug in energy functions into algorithmic frameworks. In chapter 4 we

investigate a versatile framework that is able to deal with the present inaccuracies within

energy functions. In particular, the two energy functions we employ here are an in-house

implementation of the Associative Memory Hamiltonian with Water (AMW), originally

proposed in [42], and the open-source implementation of the Rosetta suite of functions

available in the Rosetta modeling software [43]. While in some of our work we draw differ-

ences between the two, in the most recent work in this thesis we exclusively switch to the

Rosetta suite of energy functions, due to speed of implementation and higher, demonstrated

accuracy.
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2.2.1 AMW Energy Function

The AMW function, a modification of the low-resolution potential originally proposed

in [44], has been used previously by Shehu and collaborators for de novo structure pre-

diction [5,45–49]. AMW sums non-local terms (local interactions, such as bond length fluc-

tuations, are kept at ideal values in the idealized geometry model): EAMW = ELennard−Jones

+ EH−Bond + Econtact + Eburial + Ewater + ERg. The ELennard−Jones term is implemented

after the 12-6 Lennard-Jones potential in AMBER9 [50] allowing a soft penetration of van

der Waals spheres. The EH−Bond term allows modeling hydrogen bonds and is implemented

as in [51]. The other terms, Econtact, Eburial, and Ewater, allow formation of non-local con-

tacts, a hydrophobic core, and water-mediated interactions, and are implemented as in [52].

The ERg favors collapse by penalizing conformations with radius of gyration significantly

different from theoretically-calculated values [48].

2.2.2 Rosetta Energy Function

The Rosetta software package implements a suite of different scoring functions. In particu-

lar, a total of 6 different scoring functions are used in the low-resolution stage of the de novo

structure prediction protocol used in Rosetta. These correspond to different assignments

to the weights that measure the contribution of different local and non-local energy terms.

What we refer to as the Rosetta energy function is a linear combination of all possible

10 energy terms, which measure repulsion, amino-acid propensities, residue environment,

residue pair interactions, three terms measuring interactions between secondary structure

elements, and three other terms measuring density and compactness of structure (cf. to

Ref. [53] for more details).

The low-resolution stage in the Rosetta protocol consists of 4 different substages, each

with different scoring functions. The first substage conducts 1-2 cycles of 2, 000 MMC moves

each starting with an extended chain and using the score0 assignment. The only energy term

modeled is a soft steric repulsion, and its purpose is to yield a random starting conformation.
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The second substage of 2, 000 MMC moves uses score1 to accumulate secondary structure.

The third substage uses 5 cycles of 2, 000 MMC moves each with score2 followed by a

cycle of 2, 000 MMC moves with score5; score2 includes terms to favor hydrophobic collapse

and beta strand pairings, whereas score5 lacks these two terms to allow relaxation. The

fourth and final substage consists of 3 cycles of 4, 000 MMC moves each and uses score3,

which has all the possible energy terms except for hydrogen bonding. The ensuing selection

analysis in preparation for side-chain packing and energetic refinement uses score4 to rank

low-resolution conformations; score4 does not have any compaction or beta-strand pairing

terms.

In light of this intricate protocol of different scoring functions, what we refer to as the

Rosetta energy function in this thesis is score3, as this is the one that has the highest

number of Rosetta energy terms in the low-resolution stage, and all other scoring function

in the low-resolution stage can be viewed as a scaled variant of score3. In some of the

experiments in this thesis we focus on the evaluation of high-resolution, all-atom models.

In such cases, we employ the score12 Rosetta function.

It is worth noting that like most energy functions, the AMW and Rosetta suite of func-

tions are evaluated over cartesian coordinates of modeled atoms. When the representation

chosen for a protein is angular-based, as is done in this thesis, an additional step is needed to

compute cartesian coordinates from values of angles. This is a well-understood step known

as forward kinematics in computational geometry and is linear in the number of angles [54].

The computational cost of evaluating an energy function is high, as the most expensive

term in such functions is often the one summing up interactions among non-bonded atoms.

This term is responsible for the quadratic time complexity of energy function evaluations.
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2.3 Measurements: Comparing Protein Structures and Con-

formations

Comparing two protein structures is a well-studied but open problem. The difficulty resides

in designing a distance function that accurately captures intrinsic differences between two

protein structures. This is not an easy task, as it generally relates to the problem of

designing distance functions for a high-dimensional space. However, in this thesis we use a

baseline, well-understood dissimilarity function to compare two protein structures. When

dealing with protein conformations that specify angular rather than cartesian DOFs, we

employ metrics such as the L1 norm.

2.3.1 Least Root Mean Square Deviation – lRMSD

One of the main measurements used in this thesis is lRMSD, which is the weighted Euclidean

distance between corresponding atoms after optimal superposition of two conformations

under comparison, as shown in Equation 2.1. The optimal superposition refers to the rigid-

body motion or transformation in SE(3) minimizing the weighted Euclidean distance [55].

lRMSD captures structural dissimilarity but is not a Euclidean metric, as it does not obey

the triangle inequality. Low values indicate high similarity, and high values indicate high

dissimilarity, but interpretation of intermediate values is difficult and the subject of many

studies [56]. For instance, lRMSD has been found to depend on system size. A 5Å lRMSD

between a computed conformation and the native structure of a short protein chain of no

more than 30 amino acids is considered a large deviation, but the same dissimilarity is less

significant for a protein of 70 amino acids or more. In general, if the lowest lRMSD obtained

over computed conformations to the known native structure is more than 6Å, the native

structure is not considered to have been captured.

lRMSD =

√√√√ 1

N

N∑
i=1

(~x−U~y)2 (2.1)
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In this thesis we also use lRMSD as a progress coordinate, ∆R, to track the distance

between two conformations, as done in other works [32, 57]. ∆R is shown in Equation 2.2

and is specifically used in the context of motion computation.

∆R = lRMSD(C,Cstart)− lRMSD(C,Cgoal) (2.2)

2.3.2 Global Distance Test Total Score– GDT TS

High values of lRMSD do not necessarily indicate significant structural dissimilarity. Since

lRMSD weighs each atom equally, it overly penalizes cases where differences are localized

to a specific region, say a loop in different orientations in the two conformations under

comparison. In such cases, other measurements, such as GDT TS (Global Distance Test

Total Score), can be more appropriate. GDT TS essentially locates a maximum subset of

atoms between two conformations under comparison that are close in space after optimal

superposition and minimizes an overall lRMSD-based error. GDT TS is reported in % and

captures similarity, so higher values are better. As employed in CASP, GDT TS = (GDT P1

+ GDT P2 + GDT P4 + GDT P8)/4, where GDT Pd is the fraction of maximum amino-

acid subsets in a conformation superimposing on the reference (native, in our comparisons)

structure with an lRMSD ≤ dÅ. Some of our detailed analysis below employs GDT TS

scores in addition to lRMSD.

Angular Distance Functions

The coarse-grained, angular-based representation of proteins allows for angular differences

to be calculated. Proteins are represented as vectors of dihedral angles, from which the

L1 norm can easily be computed. These measurements are performed in the configura-

tion/conformational space of the protein, which has a non-linear relationship to the carte-

sian/work space. This presents challenges in interpretation of such distances, but one of

the benefits is the linear computational cost in the number of angles compared.
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Chapter 3: From Protein Structure to Protein Function

The work described in this chapter is based on preliminary work published in a conference

proceeding [58] and an extended version published in a journal article [59]. In summary,

we build here over fragment-based structural representations that have been proposed that

allow fast detection of remote homologs with reasonable accuracy. We propose higher-order

topic-based representations of protein structures, obtained through the Latent Dirichlet

Allocation (LDA) model, to provide an alternative route for remote homology detection and

organization of the protein structure space in few dimensions. Various techniques based on

natural language processing are additionally proposed and employed to aid analysis of topics

in the protein structure domain. We show that the topic-based representation is effective;

we conduct a detailed analysis of the information content in the topic-based representation,

showing that topics have semantic meaning. Finally, the fragment-based and topic-based

representations are shown to allow prediction of superfamily membership, thus allowing

prediction of function from structure. We focus in this chapter on the methodological

novelty and relate representative results. The images used in this chapter are copyright of

the BMC Bioinformatics Journal.

3.1 Background and Related Work on Fast Protein Structure

Comparison for Functional Annotation

Work on structure comparison methods has been spurred due to the Structural Genomics

Initiative [60] aiming to determine representative structures of all protein families. Such

research remains challenging, mainly because the problem of finding the optimal structure

similarity score is ill-posed and has no unique answer [61]. While ultimately the purpose

is to transfer functional similarity to structurally-similar proteins, it remains unclear how
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biologically-significant a particular structural alignment is [62, 63]. Well-known methods

measuring similarity of two protein structures include those based on Dynamic Program-

ming (DP) [64–66], including SSAP [67] and STRUCTAL/LSQMAN [68–70], methods based

on distance matrices, such as DALI [71], those based on extensions of an alignment pinned

at aligned fragment pairs or groups of residues, such as CE [72], LGA [73], TMAlign [74],

methods based on comparisons of secondary structure units, such as VAST [75, 76] and

SSM [77], and those based on comparisons of backbone fragments [78]. The majority of

these methods are computationally demanding, as they rely on aligning the two protein

structures provided for comparison. This is not effective in settings where such methods

are intended to be employed as filters; that is, compare a protein structure against structures

with known functions to identify those of similar structure.

Most filter approaches for structure comparison rely on finding suitable representations

of protein structure so that fast distance measurements can be employed over the represen-

tations to rapidly score the similarity of two protein structures without the computationally-

intensive step of aligning two structures under comparison [78–86]. The representations are

typically string or vector-based, and characters or elements are drawn over a pre-compiled

alphabet or library of structural features. Representative filter methods include SGM [87],

PRIDE [88], and that in [78]. In particular, fragment-based representations of protein

structures have been recently proposed to allow fast detection of remote homologs with

reasonable accuracy [78]. The representations are based on the bag-of-word (BOW) model

of text documents, representing a protein structure as a bag of backbone fragments. Essen-

tially, a representative set of backbone fragments of a given length are compiled over known

protein structures [89]. A protein structure of interest is then represented as a vector whose

entries record the number of times each of the fragments in the compiled library of fragments

approximates a segment in the given protein backbone. The resulting fragbag representa-

tion has been shown efficient and effective at identifying structural neighbors of a given

protein, including close and remote homologs [78]. It is worth noting that fragment-based

representations have also been used for structural alignments [90,91].
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We build here over the fragbag representation. The fragbag representation is based

on the Kolodny fragment libraries [89] and is based on the concept of a Cα-based molec-

ular fragment. A library of fragments of lf amino acids in [89] is constructed as follows.

Fragments of Cα traces of 200 accurately-determined protein structures are clustered, de-

positing the representative of each cluster in the fragment library. While analysis on the

fragbag representation considers libraries of fragments of length lf ∈ {6, . . . , 12}, we focus

on fragments of length 11 in this paper, shown to have the highest accuracy in identifying

structural neighbors in [4, 78] and in our own analysis (data not shown).

The concept of molecular fragments allows obtaining a vector-based representation of a

protein structure as follows. Given a fragment library of N fragments of a fixed length lf ,

a protein structure P can be represented as a vector V of N entries. Different information

retrieval (IR) techniques can be used to fill an entry Vi associated with fragment fi in the

library (1 ≤ i ≤ N). For instance, entry Vi can record the presence or absence of fragment

fi (stored at position 1 ≤ i ≤ N in the library) in P , effectively resulting in a boolean

vector. Alternatively, the number of times fragment fi is found in P can be used. This

is also known as term frequency (TR), and results in what is introduced as the fragbag

representation in [78]. Generally, other naive vector space models can be used, including

term frequency-inverse document frequency (TF-IDF) [92].

The presence of a fragment fi in P is detected as follows. The Cα trace of P (that

is, only Cα coordinates are extracted from the protein structure) is inspected at every

location j in blocks of f consecutive amino acids, or segments [j, j + f − 1]. The Cα

coordinates of the particular segment under consideration are compared to each fragment

fi in the library (1 ≤ i ≤ N), and the fragment with the lowest least-root-mean-squared-

deviation (lRMSD) is reported as the fragment matching the particular segment (least in

lRMSD stands for optimal RMSD after removing deviations due to rigid-body motions,

where lRMSD is Euclidean distance weighted over number of points) [55]. The process is

illustrated in Figure 3.1.

Given the fragbag representation, any distance or similarity measurements can be used
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Figure 3.1: A protein structure is shown on the left, rendered with VMD [2] using the
NewCartoon graphical representation. The protein structure is scanned one fragment at a
time from the N- to the C-terminus. The first fragment is highlighted in red. The position
of the fragment in the fragment library is identified, and the entry in the BOW vector at
that particular position is incremented. After the entire structure is scanned, the resulting
BOW vector is the one supplied to LDA.

over the fragbag vectors of two protein structures to measure their structural distance

or similarity. In [78], various distance measurements are tested, including the basic Eu-

clidean distance and other ones, such as cosine distance that measures the angle between

two vectors. The cosine distance is reported to be most accurate and competitive with

top structure-alignment methods in detecting structural neighbors. More interestingly, the

entire protein structure space, as collected in the SCOP database, can be visualized, by sub-

jecting such fragbag-represented protein structures to dimensionality reduction techniques,

such as Principal Component Analysis (PCA) [93].

3.2 Method

We build here over the fragbag representation to design topic-based representations of pro-

teins, employing LDA. The LDA model is summarized next, with further description of the

topic-based representations it offers on proteins and the measurements used to conduct the
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analysis over topics.

3.2.1 LDA model

At its core, LDA is a three-level hierarchical Bayesian model. As illustrated in Figure 3.2,

LDA operates as follows. First, a multinomial distribution φZ is selected for each topic

Z from a Dirichlet distribution with input parameter β. Second, for each protein P , a

multinomial distribution θP is selected from a Dirichlet distribution with input parameter

α. For each fragment fi in a protein structure P , a topic Z ∈ T is selected from the

multinomial distribution θP . The number of topics T is specified a priori. Finally, a

fragment fi is selected from the multinomial distribution φZ .

Given P proteins, T topics, and N fragments, one can represent p(fi|z) for the fragment

fi, with a set of T multinomial distributions φ over N fragments, P (fi|Z = j) = φ
(j)
fi

. P (z)

is modeled with a set of P multinomial distributions θ over T topics. LDA assumes a prior

distribution of θ and φ to provide a complete generative model. A Dirichlet distribution is

used to choose priors α for θ and β for φ. We use Gibbs sampling [94] to estimate φ and θ

and model each protein as a probability distribution over latent topics discovered by LDA.

Pseudocode is provided in Algorithm 3.1 along with a visual illustration of the LDA plate

in Figure 3.2.

Algorithm 3.1 The generative model used to build a new protein.

Input:
φ1, ..., φT , Each topics distribution of fragments
Psize, Number of AA in protein

Output: Protein P
1: θ = DrawMultinomial(α) . Distributions of Topics for this Protein
2: for pos=1,...,Psize - fragmentSize + 1 do
3: topic = SampleMultinominal(θ) . Select topic for this fragment
4: fragment = SampleMultinomal(φtopic) . Select a fragment within this topic
5: Ppos = fragment
6: end for
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Figure 3.2: Plate diagram for LDA. T is the number of topics, N is the number of protein
structures. Each fragment within a protein is represented by f and ni is the number
of fragments in Pi. Blue and black backgrounds indicate latent and observed variables
respectively.

LDA-obtained topics make for general representations of proteins, under which a protein

is treated as a mixture of many topics, albeit with different probabilities. One can employ

these topic-based representations to identify structural neighbors of a protein. Topics can

also be used to categorize the protein structure space, revealing interesting insight into what

it is that each topic captures about protein structure and function.

Evaluating information content in topics

The distribution of fragments over the entire protein structure space, as available in the

SCOP database, for instance, can be used to represent a baseline distribution over frag-

ments. Each topic obtained by LDA is a probability distribution over fragments. The

information gain of each topic can be measured over the baseline distribution. We use

the symmetric Kullback-Leibler (KL) divergence [95] to measure the information gain of

each topic over the baseline distribution. Briefly, given two probability distributions p0
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and p1, KL(p0, p1) =
∑
p0(x) · lnp0(x)

p1(x) . We use a symmetric version of KL defined as

0.5 · (KL(p0, p1)+KL(p1, p0)). Larger distances imply higher information gain in each topic

as opposed to the baseline distribution of fragments over the entire corpora. This evaluation

is carried out for each topic in the Results section to additionally measure the information

gain as one increases the number of topics requested from LDA.

In addition, log likelihood can be used to evaluate how well the data (the fragments

defining protein domains) fits the model, which in this case is the topic space model produced

by LDA. When performing parameter estimation, a common strategy is to maximize the

log likelihood. We employ this technique to measure the effectiveness of each LDA model,

varying the number of topics as before. The equation for calculating the log likelihood for

each protein is: log p(Pi|M) =
∑F

j=1 n
(j)
i log(

∑T
k=1 ( p(fj |tk)p(tk|Pi) )). F is the total

number of fragments used to describe the ensemble. M represents all the terms of the

LDA model (including the number of topics). The term n
(j)
i represents the number of times

fragment j appears in protein Pi. The term p(fj |tk) is the probability of the fragment

fj being in topic tk and p(tk|Pi) is the probability of topic tk being in protein Pi. These

measurements are shown in the Results section to show that log likelihood decreases as the

number of topics increase.

3.2.2 Topic signatures of structural classes and co-localization in protein

structure space

Each topic captures “signatures” associated with different classifications (SCOP, CATH). To

test for these signatures, we propose using heatmaps constructed over the LDA-computed

topic space, as interpretation of topics is more challenging in non-text domain applications

of LDA. LDA presents the topic space as a P x T matrix, where P is the number of proteins

and T is the number of topics. The row vector for protein Pi records the number of times a

fragment is classified to be within a given topic Tj . Additionally, each protein is assigned a

label according to some classification standard; a label corresponds to a class. For instance,
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a label may be the fold of the protein, as obtained from the top level of the SCOP hierarchy.

Alternatively, the label can track the superfamily membership of a protein in SCOP.

Many protein domains are assigned the same label Li. We sum fragment counts for topic

Tj on each protein assigned the same label Li. This provides us with a fragment count for

topic Tj in label Li. Normalizing over all labels provides us with probability P (Li|Tj). This

produces an LxT matrix, where each column in the matrix sums to one. Results in this

paper visualize this matrix as a heatmap, with colors following the low-to-high probabilities

in a blue-to-red colors scheme.

When protein classes have strikingly different sizes, the above analysis will be skewed.

A high probability P (Li|Tj) may be assigned to a class with label Li simply because of the

high number of domains in the class with label Li. This situation arises when analyzing

topic signatures over the superfamily classification in SCOP. In this case, we take a different

approach to obtaining a heatmap that elucidates topic signatures for protein classes. We

employ the ChiSquare significance test [96] at a confidence level of 99%. This analysis is

performed for each topic Tj . For each protein with label Li, we compute the number of

fragments found within topic Tj (let’s refer to this as CLi
Tj

), and the number of fragments

that are not assigned to proteins with this label (C¬Li
Tj

). We compute these counts for

the entire population minus the topic we are currently analyzing (CLi
¬Tj and C¬Li

¬Tj ). These

value are used to construct a contingency table and perform the ChiSquare significance test.

When the test shows a significant difference, and the population in the topic is greater than

the remainder of the population, we characterize this topic as having a signature for the

label under consideration.

3.2.3 Predicting superfamily membership of protein structure

We demonstrate that the fragbag and topic-based representations can be employed by ma-

chine learning classification algorithms to predict superfamily membership for a given pro-

tein structure. Since this is a multiclass classification problem, we employ the one-vs-all
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strategy, using 7 binary classifiers, one for each of the 7 most-populated superfamilies in

SCOP. We employe the popular Support Vector Machines (SVM) for the binary classi-

fier [97].

The set of 9, 852 protein domains in these superfamilies is extracted, and LDA is applied

to this set. When using the topic-based representation, each protein’s multinomial distribu-

tion across the topic space returned by LDA serves as its coordinates in the 10-dimensional

space (our analysis in the Results section makes the case that no more than 10 topics are

needed). The resulting 10-dimensional vectors are treated as a training dataset, and 7 clas-

sifiers are built (SVM is a binary classifier) in order to predict superfamily membership

with binary classifiers. When using the fragbag representation, the training vectors are

400-dimensional as opposed to 10-dimensional when using topics.

When building an SVM classifier for superfamily i (1 ≤ i ≤ 7), the set of training vectors

corresponding to domains in that superfamily are treated as the positive training dataset.

The rest of the vectors, corresponding to domains in other superfamilies are treated as the

negative training dataset. We note that for some of the superfamilies, there are many more

negative instances than positive ones, as expected. In such cases, re-balancing of data is

performed by undersampling the negative class in order to achieve an equal count of positive

and negative instances.

Each SVM classifier is trained independently (on each superfamily), using a polynomial

kernel and a soft margin parameter C = 0.1. Ten-fold cross-validation is used to measure the

classification performance. For each protein domain, the prediction among the 7 classifiers

that has the highest confidence is chosen as the final prediction for that domain. In this

way, superfamily membership is predicted for each family, and standard TPR, FPR, and

accuracy measurements can be used to evaluate performance.
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3.3 Results

We relate here representative results that make the case the topic-based representation is

both meaningful and effective at predicting the function of a protein from knowledge of its

structure. We employ a MATLAB implementation of LDA [98] utilizing the recommended

defaults where α = 50/(number of topics) and β = 200/(fragment library size). We utilize

a test dataset containing 31,155 protein domains. Building the fragbag representation for

this dataset takes 10 hours. LDA execution times are highly dependent on the number of

topics, and vary from 2 hours for 10 topics up to 24 hours for 200 topics. We utilize the

WEKA package for solving the SVM models used in superfamily classification [99]

3.3.1 Determining Number of Topics

Figure 3.3(a) relates the results of the procedure detailed in Methods to determine the

optimal number of topics. As the number of topics increases, the symmetric KL distances

decrease, suggesting that increasing the number of topics does not result in more informa-

tion. The log likelihood is shown in Figure 3.3(b). As the number of topics increases, the

log likelihood decreases. Many topics are essentially “junk” topics. These two measures at

11 distinct LDA models where the number of topics varies from 10 to 200 allows concluding

that 10 topics is sufficient.

Thus, for the rest of the analysis presented in this chapter, a protein structure is repre-

sented as a 10-dimensional vector (where each entry in the vector records the probability

with which each topic is “found” in the structure). This is in contrast to the higher-

dimensional vector space resulting from the fragbag representation where 400 fragments are

employed as opposed to 10 topics. One of the advantages of this lower dimensionality is

that dimensionality reduction techniques do not have to be used in order to provide low-

dimensional user-friendly embeddings or maps of protein structure space. A component of

our analysis below illustrates how topics are signatures of SCOP classes and can even be

employed to accurately predict superfamily membership.
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(a) (b)

Figure 3.3: (a) Symmetric KL distances are measured between each topic and the baseline
fragment distribution at 11 settings, varying the number of topics from 10 to 200. Mean
and variance is shown for each setting. (b) The log likelihood of fitting the data is shown
for each of the 11 LDA models.

3.4 Comparing Fragbag to Topic-based Representation

Employing the fragbag or topic-based representation and the cosine distance over the par-

ticular representation under investigation and continuously varying the decision threshold

(that is, the cosine distance between two protein structures under the particular representa-

tion), a receiver operating curve (ROC) can be constructed, and the average area under the

curve (AUC) score can be reported. The ROC curve plots the true positive rate (TPR =

TP/(TP+FN)) vs. the false positive rate (FPR = FP/(FP+TN)) over the decision thresh-

old. Summarizing the ROC with AUC allows associating a score with each query protein.

Averaging over all proteins in the dataset, essentially treating each of them in turn as a

query protein, allows obtaining an average AUC and thus measuring the effectiveness of a

particular representation at capturing structural neighbors. Performing this analysis at the

three different SAS thresholds further allows judging the effectiveness at capturing close to

remote homologs.

25



Figure 3.4 compares the average AUCs obtained under each representation and addi-

tionally places them in a larger context by comparing them to two methods, SSM [77], rep-

resentative of alignment-based methods, and SGM, a representative of filter methods [87].

The average AUCs reported for these methods are obtained as published in [3]. Addition-

ally, we include the average AUCs obtained over 10 topics as reported in [4]. Figure 3.4

shows that SSM is the best performer, followed closely by fragbag and the rest. LDA and

SGM are comparable.
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Figure 3.4: The average AUCs over the SCOP dataset, calculated as described in the Results
section, are compared among different methods. Data from the SGM and SSM methods
are obtained as published in [3]. These two methods are compared against the fragbag and
two topic-based representations (as shown here (LDA) and in [4] (LDA O)).

In particular, the average AUCs on each SAS threshold obtained with the fragbag and
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topic-based representations are listed in Table 3.1 for a direct comparison. Two observations

can be drawn. First, both representations, fragbag and topic-based, are equally effective

at capturing structural neighbors at each of the three SAS thresholds. Second, under each

representation, the effectiveness is higher at lower SAS thresholds (above 0.8 at a SAS

threshold of 2.0Å), allowing us to conclude that the representations have an easier time

capturing close homologs than remote homologs. However, performance on remote homologs

remains good (higher than 0.7 at a SAS threshold of 5Å). Taken together, this experiment

allows concluding that the topic-based representation allows capturing structural similarity

and can be employed to rapidly extract structural neighbors (close and remote homologs)

of a given protein with known structure.

Table 3.1: Avg. AUCs over frabag vs. topic-based representations.

5Å 3Å 2.5Å

Fragbag [78] 0.75 0.77 0.89

Topic-based (this work) 0.72 0.74 0.85

3.4.1 Topic Interpretation

Inspection of the top-populated fragment and of heatmaps computed as described above

allow associating a meaning with each topic. The top-populated fragments in each topic

are shown in Figure 3.5.

The heatmap shown in Figure 3.6(a) color-codes topics per class at the fold level of the

SCOP hierarchy in a blue-to-red color scheme tracking low-to-high probabilities measured as

detailed in Methods. The results suggest that topics 1−4 are over-represented in the α class

but under-represented in the β class. This is reversed for topics 5−10. In contrast, the other

classes either have a high mixture or a low mixture of each topic. Correlating these results

with the top-populated fragments provides an explanation for why this is the case. Topics
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Figure 3.5: The top-populated fragment of each topic is shown here in NewCartoon repre-
sentation generated using the PyMol rendering software [100].

1−4 are related to α-helical topologies, as evidenced by the top fragment shown. Topics

5−10 are related instead to β-sheet topologies. Put together, these results demonstrate that

classes at the fold level of the SCOP hierarchy have unique topic signatures. It is worth

emphasizing that this result is made even stronger when considering that, often, domains

assigned to the β class may contain a few α-helices (data not shown). The analysis suggests

that topics capture structural categorization.

The heatmap shown in Figure 3.6(b) color-codes topics per class at the superfamily

level, correcting for the high variance in population sizes of top superfamilies in SCOP.

Blue indicates low presence of a topic, and red indicates high presence. The results suggest

that superfamilies have unique topic signatures. For instance, the immunoglobulin domain

has many of topics 5−10 overrepresented. This is encouraging, as inspection of these topics

reveals that they are high in β-sheet, and immunoglobulin domains are all-beta proteins.

On the other hand, the P-loop Binding domain is rich in α-helices. Encouragingly, the

topics that are overrepresented in this superfamily are topics 1−4, which capture α-helical

fragments, as shown in Figure 9. The winged helix DNA-binding domain is significantly

represented in topics 1 and 3, both having high concentration of α-helical fragments. This
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agrees with the SCOP classification of this domain as all α. Similarly, EF-hand is only sig-

nificantly represented in topic 1, which is dominated by α-helical fragments. This agreement

with the all α SCOP classification. The topic signatures capture the other superfamilies,

as well, suggesting that topics additionally capture functional categorization.

(a) (b)

Figure 3.6: (a) Heatmaps highlight “signature” topics per class in the (a) fold level vs.
(b) superfamily level of the SCOP hierarchy. Blue-to-red color scheme tracks low-to-high
probabilities.

3.4.2 Predicting Superfamily Membership

A set of 7 classifiers is built as described in section 3.2.3. This experiment is repeated

twice, once using the fragbag and the other using the topic-based representation. The

distribution of the protein domains employed as training data in each case across the 7

superfamilies is shown in Figure 3.7. The performance of each of the 7 SVM classifiers in

10-fold validation is shown in Table 3.2. Very high accuracy (> 80%), TPR (> 0.8), AUC

(> 0.83), and low FPR (< 0.3) are obtained on each superfamily whether using fragbag

or the topic-based representation. The fragbag representation allows for slightly better

classification performance. These results confirm that the topic-based representation, while
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only 10-dimensional as compared to the 400-dimensional fragbag representation, can be

used to build effective classifiers of proteins, even at the superfamily level of detail.

Figure 3.7: The distribution per superfamily is shown for the protein domains in the 7 most-
populated superfamilies in SCOP. These domains are treated as training data for SVMs to
classify proteins by superfamily.

3.5 Conclusions

The presented analysis demonstrates that fragbag and LDA-obtained topic-based represen-

tations allow capturing structural similarity. In addition, the topics are meaningful and

effective at providing functional annotations in terms of superfamily membership.
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Chapter 4: Protein Structure Prediction Employing Robotic

Methods

The work described in this chapter is based on preliminary work published in a conference

proceeding [101] and an extended version published in a journal article [102]. In sum-

mary, we investigate here various algorithmic components of a robotics-inspired tree-based

framework originally proposed in [5, 45] for the de novo structure prediction problem. In

particular, we focus on the impact that biasing the search towards low-energy conforma-

tions has on adequate coverage of the conformational space. We propose different biasing

strategies to steer the search towards diverse low-energy conformations while not exploiting

artifacts of a given energy function. We also evaluate two energy functions described in

chapter 2, AMW and Rosetta. In what follows we first define the problem addressed in this

chapter, summarize the tree-based search framework, place it context of other optimization

algorithms developed for de novo structure prediction, and then relate our novel work on

comparing various algorithmic realizations of this framework. Representative results fol-

low. The images used in this chapter are copyright of the IEEE/ACM Transactions on

Computational Biology and Bioinformatics (TCBB) journal.

4.1 Background and Related Work on de novo Protein Struc-

ture Prediction

In de novo structure prediction, one is provided a sequence of amino acids for a target

protein, and the goal is to produce a complete specification of all atoms in terms of their

cartesian coordinates in the native structure of the target protein. De novo structure

prediction typically proceeds in two stages [103]. In the first stage, a set or ensemble of

low-energy conformations are obtained. These conformations are referred to as decoys, as
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only a subset of them may reside in the global minimum that represents the native state

of the target protein sequence; that is, the decoys represent various local minima sampled

in the first stage. It is the goal of the second stage to analyze the decoys and identify the

native state. The first stage is referred to as decoy sampling, whereas the second as decoy

selection. The object of our investigation here is the decoy sampling stage, as adequate

coverage of the local minima in the energy surface of a target protein sequence is important

so as not to miss the native state sought to be identified in the decoy selection stage. In the

following, we provide a summary of the sampling techniques employed for decoy sampling,

focusing primarily on their sampling capability. While decoy selection is also an active

research area, standard clustering algorithms perform well, as long as the native state is

sufficiently sampled in the first stage. It is worth noting that the identification of this

state in the second stage does not rely on simply selecting the lowest-energy decoys, as

it is now recognized that often the global minimum is not the native state; typically, the

deepest minima are artifacts of an energy function [104]; instead, the second stage relies

on clustering based on structural similarity, and reports the most-populated cluster as the

native state; the intuition behind this approach is that a wider minimum is more likely to

contain the native state and not be an artifact of a given energy function.

4.1.1 Predominant Stochastic Optimization Frameworks for Decoy Sam-

pling: Molecular Dynamics versus Monte Carlo

In decoy sampling, any search technique can be used to populate local minima of the energy

surface of a target protein. The two most common templates used are Molecular Dynamics

(MD) and Monte Carlo (MC) search. A detailed review of these templates and their more

powerful adaptations for decoy sampling can be found in [105]. In summary, when MD

search is used, the search is initialized with a random or extended conformation. A series of

conformations is then produced, as the search effectively follows the negative of the gradient

of the energy function employed; the gradient needs to be re-evaluated often, which increases

the computational demands of MD searches. Moreover, one MD trajectory leads to a local
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minimum, and so, typically, many of them are launched from various initial conformations in

a random restart fashion. MC searches have been shown to have higher sampling capability

than MD searches, as they do not have to follow the laws of motions of the particles/atoms

that make up the target protein. Instead, a conformation is generated from a given one

through the usage of moves, which may be changes to selected dihedral angles or other more

effective moves. This process is repeated to obtain a series of conformations. Effectively,

an MC search hops in the energy surface, overall leading to low-energy conformations,

while allowing high-energy moves per a probabilistic criterion referred to as the Metropolis

criterion [106]. An MC search will also lead to a local minimum, so many are typically

launched through random restart.

Coarse Graining and Molecular Fragment Replacement

One of the strategies employed to further enhance the sampling capability of MC-based

frameworks for decoy sampling is to have them operate on coarse-grained/low-resolution

representations of the amino-acid chain of the target protein. Typically, only the back-

bone atoms are modeled, and so the generated decoys lack side chains. Energy functions

exist to score such coarse-grained decoys. It is in the second stage that, prior to cluster-

ing, each decoy is added side chains with side-chain packing techniques, thus represented

at high resolution. Another important strategy, which is often credited with the greatest

advancement in de novo structure prediction, is the employment of special moves in an

MC search. These moves are referred to as fragment replacements, and the idea is to effec-

tively discretize the search space. Instead of assigning random values to selected dihedral

angles in order to generate a new conformation from a given one, a fragment of consecutive

backbone dihedral angles are selected for modification. The values of all these angles are

simultaneously replaced with values found for the corresponding sequence of amino acids

of the fragment in known native protein structures. The pre-compilation of a fragment li-

brary is important, but a detailed description is not the focus of our work here. We employ

here the Rosetta fragment libraries [107], which we have shown to effectively mine protein
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structure databases [46, 108]. The impact of fragment lengths has also been investigated

by researchers [109]. Typically, fragment lengths 9 and 3 are used, to alternate between

sampling physically-realistic conformations fast (with longer fragments) and then searching

in their vicinity for lower-energy ones (with shorter fragments).

The fragment replacements are effectively good moves that narrow the navigation of the

conformation space. Given a protein conformation Ci, an amino acid t is selected. We then

define a fragment of length f from amino acid t to t + f − 1. The amino-acid sequence of

that fragment is used to query the library, and among all different configurations (sets of

values for the dihedral angles of that fragment), a configuration is sampled uniformly at

random to replace the one in Ci and thus yield conformation Ci+1 in a growing MC trajec-

tory. The replacement is accepted with probability eα·−(Ei+1−Ei), known as the Metropolis

criterion; α is a parameter related to the notion of temperature, which controls the increase

in energy accepted between two consecutive conformations. The process is repeated, either

systematically, selecting amino acid t+ 1, or at random to grow the MC trajectory.

The molecular fragment replacement technique is often credited with the greatest ad-

vancements in de novo structure prediction, and is now the component shared by state-of-

the-art protocols, such as Rosetta [110] and Quark [111]. However, in all such protocols, the

decoy sampling stage relies on random restart in order to obtain a broad view of the local

minima in the energy surface. This approach does not make effective use of computational

resources, as the MC trajectories are bound to lead to same or nearby minima, as they do

not exchange information with one another on what regions of the conformational space and

the energy surface have already been explored. In order to address this, work in the Shehu

lab has proposed a different search framework that builds over MC but instead integrates

the MC trajectories in a tree search structure that adaptively grows in conformational space.

4.1.2 Robotics-inspired Tree-Based Stochastic Optimization Framework

In contrast to random restart, a robotics-inspired framework, FeLTr, has been introduced

in [5,45] to effectively allow exchange of information among MC trajectories and guide the
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search to both under-explored regions of the conformational space and low-energy regions of

the energy surface. The tree is rooted with the extended conformation and grown through

a cycle of selection and expansion operations. The expansion step consists of performing a

short MC trajectory, employing the Metropolis criterion. The end point is appended to the

tree as a child node (the parent node is the conformation from which the trajectory began).

The selection operator controls the growth of the tree, selecting a node in the tree from

which to continue the exploration. Discretization layers (and probability functions designed

over them) are used to aid in the selection of a conformation residing in a low-energy region

of the conformational space and in an under-explored region of the conformational space.

FeLTr is inspired from motion planning algorithms in robotics, which employ subdi-

visions of the robot workspace or configuration space to guide the search towards under-

explored regions [112–116]. Similarly, in FeLTr, the search is adaptively guided to low-energy

yet geometrically-distinct conformations through the use of two discretization layers that

facilitate analysis of the explored conformational space and energy surface. The first layer

is over the empirical energies of the decoy ensemble and the second is over their geometries.

A 1d grid is associated with energies of conformations in the tree. For each grid cell in the

energy discretization, a 3-d grid is created based on a subset of the coordinates calculated

by the Ultrafast Shape Recognition (USR) algorithm [117]. This algorithm builds a feature

vector for each decoy conformation based on a a set of geometric features (average distance

from the centroid, average distance from the point farther from the centroid, etc). FeLTr is

illustrated in Figure 4.1 and shown in pseudo-code in Algorithm 4.1.2.

Probability distribution functions can be defined over the discretization layers to bias

the growth of the tree. FeLTr has been shown to have higher sampling capability than

a long MC trajectory, and the combination of both discretization layers has been shown

to improve sampling over using one of them in isolation or none at all (when both layers

are turned off, the tree degenerates to an MC trajectory) [45]. Fragments of length 3 and

the AMW energy function have been employed in previous work. On many proteins, the

exploration has been found to approach the native structure within 5Å [45–47].
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Figure 4.1: The conformation tree grown by FeLTr [5]. The conformational space is first
discretized by energy (scale shown on the left), and then by geometry (projection layer
shown at the bottom). A probability distribution is associated with each of the layers
(which controls the growth of the search tree) dictates from which cell a conformation is
selected for expansion. Each of the paths within this tree is an MC trajectory.

Algorithm 4.1 Pseudo-code for Shehu decoy sample generation framework [45]

Input:
α, amino-acid sequence

Output:
Ω, an ensemble of decoy conformations

1: Cinit ← extended coarse-grained conformation for α
2: AddConf(Cinit, LayerE , Layerproj)

3: while Time Remaining and |Ω| < Limit do
4: `← SelectEnergyLayer(LayerE)
5: cell ← SelectGeomCell (`.Layerproj .cells)

6: C ← SelectConf(cells.confs)
7: Cnew ← ExpandConf(C);
8: AddConf(Cnew, LayerE , Layerproj)

9: Ω← Ω ∪ {Cnew}
10: end while
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It is worth noting that FeLTR is a versatile framework, allowing for different algorithmic

realizations to be investigated. For instance, we have explored different geometric projection

layers for their ability to direct the search to under-sampled regions of conformational

space [47, 118]. This work employs this versatility to investigate the role of energy in

directing the search. We investigate the role of energy bias by investigating the impact

of various probability distribution functions defined over the energy projection layer. We

complete our treatment by following up the various algorithmic realizations of FeLTr with

the clustering and a decoy selection stage in order to present blind predictions, as in the de

novo structure prediction setting.

4.2 Methods

We briefly review in some more detail the selection mechanism in FeLTr in order to setup

the various algorithmic realizations we investigate here. Next, we introduce a method

for analyzing the resulting ensemble of decoys and selecting a subset of decoys for high-

resolution refinement. Finally, we present a method to analyze the results of the high-

resolution refinements for selecting a final set of candidate predicted structures/solutions.

4.2.1 Biasing the Exploration

Prior work on FeLTr has focused on the rapid identification of the lowest-energy confor-

mations. To facilitate this goal, the energy grid is constructed with cells 2 kcal/mol wide.

Each cell is assigned a weight via the function w(`) = Eavg(`) ·Eavg(`)+ε, where ε is a small

value that ensures high-energy conformations have a nonzero probability of selection. A

level ` is selected with probability w(`)/
∑

`′∈LayerE
w(`′). We will refer to this probability

distribution as the QUAD distribution. Once an energy level is selected, a cell belonging to

it in the 3d geometric projection grid can be selected according to another probability dis-

tribution. A second weight function, 1.0/[(1.0 +nsel) ·nconfs], is used where nsel records

how often a cell is selected, and nconfs is the number of conformations projected to the cell.
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This function avoids cells that have been selected for expansion many times before and are

already populated by many conformations. Once a cell is selected, any conformation in it

can be selected at random for expansion; a short MMC trajectory from that conformation

constitutes a new branch of the tree.

The objective in previous work has been to demonstrate that FeLTr improves coverage of

the conformational space over independently-running MC trajectories. While QUAD biases

the tree towards lower energies, employment of QUAD for the purpose of decoy generation

risks exploiting minima that are artifacts of the energy function. However, the employ-

ment of probability distribution functions to ultimately control the distribution of sampled

conformations make FeLTr particularly versatile for the purpose of decoy sampling and the

study of deficiencies in de novo modeling. Here we propose different probability distribution

functions to implement the energy bias and show that one of them, corresponding to a soft

energy bias, is better suited to obtain a broad non-redundant view of the energy surface

through low-energy distinct decoys. We do so on two different state-of-the-art low-resolution

energy functions and show that, while both allow capturing near-native conformations in

the decoy ensemble, both are capable of associating very low scores with non-native decoys.

We now detail the implementation of the energy bias.

Implementing Energy Bias

The QUAD probability distribution function defined over weights w(`) = Eavg(`) ·Eavg(`) + ε

described above essentially implements a strong energy bias that controls the growth of

the tree through the expansion of lowest-energy decoys to obtain even lower-energy decoys.

Note that the geometric projection grid is employed as above in conjunction with the energy

bias. This setting can be very greedy and lead FeLTr, despite the bias away from over-

sampled cells in the conformational space, to deep energy minima that are artifacts of a

given energy function. In contrast, one can ignore energy bias altogether. Essentially, all

conformations can be treated as energetically equivalent and projected to the same energy

level. Only the geometric projection grid and the probability distribution function defined
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on it (defined above over weights 1.0/[(1.0 + nsel) · nconfs]) can be employed. Let us refer

to this probability distribution function as COV, as it essentially allows ignoring the energy

surface and only steers the search to coverage of unsampled regions of the conformational

space.

A new probability distribution function can be defined to implement a soft energy bias

instead. As the tree and its conformational ensemble Ω grow, the mean (µΩ) and standard

deviation (σΩ) can be updated over the energies of decoys. The mean tends to go lower

over time, as the MMC trajectories that constitute the tree branches guide the tree towards

lower energies through the Metropolis criterion. The energy level whose average energy

is closest to a sample drawn from the Gaussian distribution (µΩ, σΩ) can be selected for

expansions. The geometric projection grid is employed as above. We refer to this third

realization of the framework as NORM. Unlike QUAD, NORM does not greedily bias the search

tree towards the lowest-energy decoys. Instead, the tree slowly grows towards low-energy

decoys and associates low probabilities of selection to energy levels on either tail of the

energy distribution.

4.2.2 Employed Representation and Energy Functions

We recall that, when employing the AMW energy function, the representation reduces side

chains to only the Cβ atom (with exception of glycine). When employing the Rosetta

energy function, the Cβ atom is swapped for a centroid per side chain. Internally, two

representations are maintained, one angular and another consisting of cartesian coordinates.

The angular representation maintains only three backbone dihedral angles (φ, ψ, ω) per

amino acid, as sampled from the fragment configuration library.

4.2.3 Ensemble Analysis

We now describe techniques to compare the different realizations of FeLTr implementing

the three different energy biases described above.

40



Energetic Reduction

Reducing the decoy ensemble Ω produced by the tree through an energetic criterion allows

removing high-energy decoys added to the tree during the exploration. We employ a non-

parametric threshold that discards any sampled conformation with energy higher than the

mean. This threshold is not protein-dependent and reduces the size of the ensemble by about

50%. While discarding about half the ensemble may sacrifice a few decoys with low lRMSDs

to the native structure, the majority of low-lRMSD decoys are generally maintained in the

reduced ensemble ΩE . The results in section 4.3 show that more low-lRMSD conformations

are maintained when reducing the ensemble produced through QUAD and NORM. This is

expected, as these two probability distribution functions implement an energy bias, and

near-native conformations, while not among the lowest energy decoys, are associated with

low energies. The results in section 4.3 also show that more near-native conformations

are retained when reducing the ensemble produced through NORM than QUAD, and this is

particularly pronounced when using the AMW versus the Rosetta energy function.

Geometric Reduction

FeLTr employs coarse projection coordinates to efficiently group together similar conforma-

tions and bias the search on the fly away from oversampled regions. Employing lRMSD-

based comparisons and clustering would provide more detail and accuracy, but it would

not be efficient. However, lRMSD-based clustering can be performed on the energetically-

reduced ensemble ΩE both to analyze and compare the diversity of decoys across the three

realizations of FeLTr and to further reduce the ensemble to a subset of distinct regions from

which exploration can resume at greater detail.

We utilize an adaption of the bisecting K-Means algorithm [119] on the ΩE ensemble.

Medoids instead of centroids are chosen to represent clusters so as to avoid irregular local

structures resulting from angle averaging [120]. Initially, a conformation is selected at

random to serve as the representative of the first cluster that encompasses all conformations

in the ensemble. The essential process in bisecting K-Means clustering is that a cluster is
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broken into two new ones if the minimum lRMSD from their cluster representative is above

an ε threshold. Two random conformations are selected to serve as the representatives of

the two new clusters. When conformations are reassigned, the representatives selected at

random are replaced with the cluster medoids. The proximity of the conformations in each

cluster is reevaluated. If the minimum lRMSD is above ε, the process begins anew (hence,

bisecting). In the end, the medoids of the clusters are essentially a reduced representation

of the ΩE ensemble and constitute the ΩE,C ensemble.

The bisecting K-Means algorithm is less susceptible to initialization issues and does

not require a priori determining the number of clusters. It requires, however, setting the

maximum intra-cluster distance ε. In this work, we analyze the effect of two different values,

3 and 5Å on the diversity of the resulting ΩE,C ensemble.

4.2.4 Exploration Convergence

The reduced ensemble ΩE,C can now be used to drive the exploration towards possible

convergence on a more complex search space. A long MMC trajectory is launched from each

conformation in ΩE,C . The trajectory length is a compromise between reaching convergence

and controlling the overall computational cost. The fragment length employed here is 3 (9

is used by the frameworks above to obtain Ω). The shorter fragment length increases the

complexity of the conformational space but also allows adding more detail to the energy

surface.

The end points of the trajectories are analyzed through density-based clustering anal-

ysis [120]. An end point is assigned the number of neighbors that are within an lRMSD

threshold of it (we use the same ε threshold above). The end point with the largest number

of neighbors is considered to be the representative of the most populous cluster. This point

and its neighbors are removed, and the process continues until all conformations have been

exhausted. An exploration that started with obtaining a broad view of the energy surfaces

terminates with revealing decoys in regions of the conformational space where many MMC

trajectories converge. The results in section 4.3 show that near-native conformations are
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retained among the top populous clusters; that is, the corresponding decoys are near-native

and as such are good candidates for high-resolution refinement.

4.3 Results

To test the effectiveness of the proposed energy biases, we test on ten different protein

systems, listed in Table 4.1. The systems range from 61-123 amino acids in length, cover

α, β, and α/β folds, and include CASP targets. The list includes sequences longer than

70 amino acids and α/β native topologies known to be challenging for de novo structure

prediction.

Table 4.1: The PDB ID, nr. of amino acids, and known native topology are shown for the
10 proteins studied.

ID 1gb1 1sap 1wapa 1fwp 1ail 1aoy 1cc5 2ezk 3gwl 2h5nD
N 56 66 68 69 70 78 83 93 106 123
Fold α/β α/β β α/β α α/β α α α α

The main measurement used in the analysis below is lRMSD (discussed in section 2.3.1).

Each biasing scheme using each of the two energy functions is applied on each protein for 24

CPU hours on a 2.66 GHz Opteron processor with 8 GB of memory. This is repeated three

times to obtain 3 ensembles per setting. Results and further analysis are presented on the

ensemble that yields the median value in terms of lowest lRMSD from the native structure

(lRMSD is calculated over heavy backbone atoms). Clustering is conducted on a 2.4 Intel

Xeon E5620 processor with 24 GB of memory. The MMC trajectories that optimize each

decoy in the resulting ensemble ΩE,C are limited to 20, 000 steps and are run on a 2.66 GHz

Opteron processor with 8 GB of memory. This second stage lends itself to embarrassing

parallelization and takes 12-36 hours on 80 CPU cores depending on the size of ΩE,C and

protein length.
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Figure 4.2: Distributions of energies of Ω resulting from QUAD, COV, and NORM are superim-
posed over one another. The energy of the native structure is marked by a blue circle on
the x-axis. While the top row shows results obtained with AMW, the bottom row shows
results obtained with the Rosetta score3 function.
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Table 4.2: The lowest lRMSD from the native structure is shown for each of the three
biasing schemes. Results are shown for both AMW and Rosetta score3.

lowest lRMSD(Å) over Ω
AMW Rosetta score3

ID COV QUAD NORM COV QUAD NORM

1gb1 4.7 5.0 4.6 4.4 3.8 4.1

1sap 6.8 6.5 5.2 5.9 5.9 4.5

1wapa 7.6 7.4 6.9 6.4 6.8 6.6

1fwp 6.6 6.9 6.1 5.8 5.1 4.6

1ail 3.5 2.5 1.9 4.7 4.7 4.6

1aoy 5.5 5.6 5.8 5.0 5.2 5.4

1cc5 5.9 5.7 5.8 6.5 5.9 5.8

2ezk 4.5 3.7 4.1 3.2 3.1 3.5

3gwl 6.1 5.5 6.0 4.6 6.0 6.5

2h5nD 9.0 6.9 9.0 8.9 9.9 11.1

4.3.1 Analysis of Decoy Ensembles Obtained with Different Biasing Schemes

The distribution of conformational energies in Ω is shown for QUAD, COV, and NORM in Fig-

ure 4.2 on three selected proteins. Superimposition of the distributions shows that, as

expected, QUAD results in lower energies (distribution is shifted to the left), whereas COV

results in higher energies. The distribution obtained with NORM is expectedly Gaussian, and

its mean energy is between the means of QUAD and COV. Each of the three distributions can

contain lower energies than the native structure, whose energy is shown for reference.

Figure 4.2 shows these results when either AMW or Rosetta score3 are employed. Due

to detailed fine tuning in calculations of the Rosetta energy functions, the setting with

Rosetta score3 runs 6-7 times faster than when employing our in-house version of AMW. In

order to conduct a fair comparison, the size of the conformational ensemble obtained when

using Rosetta score3 is limited to the size obtained in 24 hrs with AMW on a particular

protein and biasing scheme. For instance, if within 24 CPU hours, the ensemble obtained

with AMW on the system with PDB ID 1fwp is 51K when using QUAD and 95K when using

NORM, the ensemble sampled when using Rosetta score3 and QUAD is then limited to 51K

conformations, and the ensemble sampled when using Rosetta score3 and NORM is limited
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to 95K conformations.

It is worth noting that one cannot directly compare values between the AMW and

Rosetta energy functions. However, the location of the known native structure shows that

both energy functions can associate low or high energies with a native structure. For

instance, on the protein systems with PDB IDs 1fwp and 1ail, the native structure has

lower energy than the mean of the energy distribution obtained under NORM whether AMW

or Rosetta score3 are employed. On the system with PDB ID 2ezk, the native structure has

higher energy than the mean under AMW but not Rosetta score3. On all three systems,

lower energies than that of the native structure can be obtained under QUAD under each

energy function due to the strong energy bias in QUAD driving the exploration towards deep

non-native minima.

Table 4.2 shows the lowest lRMSD obtained under each biasing scheme when using

AMW or Rosetta. As in Figure 4.2, the data are presented on the median ensemble (over

three runs for each biasing scheme). Lowest lRMSDs under 6Å are obtained by all three

biasing schemes on most protein systems, whether AMW or Rosetta score3 are used. The

global energy bias present in QUAD and NORM but not in COV, improves proximity to the

native structure (lower minimum lRMSDs are obtained overall). Moreover, when using

AMW, lower minimum lRMSDs are obtained on 50% of the systems with NORM than QUAD,

comparable lowest lRMSDs within 0.2Å are obtained on 20% of the systems, and increases

are observed on the rest. When using the Rosetta energy function, differences in lowest

lRMSDs between NORM and QUAD are less pronounced, suggesting than the Rosetta energy

surface is more complex than AMW and can benefit from further sampling. A comparison

between AMW and Rosetta score3 reveals that the lowest lRMSD is obtained by Rosetta

score3 (in bold) for most systems, whether COV, NORM, or QUAD are used. AMW seems to

have a significant advantage on 1ail and obtains comparable results on 1cc5, both all-α

proteins. Results are uniformly poor on 2h5nD, suggesting that this large protein may

benefit from further sampling.

Focusing on the lowest lRMSD may be misleading, as the conformation realizing it

46



may not be sufficiently represented in the decoy ensemble or may be missed altogether by a

selection technique. Figure 4.3 analyzes Ω in more detail for 3 selected protein systems. The

20 decoys with the lowest lRMSDs from the native structure are marked in the distribution

of conformational energies obtained with each biasing scheme.

Figure 4.3 shows that many of the 20 lowest-lRMSD conformations can be lost if the

selection criterion discards those with energies above the mean in the ensembles obtained

with AMW and QUAD. Many of these conformations would be retained if using NORM. Dif-

ferences between QUAD and NORM are less pronounced when using Rosetta, suggesting again

that the Rosetta energy surface is more complex. We point out that the system with PDB

ID 1ail, an all α protein, seems to be an easier case for AMW than Rosetta. Whether using

QUAD or NORM with AMW, the 20 lowest-lRMSD conformations have energies not only below

the mean but also close to that of the native structure. On the other hand, the system with

PDB ID 2ezk seems to be more challenging for AMW than Rosetta. When using AMW,

the 20 lowest-lRMSD conformations have energies that place them above the mean whether

using QUAD or NORM. In contrast, when using Rosetta score3, many of these conformations

are close in energy to the native structure, which also falls below the mean both under NORM

and QUAD. We note that this system is a longer α protein of 93 amino acids.

A further comparisons between AMW and the Rosetta energy function can be conducted

by comparing not only the lowest lRMSDs or the highest GDT TS scores to the known

native structure obtained on each system but also the mean lRMSD and the mean GDT TS

score on the 90% percentile of low-energy conformations. The results shown in Table 4.3 fix

the biasing scheme to NORM and limit the source of variation to the energy function employed.

Values in bold indicate either lower or comparable lRMSDs between AMW and Rosetta or

higher or comparable GDT TS scores between AMW and Rosetta. If focusing on lowest

lRMSDs, Rosetta provides scores that are lower or comparable than those obtained with

AMW on 7/10 of the systems. Looking at GDT TS scores brings the number of systems

with higher or comparable GDT TS scores in Rosetta to 8/10. Interestingly, the majority

of the improvements are on proteins with β or α/β folds. On the majority of the all-α
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Figure 4.3: The 20 lowest-lRMSD conformations are shown as blue circles over the distribu-
tion of energies in Ω for 2 selected protein system. Their lRMSDs from the native structure
are shown on the right hand axis. Results are shown for both AMW and Rosetta score3.
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proteins, AMW provides better or similar results.

Comparing mean lRMSDs and mean GDT TS scores over the 90th percentile of low-

energy conformations reveals that differences between Rosetta and AMW in terms of repre-

sentation of near-native conformations are less stark. Rosetta has lower or comparable mean

lRMSDs or higher or comparable mean GDT TS scores on this subensemble of conforma-

tions on 30% and 70% of the systems, respectively. Taken together, these results provide a

detailed insight into AMW and Rosetta. While Rosetta seems capable of better recognition

of conformations in close proximity to the native structure, neither energy function has a

distinct advantage for the purpose of a selection technique driven by an energy cutoff.

Table 4.3: AMW and Rosetta energy functions are compared over entire Ω ensemble ob-
tained with NORM. In addition to lowest lRMSD and maximum GDT TS to the known
native structure, the comparison includes mean lRMSD and mean GDT TS over the 90th
percentile (p90) of low-energy conformations in Ω.

lRMSDmin(Å) GDT TSmax(%) lRMSDµ,p90(Å) GDT TSµ,p90(%)
ID AMW Rosetta

(score3)
AMW Rosetta

(score3)
AMW Rosetta

(score3)
AMW Rosetta

(score3)
1gb1 (α/β) 4.6 4.1 0.63 0.69 11.4 9.3 0.39 0.49

1sap (α/β) 5.2 4.5 0.52 0.52 10.6 11.9 0.34 0.32

1wapa (β) 6.9 6.6 0.39 0.43 13.0 13.7 0.23 0.28

1fwp (α/β) 6.1 4.6 0.48 0.53 12.4 11.1 0.30 0.35

1ail (α) 1.9 4.6 0.84 0.65 9.8 11.0 0.43 0.37

1aoy (α/β) 5.8 5.4 0.57 0.62 9.9 12.2 0.40 0.36

1cc5 (α) 5.8 5.8 0.45 0.46 12.3 13.2 0.28 0.30

2ezk (α) 4.1 3.5 0.56 0.70 11.7 8.4 0.34 0.50

3gwl (α) 6.0 6.5 0.44 0.46 13.4 15.6 0.30 0.31

2h5nD (α) 9.0 11.1 0.33 0.24 15.5 16.7 0.23 0.19

4.3.2 Ensemble Reduction and Analysis

Since our goal for the robotics-inspired exploration is to obtain a broad non-redundant view

of the energy surface, QUAD and NORM are further investigated in terms of the geometric

diversity of the ΩE ensembles they yield (discarding any conformation with energy above
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the mean). Since the bisecting K-Means clustering employed for this purpose makes use of

an N×N matrix to store pairwise lRMSDs between the N decoys in ΩE , the size of ΩE can

pose computational and memory issues. We impose a limit of 40K conformations. When the

limit is exceeded, uniform sampling over ΩE is used to obtain 40K conformations. Table 4.4

shows |Ω| and |ΩE | for each protein in columns 2-3 for QUAD and 6-7 for NORM. Larger Ω

ensembles are obtained on all proteins with NORM, confirming that it becomes increasingly

harder to satisfy the Metropolis criterion (and so expand selected conformations) from the

lowest-energy levels selected by QUAD. The difference in |Ω| between QUAD and NORM becomes

less pronounced on the longer proteins, where energy evaluations become the bottleneck.

Table 4.4: |Ω| and |ΩE | obtained when using AMW are shown in units of 103. ∆C shows

|ΩE | − |ΩE,C | as a % of ΩE . Subscripts 3 and 5 refer to ε values 3 and 5Å .

AMW
ID QUAD NORM

|Ω| |ΩE | ∆C3 ∆C5 |Ω| |ΩE | ∆C3 ∆C5

1gb1 101 40 57% 83% 168 40 28% 65%

1sap 70 40 76% 90% 105 40 35% 51%

1wapa 45 26 78% 86% 84 42 37% 52%

1fwp 51 33 73% 88% 95 40 31% 51%

1ail 73 38 76% 90% 94 40 58% 80%

1aoy 57 31 73% 90% 71 35 47% 72%

1cc5 37 33 71% 83% 55 28 32% 43%

2ezk 38 20 63% 87% 42 21 43% 85%

3gwl 23 12 70% 85% 28 14 47% 75%

2h5nd 15 8 61% 76% 18 9 55% 69%

The reduction in size of ΩE,C resulting from the clustering of ΩE is shown in columns 4-5

and 8-9 of Table 4.4 for QUAD and NORM. Results are shown for ε values of 3 and 5Å (a higher

value would degenerate the quality of the clusters). As expected, a higher ε value results

in a more significant reduction over ΩE . Moreover, comparison between QUAD and NORM for

a given ε shows that clustering is able to achieve a more substantial reduction on the ΩE
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ensemble resulting from QUAD. This suggests that NORM results in a more diverse set of low-

energy decoys, and so it is better suited to be employed for the purpose of obtaining a broad

view of the energy surface. The improved diversity of low-energy decoys implies increased

coverage of the conformational space, which is a critical component, especially if it is to be

followed by further more detailed exploration or studies focusing on improvements of energy

functions on a diverse set of decoys. The results shown in Table 4.4 are overall reproduced

when using Rosetta score3, shown in Table 4.5. A more substantial reduction is obtained

on the ensemble obtained with QUAD using Rosetta score3, as well, further suggesting that

the soft energy bias in NORM is more appropriate at yielding a diverse non-redundant decoy

ensemble not exploiting artifacts of an energy function.

Table 4.5: |Ω| and |ΩE | obtained when using Rosetta score3 are shown in units of 103. ∆C

shows |ΩE | − |ΩE,C | as a % of ΩE . Subscripts 3 and 5 refer to ε values 3 and 5Å .

Rosetta score3
ID QUAD NORM

|Ω| |ΩE | ∆C3 ∆C5 |Ω| |ΩE | ∆C3 ∆C5

1gb1 101 50 70% 92% 168 40 65% 90%

1sap 70 33 69% 84% 105 52 54% 76%

1wapa 45 25 85% 95% 84 41 38% 65%

1fwp 51 26 70% 84% 95 47 50% 75%

1ail 73 36 71% 85% 94 47 57% 78%

1aoy 57 29 70% 89% 71 36 49% 83%

1cc5 37 18 80% 87% 55 28 64% 77%

2ezk 38 18 70% 93% 42 21 64% 94%

3gwl 23 12 72% 91% 28 14 48% 67%

2h5nd 15 8 76% 88% 18 9 52% 78%

4.3.3 Convergence Analysis

Here we conduct further analysis and optimization of obtained decoys. The conformations

in ΩEC
(medoids of clusters) resulting from NORM now serve as starting points for MMC
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trajectories (20, 000 steps long). Unlike the previous stage, which uses fragments of length 9,

the MMC trajectories use fragments of length 3. The end points of the trajectories constitute

the final set of conformations subjected to density-based analysis to detect possible regions

of convergence.

The quality of the top 10 clusters resulting from the density-based analysis with ε=5

is shown for each of the protein systems in Table 4.6. The results shown in Table 4.6

are obtained with AMW. Columns 2-4 show the lowest lRMSD from the native structure

over the representatives of the top i populous clusters, where i varies from 10, 5, down to

1, respectively. For reference, columns 5-6 show the tenth lowest lRMSD and the lowest

lRMSD over the entire ΩE,C ensemble. Additionally, columns 7-8 show the lRMSD of the

conformation that can be assembled if the fragment configuration selected from the library

for each fragment is the one that is closest to the actual fragment configuration in the native

structure (a process known as global fit [45]).

Comparison of these columns allows drawing a few conclusions. If either the top 5 or top

10 populous clusters are employed for further refinement, near-native decoys (in terms of

low lRMSDs) are preserved after the selection, promising recovery of the native structure in

great detail and accuracy. Comparison of columns 4 and 5 shows that at most the selection

loses ≈ 4Å in terms of proximity to the native structure and on average loses 1.5Å. In

general, there is good correlation between cases when low lRMSDs are maintained by the

selection and low lRMSDs obtained by global fit. Lower lRMSDs obtained over global fit

suggest that sometimes suboptimal fragment configurations are needed locally in order to

obtain a better global conformation. Similar observations can be drawn from the density

analysis over ensembles obtained with Rosetta score3. The Rosetta score3 improves the

quality of the lowest lRMSD among the top ten clusters on some systems but it offers no

distinct advantage overall (data not shown).

Further detailed analysis is showcased on 3 representative systems. The density-based

analysis is repeated on the set of conformations resulting after every 2, 000 MMC steps

(AMW is used) and the aggregate size of the top i populous clusters i ∈ {1, 5, 10} is shown
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Table 4.6: The lowest lRMSD from the native structure over conformations in the top i
clusters (i ∈ 1, 5, 10) are shown in columns 2-4, respectively. The tenth lowest and the
lowest lRMSD over the entire ΩE,C are shown for reference in columns 5-6, respectively.
The lRMSD of the conformation resulting from global fit with fragment lengths of 9 and 3
are shown in columns 7-8, respectively.

ID lRMSD to Native (Å)
T1 T5 T10 B10 B1 Gf9 Gf3

1gb1 11.2 11.2 10.7 6.6 6.1 3.7 9.0

1sap 6.4 6.4 6.4 6.8 5.7 8.4 6.4

1wapa 10.4 10.4 9.0 7.5 6.1 17.8 6.3

1fwp 11.9 9.5 9.5 6.7 5.9 11.0 17.0

1ail 7.2 4.1 4.1 3.9 3.4 2.1 1.5

1aoy 7.1 7.1 6.9 6.0 5.0 12.9 11.5

1cc5 8.9 8.9 8.2 6.3 5.6 6.0 5.6

2ezk 7.9 7.4 7.4 5.9 4.8 10.4 9.8

3gwl 9.1 6.8 6.5 6.3 5.5 16.2 10.7

2h5nd 12.0 11.4 11.4 9.4 8.4 7.8 8.0

in Figure 4.4(a)-(c) for each system. The results in (a)-(c) showcase that this aggregate

size can decrease, settle, or grow. A decrease is the result of MMC trajectories diverging in

the energy surface. In (b), which shows results for the system with PDB ID 1ail, the most

populated clusters grow in size, signaling convergence of many MMC trajectories to nearby

regions for this system; the clusters contain a large percentage of the decoys when ε=5Å.

Repeating the analysis with ε=3Å shows that 3Å is too small to measure convergence

(data not shown). Convergence on the system with PDB ID 1ail suggests that the widest

low-energy basins captured with AWM and NORM are also deep enough for the ensuing MMC

runs to remain trapped. This result provides further insight into why it is that the low-

resolution exploration of the AMW energy surface for this system can capture decoys within

2Å of the native structure. In contrast, the other two systems have shallower basins in the

AMW energy surface.

Figure 4.4(d)-(f) provides some more detail on the system with PDB ID 1ail. The dis-

tribution of energies vs. lRMSDs from the native structure of the conformations (medoids)

in ΩE,C in (d) shows that AMW is weakly-funneled over the 9-mer space. Figure 4.4(e)
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shows that the correlation between low energies and low lRMSDs improves after the MMC

trajectories populate the 3-mer space. Moreover, a proof of concept analysis takes the top

10 clusters resulting from the density-based for this system and subjects them to short

high-resolution refinement through the Rosetta relaxation protocol. The resulting energetic

and lRMSD ranks shown in Figure 4.4(f) make the case that the top 10 clusters are good-

quality candidates for further refinement. The same analysis is repeated over ensembles

obtained with Rosetta score3 on this system, shown in Figure 4.4(g)-(i). In contrast to

AMW, Rosetta yields stronger funneling on the 3-mer space despite the lowest lRMSD to

the native structure being higher than what is obtained with AMW. Results showing ranks

after high-resolution refinements of the top 10 clusters in Figure 4.4(i) are similar to those

obtained with AMW.

4.4 Conclusions

Our analysis of different probability distribution functions over the discretization layers

shows that a Gaussian distribution is more suitable for a diverse ensemble of low-energy de-

coys. This distribution effectively implements a soft energy bias that guards the framework

from converging too fast to deep energy minima. While additionally enforcing structural

diversity through the geometric projection layer, the combination of a soft energy bias and

coverage result in a diverse ensemble of low-energy decoys. A non-parametric energetic re-

duction and a K-means bisecting clustering algorithm allow further reducing the ensemble

and show that near-native conformations are more likely to be retained when using the soft

energy bias rather than more greedy schemes.

Comparison of ensembles obtained with AMW versus Rosetta allow drawing a few ob-

servations. First, Rosetta allows improvements in terms of closer proximity to the known

native structure by as much as 1.5Å over AMW. This is more pronounced for proteins with

all β or α/β folds. AMW instead is better suited for all α proteins. This observation
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(a) 1fwp (α/β) (b) 1ail (α) (c) 2ezk (α)

(d) 1ail ΩE,C , AMW (e) 1ail after 20K MMC steps, AMW (f) High-resolution refinement

(g) 1ail ΩE,C , Rosetta (score3) (h) 1ail after 20K MMC steps, Rosetta (score 3) (i) High-res. refinement

Figure 4.4: (a)-(c)The aggregate size of the top i clusters i ∈ {1, 5, 10} resulting from

density-based analysis with ε = 5Å is shown every 2K MMC steps (red lines). (d)-(f)
Energy vs. lRMSD from the native structure are plotted for system with PDB ID 1ail for
conformations in ΩE,C in (d) and for the end points of the MMC trajectories in (e). These

results are obtained with AMW and NORM. (f) also shows the energetic and lRMSD ranking
of the top 10 populous cluster representatives after a short high-resolution refinement. (g)-
(i) Energy vs. lRMSD from the native structure are plotted for system with PDB ID 1ail for
conformations in ΩE,C in (g) and for the end points of the MMC trajectories in (h). These

results are obtained with the Rosetta score 3 energy function and NORM. (i) also shows the
energetic and lRMSD ranking of the top 10 populous cluster representatives after a short
high-resolution refinement.

55



confirms recent analyses of versions of AMW in [49, 52, 121] that the function seems well-

equipped to capture the basin of all α fold proteins. In line with other studies of the Rosetta

energy function [39–41], our analysis shows, similar to AMW, energies values lower than

that of the native state can be assigned to decoys with non-native topologies. A comparison

of the different energy biasing schemes when using the Rosetta energy function indicates

that the function results in a more complex surface than AMW. While the AMW surface

is saturated more speedily by the framework, the Rosetta energy surface may benefit from

further sampling.

The convergence analysis is conducted by applying long MC trajectories to the reduced

ensemble. Shorter fragment lengths of 3 instead of 9 are used to access a more detailed

energy surface and further populate the regions indicated as promising by the above ex-

ploration. Switching from longer to shorter fragments during exploration is employed by

other methods for structure prediction [110]. These methods perform this switch in the

context of very long independent MMC trajectories. In this framework, longer fragments

are used to gain a broader view of conformational space. Once the areas of interest are

identified via energetic reduction and geometric clustering, shorter fragments are employed

to optimize the energy function on the remaining ensemble. Density-based clustering over

the end points of the trajectories shows that the top populous clusters retain near-native

conformations which can be used for further refinement in a blind prediction setting for de

novo structure prediction.

Taken together, the obtained results suggest that FeLTr is versatile and allows exploring

current open issues and deficiencies in de novo structure prediction. The density clustering

analysis showcases that the enhanced sampling by the robotics-inspired framework results

in many regions, including non-native topologies, being sufficiently populated to be reported

among the top 10 populated clusters. This result effectively indicates that the framework

leads to a diverse set of highly-populated energy basins. These basins can be used for for

further development of scoring functions to improve recognition of non-native topologies.
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Chapter 5: Computing Protein Motions with a Novel

Tree-based Robotics-inspired Method

The work described in this chapter is based on the preliminary work published in a con-

ference proceeding [122] and an extended version published in a journal article [1]. The

problem addressed in this work is to extend our structural characterization to dynamic pro-

teins that switch between different structural states to modulate their biological function.

Specifically, we propose an efficient algorithm to compute molecular motions employed by

dynamic proteins in switching between different functionally-relevant structural states. Un-

derstanding how proteins modulate their biological function at the level of structure is an

important problem. It is also an important first step to elucidating at a microscopic level

how perturbations, including sequence mutations, affect function. The problem is challeng-

ing for both the wet and dry laboratories. In the following we setup the problem in greater

detail and provide a summary of the state of the art before proceeding to describe the

framework we propose and the analysis to validate this framework. As in other chapters,

we focus primarily on the methodological novelty and relate representative results. The

images used in this chapter are copyright of the BMC Structural Biology Journal.

5.1 Background and Related Work on Molecular Motion Com-

putation

Experimental evidence is now available illustrating that some protein molecules can act as

molecular machines and exploit a set of thermodynamically-stable structures to vary their

function [28–32]. In most cases, either no structural information exists on the conformations

employed by a protein molecule to transition from one structural state to another, or this

information is rather limited. One reason for the scarcity of structural information is the
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inability of experimental techniques to structurally track a transition. Probing the transition

at the sub-nanometer scale, as required to elucidate structures along the transition, is

in principle possible with spectroscopic techniques, such as FRET or NMR. Doing so in

practice is difficult, as the actual time spent during a transition event can be short compared

to the long time a protein can spend in a stable or meta-stable structural state. In other

words, experimental techniques are currently suitable for catching proteins in long-lived

stable or meta-stable states but not in the short-lived ones that a protein uses to transition

between stable and meta-stable states. There are now many stable and meta-stable states

deposited for dynamic protein systems in the PDB. Examples include Calmodulin and

Adenylate Kinase, which are also subjects of our investigation in this thesis.

Given the current challenges in the wet laboratory, computational methods provide an

alternative approach. These techniques are in principle able to explore the protein energy

surface at great detail and so compute conformational trajectories.

5.1.1 Problem Statement

The input consists of two PDB-obtained structures (start and goal) corresponding to two

experimentally-determined functional states of a protein. The output is a set or ensemble of

conformational paths. Each path is a series of conformations, initiated at the start structure

and terminated within some threshold distance of the goal structure. The path needs to

satisfy additional constraints. The energetic difference between conformations in a path is

controlled via different means, either by placing a bound on the maximum energy in a path

or through the Metropolis criterion. A template is illustrated in Algorithm 5.1.

5.1.2 Related Work on Molecular Motion Computation

Designing computation methods to address the above problem with reasonable compu-

tational resources remains challenging [123], as transition trajectories may span multiple

length and time scales, often connecting structural states more than 100Å apart. This

length scale is up to 2 orders of magnitude larger than a typical interatomic distance of
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2Å. Transitions can also demand even larger µs-ms time scales, which is 6−12 orders of

magnitude larger than typical atomic oscillations of the fs-ps timescale.

These characteristics make the computation of transition trajectories exceptionally chal-

lenging for the standard random restart MD- or MC-based sampling framework. It is worth

reiterating that given the stochastic nature of molecular motions, a protein system may use

different pathways to access two different structural states; some of these pathways may

require less work from an energetic point of view. Hence, sampling-based frameworks are

needed to sample such pathways and provide a broader picture that can then identify in-

termediate structural states employed by a protein on most pathways to reach a goal state.

It is very costly to navigate the protein energy surface in search of transition trajectories

with equilibrium MD-based approaches [11, 124,125]. A simulation may spend a long time

in a local minimum corresponding to a stable or semi-stable state and only rarely undergo

a conformational change allowing it to cross an energy barrier and transition to another

state. Long simulation times may be needed to capture the rare event in a transition trajec-

tory, which makes equilibrium MD-based approaches as inadequate as the NMR and FRET

experimental techniques in this setting.

Algorithm 5.1 Setup of the conformational path computation problem

Input: Pstart, Pgoal . pair of functional states

Output: Ω =
{

Π
(1)
ij ,Π

(2)
ij , ...,Π

(n)
ij

}
. ensemble of paths

∀p ∈ Ω

- Π
(p)
ij = Cij,0, ..., Cij,t, ..., Cij,τ

- 0 ≤ t ≤ τ
- i 6= j; Ci = Cij,0; Cj = Cij,τ

– V alid(Π
(p)
ij ) = True
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MD-based Approaches

Many adaptations are pursued to lower the computational demands of MD-based ap-

proaches. Essentially, MD-based methods for elucidating transitions incorporate some suit-

able bias at the expense of obtaining possibly different transition trajectories. Methods in-

clude targeted, biased, or steered MD, importance sampling, umbrella sampling, replica ex-

change, local flattening of the energy surface, activation relaxation, conformational flooding,

swarm methods, and others [32, 126–136]. Efficiency concerns are also addressed through

coarse graining and techniques based on normal mode analysis and elastic network mod-

eling [137, 138, 138–147]. Some methods focus on deforming a trivial conformational path

(obtained, for instance, through morphing) to improve its energy profile. Examples include

the nudged elastic band, morphing, zero-temperature string, and finite-temperature string

methods [148–154]. While the incorporation of a suitable bias towards the goal structure

forces the simulation to reduce dwell time in a given stable or meta-stable state, the bias

possibly sacrifices a more expansive view of possibly different transition trajectories to the

goal structure. This is typically addressed by repeating the simulation to obtain many tran-

sition trajectories, which taken together can cover the transition ensemble in the absence

of correlations between trajectories.

Robotics-inspired Sampling-based Approaches

Since simulation of dynamics is the limiting factor in dynamics-based methods, efficiency

concerns can be addressed by foregoing or at least delaying dynamics until credible confor-

mational paths have been obtained. A different class of methods focus not on producing

transition trajectories but rather computing a sequence of conformations (a conformational

path) with a credible energy profile. The working assumption is that credible conforma-

tional paths can then be locally deformed with techniques that consider dynamics to obtain

transition trajectories. Most notably, methods in this category adapt sampling-based search

algorithms developed for the robot motion-planning problem which bears strong analogies

to the problem of computing conformations along a structural transition.
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The framework we propose in this chapter falls in the category of robotics-inspired meth-

ods and exploits analogies between the robot and molecular motion computation problems.

It is worth noting that such methods predominantly model only the protein and not the

other systems with which protein may interact as it switches its functional state. The foun-

dation for this is based on the conformational selection model [155,156]. Under this model,

many different functional states of a protein co-exist at equilibrium even in the absence of

binding parters, albeit with different probabilities.

5.1.3 Robot Motion Planning and Molecular Motion Computation

The objective in robot motion planning is to obtain paths that take a robot from a start

to a goal configuration. In robotics and molecular motion computation, a start and a goal

state are specified. The goal is then to produce a feasible path that the system can follow

to navigate its environment and transition from the start to the goal state. There are some

unique challenges offered up by molecular systems. First, molecular systems typically have

an exceptionally high number of DOFs or parameters compared to most robotic systems,

hundreds or thousands of DOFs compared to at most a dozen. Second, the cost surface

associated with the robot configuration space typically only has to account for the presence

of obstacles and perhaps other kinodynamic constraints on the robotic system (bounds on

velocities, accelerations). In a protein system, the cost surface or energy surface is typically

more complex and with many local minima. While for a robotic system the question of “is

a configuration feasible or not” can be typically answered deterministically, for a protein,

the answer is a probabilistic estimation.

Tree-based Robot Motion Planning Methods

The methods developed in algorithmic robotics to address the robot motion planning prob-

lem fall under either the roadmap-based or tree-based category. The method we propose in

this chapter falls under tree-based methods, which have proven less challenging to adapt to

the molecular motion computation problem. Roadmap-based methods, which we detail in
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the two following chapters in this thesis to provide a foundation for the rest of our work on

motion computation, suffer from the steering problem [157,158]; essentially, given two sam-

pled conformations or configurations, it may not be possible to find a constraint-satisfying

path steering the system from one conformation to another. Under tree-based methods,

there are various ways to get around this issue (it is worth noting that the subject of the

last chapter of our thesis is to equip roadmap-based methods with the ability to address

the steering issue, as well). We focus here on describing the main tree-based methods in

robotics and their adaptations for molecular motion computation, so we can justify the

novel components in the tree-based framework we propose in this chapter.

The rapidly-exploring random tree (RRT) [159], expansive search trees [160], and path-

directed subdivision tree (PDST) [161] are the three main variants of tree-based robot

motion planning algorithms. They vary by how the tree is grown in the robot configuration

space.

RRT RRT expands the tree by randomly sampling a new configuration Qrand [159]. The

closest existing configuration in the tree is located and called Qnear. The algorithm then

expands Qnear in the direction of Qrand using a controlled move size (potentially adding

many configurations to the tree, which are at most the step-size apart in distance). In

practice, it has been shown that selecting Qgoal as Qrand with some probability p improves

the performance of the algorithm. In summary, RRT expands the tree in random directions

which is highly dependent on how Qrand is sampled. This strategy influences RRT to explore

the “frontier” regions of configuration space.

EST EST expands the tree by selecting and expanding existing configurations within the

tree [160]. Briefly, a configuration c is selected using some probabilistic weighting scheme.

The selection configuration is then slightly perturbed to arrive at a new configuration c′.

If a collision free path can be obtained between c and c′, c′ is added to the tree. The

performance of EST is tightly coupled to how configurations are selected for expansion.

Ideally, this method would favor a uniform coverage of Qfree, however, this is difficult if not
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intractable in high dimensional settings. Typically, a low-dimensional projection method

is used to approximate the density of the samples in the tree. A new node is selected for

expansion using a probability distribution over the cells that is inversely proportion to the

density. This biases the growth of the tree to avoid oversampling.

PDST PDST was introduced in [161] and was designed to deal with motion problems that

suffer from significant drift, under actuation, and discrete system changes. This method

uses a low-dimensional projection of the sampled configurations to approximate coverage

of the configuration space. This projection is decomposed into cells. All cells are stored

in a priority queue based on a score (explained below). The expansion of the tree pro-

ceeds as follows. The highest scoring cell is dequeued, and a configuration from the cell

is selected uniformly at random. This selected cell is then subdivided and the resulting

cells are returned to the priority queue. A cell’s score is primarily based on its size, with

larger cells given higher priority. A perturbation function is then applied to the selected

configuration resulting in a new configuration which is stored in the tree and mapped to

its appropriate cell. By selecting larger cells, the search is biased towards under explored

areas of configuration space.

It is worth noting that these tree-based methods are often referred to as single-query

methods, as the tree grown in configuration space can only be used to find one path from a

start to a goal configuration. They cannot answer multiple queries, that is the ability to find

paths between different start and goal state pairs. To address multiple queries, a different

tree has to be grown each time. The approach often taken, particularly in adaptations

of these methods for molecular motion computation, is to rely on numerous executions

in order to sample different paths even for the same start and goal query or for different

queries. In contrast, roadmap-based methods can in principle answer multiple queries or

be used to find multiple paths for the same query, and as such they are the subject of

our investigations in Chapters 6 and 7 . We proceed now with adaptations of tree-based

methods for protein motion computation and showcase their shortcomings to motivate the

novel tree-based framework we propose in this chapter.
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Adaptations of Tree-based Robot Motion Planning Methods for Protein Motion

Computation

Tree-based methods have been used in many protein modeling problems, including loop

motions [162–164], protein structure prediction [5, 46, 102], protein-ligand modeling [165],

and modeling conformation changes between protein states [1, 57,145,166–168].

RRT-based Adaptations Transition-RRT (T-RRT) utilizes the basic RRT algorithm to

explore the motions between stable states of protein systems [167]. Very small systems, such

as dialanine peptide, have been modeled using both background and side chain dihedral

angles as the DOFs, which results in 7 DOFs in this case. To scale the algorithm to

larger systems, normal mode analysis (NMA) and elastic networks are constructed to guide

the perturbation of the backbone DOFs (φ, ψ) [166]. As with normal RRT, a random

configuration is sampled, Qrand, and an expansion technique pulls the nearest node in the

tree in that direction. T-RRT incorporates a reactive temperature scheme that allows it to

automatically detect when the expansion of the frontier nodes are impeded by high energy

barriers. The temperature within the Metropolis criterion is continually raised until the

tree is able to make progress. The temperature is then lowered as successful transitions are

appended to the tree. With the incorporation of NMA, this method has been successfully

applied to proteins with up to 900 amino acids.

EST-based Adaptations To the best of our knowledge, EST-based adaptations have not

been pursued prior to the work described in this thesis, as published under [1,5,45,46,102].

We note that the FeLTr framework we analyzed in the previous chapter for the problem

of de novo structure prediction is an EST-based adaptation. The method we propose in

this chapter, is an EST-based adaptation to compute motions between stable functional

states of a protein. To summarize, EST-based methods employ a selection technique to

direct the frontier of the search in under-explored areas of conformational space. Low-

dimensional projections are employed to identify areas that have been over-sampled and
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direct the search away from these areas. These include geometric projections and progress

coordinate projections. Once a node in these tree is selected for expansion, the molecular

fragment replacement technique is employed to perturb the conformation [110]. Acceptance

of the expanded conformation is based on the energetic difference between the parent and

perturbed conformation evaluated using the Metropolis criterion.

PDST-based Adaptations PDST has been applied to the study of the motions between

protein stable states by Haspel [57]. A protein configuration is presented by its backbone

atoms and the Cβ atoms. The secondary structure elements of the protein’s native state

are identified. The primary DOFs in this setting are the adjacent residues connecting

the secondary structure units. Each secondary structure element is used in the distance

calculation. For each secondary structure element, we compute the angular and distance

measurements to all other secondary structure elements. The same calculations are per-

formed in the goal structure, and the differences between the two (along with a weighting

term) define the distance. Sampling consists of selecting an existing conformation from the

tree and applying a small random rotation to a backbone dihedral angle residing in a loop

portion of the protein. This new configuration is accepted if it residues under an energetic

threshold (based on the energy of the start and goal structures). The distance function de-

fines the low dimensional projection employed by the PDST algorithm. An additional bias

is used to expand the node closest to the goal structure 10% of the time. This PDST-based

adaptation has been shown to produce credible information on the order of conformational

changes connecting functional states of large proteins (200−500 amino acids long) [57].

Novelty and Contribution of Proposed Framework over Related Work

We propose a novel robotics-inspired tree-based method to sample conformational paths

connecting two given structural states of small to medium-size proteins ranging from a

few dozen to a few hundred amino acids (214 amino acids in the largest system). Instead

of employing very coarse-grained representations to simplify the search space, as in some

65



of the related work, our proposed method models all backbone dihedral angles. The size

of the search space is controlled, however, through the molecular fragment replacement

technique, which allows efficiently obtaining physically-realistic protein conformations by

essentially bundling together backbone dihedral angles and sampling physically-realistic

moves for them. The method adapts FeLTr for motion computation, realizing in essence

that the connectivity information in the conformation tree, while not important for the

de novo structure prediction problem, is important for the motion computation problem.

Adaptations here include rooting the tree at a start conformation and biasing it towards

the goal conformation while enforcing coverage of the conformational space. Due to the

employment of expansions and discretization layers to make decisions on how and where

to grow the tree, this method can be considered an adaptation of EST and grid-based

methods in robotics [158]. One objective the method seeks to meet is to reach the goal

structure and so realize at least one path. Another conflicting objective is to prevent the

tree from focusing only on certain regions of the conformational space and instead forcing

it to maintain conformational diversity. Combined, meeting these two objectives allows

balancing the exploration between progress to the goal and coverage of the conformational

space so that diverse conformational paths are found and statistics can be computed over

the transition ensemble.

We detail here representative results on two well-characterized systems, Calmodulin

(CaM), and Adenylate Kinase (AdK). The results show that the method is effective in

elucidating conformational paths on these systems. Due to the Metropolis criterion and a

state-of-the-art energy function, the paths also have credible energy profiles. The employ-

ment of a tolerance region around the goal structure allows obtaining many paths from one

execution of the method. In the Results section, we employ multiple executions to obtain

many paths, as commonly done by path sampling methods [57, 167]. We emphasize that

these paths are not transition trajectories. The conformations in them can be considered

milestones during deformations of these paths into transition trajectories.

The proposed method makes an important contribution to the problem of computing
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conformational paths connecting two given states of a protein. Sampling values for indi-

vidual dihedral angles is not feasible on proteins more than a few amino acids to search

the space connecting states sometimes more than 13Å apart. On the other hand, the

work described here makes the case that one does not have to resort to very coarse-grained

representations to limit the number of modeled parameters. Instead, parameters can be

bundled and credible moves, extracted from known low-energy structures of proteins, can

be proposed for a series of consecutive angles in order to efficiently obtain physically-realistic

intermediate conformations. As we discuss in the Conclusions section, the method proposed

here opens up new lines of investigation. The results in section 5.3 suggest that work in

this direction is very promising for obtain credible conformational paths connecting diverse

functional states of a protein.

5.2 Methods

We now proceed with details on the proposed method. We describe the local and global

bias techniques that are employed, followed by investigating and controlling the impact

of utilizing the molecular fragment replacement technique on path resolution. Finally, we

detail our reactive temperature scheme that allows the search to cross energy barriers that

may exist between the two input functional states.

5.2.1 Main Algorithmic Components of Proposed Method

The tree-based framework discussed in our work on protein structure prediction (discussed

in section 4.1.2) is utilized as a starting point for devising our method. We utilize the

coarse grained AMW protein representation and accompanying energy function discussed

in section 4.2.2. We modify our AMW implementation in this setting to exclude the radius

of gyration (Rg) term, which is utilized in most structure prediction framework to reward

compact conformations. The reason for doing so is that functional structural states of

dynamic proteins may not be compact. In essence, we want to allow for openings and

closings of structure as needed. The molecular fragment replacement technique discussed
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in section 4.1.1 is employed as the move set, as in FeLTr.

The method grows a tree in conformational space, rooted at a given start conformation.

The tree grows in iterations, at each iteration expanding a selected conformation. The

expansion procedure produces conformations from a selected parent conformation, and a

local bias scheme is investigated to determine whether a generated conformation should

be added as a child node of its parent in the tree. The selection procedure, which selects

the conformation that should be extended at a given iteration, is key to balance different

criteria, such as progress towards the goal and coverage of conformational space. The

selection procedure employs one or more discretization layers and bias schemes over these

layers to achieve one or both criteria. We refer to these as global bias schemes.

5.2.2 Node Expansion

The expansion procedure makes use of the molecular fragment replacement technique in a

short MC local search that uses the Metropolis criterion. Most of our experiments detailed

in the Results section employ a medium temperature, which allows the method to accept

a 10 kcal/mol energy increase with probability 0.1. The Results section shows that this

temperature is effective, but achieving connectivity in more complex systems can benefit

from the ability to cross higher-energy barriers. Therefore, adapting the temperature as

needed by certain paths in the tree to cross energy barriers of varying heights and a reactive

temperature scheme is introduced and described in section 5.2.5.

Local bias in Expansion Procedure

We employ and investigate a local bias in the context of the expansion to grow the tree

with conformations that improve proximity to the goal. Essentially, moves are proposed

until m conformations are obtained that all meet the Metropolis criterion. The maximum

number of moves attempted is l. The conformation with the lowest lRMSD to the goal is

considered for addition to the tree. We analyze two different schemes, one in which the

child with the lowest lRMSD to the goal structure is added to the tree (this is the no local
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bias scheme), and another in which the addition is only carried out if the child’s lRMSD to

the goal is no higher than that of the parent (this is the local bias scheme). The local bias

scheme essentially expands the tree only with a conformations that improves proximity to

the goal over that of the parent. This is a greedy scheme that does not allow a path to veer

away from the goal structure and possibly explore new transition routes. We compare both

schemes in the Results section for how they affect the depth (progress towards the goal)

and the breadth (path diversity) of the tree. While depth is measured as the lowest lRMSD

to the goal structure over all paths that reach the goal region, a heuristic is introduced in

the Results section to measure path diversity.

5.2.3 Selection procedure and Global bias Schemes over Discretization

Layers

The selection procedure controls to a great extent where the tree grows in conformational

space. Two discretization layers are considered for the selection procedure. While one is

essential to the progress of the tree towards the goal, the other is considered to add con-

formational diversity and possibly obtain many uncorrelated paths from one execution of

the method. We employ a two-layer discretization scheme. The second layer is employed

as described in section 4.1.2 and promotes greater exploration of the conformational space,

resulting in greater path diversity. The first layer biases the tree to grow towards the goal

state and the second promote geometric diversity within the nodes of the tree. We investi-

gate here various global biasing schemes over the first layer, which projects conformations

in the tree onto a one-dimensional (1d) grid discretizing their lRMSDs to the goal. Grid

boundaries are set at [0, D], where D is the lRMSD between the given start and goal struc-

tures. Note that in the original FeLTr framework, the first layer projects conformations onto

energetic levels. Here, one of the objectives is to reach a specific goal structure. Hence, the

progress coordinate in the first layer is not energy anymore, but distance to the goal. We

employ lRMSD to measure such distance and so have a meaningful progress coordinate to

the goal.

69



Bias Schemes over lRMSD Progress Coordinate

We investigate different (global) bias schemes, as a strong bias towards selecting low-lRMSD

conformations may perform well in a small system or in a particular run due to the proba-

bilistic nature of the method and quickly drive the tree towards the goal. However, a strong

bias may also lead to premature convergence to local optima and prevent the tree from

approaching the goal. This is the classic depth vs. breadth issue that characterizes greedy

exploration.

Different bias schemes can be naturally defined through weighting functions over levels

of the 1d grid. A quadratic function, referred to as QUAD, can be defined to associate a

weight w(l) = 1/[1 + l2] + ε, with level l in the grid. The function biases the selection

towards levels with low lRMSD to the goal, and ε is set to a small value to ensure that

higher-lRMSD conformations can be selected if the method is given enough time. Another

weighting function, LINEAR, defined as w(l) = 1/[1+l]+ε, reduces the bias. UNIFORM removes

bias entirely, as in w(l) = 1/[#levels]. A probability distribution function then associates

probability of selection p(l) = w(l)/[
∑

levelsl′ w(l
′
)] with a level l. Once a level l is selected

with probability p(l), any conformation that maps to it is selected with equal probability for

expansion. We also provide the first steps towards a probabilistic combination of different

bias schemes. We compare the three basic bias schemes above to COMBINE90−10, which

p = 90% of the time grows the tree with no selection bias (effectively employing UNIFORM),

and 1 − p = 10% of the time employs QUAD. The value of p can be adaptively set in a

reactive scheme to balance between tree depth and breadth, and this is a direction we will

investigate in future work.

Selection and Expansion

The pseudo-code for the interplay between selection and expansion in the proposed method

is shown in Algorithm 5.2. First we select a level over the 1d grid over the lRSMD progress

coordinate with the probability of selection dependent on the particular weighting function
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used. Many conformations in the tree would correspond to the selected lRMSD level.

Rather than selecting any conformation in that level uniformly at random, an additional

discretization layer is incorporated that projects the conformations into a lower dimensional

3d grid based on their geometries. A weighting function over the 3d grid allows associating

probability of selection to these cells. After a cell is selected, any conformation in it can be

selected uniformly at random to be a parent for the expansion procedure.

Algorithm 5.2 Pseudo-code for the node selection and expansion procedure.

1: function SelectNode
2: RmsdCell = SelectGridCell() . Select from 1d grid over lRMSD to Goal
3: USRCell = SelectUSRCell(RmsdCell) . Select from 3d USR projection
4: C = SelectFromCell(USRCell) . Uniform random from cell
5: return(c,USRCell)
6: end function
7: procedure SelectAndExpand(T) . T is the current temperature
8: C = SelectNode()
9: [C’,USRCell] = ExpandNode();

10: if Valid(C’) then
11: AddTree(C,C’);
12: AddProjection(USRCell,C’)
13: end if
14: end procedure

5.2.4 Controlling Magnitude of Jumps in Conformational Space for Suf-

ficient Path Resolution

The purpose of the discretization layers and the bias schemes detailed above is to promote

obtaining diverse conformational paths that reach the defined goal region. There are no

additional constraints requiring these path have sufficient resolution in them. There is

nothing to prevent a path reaching the goal region with one or just a few conformations.

This a consequence of the granularity of the moves employed to generate conformations. The

fragment replacement technique can make larger jumps in conformational space compared
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to using single dihedrals. However, the bundling of dihedral angles together is necessary

to be able to traverse the space in a reasonable amount of time. Providing some path

resolution, where possible, is appealing. Greater conformational detail along a possible

transition trajectory alleviates the task for techniques that will spend their time on pursuing

deformations of these paths into actual transition trajectories.

We pursue the following simple scheme to control the magnitude of the jump in confor-

mational space in the expansion procedure. A step size is then sampled from a normal dis-

tribution centered around target step sizeÅ with standard deviation of std devÅ. The

expansion procedure functions as before, however all candidates whose step size (lRMSD

from parent) exceeds the sampled step size value are discarded. Of the remaining sam-

ples, the one closest to the goal is added to the tree. This strategy provides a local bias as

opposed to the global bias over the lRMSD progress coordinate.

5.2.5 Reactive temperature scheme

Reactive schemes that change the temperature as needed to make progress, introduced

in [167] for the dialanine peptide system, present an interesting direction to further enhance

the exploration of the method we propose. Building on this body of work, we investigate here

a simple reactive scheme that responds to global measurements made on the conformational

tree at regular intervals during the execution of the method. The progress towards the goal

structure is monitored over every w iterations with no overlap (the tree grows by one

conformation in each iteration), effectively sliding a window of length w over the fixed

number of iterations for which the method is run. If the lowest lRMSD to the native

structure by any of the conformations added to the tree during those w iterations in window

i is not less than some value d1 than the lowest lRMSD over window i − 1, then the

temperature is increased. If the lowest lRMSD achieved over window i is at least d2 lower

than the lowest lRMSD achieved over window i− 1, the temperature is decreased.

The motivation for monitoring the tree over every w iterations is that a global decision
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can be made based on the progress (or lack thereof) of all paths and their respective prox-

imity to the goal structure. When improvements are not made, this is indicative that many

paths are not able to add conformations that meet both the Metropolis criterion and extend

the tree towards the goal. This means that there are energetic barriers that the current

temperature does not allow crossing, and this necessitates a temperature increase. While

temperature increases enhance the exploration capability, they also do not allow sufficient

sampling of a local minimum by effectively increasing the magnitude of jumps that the tree

makes in conformational space with every added branch. Therefore, the balance between

exploration and exploitation is restored by lowering the temperature when improvements

in lRMSD exceed a threshold. While large improvements may seem desirable, it is worth

noting that the purpose for the method is not to quickly reach the goal structure with

possibly few very long branches. Instead, the goal is to produce a series of conformations

that capture the transition in some detail. Therefore, lowering the temperature effectively

limits the magnitude of the jumps that the tree can make in conformational space with each

branch and so provides some level of resolution in the transition from the start to the goal

structure.

The temperatures considered are obtained from a proportional cooling scheme often used

in the context of simulated annealing. They go from a high temperature T0 ≈ 7261K down to

room temperature T14=300K over 15 cooling steps. The fixed medium temperature used for

a part of our experiments that do not employ the reactive temperature scheme corresponds

to T9. These temperatures define acceptance probabilities, under the Metropolis criterion.

T0 is defined so that the acceptance probability under it is 0.5 for an energetic increase of

10kcal/mol. T0 is lowered 15 times according to a proportional cooling schedule that updates

the temperature as in Ti+1 = Ti · (T14/T0)k+1) until k = 14. The temperatures and their

corresponding acceptance probabilities for an energetic increase of 10 kcal/mol are shown

in Figure 5.1. This proportional cooling scheme has been employed before for simulated

annealing in [48]. The reactive temperature scheme employed in this paper starts with T9.

The scheme then iterates over the temperatures. If the current temperature employed by
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the method is Ti, where 0 ≤ i ≤ 14, and the reactive scheme demands lowering it, then the

temperature is set to Ti+1. If the scheme demands increasing it, then the temperature is

set to Ti−1. The lowest temperature allowed is T14, and the highest allowed is T0.

(a) (b)

Figure 5.1: (a) Proportional cooling scheme used for the reactive temperature setting is
shown. Temperatures go down from T0 to T14. (b) The corresponding acceptance proba-
bilities, under the Metropolis criterion, are shown, using δE = 10 kcal/mol.

5.3 Results

We show the results from experiments on two systems, CaM, and AdK, of respective lengths

of 144, and 214 amino acids (aa). Ten independent executions of the method are carried out

on each system. The termination criterion is 10, 000 conformations. The time demands of

one execution of the method is 8 hours for CaM and 24 hours of on one CPU. Multi-threaded

executions of the method cut down the time requirements by a factor of 10. Energy function

evaluations make up 90% of CPU time.

The tolerance around the goal structure to define the goal region is dependent on protein
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size. On CaM and AdK, tol is set to 4 and 5Å, respectively. The maximum number of

moves attempted in the selection procedure is l=100, and m=10 candidates are generated

from a selected parent that all satisfy the Metropolis criterion. The target step size when

controlling the magnitude of the jump in one expansion is target step size = 2.0Å. The

standard deviation is std dev is 0.5. The window size w used to monitor the progress of the

tree in terms of lowest lRMSD in the reactive temperature scheme is set to 100 iterations.

There is no window overlap. The value of the d1 parameter defining minimum required

improvement is set to 0.25Å. The value of the d2 parameter is set to 1.5Å.

5.3.1 Experimental setup

Performance is summarized in terms of depth versus breadth. Depth is defined as the lowest

lRMSD reached by the tree to the goal structure. An estimate of breadth over paths that

reach the goal region is defined as b = (
∑h

i=0 (i+ 1) · di)/h, where h is the number of nodes

on the shortest path, and di is the maximum pairwise lRMSD among conformations at level

i across all paths (i grows from goal to root). This measure downweights differences in lower

levels (closer to the goal).

A total of five settings are considered: (i) only one discretization layer is used in the

selection procedure, and four different bias schemes are considered over the progress coor-

dinate. No local bias is employed in the expansion procedure; (ii) local bias is added in

the expansion procedures; (iii) the magnitude of the jump in conformational space in the

expansion procedure is restricted through the step size mechanism described in Methods;

(iv) A second discretization layer is added over a geometric projection of the conformational

space; (v) A reactive temperature scheme is considered as opposed to a fixed-temperature

exploration.

On CaM, we analyze the ability to connect all 6 directed pairs that can be defined over

its three functional states. These states are documented under PDB ids 1cfd (apo), 1cll

(holo), and 2f3y (collapsed). CaM is an ideal system to study, as it is a key signaling protein

in many cellular processes exhibiting a particularly large conformational rearrangement. On
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AdK, a variety of states have been reported, but we focus here on the most studied transition

from the apo/open (PDB id 4ake) to the closed state (PDB id 1ake).

5.3.2 Comparison of global bias schemes over progress coordinate

Table 5.1 summarizes performance in terms of depth, or the lowest lRMSD obtained to the

goal structure from a tree rooted at a given start structure. We focus here on the first setting,

where no local bias is implemented in the expansion procedure. All four bias schemes on

the progress coordinate are tested in the selection procedure. Results are averaged over 10

independent executions, and Table 5.1 shows averages (µ) and standard deviations (σ) in

depth across the various global bias schemes. The results obtained under QUAD, LINEAR,

UNIFORM, and COMBINE90−10 are reported in columns 3−6, respectively.

Table 5.1: Average (µ) and standard deviations (σ) are reported for the lowest tree lRMSD
over 10 executions of the method. Weighting schemes for global bias over node selection
are compared here. No local bias is used in the expansion procedure.

System Start → Goal µ ± σ over lowest lRMSDs (Å) wo/Local Bias
QUAD LINEAR UNIFORM COMB90−10

CaM

1cfd → 1cll (10.7 Å) 3.22 ± 0.13 3.49 ± 0.42 3.69 ± 0.26 3.36 ± 0.13
1cll → 1cfd (10.7 Å) 3.42 ± 0.24 3.66 ± 0.33 3.97 ± 0.17 3.49 ± 0.24
1cfd → 2f3y (9.9 Å) 3.83 ± 0.43 3.76 ± 0.52 4.23 ± 0.31 4.01 ± 0.34
2f3y → 1cfd (9.9 Å) 3.50 ± 0.26 3.54 ± 0.37 3.80 ± 0.17 3.57 ± 0.28
1cll → 2f3y (13.44 Å) 1.76 ± 0.53 1.52 ± 0.31 1.44 ± 0.25 1.50 ± 0.20
2f3y → 1cll (13.44 Å) 0.86 ± 0.25 0.80 ± 0.20 1.06 ± 0.31 0.94 ± 0.14

AdK 1ake → 4ake (6.95 Å) 4.20 ± 0.51 4.39 ± 0.47 5.47 ± 0.28 4.32 ± 0.41
4ake → 1ake (6.95 Å) 4.48 ± 0.86 5.62 ± 0.80 5.94 ± 0.15 5.09 ± 0.69

Table 5.1 shows that the method effectively reaches the goal. On CaM, the average lowest

lRMSDs range from sub-angstrom to slightly over 4Å, depending on the pair connected.

Some pairs seem more difficult than others. On the 1cfd to 1cll paths, the average lowest

lRMSDs are below 4Å, which is in general agreement with the 1.5−5Å proximity reported by

MD- and MC-based biophysical studies [137,169]. AdK represents a more challenging case
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for method. Lowest lRMSDs obtained here are 4-6Å , slightly higher than the 2.5Å obtained

with very coarse-grained models [57].

Results in Table 5.1 suggest that all bias schemes allow approaching the goal. Here we

take a closer look at how these schemes lower lRMSD to the goal over time. We limit the

analysis to one of the transitions in CaM and the “best” execution (over 10) that allows

a bias scheme to achieve its lowest lRMSD to the goal structure. Figure 5.2(a) highlights

the expected behavior, showing that QUAD can drive the exploration rapidly towards the

goal but may plateau for long periods of time. LINEAR shows a similar rate of descent,

followed by COMBINE90−10. Of all bias schemes, UNIFORM and COMBINE90−10 exhibit a more

gradual decrease in lRMSD, suggesting that the exploration is more diverse under these

two schemes. We recall that, while the tree is not globally biased towards the goal under

UNIFORM, a conformation added to the tree in the expansion procedure is chosen to be the

one closest to the goal among energetically-credible conformations generated from a selected

conformation (this is the ’no local bias’ setting). In Figure 5.2(b) we analyze path diversity

or breadth on the same 1cfd to 2f3y transition. Figure 5.2(b) shows the breadth estimate

across all bias schemes and confirms that diversity is higher in UNIFORM and COMBINE90−10.

Taken together, these results suggest that the COMBINE90−10 global bias provides the right

compromise between depth and breadth.

Comparison of schemes in expansion procedure

The experiments detailed above are repeated to measure the effect of adding a local bias

in the expansion procedure (which only adds the candidate with lowest-lRMSD to the goal

structure as the child of a parent node if its lRMSD to the goal is also less than that of

the parent conformation to the goal) and controlling the magnitude of the conformational

jumps from parent to child (described in Methods as limiting step size). In order not to

add too many constraints for the expansion procedure, the step size is not controlled when

incorporating local bias in the expansion procedure.

Detailed results obtained when incorporating local bias in the expansion procedure are
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(a) (b)

Figure 5.2: (a) Minimum lRMSDs to the goal structure are plotted as a function of tree
size and compared among global bias schemes. No local bias is employed in the expansion
procedure. (b) Global bias schemes are additionally compared in terms of path diversity.

reported in columns 3−6 in Table 5.2. Overall, introduction of the local bias does not

significantly improve the ability of the method to get closer to the native structure, but

lower lRMSDs to the goal are obtained over the baseline setting when no local bias is

implemented in the expansion procedure. On the 1cfd to 2f3 transition in CaM and vice

versa, the average lowest lRMSDs are now consistently under 4Å. Slight improvements are

also obtained on the AdK closed-to-open transition and vice versa.

An additional analysis shown in Figure 5.3(a) tracks minimum lRMSD to the goal over

the tree during the execution of the method and compares breadth among the different

global bias schemes. Similar to the results shown above for the baseline setting of no local

bias, QUAD plateaus early. The decrease in lowest lRMSD to the goal is more gradual under

UNIFORM and LINEAR. The best improvement is obtained by COMBINE90−10. The comparison

of breadth values in Figure 5.3(b) shows that LINEAR and UNIFORM have the highest breadth,

followed by COMBINE90−10. Taken together, these results suggest that adding local bias in
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Table 5.2: Average (µ) and standard deviations (σ) are reported for the lowest tree lRMSD
over 10 executions of the method. Weighting schemes for global bias over node selection
are compared here. Local bias is incorporated in the expansion procedure.

System Start → Goal µ ± σ over lowest lRMSDs (Å) w/Local Bias
QUAD LINEAR UNIFORM COMB90−10

CaM

1cfd → 1cll (10.7 Å) 3.17 ± 0.25 3.27 ± 0.10 3.49 ± 0.26 3.32 ± 0.12
1cll → 1cfd (10.7 Å) 3.35 ± 0.51 3.56 ± 0.29 3.70 ± 0.23 3.50 ± 0.21
1cfd → 2f3y (9.9 Å) 3.93 ± 0.37 3.93 ± 0.42 3.99 ± 0.24 3.76 ± 0.41
2f3y → 1cfd (9.9 Å) 3.43 ± 0.39 3.65 ± 0.45 3.62 ± 0.13 3.34 ± 0.13
1cll → 2f3y (13.44 Å) 1.91 ± 0.58 1.67 ± 0.49 2.01 ± 0.86 1.68 ± 0.37
2f3y → 1cll (13.44 Å) 0.82 ± 0.30 0.72 ± 0.08 1.02 ± 0.43 0.73 ± 0.10

AdK 1ake → 4ake (6.95 Å) 3.91 ± 0.34 4.28 ± 0.36 5.15 ± 0.30 4.19 ± 0.22
4ake → 1ake (6.95 Å) 4.65 ± 0.71 5.32 ± 0.79 5.62 ± 0.37 5.21 ± 0.41

the expansion procedure does not significantly improve proximity to the goal structure, but

it may limit diversity. In both settings, COMBINE90−10 provides a compromise between depth

and breadth.

Rather than adding local bias in the expansion procedure, one can try to limit the

magnitude of a move from parent to child in the tree in order to provide some minimal path

resolution. We now do so by limiting the size (lRMSD) of a branch from parent to child

(step) as described in the Methods section. Figure 5.4 compares the distribution of step

sizes in the exploration tree as a result of limiting them with the procedure described in the

Methods section to the underlying distribution in the baseline setting where step sizes are

not controlled. The comparison focuses on the 1cfd to 2f3y transition in CaM, employing

COMBINE90−10 for the global bias over the progress coordinate).

Figure 5.4 allows drawing two conclusions. First, the Metropolis criterion in the expan-

sion procedure implicitly biases step sizes even when no additional control is applied over

them. Most step sizes are no more than 2Å. Second, explicitly controlling the step size

as described in the Methods procedure is effective and does not significantly change the

underlying distribution significantly. The procedure described to control step sizes aims to

center them around 2Å, which is not very hard to do, as seen in the underlying distribution.
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(a) (b)

Figure 5.3: (a) Minimum lRMSDs to goal are plotted as a function of tree size and compared
among bias schemes. Local bias is employed in the expansion procedure.(b) Global bias
schemes are additionally compared in terms of path diversity.

Figure 5.4: Step size is measured as the lRMSD between a parent and child in the tree
structure. The distributions of step sizes in the exploration is highlighted on one selection
transition for CaM, over all global bias schemes when using no local bias in the expansion
procedure.
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We now analyze the effect that explicit control over step sizes has on the ability to

reach the goal. Figure 5.5 shows the depth reached when controlling the step size on three

selected transitions of medium- to high-difficulty for the method (as determined on the

baseline setting of no local bias in the expansion procedure). The best run over 10 is

shown. The depths reached on each of the three selected transitions are visually compared

to those obtained when not controlling the step size, whether incorporating local bias or

not in the expansion procedure. Again, the best run is shown for these other settings in

terms of depth. The global bias schemes considered here are either QUAD or COMBINE90−10.

Figure 5.5 shows that, when limiting the step size, it is harder for the method to achieve

similar proximity to the goal structure. Most decreases in proximity to the goal are less

than 1Å. A higher decrease of about 2Åis observed for the 2f3y to 1cll transition in CaM.

Figure 5.5: Depth is compared across the three different local schemes considered in the ex-
pansion procedure. The global bias schemes considered are (a) QUAD and (b) COMBINE90−10.
The comparison is highlighted on three selected transitions.

The adverse effect on proximity when limiting the step size is expected. Demanding

more resolution along conformational paths in the tree distributes more conformations and

computational resources to obtaining more intermediate points along a path rather than

extending paths toward the goal structure. Increasing the size of the conformational tree
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allows obtaining similar depth when controlling the step size to the other two settings. This

is observed when running the method to sample 25, 000 rather than 10, 000 conformations

(data not shown).

5.3.3 Analysis over incorporating geometric discretization layers

In this setting we add the second USR-based discretization layer, thus discouraging the

tree from visiting the same regions in conformational space too often. As discussed in the

Methods section, this is achieved by projecting conformations in the tree onto a 3d grid.

We limit the analysis here to the setting of using the COMBINE90−10 global bias scheme

over the progress coordinate for the first discretization layer and employing no local bias in

the expansion procedure. Figure 5.6 compares the depth (top row) and breadth (bottom

row) of the tree obtained when incorporating the geometric projection layer as opposed to

not incorporating it. The shown values for depth and breadth correspond to the run that

achieves the best depth (lowest lRMSD to the goal) over 10 runs.

Figure 5.6: Depth (a) and breadth (b) are compared when using the second discretization
layer (’with USR’ in legend) over not using it (’without USR’). The ’without USR’ setting
is the baseline setting where no local bias is employed in the expansion procedure. The
global bias scheme considered here is COMBINE90−10. The comparison is highlighted on the
same three selected transitions.
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The comparison shows that insisting on diversity does not significantly hamper the tree

from reaching the goal structure with similar lowest lRMSDs. Differences in depth are

within 0.5Å. In fact, on two transitions, slight improvements are obtained. It is important

to note that the extent of improvements of depth depends both on the extent of sampling

and on whether paths need to be fine tuned or altogether alternative routes have to be found.

When fine tuning is needed, a finer granularity in the 3d grid for the geometric projection

of the conformational space may help further improve proximity to the goal. Comparison

of breadth values shows that the improvements in breadth and depth are correlated. This

is a consequence of the fact that, when the projection layer increases lRMSD to the goal,

fewer paths are considered successful and counted in the breadth analysis.

5.3.4 Analysis over incorporating reactive temperature scheme

All of the above experiments employ a fixed temperature corresponding to T9 in the tem-

perature schedule shown in the Methods section. Here we consider a reactive temperature

scheme, as described in the Methods section, to enhance sampling and allow paths to jump

over energy barriers as needed. In this setting, we set the maximum number of moves at-

tempted in the expansion procedure to l=250, and m=25 candidates are generated from a

selected parent that all satisfy the Metropolis criterion. When increasing the temperature,

the exploration is more likely to yield conformations farther in conformational space, and

so it is harder to obtain children that approach the goal. The higher number of moves and

children allow us to address this.

Figure 5.7 shows the depth reached when incorporating the reactive temperature scheme

on the same three selected transitions of medium- to high-difficulty for the method. The

best run over 10 is shown. The global bias scheme employed over the progress coordinate is

COMBINE90−10 (only one discretization layer is used), and no local bias is used in the expan-

sion procedure. The depths reached on each of the three transitions are visually compared

to those obtained when employing a fixed temperature (T9) instead of the reactive scheme.

Figure 5.7 shows that the reactive temperature improves depth for all three transitions.
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Figure 5.7: These graphs illustrate the effects of our reactive temperature scheme. This
illustrates that while we sacrifice some of the breadth of our search tree, the reactive scheme
is able to locate conformations closer to the goal state. This is more pronounced for the
larger system (AdK).

Further analysis of depth shows that the reactive temperature scheme provides the best

improvement, by more than 1Å in the case of AdK. This transition is difficult, and the im-

provement in depth by allowing paths to cross energy barriers suggests that the transition

goes over high-energy regions. In the other two transitions, where the baseline setting of the

method achieves good proximities to the goal structure, the reactive temperature scheme

offers slight improvements in proximity to the goal. Breadth is also higher, which suggests

that more paths are sampled by the method when allowed to jump energy barriers.

5.3.5 Detailed analysis on CaM transition ensemble

On CaM, the method is able to surpass initial lRMSDs >13.44Å. Sub-angstrom lRMSDs

are obtained when the method is setup to approach 1cll from 2f3y; 1−2Å are obtained in

the other direction. Connecting the other 4 directed pairs is more difficult; lowest lRMSDs

across all bias schemes are 3−4Å. The employment of USR-based discretization seems to

slightly improve the lowest lRMSDs in these difficult cases.

Results on CaM are in qualitative agreement with those observed in experiment and

simulation [137, 170, 171]. The transition between 1cll and 2f3y is easier than between the
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other pairs. Though the other pairs have initial lRMSDs that are lower than that between

1cll and 2f3y, the true distance that has to be surpassed is in angular space, which partially

explains why the method performs well. Due to its use of molecular fragment replacement,

the method is particularly suitable to obtain paths of “angular” rearrangements. Some

paths highlighting these rearrangements are shown in Figure 5.8.

We note that the use of fragment configurations is justified when functional transitions

do not involve unfolding. This is true of many proteins, including CaM and AdK. In

particular, wet-lab studies on CaM wild types and mutants exclude the possibility that the

transition involves a significant population of unfolded or disordered states [171]. These

studies also suggest that the transition between 1cfd and 1cll is a complex process with

energy barriers rather than a single global transition between two substates. A pseudo-

free energy landscape produced by our method is shown in Figure 5.9. All paths from 10

runs obtained with COMBINE90−10 and local bias in the expansion procedure on connecting

1cfd to 1cll and vice-versa are combined. Pseudo-free energies are calculated along the ∆R

coordinate (defined as lRMSD(C,C1cfd) - lRMSD(C,C1cll)) through the weighted histogram

analysis method [172]. The pseudo-free energy landscape in Figure 5.9 shows that paths

have to cross regions of high free energy, which qualitatively agrees with wet-lab findings

in [171]. The shown pseudo-free energies need to be taken with caution. Pseudo-free energy

values are affected by potential lack of sampling density and path diversity.

5.3.6 Detailed analysis on AdK transition ensemble

The transition from the closed (corresponding to PDB id 1ake) to the open state (PDB

id 4ake) in AdK has been the subject of many recent studies. We show in Figure 5.10 a

sample path capturing the conformational change from the closed to the open structure.

This path, which reaches the goal structure with an lRMSD of less than 3Å, is the best one

in terms of depth obtained with the reactive temperature scheme, using COMBINE90−10 as

the global bias scheme over the progress coordinate, and using no local bias in the expansion

procedure. This path shows the opening of the two domains in the structural transition.
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Figure 5.8: Three paths for CaM are highlighted. Start and goal structures are in red
and blue, respectively. Selected conformations in the path are drawn in a red-to-blue
interpolated scheme.
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Figure 5.9: Pseudo-free energies along ∆R are shown for sampled paths connecting 1cfd to
1cll and vice versa.

Figure 5.10: A path capturing the transition from 1ake to 4ake is shown here. Start and
goal structures are in red and blue, respectively. Selected conformations in the path are
drawn in a red-to-blue interpolated scheme.
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Studies on modeling the closed to open transition reproduce the presence of many known

intermediate structures [32, 57, 173]. In particular, in [32], all known crystal structures are

analyzed for their presence in the closed to open transition. Here we conduct a similar

analysis after collecting all intermediate structures deposited for AdK in the PDB. Some of

these structures have been captured on systems with slight sequence variations (due to the

experimental technique extracting them from different species). As in [32], we employ the

SwissView homology-modeling server [174] to thread these structures onto the amino-acid

sequence of 1ake so that a direct analysis can be performed in terms of lRMSD.

We measure the extent to which we find each of the 27 crystal structures as intermediate

conformations (in terms of lowest lRMSD) over all paths that reach the goal within 3.5Å. We

limit the analysis to the above setting of employing the COMBINE90− 10 global bias scheme,

using no local bias for the expansion procedure, and incorporating the reactive temperature

scheme. We report the minimum lowest lRMSD over the best path over all runs (best in

terms of depth). Table 5.3 reports two minimum lowest lRMSDs per structure, one for the

1ake to 4ake transition and the other for the 4ake to 1ake transition. The PDB ids of the

crystal structures are shown in column 1. The ordering is indicative of the location of these

structures in the 1ake to 4ake transition (structures listed at the top are closer to 1ake, and

those at the bottom are closer to 4ake). Some of the known intermediate structures are in

dimeric configurations in the crystal (chains A and B are available in the PDB), but we

employ here only chain A for analysis, since the chains are structurally identical. Table 5.3

shows that the paths in the 1ake to 4ake transition capture most of the known intermediate

structures with lowest lRMSDs below 3Å, which suggests that the method captures well

the presence of known intermediates and is able to model the 1ake to 4ake transitions in

AdK. On the reverse transition, the higher lRMSDs indicate that there are possibly high

local maxima that limit the exploration capability and the quality of paths.

This preliminary study on AdK is promising However, AdK presents an extremely chal-

lenging case for our method, not only due to its size but also due to the presence of a

significant energy barrier in the transition [129]. Tables 5.1 and 5.2 show that the lowest
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Table 5.3: The lowest lRMSD to each of the known crystal structures for AdK is calculated

over all paths that reach the goal within 3.5Å. The value shown in column 2 is the minimum
lowest lRMSD obtained over the best run (in terms of depth) of the method using the
COMBINE90−10 global bias scheme over the progress coordinate, no local bias for the expansion
procedure, and the reactive temperature scheme for the 1ake to 4ake transition. Column
3 shows the minimum lowest lRMSD for the 4ake to 1ake transition. Column 1 shows the
PDB id of each of the crystal structures considered. The structures are ordered according
to their locations along the 1ake to 4ake transition.

PDB id lowest lRMSD (Å)
1ake→4ake 4ake→1ake

1e4v 0.32 3.17
1e4y 0.93 3.02
2eck 0.35 3.17
1ank 0.48 3.13
1zin 2.24 2.76
1zio 3.75 3.19
1zip 2.09 2.79
1s3g 1.71 3.31
1p3j 1.48 3.37
2eu8 1.31 3.04
2p3s 1.47 3.30
2oo7 1.26 3.06
2ori 1.30 3.04
2osb 1.31 3.07
2rh5 3.82 2.82
2rgx 2.93 3.34
1aky 1.44 3.12
2aky 1.30 3.30
3aky 1.41 3.14
1dvr 2.91 3.02

PDB id lowest lRMSD (Å)
1ake→4ake 4ake→1ake

1zak 2.81 3.99
2ar7 3.65 3.10
2bbw 3.79 3.38
2c9y 3.17 3.73
1ak2 2.94 4.04
2ak2 2.89 3.97
2ak3 3.78 3.73
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lRMSDs can be above 4Å to the goal structure. Lack of density in sampling makes a pseudo-

free energy analysis premature for AdK. In addition to more sampling, complex proteins,

such as AdK, may present additional challenges in silico possibly due to a more complex

energy surface. The above analysis of the effect of the reactive temperature scheme shows

that proximity to the goal structure can be improved when the temperature is changed by

the method as needed for paths to cross energy barriers. This suggests that the energy

landscape of AdK is complex, with transition states of potentially high energies.

5.4 Conclusions

This chapter has described a novel method to compute the conformational paths that con-

nect pairs of known functional states of a protein system. This method combines an EST-

based approach coupled with molecular fragment replacement. For the protein systems

showcased here, the analysis shows that the method is capable of producing energetically-

credible conformational paths connecting the known states.
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Chapter 6: Modeling Protein Structural Transitions with a

Roadmap-based Robotics-inspired Method: Of Stochastic

Roadmaps and Markov State Models

This work described in this chapter is based on work published in a workshop [175]. Here we

advance our treatment of protein motions by building on roadmap-based methods in robotics

and drawing analogies between conformational roadmaps and markov state models (MSMs).

In the previous chapter we introduced a tree-based robotics-inspired method devised to

quickly determine a conformational path between two structural states. We recall that this

was accomplished by strongly biasing the growth of the tree in conformational space. This

feature, while beneficial in expediently providing a conformational path, makes it hard to

obtain an ensemble of paths from one execution of the method. Due to the strong bias,

even multiple executions of a tree-based method are expected to result in a path ensemble

with high inter-path correlations. For these reasons, we decide to investigate roadmap-

based methods. These methods, which we describe in detail below, essentially capture

the connectivity of the conformational space through a graph or roadmap. The roadmap

can then be queried for one or more paths connecting two given structural states. In this

chapter, we describe a preliminary adaptation of such methods to handle various known

algorithmic issues that are enhanced in severity in the protein modeling domain. What we

actually build is a stochastic roadmap, with probabilistic edges. Moreover, we recognize

and exploit analogies between the stochastic roadmap and MSMs to extend the analysis

from path querying to obtaining interesting statistics on structural transitions. The latter

allows us to compare variants of a protein molecule and, specifically, to explain the impact

of mutations on known oncogenic proteins.
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6.1 Background and Related Work on Roadmap-based

Methods

6.1.1 Probabilistic Roadmap

The Probabilistic Roadmap (PRM) method was introduced in [176] for the robot motion

planning problem. The method consists of two stages, the learning phase and the query

phase. The first phase builds a representation of the obstacle-free robot configuration space

in a graph/roadmap, whereas the second phase queries the roadmap for paths. The query

phase typically relies on known graph search algorithms to produce a lowest-cost path. As

we detail below, in a roadmap where edges are probabilistic, the query can be used to sample

paths, as well, essentially replacing the need to launch MD or MC trajectories. The main

challenges with PRM lie in the learning phase. In the original PRM, each vertex, Vi in the

roadmap represents a free configuration of the robot. Each edge, Ei, encodes a collision-

free path between two vertices. The roadmap is built in two steps, a construction step

and an expansion step. The construction step starts by randomly generating configurations

in the free configuration space. Each configuration/vertex is then connected to a pre-

determined number of nearest neighbor configurations/vertices in the roadmap. Edges that

contain collisions with obstacles are then removed. The result of this process is rarely a

connected graph that can be used to answer queries. For this reason, the expansion step

is pursued to further populate the roadmap with configurations in regions deemed critical

to bridge connected components. We note that an effective sampling procedure is critical

to the success of this method but very challenging. Biased sampling techniques have been

proposed over the years, particularly to focus sampling on difficult narrow regions in the

free robot configuration space. However, much work remains to be done when transferring

PRM to the protein conformational space. It is highly improbably that a conformation

sampled uniformly at random will be energetically feasible. Designing an effective move set

is thus key. Moreover, the protein conformational space is vast. It is important to focus

sampling in the vicinity of a particular start and goal structure pair while minimizing bias.
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None of these issues are currently well explored, and they are the motivation for the work

proposed in the remainder of this thesis.

6.1.2 PRM Application in Protein Modeling

PRM has been adapted and applied to many protein modeling problems. Empirical energy

functions replace collision checking during the learning phase. Nearest neighbor calculations

typically employ lRMSD or L1 norm over backbone dihedral angles. Early work applied

PRM to modeling the docking of small, flexible ligands onto a rigid protein molecule [177].

The receptor protein was held stationary, and 6 DOFs were provided to translate and

rotate the ligand relative to the protein. A few additional dihedral angles were modeled in

the ligand to allow it to flex and improve its energetic interaction with the protein. The

sampling of configurations was biased towards lower-energy configurations as the number

of samples increased.

Work in [178,179] applied PRM to analyzing protein folding. Given the native structure

of a protein, this application of PRM discovered paths from random unfolded conformations

to the goal native structure of the protein. A novel technique generated configurations. A

set of Gaussian distributions were employed to perturb native values for the dihedral angles,

using increasing standard deviations in order to allow moving further away from the native

structure towards unfolded conformations. Sampling was terminated when conformations

were sampled that contained zero native contacts.

6.1.3 Stochastic Roadmap Simulation (SRS)

Work in [180] extended the treatment and proved that a carefully-constructed (stochastic)

conformational roadmap converges in the limit to the same distribution as MC samples.

The difference with prior adaptations of PRM is that edges in the roadmap are now proba-

bilistic, encoding transition probabilities between two vertices in the roadmap. Transition

probabilities are calculated as shown in Equation 6.1.
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Pij =


(1/|Ni|) exp(−∆Eij/kbT ) if ∆Eij > 0

(1/|Ni|) otherwise;

(6.1)

Pii = 1−
∑
i 6=j

Pij (6.2)

In this equation, |Ni| measures the number of neighbors (or out-degree) of the vertex

vi, kB represents the Boltzmann constant, and T is the temperature. The ∆Eij term

refers to the difference in energy between vertices vi and vj , ∆Eij = E(Vj) - E(Vi). A

self transition probability normalizes the sum of all the probabilities to one. The stochastic

roadmap in [180] calculated folding rates by solving a set of linear equations derived from the

transition probabilities, effectively avoiding having to collect statistics on a large numbers

of random walks, as would be done if employing MD or MC to simulate folding events.

6.2 Methods

We pursue here an adaptation of the stochastic roadmap to model structural transitions in

medium-size proteins. Our method consists of three stages. First, we generate samples or

conformations utilizing an evolutionary algorithm developed in the Shehu Lab [181]. We

then organize these conformations into structural states and a roadmap is constructed to

encode the connectivity among these states utilizing a “lazy” local planner. Constructed

over states, the roadmap is a Markov State Model (MSM), allowing rigorous methods to be

used to extract information regarding structural transition rates in addition to answering

path queries. This method balances the computational effort (employing a simple local

planner) and the information gain provided by the analysis of the resulting MSM.
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6.2.1 Sample Generation

As noted, a key challenge in roadmap-based methods is sampling. In this work, we uti-

lize an evolutionary algorithm (EA) developed in the Shehu lab [181]. EAs are particu-

larly useful for hard stochastic optimization problems, and we utilize such an EA here to

sample low-energy conformations of medium-size proteins. However, our domain of appli-

cability is rather limited in this chapter. We focus on proteins for which there are many

experimentally-determined structures in the PDB, and use these structures to define the

search space and the move set, thus circumventing the issues that hamper applicability of

PRM for modeling structural transitions. A detailed description of the EA sampling algo-

rithm is beyond the scope of this thesis. However, we summarize here its main ingredients

to understand the advantages offered by employing an EA in the learning phase.

The EA utilizes the CA trace of each experimental structures to define a low-dimensional

embedding via principal component analysis (PCA). The top m principal components (PCs)

that capture no less than 90% of the total variance are then utilized to define a lower-

dimensional space for exploration. The EA’s initial population consists of p experimental

structures. Reproductive operators are utilized to add new children to the population.

These operators perturb existing samples in the space of PCs and result in a new structure

consisting of an m dimensional vector. The fitness of each child is determined using a multi-

scaling procedure that transfers this m dimensional vector into an all-atom conformation.

For each child, the CA coordinates are recovered using the m PCs, the full backbone is then

reconstructed with backbone reconstruction techniques, and finally the side-chain atoms

are added and the entire all-structure is optimized via Rosetta’s relax protocol. The fitness

of each conformation is its all-atom energy (determined using Rosetta’s score12 all-atom

energy function). The ensemble Ω consists of all the structures generated during the course

of the EA and are fed to the next phase of our method.
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6.2.2 Structural State Identification

Each vertex in our roadmap represents a structural state rather than a single conformation.

The ensemble Ω may contain geometrically-similar conformations as a byproduct of the EA.

We proceed to group the ensemble Ω into a collection of states, which will allow us to treat

the roadmap as an MSM. Our definition of a state is that of a cluster of geometrically-similar

conformations. We employ the leader clustering algorithm [182] to compute clusters/states.

The leader clustering algorithm has the benefit of not having to specify the number

of clusters/states a priori. Its results are dependent on the order in which the data is

processed. Here we use a sorted order, ordering first all the conformations in the ensemble

by their Rosetta score12 energies. This ordering allows the first conformation mapped to a

new cluster to be the lowest-energy one over all others that will be mapped to that same

cluster. The algorithm proceeds in the sorted order, mapping a conformation to one of the

existing clusters if its distance to the cluster representative is below a specified cluster radius.

Otherwise, a new cluster is created with the unmapped conformation as its representative.

The algorithm proceeds until all conformations have been processed, resulting in a list of

clusters/states. The decision on what distance function to use is important. Here we employ

lRMSD over only CA atoms; that is, we use CA lRMSD. We experiment with different values

of cluster radii, as presented in the Results section.

6.2.3 Roadmap Construction

Our roadmap is a directed graph G = (V,E). Cluster representatives identified above

are used to populate the vertex set V . Edges are added using the following process. For

each v ∈ V , we identify the k nearest-neighbors (knn) that are within an lRMSD distance

constraint εnn of v. For each identified neighbor u that passes both of these conditions,

we add an edge in both directions, (u, v) and (v, u), to E(G). At the completion of this

process, we improve the connectivity of the graph by calculating its connected components

(CCs) and add additional edges to the graph (subject to εnn) to merge CCs.

Edges are assigned weights following the original SRS formulas shown in Eq. 6.1. Energy
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values utilized in these equations are taken from the Rosetta all-atom score12 function

(which was calculated as part of the sampling procedure). Each cluster/state is assigned

the energy value of its conformation representative. We substitute the scaling parameter

α in place of the KB term in the original equation. The reason for this is as follows. The

Rosetta energy function combines both physics- and knowledge-based terms. We calibrate

the value of α by utilizing Rosetta’s relax protocol, which use a stochastic method to

minimize a protein structure. We perform relaxations over the set of crystal structures

provided as start and goal and calculate the variance between each minimization. In the

case of the Ras protein studied here, we observe a variance of 6−7 energy units. Utilizing a

statistical mechanics treatment, structures within the same energy basin should exchange

into each other with high probability. Let us refer to the latter as a target probability tprob,

which can be a user parameter. Solving the equation e−6/α = tprob for α gives us the value

to use in lieu of KB in equation 6.1. We note that the actual value for α is dependent on

the energy function employed and requires that a target probability be specified, but the

process is general.

Each edge in this constructed stochastic roadmap G now encodes a potential transition

between two structural states. In this work, we employ a “lazy” strategy that avoids the

computation of these transitions and the steering issue in PRM, thus focusing on the global

connectivity. This has some similarities to the Lazy PRM method [183]. We note, however,

that foregoing a local planner is made possible here because of the stringent criterion of

structural proximity when considering connecting two vertices via an edge. This in itself

exploits the dense structural sampling afforded by the EA employed in the sampling stage.

6.2.4 Roadmap and Markov Analysis

By construction, our roadmap G consists of a set of strongly connected components. As

demonstrated in [180], a discretized version of a Monte Carlo (MC) trajectory can be

achieved by performing a random walk inG. By performing a large number of random walks,

we can derive statistics related to transitions rates between states and study the differences
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in realized pathways between states. Given the high variance that would result from most

encodings of G, this would require a very large number of random walks to be performed.

Treating the constructed stochastic roadmap as a graph allows using path search algorithms

to obtain paths connecting structural states of interest. Treating the roadmap as a Markov

state model allows using transition state theory to obtain measurements approximating

kinetic quantities of interest.

Querying the Roadmap

As demonstrated in the original PRM method in [157], the roadmap can be queried given two

states of interest. Dijkstra’s algorithm can be used to obtain a shortest path. The roadmap’s

edges are weighted by probabilities of transition, so we take the negative logarithms of these

probabilities and use these values in calculating the lowest-cost path. In addition to such a

path, more information can be obtained by analyzing not just one path but several. Yen’s

K-shortest paths algorithm [184] can be employed for this purpose.

Treating the Roadmap as a Markov State Model

The roadmap G can be treated as an MSM encoding the stochastic behavior of the system

being studied. In this work, we use the roadmap to model the structural transitions between

functionally-relevant states of a protein and understand how these transitions are affected

by sequence mutations. For this purpose, the roadmap G is analyzed to determine the

expected number of transitions employed by a protein system to switch from one structural

state to another.

Recall that structural states are vertices in the vertex set V in our roadmap G. For each

vertex vi ∈ V , one can utilize first-step analysis theory to measure the expected number of

transitions ti from vertex vi to some specific vertex of interest. As demonstrated in[180],

random walks need not be performed to obtain such a measure, as a closed-form solution

can be computed via a linear solver. The formulation of ti is recursive. Let us generalize

and state that the goal is to measure the expected number of transitions from some vertex
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vi to a set of vertices vj ∈ A, where A is a subset of V that does not include vi. Then,

provided that vi and A are in the same SCC:

ti = 1 +
∑

vj∈A Pij · 0 +
∑

vj /∈A Pij · tj ∀ vi /∈ A

This results in a system of equations that is the same order as the number of vertices

in the SCC. Since clustering of structures into structural states reduces the number of

vertices in the roadmap, an exact solver (as opposed to a slow-converging iterative solver)

can be afforded, and that is what we employ in this work to solve the linear system above

algebraically and obtain ti for all the vertices simultaneously.

In this work, we are specifically interested in measuring the expected number of transi-

tions from an ON to an OFF state and vice versa, with these two states denoting specific

structural states critical to the ability of the Ras oncogene to function normally. By repeat-

ing the sampling, clustering, roadmap construction, and its analysis on different sequence

variants of RAS, we then are able to compare the expected number of transitions between

these two states of interest in the wildtype versus disease-participating variants of Ras.

6.3 Application on the RAS Oncogene

6.3.1 Experimental Setup

Here we present results on the application of the proposed method on the wildtype and Q61L

variant of the Ras oncogene. Ras is a well-studied protein that regulates cell proliferation

and whose variants which deregulate activity are involved in over 25% of human cancers

[185]. The native activity of Ras is to switch between an ON/reactant (GTP-bound) and

an OFF/product (GDP-bound) state. These two states have been characterized in the wet

laboratory and can be found under structures with PDB ids 1qra and 4q21, respectively. We

show these structures side by side in Figure 6.1. The CA lRMSD between these structures

is 1.5Å, but changes are largely localized on two loop regions, switch I and switch II (which
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our previous analysis of PCA for Ras is able to capture [186]). How variations in the Ras

sequence affect its capacity for switching between states is the focus of much research and

is the reason we apply our SRS-based algorithm.

(a) (b)

Figure 6.1: Left: A representative of the ON (GTP-bound) state of Ras (PDB id: 1qra).
Right: A representative of the OFF (GDP-bound) state (PDB id: 4q21). The reactant
(GTP) and product (GDP) are shown, as well. The two loop regions that undergo a
structural change in the ON to OFF transition and (reverse) are shown color-coded in red
(left) and blue (right).

The reduced space over which the sampling stage operates is obtained via PCA on 46

(wildtype and variant) structures extracted for Ras from the PDB (details on the data col-

lection step can be found in [186]). Our method is run twice, once on the wildtype sequence

and once on the disease-participating variant (Q61L). It is important to note that, while the

PCs are the same in each setting, the EA algorithm obtains different structural ensembles,

as the initial structures are threaded onto the sequence of study, and thus mapped by the

multiscaling procedure to minima of different sequence-dependent energy surfaces. Thus,

the results of the our method are dependent on the sequence used and can be used to draw

comparisons between the wildtype and variants to determine how sequence mutations affect

transitioning between the ON and OFF states.
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The structure in the PDB entry 1qra is considered a representative of the ON state of

Ras, whereas 4q21 is a representative of the OFF state. These PDB-obtained structures

are each minimized 500 times with the Rosetta relax protocol (the protocol is stochastic),

and the resulting structures are added to the Ω ensemble. After the clustering, the cluster

containing the most minimized structures of 1qra is labeled the ON state, whereas the

cluster containing the most minimized structures of 4q21 is labeled the OFF state.

6.3.2 Roadmap Analysis on Ras Wildtype and Q61L Variant

We apply the analysis techniques discussed in section 6.2.4 to the roadmaps created for the

wildtype and Q61L sequences. The lowest-cost paths between the ON and OFF states for

each sequence are computed and analyzed first. Column 3 in Table 6.1 shows the minimum

cost of each of these paths. The cost of a path is computed as
∑

e=(u,v)−log(exp(−E(v)−E(u)
α ),

where u and v are the two states connected by an edge, and we take the sum over all edges

in the path, and α is the scaling term discussed in section 6.2.3.

Comparison of these values show that the ON → OFF structural transition is more

costly than the OFF→ ON one for both the wildtype and Q61L. However, both transitions

have higher cost in the Q61L variant, indicating a significant change of the energy landscape

upon this mutation.

Table 6.1: The lowest-cost paths and the expected number of transitions are shown for
the structural transitions between the ON and OFF states in both the wildtype and Q61L
variants.

Sequence Transition Min Cost Exp. Nr. Trans

WT
OFF → ON 12.9 3.4× 108

ON → OFF 16.5 3.9× 1010

Q61L
OFF → ON 20.9 1.9× 1012

ON → OFF 24.3 3.8× 1014
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The lowest-cost paths for each of these transitions in the wildtype are shown in Fig-

ure 6.2(a). For ease of visualization, the paths are mapped onto the top two PCs. The color

scheme follows the energy variance. Figure 6.2(a) shows that both structural transitions

go over an energy barrier, as also reflected in the costs shown for the wildtype sequence in

Table 6.1. Moreover, the ON → OFF transition spends more time getting out of a deeper

and wider ON basin onto the OFF basin.
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Figure 6.2: The left panel shows the minimum cost paths (in terms of energy) for the
wildtype sequence between the OFF and ON states. This plot is rendered in the PCA
space created by our EA algorithm for sampling. The right panel shows the energetic
profile of the lowest-cost paths when transitions from the ON state to the OFF state for
the wild type and Q61L mutant sequences.

The detailed energetic profiles of the lowest-cost paths for the ON → OFF transition in

the wildtype and Q61L variant are shown in Figure 6.2(b). The Rosetta all-atom energy

is shown for each vertex in these paths, but the path lengths are normalized to allow a

direct comparison between the two sequences. Figure 6.2(b) clearly shows that the Q61L

mutation magnifies the energy barrier that Ras has to cross in the ON → OFF structural

transition. These results are in qualitative agreement with other studies [187] and allow

concluding that the transition from the ON to the OFF state is made substantially more

102



difficult upon the Q61L mutation in Ras. It is important to note that the mutation does

not affect the stability of the ON and OFF structural states, since the potential energies of

the corresponding states remain the same between the wildtype and variant.

Finally, the first-step analysis is applied to measure and compare the expected number of

transitions in each setting. These results are related in column 4 in Table 6.1. Comparison

of these results for the wildtype sequence shows that the expected number of transitions to

allow switching from the ON to the OFF state is two orders of magnitude higher than from

the OFF to the ON state. This also holds for the Q61L variant, though switching from ON

to OFF and vice versa becomes more difficult in the variant than in the wildtype.

Taken altogether, these results suggest that a careful realization of the SRS framework

may allow a more detailed understanding of the role of sequence mutations in misfunction.

In our particular application to the wildtype and Q61L variant of Ras, the results support

the hypothesis that the Q61L mutation does not remove the ON and OFF basins from the

energy landscape but instead slows down the switching of Ras between these states.

6.4 Conclusions

This chapter has proposed an efficient algorithmic realization of the SRS framework to model

structural transitions in dynamic proteins that are known to be conformational switchers

and are involved in proteinopathies. Application on sequence variants of Ras shows promis-

ing results. The realization we pursue here benefits from dense sampling of the search space

of interest, which is generally hard to obtain. In the next chapter, we investigate this is-

sue further by focusing on sampling techniques that are integrated with the connectivity

stage. Moreover, we investigate various issues regarding the balance between computa-

tional efficiency and multitude of sampled paths, particularly when actual local planners

are integrated to realize edges rather than estimate their feasibility. It is worth emphasizing

that the work in this chapter has provided insight into how important information can be

obtained by exploiting analogies between the notion of a roadmap and that of an MSM.

One can anticipate that further MSM-based analysis and calculations may be pursued to

103



enrich the predictive power and detail obtained by such methods for modeling structural

transitions in protein systems.
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Chapter 7: SPIRAL – A Roadmap Based Method for

Protein Motion Prediction

In chapter 6 we identified two main issues with adapting a roadmap-based approach to

the problem of modeling structural transitions in protein molecules. In particular, we

identified sampling as a critical component to obtain a dense representation of regions of

the conformational space likely to contribute to successful queries, and steering as critical

to compute motions between two nearest-neighbor conformations, to then obtain a detailed

motion path.

To address sampling in chapter 6, we made use of a stochastic optimization procedure

that was highly specific to the protein molecule under investigation. The procedure iden-

tified the relevant search space and its dimensionality a priori, based on dimensionality

reduction of available stable and semi-stable structures of wildtype and variants of the pro-

tein. An evolutionary algorithm was then devised to exploit this search space and populate

it with local minima conformations. This procedure, while highly effective, is not general

and cannot be applied to any protein molecule. For many proteins, we do not have a rich

collection of diverse experimentally-obtained structures in order to define the search space

of interest. For others, even if such structures exist in structure databases, there is no guar-

antee that linear dimensionality reduction, which allows directly obtaining samples in the

lower-dimensionality embedding, will be effective. In fact, predominantly, conformational

spaces of complex dynamic proteins are shown to be nonlinear [188,189].

In this chapter, we pursue a sampling procedure that is generally applicable to any

protein molecule. It should be noted that this procedure is not expected to provide better

sampling than highly specific ones, tailored to a protein under investigation, as is often the

case with tradeoffs between general and highly specific algorithms. However, our goal is to
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have a general procedure that applies to proteins of different sizes and is yet sensitive to

the distance that needs to be traveled over paths connecting a start to a goal structure.

We investigate two main ideas in this direction, fully realizing that dense sampling

in regions of interest is an outstanding challenge for protein conformational spaces. The

first idea is to make use of a set of (perturbation) operators that employ moves of differ-

ent granularities. In previous work, we have predominantly employed molecular fragment

replacements as moves. With such moves, we can control fragment length as a way to

alternate between large and small jumps in conformational space. However, such moves do

not provide as much granularity as single dihedral angle replacements. The latter provides

more granularity but cannot be used to rapidly generate diverse conformations covering

the conformational space. For this reason, we introduce a set of perturbation operators

that use moves of different granularities. We introduce a probabilistic scheme that at each

iteration selects an operator to be employed for populating the conformational space with

low-energy conformations. We note that the idea of employing different types of operators

bears some similarities to related efforts in robot motion planning, where different random

sampling strategies are considered and switched over through a probabilistic scheme [190].

The second idea we investigate is to focus the sampling to regions of conformational space

nearby the start and goal structures provided to the query. We do so by building over

the tree-based work we presented in chapter 5. We essentially provide boundaries for the

sampling procedure and further guide sampling to populate levels of a progress coordinate

in an effort to build a discrete representation of regions likely to contribute to a successful

query.

In chapter 6 we circumvented the issue of steering by employing probabilistic edges to

connect two nearby conformations. The intuition behind this strategy was that no local

planner was necessary to realize an edge; if two conformations were nearby and their energies

passed the Metropolis criterion, we essentially could assume that the edge could be realized

through low-level motions. Generally, one cannot make this assumption, particularly when

sampling is not guaranteed to be uniformly dense. This is likely to be the case even when
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employing a powerful sampling strategy and applying to it ever-increasing protein chains.

In the absence of domain-specific/protein-specific components, dense sampling cannot be

expected on the conformational space of a protein of 300 amino acids or more, even when

providing boundaries; the latter can span anywhere from 3Å to > 13Å distance between

start and goal structures. The result of non-uniformly dense sampling is that edges spanning

larger distances may need to be allowed in order to have a connected graph or a connected

component containing the query structures.

In this chapter we have to address the steering issue by pursuing complex local planners

that essentially solve the same motion computation problem but for conformations that are

closer to each-other than the query structures. The task of these planners is to actually

realize edges by providing a series or trajectory of conformations with enough resolution

(sufficiently small distance between adjacent conformations in the trajectory). We note that,

typically, in baseline implementations of PRM and even in existing adaptations for protein

folding/unfolding, ligand binding, and motion computation, local planners are straight-line

planners. These planners conduct straight-line interpolations between two conformations

over the DOFs, typically backbone dihedral angles, to obtain intermediate conformations.

The resulting conformations are evaluated in terms of energy. In some implementations, if

any intermediate conformation has energy above some predetermined, arbitrary threshold,

the conformation and the entire edge is rejected and considered infeasible. In other imple-

mentations, the rejection is probabilistic, employing the Metropolis criterion to determine

whether the protein can transition between two consecutive conformations in the straight

line. Such planners are rather simplistic. They have a high probability of producing confor-

mations that are infeasible, particularly when an edge is placed between conformations that

are not nearby in conformational space. These planners have been demonstrated be defi-

cient even for robot motion planning problems in the manipulation domain, where sampling

is also difficult and edges may span different distances in the search space [191].

Therefore, the direction pursued in this chapter is to employ complex, probabilistic path

planners, that are able to address essentially simplified versions of the motion computation
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problem. However, such planners may be computationally expensive, particularly when

asked to realize a difficult edge. Information on difficulty is not known a priori, and proba-

bilistic path planners are not complete. They are probabilistically complete, at best; that is,

if a solution does not exist, they can run indefinitely. In the limit, as computation time goes

to infinity, if a solution exists, they will be able to find it, but this may not be in practical

computational time. For this reason, the approach we pursue here is to first have a running

estimate of an edge’s difficultly based on the time a planner has spent on realizing it and to

place an upper bound on the time a planner has to realize an edge. These two ideas essen-

tially make the case for having a two-level approach to our motion computation problem,

a PRM over probabilistic path planners. The latter can be tree-based, roadmap-based, or

other.

In this chapter we pursue such a two-level approach. This approach has been originally

introduced in [191] as the fuzzy PRM method. In the original introduction for robot ma-

nipulation planning, fuzzy PRM was conceptualized as a PRM over PRMs. That is, the

global planner built a roadmap of (lazy) pseudo-edges, and the local planners were assigned

time to realize selected pseudo-edges. To make good use of resources, at every iteration,

a promising path would be identified, with remaining unrealized edges, and local planners

would be assigned to work on such edges until a predetermined time expired. At the end,

difficulty estimates of remaining unrealized edges were updated in order to then direct the

local planners to other possibly more promising paths in the second iteration.

In this chapter we build over the fuzzy PRM approach, but we introduce specific al-

gorithmic components to address sampling for protein conformational spaces and diverse

probabilistic planners to address steering and realization of edges in possibly very sparsely-

sampled regions of the conformational space. We extend the treatment to obtain more than

one path (the original fuzzy PRM method in [191] stopped as soon as a path was real-

ized), so that we can sample diverse paths according to essentially an implicit prioritization

scheme. We further adapt the method to make it applicable to rather high-dimensional

problems that we are forced to address for proteins; for instance, the sampling procedure
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is not detached as in the original fuzzy PRM and PRM formulations. We augment the

roadmap with more conformations on regions determined difficult by local planners during

the connectivity phase. This is critical to address the non-uniformity of sampling for the

complex conformational spaces we address here. Finally, we extend the treatment to queries

beyond a specific start-goal pair. Instead, to allow application on proteins with possibly

more than two known functional structures, we introduce the notion of ` landmarks to keep

track of functional structures of a protein. Sampling is guided by the presence of such

structures, and paths are sampled in order of difficulty to solve any of the `! queries. The

motivation for this more general setup is to allow obtaining maximal information from one

roadmap.

Specifically, the more general problem we address in this chapter is the following: `

landmark structures are provided as input. The sought output is an ensemble of valid

paths connecting any pair of landmarks, sampled within a user-determined computational

time limit. Path validity, as in the binary setup in the two previous chapters, considers

the energetic credibility of the path. In addition, in this chapter, validity also considers

resolution constraints (distance between adjacent conformations in the path).

Algorithm 7.1 The SPIRAL framework for model structural transitions in proteins

Input: P1, P2, ..., P` . P is a set of functional states

Output: Ω =
{

Π
(1)
ij ,Π

(2)
ij , ...,Π

(n)
ij

}
. ensemble of paths

∀p ∈ Ω

- Π
(p)
ij = Cij,0, ..., Cij,t, ..., Cij,τ

- 0 ≤ t ≤ τ
- Ci ∈ P , Cj ∈ P , i 6= j

- Ci = Cij,0; Cj = Cij,τ

– V alid(Π
(p)
ij ) = True

From now on we refer to our framework as SPIRAL for the Stochastic Protein motIon
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Roadmap ALgorithm. It is worth noting that this is a framework, and different algorithmic

components can be pursued by later researchers to investigate different algorithmic real-

izations. What we describe and analyze in this chapter is a first attempt to essentially

provide a roadmap for researchers interested in pursuing protein motion computation with

a robotics-inspired path sampling approach.

7.1 Methods

We first provide an overview of the main algorithmic components of SPIRAL and then

describe each one of them in detail.

7.1.1 Main Components of SPIRAL

SPIRAL consists of 3 stages, sampling, connectivity building, and analysis. The sampling

stage generates an ensemble of samples, Ω, that provide a discrete representation of the

conformational space. The connectivity building stage builds a graph or roadmap G =

(V,E) over Ω. The vertex set is populated with conformations in Ω, and pseudo-edges

joining neighboring conformations are then added to the edge set using techniques detailed

below.

As described above, SPIRAL implements a two-level approach. The pseudo-edges added

to the roadmap are not checked for energetic feasibility. In effect, this is a lazy scheme,

introduced originally in Lazy PRM [183] for robot motion planning and then extended in

fuzzy PRM [191] to control the computational cost of the connectivity building stage by

realizing selected pseudo-edges. When probabilistic local planners are employed, they can

consume computational resources attempting to realize a pseudo-edge that may not be

possible. For this reason, only pseudo-edges are added in the first level. Pseudo-edges are

assigned a weight to reflect their estimated difficulty of being realizable. At initialization, all

pseudo-edges are determined equally difficult. A query is then performed, and the lowest-

cost path, using the assigned pseudo-edge weights, is reported and pushed for checking

to the second level. This level assigns all yet-to-be-realized pseudo-edges in the path to
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probabilistic local planners. Each planner is assigned a computational budget, time T , to

realize a pseudo-edge. If a planner fails to realize an edge within the allocated budget, the

probability that the pseudo-edge is realizable (and hence, the weight that the first level sees

for that pseudo-edge increases) is downgraded according to a heuristic function that takes

into account the cumulative time spent on that pseudo-edge. This information is passed to

the first level, which starts the process anew, querying the roadmap for the next lowest-cost

path.

In this iterative interplay between the first and second levels, over time, the pseudo-

edges that are the most difficult to realize will be assigned high weights and will thus be

unlikely to participate in the lowest-cost path pushed by the first level to the planners in the

second level. This dynamic interplay apportions the computational resources in a manner

that promotes rapid discovery of a path connecting a start to a goal vertex. In [191], as

soon as all pseudo-edges in a path are realized, the algorithm terminates. In our adaptation

the goal is to sample multiple paths, thus the process continues until a requested number of

paths are obtained or a total computational budget has expired. We also make use of the K

shortest-path algorithm [184] to report K shortest paths connecting ` landmark structures.

In the final stage, once SPIRAL has obtained ≤ k lowest-cost paths, the focus shifts

to comparing paths based not on pseudo-edge weight estimates but instead on energetic

feasibility. Pseudo-edges now are replaced with the actual ones constructed by the local

planners. New conformations sampled by the local planners to realize pseudo-edges are

added to the vertex set of the roadmap. Edge weights are now based on the Metropolis

criterion, and the resulting graph is queried for lowest-cost paths. Various types of analysis

can then be conducted over these paths, whether in terms of energetic profile or proximity

to landmark structures.

We now proceed to relate details under each of the three stages of SPIRAL.
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7.2 Sampling

The objective of the sampling stage is to obtain an ensemble of conformations Ω that will

constitute the vertex set of the roadmap G. This stage consists of a cycle of selection

and perturbation operators. A selection operator selects a conformation within the current

sampled ensemble. Once selected, a perturbation operator is then sampled from a set

of available ones and applied to the selected conformation to generate a new one. The

generated conformation is checked for energetic feasibility prior to addition to the ensemble

Ω. The process repeats until |Ω| reaches a pre-determined value. The pseudo-code for the

sampling stage is shown in Algorithm 7.2.

7.2.1 Selection Operator

In this setting, we build over the selection procedure originally introduced in FeLTr and mod-

ified in our tree-based motion computation algorithm in chapter 5. A progress coordinate,

∆R, can be defined for each conformation Ci and a specific start-goal structure pair (Cs, Cg)

in the set of ` landmark structures P , as in: ∆R = lRMSD(Cs, Ci) − lRMSD(Cg,Ci).

The ∆R coordinate is used to guide sampling towards under-sampled regions in the

conformational space. For each pair of landmark structures (Cs, Cg), a 1d grid is defined

over the range [−lRMSD(Cs, Cg)− 2, lRMSD(Cs, Cg) + 2]. Each cell in the grid is 1Å wide.

All conformations in Ω are projected onto this grid. To bias the selection of conformations

from under-explored regions of the conformational space, a weight wc is associated with each

cell in a given grid, as in: wc = 1
(1+nsels)∗nconfs , where nsels is the number of times the cell

has been selected in the sampling procedure, and nconfs is the number of conformations

projected onto that cell. In this way, each conformation in the growing ensemble Ω has
(
`
2

)
projections, one in each of the

(
`
2

)
grids that keep track of how the conformational space is

covered with respect to the progress coordinate.

SPIRAL’s selection operator, shown on lines 18-19 in Algorithm 7.2, proceeds as follows.

First a pair of landmark structures is selected uniformly at random among the
(
`
2

)
pairs. The
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Algorithm 7.2 The algorithm for the sampling phase of SPIRAL.

1: procedure Perturb(C,PerturbOps,MaxAttempts)
Input:

C . conformation to perturb
PerturbOps . Set of perturbation operators and constraints
MaxAttempts . Maximum perturbation attempts

Output: CNew . perturbed conformation
2: T = RetrieveTemperature(C)
3: CNew ← NULL
4: while attempts < maxAttempts do
5: POperator = SelectPerturbOps(PerturbOps)
6: CNew = POperator.Apply(C)
7: if POperator.Validate(CNew,T,Ω) then
8: break;
9: end if ;

10: end while
11: return(CNew);
12: end procedure

Input:
P1, P2, ..., P` . Set of functional states

Output:
Ω . ensemble of states

13: for ∀p ∈ P do
14: Ω = Ω ∪ p
15: UpdateProjection(p)
16: end for
17: while |Ω| < SamplesRequested do
18: LP = SelectLandmarkPair() . Select pair of structures
19: C = SelectExistingSample(LP) . Select sampled based on 1d grid for LP
20: CNew = Perturb(C) . Create new sample
21: if CNew is valid then
22: Ω = Ω ∪ CNew . Append to ensemble
23: UpdateProjection(CNew)
24: end if
25: UpdateReactiveTemp(C,CNew) . Update statistics and temperature
26: end while
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selection of the pair then determines the 1d grid to be employed. A cell is sampled from the

selected grid using a probability distribution function defined over the weights associated

with grid cells as above. Once a cell within the 1d grid is selected, a conformation from

that cell is then selected uniformly at random.

7.2.2 Perturbation Operators

SPIRAL employs a set of perturbation operators in order to make moves of different gran-

ularities in conformational space in the sampling stage. Each perturbation operator has to

satisfy a set of constraints. One of the constraints enforces energetic feasibility of generated

conformations. The energy value of a conformation c
′

generated from a selected conforma-

tion C, measured through the Rosetta energy function, is compared to the energy value of

C through the Metropolis criterion. If this fails, the conformation C
′

is not added to the en-

semble. If it passes, C
′

is checked for satisfaction of distance-based constraints. Additional

constraints are introduced on the minimum lRMSD εmin of C
′

to any other conformation

in the ensemble Ω and the maximum lRMSD δ of C
′

to the ` landmark structures. The

first constraint prevents redundant conformations from being added to Ω. The second con-

straint prevents sampling from veering off in regions of the conformational space deemed

too far from the landmark structures to be useful for participating in paths connecting these

structures. While εmin is a parameter taking values anywhere from 0.5−2Å and tuned on

the specific system under investigation, a reasonable value for δ is 150% of the maximum

lRMSD between any pairs of landmark structures.

The idea behind making various perturbation operators available to SPIRAL is to allow

SPIRAL to select the perturbation operator deemed most effective based on features of the

conformational space and the specific problem. For instance, when the goal is to connect

landmark structures that reside far way from one another in conformational space, a per-

turbation operator capable of making large jumps in conformational space is first desirable.

Afterwards, to be able to make connections between such conformations, other perturbation

operators capable of making smaller jumps may be more effective. We consider here three
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perturbation operators, detailed below. An optimal weighting scheme that is responsive to

emerging features of the search space is difficult to formulate and beyond the scope of the

work here. However, we have been able to empirically determine a weighting scheme that

is effective on most protein systems with landmark structures of various pairwise lRMSD

values. We now proceed to describe each of the perturbation operators in detail.

Molecular Fragment Replacement Operator

The molecular fragment replacement technique has been described in section 4.1.1. Here,

we employ two different fragment lengths, 9 and 3. Note that SPIRAL allows for any

fragment length to be used, but we determine that these two fragment lengths can be used

to balance between large jumps (fragment length 9) and small jumps (fragment length 3).

Single Dihedral Replacement Opreator

This perturbation operator modifies a single backbone dihedral angle at a time in order to

allow making very small moves in conformational space. Given a selected backbone dihedral

angle in a selected conformation, a new value from it is obtained using a normal distribution

N (µ, σ). Normally, the angle to perturb is selected uniformly at random. This operator

offers the option of biasing the selection of dihedral angles to promote selection of those

that differ most between a selected conformation and a landmark structure. Essentially,

each angle is weighted by its absolute difference between a selected conformation, C, and

the selected landmark structure (line 18 of Algorithm 7.2).

Conjugate Peak Refinement Operator

The final perturbation operator SPIRAL employs is an adaptation of the conjugate peak

refinement (CPR) method originally introduced in [192]. Briefly, CPR produces a series

of intermediate conformations to approximate a potential reaction path between two given

(start and goal) conformations p and r. The initial guess of the path is a straight line

interpolation between p and r. The highest-energy conformation, x1, is identified and
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subsequently minimized to obtain x∗1. This results in two path segments, [p x∗1] and [x∗1

and r]. The process of identifying (and then minimizing) the highest-energy conformation

over the existing path segments continues until a desired resolution and energy profile are

obtained.

In its original form, CPR requires an energy function that is continuous and for which the

first derivative can thus be defined. Here we do not have direct access to the first derivative

of the Rosetta suite of energy functions. As an alternative, we employ Rosetta’s relax

function, which performs a simulated-annealing minimization after adding side chains to

backbone-resolution conformations. In our employment of relax, we constrain the movement

of backbone atoms so the minimized conformation x∗i remains close to xi. The pseudo-code

for CPR is shown in Algorithm 7.3 and is illustrated in Figure 7.1.

Algorithm 7.3 The Conjugate Peak Refinement algorithm [192]

Input:
Function states Cs, Ct
ε, interpolation interval

Output: Path Cs, C1, C2, ...., Cn, Ct
1: P ← InterpolateInitialPath(ε)
2: while Time AND EnergyOK = FALSE do
3: H ← SelectHighEnergy(P)
4: HMin ← Miniimize(H)
5: P ← SegmentPath(P,H,HMin,ε)
6: end while

.

We make use of CPR as follows. First, two conformations are selected from Ω using

our selection operator. CPR is then applied, as modified above, to produce intermediate

conformations. Intermediate conformations that pass the energetic and distance constraints

detailed above are added to the ensemble Ω. This CPR-based perturbation operator is

shown in pseudo-code in Algorithm 7.4.
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Figure 7.1: A cartoon example of the CPR algorithm. The left side shows the initial inter-
polated path in blue, with the highest energy conformation shown in red. This structure
undergoes an energy minimization, resulting in the blue point. A new path is now con-
structed via the blue point. The right panel illustrates the next iteration of the algorithm

 

 

Original Path

After first CPR

High Energy Structure

Minimized Structure
 

 

First CPR Path

Second CPR Path

High Energy Structure

Minimized Structure

(a) (b)

Algorithm 7.4 CPR as a perturbation operator

Input: Function states Cs, Ct,Ω
Output: Path Cs, C1, C2, ...., Cn, Ct
1: P ← InterpolateInitialPath(r)
2: for p ∈ P do
3: pmin ← RosettaRelax(p)
4: if Validate(pmin) then
5: Ω← Ω ∪ pmin
6: end if
7: end for

7.2.3 Reactive Temperature Scheme

We have found that the combination of energetic and distance constraints make it in-

creasingly difficult to obtain constraints-satisfying conformations as the ensemble Ω grows.

Therefore, we tune the energetic constraint by controlling the effective temperature used in

the Metropolis criterion through a reactive temperature scheme similar to the one employed

by the tree-based motion computation algorithm introduced in chapter 5. We maintain a

temperature value Tc for each cell c of the 1d grids over the progress coordinate. Each cell’s
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temperature is adjusted every s steps (typical value employed is 25). The temperature of

a cell, Tc, is increased if the last s selections of that cell have resulted in no conformations

being added to Ω. If conformations are added to Ω more than 60% of the time within a

window of s steps, Tc is decreased. Increases and decreases occur over adjacent temperature

levels per the proportional scheme detailed in section 5.2.5.

7.3 Connectivity Building

The connectivity building stage starts by adding all conformations in Ω to the vertex set.

Pseudo-edges are then identified and weighted. The rest of this stage then consists of the

interplay between path identification and path realization. The graph is augmented with

more conformations as local planners identify difficult regions. The interplay continues until

K lowest-cost paths are determined or the computational budget has been exhausted.

7.3.1 Identification and Weighting of Pseudo-edges in the Roadmap

This process is shown in pseudo-code in Algorithm 7.5. For each conformation/vertex v ∈ V ,

its k nearest-neighbors are identified. For each identified neighbor, directional pseudo-edges

are added with v. Additional pseudo-edges are added by identifying any vertex < εmax

from v that lies in a different connected component from v. Typical values for k = 10 and

εmax = 5Å. All added pseudo-edges are assigned an initial weight of value 1.

7.3.2 Path Query and Path Realization Interplay

The pseudo-code for this process is shown in Algorithm 7.6. A pair of landmark structures

are selected uniformly at random over the `! permutations. The roadmap is then queried

for the lowest-cost path. We utilize Yen’s K-Shortest path algorithm to identify the lowest

non-zero cost path in the graph and allow us to continue obtaining paths after the first path

has been successfully realized.

Given an identified path, a local planner is assigned to any of the unrealized edges (the
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Algorithm 7.5 Roadmap construction pseudo-code.

Input:
Ω . The ensemble generated during the sampling stage
k . number of nearest neighbors
K . number of neighbors in different connected components
εmax . maximum connect distance for K

Output: G = (V,E) . the graph that encodes the roadmap
1: V = Ω
2: for ∀c ∈ Ω do
3: Neighbors = NearestNeighbors(c,k)
4: for ∀t ∈ Neighbors do
5: E = E ∪ e(v, t)
6: end for
7: NeighborsCC = NearestNeighborsCC(c,K,εmax)
8: for ∀t ∈ Neighbors do
9: E = E ∪ e(v, t)

10: end for
11: end for

local planner is described below in section 7.3.3). The planner is given a fixed computational

budget, time T . If the local planner succeeds, the pseudo-edge it has realize is assigned a

weight of 0 to indicate the pseudo-edge is resolved. If the local planner fails, the pseudo-edge

is reweighted as shown in Equation 7.1.

Escore = 0.7 · CallsToPlanner + 0.3 · (ClosestNode− RequireResolution)2 (7.1)

CallsToPlanner tracks the number of times the planner has been requested to work

on a particular pseudo-edge, ClosestNode is the node in the tree constructed by the local

planner that is closest to the vertex v in the directed pseudo-edge (u, v). For the planner

to be successful, it must also generate a path that is within RequireResolution lRMSD of

the vertex v, so this value is also employed in Equation 7.1.

An additional feature of SPIRAL is its ability to learn from failures. When a local

planner has failed to complete a path more than RefineLimit times, SPIRAL augments

the graph with conformations identified by the local planner that are otherwise invisible to

the top layer. We now proceed to relate details on the local planner and the augmentaion
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Algorithm 7.6 The algorithm for the connectivity phase of SPIRAL.

Input: G = (V,E) . The roadmap encoded as a graph
1: for RefineCount < RefinementMax do
2: LP = SelectLandmarkPair() . Select which pair of structures to refine
3: LPpath = ComputeLowCostPath(LP)
4: for ∀ segment ∈ LPpath do
5: if segment.score != 0.0 then
6: RefineSegment(segment)
7: if segment.score != 0.0 AND segment.refineCount mod RefineLimit = 0 then
8: AugmentRoadmap(segment);
9: segment.refinementCount = 0

10: end if
11: end if
12: end for
13: UpdateLPStats() . Update Stats on paths per LP pairing
14: end for

procedure.

7.3.3 Local Planner

The local planner employed by SPIRAL is an adaption of the tree-based planner we in-

vestigated in Chapter 5. The adaptation consists of diversifying the types of perturbation

operators employed in the expansion of the tree. In addition to the molecular fragment

replacement technique with a fragment length of 3, as in Chapter 5, we also employ two

additional operators, gausssian sampling and biased gaussian sampling. The latter selects

more frequently dihedral angles with higher differences between the current conformation

and goal conformation. A probabilistic scheme is designed to select each of these three

operators during each expansion of the tree in the local planner. The particular scheme

employed is reported in Results. While not fine-tuned, the scheme assigns higher probabil-

ity of selection to operators capable of making larger moves when the distance that needs

to be bridged to reach the goal vertex/conformation is large.

120



7.3.4 Augmenting the Graph

Some regions of conformational space may present significant challenges for SPIRAL to

connect through local planners. This can be due to high energetic barriers that exist or

because of inadequate sampling. To address this issue, SPIRAL makes use of a feedback

mechanism to augment the graph by adding samples in these regions, as determined by the

local planners. When a local planner encounters difficulty realizing a pseudo-edge more than

RefineLimit times (a typical value for this parameter is 25), the graph is augmented with

conformations produced by perturbation operators. These operators include not only the

molecular fragment replacement technique and the biased and unbiased gaussian samplers,

but also CPR. The augmentation is shown in pseudo-code in Algorithm 7.7. The particular

weights assigned to each operator within the probabilistic scheme are shown in Results.

Algorithm 7.7 The algorithm for the augmenting the graph during the Connectivity stage.

Input:
e = (u, v) . The edge on which the local planner is working
G=(V,E) . The roadmap graph object

1: for AugmentCount < AugmentMax do
2: c = SelectRandomConf(u,v) . select u or v uniformly at random
3: POps = SelectPerturbOps()
4: VNew = {}
5: CNew = Perturb(C);
6: if POperator.Validate(CNew,e.T) then
7: V New = V New ∪ CNew
8: end if
9: end for

10: V = V ∪ V New
11: for ∀ v ∈ V New do . Connect to roadmap
12: Neighbors = NearestNeighbors(v,k)
13: for ∀t ∈ Neighbors do
14: E = E ∪ e(v, t)
15: E = E ∪ e(t, v)
16: end for
17: end for
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7.4 Analysis

It is worth noting that after it exhausts the computational budget, SPIRAL may have

yielded ≤ K lowest-cost paths. The weights on these paths are not related to energetic

feasibility. Therefore, in the final stage, SPIRAL reweights the entire graph using the

Metropolis criterion as the edge weights. The reweighted graph is then queried for paths,

which can be analyzed in terms of energetic profile or distance within which they come of

the goal landmark structures.

7.5 Results

SPIRAL is implemented in C++ and experiments are run on the Mason Argo cluster and

the Hydra cluster. Three sets of experiments are run for each protein system considered

here, depending on the requested size of the sampled ensemble Ω. Three sizes are considered

to investigate the scaling in computational time as a function of ensemble size: |Ω| ∈

{5, 000, 10, 000, 20, 000}. A hard termination criterion is set with regards to the total

number of energy evaluations. The sampling stage is terminated if the total number of

energy evaluations exceeds 1, 000 times the requested ensemble size. That is, a maximum

of 25 attempts are made to obtain a sample. The connectivity building stage is terminated

after 10, 000 iterations of the interplay between path query and path realization. This stage

may terminate earlier if 250 paths are obtained for all `! landmarks as a way to control

computational cost. The analysis stage modifies the roadmap as described in Methods and

reports the 50 lowest-cost paths. In terms of CPU time, the computational time demands

of all these three stages in SPIRAL spans anywhere from 2 days for protein systems around

100 amino acids long to 30 days for systems around 700 amino acids long.

7.5.1 Systems of Study

The protein systems we have selected are carefully gathered from published literature in

order to provide some comparisons. We note that since motion computation for proteins
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is still an emerging research area, not many published methods exist. Moreover, many of

them focus on either specific systems or are rather limited by system size. In all, we have

been able to collect 7 systems with published results. They are listed in Table 7.1.

Column 1 in Table 7.1 lists the names for these systems, and column 2 shows their lengths

in terms of number of amino acids. For most of these systems, two diverse functionally-

relevant structures have been extracted from wet-lab literature to serve as start and goal

(we consider both directions here) structures. CaM is the only system on which we test

SPIRAL on its more general setting of ` > 2 landmarks (3 in this case). The final column

in Table 7.1 shows the distance between the start and goal structures for each system in

terms of lRMSD.

Table 7.1: Protein systems for evaluation.

System Length Start ↔ Goal lRMSD(start, goal)

CVN 101 2ezm ↔ 1l5e 16.01 Å

CaM 140
1cfd ↔ 1cll 10.7 Å
1cfd ↔ 2f3y 9.9 Å
1cll ↔ 2f3y 13.44 Å

AdK 214 1ake ↔ 4ake 6.96 Å

LAO 238 1laf ↔ 2lao 4.7 Å

DAP 320 1dap ↔ 3dap 4.3 Å

OMP 370 1omp ↔ 3mbp 3.7 Å

BKA 691 1cb6 ↔ 1bka 6.4 Å

It is worth noting that neither protein size, nor the lRMSD distance between functional

states do by themselves define system difficulty. We have observed that the larger systems

(in terms of number of amino acids) that exhibit smaller motions (less than 4.5Å lRMSD)

between the start and goal structures may require the protein chain to partially unfold

before returning to a folded state. The process of unfolding a large, compact structure is

computationally costly, as effectively an energy barrier needs to be crossed to get out of the

compact state. Indeed, many computational studies avoid computing the motions involved
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in transitions from a closed to an open structural state because of this challenge.

7.5.2 Parameter Values

The probabilities with which each of the three perturbation operators are selected by SPI-

RAL during sampling are shown in Table 7.2.

Table 7.2: The perturbation operator set and weights used to select them during SPIRAL’s
sampling stage.

Perturbation Operator Probability

Molecular Fragment Replacement (length 3) 0.75

Molecular Fragment Replacement (length 9) 0.20

Gaussian Sampling (µ = 0, σ = 15) 0.05

As described in Methods, the tree-based planner makes use of molecular fragment re-

placement and gaussian sampling of dihedral angles during the expansion of the tree. The

augmentation stage in SPIRAL makes use of these same operators, but also includes CPR.

The probabilities associated with these operators by the tree-based planner are shown in

Table 7.3. The local planner uses a different scheme depending on the distance between the

two conformation/vertices it is asked to connect. While the specific probability distribution

is not tuned, the values that we have determined to perform reasonably essentially promote

operators that are capable of making smaller moves when the requested distance to be

bridged is < 2.5Å; in contrast, for larger distances, the operators that make larger moves

are given higher probability of selection. The particular threshold of 2.5 used here to switch

the probabilistic scheme is based on an earlier finding from our work on tree-based motion

computation (chapter 5). In that work we showed that molecular fragment replacement

can result in step sizes greater than 2.5Å. During graph augmentation, we introduce CPR

in order to explore the space surrounding the start and goal conformations provided to the

local planner.
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Table 7.3: The perturbation operator set and weights used to select them during SPIRAL’s
connectivity building stage.

Connectivity Building Perturbation Operator Probability

Local Planner (> 2.5 Å lRMSD)
Molecular Fragment Replacement (length 3) 0.70
Gaussian Sampling (µ = 0, σ = 15) 0.15
Gaussian Sampling (biased) (µ = 0, σ = 15) 0.15

Local Planner (≤ 2.5 Å lRMSD)
Molecular Fragment Replacement (length 3) 0.20
Gaussian Sampling (µ = 0, σ = 15) 0.40
Gaussian Sampling (biased) (µ = 0, σ = 15) 0.40

Augmentation

Molecular Fragment Replacement(length 3) 0.20
Gaussian Sampling (µ = 0, σ = 15) 0.40
Gaussian Sampling (biased) (µ = 0, σ = 15) 0.40
CPR 0.05

The εmin parameter is chosen specifically for each system. When the distance between

start and goal structures is ≤ 4.5Å, we designate the distance as small, and investigate

three settings for εmin, 0.5, 0.75, and 1.0. When the distance is > 4.5 but ≤ 6.0Å, we

designate the distance as medium, and investigate three settings for εmin, 0.75, 1.0 and 1.5.

Distances > 6Å are designated as large, and for the corresponding systems we investigate

three settings for εmin, 1.0, 1.5, and 2.0. These are listed in Table 7.4.

Table 7.4: Values investigated for εmin for each protein system.

System Distance Designation Values for εmin

CVN Large {1.0, 1.5, 2.0}
CaM Large {1.0, 1.5, 2.0}
AdK Large {1.0, 1.5, 2.0}
LAO Medium {0.75, 1.0, 1.5}
DAP Small {0.5, 0.75, 1.0}
OMP Medium {0.75, 1.0, 1.5}
BKA Large {1.0, 1.5, 2.0}

The εmin parameter controls how close neighboring conformations will be in the roadmap.
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Intuitively, one might believe that smaller εmin values would produce a better quality

roadmap. Our research indicates that this is not the case. Small values of εmin (< 1Å) for

systems with distance designations of medium or greater can result in many small cliques

being formed in the roadmap around local minima. This is not surprising, particularly

for the broad minima that contain the stable and semi-stable landmark structures. On

these minima, it is rather easy to sample a very large number of conformations nearby

a landmark and thus essentially “get stuck” in the same local minimum. Insisting on a

minimum distance separation among sampled conformations forces sampling not to provide

refinement or exploitation of a particular local minimum but rather explore the breadth

of the conformational space. Not insisting on a minimum distance pushes all the work to

obtaining intermediate conformations to bridge local minima to the local planners, which

is an ineffective use of computational time.

7.5.3 Systems of Study and Experimental Design

We present three sets of experiments. First, we show the scaling in computational time

during the sampling stage as a function of system length and values employed for εmin.

In the second and third experiments, we compare paths produced by SPIRAL to those

obtained by other methods. We focus on |Ω| = 10, 000 and εmin set to the largest of the

three values considered (see Table 7.4) for these comparisons, as our investigation indicates

that these settings allow the connectivity building stage to realize paths reasonably quickly

(data shown below). We first compare the proximity with which paths come to the specified

goal structure and then analyze specific paths in terms of their energetic baseline over a

baseline method.

7.6 Sampling Stage Analysis

Figure 7.2 shows the CPU time demanded by the sampling stage to obtain an Ω ensemble of

10, 000 conformations for each of the proteins at each of the three distance-dependent εmin

values considered. The times shown represent the average across 3 independent executions.
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Figure 7.2 shows that computational demands rise exponentially with respect to protein

length. For the same protein, the higher εmin values also result in higher computational

demands, as it becomes harder to find conformations that satisfy the constraints.
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Figure 7.2: CPU time demands of the sampling stage, shown in hours, is an average over
three independent executions of SPIRAL for each setting considered. For each protein,
three settings are considered depending on the εmin value utilized during sampling.

7.6.1 Analysis of Nearest-Neighbor Calculations

Calculating nearest neighbors in high-dimensional space is a challenging and open problem.

Here we have investigated two main techniques for calculating nearest neighbors. In both

settings, we have utilized lRMSD as the distance metric. The first technique uses a “brute-

force” approach, formulating a full distance matrix and retaining it in memory. The other

technique is an adaption of the Geometric Near-neighbor Access Tree (GNAT) [193], which
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has been used in other high-dimensional settings as an alternative to kd-trees. In our

implementation of SPIRAL , the user can select which nearest-neighbor technique should

be employed at run-time. The technique is employed very frequently during the sampling

stage to enforce the εmin constraint. Moreover, SPIRAL periodically computes summary

statistics on the exploration, including average and percentile statistics on each sample’s

nearest neighbors. We have found that in such an analysis-intensive setting, the brute-force

approach exploiting a distance matrix retained in memory is more computationally efficient

than GNAT (data not shown).

7.6.2 Comparison of Paths with Other Methods

We now compare SPIRAL to published tree-based methods in [1,57,194,195]. We note that

all these methods make use of specific moves. For instance, our own work in [1], summarized

in chapter 5, uses molecular fragment replacements of length 3, work in [194] uses an

adaptation of RRT with moves consisting of low-frequency modes revealed by normal mode

analysis, and work in [57,195] is an adaptation of PDST changing values only for angles that

differ between start and goal structures, effectively considering a search space of no more

than 30 dimensions. We report here the closest that any path computed by SPIRAL comes

to the specified goal structure and compare such values on all protein systems to those

reported by published work. Columns 4−7 in Table 7.5 show these values for SPIRAL ,

our tree-based method summarized in chapter 5, and work published by other authors.

Column 3 reports some more details on the path with which SPIRAL comes closest to

the goal structure by listing the maximum lRMSD distance between any two consecutive

conformations in the path. SPIRAL typically generates paths with conformations closer to

the goal structure than other methods.

7.6.3 Comparison of Energetic Profiles

We provide some more detailed results here by relating the energetic profile of the lowest-

cost path obtained by SPIRAL on two selected systems, AdK and CaM. We compare these
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Table 7.5: Column 4 reports the closest distance to the goal structure over all paths ob-
tained by SPIRAL. Column 5 shows such distance obtained from our tree-based method
summarized in chapter 5 and published in [1]. Columns 6−7 report values obtained by
tree-based methods of other authors. Max Step in column 3 refers to the maximum lRMSD
distance between any two consecutive conformations in the SPIRAL path that comes closest
to the goal.

System Start → Goal
Max
Step

Dist to Goal (Å)
SPIRAL Tree-based [1] Cortés[194] Haspel [57,195]

CVN
(101 aa)

2ezm → 1l5e 1.5 1.5 – 2.1 2.1
1l5e → 2ezm 1.5 1.3 – – –

CaM
(144 aa)

1cll → 1cfd 3.4 1.46 3.35 – –
1cfd → 1cll 2.67 1.12 3.17 – –
1cll → 2f3y 2.77 1.26 1.67 – –
2f3y → 1cll 3.5 1.12 0.73 – 1.33
1cfd → 2f3y 3.33 1.26 3.5 – –
2f3y → 1cfd 3.48 1.46 3.2 – –

AdK
(214 aa)

1ake → 4ake 3.0 1.86 3.8 2.56 2.2
4ake → 1ake 3.12 1.33 3.6 1.56 –

Lao
(238 aa)

2lao → 1laf 2.0 1.21 – 1.32 –
1laf → 2lao 3.2 1.90 – – –

DAP
(320 aa)

1dap → 3dap 1.42 1.5 – 1.31 –
3dap → 1dap 1.46 0.92 – – –

OMP
(370 aa)

1omp → 3mbp 1.04 3.04 – – –
3mbp → 1omp 0.91 3.61 – – –

BKA
(691 aa)

1bka → 1cb6 3.87 1.55 – 2.79 –
1cb6 → 1bka 3.98 1.69 – – –
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profiles to those that can be obtained by our adaptation of CPR, as we do not have access to

paths obtained via methods published by other authors. For CPR, the resolution distance ε

is set to 1.0 Å, and 50 cycles of CPR are performed in order to obtain a path. This provides

a fair comparison, given that we also analyze 50 paths obtained after the analysis stage in

SPIRAL and report here the lowest-cost one.

Figure 7.3 shows that on proteins, such as AdK, where the distance between the start

and goal structures is large, paths provided by CPR tend to have higher energies than those

provided by SPIRAL. On systems, such as CaM, where the start-to-goal distance is smaller,

CPR can perform comparably to SPIRAL. These results illustrate that SPIRAL produces

good-quality paths, and analysis of these paths can be used to obtain information on protein

motions as well as information on possible long-lived intermediate states in dynamic systems.
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Figure 7.3: Energy profiles of conformational paths computed between 1ake and 4ake of
AdK (top) and of CaM (bottom). The red paths are those computed with CPR, and the
green ones are computed by SPIRAL.
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Chapter 8: Conclusions and Future Directions

This thesis has presented novel probabilistic algorithmic frameworks to address three stand-

ing challenging in protein modeling research, prediction of function from structure, predic-

tion of the active structure from protein sequence, and mapping of transitions employed

by dynamic proteins to switch between stable and semi-stable structures to tune function.

The work presented here has advanced the current computational treatment of proteins.

An exploitation of topic-based modeling in machine learning, combined with under-

standing of protein structure organization, has yielded a novel representation of protein

structure that allows efficiently detecting remote protein homologs and, more importantly,

automating the process of function annotation for a protein structure. Building over a

robotics-inspired optimization framework for adaptive search of the protein conformational

space has advanced the problem of decoy sampling and exposed a highly-versatile frame-

work to better understand challenges in de novo protein structure prediction. In addition

to investigating the impact of various projections in discretization layers employed by the

search, our work has shown that a soft energy bias is more effective when pursuing local

minima of a distorted energy surface. This is a general result that extends beyond pro-

tein modeling research to modeling of complex systems with empirical or semi-empirical

cost functions. Finally, analogies with robot motion planning have been pursued in greater

detail in this thesis to present novel algorithmic frameworks for the problem of molecular

motion computation for the elucidation of structural transitions in proteins.

This thesis advances protein modeling research by extending the size and complexity

of systems that can be modeled, as well as the detail and accuracy with which important

biological questions on the relationship between protein sequence, structure, dynamics,

and function can be answered in silico. For instance, algorithms proposed here to model

structural transitions are now able to explain the impact of sequence mutations on protein
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function. Our results on Ras and the impact of oncogenic mutations on transitions of Ras

between its two main functionally-relevant states are particularly exciting. These results

point to the possibility that reliable predictions can be made in silico and that wet and dry

laboratory studies may soon complement each-other in understanding and treating disease.

The work presented in this thesis has identified several future directions of interest to

possibly diverse communities of researchers in optimization and protein modeling research.

The rich algorithmic frameworks presented here consist of various components that can

be adapted, modified, and investigated in greater detail depending on the application of

interest. While our work under each chapter in this thesis has identified specific future

directions on each of the three problems considered here, it is worth reiterating that the work

we have described here on a general roadmap-based framework for elucidating structural

transitions may present a particularly fertile ground for future research. The two key issues

of sampling in the presence of non-trivial and often conflicting constraints and apportioning

of computational time in an adaptive manner are themes that have permeated the bulk of the

work presented here but become particularly critical and challenging when the objective is

to map transitions of a system among various states of interest. In addition, the connection

between the stochastic roadmap over a continuous space and a markov state model over

discrete states is worthy of further investigation in order to obtain reliable measurements

of protein kinetics in silico in a reasonable amount of time.

While the application domain of the computational research presented in this thesis is

protein modeling, the algorithmic techniques proposed here are of general utility to other

domains in computer science. The research proposed here may benefit other domains that

pursue effective optimization for complex systems with continuous and discrete variables,

where variables number in the hundreds or more, and impose non-trivial implicit constraint

on one another.
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