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The conformations in which a protein molecule arranges its amino-acid chain are primary

determinants of its ability to interact with other molecules in the living cell. Discovering

the functionally-relevant conformations of a protein is crucial to elucidating its functional

repertoire and even further our understanding of diseases driven by mutations that affect

the ability of a protein to assume specific conformations.

Discovering the possibly diverse set of biologically-relevant conformations of a protein

from knowledge of its amino-acid sequence alone remains an outstanding challenge. While

progress has been made in this direction, most notably by AlphaFold2, in discovering what

is often referred to as a native structure, methods based on machine learning, including

deep learning, are limited in their ability to see the entirety of the conformation space of a

protein. While obtaining one conformation is sufficient for some proteins, many others are

involved in many cellular reactions in the cell, and harness their ability to assume different

conformations to achieve functional plasticity. Nowhere is the ability of proteins to assume

different conformations more visible in the public eye than nowadays; we are all familiar

with images that show the spike protein in the SARS-CoV2 virus switching between an

open and a closed conformation to elude our immune system and strike at just the right



moment by binding with the ACE receptors in its closed conformation.

This dissertation presents a way forward on exploring the conformation space of a given

protein molecule, when the only information available is the sequence of amino acids. We

refer to this problem as de-novo protein conformation ensemble generation. In this dis-

sertation, we present several novel stochastic optimization algorithms that operate under

the umbrella of evolutionary computation. We show that these algorithms are able to bal-

ance between the known challenges of exploration and exploitation and capture meaningful

representations of the conformation space, despite its size and complexity. In particular,

we show that they are able to capture the presence of significantly different functionally-

relevant conformations in metamorphic proteins, which we also provide to the community

as a benchmark to further advance research on this problem. The work presented in this

dissertation represents important groundwork for researchers aiming to improve protein con-

formation sampling in order to better understand the structural and functional plasticity

of protein molecules in all their exquisite complexity.



Chapter 1: Introduction

Living cells use proteins as molecular instruments to accomplish biological functions. The

spatial arrangements or conformations of the three-dimensional/tertiary structures of a

protein molecule in which the amino acid units of the protein organize themselves under

physiological conditions are key to determining its array of activities in the cell. Proteins

assume different biologically-active/functional conformations to interface with other molec-

ular partners and modulate complex biological activities [2]. Many diseases can occur due to

proteins failing to adopt appropriate functional conformation, such as cancers, Alzheimer’s,

and Huntington’s disease [3, 4].

To understand the conformation-function relationships of proteins, a vast body of work

in molecular biology has been devoted to determining the biologically-active conformations.

Early on, experimental techniques, such as X-ray crystallography, revealed static snapshots

of protein molecules, capturing a protein in one conformation. Motivated in part by the

inability of X-ray crystallography to generalize over different protein molecules, computa-

tional approaches stepped in. They leveraged a narrow formulation of the problem, where

the goal was the determination of a single such conformation, also referred to as the native

conformation, from a given protein amino-acid sequence (de novo) [5]. Impressive compu-

tational advances instigated via the ”Critical Assessment of protein Structure Prediction”

(CASP) competition were made over the years [6]. In December 2020, they culminated

in the AlphaFold2 method, which, contrary to what the name suggests, presented a major

advance in protein conformation determination. Reports from CASP14 suggest AlphaFold2

can now obtain a high-quality native conformation given an amino-acid sequence for possi-

bly a large number of proteins [7].

However, in a largely detached thread in computational molecular biology, various re-

searchers have advanced theory, experiment, and methods to reveal significant additional
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protein complexity; that is, proteins are inherently dynamic systems using often large mo-

tions to switch between different stable and semi-stable conformations with which to bind

to different molecular partners in the cell [8]. The dynamic view of proteins was evident in

the early experimental structures obtained via Nuclear Magnetic Resonance (NMR); how-

ever, NMR is limited to reveal small conformational fluctuations. Then came cryo-electron

microscopy, which revealed the diversity of native conformations assumed by a protein

molecule [9].

Many researchers over the years have argued for broadening our computational treat-

ment of proteins to account for the multiplicity of native conformations [10]. A complete

protein functional conformation model should include all the possible active conformational

states accessible by a protein molecule. The traditional view of an unique functional state

of a protein undermines the fact that the “native” state of a protein is potentially a large

number of conformational states. To capture all the active conformational states, we require

methods that produce an ensemble of conformations that are functionally-relevant instead

of a single conformation. This thesis focuses on designing and improving such methods.

However, the problem of generating ensembles that contain the native conformations of

a given protein presents outstanding challenges, as it necessitates exploring a vast, high-

dimensional space in search of possibly a very large number of functionally-relevant confor-

mations. The majority of computational methods that can reveal possibly multiple active

conformations for a given protein leverage deep insight about a specific protein of interest.

For instance, a line of work leverages experimentally-known conformations of a protein to

reveal latent coordinates over which to generate more conformations [11–16]. Other work is

strictly limited to generating conformations that mediate the transition between two given

conformations [17–23]. Several methods leverage collective coordinates to expedite numer-

ical simulation (such as Molecular Dynamics simulation) [24, 25]. While beyond the scope

of this thesis, adaptations to the classic Molecular Dynamics continue to be pursued to

reveal the motion between two given conformations or enhance the exploration of the con-

formation space when starting from a known conformation rather than just the amino-acid

2



sequence [26]. This thesis truly explores the de-novo setting; where given an amino-acid

sequence alone, it seeks to reveal various functionally-relevant conformations available to a

protein. This setting is of supreme interest as most proteins do not have experimentally-

known conformations revealed yet.

Generating conformation ensemble that includes the native conformations of a protein

de novo is naturally posed as an optimization problem. It has been revealed theoretically

and experimentally that the conformations representing the stable or semi-stable, long-

time populated structural states observed in wet laboratories [27] occupy the deep and

broad basins of the interatomic energy surfaces [28]. Thus, finding the native conformations

correspond to finding the diverse minima in the corresponding energy landscape. However,

this is very challenging as even finding just one such conformation has been shown to be

NP-hard [29]. Moreover, while many semi-empirical energy functions have been devised

in computational laboratories that attempt to approximate the interatomic energy of the

conformations, many studies show how Rosetta [30], Amber [31], and other state-of-the-

art energy functions [32] contain inherent inaccuracies that result in wildly rugged energy

landscapes and steer the optimization process towards very low-energy conformations that

are significantly different from the known native states (sometimes more than 10 Angstroms

(Å) away in conformation space) [33–37]. This makes generating conformation ensembles

possibly containing native conformations an extremely difficult task.

In addition to inaccurate energy models, the protein conformation space is vast and

high-dimensional. If Cartesian coordinates of the atoms are considered as the underlying

variables, the dimensionality would be in the thousands for a medium-size protein not ex-

ceeding 150 amino acids. If other representations are employed, such as using only dihedral

angles as underlying variables (leaving bond lengths and bond angles in equilibrium/ideal

values), the dimensionality goes down into the hundreds. Sampling in such high-dimensional

and multimodal energy landscapes full of artifact minima poses a tremendous challenge for

the conformation ensemble generation algorithms. Therefore, such algorithms try to ensure

a broad, sample-based representation of the conformation space (and in turn the associated
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energy surface) and not miss low-energy near-native conformations. The recommendation

from developers is to generate as many conformations as can be afforded in order to in-

crease the likelihood that some generated conformations reside near the unknown native

conformations.

A critical challenge in stochastic search and optimization on such a complex, multimodal

energy landscape is to attain a proper balance between exploration (seeing more of the search

space) and exploitation (getting to better-scoring regions of the space) of the search space.

Too much exploitation generally results in premature convergence where the optimization

algorithm gets stuck in a suboptimal region in the search space. On the other hand, too

much exploration (i.e. little exploitation) can cause the algorithm to search in wide range

of regions without proper investigation of the promising regions in the landscape to find

no optimal solution at all. This core issue of balancing exploration and exploitation is not

addressed by the popular Simulated Annealing Metropolis Monte Carlo (SA-MMC) based

de novo conformation sampling algorithms such as Rosetta [30] and Quark [38], that require

multiple-restarts to obtain a conformation ensemble. Evolutionary Algorithms (EAs) are

inherently better suited for tuning this balance in optimization problems [39] and have been

shown to be effective for conformation ensemble generation [40,41].

The growing evidence that existing energy functions are not reliable indicators of na-

tiveness and often make for poor guides towards native conformations is prompting the

community to rethink the proper role and utilization of energy functions in conformation

ensemble generation. An increasing realization in the computational structural biology com-

munity at large and the de novo conformation sampling community in particular is that the

quality of the energy function is perhaps as much if not more important than the quality

of the sampling of the conformation space [35,42,43]. Some research has explored splitting

an energy function into groups of terms and pursuing conformation ensemble generation

in a multi-objective rather than a single-objective optimization setting; this line of work

has shown improvements over single-objective optimization [41,44–46] of energy functions.
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However, achieving proper balance between multiple competing objectives remains a chal-

lenge. Some recent work has investigated doing away with existing energy functions and

constructing new ones based on predicted contacts or distances of pairs of amino acids [47].

The latter line of research has been prompted by ever more powerful machine learning mod-

els capable of leveraging existing native conformation of proteins deposited in databases such

as the Protein Data Bank (PDB) [48] to predict distances or contacts between amino acids

in native conformations given an amino-acid sequence [49].

This dissertation focuses on tackling a wide range of challenges that arise in de novo

conformation ensemble generation aiming to find multiple functional conformations of a

protein using Evolutionary Computation (EC) techniques. The description of the chal-

lenges and our efforts to address them are discussed in Section 1.1. Briefly, the dissertation

first attempts to overcome the shortcomings of the existing energy functions. In doing so,

it explores ways to balance multiple energetic objectives and investigates the utility of in-

corporating contact information to guide the optimization process. The dissertation then

focuses on reducing the size of the conformation ensemble generated by the conformation

ensemble generation algorithms without sacrificing the ensemble quality to promote effi-

ciency and practical use of such algorithms. Finally, the dissertation focuses on attaining a

proper balance between exploration and exploitation of the conformation space to enhance

sampling of the native conformations.

The rest of the dissertation is organized as follows. Chapter 2 provides an overview of

the important concepts and related work for de novo conformation ensemble generation.

The domain-specific knowledge leveraged for this work as well as the evaluation datasets

and metrics are presented in Chapter 3. Chapter 4 describes the work for minimizing the

shortcomings of energy functions. Chapter 5 presents the details for the work in reducing

the generated conformation ensemble size. Chapter 6 provides the details for the work in

balancing the exploration and exploitation to improve the optimization process. Finally,

Chapter 7 concludes the dissertation with a summary and directions for the future work.
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1.1 Challenges and Contributions

Improving the complex optimization process in the vast, high-dimensional, and multimodal

protein conformation space to sample near-native conformations requires overcoming sev-

eral obstacles. Sampling low-energy conformations from a broad range of regions in the

energy landscape is necessary to produce an ensemble of functionally-relevant conforma-

tions. Therefore, a balance between the exploration and exploitation needs to be in place

for an effective optimization algorithm. The rugged and multimodal nature of the fit-

ness/energy landscape can cause a simple optimization algorithm to get stuck in a local

optimum. Hence, the optimization algorithm should have some mechanism to avoid getting

stuck and explore potential basins of attraction or niches. Also, utilizing the energy func-

tion as the sole optimization objective can be problematic because of their inaccuracies and

unreliability, and optimizing multiple objectives has the potential to help sampling better

quality conformations. Thus a multi-objective optimization algorithm needs to choose and

manage the objectives in an effective way to guide the search towards promising regions in

the landscape.

Practical use of the conformation ensemble generation algorithms is a concern that is

often overlooked by the researchers. Numerous conformations are generated by the algo-

rithms in an attempt to have a better chance that the final reported conformation ensemble

(which consists of all the conformations generated by the algorithm before termination) is

diverse enough to cover a sufficient number of minima possibly housing near-native con-

formations. A vast body of research beyond the scope of this dissertation utilize various

selection schemes to tease out the conformations that are near-native among those in the

generated conformation ensemble. The large size of the generated conformation ensemble

means selection algorithms tasked with analyzing this ensemble to extract functionally rele-

vant conformations have to additionally deal with a data size issue. Moreover, conformation

ensemble generation algorithms generally sample in a simplified conformation space because

of the vastness and dimensionality of the original space. Therefore, the generated conforma-

tions are refined (added the removed atomistic detail) prior to analysis. Adding atomistic
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detail on a conformation is computationally expensive, as the energy function employed has

to handle a large number of atoms per conformation (that includes all side-chain atoms and

all hydrogen atoms per amino acid). In addition, a lot of the conformation in the gener-

ated ensemble are similar in spatial arrangement and are indicators that the conformation

ensemble generation algorithms often sample from similar regions in the landscape rather

than avoiding already explored spaces.

The dissertation addresses the following major questions by employing evolutionary

computation techniques. The corresponding contributions are also discussed below each

question.

• To generate better ensembles that contain functionally-relevant conformations, how

can we mitigate the limitations of the energy functions?

– To address this question, we first develop a hybrid/memetic multi-objective EA

that decomposes the energy function into multiple objectives and balances those

objectives utilizing Pareto dominance and non-dominated sorting to select con-

formations that survive for the next generation. Unlike the other attempts for

multi-objective EAs in conformation ensemble generation, it does not require an

archive of solutions and it does not use the total energy of a conformation as a

basis for selection at all which defeats the purpose of decomposing the energy

function in the first place. Section 4.1 describes this approach in detail. This

approach achieves good results but begs the question, “can we do better using

information other than energy as objective?”

Consequently, we explore utilizing sequence-predicted contact information. Pre-

vious approaches that attempt to utilize such information either completely re-

place the energy function with a contact-based scoring one, or devise a new,

aggregate scoring function that adds derived contacts as restraints in a new term

added to an energy function. While it is instructive to determine the separate

impact of energy versus contact-based scoring in improving generated confor-

mation ensemble, aggregation of terms into a pseudo-energy function may be
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problematic and may result in an overly rugged search space with many sub-

optimal minima. Aggregation is additionally problematic, as one cannot know

a priori the relative importance of one scoring function over the other. Instead,

optimization research advocates for keeping the various scoring criteria as sep-

arate optimization objectives, which not only avoids introducing unnecessary

parameterization (term weights), but also is shown to lead to better and diverse

optima [39]. We address this question by investigating the separate and com-

bined roles and guidance of energy-based and sequence-predicted contact-based

scoring. What makes this possible is our ability to leverage single- and multi-

objective EAs as vehicles that intrinsically allow a variety of combinations and

optimization settings. The details are presented in Section 4.2.

• Can the size of the ensemble generated by the conformation ensemble generation

algorithms be reduced to improve feasibility of such algorithms?

– To address this, we first demonstrate that a reduced size conformation ensem-

ble can represent the originally generated conformation ensemble. We do so

via a clustering-based approach to significantly reduce the size of the generated

ensemble without sacrificing conformation quality. We first focus on represen-

tative clustering algorithms and conduct a rigorous analysis to determine the

optimal settings for these algorithms. We then cluster the conformations based

on their shape similarity and select conformations from the clusters to populate

a reduced ensemble that contains similar quality conformations as the original

conformation ensemble. This is presented in detail in Section 5.1. The success

of this work prompts the question, “how can we get a conformation ensemble

generation algorithm to generate such a reduced ensemble?”

We do this by equipping a conformation ensemble generation algorithm with

an evolving map of the conformation space it explores. The map utilizes low-

dimensional representation of protein conformation and serves as a memory with
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controllable granularity. The map has a considerably small storage requirement

but provides similar quality of a map that would hold all the conformations ever

generated by an algorithm. Section 5.2 provides the details for this approach.

We then ask the question, “can we guide the conformation ensemble generation

algorithm with the reduced-size map at the same time to enhance conformational

sampling?”

We address this question in Section 5.3 where we guide the conformation ensem-

ble generation algorithm by consulting the reduced-size map while selecting the

regions in the landscape to explore. The idea is to search the unexplored parts

of the landscape and avoid regions that are already explored.

• In the multimodal energy landscape of protein conformations, how to balance the

exploration and exploitation of the landscape to explicitly sample diverse minima?

– We address this question by first focusing on mapping the multimodal energy

landscape by retaining diversity of the solutions/conformations in order to iden-

tify the diverse minima that correspond to different biologically-active confor-

mations. The idea is to preserve the niches in the landscape by dividing the

population of conformations into multiple explicit stable subpopulations where

each subpopulation occupies a niche and is responsible for seeking solutions in

the subspace around its niche. The diversity introduced through different sub-

populations helps the exploration component of the search. The exploitation

comes from the evolutionary process within a subpopulation and the competi-

tion for resources between the subpopulations. This helps the resulting EA to

evolve and maintain multiple subpopulations at local minima while exploring

new regions of the fitness/energy landscape. Section 6.1 provides the details for

this approach. This approach samples lower energy conformations than existing

conformation ensemble generation algorithms but does not perform significantly
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better on proximity to the ground truths/native conformations in our evalua-

tions. Therefore, we ask ourselves, how can we do better?

We investigate this by designing an adaptive algorithm that aims to tune its be-

havior towards exploration or exploitation as needed via an adaptive mechanism

to obtain a better balance between exploration and exploitation. We demon-

strate how selection pressure is useful for this purpose and present an adaptive

EA that adjusts the EA selection pressure on the fly to properly control explo-

ration and exploitation components of the search based on the characteristics of

the population of conformations. This work is described in Section 6.2.

In brief, we look to tackle two primary challenges to sample diverse minima in the energy

landscape and generate better ensembles that contain multiple near-native conformations.

One is to subdue the shortcomings of energy functions and the other is achieving a proper

balance between exploration and exploitation. We further tackle the problem of improving

the efficiency and practical use of such conformation ensemble generation algorithms. Eval-

uations of our techniques mostly focus on proteins where one native conformation is known

mainly because of the universal use of such evaluations in the community and the richness

of both computational and experimental data in it. However, in Chapter 6, we construct

and evaluate on a benchmark dataset with proteins where at least two native conformations

are known to measure our ability to find multiple functionally-relevant conformations. The

dataset that we present here will help researchers to further advance work on this problem

and is another contribution of this thesis.
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Chapter 2: Background and Related Work

The three main advances for de novo protein conformation ensemble generation can be

categorized along what we refer to as representation, sampling, and scoring. We discuss

these advances below.

2.1 Representation

A conformation refers to an assignment of values to underlying parameters representing a

spatial arrangement of the chain of amino acids of a protein. Perhaps the most revolution-

izing progress in protein conformation ensemble generation was due to the conformational

representation of a protein structure as a series of fragment configurations [50] that serve

to discretize the conformation space available to a chain of amino acids and simplify the

computation of novel conformations as a fragment assembly process. In this process, also

known as molecular fragment replacement, known native conformations of proteins in the

PDB are excised into short fragments of covalently-bound amino acids of length f , and the

resulting fragment configurations are organized in a fragment configuration library indexed

by fragment amino-acid sequences. What is stored for each fragment are the Cartesian co-

ordinates of backbone atoms or the torsion/dihedral angles that can be defined over bonds

connecting consecutive backbone atoms in a fragment.

Molecular fragment replacement can be used to introduce variation in a given confor-

mation as follows: an amino acid index i is selected at random over [1, l− f + 1], where l is

the number of amino acids in a given protein sequence, and f is the length of fragments in

the pre-compiled fragment library. The configuration of the fragment composed of amino

acids [i, i + f − 1] in the given conformation is then replaced with a fragment configura-

tion selected at random among those available for the fragment with the same or similar
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amino-acid sequence in the library. This replacement can be considered a “move” in a local

search technique, and bias can be introduced to obtain better-scoring conformation via an

iterative process.

The conformation space is also simplified and reduced in dimensionality through a

coarse-grained/centroid representation. The atoms of the side chain in each amino acid

are compressed into a pseudo-atom, and the conformation variables are dihedral angles

(φ, ψ, and ω) on bonds connecting modeled backbone atoms and side-chain pseudo-atoms.

Note that even this representation yields hundreds of dihedral angles (thus, a conformation

space of hundreds of dimensions) even for protein chains not exceeding 150 amino acids.

Fragement lengths employed in Rosetta are 9 and 3 [30]. Many conformation ensem-

ble generation methods follow similar coarse-grained representations and fragment-based

assembly as Rosetta [40, 41]. Quark conformation sampling algorithm makes use of longer

fragments [38]. AlphaFold [47] is a single conformation prediction method that augments

fragment configuration libraries with novel fragments generated from a generative recur-

rent neural network; according to the AlphaFold team, the novel fragments contributed

significantly to the team’s superior performance in CASP13.

2.2 Sampling

Other variations among the de novo conformation ensemble generation methods arise in

the actual sampling algorithm employed. Among the dominant algorithms, Rosetta and

Quark use Simulated Annealing Metropolis Monte Carlo (SA-MMC) and produce a single

conformation on one run. These methods are run multiple times on a protein sequence to

obtain an ensemble of conformations. Other works use single-objective or multi-objective

EAs to generate an ensemble and enhance sampling over SA-MMC methods [41,46,51–53].

We briefly describe Rosetta as a representative SA-MMC based algorithm and HEA [41] as a

representative EA below. The choice of Rosetta reflects the fact that Rosetta is considered a

benchmark conformational sampling algorithm in the literature and a lot of the evaluations
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in the literature and in this dissertation involve comparison with Rosetta. HEA contains

the basic evolutionary operators and a lot of the techniques in this dissertation either build

over HEA or adopt a few of its operators.

2.2.1 Rosetta Conformation Sampling Algorithm

Rosetta conformation sampling algorithm operates over 4 substages. Each substage is a

single trajectory MMC search and the final conformation found on each substage is used

as the starting conformation for the next substage. Each move in the MMC search is a

Molecular Fragment Replacement. Substage 1 first constructs an extended chain from the

amino-acid sequence by setting the backbone dihedral angles to characteristic values. It then

uses 2, 000 MMC moves of fragment length 9 and Rosetta score0 score function from Rosetta

energy function suite to evaluate each move. Substage 2 uses the same fragment length and

runs for the same number of moves, but uses score1 energy function for evaluation. Substage

3 runs for 20, 000 moves, uses score2 energy function and also has the identical fragment

length. Substage 4, however, switches to fragment length 3 and uses score3 energy function.

This substage is run for 12, 000 moves to optimize the conformation at the coarse-grained

level.

In an MMC search, each move (a molecular fragment replacement in this context) is

accepted with a probability given by the Metropolis Criterion, p = exp(−δE/α), where

δE is the difference in energy from the proposed to the current conformation, and α is a

unitless parameter mimicking temperature and serving to scale the change in energy. In

Rosetta, to avoid getting stuck and allow exploring a minimum, all the substages use a

variable temperature scheme. Whenever a number of successive moves fail, temperature is

increased. The initial value of α is 1. α increases by 1 after every 150 successive failures and

resets to 1 when a move is accepted. Combining each substage, a total of 36, 000 moves are

performed that results in the same number of energy evaluations. Rosetta uses multi-start

or random-restart to obtain an ensemble of conformations.
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2.2.2 HEA

HEA is a hybrid, population-based EA. As other population-based EAs, it evolves a popu-

lation of individuals (conformations in our case) over a number of generations. The popu-

lation is initialized via an initialization operator described below. In HEA, all individuals

in the population are selected to serve as parents. Each parent produces an offspring via

a variation operator also described below. Following the principle of natural selection, the

parents and offspring compete for survival. The HEA uses a fixed-size population; that

is, out of N parents and N offspring, only N individuals survive in the population for the

next generation. What makes the employed HEA hybrid is its employment of an improve-

ment operator to improve offspring before they compete with parents. This operator is also

described below.

Initial Population Operator: The initial population operator is first invoked on a given

amino-acid sequence of a target protein to obtain the initial population. The operator first

constructs p identical extended chains by setting the backbone dihedral angles to charac-

teristic values; p is the size of the population. The extended chains are then randomized

via two consecutive stages of local search. Each one is implemented as an MMC, but the

stages use different scoring functions and different values for the scaling parameter α that

controls the acceptance probability in the Metropolis criterion. In both stages, each move

is a fragment replacement of length 9. The first stage seeks to resolve steric clashes (self

collisions) and so employs the Rosetta score0 scoring function that encourages steric repul-

sion. This stage is greedy and performs 200 moves on each extended chain. The second

stage employs the Rosetta score1 to encourage the formation of secondary structures and

uses the Metropolis criterion by setting the scaling parameter α to 2. The stage continues

until l consecutive moves (l is number of amino acids in a given protein sequence) fail per

the Metropolis criterion.
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Variation and Improvement Operators: The variation operator utilizes molecular

fragment replacement with a fragment length of 3 amino acids to introduce a small con-

formational change over a parent in order to obtain an offspring. The obtained offspring

is then subjected to an improvement operator. The operator seeks to improve the quality

of an offspring as measured by the interaction energy, evaluated with the Rosetta score3

scoring function. The operator implements a greedy local search that accepts only config-

uration replacements of randomly chosen fragments in the offspring (of length k = 3) that

improve the score (lower energy) until l consecutive moves fail; l is number of amino acids.

The goal of the improvement operator is to map an offspring to a nearby local minimum in

the energy surface. The improved offspring has a better chance of survival when competing

against parents[39,40].

Selection Operator: The selection operator implements what is known as elitism-based

truncation selection. Essentially, all individuals (parents and improved offspring) are first

evaluated using Rosetta’s full centroid scoring function score4. Then, the top-scoring r%

individuals from the parents are combined with the improved offspring to compete for

survival; r is the elitism rate. The competing individuals are sorted in increasing order of

their score4, and the top p individuals are selected to represent the population for the next

generation.

Termination Criterion: As is common among conformational sampling algorithms [54],

the termination criterion for the HEA is set to a total budget of energy/score evaluations.

When the budget is exhausted, the algorithm terminates. This is more reasonable over

setting an arbitrary number of generations, as it recognizes the fact that the energy evalua-

tion of a conformation is the most computationally-extensive operation in a conformational

sampling algorithm. This termination criterion also allows for a fair comparison among con-

formation ensemble generation algorithms realizing different stochastic search/optimization

frameworks.
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2.3 Scoring

Conformational sampling methods also vary in the scoring function employed to bias sam-

pling. As mentioned in Chapter 1, energy functions are often an inadequate proxy of

nativeness. Hence, a growing body of research is considering alternative or additional scor-

ing functions based on predicted torsion angles, secondary structures, and/or contacts. For

instance, in AlphaFold, a scoring function based on pairwise amino-acid distances learned

over known native conformations guides a gradient descent algorithm (that makes use of the

expanded fragment library) towards a near-native conformation [47]. There is now renewed

interest in employing predicted distances or contacts (which record whether two amino acids

are spatially proximal or not based on a characteristic distance threshold of 8Å between

the beta carbon atoms of two amino acids) as alternative or additional scoring functions in

conformational sampling methods.

The growth in known native conformations of proteins has allowed data-driven meth-

ods to predict contacts with increasing accuracy; some methods use evolutionary coupling

analysis [55], and others leverage supervised machine learning [56] over a wide variety of

features. We note that the top performer in the CASP12 contact prediction category was

RaptorX-Contact [57], which employs a deep residual neural network for contact prediction.

However, it remains unclear how to best exploit steady improvements in contact prediction

for improved conformational sampling [58]. Research is active and existing approaches ei-

ther completely replace the energy function with a contact-based scoring one, or devise a

new, aggregate scoring function that adds derived contacts as restraints in a new term added

to an energy function [53,58–62]. It also remains unclear how many contacts are needed for

improved performance, as not all contacts are predicted with the same confidence from a

machine learning model. When evaluating contact prediction methods, it is common prac-

tice to consider a reduced list of the most confident 10, l/5, or l/2 contacts, where l is the

number of amino acids in a target sequence [58]. Various contact-based scores are devised.

Precision, Recall, F1, and Coverage are some of the most commonly used ones for evaluation
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in the CASP contact assessment category. Due to the fact that these measures are highly

correlated on the reduced lists, precision is typically the primary choice for evaluation.
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Chapter 3: Employed Domain-specific Knowledge and

Evaluation

3.1 Representation

A conformation is the result of instantiating variables selected to represent the spatial

arrangement of a tertiary structure. The dissertation employs Rosetta’s centroid (CEN)

representation for a conformation. In this representation, the side-chain of each amino

acid is first reduced to a pseudo-atom, which marks the location of the side-chain and in-

terpreted as the centroid over the side-chain atoms. The only atoms that are explicitly

modeled for each amino acid are the heavy backbone atoms and the centroid of the side-

chain atoms. The underlying variables modeled are the φ, ψ, ω dihedral backbone angles

for each amino acid which basically determine the spatial arrangement of atoms that are

covalently linked to form a chain that folds in different ways in three dimensions. This

representation simplifies the search space and reduces its dimensionality compared to the

coordinate representation where each atom in each amino-acid is modeled with the Carte-

sian coordinates. Through forward kinematics, we can go from this dihedral conformation

representation to the coordinate representation.

In addition, the molecular fragment replacement technique is used to discretize the

search space and add variation to a conformation by bundling the backbone dihedral angles

together, as described in 2.1. We use the popular online Robetta fragment configuration

library [30] which provides fragment configurations of length 3 and 9 given an amino-acid

sequence of a protein. The provided fragments are organized in such a way that a query

with the amino-acid sequence of a fragment returns 200 fragment configurations to choose

from.

18



3.2 Energy functions

The conformation space available to a given amino-acid sequence is vast and high-dimensional.

Some back-of-the-envelope calculations provide the context. Consider a short protein se-

quence of 60 amino acids. This results in 178 backbone dihedral angles (3 – φ, ψ, and ω –

angles for each amino acid, save for the first and the last one that contain two angles each),

thus giving rise to a 178-dimensional conformation space. Not all conformations correspond

to energetically-favorable states. Some conformations are clearly unfavorable, containing

steric clashes among portions of the chain. Others are not energetically-favorable for a vari-

ety of reasons, captured in a scoring function. The Rosetta suite of energy/scoring functions

provides a variety of energy functions for a conformation that consider different energetic

terms to calculate the energy scores. We use score0, score1, score3, and score4 energy

functions that work with the centroid representation for the experiments in this thesis. The

score0 energy function considers only the V an der Waals (vdw) energetic term which pe-

nalize steric clashes. score1 additionally considers five more energetic terms and rewards

secondary structure formation. score3 adds four more energetic terms over score1 and

rewards compact tertiary structure formation. score4 is the full centroid scoring function

that additionally considers short-range hydrogen bonding, long-range hydrogen bonding,

and chainbreak terms along with the Ramachandran score which assigns probability-based

scores for residues based on the dihedral angles. The 14 energetic terms and their weight

values for each of these energy functions are provided in Table 3.1.

3.3 Evaluation Datasets

The algorithms and techniques presented in this thesis are mainly evaluated on two monomor-

phic datasets that contain proteins with one known native conformation mostly because

evaluation in such datasets is the norm in the literature for this problem. The first is

a benchmark dataset of 20 target proteins of varying lengths (ranging from 53 to 146

amino acids) and folds (α, β, α + β, and coil), listed in Table 3.2 by their PDB IDs.
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Table 3.1: The 14 energetic terms considered in the Rosetta’s centroid energy functions and
their weight values for each energy functions used.

Energy Function
Energetic Term score0 score1 score3 score4

environment (env) 0 1.0 1.0 1.0
residue pair (pair) 0 1.0 1.0 1.0
cbeta 0 0 1.0 1.0
Van der Waals forces (vdw) 0.1 1.0 1.0 1.0
radius of gyration (rg) 0 0 3.0 2.0
cenpack 0 0 1.0 1.0
helices-strands pair (hs pair) 0 1.0 1.0 1.0
strand-strand pair (ss pair) 0 0.3 1.0 1.0
rsigma 0 0 1.0 1.0
beta sheet formation (sheet) 0 1.0 1.0 1.0
long-range hydrogen bonding (hbond lr bb) 0 0 0 1.0
short-range hydrogen bonding (hbond sr bb) 0 0 0 1.0
Ramachandran score (rama) 0 0 0 1.0
chainbreak 0 0 0 1.0

This dataset was introduced in [63] and then complemented with more targets in later

work [34, 41, 46, 52, 53, 64]. The second dataset consists of 10 hard, free-modeling target

domains from CASP12 and CASP13, listed in Table 3.3 by their domain IDs. However, we

expand our evaluation on Section 6.2 to include a third dataset, one that is metamorphic

or consists of proteins with at least two known native conformations. We compiled this

novel dataset of 13 proteins from various works [18, 65]. The dataset consists mostly of

proteins with two known native conformations. Table 3.4 relates the dataset. The first

12 rows relate proteins where wet-laboratories have elucidated two very distinct conforma-

tions. The pairwise distance of the conformations are related in Column 4 in the form of

lRMSD (described in Section 3.4). The last row relates Calmodulin, for which 4 distinct

conformations are obtained from the PDB. The range of pairwise lRMSD is shown in this

case.
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Table 3.2: Targets in the Benchmark dataset.

PDB ID Length Fold

1ail 73 α
1aly 146 β
1aoy 78 α
1bq9 53 β
1c8c(A) 64 β
1cc5 83 α
1dtd(B) 61 α+ β
1dtj(A) 76 α+ β
1fwp 68 α+ β
1hhp 99 β
1hz6(A) 67 α+ β
1isu(A) 62 coil
1sap 66 β
1tig 88 α+ β
1wap(A) 68 β
2ci2 83 α+ β
2ezk 93 α
2h5n(D) 123 α
2hg6 106 α+ β
3gwl 106 β

Table 3.3: Targets in the CASP dataset.

Domain ID Length CASP

T0859-D1 129 12
T0886-D1 69 12
T0892-D2 110 12
T0897-D1 138 12
T0898-D2 55 12
T0953s1-D1 67 13
T0953s2-D3 93 13
T0957s1-D1 108 13
T0960-D2 84 13
T1008-D1 77 13

21



Table 3.4: Targets in the Metamorphic dataset

Protein Name Length PDB Ids of Known
Conformations

lRMSD
(Å)

SARA 127 1fzp(D), 2frh(A) 19
Calcium-bound EF-Hand protein 134 1jfk(A), 2nxq(B) 15.9
Yeast Matalpha2/MCM1 87 1mnm(C), 1mnm(D) 6.7
IscA 112 1x0g(A), 1x0g(B) 18
NF-kB RelB 110 1zk9(A), 3jv6(A) 16.5
Beta 2 Microglobulin 100 3low(A), 3m1b(F) 19.3
Protein Related to DAN and Cerberus 148 4jph(B), 5hk5(H) 6.9
Methanocaldococcus monomeric selecase 110 4qhf(A), 4qhh(A) 12.2
CopK 74 2k0q(A), 2lel(A) 9.1
SLAS-micelle bound alpha-synuclein 140 2kkw(A), 2n0a(D) 36.1
Human prion protein mutant HuPrP 147 2lej(A), 2lv1(A) 18.6
Cyanovirin-N 101 2ezm(A), 1l5e(A) 16
Calmodulin 148 1cfd(A), 1cll(A),

2f3y(A), 1lin(A)
4.3-13.4

3.4 Evaluation Metrics

In this dissertation, we measure the performance of a conformation ensemble generation al-

gorithm by the lowest reached energy and the lowest reached distance to the known native

conformation of the target sequence under consideration, as is practice in evaluations of

EAs for conformational sampling [54]. The first provides information on the capability of

an algorithm to explore the vast conformation space and the underlying energy surface of a

given protein sequence. The second provides information on the ability of an algorithm to

get to near-native regions of the space. Measuring the distance to the known native confor-

mation is important because lower energies do not necessarily correlate with proximity to

the native conformation. For the lowest reached energy, we use Rosetta score4 energy as

in [40,41,46,66]. In conformational sampling, the proximity comparisons typically focus on

the main carbon atoms or the Cα atoms. We measure the proximity to the native conforma-

tion via three popular metrics, least root-mean-squared-deviation (lRMSD) [67], Template

Modeling Score (TM-score) [68,69], and Global Distance Test - Total Score (GDT TS) [70].
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We use lRMSD to perform evaluations in all the datasets as it is widely used in template-

free PSP. We employ TM-score and GDT TS for evaluations in the CASP dataset as they

are standard similarity measures used in CASP competitions. We provide brief descriptions

of these proximity metrics below.

lRMSD: RMSD is a dissimilarity metric based on Euclidean distance between two con-

formations. After a generated conformation and a given native conformation are optimally

superimposed to remove differences due to rigid-body motions in 3D (rotations and transla-

tions), RMSD measures the Euclidean distance averaged over the atoms under comparison.

If N is a given native conformation and S is a generated conformation, both containing M

atoms, RMSD between them is given by,
√∑M

j=1 |Pj(N)− Pj(S)|2/M , where Pj(X) is the

position of atom j in conformation X. The “least” term in lRMSD indicates that the con-

formations are optimally aligned to provide the lowest RMSD between the conformations.

lRMSD is measured in Å; a lower score indicates a better proximity.

TM-score: TM-score is a similarity metric that weights shorter distances between corre-

sponding residues of two conformations stronger than the longer distances. The goal is to

achieve more sensitivity towards the global fold similarity than to the local conformation

deviations. TM-score is given by, Max[ 1
L(N)

∑L(A)
j=1

1

1+(
Dj
D0

)2
], where L(N) and L(A) are the

lengths of the native conformation and the length of the aligned residues respectively. Dj is

the distance between the j-th pair of residues and D0 is a scaling factor that normalizes dis-

tances. Max denotes the maximum value after optimal superposition. TM-score provides

a score in [0, 1] with a higher score indicating a better proximity.

GDT TS: GDT TS is a similarity metric that utilizes 4 different distance thresholds.

After superimposing two conformations, it measures the average of the largest set (as a

percentage) of amino-acid’s alpha carbon atoms in a native conformation falling within de-

fined distance thresholds of their position in the generated conformation. GDT TS is given
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by, (GDT P1 +GDT P2 +GDT P4 +GDT P8)/4, where GDT Pi denotes the percentage

of residues under distance threshold iÅ. GDT TS provides a score in [0, 1], which is often

interpreted as a percentage, with a higher score indicating a better proximity.

The comparative evaluations we relate in this dissertation are further strengthened by

statistical significance tests. We use Fisher’s [71] and Barnard’s [72] exact tests over 2x2

contingency matrices keeping track of the particular performance metric under comparison.

Fisher’s exact test is conditional and widely adopted for statistical significance. Barnard’s

test is unconditional and generally considered more powerful than Fisher’s test on 2x2

contingency matrices.

Finally, to provide a complete picture and measure how much better or worse perfor-

mance is achieved on each target, we also employ performance profiles [73] for our works

presented in Sections 5.3 and 6.2. Performance profiles show the cumulative distribution

functions for different performance ratios for a evaluation metric that reveal major perfor-

mance characteristics. Let us briefly summarize the concept of performance profiles, as they

have never been employed in protein modeling research to the best of our knowledge. Per-

formance profiles provide us with a way of depicting how frequently a particular algorithm is

within some distance of the best algorithm for a particular problem instance/target. So, for

each problem instance, we first compute the best method, and then for every other method,

we determine how far they are from optimal. We vary the performance ratio (pr) over a

range for this analysis. Specifically, for a given pr, measure reached means that an algorithm

comes within a factor of pr of the best measure over all algorithms on a given target. The

number of targets where an algorithm does this is tallied up, and this becomes indicative

of its performance, also referred to as number of problems solved, at a given performance

ratio. In our case, problem instances are our targets in the dataset in consideration.
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Chapter 4: Mitigating Energy Function Limitations

As stated in Chapter 1, even state-of-the-art energy functions that quantify atomic inter-

actions in a conformation are inherently inaccurate; they result in overly rugged energy

surfaces (associated with protein conformation spaces) that are riddled with artifact local

minima. In this chapter, we explore ways to mitigate the effects these inaccuracies have

on the optimization process. First, we present our work on properly balancing multiple en-

ergetic objectives to generate better quality conformation ensembles in Section 4.1. Then,

we explore utilizing sequence-predicted contact information as an additional optimization

objective in Section 4.2. The algorithms we present below take the amino-acid sequence

of a protein as input and provide an ensemble of conformations generated through the

evolutionary process as output.

4.1 Balancing Multiple Objectives in Conformation Sampling

The work presented in this section has been published in [74]. Decomposing the energy

function into multiple energetic objectives and optimizing these objectives together has

been shown to generate better quality conformation ensemble than methods that optimize

a single objective considering the energy function as a whole [41, 44–46]. In this work, we

explore how to achieve a proper balance between multiple competing energetic objectives

to ensure a diverse set of sampled conformation. To do this, we develop a multi-objective

EA to directly control the diversity of the sampled conformation. We refer to the algorithm

as Evo-Diverse. Evo-diverse balances the multiple objectives in a way that results in high

exploration capability and is additionally able to access lower-energy regions of the energy

landscape of a given protein with similar or better proximity to the known native conforma-

tion than state-of-the-art algorithms. Unlike existing, state-of-the-art multi-objective EAs,
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the proposed algorithm circumvents issues related to the usage of an archive (described

later), thus saving computational overhead, and avoids the usage of total energy in its

optimization objectives altogether.

4.1.1 Summary of Evo-Diverse

Evo-diverse is a memetic EA that controls the diversity of the conformations it computes via

the selection operator that determines individual survival. The algorithm builds over exper-

tise in our laboratory on EAs for conformation sampling. Evo-diverse evolves a fixed-size

population of N conformations over generations. The initial population is constructed as in

HEA (described in Section 2.2.2). at the beginning of each generation, all individuals in the

population are selected as parents and varied so that each yields one offspring conformation.

To additionally improve exploitation (digging deeper into the energy surface), each offspring

is further subjected to an improvement operator. The variation and improvement operators

are employed as described in Section 2.2.2. After applying the variation and improvement

operators, the algorithm has now computed N new (offspring) conformations that will fight

for survival among one another and the N parent conformations. The winners constitute

the population for the next generation.

4.1.2 Selection Operator

The selection operator is the mechanism leveraged to pursue a multi-objective optimization

setting and directly control the diversity of computed conformations. We first describe how

the selection operator allows a multi-objective optimization setting.

Multi-objective Optimization under Pareto Dominance

Let us consider that a certain number of optimization objectives is provided along which

to compare conformations. A conformation Ca is said to dominate another conformation

Cb if the value of each optimization objective in Ca is lower than the value of that same

objective in Cb; this is known as strong dominance. If equality is allowed, the result is
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soft dominance. The proposed algorithm makes use of strong dominance. Utilizing the

concept of dominance, one can measure the number of conformations that dominate a given

conformation Cb. This measure is known as Pareto rank (PR) or, equivalently, domination

count. In contrast, the number of conformations dominated by a given conformation Ca

is known as the Pareto count (PC) of Ca. If no conformation in a set dominates a given

conformation Cb, then Cb has a domination count (PR) of 0 and is said to be non-dominated.

Non-dominated conformations constitute the Pareto front.

The concept of Pareto dominance can be operationalized in various ways. In early

proof-of-concept work [41, 46], the Rosetta score4 (which includes both short-range and

long-range hydrogen bonding terms) was divided into three optimization objectives along

which parents and offspring can be compared in the selection operator: short-range hydrogen

bonds (objective 1), long-range hydrogen bonds (objective 2), and everything else (summed

together in objective 3). This categorization recognizes the importance of hydrogen bonds

for formation of native conformations [35]. Using these three objectives, work in [41] utilizes

only PR in the selection operator, first sorting the N parent and N offspring conformations

from low to high PR, and then further sorting conformations with the same PR from low to

high score4 (total energy that sums all three objectives). PC can be additionally considered

to obtain a sorted order, as in [46]. Conformations with the same PR are sorted from high

to low PC, and conformations with the same PC are further sorted from low to high score4.

The selection operator then selects the top N conformations (out of the combined 2N

conformations of parents and offspring) according to the resulting sorted order.

Non-dominated Fronts Our algorithm truly considers a multi-objective setting and

does not utilize an aggregate energy value (the sum of the objectives). Specifically, the

algorithm considers non-dominated fronts in its selection operator. A fast, non-dominated

sorting algorithm (originally proposed in [75]) is used to generate these fronts as follows. All

the conformations in the combined parent and offspring population that have a domination

count of 0 (thus, are non-dominated) make up the first non-dominated front F1. Each
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subsequent, non-dominated front Fi is generated as follows. For each conformation C ∈

Fi−1, the conformations dominated by C constitute the set SC . The domination count of

each member in SC is decremented by 1. Conformations in SC that have their domination

count reduced to 0 make up the subsequent, non-dominated front Fi. This process of

generating non-dominated fronts terminates when the total number of conformations over

the generated fronts equals or exceeds the population size N . In this way, the selection

operator is accumulating enough good-quality conformations from which it can further

draw based on additional non-energy based objectives. Moreover, this allows generating

Pareto-optimal solutions over the generations and achieving better convergence to the true,

Pareto-optimal set.

Density-based Conformation Diversity

Borrowing from evolutionary computation research [75] on optimization problems of few

variables ranging from 1 to 30 (as opposed to hundreds of variables in our setting), we

leverage crowding distance to retain diverse conformations. Crowding distance estimates

the density of the conformations in the population space and guides the selection process

over generations towards less crowded regions [75]. We use the crowding distance assignment

technique to compute the average distance of a conformation from other conformations in

the same non-dominated front along each of the optimization objectives. First, the crowding

distance of each conformation is initialized to 0. Then, for each objective, conformations

are sorted based on their corresponding score (value of that objective) in ascending order

and assigned infinite distance value to conformations with the highest and lowest scores;

this ensures that conformations with the highest and lowest scores (effectively constituting

the boundaries of the population space) are always selected. For all other conformations C,

the absolute normalized difference in scores between the two closest conformations on either

side of C is added to the crowding distance. Finally, when all the objectives are considered,

the crowding distance of a conformation is the sum of the individual distances along each

objective.
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Putting it All Together: Conformation Diversity in a Multi-objective Optimiza-

tion Setting

To obtain the next population, the selection operator selects r conformations from the non-

dominated fronts F1, F2, . . . , Ft sequentially, where r is
∑

i∈{1,2,...,t} Fi until r+|Ft+1| reaches

or exceeds N . If r < N , which is usually the case, the crowding distance of conformations

in Ft+1 is computed and used to sort them in descending order. The selection operator then

selects the top N − r conformations in this order.

It is worth noting that in our lab’s earlier operationalizations [41,46] of multi-objective

optimization for template-free PSP, all conformations ever computed were retained to form

an archive for the calculation of PR and PC values for each conformation. This introduces

a significant computational overhead, which the proposed algorithm circumvents. The pro-

posed algorithm instead uses only the current combined population of parents and offspring

to perform selection, thus saving such overhead.

4.1.3 Implementation Details

The population size is N = 100 conformations, in keeping with earlier work on multi-

objective EAs. Instead of imposing a bound on the number of generations, the algorithm is

executed for a fixed budget of 10, 000, 000 energy evaluations. The algorithm is implemented

in Python and interfaces with the PyRosetta library. The algorithm takes 1−4 hours on one

Intel Xeon E5-2670 CPU with 2.6GHz base processing speed and 64GB of RAM. The range

in running time depends primarily on the length of the protein. As further described in the

next section, the algorithm is run 5 times on a test case (a target amino-acid sequence) to

remove differences due to stochasticity.

4.1.4 Results

The evaluation is carried out on both the benchmark and the CASP datasets listed in Sec-

tion 3.3. The Evo-Diverse algorithm is compared with Rosetta’s conformation sampling
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algorithm described in 2.2.1, a memetic EA that does not utilize multi-objective optimiza-

tion [40], and two other memetic EAs that do so (one utilizing only Pareto Rank [41],

and the other utilizing both Pareto Rank and Pareto Count [46], as described in Sec-

tion 4.1.2). We will correspondingly refer to these algorithms as Rosetta, mEA, mEA-PR,

and mEA-PR+PC. This comparison allows us to isolate the impact of the selection operator

in Evo-Diverse over those in mEA-PR, and mEA-PR+PC, as well as point to the impact

of the multi-objective setting (in comparison with mEA) and the evolutionary computation

framework overall (in comparison with Rosetta). Each of these algorithms is run 5 times

on each target sequence, and what is reported is their best performance over all 5 runs

combined. Each run continues for a fixed computational budget of 10M energy evaluations.

In keeping with published work on EAs for conformational sampling [54], performance

is measured by the lowest energy ever reached and the lowest distance ever reached to

the known native conformation of a target under consideration. To carry out a principled

comparison, we evaluate the statistical significance of the presented results using Fisher’s

and Barnard’s exact tests.

Comparative Analysis on Benchmark Dataset

Fig. 4.1 shows the lowest energy obtained over combined 5 runs of mEA, mEA-PR, mEA-

PR+PC, Rosetta, and Evo-Diverse for each of the 20 target proteins; the targets are denoted

on the x axis by the Protein Data Bank (PDB) [48] identifier (ID) of a known native

conformation for each target. Fig. 4.2 presents the comparison in terms of the lowest lRMSD

achieved on each of the test cases. Color-coding is used to distinguish the algorithms from

one another.

A summary of comparative observations is presented in Table 4.1. Table 4.1(a) shows

that lowest energy is achieved by Evo-Diverse in 9/20 of the test cases over the other

algorithms; in comparison, mEA-PR achieves the lowest energy in 4/20, mEA and mEA-

PR+PC in 3/20, and Rosetta in only 1 case. In a head-to-head comparison, Evo-Diverse

bests each of the other algorithms in a comparison of lowest energy. Table 4.1(b) shows that
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Figure 4.1: The lowest Rosetta score4 (measured in Rosetta Energy Units – REUs) to a
given native conformation obtained over 5 runs of each algorithm on each of the 20 test cases
of the benchmark dataset is shown here, using different colors to distinguish the algorithms
under comparison.

lowest lRMSD is achieved by Evo-Diverse in 10/20 test cases over the other algorithms; in

comparison, mEA-PR achieves the lowest energy in 2/20, mEA and mEA-PR+PC in 1/20,

and Rosetta in 9 cases. In a head-to-head comparison, Evo-Diverse bests each of the other

algorithms in a comparison of lowest lRMSD, as well.

The above comparisons are further strengthened via statistical analysis. Table 4.2(a)

shows the p-values obtained in 1-sided statistical significance tests that pitch Evo-Diverse

against each of the other algorithms (in turn), evaluating the null hypothesis that Evo-

Diverse performs similarly or worse than its counterpart under comparison, considering

two metrics, achieving the lowest energy in each test case, and achieving a lower (lowest)

31



Figure 4.2: The lowest lRMSD (measured in Angstroms – Å) to a given native conformation
obtained over 5 runs of each algorithm on each of the 20 test cases of the benchmark dataset
is shown here, using different colors to distinguish the algorithms under comparison.

energy on each test case that its current counterpart. Both Fisher’s and Barnard’s test

are conducted, and p-values less than 0.05 (which reject the null hypothesis) are marked in

bold. Table 4.2(a) shows that the null hypothesis is rejected in most of the comparisons;

Evo-Diverse performs better than mEA and Rosetta; the performance over mEA-PR and

mEA-PR+PC is not statistically significant.

Table 4.2(b) shows the p-values obtained in 1-sided statistical significance tests that

pitch the performance of Evo-Diverse against each of the other algorithms (in turn), evalu-

ating the null hypothesis that Evo-Diverse performs similarly or worse than its counterpart

under comparison, considering two metrics, achieving the lowest lRMSD in each test case,

and achieving a lower (lowest) lRMSD on each test case than its current counterpart. Both
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Table 4.1: Comparison summary of benchmark dataset.

(a) Comparison of the number of test cases of the benchmark dataset on
which the algorithms achieve the lowest energy value.

Evo-Diverse vs. others: 9 vs. 3 (mEA), 4 (mEA-PR),
3 (mEA-PR+PC), and 1 (Rosetta)

Evo-Diverse vs. mEA: 14 vs. 6

Evo-Diverse vs. mEA-PR: 11 vs. 9

Evo-Diverse vs. mEA-PR+PC: 12 vs. 8

Evo-Diverse vs Rosetta: 16 vs. 4

(b) Comparison of the number of test cases of the benchmark dataset on
which the algorithms achieve the lowest lRMSD value.

Evo-Diverse vs. others: 10 vs. 1 (mEA), 2 (mEA-PR),
1 (mEA-PR+PC), and 9 (Rosetta)

Evo-Diverse vs. mEA: 15 vs. 5

Evo-Diverse vs. mEA-PR: 14 vs. 6

Evo-Diverse vs. mEA-PR+PC: 15 vs. 5

Evo-Diverse vs Rosetta: 11 vs. 9

Fisher’s and Barnard’s test are conducted, and p-values less than 0.05 (rejecting the null

hypothesis) are in bold. Table 4.2(b) shows that the null hypothesis is rejected in most

tests; Evo-Diverse outperforms all algorithms except for Rosetta.

Table 4.3(a) shows the p-values obtained in 2-sided statistical significance tests that pitch

Evo-Diverse against each of the other algorithms (in turn), evaluating the null hypothesis

that Evo-Diverse performs similarly to its counterpart under comparison, considering two

metrics, achieving the lowest energy in each test case, and achieving a lower (lowest) energy

on each test case than its current counterpart. Both Fisher’s and Barnard’s test are con-

ducted, and p-values less than 0.05 (which reject the null hypothesis) are marked in bold.

Table 4.3(a) shows that the null hypothesis is rejected in most of the comparisons; Evo-

Diverse does not perform similarly to mEA and Rosetta; the dissimilarity of performance

compared to mEA-PR and mEA-PR+PC is not statistically significant at 95% confidence

level. Similarly, Table 4.3(b) shows the p-values obtained in 2-sided statistical significance
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Table 4.2: 1-sided statistical significance tests for the benchmark dataset.

(a) Comparison of Evo-Diverse to other algorithms on lowest energy via 1-sided
Fisher’s and Barnard’s tests on the benchmark dataset. Top panel evaluates the null
hypothesis that Evo-Diverse does not achieve the lowest energy, considering each of
the other four algorithms in turn. The bottom panel evaluates the null hypothesis that
Evo-Diverse does not achieve a lower lowest energy value in comparison to a particular
algorithm, considering each of the four other algorithms in turn.

Best Lowest Energy

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.04118 0.088 0.04118 0.004181
Barnard’s 0.02489 0.05368 0.02489 0.001879

Better Lowest Energy

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.01282 0.3762 0.1715 0.00018
Barnard’s 0.008299 0.3179 0.1341 0.00009139

(b) Comparison of Evo-Diverse to other algorithms on lowest lRMSD via 1-sided
Fisher’s and Barnard’s tests on the benchmark dataset. Top panel evaluates the
null hypothesis that Evo-Diverse does not achieve the lowest lRMSD, considering
each of the other four algorithms in turn. The bottom panel evaluates the null
hypothesis that Evo-Diverse does not achieve a lower lowest lRMSD value in com-
parison to a particular algorithm, considering each of the four other algorithms
in turn.

Best Lowest lRMSD

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.001671 0.006907 0.001671 0.5
Barnard’s 0.000702 0.003284 0.000702 0.4373

Better Lowest lRMSD

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.001924 0.01282 0.001924 0.3762
Barnard’s 0.001118 0.008299 0.001118 0.3179

tests that now consider the lowest lRMSD instead of lowest energy. Table 4.3(b) shows that

the null hypothesis is rejected in most tests; Evo-Diverse does not perform similarly to all

algorithms except for Rosetta at 95% confidence level.

Taken altogether, these results indicate that Evo-Diverse has a high exploration capa-

bility, decidedly outperforming mEA and Rosetta in terms of its ability to wisely use a
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fixed computational budget to reach lower-energy levels, and performing similarly or better

than mEA-PR and mEA-PR+PC. The latter result is not surprising, as mEA-PR, mEA-

PR+PC, and Evo-Diverse use a multi-objective optimization framework, which delays a

premature convergence, thus allowing them to reach lower energies within the same com-

putational budget provided to mEA and Rosetta. Interestingly though, the head-to-head

lRMSD comparisons show that, while mEA-PR and mEA-PR+PC achieve lower energies

than Rosetta, this does not help them achieve the same performance as Rosetta in terms

of lowest lRMSDs. In contrast, Evo-Diverse effectively retains the best of both. It is able

to reach lower energies than Rosetta and comparable or lower lRMSDs than Rosetta, thus

constituting a clear advantage over the current state-of-the-art multi-objective optimization

EAs.

When analyzing the performance of conformation sampling algorithms, it is addition-

ally informative to visualize the energy landscape that they probe one conformation at a

time. We do so by plotting conformation-energy pairs, representing a conformation with

its lowest lRMSD coordinate to the known native conformation of each test case. Fig. 4.3

and Fig. 4.4 juxtapose such landscapes for two selected test cases, the protein with known

native conformation under PDB ID 1ail, and that with known native conformation under

PDB ID 1dtja, respectively.

The comparison is limited here to landscapes probed by Evo-Diverse, mEA-PR, and

mEA-PR+PC, as prior work [41] comparing mEA-PR and mEA-PR+PC to Rosetta and

mEA shows that these two algorithms achieve better funneling (better correlation between

low energies and low lRMSDs to the native conformation), and that mEA-PR+PC does so

the best for 1ail, while mEA-PR does so for 1dtja.

Fig. 4.3 shows that Evo-Diverse reveals better funneling of the landscape than mEA-

PR+PC (higher correlation between low energies and low lRMSDs) and multiple non-native

local minima, visually confirming its high exploration capability. Fig. 4.4 shows that Evo-

Diverse and mEA-PR reveal similar correlation between low energies and low lRMSDs

(higher than both Rosetta and mEA) and multiple non-native local minima.
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Table 4.3: 2-sided statistical significance tests for the benchmark dataset.

(a) Comparison of Evo-Diverse to other algorithms on lowest energy via 2-sided
Fisher’s and Barnard’s tests on the benchmark dataset. Top panel evaluates the
null hypothesis that Evo-Diverse achieves similar performance on reaching the low-
est energy, considering each of the other four algorithms in turn. The bottom
panel evaluates the null hypothesis that Evo-Diverse achieves similar performance
on reaching a lower lowest energy value in comparison to a particular algorithm,
considering each of the four other algorithms in turn.

Best Lowest Energy

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.08236 0.176 0.08236 0.008362
Barnard’s 0.04977 0.1074 0.04977 0.003759

Better Lowest Energy

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.02564 0.7524 0.3431 0.00036
Barnard’s 0.0166 0.6358 0.2682 0.0001828

(b) Comparison of Evo-Diverse to other algorithms on lowest lRMSD via 2-sided
Fisher’s and Barnard’s tests on the benchmark dataset. Top panel evaluates the
null hypothesis that Evo-Diverse achieves similar performance on reaching the
lowest lRMSD, considering each of the other four algorithms in turn. The bottom
panel evaluates the null hypothesis that Evo-Diverse achieves similar performance
on reaching a lower lowest lRMSD value in comparison to a particular algorithm,
considering each of the four other algorithms in turn.

Best Lowest lRMSD

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.003342 0.01381 0.003342 1
Barnard’s 0.001404 0.006567 0.001404 0.8746

Better Lowest lRMSD

Test mEA mEA-PR mEA-PR+PC Rosetta

Fisher’s 0.003848 0.02564 0.003848 0.7524
Barnard’s 0.002236 0.0166 0.002236 0.6358

Fig. 4.5 superimposes the best conformation (lowest lRMSD to the known native con-

formation) over the known native conformation for three selected proteins (PDB IDs 1ail,

1dtja, and 3gwl). Rendering is performed with the CCP4mg molecular graphics software [1].

In the case of 1ail, Evo-Diverse obtains the lowest lRMSD to the native conformation (1Å).
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(a) Evo-Diverse (1ail) (b) mEA-PR+PC (1ail)

Figure 4.3: Conformations are shown by plotting their Rosetta score4 vs. their Cα lRMSD
from the native conformation (PDB ID in parentheses) to compare the landscape probed
by different algorithms for the target with known native conformation under PDB id 1ail.

(a) Evo-Diverse (1dtja) (b) mEA-PR (1dtja)

Figure 4.4: Conformations are shown by plotting their Rosetta score4 vs. their Cα lRMSD
from the native conformation (PDB ID in parentheses) to compare the landscape probed
by different algorithms for the target with known native conformation under PDB id 1dtja.

On 1dtja, Evo-Diverse reaches a similar lowest lRMSD (2.6Å) as Rosetta and mEA-PR
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1ail (lRMSD = 1Å) 1dtja (lRMSD = 2.6Å) 3gwl (lRMSD = 3.2Å)

Figure 4.5: The conformation obtained by Evo-Diverse that is closest to the native confor-
mation is shown for three selected cases, the protein with known native conformation under
PDB ID 1ail (left), 1dtja (middle), and 3gwl (right). The Evo-Diverse conformation is in
blue, and the known native conformation is in olive.

(confirmed in Fig. 4.2). On 3gwl, Evo-Diverse achieves a dramatic improvement of low-

est lRMSD to the native conformation over all other algorithms; while none of the other

algorithms reach below 5Å, Evo-Diverse reaches 3.2Å, almost a 2Å improvement.

Comparative Analysis on CASP 12-13 Dataset

Table 4.4 shows the lowest energy and the average energy of the 10 best conformations

obtained by Evo-Diverse and Rosetta on each of the 10 target domains denoted by their

identifiers in column 1. The lower energy values between the two algorithms on each target

domain are marked in bold. Table 4.4 shows that lower energy values are obtained by Evo-

Diverse in 7/10 cases compared to Rosetta’s 3/10 cases. When the average of the best 10

conformations is considered instead, Evo-Diverse achieves lower energy values in 8/10 cases

compared to Rosetta’s 2/10 cases.

The above comparisons are further strengthened via statistical analysis. Table 4.8(a)
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Table 4.4: Comparison of energy of the lowest energy conformation and average energy of
the 10 best conformations (measured in Rosetta Energy Units – REUs) obtained by each
algorithm on each of the 10 CASP domains.

Lowest Energy Avg. of the best 10
Domain Length Rosetta Evo-Diverse Rosetta Evo-Diverse

T1008-D1 77 −164.2 −166.4 −162 −166.3
T0957s1-D1 108 −121.5 −112.6 −115 −112.6
T0892-D2 110 −101.8 −112.3 −94.1 −112.3
T0953s2-D3 93 −53.1 −67.6 −49.8 −66.3
T0960-D2 84 −79.7 −82.3 −79.4 −82.3
T0898-D2 55 −65.5 −66.7 −62.8 −66.7
T0859-D1 129 −99.5 −85.6 −90.7 −85.6
T0897-D1 138 −141.4 −147.4 −137.4 −147.4
T0886-D1 69 −89.2 −85.4 −84 −85.4
T0953s1-D1 67 −51.8 −59 −49.1 −59

shows the p-values obtained in 1-sided statistical significance tests that pitch Evo-Diverse

against Rosetta, evaluating the null hypothesis that Evo-Diverse performs similarly or worse

than Rosetta. Both Fisher’s and Barnard’s test are conducted, and p-values less than 0.05

(which reject the null hypothesis) are marked in bold. Table 4.8(a) shows that the null

hypothesis is rejected when the average of the best 10 conformations is considered, and

Evo-Diverse performs significantly better than Rosetta with 95% confidence. When the

focus is on the lowest energy reached, the performance improvement of Evo-Diverse over

Rosetta is not statistically significant at 95% confidence level, although the p-values are

very close to the 0.05 threshold.

Table 4.5 shows the lowest lRMSD to the native conformation and the average lRMSD

of the 10 best conformations obtained by Evo-Diverse and Rosetta on each of the 10 target

domains denoted by their identifiers in column 1. The lower lRMSD values between the

two algorithms on each target domain are marked in bold. Table 4.5 shows that lower

lRMSDs are obtained by Evo-Diverse in 6/10 cases compared to Rosetta’s 4/10 cases.

When the average of the 10 best-lRMSD conformations is considered, Evo-Diverse achieves
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lower lRMSD in 9/10 cases compared to 2/10 cases of Rosetta.

Table 4.5: Comparison of lRMSD to the native conformation of the lowest lRMSD con-
formation and average lRMSD to the native of the 10 best conformations (measured in

Angstroms – Å) obtained by each algorithm on each of the 10 CASP domains.

Lowest lRMSD Avg. of the best 10
Domain Length Rosetta Evo-Diverse Rosetta Evo-Diverse

T1008-D1 77 3.2 3.5 3.4 3.6
T0957s1-D1 108 6.9 7.1 8.1 7.6
T0892-D2 110 8 7.4 8.5 7.6
T0953s2-D3 93 8.7 7.9 9.3 8.3
T0960-D2 84 7.2 7.3 7.6 7.6
T0898-D2 55 6.5 5.9 6.7 6.3
T0859-D1 129 10.6 9.4 11.3 9.9
T0897-D1 138 9 9.3 10.8 9.9
T0886-D1 69 6.3 6.2 6.8 6.6
T0953s1-D1 67 7 5.7 7.4 6.1

The above comparisons are further strengthened via statistical analysis. Table 4.8(b)

shows the p-values obtained in 1-sided statistical significance tests that pitch Evo-Diverse

against Rosetta, evaluating the null hypothesis that Evo-Diverse performs similarly or worse

than Rosetta. Again, both Fisher’s and Barnard’s test are conducted, and p-values less than

0.05 (which reject the null hypothesis) are marked in bold. Table 4.8(b) shows that the

null hypothesis is rejected when the average of the best 10 conformations is considered and

Evo-Diverse performs significantly better than Rosetta with 95% confidence. When the

focus is on the lowest lRMSD reached, the performance improvement of Evo-Diverse over

Rosetta is not statistically significant at 95% confidence level.

Table 4.6 shows the highest TM-score to the native conformation and the average TM-

score of the 10 best (in terms of TM-scores) conformations obtained by Evo-Diverse and

Rosetta on each of the 10 target domains denoted by their identifiers in column 1. The

higher TM-score values between the two algorithms on each target domain are marked in

bold. Table 4.6 shows that higher TM-scores are obtained by Evo-Diverse and Rosetta
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on 5/10 cases. When the focus is on the average TM-score of the best (in terms of TM-

scores) 10 conformations is considered, Evo-Diverse achieves higher TM-score in 6/10 cases

compared to Rosetta’s 5/10.

Table 4.6: Comparison of TM-score of the highest TM-score conformation and average
TM-score of the 10 best conformations obtained by each algorithm on each of the 10 CASP
domains.

Highest TM-score Avg. of the best 10
Domain Length Rosetta Evo-Diverse Rosetta Evo-Diverse

T1008-D1 77 0.61 0.59 0.57 0.55
T0957s1-D1 108 0.49 0.42 0.42 0.40
T0892-D2 110 0.45 0.50 0.42 0.47
T0953s2-D3 93 0.28 0.25 0.25 0.25
T0960-D2 84 0.37 0.39 0.35 0.38
T0898-D2 55 0.39 0.37 0.37 0.36
T0859-D1 129 0.30 0.34 0.29 0.33
T0897-D1 138 0.35 0.36 0.31 0.32
T0886-D1 69 0.42 0.45 0.40 0.41
T0953s1-D1 67 0.47 0.41 0.43 0.39

Table 4.8(c) shows the p-values obtained in 1-sided statistical significance tests that

pitch Evo-Diverse against Rosetta, evaluating the null hypothesis that Evo-Diverse performs

similarly or worse than Rosetta. Both Fisher’s and Barnard’s test are conducted, and p-

values less than 0.05 (which reject the null hypothesis) are marked in bold. Table 4.8(c)

shows that the null hypothesis is not rejected with 95% confidence and the performance

improvement of Evo-Diverse over Rosetta is not statistically significant.

Table 4.7 shows the highest GDT TS score to the native conformation and the average

GDT TS score of the 10 best (in terms of GDT TS scores) conformations obtained by

Evo-Diverse and Rosetta on each of the 10 target domains denoted by their identifiers in

column 1. The higher GDT TS scores between the two algorithms on each target domain

are marked in bold. Table 4.7 shows that higher values (on both the highest GDT TS score

and the average GDT TS score over the 10 best conformations) are achieved by Evo-Diverse
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in 6/10 cases compared to Rosetta’s 5/10.

Table 4.7: Comparison of GDT TS score of the highest GDT TS score conformation and
average GDT TS score of the 10 best conformations obtained by each algorithm on each of
the 10 CASP domains.

Highest GDT TS score Avg. of the best 10
Domain Length Rosetta Evo-Diverse Rosetta Evo-Diverse

T1008-D1 77 0.62 0.61 0.61 0.58
T0957s1-D1 108 0.43 0.39 0.39 0.37
T0892-D2 110 0.42 0.45 0.39 0.44
T0953s2-D3 93 0.31 0.31 0.27 0.27
T0960-D2 84 0.37 0.42 0.36 0.39
T0898-D2 55 0.46 0.44 0.45 0.43
T0859-D1 129 0.29 0.32 0.27 0.31
T0897-D1 138 0.30 0.31 0.26 0.28
T0886-D1 69 0.47 0.49 0.45 0.46
T0953s1-D1 67 0.50 0.46 0.48 0.45

Table 4.8(d) shows the p-values obtained in 1-sided statistical significance tests that

pitch Evo-Diverse against Rosetta, evaluating the null hypothesis that Evo-Diverse performs

similarly or worse than Rosetta. Both Fisher’s and Barnard’s test are conducted, and p-

values less than 0.05 (which reject the null hypothesis) are marked in bold. Table 4.8(d)

shows that the null hypothesis is not rejected with 95% confidence and the performance

improvement of Evo-Diverse over Rosetta is not statistically significant.

4.1.5 Summary

This section presents a novel conformation ensemble generation algorithm, Evo-Diverse, that

operationalizes the multi-objective, stochastic optimization framework. The algorithm does

not use total energy as a basis of selection but instead makes use of non-domination rank

and crowding distance in its selection operator to encourage conformation diversity. The

results show that Evo-Diverse reaches regions of lower total energy in the energy landscape

of the datasets used here for evaluation, showcasing its higher exploration capability over
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Table 4.8: p-values obtained by 1-sided Fisher’s and Barnard’s tests on the CASP dataset
for head-to-head comparison of the algorithms on lowest energy and average energy of the
best 10 conformations (a), lowest lRMSD and average lRMSD of the best 10 conformations
(b), highest TM-score and average TM-score of the best 10 conformations (c), and highest
GDT TS score and average GDT TS score of the best 10 conformations (d). All tests
evaluate the null hypothesis that Evo-Diverse does not perform better than Rosetta.

(a)

Test Lowest energy Avg. energy of the best 10

Fisher’s 0.08945 0.01151
Barnard’s 0.05789 0.005909

(b)

Test Lowest lRMSD Avg. lRMSD of the best 10

Fisher’s 0.3281 0.002739
Barnard’s 0.2617 0.001288

(c)

Test Highest TM-score Avg. TM-score of the best 10

Fisher’s 0.6719 0.5
Barnard’s 0.9991 0.4119

(d)

Test Highest GDT TS score Avg. GDT TS score of the best 10

Fisher’s 0.5 0.5
Barnard’s 0.4119 0.4119

the Rosetta conformation sampling protocol and other, state-of-the-art multi-objective EAs

that use total energy as an additional optimization objective. In addition, Evo-Diverse is

able to reach comparable or lower lRMSDs than Rosetta, thus constituting a clear advantage

over the current state-of-the-art multi-objective EAs. It is worth noting that Evo-Diverse

does not make use of an archive of all the conformations ever sampled, unlike other multi-

objective EAs that do so to update the Pareto metrics for use in the selection operator.

Evo-Diverse uses only the current population and their offspring to perform selection, thus

saving computational overhead.
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4.2 Using Sequence-Predicted Contacts to Guide Conforma-

tion Ensemble Generation

The work presented in this section has been published in [76]. As expressed in Chapter 1

and 2, the unreliability of existing energy functions has raised questions in the community

on the proper role and utilization of energy functions in protein conformation sampling.

The algorithm we presented in Section 4.1 generates conformations by balancing multiple

energetic objectives. In this section, we look to improve over it. Recent work suggests

employing complementary information in the form of amino-acid contacts and investigates

replacing the energy function with a contact-based scoring function, or devising an aggregate

scoring function that adds contact information as restraints to an energy function which

can be problematic (as explained in Section 1.1). Here, we advance this line of work and

present a thorough study on the separate and combined roles and guidance of interatomic

energy with contact-based scoring.

We take a single-objective optimization algorithm as a baseline, where the optimiza-

tion is driven by the energy function entirely. In addition, we develop a single-objective

optimization algorithm that utilizes a novel contact-based scoring function as its objective.

Building on our work described above on multi-objective optimization, we additionally pro-

vide a multi-objective optimization setting, where the energy function is decoupled into

several optimization objectives. These are compared with two novel algorithms that treat

energy and contact-based scoring as separate optimization objectives, thus providing a com-

prehensive picture of the contribution of each in isolation and combination in the search for

native conformations.

Evaluation on diverse datasets yields many interesting observations and advocates the

superiority of combining contact information in conjunction with energy functions for de

novo conformation ensemble generation. That is, our findings suggest that neither energy

functions nor contact-based scoring are sufficient by themselves as guides towards native

conformations; instead, they each provide complementary information that together confers
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better performance in a multi-objective optimization setting. The contribution of the work

presented in this section goes beyond the specific algorithmic platforms employed here; the

work indicates that better performance can be obtained from an optimization method if

both energy and contact-based information are employed and considered as optimization

objectives.

4.2.1 Algorithms

For the single-objective baseline EA that only utilizes energy, we choose HEA as described

in Section 2.2.2. For the baseline multi-objective EA, we employ Evo-Diverse as described

in Section 4.1. Note that, in Evo-Diverse, the energy terms in Rosetta score4 energy func-

tions are decomposed into 3 groups (short-range hydrogen bonding, long-range hydrogen

bonding, and the summation of the rest of the energy terms) that are considered as multiple

objectives. We refer to Evo-Diverse as MOEANS (Multi-Objective Evolutionary Algorithm

with Non-dominated Sorting) from now on to aid comparison with the novel algorithms we

describe below.

HEA-C: Guiding a Hybrid Evolutionary Algorithm by Contact-based Scoring

The selection operator in the HEA is known as selection via truncation. This operator is

the one that guides an EA globally in the conformation space. It can be easily modified to

select the fittest individuals based on a contact scoring function. In this modified single-

objective EA, which we deem HEA-C (C for ’C’ontacts), a conformation is evaluated as

follows. The contacts in it are first calculated, using a threshold of 8Å to record whether

distances between pairs of non-bonded CB atoms are below the threshold and thus recorded

as contacts. RaptorX-Contact [57] is used to obtain contacts predicted from the amino-acid

sequence alone of a given target protein. These contacts come with probabilities that provide

the confidence of the prediction for each contact. Based on our experiments conducted over

known native conformations, the top ten RaptorX-Contact predicted contacts are more

accurate and lead to more accurate contact-based scoring functions.
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In the CASP contact prediction category that evaluates sequence-based predicted con-

tacts, the known native conformation is treated as the ground truth [58]. In our setting,

the native conformation is not known. Instead, we treat the sequence-predicted contacts

as the ground truth. Specifically, we focus on the top ten of them (predicted with highest

confidence by RaptorX-Contact from a target sequence). These ten pairs of amino acids are

evaluated in terms of whether they form a contact or not in a computed conformation that

is to be evaluated in HEA-C. If the pairs are also found in contact in a computed conforma-

tion, then they contribute to incrementing the number of true postives (TPs). Otherwise,

they contribute to incrementing the number of false negatives (FNs) (reported to be in

contact by RaptorX-Contact but not found in contact in an HEA-C computed conforma-

tion). Each HEA-C conformation evaluated in the selection operator is then scored via

TP/(TP+FN); this score is known as sensitivity (or true positive rate – TPR). Note that

since we cannot employ contacts of the actual native conformation as the ground truth but

instead treat sequence-predicted contacts as the ground truth, we employ sensitivity rather

than precision. In summary, HEA-C uses only sensitivity (and not energy) to evaluate

parent and offspring in the selection operator; the top N conformations (with the highest

sensitivity scores) survive in the next generation, where N is the population size. The rest

of the evolutionary ingredients are same as HEA.

MOEANS-EC and MOEANS-SLEC: Energetic and Contact-based Scoring as

Optimization Objectives

In MOEANS, the selection operator can be modified to consider more than energetic objec-

tives. We do so in two ways. First, we consider the contact-based scoring function described

above and the (total) score4 energy as two separate objectives to develop a two-objective

EA. We refer to this algorithm as MOEANS-EC. Second, we consider the contact-based scor-

ing function to be the fourth objective in addition to the 3 energetic objectives in MOEANS.

We refer this algorithm as MOEANS-SLEC. We note that in these multi-objective EAs, a

conformation dominates another conformation if it has a lower energy score for each of the
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energy objectives but a higher contact-based score than the other conformation.

4.2.2 Implementation Details

The population for each EA contains N = 100 conformation. In keeping with earlier

work that evaluates how to stall premature convergence [40], not all parents compete with

offspring in HEA and HEA-C. An elitism rate of 25% is employed, where only the top 25%

of the parents compete with offspring. This prevents a few fittest parents from taking over

the population, effectively providing enough time for suboptimal conformations to improve

and contribute ”genetic material” over generations. In multi-objective EAs, the diversity

of the objectives help to stall premature convergence. Hence, in these EAs, all parents can

compete with offspring (elitism rate of 100%). All our EAs are run 5 times on each target

protein’s amino-acid sequence to account for their stochasticity, and each run has a fixed

budget of 10, 000, 000 fitness evaluations. These algorithms are implemented in Python,

and they interface with PyRosetta and Biopython libraries.

4.2.3 Results

We carry out comparative evaluations on both the benchmark and the CASP datasets.

The algorithms presented in Section 4.2.1, HEA, HEA-C, MOEANS, MOEANS-EC, and

MOEANS-SLEC, are compared to the Rosetta conformation sampling algorithm, which

represents state-of-the-art, energy-guided algorithms, and SCDE, a recent differential evo-

lution algorithm [53] that does not make use of interatomic energy but instead penalizes

computed conformations by how much they deviate in their content of secondary structure

elements and contacts based on predictions from sequence. We recall that on each target,

the algorithms described in Section 4.2.1 are run 5 times, each run employing a budget of

10M fitness evaluations. To ensure a fair comparison, we have run Rosetta with a total

budget of 54M energetic evaluations per target. In contrast, since SCDE is not available,

all results reported are those published in [53]; these results are obtained with 30 runs of

SCDE, where each run exhausts a budget of 9M fitness evaluations. The runs (per target)
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for each algorithm under comparison are combined, and performance on a target protein

sequence is summarized by the lowest energy reached, and the closest proximity to the

known native conformation.

Evaluation on Benchmark Dataset

We relate the comparison of HEA, HEA-C, MOEANS, MOEANS-EC, MOEANS-SLEC,

and Rosetta on the benchmark dataset in terms of the lowest Rosetta score4 energy value

reached by each algorithm in Table 4.9 and the lowest lRSMD to the known native con-

formation per target in Table 4.10. We note that while no energy values are reported for

SCDE in [53], lowest lRMSD values are reported, which we have added in Table 4.10. To

identify the 20 targets, Column 1 in Tables 4.9 and 4.10 shows the PDB identifier of a

representative, known native conformation for each target sequence. The lowest score4 and

lRMSD achieved on each target are marked in bold.

Several observations can be drawn from the results related in Table 4.9. HEA-C achieves

higher energy than all other algorithms. This is expected, as the selection operator in HEA-

C uses only the contact-based score. MOEANS-SLEC, which implements multi-objective

optimization with objectives being contact-based score, short-term hydrogen bonding, long-

term hydrogen bonding, and the rest of score4 terms as its fourth objective, reaches lower

energy than Rosetta in 15/20 targets, lower energy than HEA in 14/20 targets, lower en-

ergy than HEA-C in 20/20 targets, lower energy than MOEANS in only 4/20 targets, and

lower-energy than MOEANS-EC in only 3/20 targets. Table 4.13(a) which evaluates the

1-sided statistical significance tests of the performance of MOEANS-SLEC over Rosetta,

HEA, and HEA-C, shows that the improvements of MOEANS-SLEC over these three algo-

rithms are statistically significant for both Fisher’s and Barnard’s tests (p-values < 0.05).

This indicates that the multi-objective setting that considers contact score affords a higher

exploration capability over single-objective settings, such as Rosetta, HEA, and HEA-C,

which consider either energy or contact-based scoring guidance alone.
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Table 4.9: Comparison of the lowest score4 energy (in Rosetta Energy Units – REUs)
obtained by each algorithm under comparison on each of the 20 benchmark targets is shown
in Columns 2-7. The PDB ID of the known native conformation of each target is shown in
Column 1. The lowest energy value reached per target is marked in bold.

Lowest Energy (REUs)
PDB
ID

Rosetta MOEANS HEA HEA-C MOEANS-
EC

MOEANS-
SLEC

1ail −29.9 −82.2 −56.1 −51 −78 −74.5
1aly −112.5 −67.2 −81.1 −21.1 −77.6 −61.7
1aoy −73.3 −114.9 −98.1 −74.4 −115.2 −101.7
1bq9 −46.9 −68.7 −50.5 −39.9 −70.1 −69
1c8ca −101.4 −97.8 −86.4 −43.5 −91.4 −90.1
1cc5 −82.5 −88.3 −68.6 −55.9 −91.6 −86.1
1dtdb −66.5 −67.9 −55 −18.5 −71.2 −69.6
1dtja −72.5 −87.1 −82.2 −51.9 −83.9 −81
1fwp −71.3 −99.7 −84.4 −19.5 −88.5 −90.7
1hhp −106.3 −89.8 −104.5 −25.3 −92.8 −95.4
1hz6a −117.1 −123.3 −130.9 −85.9 −124.7 −120.9
1isua −27 −63.8 −46.5 −23.5 −51.5 −48.2
1sap −107.8 −109.9 −121.4 −68.4 −99.1 −97.6
1tig −138.2 −145.9 −128 −64.1 −142 −141.2
1wapa −109 −105.2 −132.5 −45.9 −107.7 −107.1
2ci2 −37.8 −108.4 −109.8 −43.2 −99 −110.9
2ezk −51.1 −132 −100.7 −98.4 −128.4 −126.3
2h5nd −82.5 −148.5 −129 −131.3 −152.7 −149.8
2hg6 −82.5 −117.1 −102.6 −73.3 −114.5 −104.8
3gwl −68.2 −115.2 −100 −80.3 −115.4 −107.3

MOEANS-SLEC does not provide an improvement over MOEANS and MOEANS-

EC, indicating that the breakdown into many objectives does not provide an advantage.

MOEANS-EC, where Rosetta score4 and the contact-based score are two separate opti-

mization objectives, reaches lower energy than Rosetta in 15/20 targets, lower energy than

HEA in 14/20 targets, lower energy than HEA-C in 20/20 targets, and lower energy than

MOEANS-SLEC in 17/20 targets. Table 4.14(a) confirms that these improvements are

statistically significant for both Fisher’s and Barnard’s tests. A tie between MOEANS-EC

and MOEANS (each achieve lower energy than the other in 10/20 targets) indicates that
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Table 4.10: Comparison of the lowest lRMSD (measured in Å) obtained by each algorithm
under comparison on each of the 20 benchmark targets is shown in Columns 2-8. The PDB
ID of the known native conformation of each target is shown in Column 1. The lowest
lRMSD value reached per target is marked in bold.

Lowest lRMSD (Å)
PDB
ID

Rosetta SCDE MOEANS HEA HEA-C MOEANS-
EC

MOEANS-
SLEC

1ail 4.5 2.6 1 1.4 1.6 1.4 1.3
1aly 12.4 11.5 10.8 11.2 11 10.5 10.7
1aoy 4 3 3.3 3.9 3.7 3.2 3.2
1bq9 2.9 N/A 3.8 3 3.9 2.9 3.4
1c8ca 2.2 N/A 3.8 4.8 4.6 3.1 4.4
1cc5 3.7 4.4 4.6 4.7 4.7 4.7 4.6
1dtdb 4.2 5.8 4.5 4.4 5.4 4.1 4.1
1dtja 4.1 2.9 2.6 4.2 3.3 1.9 2.9
1fwp 2.8 N/A 3.8 4.3 3.6 3.2 3.7
1hhp 10.1 7.4 7.9 8.8 8.3 8.2 8.1
1hz6a 1.9 2.4 2.3 1.9 2.6 2 2.2
1isua 6.6 5.9 5.9 6.6 6.2 5.5 5.7
1sap 2.8 5.5 3.2 3.7 4.7 3.9 2.8
1tig 2.5 3 3.3 3.2 4.2 3.2 4
1wapa 6.5 6 5.4 6.3 6 5.2 5.6
2ci2 5.8 N/A 3.2 3.7 3.9 3.2 3
2ezk 3.6 2.2 2.7 3.4 3.1 2.5 2.7
2h5nd 7.4 N/A 7 6.2 6.1 5.7 6.1
2hg6 9.4 8.7 8.6 9.3 8.4 8 8.3
3gwl 5.8 2.4 3.2 5.4 3.7 3 3.1

guiding additionally by contact-based scoring does not hamper the exploration of the score4

energy surface.

Several observations can be drawn from the results related in Table 4.10. HEA-C

achieves higher lRMSD than all other algorithms except for HEA, where it wins on 13/20

targets. This is informative, considering that HEA-C performs a lot worse than HEA and

the other algorithms in reaching lower energies. It confirms that energy guidance is not

reliable, which was the motivation for the work presented in this section. It also shows that

indeed selection by contact-based scoring improves proximity to the native conformations
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over selection by energy alone.

In addition, the results in Table 4.10 show that MOEANS-SLEC reaches lower lRMSD

than Rosetta in 13/20 targets, lower lRMSD than SCDE in 9/15 targets, lower lRMSD

than MOEANS in 14/20 targets, lower lRMSD than HEA in 17/20 targets, and lower

lRMSD than HEA-C in 19/20 targets. Table 4.13(b) confirms that the improvements of

MOEANS-SLEC in terms of lower lRMSD over MOEANS, HEA, and HEA-C are statisti-

cally significant. This result is also interesting, considering that MOEANS-SLEC performs

worse than MOEANS in reaching lower energy (related above). The result indicates that

adding contact-based score as another optimization objective may hamper the ability to

get to the deepest regions of the energy surface by instead guiding the exploration towards

regions that, while not as low in energy, are closer to the native conformations in the

conformation space.

On the other hand, MOEANS-EC beats all the other algorithms in reaching lower

lRMSDs; it wins over Rosetta in 14/20 targets, over SCDE in 9/15 targets, over MOEANS in

16/20 targets, over HEA in 18/20 targets, over HEA-C in 20/20 targets, and over MOEANS-

SLEC in 15/20 targets. Table 4.14(b) confirms these improvements by MOEANS-EC are

statistically significant over all other algorithms except for SCDE. Taken altogether, these

results suggest that while injecting too many optimization objectives may not be beneficial,

considering both energy and contact-based score as optimization objectives provides both

high exploration capability and better proximity to the native conformation.

4.2.4 Evaluation on CASP Dataset

Table 4.11 compares all algorithms (except for SCDE) in terms of lowest score4 energy

reached on each of the 10 CASP targets. As in the benchmark dataset, HEA-C achieves

higher energy than all other algorithm, as its selection operator does not make use of score4.

MOEANS-SLEC reaches lower energy than HEA in 6/10 targets and lower energy than

HEA-C in all 10/10 targets. Table 4.13(c) confirms that this performance of MOEANS-

SLEC is statistically significant. However, as in the benchmark dataset, MOEANS-SLEC
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loses to MOEANS in 7/10 targets, loses to MOEANS-EC in 8/10 targets, but ties with

Rosetta on the CASP targets, again indicating that the high number of objectives may

hamper the exploration capability. On the other hand, MOEANS-EC beats all other algo-

rithms in reaching lowest energy. It wins over Rosetta in 8/10 targets, over MOEANS in

7/10 targets, over HEA in 8/10 targets, over HEA-C in 10/10 targets, and over MOEANS-

SLEC in 8/10 targets. Table 4.14(c) confirms these improvements by MOEANS-EC are

statistically significant over all algorithms except for MOEANS (which is very close to the

95% confidence cutoff). This agrees with the evaluation on the benchmark dataset and

confirms again the high exploration capability of MOEANS-EC.

Table 4.11: Comparison of the lowest score4 energy (in Rosetta Energy Units – REUs)
obtained by each algorithm under comparison on each of the 10 CASP targets is shown in
Columns 2-7. The CASP identifier of each target is shown in Column 1. The lowest energy
value reached per target is marked in bold.

Lowest Energy (REUs)
Domain Rosetta MOEANS HEA HEA-C MOEANS-

EC
MOEANS-
SLEC

T0859-D1 −99.5 −85.6 −88 −56.4 −97.8 −77
T0886-D1 −89.2 −85.4 −69.9 −27.5 −94.5 −78.5
T0892-D2 −101.8 −112.3 −116.3 −59.6 −105.6 −107.4
T0897-D1 −141.4 −147.4 −135.2 −108.5 −149.8 −133.6
T0898-D2 −65.5 −66.7 −65.7 −20.1 −67.6 −67.6
T0953s1-D1 −51.8 −59 −55.8 −18.7 −52.3 −48.9
T0953s2-D3 −53.1 −67.6 −62.2 −2.4 −67.7 −66.5
T0957s1-D1 −121.5 −112.6 −102.6 −66.2 −113.3 −115
T0960-D2 −79.7 −82.3 −67.6 −19.3 −81.2 −79.9
T1008-D1 −164.2 −166.4 −148.4 −108.6 −168.1 −167.7

Table 4.12 compares all algorithms in terms of lowest lRMSD and highest GDT TS to

the native conformation. As in the benchmark dataset, HEA-C achieves higher lRMSD than

all other algorithms except for HEA, where it wins on 8/10 targets. This result confirms

the utility of contact-based scoring in guiding towards near-native regions of the confor-

mation space. MOEANS-SLEC reaches lower lRMSD than (and so wins over) Rosetta in
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8/10 targets, wins over MOEANS in 8/10 targets, over HEA in 10/10 targets, and over

HEA-C in 9/10 targets. Table 4.13(d) confirms the improvements by MOEANS-SLEC are

statistically significant. This result also agrees with the benchmark dataset, and similar

observations can be made regarding the utility of considering energetic and contact-based

scoring objectives. On the other hand, MOEANS-EC beats all other algorithms in reach-

ing lowest lRMSD. It wins over Rosetta in 10/10 targets, over MOEANS in 9/10 targets,

over HEA in 10/10 targets, over HEA-C in 8/10 targets, and over MOEANS-SLEC in 7/10

targets. Table 4.14(d) confirms these improvements by MOEANS-EC are statistically sig-

nificant over all algorithms except for MOEANS-SLEC. These observations are very similar

to those drawn from the evaluation on the benchmark dataset. They confirm that additional

guidance by contact-based scoring in a multi-objective setting improves proximity to the

native conformations, but that adding too many objectives results in diminishing returns.

Table 4.12: Columns 2-7 relate the lowest lRMSD (in Å) and the highest GDT TS obtained
by each algorithm under comparison on each of the 10 CASP targets in comparison to
corresponding native conformations. The CASP identifier of each target is shown in Column
1. The lowest lRMSD (and the highest GDT TS) value reached per target is marked in
bold.

Lowest lRMSD (Å), Highest GDT TS
Domain Rosetta MOEANS HEA HEA-C MOEANS-

EC
MOEANS-
SLEC

T0859-D1 10.6, 0.29 9.4, 0.32 9.6, 0.29 9.3, 0.29 9.4, 0.32 9.1, 0.32
T0886-D1 6.3, 0.47 6.2,0.49 6.4, 0.40 6.3, 0.41 5.6, 0.44 5.9, 0.41
T0892-D2 8, 0.42 7.4,0.45 7.2, 0.42 7.5, 0.40 6.9, 0.43 7.2, 0.42
T0897-D1 9, 0.30 9.3, 0.31 9.3, 0.27 8.7, 0.29 8.5, 0.33 8.9, 0.32
T0898-D2 6.5, 0.46 5.9, 0.44 6.1, 0.45 5.8, 0.45 5.9,0.52 5.8, 0.48
T0953s1-D1 7, 0.50 5.7, 0.46 6.2, 0.43 6.2, 0.44 5.9,0.51 6, 0.47
T0953s2-D3 8.7,0.31 7.9,0.31 8, 0.28 7.8, 0.30 7.7,0.31 7.7,0.31
T0957s1-D1 6.9,0.43 7.1, 0.39 7.4, 0.37 7.4, 0.36 6.8, 0.40 6.5, 0.43
T0960-D2 7.2, 0.37 7.3,0.42 7.6, 0.33 7.4, 0.33 7.2, 0.38 7.4, 0.38
T1008-D1 3.2, 0.62 3.5, 0.61 3.6, 0.62 3.8, 0.62 2.8, 0.64 3.5, 0.61

The comparison on GDT TS in Table 4.12 shows similar results. HEA-C achieves lower
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GDT TS than all other algorithms except for HEA, where it wins in 8/10 targets compared

to HEA’s win in 6/10 targets. MOEANS-SLEC wins over Rosetta in 7/10 targets, over

MOEANS in 7/10 targets, over HEA in 9/10 targets, and over HEA-C in 9/10 targets.

Table 4.13(e) confirms the improvements by MOEANS-SLEC are statistically significant

over HEA and HEA-C. On the other hand, MOEANS-EC beats all other algorithms in

reaching highest GDT TS. It wins over Rosetta in 8/10 targets, over MOEANS in 7/10

targets, over HEA in 10/10 targets, over HEA-C in 10/10 targets, and over MOEANS-

SLEC in 9/10 targets. Table 4.14(e) confirms these improvements by MOEANS-EC are

statistically significant over all the algorithms except for MOEANS. These results harden

our observation that guidance by both energy and contact-based scoring in a multi-objective

optimization setting improves proximity to the native conformations; however, when adding

too many objectives, the performance may experience diminishing returns.

Discussion

Synthesizing all observations drawn from the comparative evaluations above, several con-

clusions emerge. First, if the goal is to reach deeper in the energy surface (which is often

used to evaluate the exploration capability of an algorithm operating within a fixed com-

putational budget), a multi-objective optimization setting outperforms a single-objective

setting, unless too many optimization objectives are considered. Both observations have

been drawn before by our own work in conformation ensemble generation and work of others

in hard optimization problems beyond protein modeling [39, 45, 46, 74]. Higher exploration

capability does not necessarily translate to better proximity to the native conformation.

Our evaluation clearly makes this case. Indeed, considering a contact-based scoring in the

selection operator, whether in isolation in a single-objective multi-optimization setting (as

in HEA-C) or jointly with energy in a multi-objective optimization setting (as in MOEANS-

EC and MOEANS-SLEC), improves proximity to the native conformations.

To shed more light over the role of contact information on the quality of computed

conformations, Fig. 4.6 plots the (sensitivity) contact-based score against the GDT TS
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Table 4.13: Comparison of MOEANS-SLEC to other algorithms via 1-sided Fisher’s and
Barnard’s tests. The tests evaluate the null hypothesis that MOEANS-SLEC does not
achieve (a) lower lowest energy on benchmark dataset, (b) lower lowest lRMSD on bench-
mark dataset, (c) lower lowest energy on CASP dataset, (d) lower lowest lRMSD on CASP
dataset, (e) higher highest GDT TS on CASP dataset in comparison to a particular algo-
rithm, considering each of the other algorithms in turn. P-values less than 0.05 are marked
in bold.

Test Rosetta MOEANS HEA HEA-C MOEANS-EC SCDE

Fisher’s 0.001924 N/A 0.01282 7.254e-12 N/A N/A
Barnard’s 0.001118 N/A 0.008299 9.095e-13 N/A N/A

(a)

Test Rosetta MOEANS HEA HEA-C MOEANS-EC SCDE

Fisher’s 0.1025 0.05548 7.254e-12 2.91e-08 N/A 0.3576
Barnard’s 0.07693 0.03517 9.095e-13 9.733e-09 N/A 0.2923

(b)

Test Rosetta MOEANS HEA HEA-C MOEANS-EC SCDE

Fisher’s 0.6719 N/A 0.3281 5.413e-06 N/A N/A
Barnard’s 0.9991 N/A 0.2617 9.537e-07 N/A N/A

(c)

Test Rosetta MOEANS HEA HEA-C MOEANS-EC SCDE

Fisher’s 0.01151 0.03489 5.954e-05 0.009883 N/A N/A
Barnard’s 0.005909 0.02069 2.003e-05 0.003978 N/A N/A

(d)

Test Rosetta MOEANS HEA HEA-C MOEANS-EC SCDE

Fisher’s 0.5 0.5 0.002739 0.002739 N/A N/A
Barnard’s 0.3883 0.3883 0.001288 0.001288 N/A N/A

(e)

score of the best conformations (with highest GDT TS) for each of the CASP targets. We

recall that the only EAs that use contact-based score alone or in conjunction with energy

are HEA-C, MOEANS-EC, and MOEANS-SLEC. Fig. 4.6 shows that conformations that

have a better GDT TS score (more than 0.4) also overall have a higher contact-based score

(more than 0.5), providing further evidence that guidance by a contact-based score such

as the one employed in this work provides a soft bias towards better (more near-native)

conformations.
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Table 4.14: Comparison of MOEANS-EC to other algorithms via 1-sided Fisher’s and
Barnard’s tests. The tests evaluate the null hypothesis that MOEANS-EC does not achieve
(a) lower lowest energy on benchmark dataset, (b) lower lowest lRMSD on benchmark
dataset, (c) lower lowest energy on CASP dataset, (d) lower lowest lRMSD on CASP
dataset, (e) higher highest GDT TS on CASP dataset in comparison to a particular al-
gorithm, considering each of the other algorithms in turn. P-values less than 0.05 are
marked in bold.

Test Rosetta MOEANS HEA HEA-C MOEANS-
SLEC

SCDE

Fisher’s 0.001924 0.6238 0.01282 7.254e-12 9.693e-06 N/A
Barnard’s 0.001118 0.9982 0.008299 9.095e-13 4.182e-06 N/A

(a)

Test Rosetta MOEANS HEA HEA-C MOEANS-
SLEC

SCDE

Fisher’s 0.02808 0.0006159 3.43e-05 1.523e-10 0.01242 0.233
Barnard’s 0.01924 0.0003401 1.109e-05 3.729e-11 0.006934 0.1808

(b)

Test Rosetta MOEANS HEA HEA-C MOEANS-
SLEC

SCDE

Fisher’s 0.01151 0.08945 0.01151 5.413e-06 0.03489 N/A
Barnard’s 0.005909 0.05789 0.005909 9.537e-07 0.02069 N/A

(c)

Test Rosetta MOEANS HEA HEA-C MOEANS-
SLEC

SCDE

Fisher’s 5.954e-05 0.009883 5.413e-06 0.01151 0.1849 N/A
Barnard’s 2.003e-05 0.003978 9.537e-07 0.005909 0.1317 N/A

(d)

Test Rosetta MOEANS HEA HEA-C MOEANS-
SLEC

SCDE

Fisher’s 0.03489 0.325 5.413e-06 5.413e-06 0.02864 N/A
Barnard’s 0.02069 0.2617 9.537e-07 9.537e-07 0.01139 N/A

(e)

Our comprehensive evaluation demonstrates that considering energy and contact-based

scoring jointly, as separate optimization objectives (but not too many objectives) performs

best in both reaching lower energies and better proximity to known native conformations;
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Figure 4.6: Best conformations sampled by HEA-C, MOEANS-EC, and MOEANS-SLEC for
each of the CASP targets are shown by plotting their GDT TS score vs. contact sensitivity
score.

that is, when contact information is used as an additional objective to energy in a multi-

objective EA (MOEANS-EC), it results in similar or better exploration and better proximity

to the native conformation than if only energy or contact information are used alone. The

quality of the conformations obtained by MOEANS-EC is shown qualitatively in Fig. 4.7,

which draws the lowest-lRMSD conformation obtained by MOEANS-EC in three selected

targets, superimposing it over the known native.

4.2.5 Summary

In this work, we investigate the role of energy and contact information in conformation

ensemble generation. We use sequence-based predicted contacts from RaptorX-Contact and

make use of sensitivity to evaluate the derived contact map of a computed conformation in

relation to the sequence-predicted one from RaptorX. Unlike existing work, we do not resort
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1dtja (1.9Å) 2ezk (2.5Å) 3gwl (3Å)

Figure 4.7: The MOEANS-EC conformation closest to the known native conformation
for proteins with PDB ID 1dtja (left), 2ezk (middle), and 3gwl (right) is drawn in blue,
superimposed over the native conformations, drawn in olive. Rendering is performed with
the CCP4mg molecular graphics software [1].

to aggregating energy with contact-based scoring, but instead consider them as separate

optimization objectives, making use of multi-objective and single-objective optimization

frameworks to holistically evaluate the separate versus the combined role and impact of

energy versus contacts in conformational sampling. The results suggest strong merit in

using contact information jointly with interatomic energy in a multi-objective optimization

setting.
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Chapter 5: Promoting Practical Use of Conformation

Ensemble Generation Algorithms

As stated in Chapter 1, Currently, when employing conformation ensemble generation al-

gorithms, the common practice is to generate as many conformations that can be afforded.

This practice acknowledges that more conformations means higher likelihood that some

will reside near the sought native conformations, but it is impractical for various reasons.

While generating conformations used to be significantly more expensive than analyzing

conformations, now this relationship is less imbalanced. Great progress in software and

hardware have made it less costly to generate conformations. Algorithms operating under

the umbrella of evolutionary computation can generate hundreds of thousands of confor-

mation. Selection algorithms that analyze these conformations to filter out the near-native

conformations now have to additionally deal with a data size issue. Moreover, conforma-

tion ensemble generation algorithms typically operate on a coarse-grained representation to

sample conformations in a simplified space. Therefore, the generated conformations need to

go through the refinement stage before they are handed to the selection algorithms, which

adds back the atomistic detail (the side-chains) and performs local improvements on the

all-atom conformations. Refinement is computationally expensive as the energy function

employed has to additionally deal with all the side-chain and hydrogen atoms of each amino

acid. In this chapter, we aim to reduce the size of the ensemble generated by the conforma-

tion ensemble generation algorithms to promote the practical use of such algorithms. We

first show that it is possible to effectively represent the originally generated ensemble with

a reduced-size ensemble in Section 5.1. Then, we introduce a mechanism through which

conformation ensemble generation algorithms can generate such a reduced ensemble on the

fly in Section 5.2. Finally, we present a technique to utilize the generated reduced ensemble

to guide the search simultaneously to enhance exploration of the conformation space.
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5.1 Reducing Generated Ensemble

The work presented in this section has been published in [77,78]. Here, we set out to eval-

uate the hypothesis that the generated conformation ensemble can be significantly reduced

without sacrificing conformation quality. Our goal is to demonstrate that the ensemble of

conformations produced by the conformation ensemble generation algorithms can be re-

duced, thus lowering the computational burden on the refinement and the selection phase,

all the while without sacrificing the quality of the original ensemble. We do so via a

clustering-based approach.

To the best of our knowledge, the problem of conformation ensemble reduction while

preserving quality is unexplored. The problem is also not trivial. In such a setting, it may be

tempting to tackle it by discarding higher-energy conformations over an energy threshold.

Indeed, early work in [79] does so before proceeding to cluster the remaining conformations

for the purpose of conformation selection. As we show in our evaluation later, an approach

that simply utilizes an energy threshold, which we employ as a baseline for the purpose of

comparison, does a poor job at retaining near-native conformations. This is not surprising

as existing energy functions are not reliable indicators of nativeness. Some related attempts

reduce the dimensionality of the conformation space populated by a conformation ensemble

generation algorithm [80, 81]. However, while dimensionality reduction techniques may be

useful for visualization of conformation ensembles, they do not directly apply to ensemble

reduction.

We focus on representative clustering algorithms to cluster similar conformations in a

generated ensemble based on their shape similarity and then choose from the clusters to

populate a reduced ensemble. We refer to the ensemble of conformations generated by some

conformation ensemble generation algorithm as Ωgen and to the reduced ensemble (by our

approach) as Ωred. Evaluations carried out on diverse target protein datasets show that the

proposed approach yields drastic reductions in ensemble size while retaining conformation

quality. The results presented in this section suggest that research on conformation ensemble

reduction is a promising direction to aid conformation sampling and can generally be useful
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in reducing molecular structure data.

5.1.1 Generation of Conformations of a Target Protein

We first have to generate the ensemble Ωgen. Many options are available. We could have

utilized Rosetta, Quark, or other conformation sampling algorithms. We choose to utilize

HEA (described in Section 2.2.2). While any conformation ensemble generation algorithm

can be used to generate the Ωgen ensemble for our purposes, we specifically employ HEA due

to its high exploration capability [40,41]; the algorithm can generate hundreds of thousands

of conformations for a target protein (given its amino-acid sequence) in a matter of hours.

5.1.2 Featurizing Generated Conformations

We utilize the Ultrafast Shape Recognition (USR) metrics that were originally introduced

in [82] to summarize three-dimensional structures of ligands. USR metrics were used in [82]

to expedite searches for similar structures in molecular structure databases. These metrics

have also been used by others to expedite robotics-inspired algorithms exploring protein

conformation spaces [83,84] and protein motion computation [18,85].

We use the USR metrics as features to describe a conformation. In summary, USR met-

rics are based on moments of distance distributions (of atoms). They summarize molecular

shapes and so allow to compare molecular shapes efficiently. USR metrics summarize the

distributions of distances of all atoms from four chosen reference points in a conformation:

the molecular centroid (ctd), the closest atom to ctd (cst), the farthest atom to ctd (fct),

and the farthest atom to fct (ftf). The moments of these discrete distributions are recorded

to summarize the geometry of a molecule and its shape. Specifically, in our work (as orig-

inally in [82]), the resulting distributions are summarized with three momenta, the mean,

variance, and skewness. Hence, each conformation in Ωgen is represented by 12 features.

The motivation of encoding each conformation via features is three-fold. First, a lower

number of coordinates required to represent each conformation reduces the computational

time of any algorithm expected to process the generated conformations. Second, high
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dimensionality has a negative impact on the performance of clustering algorithms [86–88].

Third, unlike representations based on Cartesian coordinates, the USR-based representation

is invariant to rigid-body motions (translation and rotation in 3D space).

5.1.3 Clustering Featurized Conformations

The featurized conformations are subjected to a clustering algorithm. We evaluate four

clustering algorithms, three popular, representative clustering algorithms, k-means, Gaus-

sian Mixture Model (GMM), and hierarchical clustering, and a variant of the gmx-cluster

algorithm in the GROningen MAchine for Chemical Simulations (GROMACS) package [89].

The latter has been shown to be effective in clustering protein conformations [90]. We briefly

summarize each algorithm next, paying more attention to describing how we optimize their

parameters and apply them to the featurized conformations.

In k-means, the number of clusters k is a hyper-parameter. The conformations that can

serve as cluster centroids is another hyper-parameter. We optimize both as follows. For a

given value of k, k conformations are initially selected uniformly at random over Ωgen to

act as the cluster centroids. This induces a particular grouping C of the conformations,

with each conformation assigned to the cluster represented by the conformation to which

it is closest. To evaluate this particular grouping C, we calculate the within-cluster scatter

loss function: L(C) = 1
2

∑k
l=1

∑
i∈Cl

∑
j∈Cl,j 6=iD(xi, xj), where D(xi, xj) measures the Eu-

clidean distance between two points/conformations xi 6= xj in the same cluster Cl, where

l ∈ {1, . . . , k}. One can now vary the conformations selected to serve as cluster centroids

over iterations and record the selection resulting in the smallest loss. We do so over 10 iter-

ations for a given k, randomly selecting conformations as initial centroids in each iteration,

recording the optimal selection (and associated grouping) for each iteration.

Note that the above is carried out for a given k as k varies in a permissive range. To

find the optimal number of clusters, k, in some considered range, we utilize the popular

knee-finding approach [91]. Specifically, after the centroids of clusters are determined

(optimally) as above for a given k, the squared distance of each conformation in a cluster
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from the centroid of the cluster can be recorded, and the sum of these squared distances can

be obtained over the clusters k [92]. This sum of squared distances is known as the sum of

squared errors (SSE) and is shown for a particular conformation dataset in Figure 5.1. In

Figure 5.1, different values of k are plotted against the corresponding SSE values. The knee

(also referred to as elbow) in the SSE curve indicates the optimal number of clusters. We

are interested in a small value for SSE. Naturally, as one increases k, the SSE approaches

0. It is exactly 0 when k = |Ωgen| (every conformation is the centroid of its own cluster).

The goal is to choose a small value of k that results in a low SSE. The knee or elbow in the

curve that tracks SSE as a function of k corresponds to the region where by increasing k,

SSE does not change noticeably; this is annotated in Figure 5.1.

Figure 5.1: The sum-of-squared errors (SSE) is plotted as a function of the number of
clusters k identified via k-means on conformations generated via HEA on a target protein.
This target is part of our evaluation dataset related in Section 5.1.6. Specifically, it is the
target protein with known native conformation in the PDB entry with identifier (id) 1ail.
The red arrow points to the knee/elbow region where by increasing k SSE does not change
noticeably; this is the region from where an optimal value of k can be selected.

GMM is a probabilistic model that assumes a mixture of finite number of Gaussian

distributions with unknown parameters as the underlying process generation of the data.

GMM can be thought of as generalizing k-means, as it includes both information from the

covariance structure of the data along with the centers of the Gaussian distributions. The
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main advantage of GMM is the estimation of uncertainty in data membership to clusters;

a conditional probability is assigned to each data indicating the probability with which a

specific point belongs to any cluster. As expected, sum of all these conditional probabilities

for a given point is 1. This uncertainty assignment makes GMM more informative than

k-means [93].

However, as in k-means, one needs to specify the number of clusters/components a pri-

ori in GMM. The optimal value can be determined by minimizing the Bayesian Information

Criterion (BIC) [94] metric which considers both covariance type and the number of com-

ponents. The BIC is a penalty term for the possible likelihood increment when adding more

parameters into the model. Specifically, BIC = ln (n)k − 2 ln (L̂), where k is the number

of components, L̂ is the maximized value of the likelihood function, and n is the number

of data points. In Figure 5.2, we plot the BIC value as the function of the number of

components k to demonstrate how one can identify a reasonable value for k at the lowest

BIC value.

Figure 5.2: The BIC is plotted as a function of the number of components k. Clustering
is carried out via GMM on conformations generated via HEA on a target protein (known
native conformation in the PDB entry with identifier (id) 2h5nd). The red arrow points to
the value for k identified at the lowest BIC value.
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Unlike k-means and GMM, hierarchical clustering does not require a priori specifying

the number of clusters. It refers to a family of clustering algorithms that build a sequence of

nested clusters by merging or splitting them successively [95]. We make use of the bottom-

up (agglomerative) approach for hierarchical clustering; each conformation is first in its own

clusters, and then clusters are successively merged until the root of the resulting dendrogram

is reached, with a unique cluster containing all the data. The linkage criterion specifies the

merge strategy. We select single linkage, where the distance between two clusters is defined

as the distance between the two closest points across the two clusters [96].

”Cutting” at different locations of the dendrogram results in different partitions of the

dataset into clusters. To avoid recomputation of the clusters, we make use of a cached

implementation of hierarchical clustering, where cutting the tree at different places does

not impose any further computation. We employ the Davies-Bouldin (DB) index [97] to

determine where to cut the dendrogram. DB is as popular clustering validation technique

in the absence of ground truth labels. It is computed on features inherent to the dataset

and gives a measure of the average similarity of each cluster with its most similar cluster.

Specifically, the DB index evaluates the intra-cluster similarity and inter-cluster differences

to provide a non-negative score. A lower DB index corresponds to a better separation

between the clusters. In our application of hierarchical agglomerative clustering with single

linkage, we consider the DB index at every height of the tree, and we select the height that

results in the smallest DB as the optimal partition (and optimal corresponding number of

clusters) of a conformation dataset.

Unlike the above clustering algorithms, the gmx-cluster algorithm determines clusters

based on a pre-specified distance cutoff. The algorithm first calculates the pairwise distance

between all pairs of conformations. For each conformation xi, the algorithm then counts the

number of other conformations (neighbors) that are within the distance cutoff. The con-

formation with the highest number of neighbors is then chosen as the central conformation

and forms a cluster together with all its neighbors. The formed cluster is then removed from

the ensemble of conformations and the process is repeated for the remaining conformations
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in the ensemble until the ensemble contains no more conformations.

The computation of pairwise distances can potentially be very demanding on large

datasets, if one were to use the gmx-cluster implementation that uses lRSMD as the dis-

tance metric. Our adaptation of this algorithm transfers all neighbor computations in

the USR feature space, using Euclidean distance in the USR feature space as a proxy for

lRMSD. These distances, to which we refer as USR scores (and analyze in some detail in

Section 5.1.7), are normalized between 0 and 1, so that we can set a distance cutoff. We

set this cutoff to 0.1; our analysis shows that this is a reasonable value. From now on, we

will refer to the adaptation of gmx-cluster as gmx-cluster-usr or gmx-usr for short.

5.1.4 Selecting Conformations to Populate the Reduced Ensemble

After clustering the featurized Ωgen, the conformations are grouped in clusters. The selector

now selects a subset of conformations from each cluster to populate the reduced ensemble

Ωred. The selector makes this decision by considering both the identified clusters and

the Rosetta score4 energy score of conformations. The selector we propose organizes the

conformations in a cluster into levels/bins; the conformations placed in the same bin have

identical score4 energies up to two digits after the decimal sign. One conformation is

selected at random from each bin and placed in the reduced ensemble Ωred. This process

is repeated for each identified cluster. We note that the selector can control the size of the

reduced ensemble by tuning the width of a bin/level. This approach indirectly biases the

reduced ensemble by cluster size. Larger clusters with more conformations result in more

energy levels; therefore, more representative conformations are selected from larger clusters

to populate the reduced ensemble. Conformation diversity retention is another indirect

property of this approach as demonstrated experimentally in Section 5.1.6.

5.1.5 Implementation Details

To account for stochasticity, the HEA algorithm is run 5 times for each protein target to

generate 50, 000 conformations on each run; the conformations generated in each run are
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aggregated to populate the Ωgen ensemble of 250, 000 conformations per target. In all the

clustering algorithms employed here to cluster the featurized Ωgen ensemble, determining

the number of clusters takes most of the time. Including the conformation ensemble gen-

eration phase, runtime varies between 7-16 hours for a single run on one Intel Xeon E5-

2670 CPU with 2.6GHz base processing speed and 100GB of RAM. We note that all our

implementations and analyses are carried out in Python. The scikit library is utilized to

obtain access to the k-means, GMM, and hierarchical clustering algorithms employed here.

5.1.6 Results

The Ωgen and Ωred ensembles are compared by size, quality, and diversity. The Ωred ensem-

ble obtained by k-means, GMM, hierarchical clustering, or gmx-cluster-usr is also compared

to the Ωred ensemble obtained via truncation selection. To populate the reduced ensemble

from the truncation-based approach, given a target size M , higher-energy conformations

are discarded to keep the M lowest-energy conformations in an ensemble. We choose the

maximum size over Ωred identified by k-means, GMM, hierarchical clustering, and gmx-

cluster-usr to set the target size M for truncation selection. As the results presented below

demonstrate, k-means and GMM result in larger, reduced ensembles compared to those

obtained with the hierarchical clustering or gmx-cluster-usr; therefore, the size of the re-

duced ensemble in the truncation based-approach matches the size of the reduced ensemble

obtained via k-means or GMM.

Evaluation is carried out on 10 targets each from the benchmark and the CASP datasets.

As described above, k-means, GMM, hierarchical, or gmx-cluster-usr clustering are em-

ployed. Regardless of which process is used (SSE-, BIC- or DB-based) to identify an optimal

value for the number of clusters, this number varies for each target protein. For most of

the target proteins, the number of clusters is in the 20 − 40 range. This suggests that a

large number of similar conformations are present in the generated conformation ensemble;

therefore, finding the underlying structure to reduce the generated conformation ensemble

while retaining the quality and diversity is a reasonable goal.
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Comparing Ensemble Sizes Pre- and Post Reduction

In Table 5.1, Ωgen and Ωred are first compared in terms of size over the benchmark dataset.

The reduction percentage (1− |Ωred|
|Ωgen|) ·100% is also reported for each target. The reductions

obtained by k-means range from 54% to 71%. The GMM reductions vary from 53% to 71%.

Gmx-cluster-usr and hierarchical clustering result in more dramatic reductions of more than

72% and 77% on all targets respectively, and over 80% on 5/10 and 9/10 of the targets,

respectively. Similar results are obtained over the CASP dataset, as shown in Table 5.2.

Reductions of 59% and higher are obtained via k-means. Reductions obtained via GMM

are comparable to those obtained via k-means. Reductions of 72% and higher are achieved

via gmx-cluster-usr. Reductions of around 80% and higher are obtained via hierarchical

clustering.

Table 5.1: Ωgen and Ωred are compared in terms of size over the benchmark dataset. The
PDB ids of each target is shown in Columns 1. Column 2 shows the size of Ωgen. The size
of Ωred and the reduction of Ωred over Ωgen are shown in Columns 3− 10 for all clustering
algorithms.

K-means GMM Hierarchical Gmx-usr
PDB
Id

|Ωgen| |Ωred| Red.
(%)

|Ωred| Red.
(%)

|Ωred| Red.
(%)

|Ωred| Red.
(%)

1ail 250K 94, 867 62.05 99, 707 60.12 32, 432 87.03 48, 450 80.62
1bq9 250K 79, 181 68.33 77, 873 68.85 24, 705 90.12 39, 716 84.11
1c8ca 250K 87, 209 65.12 88, 437 64.63 29, 795 88.08 46, 817 81.27
1cc5 250K 97, 878 60.85 101, 589 59.36 36, 630 85.35 55, 673 77.73
1dtja 250K 75, 421 69.83 79, 134 68.35 29, 506 88.2 41, 456 83.42
1hhp 250K 71, 926 71.23 71, 390 71.44 27, 208 89.12 42, 226 83.11
1tig 250K 94, 656 62.14 97, 010 61.2 40, 145 83.94 57, 033 77.19
2ezk 250K 114, 244 54.3 115, 929 53.63 49, 509 80.2 62, 439 75.02
2h5nd 250K 110, 196 55.92 111, 353 55.46 55, 153 77.94 67, 671 72.93
3gwl 250K 101, 827 59.27 105, 214 57.91 46, 480 81.41 63, 116 74.75
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Table 5.2: Ωgen and Ωred are compared in terms of size over the CASP dataset. The CASP
ids are shown in Columns 1. Column 2 shows the size of Ωgen. The size of Ωred and the
reduction of Ωred over Ωgen are shown in Columns 3− 10 for all clustering algorithms.

K-means GMM Hierarchical Gmx-usr
CASP Id |Ωgen| |Ωred| Red.

(%)
|Ωred| Red.

(%)
|Ωred| Red.

(%)
|Ωred| Red.

(%)

T0859-D1 250K 91, 236 63.51 94, 014 62.39 32, 060 87.18 50, 903 79.64
T0886-D1 250K 72, 351 71.06 88, 986 64.41 27, 328 89.07 42, 397 83.04
T0892-D2 250K 89, 943 64.02 92, 200 63.12 39, 669 84.13 55, 482 77.81
T0897-D1 250K 98, 262 60.7 101, 119 59.55 50, 352 79.86 68, 703 72.52
T0898-D2 250K 67, 046 73.18 67, 283 73.09 21, 332 91.47 35, 053 85.98
T0953s1-D1 250K 51, 078 79.57 50, 509 79.8 16, 417 93.43 29, 690 88.12
T0953s2-D3 250K 73, 191 70.72 74, 974 70.01 22, 143 91.14 38, 372 84.65
T0957s1-D1 250K 92, 028 63.19 93, 872 62.45 38, 665 84.53 54, 951 78.02
T0960-D2 250K 53, 388 78.64 52, 136 79.15 22, 171 91.13 32, 548 86.98
T1008-D1 250K 101, 433 59.43 105, 360 57.86 51, 809 79.28 68, 428 72.63

Comparing Distributions of lRMSDs from the Native Conformation Pre- and

Post Reduction

Table 5.3 compares the minimum, average, and standard deviation of lRMSDs of confor-

mations in the Ωred and Ωgen ensembles to the known native conformation on each target in

the benchmark dataset. The top panel of the table compares the minimum lRMSDs of the

ensembles including the ensemble generated by truncation-based selection; the middle panel

compares the average lRMSDs of the ensembles, and the bottom one compares the standard

deviation of lRMSDs of conformations in each ensemble to the known native conformation

per target protein. The minimum, average, and standard deviations over the generated

ensembles are provided as reference in Column 2 (top, middle, and bottom panels, respec-

tively). The difference of the (lRMSD) minimum, average, or standard deviation in Ωred

over the corresponding quantity in Ωgen is reported in each setting.

Focusing on the Diff. columns listing differences in minimum lRMSDs, it is clear that

truncation selection performs the worst in this regard; differences in minimum lRMSD range
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from 0.73Å to 5.12Å (see Column 12 of the top panel in Table 5.3). This means in the worst

case, the best conformation kept by truncation selection is 5.12Å further away from the

native conformation than the best conformation in the original ensemble. Truncation-based

selection cannot maintain the quality of original ensemble.

In contrast, in the case of GMM and k-means, differences in minimum lRMSD (see

Columns 4 and 6) are all 0Å. The differences in minimum lRMSD for gmx-cluster-usr range

from 0Å to 0.11Å (see Column 10); for hierarchical clustering, the range is from 0Å to

1.12Å (see Column 8). This means that the conformations closest to the native conforma-

tions are always retained in the ensembles reduced by k-means and GMM. Not surprisingly,

the slight increase in the differences when using gmx-cluster-usr and hierarchical clustering

is the consequence of more drastic reduction in size of the reduced ensemble when using

these two clustering algorithms over k-means or GMM.

The comparison shown in the middle panel of Table 5.3 indicates very little difference

between the generated and reduced ensembles in terms of average lRMSDs. Column 4 shows

the differences in average lRMSDs for k-means, which range from 0.41Å to 0.60Å. Column

6 shows an overall similar range for GMM (0.36Å to 0.50Å). Average lRMSD differences for

hierarchical clustering range from 0.02Å to 0.61Å, as shown in Column 8. Column 10 shows

that the differences in average lRMSD for gmx-cluster-usr range from 0.59Å to 1.04Å.

The comparison of differences on lRMSDs standard deviation for k-means is shown in

Column 4 on the bottom panel and vary from 0.02Å to 0.26Å. These values are slightly

different for GMM, ranging from 0.03Å to 0.25Å(see Column 6). As in the minimum

lRMSD comparison, the differences obtained by gmx-cluster-usr and hierarchical clustering

are slightly larger. Differences in standard deviation range from 0.23Å to 0.53Å for gmx-

cluster-usr (shown in Column 10) and from 0Å to 0.36Å (with less than 0.1Å on 7/10

targets; shown in Column 8) for hierarchical clustering.

Similar observations can be extracted from Table 5.4, which shows the performance over

the CASP dataset. Table 5.4 confirms again that truncation selection loses the quality of

70



Table 5.3: Comparison of minimum, average, and standard deviation of lRMSDs (to the
known native conformation) of conformations in the Ωgen and Ωred ensembles of each target
in the benchmark dataset. Comparison of minimum lRMSDs includes the ensemble reduced
via truncation selection. Differences between the minimum, average, and standard deviation
obtained over Ωred from those obtained over Ωgen are also related.

Minimum lRMSD (Å)
K-means GMM Hierarchical Gmx-usr Truncation

PDB Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

1ail 3.64 3.64 0 3.64 0 3.64 0 3.64 0 4.37 0.73
1bq9 5.42 5.42 0 5.42 0 5.47 0.05 5.47 0.05 7.31 1.89
1c8ca 4.43 4.43 0 4.43 0 4.43 0 4.43 0 7.86 3.43
1cc5 5.4 5.4 0 5.4 0 6.52 1.12 5.4 0 7.85 2.45
1dtja 4.19 4.19 0 4.19 0 4.19 0 4.19 0 9.31 5.12
1hhp 11 11 0 11 0 11.29 0.29 11.02 0.02 12.88 1.88
1tig 5.34 5.34 0 5.34 0 5.45 0.11 5.45 0.11 6.59 1.25
2ezk 3.41 3.41 0 3.41 0 3.41 0 3.41 0 5.09 1.68
2h5nd 10.32 10.32 0 10.32 0 10.32 0 10.32 0 11.9 1.58
3gwl 4.85 4.85 0 4.85 0 4.85 0 4.85 0 7.81 2.96

Average lRMSD (Å)
K-means GMM Hierarchical Gmx-usr

PDB Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

1ail 10.42 10.89 0.47 10.85 0.43 10.19 0.23 11.17 0.75
1bq9 9.76 10.18 0.42 10.17 0.41 9.74 0.02 10.39 0.63
1c8ca 12.29 12.75 0.46 12.72 0.43 12.25 0.04 12.96 0.67
1cc5 12.53 12.94 0.41 12.89 0.36 12.5 0.03 13.12 0.59
1dtja 11.87 12.35 0.48 12.29 0.42 11.95 0.08 12.5 0.63
1hhp 15.56 16.06 0.5 16.03 0.47 15.85 0.29 16.31 0.75
1tig 12.85 13.36 0.51 13.31 0.46 12.81 0.04 13.81 0.96
2ezk 10.17 10.77 0.6 10.72 0.55 10.78 0.61 11.21 1.04
2h5nd 15.79 16.24 0.45 16.2 0.41 16.16 0.37 16.51 0.72
3gwl 12.44 13.02 0.58 12.94 0.5 12.68 0.24 13.34 0.9

Standard Deviation lRMSD (Å)
K-means GMM Hierarchical Gmx-usr

PDB Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

1ail 3.11 3.2 0.09 3.17 0.06 3.11 0 3.49 0.38
1bq9 1.78 1.76 0.02 1.89 0.11 1.89 0.11 2.11 0.33
1c8ca 2.18 2.23 0.05 2.22 0.04 2.15 0.03 2.45 0.27
1cc5 2.31 2.34 0.03 2.34 0.03 2.35 0.04 2.54 0.23
1dtja 2.08 2.31 0.23 2.27 0.19 2.15 0.07 2.44 0.36
1hhp 1.82 1.94 0.12 1.93 0.11 1.9 0.08 2.08 0.26
1tig 3.22 3.34 0.12 3.34 0.12 3.21 0.01 3.72 0.5
2ezk 2.41 2.67 0.26 2.66 0.25 2.77 0.36 2.94 0.53
2h5nd 2.03 2.22 0.19 2.21 0.18 2.3 0.27 2.46 0.43
3gwl 2.9 3.02 0.12 3.01 0.11 2.99 0.09 3.22 0.32
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the original ensemble in the reduced one. The quality of the reduced ensemble is preserved

by all clustering algorithms, and the best results belong to k-means and GMM. All four

clustering algorithms produce ensembles that have small differences in average lRMSDs and

perform comparably in terms of standard deviation.

Greater detail can be inferred from Figure 5.3, which shows results over a selected

target protein (with native conformation under PDB id 1ail). Figure 5.3 shows the actual

distribution of conformation lRMSDs from the known native conformation for the Ωgen

ensemble along with the ensembles Ωred reduced via k-means, GMM, gmx-cluster-usr, and

hierarchical clustering. Figure 5.3 shows that conformations with similar relative frequencies

of lRMSDs as in Ωgen are included in the reduced ensembles identified by each clustering

algorithm.

Visually Comparing Distributions of lRMSDs and Energies Pre- and Post Re-

duction

We now compare the Ωgen and Ωred ensembles visually on target proteins in terms of Rosetta

score4 energies and lRMSDs to the native conformation. Here we show one representative

landscape on each dataset (benchmark and CASP) that illustrates the behavior of each

of the clsutering algorithms. Conformations in Ωgen are drawn in purple, while those in

the Ωred ensemble are drawn in green. Figure 5.4 does so for the benchmark dataset, and

Figure 5.5 does so for the CASP dataset.

Figures 5.4 and 5.5 show that the reduced ensemble Ωred includes conformations from

all the regions in the conformation space populated by the original ensemble Ωgen. All the

purple dots being occluded by the superimposition in the k-means and GMM case visually

makes the case that these two clustering algorithms perform better than gmx-cluster-usr

and hierarchical clustering. This is not surprising, as k-means and GMM preserve more of

the original ensemble.
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Table 5.4: Comparison of minimum, average, and standard deviation of distribution of
lRMSDs (to the known native conformation) of conformations in the Ωgen and Ωred ensem-
bles of each target in the CASP dataset. Comparison of minimum lRMSDs includes the
ensemble reduced via truncation selection. Differences between the minimum, average, and
standard deviation obtained over Ωred from those obtained over Ωgen are also related.

Minimum lRMSD (Å)
K-means GMM Hierarchical Gmx-usr Truncation

CASP Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

T0859-D1 11.37 11.37 0 11.37 0 11.96 0.59 11.96 0.59 13.12 1.75
T0886-D1 7.96 7.96 0 7.96 0 8.73 0.77 8.73 0.77 11.24 3.28
T0892-D2 7.71 7.71 0 7.71 0 8.28 0.57 7.71 0 9.11 1.4
T0897-D1 10.18 10.18 0 10.18 0 10.64 0.46 10.64 0.46 11.62 1.44
T0898-D2 7.51 7.51 0 7.51 0 7.51 0 7.51 0 8.68 1.17
T0953s1-D1 6.14 6.14 0 6.14 0 6.29 0.15 6.29 0.15 8.18 2.04
T0953s2-D3 7.13 7.13 0 7.13 0 7.24 0.11 7.24 0.11 8.17 1.04
T0957s1-D1 7.65 7.65 0 7.65 0 7.76 0.11 7.76 0.11 9.39 1.74
T0960-D2 7.26 7.26 0 7.26 0 7.26 0 7.26 0 8.12 0.86
T1008-D1 3.85 3.85 0 3.85 0 3.85 0 3.85 0 5.67 1.82

Average lRMSD (Å)
K-means GMM Hierarchical Gmx-usr

CASP Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

T0859-D1 17.47 17.64 0.17 17.63 0.16 17.49 0.02 17.78 0.31
T0886-D1 13.16 13.66 0.5 13.67 0.51 13.31 0.15 13.82 0.66
T0892-D2 14.81 15.49 0.68 15.43 0.62 15.02 0.21 15.71 0.9
T0897-D1 17.3 17.84 0.54 17.81 0.51 17.54 0.24 18.04 0.74
T0898-D2 11.56 11.72 0.16 11.71 0.15 11.63 0.07 11.86 0.3
T0953s1-D1 11.98 11.74 0.24 11.73 0.25 11.81 0.17 11.66 0.32
T0953s2-D3 13.28 13.89 0.61 13.88 0.6 13.48 0.2 14.06 0.78
T0957s1-D1 14.96 15.49 0.53 15.44 0.48 15.13 0.17 15.74 0.78
T0960-D2 12.63 13.07 0.44 13.07 0.44 12.93 0.3 13.27 0.64
T1008-D1 11.77 12.36 0.59 12.46 0.69 11.9 0.13 12.67 0.9

Standard Deviation lRMSD (Å)
K-means GMM Hierarchical Gmx-usr

CASP Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

T0859-D1 1.83 1.84 0.01 1.9 0.07 1.91 0.08 1.99 0.16
T0886-D1 1.67 1.82 0.15 1.79 0.12 1.69 0.02 1.98 0.31
T0892-D2 3.02 2.98 0.04 2.97 0.05 3.04 0.02 3.25 0.23
T0897-D1 2.75 2.74 0.01 2.73 0.02 2.76 0.01 2.92 0.17
T0898-D2 1.03 1.17 0.14 1.16 0.13 1.14 0.11 1.26 0.23
T0953s1-D1 1.51 1.51 0 1.51 0 1.5 0.01 1.49 0.02
T0953s2-D3 1.9 1.84 0.06 1.83 0.07 1.86 0.04 2.06 0.16
T0957s1-D1 3.04 3.04 0 3.03 0.01 3.04 0 3.23 0.19
T0960-D2 1.85 1.94 0.09 1.95 0.1 1.92 0.07 2.05 0.2
T1008-D1 3.7 3.72 0.02 3.69 0.01 3.74 0.04 3.94 0.24

73



Figure 5.3: The distribution of conformation lRMSDs from the native conformation is
shown for the Ωgen ensemble (in red) and the reduced Ωred ensembles obtained via k-
means (purple), GMM (brown), hierarchical clustering (green), and gmx-cluster-usr (in
blue). Results are shown for a representative target protein with native conformation under
PDB id 1ail.

5.1.7 Discussion

The presented results make the case that all four clustering algorithms are able to drastically

decrease the conformation ensemble size while preserving the quality and diversity of the

original ensemble. GMM and k-means behave equally well in this regard, while gmx-cluster-

usr and hierarchical clustering reduces the size of the ensembles more significantly and in

response is also more prone to sacrificing quality.

Experience in molecular modeling informs that the choice of representation is often key

to the success of a method. Here we provide further analysis into what the USR features

are capturing. We do via a simple correlation analysis, where we compare the distribution

of the lRMSDs versus USR scores of computed conformations to the native conformation.
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K-means GMM

Hierarchical gmx-cluster-usr

Figure 5.4: Benchmark Dataset: A representative target (with known native conformation
under PDB id 1ail) is selected. Conformations in the Ωgen ensemble are plotted in purple

in terms of their lRMSD (Å) from the native conformation (x-axis) versus their Rosetta
score4 energies (y-axis) measured in Rosetta Energy Units (REUs). Conformation in the
Ωred ensemble are superimposed in green.

USR score is calculated as the Euclidean distance in the 12-dimensional USR feature space

for two conformations.

Figure 5.6 plots the distributions against each-other for two targets that are represen-

tatives of the Pearson’s correlation coefficients obtained over targets in the benchmark and

CASP datasets. Specifically, Figure 5.6(a) shows a correlation of 0.80 that is representative

of what is observed over the benchmark dataset; Figure 5.6(b) shows a correlation of 0.74
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K-means GMM

Hierarchical gmx-cluster-usr

Figure 5.5: CASP Dataset: A representative protein (T1008-D1) is selected. Conformations

in the Ωgen ensemble are plotted in purple in terms of their lRMSD (Å) from the native
conformation (x-axis) versus their Rosetta score4 energies (y-axis) measured in Rosetta
Energy Units (REUs). Conformation in the Ωred ensemble are superimposed in green.

that is representative of what is observed over the CASP dataset.

The median correlation over the benchmark dataset is 0.80, and the median correlation

over the CASP dataset is 0.755. The correlations (representing what is observed over

each of the datasets, with few outliers) show that the USR score is informative and a

good proxy for lRMSD; we recall that the USR representation is also invariant to rigid-

body motions, unlike Cartesian coordinate-based representations. Altogether, these results

inform that the choice of the USR-based representation of conformations is advantageous,
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(a) (b)

Figure 5.6: Correlation between USR scores and lRMSDs to the native conformation of
all conformations computed on a target protein in the (a) benchmark dataset (with native
conformation under PDB id 1cc5) and (b) CASP dataset (with native conformation under
CASP id T0953s2-D3.)

allowing clustering algorithms to capture important conformational differences that are then

retained in the reduced ensemble by the selector.

The findings presented in this chapter suggest that it is possible to significantly reduce

the number of generated conformations without sacrificing quality and diversity of the

ensemble. A three-step approach relying on featurization, clustering, and selection is shown

effective at doing so independent of the particular clustering algorithm employed. Various

clustering algorithms are evaluated in the proposed approach.

5.2 Building Concise Maps of Protein Conformation Space

The work presented in this section has been published in [98, 99]. We demonstrated in

Section 5.1 that it is possible for the generated conformation ensemble by a conformation

ensemble generation algorithm to be significantly reduced in size while retaining conforma-

tion quality. In this section, our goal is to get a conformation ensemble generation algorithm

to generate such a reduced ensemble during its execution. To do so, we propose to equip
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conformation ensemble generation algorithms with an evolving reduced-size memory of the

protein conformation space that they explore. This is inspired by robot motion planning al-

gorithms [100] and their adaptations in robotics-inspired algorithms for modeling molecular

motions [21, 83], as detailed later in the section. We introduce an evolving, granularity-

controllable map of the protein conformation space that makes use of low-dimensional rep-

resentations of protein conformations. The map reduces the storage requirement drastically

but provides similar quality of a map that would hold all the conformations ever generated

by an algorithm. Our evaluations make the case that integrating a map of the protein

conformation space is a promising mechanism to develop feasible conformation ensemble

generation algorithms.

5.2.1 Choice of Conformation Ensemble Generation Algorithm

We utilize HEA as described in Section 2.2.2 as a vehicle to implement and demonstrate

the power of the proposed mechanism of an evolving map of the protein conformation

space. We note that the map can be integrated in any conformation ensemble generation

algorithm. We choose HEA as it has been shown to have higher exploration capability than

the SA-MMC conformational sampling employed in the Rosetta platform[41, 46] and the

HEA generates hundreds of thousands of conformations that can be utilized to build a map

of the protein conformation space.

5.2.2 Evolving Map of Protein Conformation Space

In this chapter, we equip the HEA with memory of the protein conformation space it explores

during its execution. Without a map, one would resort to collecting all the individuals in the

population over all the generations to constitute the conformation pool. Two key questions

need to be addressed. First, how should the memory be implemented? We refer to this

memory as a map from now on, viewing it as a map of the protein conformation space.

Second, which individuals in the current population should be remembered for inclusion in

the map?
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The map needs to be a broad, sample-based representation of the protein conformation

space explored by a conformation ensemble generation algorithm. To achieve this, we pro-

pose the use of two projection layers that allow selecting diverse yet good-quality individuals

from the population in each generation. Quality is maintained via an energetic layer which

introduces an energetic bias in the selection of individuals for inclusion in the map. The

layer increases the likelihood of remembering low-energy individuals/conformations. Diver-

sity is maintained via a geometric layer which introduces a geometric bias in the selection

of individuals for inclusion in the map. The layer increases the likelihood of remember-

ing conformationally-diverse individuals that represent different regions of the HEA-probed

conformation space.

As mentioned earlier, the utilization of discretization layers is inspired by robot mo-

tion planning algorithms and their adaptations in robotics-inspired algorithms for modeling

molecular motions. In these algorithms, the layers are employed to bias the exploration of

a high-dimensional, continuous robot or molecular configuration space. Here, we propose a

novel utilization of discretization layers in the concept of a map/memory for conformation

ensemble generation algorithms. Next we detail the energetic and geometric layers and their

utilization.

Energetic Layer

The energetic layer is one-dimensional grid defined over Rosetta score4 in the range [Emin, 0].

The upper bound of 0 acknowledges that conformations with positive energy are infeasible

(low-quality); indeed, conformation ensemble generation algorithms generate conformations

with negative energies early in their exploration process. The lower bound Emin is set to

−200; This is informed by previous work and experiments, where we have observed that

the score4 energy of a good-quality conformation is well above −200 Rosetta Energy Units

(REUs) on target proteins of different lengths and folds[41, 46, 74, 76, 101]. In the grid,

each interval is set to a small value of 2 REUs (thus totaling 100 energy intervals over the

employed range) to ensure good granularity. Conformations that fall in the same interval
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are deemed to be energetically similar.

Geometric Layer

We associate a three-dimensional (geometric) grid with each energy interval in the ener-

getic layer. The dimensions of the grid are 3 features that capture/summarize different

aspects of molecular shape. We borrow here from the Ultrafast Shape Recognition (USR)

metrics introduced originally in Ref.[82] to summarize molecular shapes for fast searching.

Specifically, the features we employ to summarize a protein conformation and map it to

a cell in the grid are first momenta of the atomic distance distributions from 3 different

reference points in a conformation. The first reference point is the molecular centroid (ctd).

The resulting first moment of the distance distribution of all atoms from the ctd gives the

first axis/dimension in the geometric grid. The second reference point is the point farthest

from the centroid (fct). Similarly, it gives the second axis in the grid. Finally, the third

reference point is the one farthest from the fct (ffct). The resulting first moment of the

distance distribution of all atoms from the ffct gives the third axis. Essentially, a confor-

mation is summarized with three coordinates in this way. To determine in which cell/cube

a conformation falls, we consider only integer levels. So, each cube on the grid is defined

by 3 integer coordinates. All conformations that fall in the same cube are deemed to be

conformationally/geometrically similar.

Layer-based Selection of Conformations for Inclusion in the Map

We note that the map is a list of conformations. No additional storage is maintained,

however, beyond the grids described above. Specifically, only one conformation is retained

per cube of the geometric grid, and the map itself consists of the non-empty cubes of

the geometric grid. Fig. 5.7 summarizes how computed conformations are selected to be

remembered/included in the map. The energetic and geometric layers described above

are utilized to make this decision for each conformation. For an EA-based conformation

ensemble generation algorithm (as in our case), each improved offspring is subjected to
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this decision process; parents in the initial population are also considered. Specifically, an

individual or, more broadly, a computed conformation is first evaluated based on its energy

(score4 in our case) and mapped to an energy interval on the 1d energy grid described

above. Once mapped to an energy interval, the conformation is evaluated based on the

three USR-based features described above, and the conformation is mapped to a cube in

the 3d geometric grid. If the cube is empty, this is an indication that the conformation

populates an unexplored region of the conformation space and should be remembered.

Therefore, the conformation is included in the map. Otherwise, if the cube is not empty,

this means that the region captured by the cube has already been explored. Two courses of

action are reasonable here. The conformation under consideration can be ignored, as it is

both geometrically- and energetically-similar (within 2 REUs) to the conformation already

stored in the cube. The other is to replace the conformation in the cube if the one being

considered has a lower energy. In this work, we implement the second option.

5.2.3 Implementation Details

The population size in the employed algorithm is set to p = 100. The elitism rate in

the selection operator is set to 25%, as in Ref.[41]. The algorithm is executed 3 times on

each target protein’s amino-acid sequence to account for stochasticity. Each run has a fixed

budget of 10, 000, 000 energy evaluations. This budget translates to 2−9 hours on a 2.6GHz

Intel Xeon E5-2670 CPU with 100GB of RAM. The variation in execution time is primarily

governed by the length (number of amino acids) of a target protein sequence. The algorithm

is implemented in Python and interfaces with the PyRosetta library.

5.2.4 Results

We carry out our evaluation on 18 targets in the benchmark dataset and 10 targets in the

CASP dataset. For the purpose of evaluation, the ensemble of conformations consisting of

individuals from every population in the HEA without the map is referred to as the original

pool. The ensemble of conformations retained in the map resulting from running HEA with
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Figure 5.7: The schematic summarizes the process via which a generated conformation is
considered for inclusion in the map. The decision considers both the energetic and geometric
layer. In this manner, the map evolves during the course of a conformation ensemble
generation algorithm and stores structurally-diverse, yet low-energy conformations.

the map is referred to as the reduced pool. The evaluation presented here is over combined

results (over the 3 runs). The original and the reduced pool are compared in terms of size

and quality. To compare quality, as the map never discards lower-energy conformations,

we focus on the proximity of conformations to the known native conformation of a target

sequence.

Conformation Ensemble Reduction versus Conformation Quality

Table 5.5 shows the comparison between the original and reduced pools in terms of size ver-

sus quality. The comparison first focuses on the benchmark dataset. The PDB identifiers

(IDs) of the known native conformation for each of the target sequences in the benchmark

dataset are listed in Column 1. The size (number of conformations) of the original pool and

reduced pool/map are compared in Columns 2-3. The reduction afforded by the reduced
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pool is shown in Column 4 as a percentage. The reduction is drastic. More than 90% reduc-

tion is achieved in the reduced pool in 10/18 test cases. The other 8 cases yield reductions

that exceed 80% with a minimum decrease of 81.6%. The most dramatic reduction in size

occurs in target sequences with PDB ID 1bq9 and 1dtdb; a reduction of 96.3% is reported

in these two cases, which is almost a 27-fold reduction over the original pool.

Columns 5-6 in Table 5.5 compare the lowest lRMSD to the known native conformation

over all the conformations in the original pool versus the reduced pool for each target. The

difference between these two values (increase of lRMSD in the reduced pool from the original

pool) for each target is reported in Column 7, indicating that dramatic reductions in size do

not sacrifice conformation quality. The difference in lRMSD to the native between the re-

duced and original pools is 0Å for 9/18 targets. This means that on 50% of the targets, the

reduction in size inflicts no penalty on the quality of the conformations. Indeed, the differ-

ence is less than 1Å for all targets, with a maximum difference of 0.7Å reached on the target

with PDB ID 1aoy. This demonstrates the utility of the map in retaining conformations of

good quality while drastically reducing the number of retained conformations.

Table 5.6 relates a similar evaluation for each of the CASP domains denoted by their

corresponding identifiers in Column 1. The size (number of conformations) of the original

pool and reduced pool (the map) are compared in Columns 2-3. The reduction in size is

shown in Column 4 as a percentage. More than 90% reduction is achieved by the reduced

pool in 5/10 test cases. Except for one case (target with identifier T0897-D1, where the

reduction is 73.8%), the reduction exceeds 80% in all targets.

Columns 5-6 in Table 5.6 compare the lowest lRMSD to the native conformation over all

the conformations in the original pool versus the reduced pool for each of the CASP targets.

The difference between these two values (increase of lRMSD in the reduced pool from the

original pool) is reported for each target in Column 7. The difference shown in Column 8 is

0Å for 6/10 test cases; this indicates that on 60% of the targets, the reduction in size comes

at no cost to conformation quality. The difference is less than 1Å for all targets, with a
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Table 5.5: Comparison of size reduction versus quality retainment in the original versus
the reduced Pool on the benchmark dataset. Column 1 shows the PDB IDs of the known
native conformation of each target sequence. Columns 2-4 juxtapose the sizes of the original
and reduced pools. Columns 5-7 compare the quality of the pools in terms of their lowest
lRMSD from the known native conformation for each target sequence.

Size Lowest lRMSD
PDB ID Original

Pool
Reduced
Pool

Reduction
(%)

Original

Pool (Å)

Reduced
Pool (Å)

Difference
(Å)

1ail 680, 637 56, 740 91.7 2.4 2.7 0.3
1aoy 628, 010 75, 413 88.0 4.2 4.9 0.7
1bq9 485, 490 18, 114 96.3 5.3 5.5 0.2
1c8ca 452, 893 35, 559 92.1 6.8 7.0 0.2
1cc5 559, 247 39, 805 92.9 5.8 5.8 0
1dtdb 180, 667 6, 722 96.3 8.0 8.3 0.3
1dtja 309, 725 24, 593 92.1 3.6 3.6 0
1hhp 168, 334 17, 290 89.7 10.8 10.8 0
1hz6a 556, 254 56, 578 89.8 2.7 2.7 0
1isua 336, 770 17, 361 94.8 6.9 6.9 0
1sap 678, 521 65, 238 90.4 5.7 6.1 0.4
1tig 496, 741 56, 180 88.7 6.2 6.2 0
1wapa 341, 909 33, 793 90.1 7.8 8.0 0.2
2ci2 331, 022 23, 497 92.9 4.3 4.3 0
2ezk 568, 350 85, 080 85.0 4.0 4.3 0.3
2h5nd 426, 385 75, 997 82.2 10.5 10.5 0
2hg6 418, 324 76, 989 81.6 11.4 11.6 0.2
3gwl 483, 216 63, 073 86.9 4.7 4.7 0

maximum difference of 0.7Å (for the target with identifier T0957s1-D1). These results agree

with those obtained on the benchmark dataset and further confirm that the map provides

drastic reduction in storage while retaining good-quality conformations.

Visual Comparison of Conformation Spaces

We can visualize the conformation space remembered in the map as follows. Each conforma-

tion in the map (to which we have been referring as the reduced pool) can be plotted with

two coordinates, its lRMSD from the known native conformation and its Rosetta score4

energy. We can do the same for all conformations in the original pool (HEA without the
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Table 5.6: Comparison of size reduction versus quality retainment in the original versus the
reduced Pool on the CASP dataset. Column 1 shows the target CASP identifiers. Columns
2-4 juxtapose the sizes of the original and reduced pools. Columns 5-7 compare the quality
of the pools in terms of their lowest lRMSD from the known native conformation for each
target.

Size Lowest lRMSD
CASP ID Original

Pool
Reduced
Pool

Reduction
(%)

Original

Pool (Å)

Reduced
Pool (Å)

Difference
(Å)

T0859-D1 404, 048 79, 130 80.4 11.7 11.7 0
T0886-D1 250, 607 13, 836 94.5 7.5 7.5 0
T0892-D2 279, 911 51, 104 81.7 8.3 8.3 0
T0897-D1 319, 782 83, 720 73.8 10.8 10.8 0
T0898-D2 353, 708 11, 241 96.8 7.4 7.9 0.5
T0953s1-D1 167, 707 7, 361 95.6 7.3 7.3 0
T0953s2-D3 293, 291 26, 515 91.0 9.0 9.1 0.1
T0957s1-D1 344, 604 60, 775 82.4 7.2 7.9 0.7
T0960-D2 136, 787 10, 083 92.6 7.0 7.5 0.5
T1008-D1 656, 333 79, 989 87.8 2.5 2.5 0

1ail 1aoy 1hz6a

Figure 5.8: Each conformation is plotted with two coordinates, its lRMSD from the native
conformation on the x-axis, and its Rosetta score4 energy on the y-axis. Conformations in
the original pool are drawn in red, whereas those in the reduced pool are drawn in blue. The
targets are indicated above each plot via the PDB IDs of their known native conformations.
This figure shows the results for three selected targets in the benchmark dataset.

map).

Fig. 5.8 and Fig. 5.9 provide this visualization for three selected targets each in the

benchmark dataset and the CASP dataset, respectively. In these figures, the conformations
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T0859-D1 T0957s1-D1 T1008-D1

Figure 5.9: Here we visualize the original and the reduced pool for three selected targets in
the CASP dataset. The targets are indicated above each plot via their CASP identifiers.
Each conformation is plotted with two coordinates, its lRMSD from the native conformation
on the x-axis, and its Rosetta score4 energy on the y-axis. Conformations in the original
pool are drawn in red, whereas those in the reduced pool are drawn in blue.

in the original pool are drawn in red, whereas those in the reduced pool are drawn in

blue. It is apparent from examining these plots that the map (reduced pool) remembers

conformations from every region in the conformation space (original pool) probed by the

HEA. It is also evident that the map captures all local minima well.

Finally, Fig. 5.10 juxtaposes the best conformation (with lowest lRMSD to a known

native conformation) among all conformations in the original pool with the best conforma-

tion in the reduced pool by superimposing them over the known native conformation. This

is done for the target protein with known native conformation under PDB ID 1aoy. The

reason for choosing this target is due to the largest difference (0.7Å) in lRMSD between the

reduced and original pools reported in Table 5.5. The CCP4mg molecular graphics soft-

ware[1] is used to perform all conformation rendering. As can be seen, the conformations

are very similar.

5.2.5 Summary

In this section, we present a mechanism by which one can equip conformation ensemble

generation algorithms with memory of the protein conformation space that they explore.

Specifically, generated conformations are considered for inclusion in a map. The map stores
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Figure 5.10: The best conformation (lowest lRMSD to the native conformation) among all
HEA-generated conformations (in the original pool) is rendered in blue on the left. The
best conformation in the map (reduced pool) is rendered in blue on the right. Each is
superimposed over the known native conformation (PDB ID 1aoy), which is rendered in
olive.

non-redundant conformations and utilizes low-dimensional (energetic and geometric) repre-

sentations of a protein conformation that facilitate computationally-efficient comparison of

conformations. The granularity of the map can be controlled by increasing/decreasing the

number of energy intervals in the energetic layer and the number of cubes in the geometric

layer. Increasing granularity would result in higher storage demands but also provide great

detail. Controlling granularity allows balancing between the demand on storage and the

amount of desired detail. Evaluation on diverse targets shows that drastic reductions in

storage do not sacrifice conformation quality. While the results presented here have inte-

grated the proposed map in an evolutionary algorithm, the map can be easily integrated

in any conformation ensemble generation algorithm, as it allows making decisions on a per

conformation basis.
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5.3 Guiding Conformation Ensemble Generation Algorithms

with Maps

In Section 5.2, we equipped conformation ensemble generation algorithms with an evolving

map of the conformation space to promote their feasibility. In this section, we investigate

if we can guide such algorithms with the map at the same time to enhance exploration of

the conformation space.

While use of a memory/map of the search space has been investigated in literature

for protein modeling, they have not been utilized to guide the search to achieve more

exploration of the search space for conformation ensemble generation. Such works either

attempt to use the memory to attain a mapping of the the conformation space [102] or

to store the best solutions [103–106]; not to guide an optimization algorithm. Moreover,

the memories that are used in such works generally do not reduce dimensionality of the

stored individuals [103–106] and would be infeasible for conformation ensemble generation

as a conformation has hundreds of dimensions and a huge number of conformations are

generated. Work in [102], however, uses a memory mechanism that compares distances

in a reduced dimension of principal components (PC) space. But, such a map would be

infeasible for the generated conformations as our experiments show low variance retained

for the generated conformations for even 20 PCs. Works beyond protein modeling generally

do not reduce dimensions [107–109] for the memory and would be inefficient if used as a

memory of the explored spaces for de novo conformation ensemble generation. In addition,

there is no evidence that the memories used in these works provide a proper representation

of the explored search space.

In this work, we intend to build over our work described in Section 5.2, where we intro-

duced an evolving map of the protein conformation space that makes use of low-dimensional

representations of protein conformations (uses only 3 dimensions to capture the shape of

a conformation), stores non-redundant diverse conformations, and sums up the already

explored spaces well. Here, we propose to use this map as a guide for the conformation
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ensemble generation algorithms to discourage conformational sampling in already sampled

spaces and encourage exploration of the unknown parts of the conformation space.

The process of guiding by the map to avoid explored regions requires careful consider-

ation. While modifying the fitness function to decrease fitness of individuals close to the

explored spaces, as in [107,110], is appealing, in our case the fitness functions are carefully

constructed with domain-specific insights and it is not clear how to modify them. Another

notable idea is to perform adaptive variation consulting the memory [108] which is also

challenging as described later in Section 6.2. Therefore, we propose to periodically exclude

similar individuals to the already explored individuals during selection consulting the map

of the explored conformation space.

First, we focus on HEA equipped with the map as described in Section 5.2. We then

change its selection operator which selects the individuals to construct the next generation.

We propose a new selection mechanism that consults the map to select individuals in a

way that allows the conformational sampling process to sample diverse conformations from

different parts of the conformation space.

5.3.1 Guiding with the Map

The selection operator in HEA is modified to allow consultation with the map to select

individuals for the next generation. How often this consultation happens is governed by

the consultation frequency f . In all the generations the map is not consulted, the selection

operator works the same as the selection operator in HEA.

In any generation g, let the f generation earlier version of the ever-evolving map be

denoted as MAPg−f . The selection mechanism checks the MAPg−f in every f generations

during selection. The map consulted is always the f generation earlier version to provide the

individuals in the MAPg−f enough opportunities to reproduce and improve. This enables

the algorithm to exploit the conformation space around these individuals. Starting with an

empty selection pool, during each consultation, the parents and offspring that fall on empty

cubes in the MAPg−f are added to the selection pool. The parents and offspring that fall
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on already occupied cubes are excluded from the selection pool as the conformation space

around these individuals have already been explored.

After all the individuals are checked, two scenarios can occur. First, the selection pool

contains more individuals than the population size. In this case, we apply truncation

selection to bring the selection pool down to the population size. Second, the selection pool

contains less individuals than the population size. In this case, we randomly select the rest

of the individuals from the map and apply molecular fragment replacement of length 9 on

them once to have bigger conformational change for exploration in the unknown parts of

the landscape and get more diverse conformations.

When the above process is completed, the selection pool contains the same number of

individuals as the population size. These individuals constitute the next generation.

5.3.2 Implementation Details

The population size p is set to 100 and the elitism rate for elitism-based truncation selection

is set to 25%, as in [41]. As is commonly done for conformation ensemble generation

algorithms, the termination criterion is set to a total budget of fitness/energy evaluations.

The algorithm is executed for a fixed budget of 10M energy evaluations. The consultation

frequency f is set to 15. The algorithm is implemented in python and interfaces with the

PyRosetta library. The algorithm runs for 2−5 hours on one Intel Xeon E5-2670 CPU with

2.6GHz base processing speed and 100GB of RAM. The runtime differs mainly because of

different lengths of the target proteins. The algorithm is run 5 times on each target to

account for the variance due to stochasticity.

5.3.3 Results

We carry out our evaluation on 10 targets each from both the benchmark and the CASP

datasets. We refer to the algorithm described above as HEA-Map. HEA-Map is compared

to HEA for a baseline comparison. We also compare HEA-Map to two other state-of-

the-art conformation ensemble generation algorithms. One is Rosetta’s SA-MMC based
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conformation sampling algorithm. The other is a recent subpopulation EA, SP-EA+ [101],

described in Section 6.1, that aims to prevent premature convergence and retain diversity

during optimization by evolving and maintaining multiple subpopulations.

The HEA-Map, HEA, and SP-EA+ algorithms are run 5 times on each target sequence,

and what we report here is their best performance over all 5 runs combined. Each run

exhausts a fixed computational budget of 10M energy evaluations for a total of 50M energy

evaluations for the 5 runs. Rosetta is run for 54M energy evaluations. As is practice in EAs

for conformation ensemble generation, performance is measured by lowest reached energy

and the lowest reached distance to the known native conformation of the target. We use

lRMSD for the proximity measure.

To present a principled evaluation, we further strengthen our comparison with statistical

significance tests. We utilize Fisher’s and Barnard’s exact tests for this purpose. To provide

a complete picture, we also employ performance profiles for the results.

Evaluation on Benchmark Dataset

Table 5.7 shows the lowest score4 energy reached by each of the algorithms under compari-

son on the benchmark dataset. Table 5.7 shows that HEA-Map achieves lower energy than

all other algorithms in 8/10 cases. In a head-to-head comparison, HEA-Map beats all other

algorithms comfortably and achieves lower energy than Rosetta in 9/10 cases, than HEA in

8/10 cases, and than SP-EA+ in 9/10 cases. Table 5.11(a) evaluates the 1-sided statistical

significance tests of the performance of HEA-Map over the other algorithms. Table 5.11(a)

shows that the performance improvements are statistically significant at 95% confidence

level (p-values < 0.05) for both Fisher’s and Barnard’s tests.

Table 5.8 shows the lowest lRMSD to the native conformation reached by each of the

algorithms under comparison on the benchmark dataset. Table 5.8 shows that HEA-Map

achieves lower lRMSD than all other algorithms in 6/10 cases. In a head-to-head com-

parison, HEA-Map beats all other algorithms comfortably and achieves lower lRMSD than
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Table 5.7: Comparison of the lowest energy obtained by each algorithm under comparison
on each of the 10 benchmark targets is shown in Columns 4-7. The PDB ID of the known
native, sequence length, and fold of each target are shown in Columns 1-3. The lowest
energy value reached per target is marked in bold.

Lowest Energy (REUs)
PDB ID Length Fold Rosetta HEA SP-EA+ HEA-Map

1ail 73 α −29.9 −56.1 −81.3 −84.7
1bq9 53 β −46.9 −50.5 −64.2 −71.1
1c8ca 64 β −101.4 −86.4 −78.3 −105.7
1cc5 83 α −82.5 −68.6 −76.4 −93.7
1dtja 76 α+ β −72.5 −82.2 −72.6 −90.9
1hhp 99 β −106.3 −104.5 −83.5 −81.4
2ci2 83 α+ β −37.8 −109.8 −82.7 −108.8
2ezk 93 α −51.1 −100.7 −135.2 −138
2h5nd 123 α −82.5 −129 −139.1 −161.9
3gwl 106 β −68.2 −100 −117.8 −133.7

Rosetta in 7/10 cases, than HEA in 9/10 cases, and than SP-EA+ in 7/10 cases. Ta-

ble 5.11(b) evaluates the 1-sided statistical significance tests of the performance of HEA-

Map over the other algorithms. Table 5.11(b) shows that the performance improvement

over HEA is statistically significant at 95% confidence level (p-values < 0.05) for both

Fisher’s and Barnard’s tests. Performance improvement over Rosetta and SP-EA+ are not

statistically significant at 95% confidence level but the p-values are close to 0.05.

Figure 5.11(a) shows the performance profiles of each algorithm over the benchmark

dataset in terms of the lowest energy reached. Figure 5.11(a) shows that the probability

of HEA-Map to be the optimal algorithm among these 4 algorithms is about 0.80, consid-

erably more than any of the other algorithms. At pr = 1.1, HEA-Map succeeds for 90%

targets. HEA-Map and SP-EA+ reaches a success of 100% at a pr = 1.4, while HEA do so

at pr = 1.6. Rosetta’s performance profile rises very slowly and reaches 100% at pr = 3.0.

Figure 5.11(b) relates a similar analysis focusing on the lowest lRMSD to the native con-

formation and shows that the probability of HEA-Map to be the optimal algorithm among

these 4 algorithms is about 0.60, considerably more than any of the other algorithms. At
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Table 5.8: Comparison of the lowest lRMSD to the native conformation obtained by each
algorithm under comparison on each of the 10 benchmark targets is shown in Columns 4-7.
The PDB ID of the known native, sequence length, and fold of each target are shown in
Columns 1-3. The lowest lRMSD value reached per target is marked in bold.

Lowest lRMSD (Å)
PDB ID Length Fold Rosetta HEA SP-EA+ HEA-Map

1ail 73 α 4.5 1.4 1.2 1.4
1bq9 53 β 2.9 3 4.7 2.8
1c8ca 64 β 2.2 4.8 3.6 3.7
1cc5 83 α 3.7 4.7 4.7 4.4
1dtja 76 α+ β 2.3 4.2 2.5 2.8
1hhp 99 β 10.1 8.8 8.2 7.8
2ci2 83 α+ β 5.8 3.7 3.5 3.3
2ezk 93 α 3.6 3.4 2.9 2.7
2h5nd 123 α 7.4 6.2 7.4 5.3
3gwl 106 β 5.8 5.4 2.9 2.7

(a) (b)

Figure 5.11: Performance profiles for the algorithms on (a) lowest energy and (b) lowest
lRMSD metrics on the benchmark dataset.

pr = 1.2 and pr = 1.3, HEA-Map succeeds for 80% and 90% targets respectively. HEA-Map

and SP-EA+ reaches a success of 100% at a pr = 1.7, while HEA do so at pr = 2.2. Rosetta

saturates at pr = 2.2 with a success for 90% targets.
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These results show the utility of guidance by the map for conformation ensemble gen-

eration. The superior performance of HEA-Map suggests the algorithm is able to sample

from the parts of the conformation space missed by the algorithms that does not use the

map to enhance exploration. The quality of the conformations obtained by HEA-Map is

shown qualitatively in Fig. 5.13, which draws the lowest-lRMSD conformation obtained by

HEA-Map (drawn in blue) in three selected targets, superimposing it over the known native

(drawn in olive). Rendering is performed with the CCP4mg molecular graphics software [1].

Evaluation on CASP Dataset

Table 5.9 shows the lowest score4 energy reached by each of the algorithms under compar-

ison on the CASP dataset. Table 5.9 shows that HEA-Map achieves lower energy than all

other algorithms in 7/10 cases. In a head-to-head comparison, HEA-Map beats all other

algorithms easily and achieves lower energy than Rosetta in 9/10 cases, than HEA in all

cases, and than SP-EA+ in 8/10 cases. Table 5.11(c) evaluates the 1-sided statistical sig-

nificance tests of the performance of HEA-Map over the other algorithms. Table 5.11(c)

shows that the performance improvements are statistically significant at 95% confidence

level (p-values < 0.05) for both Fisher’s and Barnard’s tests.

Table 5.10 shows the lowest lRMSD to the native conformation reached by each of the

algorithms under comparison on the benchmark dataset. Table 5.10 shows that HEA-Map

achieves lowest lRMSD in 9/10 cases. In a head-to-head comparison, HEA-Map beats all

other algorithms comfortably and achieves lower lRMSD than Rosetta in 9/10 cases, than

HEA in all cases, and than SP-EA+ in 8/10 cases. Table 5.11(d) evaluates the 1-sided

statistical significance tests of the performance of HEA-Map over the other algorithms.

Table 5.11(d) shows that the performance improvements are statistically significant at 95%

confidence level (p-values < 0.05) for both Fisher’s and Barnard’s tests.

Figure 5.12(a) shows the performance profiles of each algorithm over the CASP dataset

in terms of the lowest energy reached. Figure 5.12(a) shows that the probability of HEA-

Map to be the optimal algorithm among these 4 algorithms is about 0.70, considerably
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Table 5.9: Comparison of the lowest energy obtained by each algorithm under comparison
on each of the 10 CASP targets is shown in Columns 3-6. The CASP ID of the native
and the sequence length of each target are shown in Columns 1-2. The lowest energy value
reached per target is marked in bold.

Lowest Energy (REUs)
Domain Length Rosetta HEA SP-EA+ HEA-Map

T0859-D1 129 −99.5 −88 −92.4 −103
T0886-D1 69 −89.2 −69.9 −41.4 −83
T0892-D2 110 −101.8 −116.3 −76.7 −120.8
T0897-D1 138 −141.4 −135.2 −138.8 −152.9
T0898-D2 55 −65.5 −65.7 −51 −70.1
T0953s1-D1 67 −51.8 −55.8 −67 −60.7
T0953s2-D3 93 −53.1 −62.2 −44.5 −66.3
T0957s1-D1 108 −121.5 −102.6 −111.2 −124.3
T0960-D2 84 −79.7 −67.6 −63.2 −87.5
T1008-D1 77 −164.2 −148.4 −170.9 −167

Table 5.10: Comparison of the lowest lRMSD to the native conformation obtained by each
algorithm under comparison on each of the 10 CASP targets is shown in Columns 3-6. The
CASP ID of the native and the sequence length of each target are shown in Columns 1-2.
The lowest lRMSD value reached per target is marked in bold.

Lowest lRMSD (Å)
Domain Length Rosetta HEA SP-EA+ HEA-Map

T0859-D1 129 10.6 9.6 9.2 9.1
T0886-D1 69 6.3 6.4 6.2 5.8
T0892-D2 110 8 7.2 6.7 6.8
T0897-D1 138 9 9.3 8.4 8.1
T0898-D2 55 6.5 6.1 5.8 5.8
T0953s1-D1 67 7 6.2 5.7 5.6
T0953s2-D3 93 8.7 8 8 7.6
T0957s1-D1 108 6.9 7.4 7.2 6.2
T0960-D2 84 7.2 7.6 7.3 7.2
T1008-D1 77 3.2 3.6 3.6 3

more than any of the other algorithms. At pr = 1.1, HEA-Map succeeds for 90% targets.

HEA-Map and SP-EA+ reaches a success of 100% at a pr = 1.2, while HEA and Rosetta
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do so at pr = 1.3. The performance profile of SP-EA+ rises very slowly and reaches 100%

at pr = 2.2. Figure 5.12(b) relates a similar analysis focusing on the lowest lRMSD to

the native conformation and shows that the probability of HEA-Map to be the optimal

algorithm among these 4 algorithms is about 0.90, considerably more than any of the other

algorithms. HEA-Map reaches a success of 100% at a pr = 1.1, while SP-EA+ and HEA do

so at pr = 1.2. Rosetta reaches 100% at pr = 1.3.

(a) (b)

Figure 5.12: Performance profiles for the algorithms on (a) lowest energy and (b) lowest
lRMSD metrics on the CASP dataset.

These results agree with the results in the benchmark dataset and emphasizes the effec-

tiveness of guidance by the map to achieve more exploration of the energy landscape. The

superior ability of HEA-Map to sample lower energy regions in the landscape also translates

into better quality conformations closer to the native conformations.

5.3.4 Summary

In this section, we present an EA that is guided by a concise evolving map of the already

explored regions of the conformation space. The EA is able to sample from unexplored

regions of the conformation space through periodically excluding sampled individuals during

selection and generating reasonably different new individuals. The results presented in the

previous subsection demonstrates the effectiveness of the proposed EA for sampling better
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Table 5.11: Comparison of HEA-Map to other algorithms via 1-sided Fisher’s and Barnard’s
tests. The tests evaluate the null hypothesis that HEA-Map does not achieve (a) lower lowest
energy on benchmark dataset, (b) lower lowest lRMSD on benchmark dataset, (c) lower
lowest energy on CASP dataset, (d) lower lowest lRMSD on CASP dataset, considering
each of the other algorithms in turn. P-values less than 0.05 are marked in bold.

(a)

Test Rosetta HEA SP-EA+

Fisher’s 0.0005467 0.01151 0.0005467
Barnard’s 0.0002012 0.005909 0.0002012

(b)

Test Rosetta HEA SP-EA+

Fisher’s 0.08945 5.95e-05 0.08945
Barnard’s 0.05789 2.00e-05 0.05789

(c)

Test Rosetta HEA SP-EA+

Fisher’s 0.0005467 5.41e-06 0.01151
Barnard’s 0.0002012 9.54e-07 0.005909

(d)

Test Rosetta HEA SP-EA+

Fisher’s 5.95e-05 5.41e-06 0.002739
Barnard’s 2.00e-05 9.54e-07 0.001288

1ail (lRMSD = 1.4Å) 1dtja (lRMSD = 2.8Å) 3gwl (lRMSD = 2.7Å)

Figure 5.13: The conformation obtained by HEA-Map that is closest to the native confor-
mation is shown for three selected cases, the protein with known native conformation under
PDB ID 1ail (left), 1dtja (middle), and 3gwl (right). The HEA-Map conformation is in
blue, and the known native conformation is in olive.

quality conformations than the prominent conformation ensemble generation algorithms and

shows the potential of such mechanisms to enhance exploration of the protein conformation

space while remembering a reasonably small number of conformations in its generated

ensemble.
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Chapter 6: Balancing Exploration and Exploitation

As described in Chapter 1, for an optimization algorithm seeking multiple near-native con-

formations in a vast, high-dimensional, and multimodal landscape, a proper balance between

exploration and exploitation is critical. In this chapter, we work on balancing exploration

and exploitation for conformation ensemble generation algorithms to improve conforma-

tional sampling. We first focus on mapping the multimodal energy landscape by retaining

diversity of the conformations through a subpopulation scheme in Section 6.1. We then

employ an adaptive mechanism to control this balance in Section 6.2. The algorithms we

present here take the amino-acid sequence of a protein as input and provide an ensemble of

conformations generated through the evolutionary process as output.

6.1 Using Subpopulation EAs to Map Protein Energy Land-

scapes

The work presented in this section has been published in [101]. To sample diverse minima

that correspond to different biologically-active conformations, the classic optimization that

aims to find the global optimum is insufficient and mapping of the conformation space is

necessary. The need to map landscapes as key to understanding a wide range of molecular

phenomena has long been recognized across computational physics, organic and inorganic

chemistry, and biology [20, 43, 111–116]. For instance, mapping the energy landscape of

a cluster of 38 Lennard-Jones atomic particles reveals a double funnel that provides a

microscopic basis for understanding how relaxation to the global minimum is diverted into

a set of competing structures [112]. In [111], the mapped energy landscapes of small clusters

of atoms are revealed to be highly heterogeneous and contain low-energy minima with large

basins of attraction. In [113], the energy landscape is shown to facilitate the analysis and
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interpretation of supercooling and glass-formation phenomena. In [43,114], various studies

in computational chemistry, physics, and biology are summarized to propose and support

the holistic view of the energy landscape as central to explaining the behavior of atomic

clusters, glasses, and even proteins.

While great progress has been made in mapping energy landscapes of atomic clus-

ters [116], glasses [115], and short peptides [20], mapping protein energy landscapes remains

challenging due to the complexity of such landscapes. In glasses, atomic particles, and short

peptides, the number of interacting atoms/particles is small, and EAs that rely mainly on

exploitation and limit exploration to naive strategies (e.g., random restart) can be useful.

However, such approaches lose efficacy rapidly on landscapes of increasing modality, and

sophisticated strategies are needed to balance between exploitation and exploration to avoid

premature convergence.

Building on the pioneering efforts of Holland, De Jong, Goldberg, and Richardson [117,

118], various strategies have been proposed to address adequate exploration and diversity

maintenance. Biased towards strategies that have been shown effective on computational

structural biology problems, we highlight here three main techniques often used in combi-

nation: a hall of fame mechanism, multi-objective optimization, and hybridization. Work

in [102] integrates a hall of fame mechanism in a hybridized/memetic EA to encode a de-

tailed representation of the EA-explored landscape. Work in [41, 46] links the presence of

multiple minima in protein energy landscapes to competing objectives in energy functions

and demonstrates the utility of multi-objective optimization EAs. Work in [11, 12, 119]

additionally debuts decentralized selection operators to retain diversity. Work in [14, 40]

pursues various recombination strategies to promote generation of diverse candidates, hy-

bridization for better exploitation, and non-local optimization operators to balance between

exploration and exploitation.

Here, we develop subpopulation-oriented EAs as vehicles to do so. In a subpopulation

EA, the population is divided into multiple subpopulations and each subpopulation seeks

solutions in the subspace around the niche (basin of attraction) it occupies. The concept of
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a subpopulation is appealing, as it can be directly linked to a conformational state. Thus,

an EA that evolves and maintains multiple subpopulations at local minima while exploring

new regions of the fitness landscape seems ideally suited for identifying multiple conforma-

tional states. To do so, subpopulation EAs must maintain diversity, a recurring theme in

Evolutionary Computation (EC) research. While EC literature on subpopulation models is

quite extensive, subpopulation EAs have not yet been considered for molecular modeling.

Largely, existing research considers two scenarios, one where there is prior information on

landscape modalities, and one where there is no such information. For the case of prior

information, we highlight seminal work by Goldberg and Richardson [118], which assumes

that the number of modalities/optima and their location are both known. This setting is not

valid in molecular modeling, where the objective is to actually discover the diverse optima.

An early survey by Spears [120] summarizes the use of restricted mating schemes to evolve

subpopulations when no information about the optima is available. Work in [121] proposes

a set of multi-population genetic algorithm (GA) operators for general landscape mapping.

More recent work in [122] applies subpopulation EAs to the problem of feature selection

but utilizes known information to organize the initial population into subpopulations (also

referred to as tribes in [122]).

In this section, we presume no a priori information regarding the number and/or location

of optima, or the distinct characteristics that may allow organizing individuals in the initial

population into distinct subpopulations. We note that in a discovery setting, the location of

the competitive states would not be known in molecular modeling, though occasionally in

computational physics or chemistry applications information would be available regarding

the number of such states and attributes distinguishing them. In de novo conformation

ensemble generation, such information is not available, and one must proceed in more

difficult blind settings.

First, we develop a subpopulation EA, to which we refer as SP-EA−, by building on

earlier work on effective representations of protein conformations and representation-aware
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variation operators (described in Chapters 2 and 3). SP-EA− organizes the initial pop-

ulation into subpopulations and then applies subpopulation competition to provide more

resources to the fitter subpopulations during the evolutionary process. The diversity in-

troduced through different subpopulations helps the exploration component of the search.

The exploitation comes from the evolutionary process within a subpopulation and the com-

petition for resources between the subpopulations where more resources are allocated to

fitter subpopulations. We then further extend this baseline EA so as not only to allocate

more computational resources to fitter subpopulations, but additionally maintain stable

and diverse subpopulations via a niche preservation technique. We refer to this algorithm

as SP-EA+.

While our primary motivation is identifying the modality of unknown protein energy

landscapes, we first evaluate the two EAs on benchmark problems with fitness landscapes of

known modalities. We then provide a comparative evaluation in the conformation ensemble

generation setting and additionally compare the two EAs against Rosetta conformation

sampling method. The results demonstrate that the subpopulation mechanism offers several

advantages over the state-of-the-art, with the niche preservation technique yielding the best

performance.

6.1.1 SP-EA−: A Baseline Subpopulation EA

SP-EA−, shown in pseudocode in Algorithm 1, first initializes a running counter that keeps

track of fitness function evaluations (line 1) so as to evaluate and compare the two different

algorithms (SP-EA− and SP-EA+) using the same user-defined budget FMAX of fitness

evaluations.

The initial population is obtained via an initialization mechanism (line 3). For the

benchmark problems studied here, coordinates for individuals are drawn uniformly at ran-

dom from the given parameter ranges. On applications to proteins, we employ the effective

initialization mechanism used in HEA (described in Section 2.2.2).
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Algo. 1 Baseline EA

Require: FMAX //total computational budget
N //population size
CompFreq //competition frequency
ElitismRate //elitism rate

1: fcounter ← FMAX //counter of fitness evaluations
2: i← 0 //generation counter
3: 〈Pi, budgetSpent〉 ← InitOper(N) //generate initial population
4: fcounter ← fcounter − budgetSpent
5: {S1, . . . ,SK} ← GenSubPops(Pi) //divide into subpopulations
6: while fcounter > 0 do
7: for S ∈ {S1, . . . ,SK} do
8: C ← ∅ //set of offspring
9: for s ∈ S do

10: c← VarOper(s) //generate offspring

11: 〈c′ , f ′
, budgetSpent〉 ← ImprovOper(c) //improve offspring

12: fcounter ← fcounter − budgetSpent
13: C ← C ∪ {c′ , f ′} //add improved offspring

14: S
′ ← SelOper(S, C, ElitismRate) //select

15: S ← S ′
//update subpopulation

16: if i mod CompFreq = 0 then
17: {S1, . . . ,SK} ← SubPopCompete({S1, . . . ,SK})
18: i← i+ 1
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Defining Subpopulations

Unlike a classic EA, where, once initialized, the population evolves over generations, the

subpopulation EAs we present here first organize the initial population into subpopulations.

Unlike other work, where information may be available on the attributes that can be lever-

aged for such organization, here we assume no a priori information. That is why line 5

in Algorithm 1 simply refers to a mechanism to generate subpopulations from the initial

population. In this work, we employ leader clustering, but other clustering algorithms can

be utilized. The main idea behind leader clustering is that individuals are considered in

order, and each individual either forms a new cluster (becoming its representative) or is

assigned to the first cluster whose representative is within a distance threshold.

For the benchmark problems considered here, we utilize Euclidean distance to measure

the distance between an individual yet to be assigned to a cluster and the representative

individual of each cluster computed so far. In applications (and adaptation) of SP-EA−

and SP-EA− to proteins, the distance function used is lRMSD as described in Section 3.4.

We note that the number of subpopulations in line 5 is not predetermined. Clustering

algorithms that necessitate such determination can be used, but one of the reasons we

prefer leader clustering is that the number of clusters follows based on the specified distance

threshold. Once subpopulations are determined, they each undergo an evolutionary process.

Lines 7-15 in Algorithm 1 evolve each subpopulation as follows. For each subpopulation,

offspring are recorded in a set C that is initialized to the empty set (line 8). Each individual

in the current subpopulation S under consideration (line 9) is selected to obtain an offspring

c via a variation operator (line 10). The variation operator for the benchmark problems

studied here is a Gaussian perturbation operator, which perturbs each coordinate of an

individual by a value drawn from a zero-mean Gaussian distribution with a given variance.

In applications on proteins, the variation operator is implemented as in Section 2.2.2.
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Evolving Each Subpopulation

The obtained offspring is then subjected to a local search that seeks to improve the offspring

(line 11). For the benchmark problems considered here, a naive local search chooses any of

the coordinates of the offspring with equal probability and then applies a simple gradient

descent on the chosen coordinate for a total of budgetSpent iterations/cycles. The local

search utilized in the applications on proteins is implemented as described in Section 2.2.2.

Note that all fitness evaluations that occur in the improvement operator are counted, and

they are removed from the total budget (line 12).

Once the offspring of a subpopulation are generated and stored in D (line 13), they com-

pete for survival with parents (line 14). An elitism-based truncation selection mechanism

is employed for this purpose as described in Section 2.2.2.

Competition Among Subpopulations

Once this process completes for each subpopulation (line 7), subpopulations may now com-

pete with one another. How frequently this occurs is determined via a user-defined compe-

tition frequency (line 16). In this work, the competition takes place once every CompFreq

generations. Algorithm 1 does not provide details of the competition process (line 17) which

may update subpopulations. Different implementations of this process give rise to different

variants of subpopulation EAs. Let us delay momentarily the implementations we consider

here in the interest of first explaining how the competition among subpopulations takes

places.

Provided a mechanism exists to associate a fitness with an entire subpopulation, a

competition mechanism aims to accomplish the following. The fittest subpopulation is

rewarded with more resources in hopes of affording better exploration of the landscape.

This is operationalized by replicating the fittest individual in the fittest subpopulation;

the size of the fittest subpopulation increases by 1. In addition, the worst (lowest fitness)

subpopulation is penalized by discarding its worst (lowest fitness) individual; the size of

the worst subpopulation decreases by 1. Note that it is possible under this mechanism
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for a subpopulation to gradually lose all its members, resulting in the elimination of a

subpopulation.

As Algorithm 1 shows, the process of subpopulation evolution and subpopulation com-

petition is repeated until the fitness evaluation budget is exhausted. At that point, the

algorithm terminates. The competitive mechanism described above is greatly dependent on

how the fitness of a subpopulation is defined. SP-EA− considers a straightforward definition

of the fitness of a subpopulation as the average over the fitness values of individuals in the

subpopulation:

FS =

∑
s∈S f(s)

|S|
(6.1)

6.1.2 SP-EA+: A Niche-Preserving Subpopulation EA

The population competition utilized in SP-EA− may result in a loss of population diversity

in cases in which a subpopulation with the highest fit individuals may persist indefinitely,

gradually acquiring more members, resulting in the loss of subpopulations containing less

fit individuals. To provide some subpopulation stability, SP-EA+ preserves niches in a

population by redefining the fitness of a subpopulation to consider not only the fitness

values of its members but also the size of the subpopulation. Specifically,

FS =

∑
s∈S f(s)

|S|
+ T · |S| (6.2)

In Equation 6.2, the fitness of a subpopulation not only calculates the average over the

fitness values of the members of the subpopulation, but also penalizes the subpopulation

fitness by a factor (governed by the ”temperature” parameter T ) of the subpopulation size

(number of members). Larger subpopulations have more penalty added to their score. This

ensures that a large subpopulation can only win, if it really holds much fitter individuals

than smaller subpopulations. Otherwise, smaller subpopulations get to increase their sizes.
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This way, a small subpopulation can also win if it holds good individuals, even if they are

not the fittest. This helps preserve the niches, lets the algorithm map more of the subspaces

in the search space, and gives the algorithm a better chance of finding diverse optima.

Note that the temperature parameter shifts the balance in the fitness of a subpopulation

towards fitness or size. For instance, if T = 0, SP-EA+ reverts to SP-EA− and does not

consider the size of a population.

6.1.3 Results

Here, we present a summary of our results. We first apply both algorithms on two generic

landscapes with known global minima to analyze their performance in finding these minima

as well as in the overall exploration of the subspaces. We also examine the stability of

the subpopulations that they generate. Then, we execute both algorithms in the context

of conformation ensemble generation on the benchmark dataset and compare them via

different metrics against each other and against the popular Rosetta algorithm as described

in 2.2.1.

Analysis on Known Fitness Landscapes

We choose two benchmark problems to comparatively evaluate the behavior of SP-EA− and

SP-EA+:

• A sphere: f(x) =
√∑n

i=1 x
2
i .

• The product of two spheres: f(x) =
√∑n

i=1(xi − 200)2 ×
√∑n

i=1(xi + 200)2.

where x is a D-dimensional vector. The landscape of the sphere function contains 1 global

minimum, and the landscape of the product of two spheres contains 2 global minima.

Each algorithm is run 1, 000 times on each problem. On each run, we randomly pick the

dimensionality D from {2, 5, 10, 20}. We set the temperature for SP-EA+ to 6, 12, 25,

and 50, respectively, for D = 2, 5, 10, and 20. We fix the range of values for each xi to
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[−500, 500]. The population size is set to 200, elitism rate for selection to 25%, the frequency

for subpopulation competition to 2, and the evaluation budget for each run to 10, 000, 000

fitness evaluations (this same budget is used in our evaluation on protein landscapes in the

context of conformation ensemble generation).

We first evaluate the number of times each algorithm converges to the known global

minima (or minimum). We consider an algorithm to have converged if for 1-sphere problem,

the final population generated by the algorithm consists of a single subpopulation and

that subpopulation contains the global minimum; and for the 2-sphere problem, the final

population generated by the algorithm consists of only two subpopulations and each of the

subpopulations contains one global minimum each. Table 6.1 shows the percentage of times

the two EAs converge in 1000 runs on each problem. Both EAs converge in the 1-sphere

problem to the only minimum in all the runs. On the 2-sphere problem, SP-EA− does not

converge to both minima in the final subpopulations. In most cases, SP-EA− converges to a

single subpopulation. This result indicates the genetic drift that occurs along the way, with

the population losing diversity early. SP-EA+ performs well and retains both minima the

majority of the time, indicating that the niche-preserving technique is effective in preventing

premature convergence.

Table 6.1: Percentage of times (out of 1, 000 runs) SP-EA− and SP-EA+ converge to the 1
minimum and 2 minima in the known landscapes of the sphere problems considered here.

Algorithm 1-sphere 2-spheres

SP-EA− 100% 0.13%
SP-EA+ 100% 71.2%

We now provide a visual analysis of the stability of the subpopulations by examining the

size of the subpopulations in the final population of SP-EA+. Fig. 6.1 shows the histogram

of the smaller subpopulation sizes in the final populations for the 2-sphere problem in

the cases where SP-EA+ converges. In 75.9% cases, the smaller subpopulation has a size
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Figure 6.1: Histogram of smaller subpopulation sizes in the final population for the 2-sphere
problem on the runs where SP-EA+ produces 2 subpopulations that contain one minima
each.

of 80 or more out of 200 individuals in the population. Only in 1.8% of the cases, the

smaller subpopulation has a size of 20 or less. Considering the substantial budget, these

results confirm that SP-EA+ not only retains population diversity, but also produce stable

subpopulations.

Analysis on Protein Landscapes

To analyze the performance of the two algorithms on the protein conformation space, we

consider the 20 proteins in the benchmark dataset listed in Section 3.3. With regards

to parameter values, differences from the above evaluation include the distance threshold,

which is set to 5Å, and the temperature in SP-EA+, which is set to 2, and the number of

runs, which is set to 5 times on each protein sequence to account for stochasticity. We report

the best performance over all 5 runs combined for each EA. Since the evaluation budget for
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each run of each of our EAs is fixed to 10M evaluations, this adds up to 50M over 5 runs.

We compare the two EAs to each other and the Rosetta conformation sampling algorithm.

For a fair comparison, Rosetta is run for 54M energy evaluations on each target. Rosetta

is evaluation expensive, and one run of it exhausts 36K score evaluations. The above total

budget results in 1, 500 conformations over 1, 500 runs.

Table 6.2: Comparison of the lowest energy (in Rosetta Energy Units – REUs) obtained by
each algorithm on each of the 20 test cases is shown in Columns 2, 3, and 4. Comparison

of the lowest lRMSD (measured in Angstroms – Å) to the known native conformation for
each test case is shown in Columns 5, 6, and 7.

Lowest Energy Lowest lRMSD
PDB
ID

Rosetta SP-EA− SP-EA+ Rosetta SP-EA− SP-EA+

1ail −29.9 −74.1 −81.3 4.5 1.5 1.2
1aly −112.5 −63.4 −74.6 12.4 11.1 10.9
1aoy −73.3 −103.2 −116.8 4 3.1 3.1
1bq9 −46.9 −51.3 −64.2 2.9 4.3 4.7
1c8ca −101.4 −69.5 −78.3 2.2 3.7 3.6
1cc5 −82.5 −67.6 −76.4 3.7 4.2 4.7
1dtdb −66.5 −57.5 −69.6 4.2 5.2 5
1dtja −72.5 −85.5 −72.6 2.3 2.3 2.5
1fwp −71.3 −66.9 −72.1 2.8 4 3.7
1hhp −106.3 −87.8 −83.5 10.1 8.4 8.2
1hz6a −117.1 −122.5 −122.8 1.9 2.3 1.9
1isua −27 −38.8 −41.8 6.6 6.1 5.8
1sap −107.8 −91.2 −109.9 2.8 4.4 4
1tig −138.2 −104.1 −112.2 2.5 3.5 3.7
1wapa −109 −65.9 −71 6.5 5.9 5.6
2ci2 −37.8 −72.7 −82.7 5.8 3.6 3.5
2ezk −51.1 −126.4 −135.2 3.6 3 2.9
2h5nd −82.5 −134.9 −139.1 7.4 7.8 7.4
2hg6 −82.5 −96.4 −95.1 9.4 8.9 8.7
3gwl −68.2 −112 −117.8 5.8 4.2 2.9

Table 6.2 summarizes the performance of each of the three algorithms in terms of the

lowest reached Rosetta score4 energy and the lowest reached distance (lRMSD) to the

known native conformation of the target under consideration; the lowest values on each
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target are marked in bold. The first column lists the test cases by identifying the PDB IDs

of the entry where an active conformation known for each test case is deposited.

Table 6.2 shows that SP-EA+ achieves the lowest energy in 12/20 targets, whereas

SP-EA− and Rosetta do so on 2/20 and 6/20 targets, respectively. In a head-to-head

comparison between SP-EA+ and Rosetta, SP-EA+ achieves lower energy in 14/20 targets

over Rosetta. Between SP-EA+ and SP-EA−, the former wins in 17/20 cases. Finally,

between SP-EA− and Rosetta, SP-EA− wins in 11/20 cases.

A similar comparison on lowest lRMSDs reveals that SP-EA+ achieves the lowest lRMSD

in 12/20 targets, whereas SP-EA− and Rosetta do so on 2/20 and 10/20 targets, respectively.

In a head-to-head comparison between SP-EA+ and Rosetta, Rosetta achieves lower lRMSD

in 8/20 targets than SP-EA+. Between SP-EA+ and SP-EA−, the former wins in 15/20

cases. Between SP-EA− and Rosetta, Rosetta wins in 9/20 cases.

To give some insight into these low lRMSD values, Fig. 6.2 selects two proteins (with

respective active conformations under PDB IDs 1ail and 3gwl) and shows the lowest-lRMSD

conformation obtained by SP-EA+ in each case. These conformations (drawn in blue) are

superimposed over the corresponding native conformations (drawn in olive). The superim-

position highlights the quality of the solutions obtained by SP-EA+.

The comparisons so far suggest that the subpopulation EAs outperform Rosetta on

both metrics. We harden this result via statistical significance analysis tests. We use two

statistical significance tests, Fisher’s and Barnard’s exact tests, to determine if the results

are statistically significant. We employ the tests over 2x2 contingency matrices generated

from the results obtained using the comparison metrics.

Table 6.3 shows the p-values for the 1-sided Fisher’s and Barnard’s tests for the lowest

energy head-to-head comparison. All the values (< 0.05) that reject the null hypothesis with

95% confidence are marked in bold. Both null hypotheses (SP-EA+ does not perform better

than Rosetta and SP-EA+ does not perform better than SP-EA−) are rejected, confirming

the superior performance of SP-EA+. The null hypothesis that SP-EA− does not perform
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1ail (1.2Å) 3gwl (2.9Å)

Figure 6.2: The lowest-lRMSD conformation obtained by SP-EA+ on each protein is drawn
in blue, superimposed over the corresponding known native conformation (with PDB id
and lRMSD shown), which is drawn in olive. Rendering is performed with the CCP4mg
molecular graphics software [1].

better than Rosetta is not rejected, indicating that the performance improvement of SP-

EA− over Rosetta is not statistically significant with 95% confidence.

Similarly, Table 6.3 also shows the p-values for the 1-sided Fisher’s and Barnard’s tests

for the lowest lRMSD head-to-head comparison. All the values (< 0.05) that reject the null

hypothesis with 95% confidence are marked in bold. The null hypothesis that SP-EA+ does

not perform better than SP-EA− is rejected, confirming the superior performance of SP-

EA+ over SP-EA−. The null hypotheses that SP-EA+ does not perform better than Rosetta

and that SP-EA− does not perform better than Rosetta are not rejected, indicating that the

performance improvements of the two subpopulation EAs over Rosetta are not statistically

significant with 95% confidence.

Taken altogether, the results presented above suggest a stronger conformation sampling

capability of the subpopulation EAs over Rosetta and a superiority of the niche-preservation
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Table 6.3: p-values obtained by 1-sided Fisher’s and Barnard’s tests for head-to-head com-
parison of the algorithms on lowest energy (left) and lowest lRMSD (right). Top panel

evaluates the null hypothesis that SP-EA+ does not perform better than Rosetta. Middle
panel evaluates the null hypothesis that SP-EA+ does not perform better than SP-EA−.
Bottom panel evaluates the null hypothesis that SP-EA− does not perform better than
Rosetta.

SP-EA+ vs. Rosetta

Test Lowest energy Lowest lRMSD

Fisher’s 0.01282 0.3756
Barnard’s 0.008299 0.3057

SP-EA+ vs. SP-EA−

Test Lowest energy Lowest lRMSD

Fisher’s 0.000009693 0.0006159
Barnard’s 0.000004182 0.0003401

SP-EA− vs. Rosetta

Test Lowest energy Lowest lRMSD

Fisher’s 0.3762 0.5
Barnard’s 0.3179 0.4373

technique in balancing exploration and exploitation. On the lRMSD-based comparison,

none of the algorithms is a clear winner, but the subpopulation EAs perform comparably

to Rosetta.

6.1.4 Summary

In this work, we employ subpopulation-oriented EAs to map the energy landscapes and

attain a balance between exploration and exploitation of the landscape for conformation

ensemble generation. Mapping is only relevant when the problem of interest is characterized

by a multimodal landscape where the various modes contain information about the system

being investigated. This is the case for most biological systems, and, in particular, protein

molecules. Since neither the number of subpopulations nor their distribution are known

ahead of time for unknown molecular landscapes, we present here a baseline subpopulation

EA that makes use of phenotypic clustering to define initial subpopulations and makes use of
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subpopulation competition to evolve subpopulations. We investigate two different strategies

for such competition and show that taking into account not only the height/depth, but also

the size/breadth of a local optimum allows better retaining diverse subpopulations that

converge to the different modes of known landscapes. Evaluation on unknown landscapes in

the context of conformation ensemble generation shows that niche preservation also confers

better exploration-exploitation balance.

6.2 Adaptive Stochastic Optimization to Improve Protein

Conformation Ensemble Generation

A proof-of-concept version of the work presented in this section has been published in [123]

and the extended version is under review in [124]. The work presented in Section 6.1

attempts to balance the exploration and exploitation utilizing subpopulation schemes which

yield better outcome in terms of sampling lower energy conformations but not so in terms

of reaching closer towards the native conformations. This suggest a better balance between

exploration and exploitation is necessary to sample from the near-native regions in the

landscape. Therefore, in this section, we explore an adaptive setting.

The evolutionary computation setting exposes algorithmic knobs/parameters such as

representation, population size, reproduction process, and selection process that can be

varied to control the inherent trade-off between exploration and exploitation. Experimen-

tally tuning these parameters to static/fixed values before the run of the algorithm and

keeping the same values during the run to achieve a good exploration-exploitation balance

is an extremely difficult task as different configurations of the parameters could be better

suited at different points of the optimization process [125–129]. Therefore, lots of researches

have been focused on adaptively changing the values of the parameters during the run of

an EA.

In the EC literature, changing parameters on the fly has been approached in three ways;

uninformed, self-adaptive, and adaptive parameter control. In an uninformed parameter
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control setting [130], the value of a parameter is changed according to a schedule (a function

of time elapsed or number of generation passed) set before the run of the algorithm, without

considering feedback about the current state of the search [131, 132]. This approach to

setting a schedule is hard as it requires predicting beforehand the number of generations

for which the algorithm is likely to run before it converges.

In self-adaptive parameter control setting, the parameters to be adapted are subjected

to the same evolutionary process as the search for optimal solutions. The parameters are

usually encoded into the chromosome of the individuals and are evolved together [133–137].

The idea is that better values of the parameters will result in fitter individuals and these

individuals will be more likely to survive for the next generations which will also pass on

the better values of the parameters presumably responsible for the better fitness. However,

evolving parameters in this way increases the dimensionality and complexity of the problem

as the search space is extended to also include the algorithmic parameters. Moreover, the

parameter values are also susceptible to premature convergence [129,138].

On the other hand, adaptive parameter control setting explicitly adapts the parameters

in an informed way by taking feedback from the optimization process and using them to

determine the direction and/or the amount of change to the parameters. This way of param-

eter control tracks specific properties (for example, the fitness of the individuals) of an EA

run and the update mechanism for the parameters are guided by the changes in the tracked

properties [139–143]. Adaptive parameter control is deemed to be the more effective way

of adapting parameters and most of the research activities in relevant literature are focused

on it [144, 145]. The parameters that are generally adapted are variation operator, popu-

lation size, representation, and selection operator. Early example of an adaptive variation

operator is Rechenberg’s 1/5 rule for mutation [139] which adapts the mutation step size.

The rule suggests an increase in the mutation step size if the ratio of successful mutations

to all mutations is greater than 1/5 and vice versa. Work in [146] adapts the mutation

probability, work in [147] adapts the crossover probability, and works in [148,149] adapt the

probability of both mutation and crossover based on their success. Work in [150] monitors
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the performance and recent contribution of crossover and mutation operators, and adapts

the ratio of crossover to mutation accordingly. Attempts that adapts the parent population

size include adjusting the population size based on the selection error probability [151], per-

sistence of individuals [152], and fitness improvements [153]. Other notable attempts adapt

the sizes of the subpopulations [141, 154] within the population or the size of the offspring

population [155–157]. Researches that focus on adapting the representation typically do so

for genotypic representation. Work in [158] adapts the number of bits used to represent a

gene, the range of the values of the function variables that the genes are mapped to, and

the center of the range. Work in [159] is based on multiple restarts of the algorithm where

the encoded genes represent the distances between the current solutions and the solutions

from the previous run (delta values), and the resolution of the delta values are adapted.

Another notable work that adapts the representation [160] does so by adapting the position

of the genes. Most of the adaptive techniques that adapt the selection operator do so via the

tournament size parameter in tournament selection, mostly because some of the selection

operators like the fitness proportional selection are inherently adaptive (fitness proportional

selection exerts more selection pressure in the early generations than in the latter genera-

tions) and it is easier to increase/decrease the selection pressure by increasing/decreasing

the tournament size. Notable attempts to adapt this parameter include works in [161–163].

An interested reader is referred to [144, 164–167] for comprehensive reviews on adaptive

parameter control.

Here, we choose to focus on adaptive parameter control approach. The choice reflects

the shortcomings of uninformed and self-adaptive settings stated above. Choosing what

to adapt requires some careful considerations. There are challenges to adapting the rep-

resentation and the variation operator for de novo conformation ensemble generation as it

requires giving up the clever and domain-specific fragment assembly process, described in

Section 2.1, which has been credited for the main leap in the performance of conformation

sampling algorithms. The fragment libraries are based on phenotypic representations and

any changes to the representation would be hard to accommodate for an EA that uses
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fragment assembly. This is another reason for not choosing the self-adaptive setting as it

requires encoding the EA parameter to adapt into the conformation parameter represen-

tation. The usefulness of the fragment replacement technique as a variation operator also

makes adapting the parameters in the variation operator very difficult. Adapting mutation

step size is not feasible for there is no fixed step size for fragment replacement as we choose

fragments to replace from a finite set of fragments from the fragment library. Moreover, if

we need to increase/decrease the step size (i.e. amount of change in the dihedral angles),

there may not be any fragment stored in the fragment library which differs by that much.

Adapting mutation rate is also not feasible as the fragment libraries offer a very few fragment

length options. The fragment library we use contains fragments of length 3 and 9. Also,

fragments are only considered “good” if the individual configurations are inserted together.

The utility of the fragment replacement is also the reason crossover operators are generally

not used for conformational sampling. On the other hand, adapting the population size

and the selection operator requires no change in the fragment assembly process. However,

finding an effective strategy to adapt the population size has proved to be rather difficult

and as a result, most EAs in practice keep the population size fixed [165]. Therefore, here

we choose to adapt the selection procedure based on the feedback received during the EA

run.

In EAs, most of the exploitation comes from the applied selection mechanism. The

greediness (the inclination to select fitter individuals) of the selection mechanism is directly

related to the exploration/exploitation pressure exerted by the EA. A more greedy selection

method applies stronger selection pressure than a less greedy selection method and results

in more exploitation and less exploration of the search space, and vice versa. How to

adjust this selection pressure during an EA run is nontrivial and requires some careful

thinking. Adapting the tournament size parameter in tournament selection is appealing but

literature has shown that tuning this parameter in standard tournament selection to control

exploration might lead to premature convergence [168]. Moreover, adjusting the tournament

size to control selection pressure has its limits. At a lower bound (binary tournament),
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tournament selection applies much stronger selection pressure than a weak selection scheme

such as a uniform selection scheme [39]. But, weak selection pressure exerted by schemes

such as uniform selection could be useful to prevent premature convergence and stagnation

of the population. Therefore, to apply a wider range of selection pressure, we propose to

switch between different selection schemes with different selection pressure to control the

exploration-exploitation balance during the the run of the EA which is a novel approach.

We believe this approach has the potential to improve the performance of the conformation

ensemble generation algorithms while this approach may also generate some interest in the

EC community.

What to measure or what feedback from the EA run to use to adapt the EA parameters

primarily differs in two ways in the literature; fitness and diversity of the individuals.

Approaches that account for fitness include adapting parameter based on periodic checks

for change in best fitness of the individuals [153], based on the difference between the best

fitness and the average fitness of the population [169], based on the fitness ranking of each

individual [170], based on best-fitness frequency [171], and based on the success/fitness gain

of the parameter values [139, 148]. Approaches that account for diversity include adapting

parameter based on the Euclidean distances between the individuals and the best solution

found so far [171], based on Euclidean distance between individual solutions [161], based

on the Hamming distance of the individuals [172], and based on diversity in the fitness of

the individuals measured using the best, worst, and average fitness of the individuals in the

population [173]. An interested reader is referred to [144,167] for more information about the

feedback mechanisms used in literature. Here, we choose to take periodic change in best

fitness as the evidence upon which the adjustments are performed while other measures

could have also been explored.

To investigate the effects of changing selection pressure to obtain different exploration

and exploitation capability in EAs, we build upon HEA. For the selection mechanism, HEA

uses truncation selection which is well-known to provide strong selection pressure that re-

sults in more exploitation and less exploration. From now, we refer to this baseline HEA
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algorithm as HEA-TR (TR for truncation). We design three variants of the HEA-TR al-

gorithm. These variants only change the selection mechanism, utilizing the other operators

(initial population, variation, and improvement) as in HEA-TR. The selection schemes that

we propose to use in these EAs are uniform stochastic, fitness proportional, and quaternary

tournament. The reason for choosing these schemes is as follows. Uniform stochastic se-

lection applies the weakest selection pressure. Truncation selection falls in the other end

of the spectrum, exerting the strongest selection pressure. Fitness proportional selection

applies stronger selection pressure than uniform selection. Although it provides less selec-

tion pressure than binary tournament selection, its exerted pressure is higher when there is

more diversity in the population [39]. Finally, the selection pressure exerted by quaternary

tournament selection falls in between fitness proportional and truncation selection.

We first describe the three variants, HEA-QT, HEA-FP, and HEA-US, depending on

the selection mechanism employed, as we detail below. Finally, we describe HEA-AD, which

implements the adaptive selection mechanism.

6.2.1 HEA-QT

In HEA-QT, the initial population, variation, and improvement operators are kept un-

changed but the selection operator uses the quaternary tournament selection scheme in-

stead of the truncation selection of HEA-TR. The idea is to reduce the selection pressure

to decrease exploitation and promote exploration. In HEA-QT, all the parents and the

improved offspring are first combined to form a selection pool S and each individual in S

is evaluated using score4. Next, a 4-way tournament is held for each of the n spots in the

population for the next generation, where n is size of the population. A uniform probability

distribution is used to randomly pick 4 individuals from S with replacement and these 4

individuals then compete with each other to survive for the next generation. The fittest

individual according to score4 wins the competition and is selected to fill the next open

spot in the population for the next generation.
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6.2.2 HEA-FP

HEA-FP employs the fitness proportional selection scheme instead of the truncation scheme

of HEA-TR, while all other operators remain the same. Fitness proportional selection

employs lesser selection pressure than quaternary tournament and truncation. In HEA-

FP, all the parents and the improved offspring are combined to form a selection pool S.

Then, each individual in S is assigned a selection probability proportional to their fitness.

Specifically, an individual x ∈ S is assigned a selection probability of f(x)/
∑

i∈S f(i),

where f() measures the fitness of the individual according to score4. This distribution is

then sampled n times to pick n individuals for the next generation (n is population size).

6.2.3 HEA-US

HEA-US applies the weakest selection pressure through uniform stochastic selection. As

in HEA-QT and HEA-FP, all the other operators remain unchanged. A selection pool S

of size 2n (n is the population size) is first formed which contains all the parents and the

improved offspring. HEA-US assumes identical fitness for all the individuals; n individuals

are picked from S uniformly at random to form the population for the next generation.

6.2.4 HEA-AD: An Adaptive Algorithm

Here, we propose an adaptive algorithm, HEA-AD, that employs an adaptive selection

operator to find better balance between exploration and exploitation. Instead of keeping

the same selection pressure over generations, HEA-AD adapts the selection pressure based

on the characteristics of the population. The algorithm evaluates the population every few

generations for possible adjustments in the selection pressure and decrease or increase the

selection pressure as needed.

Specifically, the adaptive mechanism periodically checks for a possible change of the

selection pressure. The algorithm tracks the best-so-far fitness, which measures the best

fitness (lowest Rosetta score4) over the g populations over the past g generations. Let

us refer to this statistic as BSFF. The reasons for choosing BSFF metric are following.
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BSFF is simple and computationally efficient to define and keep track of. In addition, a

slowly improving BSFF suggests the selection pressure is too weak and a strong selection

pressure typically results in rapid improvements in BSFF with a high risk of premature

convergence [39]. Moreover, a lack of change in BSFF for several generations could be an

indicator that the population is stuck exploiting some parts of the landscape and in this

case a weaker selection pressure can be useful to achieve more exploration of the search

space.

When a change needs to be made, as detailed below, the algorithm chooses a new

selection mechanism from a scheme pool SP = {uniform stochastic, fitness proportional,

quaternary tournament, truncation}. The pool is sorted in ascending order of selection

pressure. HEA-AD first starts with a weaker selection scheme, the fitness proportional one,

so as to encourage more exploration in the early generations. Over every g generations, the

choice of the selection scheme is revisited as follows.

If the current BSFF (over the last g generations) increases by a small amount of < s%

over the BSFF observed over g generations earlier, which suggests the selection pressure is

too weak, the selection pressure is increased by replacing the current selection scheme with

the next one in the pool SP that applies more selection pressure. Recall that the selec-

tion schemes are ordered from weakest to strongest. For example, if the current selection

mechanism in HEA-AD is the fitness proportional one, HEA-AD will then set the current

selection mechanism to be quaternary tournament.

If the current BSFF (over the last g generations) increases by a considerable amount

of > t% over the BSFF observed over g generations earlier, we take this as an indication

that too much exploitation is happening. The algorithm can converge prematurely to

a suboptimal minimum. Therefore, the selection pressure is decreased by switching the

current selection scheme with the previous scheme in SP . For example, if the algorithm is

using truncation selection at this point, it will go on to use quaternary tournament from

now on.

If the current BSFF (over the last g generations) is unchanged from the BSFF observed
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over g generations earlier, and the algorithm is currently using truncation selection, the

population could be stagnated and more exploration can help. Therefore, the selection

pressure is decreased gradually by choosing the previous scheme in SP until the BSFF

improves.

If the current BSFF (over the last g generations) is unchanged from the BSFF observed

over g generations earlier, and the algorithm is currently using uniform stochastic selection,

this indicates that the selection pressure has kept decreasing from truncation to end up in

uniform stochastic. So, some exploration has already been performed by selecting weaker

individuals and allowing them to reproduce. Therefore, we can now aim to improve the

BSFF. The selection pressure is increased gradually for more exploitation by choosing the

next scheme in SP until the BSFF improves.

This adaptive selection operator is utilized in HEA-AD algorithm to select individuals

for the next generation. As with the other variants, the initial population, variation, and

improvement operators remain unchanged.

6.2.5 Implementation Details

In all the EAs described above, the population size is n = 100 and the elitism rate for

elitism-based truncation selection is 25%. As is commonly done for conformation sampling

(and EAs more generally), the termination criterion is set to the exhaustion of a fixed budget

of fitness/energy evaluations. Specifically, the algorithms presented above are executed for

a fixed budget of 10, 000, 000 energy evaluations. This results in typically 120 − 300K

conformations sampled over 700− 1600 generations. For HEA-AD, the checking parameter

g is set to 15; the change parameter s is set to 5, and t is set to 15. We note that no specific

effort has been made to fine-tune these parameters to the problem at hand. All algorithms

are implemented in Python and interface with the PyRosetta library. Each algorithm takes

1−3 hours on one Intel Xeon E5-2670 CPU with 2.6GHz base processing speed and 20GB of

RAM. The runtime range is mainly due to the different lengths of the amino-acid sequences

of the target proteins. As we describe further in Section 6.2.6, the algorithms are run 5
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times on each target protein’s amino-acid sequence to account for possible variance.

6.2.6 Results

Our evaluation is organized along two major sets of experiments. In the first, the focus is on

the benchmark and CASP datasets in order to carry out an ablation study and pitch against

one another HEA-US, HEA-FP, HEA-QT, HEA-TR, and HEA-AD. We include Rosetta

here, as it provides a baseline. We will refer to this as the monomorphic experimental

setting. This evaluation shows HEA-AD to be superior according to several metrics. In the

second set of experiments, utilizing the metamorphic dataset we introduced in Section 3.3,

we focus on the multiplicity of conformations, to which we will refer as the metamorphic

experimental setting from now on. In this setting, we evaluate HEA-AD over several metrics,

comparing it to Rosetta as a baseline method and SP-EA+ to find out if the proposed

adaptive mechanism improves the exploration-exploitation balance over it.

Each algorithm is run 5 times on each target to account for the stochasticity of the

algorithms. We report the combined best performance over the 5 runs. Each run exhausts

a fixed computational budget of 10, 000, 000 energy evaluations for a total of 50, 000, 000

energy evaluations for the 5 runs. Rosetta is run for 54, 000, 000 energy evaluations on each

target to conduct a fair comparison; each run of Rosetta exhausts 36, 000 energy evaluations

and the total budget results in 1, 500 conformations over 1, 500 runs.

As is practice in EAs for conformational sampling [54], performance is measured on

lowest reached energy and the lowest reached distance to the known native conformation of

the target. We employ lRMSD, TM-Score, and GDT TS to calculate the distance between

the sampled conformations and the known native conformations.

To present a principled evaluation, we further strengthen our comparison with statistical

significance tests. We utilize Fisher’s and Barnard’s exact tests for this purpose. To provide

a complete picture, we also employ performance profiles for the results.
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Evaluation in the Monomorphic Setting

Columns 2-7 in Table 6.4 show the lowest Rosetta score4 energy reached by conformations

generated via Rosetta, HEA-US, HEA-FP, HEA-QT, HEA-TR, and HEA-AD respectively

for each target in the benchmark dataset. The entry id of the known native conformation

in the PDB of each target is shown in Columns 1. Table 6.5 summarizes comparative

observations that can be drawn from Table 6.4. Table 6.5(a) shows that HEA-AD achieves

the lowest energy on 11/20 targets, Rosetta in 4/20, HEA-TR in 3/20, and HEA-QT in

2/20 target proteins. As Table 6.5(a) shows, HEA-AD comfortably outperforms each of

the other algorithms in a head-to-head comparison. Table 6.6(a) presents the p-values for

the statistical significance tests that suggest the performance improvements of HEA-AD are

statistically significant at the 95% confidence level (p-values < 0.05) over other algorithms.

Table 6.5(b) shows that except HEA-AD, HEA-QT achieves better performance than

all other algorithms. Table 6.6(b) shows that HEA-QT’s performance improvements are

statistically significant at the 95% confidence level. The better performance of HEA-QT

over HEA-TR suggests that the selection pressure exerted by truncation selection is too

strong which results in premature convergence. As less selection pressure is applied by

quaternary tournament, HEA-QT is able to explore more of the space. On the contrary,

Table 6.5(c) and Table 6.6(c) show that HEA-TR achieves significantly better performance

than HEA-FP and HEA-US. These results suggest that little exploitation is performed by

fitness proportional and uniform selection schemes as they apply too weak selection pressure.

We perform similar analysis for lowest lRMSD to the native conformation reached over

generated conformations for a target in the benchmark dataset. Columns 2-7 in Table 6.7

show the lowest lRMSD reached by conformations generated via Rosetta, HEA-US, HEA-

FP, HEA-QT, HEA-TR, and HEA-AD respectively for each target. Table 6.8 summarizes

comparative observations. Table 6.8(b) shows that HEA-AD achieves the lowest lRMSD

on 12/20 targets, Rosetta in 7/20, HEA-QT in 4/20, and HEA-TR in 1/20 target proteins.

As Table 6.8(b) shows, HEA-AD comfortably outperforms each of the other algorithms in a
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Table 6.4: Comparison of the lowest energy (measured in Rosetta Energy Unit - REU)
obtained by each algorithm under comparison on each of the 20 benchmark targets is shown
in Columns 2-7. The PDB ID of the known native is shown in Columns 1. The lowest energy
value reached per target is marked in bold.

Lowest Energy (REU)
PDB ID Rosetta HEA-US HEA-FP HEA-QT HEA-TR HEA-AD

1ail −29.9 −48.3 −65.5 −76.8 −56.1 −83.6
1aly −112.5 −4.7 −8.7 −88.9 −81.1 −67.5
1aoy −73.3 −76.5 −88.5 −110 −98.1 −116.5
1bq9 −46.9 −32.8 −54.6 −66.7 −50.5 −70.8
1c8ca −101.4 −56.5 −64.7 −98.8 −86.4 −111.6
1cc5 −82.5 −58.8 −68.8 −90.5 −68.6 −90.2
1dtdb −66.5 −18.7 −29.6 −59.9 −55 −64.1
1dtja −72.5 −43.7 −79 −80.1 −82.2 −88
1fwp −71.3 −13.3 −46.5 −82.4 −84.4 −71.5
1hhp −106.3 −19.5 −23.1 −86.8 −104.5 −74.6
1hz6a −117.1 −61.6 −89.8 −116.6 −130.9 −131
1isua −27 −14.2 −50.1 −47.5 −46.5 −63.1
1sap −107.8 −58.4 −83.2 −112.2 −121.4 −103.9
1tig −138.2 −65.1 −82.3 −131 −128 −133.7
1wapa −109 −32.7 −61.1 −108.8 −132.5 −90.4
2ci2 −37.8 −41.6 −72.3 −110.9 −109.8 −93.3
2ezk −51.1 −99.3 −111.1 −129.5 −100.7 −136.6
2h5nd −82.5 −131.7 −135.3 −167.3 −129 −172.5
2hg6 −82.5 −75.1 −78.5 −112.5 −102.6 −118.6
3gwl −68.2 −89 −98.8 −117.2 −100 −125.3

head-to-head comparison. Table 6.9(a) presents the p-values for the statistical significance

tests that suggest the performance improvements of HEA-AD are statistically significant at

the 95% confidence level (p-values < 0.05) over other algorithms.

Table 6.8(b) shows that except HEA-AD, HEA-QT achieves better performance than

all other algorithms. Table 6.9(b) shows that HEA-QT’s performance improvements are

statistically significant at the 95% confidence level except over Rosetta. Furthermore, Ta-

ble 6.8(c) show that HEA-TR achieves better performance than HEA-FP and HEA-US.

P-values in Table 6.9(c) suggest the performance improvement over HEA-US is statistically

significant. These results mostly agree with the lowest energy evaluation results and confirm

124



Table 6.5: Comparison on the number of targets in the benchmark dataset in which an
algorithm achieves a lower energy score than the others.

(a)

HEA-AD vs. others: 11 vs. 3 (HEA-TR), 2 (HEA-QT), 4 (Rosetta),
0 (HEA-FP), and 0 (HEA- US)
HEA-AD vs. Rosetta: 14 vs. 6 HEA-AD vs. HEA-TR: 14 vs. 6
HEA-AD vs. HEA-QT: 13 vs. 7 HEA-AD vs. HEA-FP: 20 vs. 0
HEA-AD vs. HEA-US: 20 vs. 0

(b)

HEA-QT vs. Rosetta: 13 vs. 7 HEA-QT vs. HEA-TR: 14 vs. 6
HEA-QT vs. HEA-FP: 19 vs. 1 HEA-QT vs. HEA-US: 20 vs. 0

(c)

HEA-TR vs. HEA-FP: 14 vs. 6 HEA-TR vs. HEA-US: 19 vs. 1

Table 6.6: Results for the 1-sided Fisher’s and Barnard’s tests on the comparisons presented
in Table 6.5. The tests evaluate the null hypothesis that (a) HEA-AD does not achieve,
(b) HEA-QT does not achieve, (c) HEA-TR does not achieve lower lowest energy on the
benchmark dataset in comparison to a particular algorithm; p-values less than 0.05 are
marked in bold.

Test Rosetta HEA-TR HEA-QT HEA-FP HEA-US

(a) Fisher’s 0.01282 0.01282 0.05642 7.25E-12 7.25E-12
Barnard’s 0.008299 0.008299 0.04035 9.10E-13 9.10E-13

(b) Fisher’s 0.05642 0.01282 N/A 2.91E-09 7.25E-12
Barnard’s 0.04035 0.008299 N/A 7.47E-10 9.10E-13

(c) Fisher’s N/A N/A N/A 0.01282 2.91E-09
Barnard’s N/A N/A N/A 0.008299 7.47E-10

that the exploration-exploitation balance obtained by the adaptive selection mechanism in

HEA-AD works well. However, HEA-QT’s performance improvement over Rosetta and

HEA-TR’s performance improvement over HEA-FP in terms of lRMSD are not statistically

significant which underscore the inherent inaccuracies in the energy functions.

Figure 6.3(a) shows the performance profiles of each algorithm over the benchmark

dataset of 20 targets in terms of the lowest energy reached. Figure 6.3(a) shows that the
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Table 6.7: Comparison of the lowest lRMSD (measured in Å) obtained by each algorithm
under comparison on each of the 20 benchmark targets is shown in Columns 2-9. The PDB
ID of the known native of each target is shown in Columns 1. The lowest lRMSD value
reached per target is marked in bold.

Lowest lRMSD (Å)
PDB ID Rosetta HEA-US HEA-FP HEA-QT HEA-TR HEA-AD

1ail 4.5 2.1 2.1 1.4 1.4 1.4
1aly 12.4 11.4 11.5 10.9 11.2 11.4
1aoy 4 4.1 3.9 3.9 3.9 3.8
1bq9 2.9 4 3.6 3.1 3 2.8
1c8ca 2.2 4.2 4.2 3.8 4.8 4.2
1cc5 3.7 5.1 4.8 4.5 4.7 4.4
1dtdb 4.2 6.4 6.2 4.8 4.4 5.3
1dtja 2.3 3.7 3.3 3.2 4.2 2.5
1fwp 2.8 4.3 3.7 3.5 4.3 3.4
1hhp 10.1 9.1 8.6 8.3 8.8 7.8
1hz6a 1.9 3.1 2.8 2.4 1.9 1.8
1isua 6.6 6.2 5.9 5.6 6.6 5.6
1sap 2.8 5 4.5 4.2 3.7 4.2
1tig 2.5 5.2 4.4 4.3 3.2 4
1wapa 6.5 6.6 6. 5.8 6.3 5.5
2ci2 5.8 4.3 3.8 3.8 3.7 3.3
2ezk 3.6 3.3 3.1 2.8 3.4 2.7
2h5nd 7.4 6.3 5.6 5.8 6.2 5.1
2hg6 9.4 8 8 7.9 9.3 7.9
3gwl 5.8 4.8 3.8 3.8 5.4 2.9

probability of HEA-AD to be the optimal algorithm among these 6 algorithms is about

0.55, considerably more than any of the other algorithms. At pr = 1.2, HEA-AD succeeds

for 85% targets. HEA-QT reaches a success of 100% at a pr = 1.38, while HEA-AD and

HEA-TR do so at pr = 1.45. Rosetta’s performance profile rises very slowly and reaches

100% at pr = 3.0. Figure 6.3(b) relates a similar analysis focusing on the lowest lRMSD

to the native conformation and shows that the probability of HEA-AD to be the optimal

algorithm among these 6 algorithms is about 0.6, considerably more than any of the other

algorithms. At pr = 1.3, HEA-AD succeeds for 85% targets. HEA-QT reaches a success

of 100% at a pr = 1.8, while HEA-AD and HEA-FP do so at pr = 2.0. Rosetta saturates
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Table 6.8: Comparison on the number of targets in the benchmark dataset in which an
algorithm achieves a lower lRMSD score than the others.

(a)

HEA-AD vs. others: 12 vs. 1 (HEA-TR), 4 (HEA-QT), 7 (Rosetta), 0
(HEA-FP), and 0 (HEA-US)
HEA-AD vs. Rosetta: 13 vs. 7 HEA-AD vs. HEA-TR: 16 vs. 5
HEA-AD vs. HEA-QT: 17 vs. 7 HEA-AD vs. HEA-FP: 20 vs. 1
HEA-AD vs. HEA-US: 20 vs. 2

(b)

HEA-QT vs. Rosetta: 11 vs. 9 HEA-QT vs. HEA-TR: 14 vs. 8
HEA-QT vs. HEA-FP: 19 vs. 4 HEA-QT vs. HEA-US: 20 vs. 0

(c)

HEA-TR vs. HEA-FP: 11 vs. 10 HEA-TR vs. HEA-US: 14 vs. 7

Table 6.9: Results for the 1-sided Fisher’s and Barnard’s tests on the comparisons presented
in Table 6.8. The tests evaluate the null hypothesis that (a) HEA-AD does not achieve,
(b) HEA-QT does not achieve, (c) HEA-TR does not achieve lower lowest lRMSD on the
benchmark dataset in comparison to a particular algorithm. p-values less than 0.05 are
marked in bold.

Test Rosetta HEA-TR HEA-QT HEA-FP HEA-US

(a) Fisher’s 0.05642 0.0006159 0.001528 1.52E-10 1.68E-09
Barnard’s 0.04035 0.0003401 0.0006061 3.73E-11 3.83E-10

(b) Fisher’s 0.3762 0.05548 N/A 1.11E-06 7.25E-12
Barnard’s 0.3179 0.03517 N/A 2.97E-07 9.10E-13

(c) Fisher’s N/A N/A N/A 0.5 0.02808
Barnard’s N/A N/A N/A 0.4373 0.01924

at pr = 2.0 with a success for 95% targets. These results clearly establish HEA-AD as the

superior algorithm.

For the CASP dataset, we can only evaluate the conformations submitted by the groups

in the recent CASP competitions as we do not have access to all the conformations generated

by the top 10 performing groups. We utilize lRMSD, TM-score, and GDT TS score for

the comparative analysis. Here, we focus on HEA-AD as the analysis on the benchmark
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(a) (b)

Figure 6.3: Performance profiles for the algorithms on (a) lowest energy and (b) lowest
lRMSD metrics.

dataset reveals superiority of HEA-AD over other algorithms. Table 6.10, 6.11, and 6.12

compares HEA-AD algorithm to the top 10 performing groups for each of the targets in the

CASP dataset in terms of lowest lRMSD, highest GDT TS, and highest TM-score reached

respectively. In these tables, Columns 2-11 show the score for the top 10 groups while

Column 12 shows the score for HEA-AD. Table 6.10 shows that for 6/10 targets, HEA-AD

ranks in top 10 for lowest lRMSD reached. For two targets, T0859-D1 and T0957s1-D1,

HEA-AD outperforms all other algorithms to rank 1st. HEA-AD also ranks 2nd for the

target T0953s1-D1 and 3rd for T0897-D1. Table 6.11 shows that in 3/10 targets, HEA-AD

ranks in top 10 for the highest GDT TS score reached. For two of the targets, T0859-D1

and T0897-D1, HEA-AD outperforms all other algorithms to rank 1st. Similar results are

achieved for TM-score comparison in Table 6.12; HEA-AD ranks 1st for T0859-D1, and 2nd

for T0897-D1.

Evaluation on Metamorphic Dataset

In this setting, we first present a comparison of the three algorithms, Rosetta, SP-EA+,

and HEA-AD on the lowest-energy reached on the amino-acid sequence of each of the 13

proteins in the metamorphic dataset. As Table 6.13 shows, HEA-AD achieves the lowest
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Table 6.10: Comparison of the lowest lRMSD (measured in Å) obtained by HEA-AD with
top 10 performing groups in CASP competition on each of the 10 CASP targets is shown in
Columns 2-12. The CASP ID of each target are shown in Columns 1. The lowest lRMSD
values of HEA-AD that ranks in top 10 are marked in bold.

Lowest lRMSD (Å)
PDB ID Gr1 Gr2 Gr3 Gr4 Gr5 Gr6 Gr7 Gr8 Gr9 Gr10 HEA-

AD

T0859-D1 11.7 12.6 13.1 13.3 13.7 13.7 13.7 13.7 14.0 14.1 9.1
T0886-D1 2.9 3.9 3.4 4.4 4.4 5.4 5.5 5.5 5.5 5.2 6.2
T0892-D2 1.9 2.0 2.0 2.5 3.1 3.1 5.5 6.4 7.2 7.2 6.8
T0897-D1 7.9 8.2 10.4 10.4 11.9 12.4 12.8 12.8 13.0 13.1 8.4
T0898-D2 4.4 4.5 4.8 4.8 4.8 4.8 4.8 5.2 5.5 5.9 5.4
T0953s1-D1 4.6 8.7 8.7 8.7 8.7 8.9 9.0 9.2 9.3 9.4 5.6
T0953s2-D3 4.8 5.1 5.2 5.6 6.5 6.6 6.7 6.7 6.7 6.8 7.6
T0957s1-D1 6.8 8.1 8.3 8.4 8.4 8.4 8.9 8.9 8.9 9.0 6.3
T0960-D2 4.6 5.7 5.8 6.0 6.0 6.0 6.0 6.0 6.1 6.1 7.1
T1008-D1 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 2.5

Table 6.11: Comparison of the highest GDT TS score (measured in %) obtained by HEA-
AD with top 10 performing groups in CASP competition on each of the 10 CASP targets is
shown in Columns 2-12. The CASP ID of each target is shown in Columns 1. The highest
GDT TS score values of HEA-AD that ranks in top 10 are marked in bold.

Highest GDT TS (%)
PDB ID Gr1 Gr2 Gr3 Gr4 Gr5 Gr6 Gr7 Gr8 Gr9 Gr10 HEA-

AD

T0859-D1 28.32 27.66 27.66 26.77 26.55 26.55 26.55 26.55 26.55 26.55 31.64
T0886-D1 71.01 48.19 48.19 48.19 47.1 46.38 46.38 41.67 41.67 41.67 42.39
T0892-D2 50.23 48.41 47.73 47.73 47.5 47.27 46.82 46.82 46.82 46.82 42.27
T0897-D1 27.9 23.19 23.19 23.19 23.19 22.64 22.28 21.92 21.92 21.74 28.62
T0898-D2 75.45 70 70 70 68.64 68.18 68.18 68.18 68.18 68.18 50
T0953s1-D1 57.09 52.24 49.63 48.88 48.88 48.88 48.51 47.76 47.76 47.76 41.42
T0953s2-D3 45.7 44.35 43.01 41.94 41.4 39.78 39.52 39.52 39.52 39.52 31.49
T0957s1-D1 57.18 54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4 53.01 42.36
T0960-D2 58.63 56.84 56.55 56.55 56.55 56.55 55.95 55.36 55.36 55.36 40.18
T1008-D1 91.23 87.01 87.01 87.01 87.01 87.01 87.01 87.01 86.04 85.39 67.86
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Table 6.12: Comparison of the highest TM-score obtained by HEA-AD with top 10 per-
forming groups in CASP competition on each of the 10 CASP targets is shown in Columns
2-12. The CASP ID of each target is shown in Columns 1. The highest TM-score values of
HEA-AD that ranks in top 10 are marked in bold.

Highest TM-score
PDB ID Gr1 Gr2 Gr3 Gr4 Gr5 Gr6 Gr7 Gr8 Gr9 Gr10 HEA-

AD

T0859-D1 0.3 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.27 0.27 0.34
T0886-D1 0.67 0.41 0.4 0.39 0.38 0.37 0.37 0.37 0.37 0.37 0.36
T0892-D2 0.55 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.47
T0897-D1 0.36 0.28 0.28 0.28 0.27 0.26 0.26 0.26 0.26 0.26 0.35
T0898-D2 0.67 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.59 0.56 0.4
T0953s1-D1 0.54 0.46 0.45 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.37
T0953s2-D3 0.46 0.45 0.42 0.41 0.4 0.4 0.4 0.4 0.4 0.4 0.27
T0957s1-D1 0.59 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.54 0.44
T0960-D2 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.4
T1008-D1 0.9 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.67

energy on 9/13 of the proteins in the dataset; Rosetta does so on 2/13 cases, and SP-EA+

on 2/13 cases. HEA-AD comfortably outperforms Rosetta (10 vs. 3 cases) and SP-EA+ (9

vs. 4 cases) in a head-to-head comparison. Panel (a) of Table 6.17 presents the p-values

for statistical significance tests. These tests suggest that the performance improvements of

HEA-AD in terms of lowest energy are statistically significant at the 95% confidence level

(p-values < 0.05) over both algorithms.

Figure 6.4 shows the performance profiles of each of the three algorithms in terms of

lowest energy. Figure 6.4 shows that the HEA-AD is the optimal algorithm on 0.7 of the

proteins, easily outperforming the other two algorithms. HEA-AD ”solves” all targets at a

pr = 1.2, whereas SP-EA+ and Rosetta do so at pr values of 1.32, and 1.37, respectively.

The rest of the analysis now focuses on evaluating how close each algorithm comes to

each of the listed conformations for each target in the metamorphic dataset. We measure

distance via lRMSD, TM-Score, and GDT TS. We expand the list of 13 proteins into 18 test

cases, where we list the known conformations as Target 1 and Target 2. This organization
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Table 6.13: Comparison of the lowest energy in Rosetta Energy Units (REUs) obtained by
each algorithm under comparison on each of the 13 distinct proteins in the metamorphic
dataset. The lowest energy value reached is marked in bold.

Lowest Energy (REU)
Rosetta SP-EA+ HEA-AD

-111.8 -100.6 -126.1
-85.6 -87 -97.9
-71.3 -74.9 -98
-76 -73.8 -64.6
-52.7 -56.4 -53.1
-78 -84.5 -104.3
-44.2 -44.6 -50
-147.6 -138.1 -155.8
-136.2 -132.2 -125.3
-161.8 -164.1 -169.7
-124.4 -127.3 -130.6
-108.5 -108.7 -103
-200.7 -214.7 -222

Figure 6.4: Performance profiles for the algorithms on lowest energy on the metamorphic
dataset.

facilitates the exposition of our analysis. For Calmodulin, where 4 conformations have been

collected, this results in 6 Target 1 – Target 2 pairs: 1cfda – 1clla, 1cfda – 2f3ya, 1clla –

f3ya, 1cfda – 1lina, 1clla – 1lina, and 2f3ya – 1lina.
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Table 6.14: Comparison of the lowest lRMSD obtained by each algorithm on each of the
18 target pairs in the metamorphic dataset. The lowest lRMSD value reached is marked in
bold.

Lowest lRMSD (Å)
Rosetta SP-EA+ HEA-AD

Target 1 Target 2 Target 1 Target 2 Target 1 Target 2

8.5 7 6.6 6.1 6.5 5.4
2.2 10.2 1.9 1.5 2 1.3
5.6 7.8 4 3.3 2.8 2.9
6.1 12.4 6.4 9.2 6.4 6.9
11.2 9.3 8.5 8.5 7.6 9.3
12.1 6.2 8.8 7 6.4 6.9
12.3 11.9 9.9 9.4 8.7 9.4
6.6 10 6.7 7.9 5.5 7.4
4 7.6 3.8 4.4 4.1 3.8
10.1 31.2 9.2 13.6 7.3 12.6
9.1 17.6 9.9 12.4 10.5 12.4
6.6 9.1 6.8 6.5 5.6 5.6
6.8 8.3 3.2 2.7 3 2.8
6.8 3.8 3.2 3.6 3 3.2
8.3 3.8 2.7 3.6 2.8 3.2
6.8 4.3 3.2 3.7 3 3.4
8.3 4.3 2.7 3.7 2.8 3.4
3.8 4.3 3.6 3.7 3.2 3.4

Table 6.14 lists for each algorithm the lowest lRMSD (over all conformations sampled

by an algorithm over 5 runs) to each of the targets. Table 6.14 shows that for Target 1,

HEA-AD achieves the lowest lRMSD on 12/18 cases, Rosetta in 2/18 cases, and SP-EA+

in 4/18 cases. HEA-AD comfortably outperforms Rosetta (15 vs. 3 cases) and SP-EA+

(13 vs. 6 cases) in a head-to-head comparison. Panel (b) in Table 6.17 shows that these

performance improvements are statistically significant. For Target 2, HEA-AD achieves the

lowest lRMSD on 15/18 cases, Rosetta in 1/18 cases, and SP-EA+ in 4/18 cases. In a head-

to-head comparison, HEA-AD easily outperforms Rosetta (17 vs. 2 cases) and SP-EA+ (16

vs. 4 cases). Table 6.17(c) shows that these performance improvements are statistically

significant.
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Figure 6.5(a) and 6.5(b) show the performance profiles of each algorithm in comparison

for the lowest lRMSD metric for Target 1 and Target 2 in the metamorphic dataset respec-

tively. Figure 6.5(a) shows that the probability of HEA-AD to be the optimal algorithm

among all (in terms of reaching the lowest lRMSD to Target 1) is about 0.66, considerably

more than the other algorithms. HEA-AD ”reaches” Target 1 on all cases at pr = 1.2,

whereas SP-EA+ and Rosetta do so at pr values of 1.4 and 3.1, respectively. Figure 6.5(b)

shows that the probability of HEA-AD to be the optimal algorithm among all (in terms of

reaching the lowest lRMSD to Target 2) is about 0.83, considerably more than the other

algorithms. HEA-AD ”reaches” Target 2 on all cases at pr = 1.15, whereas SP-EA+ does

so at pr = 1.3; in contrast, Rosetta never reaches Target 2 on all cases in this pr range,

saturating at 0.9 of the cases at pr = 3.0.

(a) (b)

Figure 6.5: Performance profiles for the algorithms on lowest lRMSD for (a) Target 1 and
(b) Target 2 on the metamorphic dataset.

Tables 6.15 and 6.16 present the comparison in terms of TM-score and GDT TS score

(higher is better) respectively. Table 6.15 shows that for Target 1, HEA-AD achieves the

highest TM-score on 15/18 cases, Rosetta in 4/18 cases, and SP-EA+ in 1/18 cases. In a

head-to-head comparison, HEA-AD comfortably outperforms Rosetta (15 vs. 4 cases) and

SP-EA+ (16 vs. 2 cases) in a head-to-head comparison. Panel (d) in Table 6.17 shows
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that these performance improvements are statistically significant. For Target 2, HEA-AD

achieves the highest TM-score on 15/18 cases, Rosetta in 3/18 cases, and SP-EA+ in 2/18

cases. In a head-to-head comparison, HEA-AD easily outperforms Rosetta (16 vs. 3 cases)

and SP-EA+ (17 vs. 2 cases). Panel (e) in Table 6.17 shows that these performance

improvements are statistically significant.

Table 6.15: Comparison of the highest TM-score obtained by each algorithm on each of the
18 target pairs in the metamorphic dataset. The highest TM-score value reached is marked
in bold.

Highest TM-score
Rosetta SP-EA+ HEA-AD

Target 1 Target 2 Target 1 Target 2 Target 1 Target 2

0.33 0.46 0.41 0.48 0.42 0.55
0.77 0.46 0.73 0.84 0.72 0.87
0.58 0.62 0.67 0.66 0.7 0.69
0.5 0.44 0.41 0.39 0.45 0.44
0.36 0.38 0.34 0.32 0.36 0.34
0.32 0.5 0.41 0.46 0.44 0.47
0.29 0.28 0.31 0.33 0.33 0.32
0.45 0.34 0.44 0.42 0.55 0.45
0.66 0.51 0.66 0.55 0.64 0.59
0.29 0.15 0.38 0.21 0.48 0.23
0.36 0.29 0.37 0.4 0.4 0.4
0.47 0.35 0.44 0.49 0.48 0.58
0.48 0.48 0.73 0.76 0.74 0.81
0.48 0.69 0.73 0.69 0.74 0.77
0.48 0.69 0.76 0.69 0.81 0.77
0.48 0.62 0.73 0.71 0.74 0.72
0.48 0.62 0.76 0.71 0.81 0.72
0.69 0.62 0.69 0.71 0.77 0.72

Similarly, Table 6.16 shows that for Target 1, HEA-AD achieves the highest GDT TS

on 12/18 cases, Rosetta in 4/18 cases, and SP-EA+ in 3/18 cases. In a head-to-head

comparison, HEA-AD comfortably outperforms Rosetta (15 vs. 4 cases) and SP-EA+ (13

vs. 5 cases) in a head-to-head comparison. Panel (f) in Table 6.17 shows that these

performance improvements are statistically significant. For Target 2, HEA-AD achieves the
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Table 6.16: Comparison of the highest GDT TS score obtained by each algorithm on each
of the 18 target pairs in the metamorphic dataset. The highest GDT TS value reached is
marked in bold.

Highest GDT TS (%)
Rosetta SP-EA+ HEA-AD

Target 1 Target 2 Target 1 Target 2 Target 1 Target 2

34.5 43 39.75 47.25 41.5 53.25
81.25 50.78 80.86 88.28 77.34 89.84
59.96 62.99 69.08 70.13 75 71.1
47 40.5 43.75 38 45.25 41.5
33.66 35.4 34.16 31.19 34.65 33.17
31.67 48.74 39.68 43.45 42.68 44.19
26.63 27.53 28.05 30.18 28.83 28.81
42.82 33.35 44.77 41.9 50.93 44.91
67.91 52.39 66.55 59.8 67.91 62.5
26.79 12.68 32.36 15.61 40.89 16.43
29.42 21.25 31.12 32.14 34.52 33.33
52.48 39.36 46.29 46.53 46.04 52.72
43.06 40.8 61.02 67.19 60.24 70.83
43.06 60.42 61.02 58.51 60.24 65.1
40.8 60.42 67.19 58.51 70.83 65.1
43.06 54.34 61.02 60.94 60.24 62.33
40.8 54.34 67.19 60.94 70.83 62.33
60.42 54.34 58.51 60.94 65.1 62.33

highest TM-score on 15/18 cases, Rosetta in 2/18 cases, and SP-EA+ in 1/18 cases. In a

head-to-head comparison, HEA-AD easily outperforms Rosetta (16 vs. 2 cases) and SP-

EA+ (17 vs. 1 cases). Panel (g) in Table 6.17 shows that these performance improvements

are statistically significant.

Figure 6.6(a) and 6.6(b) show the performance profiles of each algorithm in terms of the

highest TM-score metric for Target 1 and Target 2 on the metamorphic dataset, respectively.

Figure 6.6(a) shows that the probability of HEA-AD to be the optimal algorithm among all

(in terms of reaching the highest TM-score to Target 1) is about 0.83, which is considerably

more than the other algorithms. HEA-AD ”reaches” Target 1 on all cases at pr = 1.15,

whereas SP-EA+ and Rosetta do so at pr values of 1.3 and 1.7, respectively. Figure 6.6(b)
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Table 6.17: Results for the 1-sided Fisher’s and Barnard’s tests on the comparisons presented
in Table 6.13, 6.14, 6.15, and 6.16 on the metamorphic dataset. The tests evaluate the null
hypothesis that HEA-AD does not achieve (a) lower lowest energy, (b) lower lowest lRMSD
on Target 1, (c) lower lowest lRMSD on Target 2, (d) higher highest TM-score on Target
1, (e) higher highest TM-score on Target 2, (f) higher highest GDT TS score on Target
1, (g) higher highest GDT TS score on Target 2 in comparison to a particular algorithm.
p-values less than 0.05 are marked in bold.

Test Rosetta SP-EA+

(a) Fisher’s 0.008466 0.05762
Barnard’s 0.004729 0.03778

(b) Fisher’s 7.60E-05 0.02186
Barnard’s 3.48E-05 0.01443

(c) Fisher’s 3.22E-07 6.61E-05
Barnard’s 1.14E-07 2.51E-05

(d) Fisher’s 3.05E-04 2.62E-06
Barnard’s 1.58E-04 9.71E-07

(e) Fisher’s 1.48E-05 3.22E-07
Barnard’s 6.46E-06 1.14E-07

(f) Fisher’s 3.05E-04 0.009197
Barnard’s 1.58E-04 0.00569

(g) Fisher’s 2.62E-06 3.58E-08
Barnard’s 9.71E-07 9.71E-09

shows that the probability of HEA-AD to be the optimal algorithm among all (in terms of

reaching the highest TM-score to Target 2) is about 0.83, which is again considerably more

than the other algorithms. HEA-AD ”reaches” Target 2 on all cases at pr = 1.15, whereas

SP-EA+ and Rosetta do so at pr = 1.2 and pr = 1.9, respectively.

Figure 6.7(a) and 6.7(b) show the performance profiles of each algorithm in terms of the

highest GDT TS metric for Target 1 and Target 2 on the metamorphic dataset, respectively.

Figure 6.7(a) shows that the probability of HEA-AD to be the optimal algorithm among

all (in terms of reaching the highest GDT TS to Target 1) is about 0.66, which is higher

than the other algorithms. HEA-AD ”reaches” Target 1 on all cases at pr = 1.15, whereas

SP-EA+ and Rosetta do so at pr values of 1.3 and 1.75, respectively. Figure 6.7(b) shows

136



(a) (b)

Figure 6.6: Performance profiles for the algorithms on highest TM-score for (a) Target 1
and (b) Target 2 on the metamorphic dataset.

that the probability of HEA-AD to be the optimal algorithm among all (in terms of reaching

the highest GDT TS to Target 2) is about 0.61, again higher than the other algorithms. At

pr = 1.1, HEA-AD succeeds on 95% targets. HEA-AD ”reaches” Target 2 on all cases at

pr = 2, whereas SP-EA+ and Rosetta do so at pr = 2.1 and pr = 2.6, respectively.

(a) (b)

Figure 6.7: Performance profiles for the algorithms on highest GDT TS score for (a) Target
1 and (b) Target 2 on the metamorphic dataset.
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Visualization of Conformations

The quality of the conformations obtained by HEA-AD is shown qualitatively in Fig. 6.8,

which draws from the conformations obtained by HEA-AD that are closest to 4 distinct

conformations of Calmodulin (PDB ids 1cfda, 1clla, 2f3ya, and 1lina, respectively). Fig. 6.8

shows that HEA-AD captures each of these conformations reasonably well (with lRMSDs

shown for each).

1cfda (3Å) 1clla (2.8Å) 2f3ya (3.2Å) 1lina (3.4Å)

Figure 6.8: The HEA-AD conformation closest to the known Calmodulin native conforma-
tions under PDB ID 1cfda (left), 1clla (middle-left), 2f3ya (middle-right), and 1lina (right) is
drawn in blue; the wet-laboratory conformations are drawn in olive. Rendering is performed
with the CCP4mg molecular graphics software [1].

6.2.7 Summary

In this work, we present an adaptive EA for conformation ensemble generation that changes

its behavior on the fly towards more exploration or exploitation as needed. The results pre-

sented above show that the adaptive selection mechanism in HEA-AD balances the exploita-

tion and exploration effectively and samples regions of the conformation space that contain

better-scoring conformations. Analysis over diverse metrics establishes the superiority of

HEA-AD not only over other HEA variants, but also Rosetta and other EAs. In particular,

the evaluation in the metamorphic setting shows that HEA-AD is superior and can capture

diverse conformations several angstroms away when only utilizing the amino-acid sequence

of a given protein (and no other conformational information about the protein at hand).
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Chapter 7: Conclusions and Future Work

This thesis proposes some methods to improve de novo protein conformation ensemble

generation. The focus is on obtaining an ensemble that ideally contains all the functionally-

relevant conformations of a protein from the knowledge of its amino-acid sequence rather

than obtaining only a single such conformation. This focus addresses the inherently dynamic

view of protein systems as they switch between different active conformational states to

perform biological functions.

The thesis primarily tackles the challenges of the optimization process in the vast,

high-dimensional, and multimodal conformation space in the presence of an inaccurate

fitness/energy function by employing evolutionary computation techniques. However, great

attention is given to promote the practical use of conformation ensemble generation algo-

rithms as well. In doing all that, the thesis takes inspiration from the algorithmic advances

in EC community and protein modeling community, robot motion planning algorithms and

their adaptations in molecular motion modeling, and unsupervised machine learning meth-

ods.

The work presented in this dissertation addresses three questions that are key to improve

the search for functionally-relevant conformations in the rugged and multimodal energy

landscape of conformations. Specifically, this thesis pursues the following questions:

• As the available energy functions are inherently inaccurate, how can we mitigate

the limitations of the energy functions to generate better ensembles that contain

functionally-relevant conformations?

• As conformation ensemble generation algorithms generate numerous conformations,

how to effectively reduce the size of the ensemble generated by the conformation

ensemble generation algorithms to improve feasibility of such algorithms?
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• As it is crucial to balance limited computational resources between exploration and

exploration of the multimodal conformation space to sample diverse conformations,

how to achieve a proper balance of these two components of the search?

In the context of de novo protein conformation ensemble generation, the first question

is addressed in Chapter 4 by first proposing a multi-objective EA that balances multiple

energetic objectives to generate better quality conformation ensembles and then exploring

the potential of using sequence-predicted contact information as an additional optimization

objective. These approaches are shown to be more effective than single energetic objective

algorithms and other multi-objective algorithms for conformational sampling.

The second question is addressed in Chapter 5 where we first show that it is possible to

represent the originally generated ensemble with a reduced-size ensemble without sacrificing

the quality of the original ensemble. Then, we introduce a mechanism through which

conformation ensemble generation algorithms can generate such reduced ensembles on the

fly. Finally, we show that such an evolving reduced ensemble has the potential to guide the

search for active conformations simultaneously to enhance exploration of the conformation

space.

The third question is addressed in Chapter 6 where we first focus on mapping the

multimodal energy landscape by retaining diversity of the conformations through a sub-

population scheme. We then employ an adaptive mechanism to obtain a better balance

between exploration and exploitation which adjusts the EA selection pressure on the fly

based on the characteristics of the population of conformations. This approach is shown to

be very effective in finding diverse functionally-relevant conformations.

This thesis lays the groundwork for lots of further research in de novo conformation

ensemble generation. The metamorphic dataset that we introduced in this thesis is the

first of its kind in conformation ensemble generation and we hope it will be adopted and

enriched by other researchers to serve as a benchmark dataset to evaluate future confor-

mation sampling algorithms. The codebase associated with this thesis is developed in a
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completely modular fashion from scratch and it provides a library for different algorith-

mic components that can be easily combined to develop different EAs and interface them

with domain-specific libraries. This will make it convenient for other researchers, starting

with the students in the Shehu Lab, to continue this line of work in addition to reproduce

the results presented in this thesis. We believe the work in this thesis will be useful to

researchers, motivate computation of multiple conformations, and prompt further research

on more powerful stochastic optimization algorithms for conformation ensemble generation.

An adaptive EA that takes into account complementary information like the contact in-

formation can be explored. Incorporating the reduced-size evolving map presented in this

thesis to an improved conformation ensemble generation algorithm like the adaptive EA has

the potential to achieve both better sampling and efficiency. We also point to the growing

work on deep learning in this context. The majority of these methods are not yet able to

condition to a given amino-acid sequence. Other deep learning frameworks still consider the

narrow setting of one single conformation, leveraging high-inductive bias. We believe that

the integration of deep learning models and EAs presents opportunities to further make

inroads into what still remains a challenging problem.
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