
 
23 

1.2. Validating the intrinsic uncertainty: Implications for hydrologic 
applications 

Pierre-Emmanuel Kirstetter1 
1University of Oklahoma, Norman, OK, USA 

Reliable quantitative information on the spatial distribution of precipitation is 
essential for hydrologic and climatic applications that range from real-time hydrologic hazards 
forecasting (e.g. floods, droughts, landslides), to water resources and urban drainage 
management and agriculture, to diagnosing hydroclimate patterns and trends, to evaluating 
regional and global atmospheric model simulations. Physical processes associated with these 
applications cover multiple scales, from minutes to decades and from metres to the synoptic 
scale. The critical importance of accurate water flux estimates for applications explains the 
large body of verification analyses focusing on precipitation estimates, in terms of occurrence, 
average and extremes. An abundance of independent validation has been carried out directly 
on Level-3 products using gauges and sometimes ground radar data from various over-land 
locations. Very few are implemented at the relevant scales to address the intrinsic uncertainty 
of precipitation products. Without relevant information on key uncertainty features, applications 
making use of satellite Level-3 precipitation products are impacted both in terms of outcomes 
and physical realism.  

1.2.1. Benchmarks for satellite precipitation: Sensors 
Accurately measuring rainfall has been a challenge for the research community predominantly 
because of its high variability in space and time. There are primarily three major types of 
techniques of precipitation measurement: (1) surface-based rain gauge, (2) weather radar and 
(3) space-based meteorological satellites.

Among precipitation sensors, only the rain gauge directly measures precipitation rates or time 
accumulations. Rain gauges collect rainfall directly in a small orifice and measure the water 
depth, weight or volume. Rain gauges provide quite reliable point measurements of 
precipitation and records frequently span more than 100 years. These are therefore the best 
source for long-term studies of precipitation extremes and trends. The global distribution of 
gauges is heterogeneous, with higher densities in more populated regions and lower densities 
in rural and remote areas. Critically, the number of gauges available also depends on their 
temporal sampling resolution, with stations sampling at finer scales being rarer. Gauges are 
routinely used to represent areas of 100 to 3000 m2 from measurements taken over a few 
square centimeters. However, their measurements are affected by uncertainties (for example, 
wind undercatch, evaporation, snow) and lack areal representation, which becomes particularly 
problematic for intense rainfall with high spatial variability (for example, Zawadzki, 1975). The 
spatial representativeness of each gauge measurement depends on the autocorrelation 
distance of precipitation (for example, Delahaye et al., 2015). While the autocorrelation 
increases with time integration, it varies greatly with precipitation regime and is typically short 
for extreme events (for example, Lebel et al., 1987). Interpolation of rain gauge observations is 
mandatory to obtain spatial information. When it comes to comparing gauges with other area-
averaged precipitation estimates such as from radars or satellites, the spatial variability of 
rainfall at small scales and the large resolution difference (as much as nine orders of 
magnitude in area) may cause large differences in the statistical sampling properties of the 
extremely variable rainfall process (for example, Habib et al., 2004). The added statistical noise 
when comparing the two measurements is especially significant for short accumulation periods 
(1 hour or less; Ciach and Krajewski, 1999).  
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Precipitation is associated with specific generating processes, such as convection, orographic 
enhancement in complex terrain or warm rain processes. Measuring variations in the drop size 
distribution and the vertical structure of events is essential for understanding precipitation 
processes but cannot be captured by rain gauges. Remote sensing is the only way to explicitly 
observe the spatial distribution of precipitation. However, complex interactions between the 
spatiotemporal variability of precipitation processes, sensor resolution, sensitivity, calibration 
and the indirect nature of precipitation retrievals introduce complications (Section 1.1). In the 
last decades, weather radar systems have become a valuable tool to fill multiple observational 
gaps in time, surface 2D and 3D. As active sensors, ground-based radars provide range-
resolved information on precipitation that is not available from most satellite sensors. Radar 
systems reveal precipitation characteristics, including intermittency, types (for example, 
stratiform, convective, snow and hail) and rates, with better resolution and accuracy than 
gauges and satellites, respectively. Through real-time and high-resolution volume scanning, 
weather radars offer more comprehensive information on the horizontal and vertical structure of 
rainfall. Radar networks upgraded with dual-polarization technology give additional insights into 
precipitation microphysics specifically on the size, shape, orientation and phase of 
hydrometeors. Ground-based weather radar data are now widely used by national weather 
services for quantitative precipitation estimation (QPE) at fine scales (for example, 1 km/5 min). 
Radar QPE is subject to specific uncertainties (that is, sensor calibration, attenuation 
depending on the radar frequency, ground clutter and beam blocking, variation of reflectivity 
with height, conversion from radar moments to precipitation rate, etc.; for example, Delrieu et 
al., 2009; Villarini and Krajewski, 2010; Berne and Krajewski, 2013). The characterization of 
these uncertainties has motivated studies for several decades. Radar–rain gauge merging 
approaches combining the fine spatio-temporal resolution of radar and the local accuracy of 
gauges have been proposed for QPE (for example, Delrieu et al., 2014) and are applied 
operationally (for example, Zhang et al., 2016), while novel approaches are being developed to 
integrate uncertainty as part of the quantitative estimation process (for example, Kirstetter et 
al., 2015; Neuper and Ehret, 2019).  
 
The last decade has witnessed the growing use of satellite-based observations for seamless 
observation of precipitation over land and oceans, with quasi-global coverage that is not 
available with radar or gauge networks (for example, Skofronick-Jackson et al., 2017). As 
shown in Section 1.1, most instantaneous-level spaceborne precipitation observations are 
performed with passive MW sensors, providing more indirect observations of surface rainfall 
amounts than radars. Many multi-sensor precipitation retrievals combine IR and passive MW 
data to produce near-real time estimates at high spatial and temporal resolution (for example, 
30 min, 0.1°). A description and an intercomparison of current global precipitation datasets from 
stations and satellites can be found in Sun et al. (2017).  
 
Sensor limitations discussed in this section are listed in Section 2.3.1. In order to overcome 
these limitations, it is crucial to recognize that no single sensor combines accuracy, resolution 
and representativeness over relevant spatial and temporal scales, which are essential 
characteristics for applications making use of precipitation inputs. Achieving these 
characteristics requires the expert combination of observations that maximize each sensor’s 
advantages while minimizing its weaknesses. Ultimately, such a combination does not produce 
perfects estimates with no uncertainty, but estimates with uncertainties that are deemed 
sufficiently low. 
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1.2.2. Benchmarks for satellite precipitation: Requirements for quantifying 
intrinsic uncertainty 

Because precipitation displays variability at all scales, the satellite’s intrinsic uncertainty can 
only be assessed at the primary scale of the precipitation retrievals. Preserving the product’s 
intrinsic characteristics precludes any scale alteration such as interpolation, averaging, 
smoothing or oversampling, which affects key characteristics such as the retrieved rainfall 
amount, the rainy area and the distribution of precipitation rates. The true precipitation 
averaged over the spatial domains and time intervals corresponding to the primary scale of 
satellite precipitation retrievals is unknown. A reference precipitation used as a proxy for the 
true precipitation and as a benchmark should spatially and temporally match the satellite 
retrieval domain and display acceptable levels of accuracy.  
 
Ground sensors constitute a natural choice to create a benchmark because their 
measurements are more directly sensitive to surface precipitation than satellite sensors. A 
trustworthy surface reference rainfall dataset should combine the complementary qualities of 
ground-based sensors, specifically the local accuracy of gauges and the spatial and temporal 
resolution provided by radars. An example of a satellite precipitation benchmark is the Ground 
Validation Multi-Radar/Multi-Sensor (GV-MRMS; Kirstetter et al., 2018b) that is derived from 
the MRMS system (Zhang et al., 2016). MRMS incorporates observations from all polarimetric 
Weather Surveillance Radar, 1988, Doppler (WSR-88D) radars and from gauge networks in the 
conterminous U.S. and creates a seamless 3D radar mosaic. Automatic quality controls and 
corrections procedures mitigate radar uncertainties (section 1.2.1) and generate high-resolution 
mosaicked radar-based surface precipitation products at a 0.01° horizontal resolution and 2 
minute update cycles. Dual-polarization improves the radar data quality and enables the 
identification of hydrometeors where the ground-radar estimates are the most reliable. The 
radar-based data are integrated with atmospheric environmental data and rain gauge 
observations to generate a suite of severe weather and quantitative precipitation estimation 
(QPE) products. A surface reference precipitation framework is derived from MRMS to support 
the GPM mission for ground validation and intercompare satellite sensors (Kirstetter et 
al., 2014; Petersen et al., 2020) and to validate Level-3 precipitation products (Gebregiorgis et 
al., 2017; Tan et al., 2017). It applies conservative adjustments, quality controls and quantity 
controls on MRMS products to refine the most trustworthy radar-gauge precipitation estimates 
towards specific satellite purposes and needs. This processing is designed to maximize 
accuracy, minimize uncertainties and standardize the GV-MRMS precipitation reference 
products across the Continental United States (CONUS).  
 
Thanks to their resolution, which is higher than any satellite precipitation product, GV-MRMS 
data are designed to be pixel-matched in both time and space, and to build statistics for 
comparing reference precipitation intensities to Level-2 and Level-3 satellite-based estimates. 
Note that no reference perfectly matches the true precipitation; however, eliminating systematic 
error sources and non-robust reference values is necessary to improve confidence in the 
reference precipitation. The reference data covers a broad range of land surface types 
(mountains, coasts, plains) and precipitation regimes and captures a variety of situations to 
document representative features of satellite intrinsic uncertainty. 
 
An extended characterization of the reference precipitation should include additional key 
precipitation properties such as typology. The typology of rainfall can be assessed within the 
satellite sensor’s field of view (FOV) (for Level-2 products) or pixel grid (for Level-3 products) 
through precipitation properties such as the Convective Percent Index (CPI). CPI quantifies the 
volume contribution of convective rainfall to the reference precipitation (Kirstetter et al., 2020). 
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The CPI is expressed in percent between 0% (purely stratiform rainfall within the FOV or pixel) 
to 100% (purely convective rainfall). CPI values between 0% and 100% indicate mixed 
precipitation types (Figure 1.2.1). 

1.2.3. Non-homogeneity of gridded satellite precipitation products: 
Implication for their hydrologic assessment 

It is essential to recognize that gridded Level-3 satellite precipitation products are not 
homogeneous because of the dynamical interplay between a variety of error sources described 
in previous sections. Precipitation characteristics such as convection are a challenge for 
satellite retrievals, although convective precipitation is a strong driver of extremes. They 
condition systematic biases at all levels (for example, see Figure 1.2.2). The estimation error 
varies also depending on which sensor is weighted more in the retrieval. For example, 
estimates originating from IR display different error patterns from passive MW (for example, 
see Figure 1.2.2d). Consistency and homogeneity are properties that any Level-3 satellite 
precipitation product is designed to achieve, but these properties are often overlooked in 
assessment exercises. It follows that a gap remains with our ability to consistently merge 
precipitation estimates into gridded products and assess the procedure.  
 
An endemic limitation in the extensive body of literature on satellite precipitation validation and 
error modeling is that the satellite product is implicitly assumed to be consistent and 
homogeneous over the spatial and temporal domain of comparison. This is rarely the case 
because comparison samples gather a variety of precipitation characteristics (for example, 
intermittency, typology, rates) for which the satellite algorithm (or combination of algorithms for 
Level-3 merged products) is likely to behave differently. More generally the comparison is 
always performed with precipitation estimates ambiguously derived from the satellite sensor 
observation through the retrieval algorithm and associated assumptions. Individual passive 
MW/IR retrievals are underconstrained by nature and sensitive to unobserved atmospheric 
parameters (Stephens and Kummerow, 2007). The combined products inherit the varying 
passive MW/IR performances and create additional uncertainties with temporal/spatial 
resampling.  
 

 

 
Figure 1.2.1. (a) Map of CONUS area with GV-MRMS instantaneous rain rates at 0725 UTC on 11 April 

2011. The red area shows the good quality radar coverage; (b) the convective percent index (CPI). 
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Common assessment typically uses bulk comparison metrics (for example, probability of 
detection, correlation, bias) that depict averaged space/time properties while the errors tend to 
be non-stationary and sensitive to parameters not accounted for in the assessment formulation. 
These metrics are sometimes applied without necessarily checking their relevance 
(for example, the linear correlation is generally insufficient to describe the non-linear and 
heteroscedastic dependence structure between a satellite precipitation estimate and the 
precipitation reference). Hence validation practice generally provides limited insight in the 
complex error characteristics of satellite precipitation estimates. 
 
In addition, the representativeness of any overall satellite QPE assessment or error model is 
confined to the time and space domain over which it is performed. It tends to be specific to the 
satellite instrument (for example, resolution), the retrieval algorithm, the space-time-scale and 
the accuracy of the reference, and has limited applicability for other precipitation regimes, 
regions, products, etc. The actual benefit of these analyses to satellite precipitation users and 

 

 
Figure 1.2.2. Performances of space-based QPE as functions of Convective Percent Index with 

respect to GV-MRMS: (a) space-based radars’ relative bias for TRMM-PR (grey), DPR/Ku (black), 
DPR/Ka (blue) and DPR/Ka-Ku (red); (b) GPROF-GMI systematic error; (c) GPROF-GMI relative bias 
as a function of CPI difference with GV-MRMS; and (d) IMERG systematic error for the passive MW 
(red) and IR (blue) components. Convective and stratiform situations correspond to CPI=100% and 

CPI=0%, respectively. Comparison data include 2M+ matched ground-satellite pairs from June 2014 
to September 2016 (from Kirstetter et al., 2020). 

 



 

 
28 

developers is limited. There is a need to formulate the goals of validation and error modeling, 
and to design appropriate comparison practices. 
 
Integrated assessment of the intrinsic uncertainty across multiple sensors and products is 
necessary to track the origin of errors and their propagation through various Level-2 active to 
passive MW to Level-3 merged satellite precipitation estimates. Targeting the most significant 
factors driving the state of the satellite estimation error (for example, precipitation types) is 
essential to characterize uncertainties in satellite QPE and lead to a generalization of their 
assessment (Kirstetter et al., 2020; Shige et al., 2013; Taniguchi et al., 2013; Yamamoto et al., 
2017). Figure 1.2.2 illustrates the propagation of uncertainty that arises from precipitation types 
in the form of systematic biases from spaceborne radars (for example, GPM DPR) through MW 
precipitation estimates (GPROF-GMI) to the IMERG Level-3 merged product.  
 
1.2.4. Impact of satellite precipitation intrinsic uncertainty on hydrologic 

applications  
Hydrologic applications of satellite data include agriculture, freshwater availability and natural 
disasters monitoring (for example, floods, droughts, landslides; Serrat-Capdevila et al., 2014). 
Each application is characterized by specific spatial and temporal requirements that can vary 
significantly. For example, global hydrological modeling to assess the occurrence of flood 
events is uniquely enabled with the coverage provided by Level-3 precipitation products (such 
as the Global Flood Monitoring System, http://flood.umd.edu/; Wu et al., 2014). Anticipating 
flood events enables the assessment of associated risks and optimized decision making, 
specifically in developing countries (Kirschbaum et al., 2017). The detection of floods and 
inundations is critical for hazard response by agencies such as the United Nations World Food 
Program and the International Federation of Red Cross and Red Crescent Societies (Gray, 
2015). On the other side of the precipitation spectrum, precipitation deficits are monitored with 
satellites as drivers of drought and food and water security (for example, the Famine Early 
Warning Systems Network, FEWS NET; www.fews.net). Water resources applications are 
reservoir operations that use precipitation products at monthly time scales (for example, Yang 
et al., 2017). However, applications of Level-3 products have not been demonstrated yet in 
contexts involving hydrologic processes over short scales (for example, a few kilometres, 
hourly), such as flash-flood monitoring, because the Level-3 resolution or latency are limiting 
factors.  
 
Hydrologic applications often require an understanding of the error structure in the satellite 
precipitation products. Errors in hydrologic simulations result from a complex interaction 
between the forcing uncertainty (that is, precipitation), the model structure and approximations, 
the estimation of model parameters, and observations (for example, gauged streamflow). 
Hence precipitation errors and uncertainty sources have the potential to affect hydrologic 
applications (Maggioni and Massari, 2018). For example, simulations using Level-3 products 
for predicting streamflow and runoff are greatly impacted by their performance in terms of 
precipitation detection and quantification. Common issues involve systematic bias in the 
precipitation estimates, since hydrologic simulation highly depends on basin-scale water 
budget assumptions that directly impact the streamflow simulation (for example, Thiemig et al., 
2012). Systematic biases arising at the satellite Level-2 and propagating to the Level-3 
products are conditioned on a number of factors, some of which are independent of surface 
hydrology, such as precipitation physics, climatologies, sensors and algorithms (see Figure 
1.2.1).  
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One strategy dealing with the uncertainty is to mitigate it by (1) debiasing for reconciliation with 
higher-resolution hydrologic models, (2) averaging/filtering/smoothing to obtain coarser-
resolution products (typically 1-day 1-degree; see Chapter 2). Applications running at the 
monthly or seasonal time scales are less affected by biases because Level-3 satellite products 
increasingly benefit from gauge-based adjustments at coarser scales. However, many 
applications require spatial resolutions finer than 25 km and temporal resolutions less than 3 
hours (Kirschbaum et al., 2017). In many cases, the uncertainty is transferred into the 
applications. Bias correction techniques can reduce streamflow errors (for example, Serrat-
Capdevila et al., 2014); for example, by applying climate-scale bias corrections (for example, 
Beck et al., 2017). However, the multi-factor and nonstationary nature of satellite-based 
precipitation biases (that are not well understood yet; see Chapter 1.1) hinders the 
effectiveness of correction techniques. Another option is to compensate the forcing biases with 
hydrologic model calibration (for example, Xue et al., 2013; Nikolopoulos et al., 2013). It is 
made possible because the observed hydrologic response (discharge at the basin outlet) 
results from unobserved and integrated contributions of surface and subsurface processes. 
This endemic lack of observational hydrologic constraints leaves a considerable range of 
options to adjust hydrologic model parameters to reproduce the observed behavior (Beven, 
2001), sometimes at the expense of physical realism. Model recalibration has been applied 
across watersheds with various geomorphologies and climatologies around the world to cope 
with satellite precipitation biases and improve streamflow prediction. This transfer of 
uncertainties from the satellite precipitation estimates to modeled hydrologic processes 
estimates hinders the broad application of hydrologic modeling, especially at sub-basin scales. 
 

 

 
Figure 1.2.3. An example of propagation of resolution-induced rainfall error to streamflow simulations, 
using a distributed hydrologic model on the Tarboro watershed (North Carolina, U.S.) over the period 

2002–2009. Metrics of hydrologic model performance as functions of basin area and streamflow 
threshold are presented: (a) ratio of streamflow (Q ) relative bias to rainfall (R ) relative bias, (b) ratio of 

streamflow (Q ) relative RMSE to rainfall (R ) relative RMSE and (c) Nash–Sutcliffe coefficient of 
efficiency (NSCE) of streamflow simulations. The values between parentheses indicate the probability 

of occurrence of the corresponding threshold. From Vergara et al., 2014 
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Uncertainty also arise due to the resolution of current satellite-based rainfall products and 
impacts applications of hydrologic modeling and forecasting systems. Resolution modifies the 
spatial structure of rainfall fields, and its interplay with basin area conditions the propagation of 
biases in distributed hydrologic models (for example, Vergara et al., 2014; Figure 1.2.3). The 
effects of precipitation resolution can be accounted for during the calibration of hydrologic 
models. The systematic analysis of the complex and combined effects arising from satellite 
uncertainties and resolution, basin geomorphologic characteristics and hydrologic modeling 
approaches remains a great challenge for the hydrologic application of satellite precipitation 
estimates. For more reliable flood simulations, additional physical constraints can be brought 
by observations, such as using soil moisture as a fingerprint of past rain occurrence (for 
example, Crow et al., 2011; Ciabatta et al., 2015). 

Figure 1.2.4. Precipitation rate distributions conditioned on the IR brightness temperature. The thick black 
line represents the median (50% quantile), the blue curves represent the 25 and 75% quantiles, the thin 

black lines represent the 10 and 90% quantiles. The red curve represents the expected value. The intrinsic 
bias in Figure 1.1.12 is mitigated by the probabilistic approach, while the intrinsic uncertainty is represented 

by the spread of the conditional precipitation rate distribution (adapted from Kirstetter et al., 2018a).   

Another strategy dealing with satellite-based precipitation is to explicitly integrate uncertainty 
into the precipitation estimation process (see Chapter 3.1). Most precipitation products are 
deterministic and represent a single "best guess" realization of precipitation but are blind to 
their intrinsic uncertainty. Recent probabilistic precipitation estimates are developed to explicitly 
represent uncertainty (Kirstetter et al., 2015, 2018a; Wright et al., 2017), as shown in Figure 
1.2.4.  
 
1.2.5. Summary on intrinsic uncertainty and implications for hydrologic 

applications 
Understanding hydrometeorological processes and applications requires more than just one 
deterministic “best estimate” to adequately cope with the intermittent, highly-skewed distribution 
that characterizes precipitation. The intrinsic uncertainty structure of satellite-based quantitative 
precipitation estimates is still largely unknown at the spatiotemporal scales near the sensor 
measurement scale. Advancing the use of uncertainty as an integral part of QPE in the 
relationship between sensor measurements and the corresponding “true” precipitation has the 
potential to provide a framework for diagnosing intrinsic uncertainty when instruments sample 
raining scenes or processes challenging QPE algorithms’ assumptions. It provides the basis for 
multisensor merging and precipitation assimilation, hydrometeorological hazard mitigation, 
decision making and hydrological modeling. Hydrologic applications are not generally 
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configured to directly ingest probabilistic estimates of precipitation, but current research 
explores this avenue (for example, Hartke et al., 2020).  
 
Numerous validation studies have been performed on satellite precipitation products. Chapter 
1.3 summarizes what has been done to date by the IPWG validation subgroup. Limited 
progress has been made on quantifying the intrinsic uncertainty and its impact on hydrologic 
applications. This is because few studies are carried out at the primary precipitation retrieval 
scale. This endeavor requires the expert use of other precipitation sensors such as radar-
gauge combinations. 
 
1.2.6. Recommendations 
Recommendation 1.2.1: Encourage more satellite precipitation comparisons at the actual 
satellite retrieval scale to study the intrinsic uncertainty. 
 
The homogeneity of satellite precipitation is often overlooked in the evaluations while it remains 
an endemic challenge in the generation of such products and their applications. The dynamic 
interplay between precipitation characteristics, sensors and satellite algorithms is critical to 
study in order to make progress. There is a need to formulate the goals of validation and error 
modeling and to design appropriate comparison practices. 
 
Recommendation 1.2.2: The non-homogeneity of satellite estimates at the retrieval scale 
needs more attention in order to improve products and their applications. 
  
Currently hydrological applications are greatly impacted by the satellite precipitation intrinsic 
uncertainty. A better understanding of this uncertainty is critical to make progress and mitigate 
precipitation forcing errors and to avoid error propagation in other modeling components of the 
water cycle. Explicitly accounting for uncertainty in precipitation products is a promising way to 
explore coordination with hydrologic applications. 
 
Recommendation 1.2.3: Further means to explicitly represent uncertainty in precipitation 
products and their hydrologic applications (beyond root mean squared additive error) should be 
explored. 
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