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Abstract

ESSAYS ON PREFERENCE EXTENSIONS

Mikhail L. Freer, PhD

George Mason University, 2017

Dissertation Director: Dr. César Martinelli

Individual preferences are only partially observable. We only observe choices for those

opportunities that are available. However, the design and evaluation of policy many times

requires the ability to extrapolate these preferences to new environments. In this disserta-

tion I discuss the issue of extending preference relations from observed behavior in several

contexts. The dissertation is organized into three chapters.

The first chapter presents a general representation theorem for the extension of prefer-

ence relations. That is, it provides the conditions under which the existence of a utility-

representable complete extension of an observed incomplete relation can be tested. This

allows us to revise the existing revealed preference theory by showing that every revealed

preference test can be represented as a set of internal and external consistency conditions.

The second chapter presents criteria under which a set of observed choices can be gen-

erated by a complete, transitive, monotone and quasi-linear preference relation. I test the

empirical content of the quasi-linearity of preferences by conducting a laboratory experi-

ment on individual decisions among goods and money. I show that while subjects generally

satisfy the generalized axiom of revealed preference, they are not generally consistent with

hypothesis of quasi-linear preferences.



The third chapter analyzes collective choice from a revealed preference perspective. A

collective choice function is Pareto rationalizable if there are complete preference relations

for each player (satisfying additional desired properties if necessary) such that observed

choices are the Pareto efficient outcomes. I characterize the set of Pareto rationalizable

single-valued collective choice functions.



Chapter 1: A Representation Theorem for General Revealed

Preferences

1.1 Introduction

Rational behavior is commonly modeled in economics in three different ways. A long tra-

dition, going back to the founders of neoclassical economics if not even earlier,1 describes

rational behavior as the maximization of an objective (utility) function. Another approach,

pioneered by Frisch (1957) and developed and popularized by Debreu (1954), identifies ra-

tional behavior with the existence of a complete and transitive binary (preference) relation

over the objects of choice. A third strand, pioneered by Samuelson (1938), describes ratio-

nal behavior as the satisfaction of congruence (revealed preference) conditions on finite sets

of observed choices.

The connection between the different approaches to rational behavior has been the object

of attention of a theoretical literature in economics starting with the contributions of Debreu

(1954) on the problem of representing preference relation by means of utility functions and

Afriat (1967) on the problem of the construction of utility functions on the basis of finite data

sets. A seminal contribution by Richter (1966) considers the connection between the three

different approaches, providing a general equivalence result between congruence conditions

on finite sets of observed choices and the existence of preference relations, and an equivalence

result between congruence conditions on sets of observed choices from competitive (linear)

budgets and the representation of the underlying preferences by means of a utility function.

Further efforts to connect these notions have been taken by Jaffray (1975) and Bossert et al.

(2002) in terms of constructing an upper semi-continuous utility-representable extension of

a given preference relation.

1See e.g. Stigler (1950) for a historical summary.
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In this chapter we seek to connect the three models of rational behavior in a parsimonious

way. That is, we seek for criteria under which a preference relation implied by a finite

set of choice observations has a complete extension that can in turn be represented by a

utility function. To this end, we build on the functional approach of Duggan (1999) and

Demuynck (2009), and introduce the notion of a rational closure as a mapping from (possibly

incomplete) preference relations to (possibly incomplete) preference relations whose fixed

points are transitive and that preserves separability properties of the original preference

relation. We show that the transitive closure considered previously by Duggan (1999) and

Demuynck (2009) and others is an example (not unique) of a rational closure.

Our main result is a representation theorem. We show that an incomplete preference

relation has a complete, utility-representable extension that is a fixed point of the rational

closure if and only if a simple set-theoretic consistency requirement between the rational

closure and the incomplete preference relation is fulfilled. Intuitively, we think of the origi-

nal preference relation as the information on preferences that has been obtained from (not

necessarily finite) choice observations. The consistency requirement is then a general con-

gruence condition guaranteeing that the observed behavior can be represented by a utility

function. The fact that existence is obtained as a fixed point of a particular mapping can

be exploited to obtain desirable properties of the utility function, as discussed below.

We then consider a revealed preference experiment. Intuitively, a revealed preference

experiment represents a situation in which information on strict preferences has been ob-

tained from finite, consecutive choice observations. With no restrictions on budget sets or

the consumption space, we show that a revealed preference experiment can be rationalized

by a utility function if and only if two conditions are satisfied: (1) the different observations

do not directly contradict each other, and (2) the consistency requirement identified in the

main theorem is satisfied by the union of the consecutive observations with respect to the

transitive closure. In our formulation, condition (1) is equivalent to a general version of

WARP, and conditions (1) and (2) are jointly equivalent to a general version of SARP. As

a corollary, without restrictions on budget sets or the consumption space, a general version

2



of SARP is necessary and sufficient for a revealed preference experiment to be rationalized

by a utility function.

Similarly, we show that a revealed preference experiment can be rationalized by a strictly

increasing utility function if and only if conditions similar to (1) and (2) above are satisfied,

with the monotone closure (a mapping that incorporates both transitivity and monotonicity

criteria) substituting for the transitive closure. This illustrate the point that the techniques

in the chapter can be put to us to provide tests for the existence of utility functions rep-

resenting choice observations that satisfy additional properties. An exception is continuity,

which is not compatible with the properties of a rational closure–mappings that satisfy

continuity do not induce transitivity and lead to inferences on preferences over pairs of

alternatives that cannot be obtained from information about a finite sample of preferences

over pairs of alternatives.

We also observe that a rationalization by a strictly increasing utility function while

allowing for observed choices to be indifferent to some other alternatives in the budget set,

as in Varian (1982), requires only a minor relaxation of condition (1). As a corollary a

general version of GARP is necessary and sufficient for a revealed preference experiment to

be rationalized allowing for indifferences of observed choices by a strictly increasing utility

function.

The connections between the different approaches to rational behavior have been an ob-

ject of attention of the literature for a long time. As mentioned above, the general connection

between utility functions and preference relations was originally studied2 by Debreu (1954)

in the context of continuous utility functions. Rader (1963) and Jaffray (1975) relaxed the

assumption of continuity and obtained semi-continuous utility rationalization results that

were generalized by Bosi and Mehta (2002). Peleg (1970) shown the sufficient condition

for existence of a continuous utility representation for incomplete preference relation. More

recently Ok (2002), Evren and Ok (2011) have investigated a problem of existence of a

vector-valued utility representation of preference relations.

2Earlier representation theorems under additional assumptions were provided by Cantor (1895) for com-

pletely ordered sets and Von Neumann and Morgenstern (1947) for lotteries.
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The basic result connecting the set of choices and preference relations was proven by

Szpilrajn (1930). Szpilrajn shown that any acyclic preference relation has a complete and

transitive extension. Demuynck (2009) generalized the result by providing a condition to

test for existence of complete extension that has properties usually assumed by economists.

The connection between finite data sets and the utility functions was originally investi-

gated by Afriat (1967). Afriat (1967) uses linear budgets in a Euclidean consumption space

and obtains the existence of a concave, monotone and continuous3 utility function that is

congruous with the observations. Subsequent literature has constructed tests for consis-

tency of the finite consumption data with various utility maximization hypothesis. Kannai

(1977), Matzkin (1991), Matzkin and Richter (1991) and Forges and Minelli (2009) address

the question of testing concavity of the utility representation. Varian (1983), Diewert and

Parkan (1985), Echenique and Saito (2015) and Polisson et al. (2015) develop tests for sep-

arable utility representations including the context of choices under uncertainty. Crawford

(2010) propose a test for habit formation models. Reny (2015) extends Afriat (1967) re-

sults using linear budgets to infinite data sets–as in our case, the extra generality implies

giving up on deriving continuity from the data. Chambers et al. (2010) characterize the

testable implications of revealed preference theory. Chambers and Echenique (2016) provide

a general, systematic overview of revealed preference results.

1.2 Preliminaries

1.2.1 Alternatives

We consider an arbitrary set of alternatives X, with elements denoted x, y, etc. Some ex-

amples of interest are (a) a finite set, representing job offers available to a worker, houses

available to a buyer, etc., (b) the positive orthant of a finite Euclidean space Rm` , represent-

ing bundles of m commodities, (c) the set of sequences pc0, c1, . . . , ct, . . .q where ct P Rm` ,

representing consumption plans potentially available to a long lived agent, and (d) the set

3That is, with respect to the usual Euclidean topology.
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of probability measures over R, representing lotteries with monetary rewards or losses.

We introduce additional structure on the set of alternatives as needed. In particular, in

order to define continuous preferences, we let pX, τq be a topological space for some topology

τ .4 The classical continuous representation results of Debreu (1954) and Rader (1963) relay

on the topological space pX, τq being second countable, that is, having a countable base.5

Continuity is of course an attractive property when there are infinite alternatives as in

examples (b), (c) and (d). The Euclidean space of example (b), equipped with the usual

Euclidean topology, is a second countable space. There are different topological spaces of

interest for examples (c) and (d), and not all of them are second countable; see e.g. Mas-

Colell (1986) and Stokey and Lucas (1989). This illustrates the usefulness of representation

results for arbitrary sets of alternatives.

1.2.2 Preference Relations

A set R Ď X ˆ X is said to be a preference relation. We denote the set of all preference

relations on X by R. We denote the inverse relation R´1 “ tpx, yq|py, xq P Ru. We denote

the symmetric (indifferent) part of R by IpRq “ RXR´1 and the asymmetric (strict) part

by P pRq “ RzIpRq. We denote the incomparable part by NpRq “ X ˆXzpRYR´1q.

Definition 1.1. Given a preference relation and any alternative in X, the lower contour

set and the upper contour set of x are, respectively,

LRpxq “ ty|px, yq P P pRqu and URpxq “ ty|py, xq P P pRqu.

We list below some properties of a preference relation:

Definition 1.2. A preference relation R is said to be

1. complete if px, yq P RYR´1 for all x, y P X (or equivalently NpRq “ H).

4Recall that a topology on X is a collection of subsets of X, called open sets, that includes H and X,
and that is closed under arbitrary unions and finite intersections.

5Recall that a base for a topology τ on X is a collection B of open sets, such that every x P X and every
open set U containing x, there is V P B such that x P V Ď U .

5



2. transitive if px, yq P R and py, zq P R implies px, zq P R for all x, y, z P X.

3. Z-separable for given Z Ď X if for any px, yq P P pRq there is z P Z such that

px, zq P R and pz, yq P R.

4. upper semi-continuous if pX, τq is a topological space and LRpxq for all x P X are

open.

5. continuous if pX, τq is a topological space and LRpxq and URpxq for all x P X are

open.

Completeness and transitivity are the usual desirable properties of preference relations.

Separability and continuity play a key role in classical representation results to which we

appeal later on.

Examples. Suppose that X “ Rm` , with the usual Euclidean topology. (a) It is well

known that if R is complete, transitive and continuous, then R is Qm
` -separable, that is

for any px, yq P P pRq there is a bundle z all whose components are rational numbers such

that px, zq P R and pz, yq P R (see e.g. Kreps (2012), Proposition 1.15). Since Qm
` is

countable, it follows that R is separable with respect to any collection of subsets of R that

includes Qm
` . (b) Denote by L the lexicographic preference relation, i.e. px, yq P L if there

is k P t1, . . . ,mu such that xi “ yi for i ă k and xk ą yk. It is well-known that this

relation is not Qm
` -separable (see e.g. Mas-Colell et al. (1995), Example 3.C.1). However,

L is Rm` -separable.

A driving idea in this chapter is to extend incomplete preference relations including

additional comparisons of pairs of alternatives while preserving the asymmetric part of the

original preference relation:

Definition 1.3. A preference relation R1 is an extension of R, denoted R ĺ R1, if R Ď R1

and P pRq Ď P pR1q.

6



1.2.3 Functions over Preference Relations

In this section we consider general functions F : R Ñ R defined over the set of preference

relations which may be used to extend an incomplete preference relation.

Definition 1.4. For any given function F : RÑ R, we let

1. RF “ tR P R|R ĺ F pRqu,

2. RZF “ tR P R and R is Z-separable |R ĺ F pRqu,

RF and RZF are different sets of preference relations that are extended by F .

We list below some properties of a function over the set of preference relations:

Definition 1.5. A function F : RÑ R is said to be

1. monotone if for all R,R1 P R, if R Ď R1, then F pRq Ď F pR1q,

2. closed if for all R P R, R Ď F pRq,

3. idempotent if for all R P R, F pF pRqq “ F pRq,

4. algebraic if for all R P R and all px, yq P F pRq, there is a finite relation R1 Ď R such

that px, yq P F pR1q,

5. expansive if for any R “ F pRq and NpRq ‰ H, there is a nonempty set S Ď NpRq

such that RY S P RF and P pRq “ P pRY Sq,

6. transitive-inducing if any preference relation satisfying R “ F pRq is transitive,

7. separability-preserving if there is a countable set QF such that for any countable

set Z and R P RQFYZ
F , F pRq is pQF Y Zq-separable.

8. upper semi-continuous if pX, τq is a topological space and R P R̂F implies F pRq is

upper semi-continuous,

9. continuous if pX, τq is a topological space and R P R̃F implies F pRq is continuous.
7



Any function F : RÑ R that is monotone, closed and idempotent is called a closure.

A closure is algebraic as defined above if any element of the closure can be obtained from

applying the closure to a finite subset of the original relation.6

Expansiveness and transitivity impose conditions on fixed points of F . Expansiveness of

F , in particular, means that we can add some indifference pairs to any fixed point R “ F pRq

that is not complete, such that the new relation will be in RF .

Separability preserving implies that if R is separable with respect to any countable set

Z and is extended by F , then we can augment Z so that F preserves separability with

respect to the augmented set. This is because R P RZF implies R P RQFYZ
F .

Gathering the first seven properties, we can define the following:

Definition 1.6. A function F : R Ñ R is said to be a rational closure if it is an

expansive algebraic closure that induces transitivity and preserves separability.

Intuitively, a rational closure is a rule which may be useful to extend some original

incomplete preference relation, and that satisfies certain desirable criteria. Those criteria

include not losing information contained in the original preference relation (closeness and

monotonicity), being thorough in using that information (idempotence), using finite sets of

information contained in the original preference relation to make each binary comparison

(algebraicity), being able to incorporate some indifferences (expansiveness), and inducing

transitivity and preserving separability of the original preference relation, both of which are

useful to build a utility representation.

The transitive closure provides a natural example of a function over preference rela-

tions. Denote it by

T : RÑ R,

where px, yq P T pRq if and only if there is a finite sequence s1, . . . , sn such that psj , sj`1q P R

for every j “ 1, . . . , n´ 1, and s1 “ x and sn “ y.

We claim:

6See e.g. Davey and Priestley (2002), definition 7.12.
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Lemma 1.1. The transitive closure T : RÑ R is a rational closure.

Proof. It is easy to check that T is an algebraic closure and that it induces transitivity.

To prove that T is separability-preserving, recall that by definition for any px, yq P T pRq

if and only if there is a finite sequence s1, s2, . . . , sn such that psj , sj`1q P R for every

j “ 1, . . . , n ´ 1, and s1 “ x and sn “ y. This implies that for any px, yq P P pT pRqq

there is some k P t1, . . . , n ´ 1u such that psk, sk`1q P P pRq. Now suppose the R is Z-

separable; this implies that there is some z P Z such that psk, zq, pz, sk`1q P R. But then

px, zq, pz, yq P T pRq. Thus, T pRq is also Z-separable. (That is, in terms of the definition or

separability-preservation, QT “ H.)

To prove that T is expansive, consider a relation R “ T pRq and assume that NpRq ‰ H.

Take any element px, yq P NpRq and consider the relation R1 “ R Y tpx, yq, py, xqu. We

claim that R1 ĺ T pR1q, which would prove that T is expansive. It is clear that R1 Ď T pR1q.

Therefore, we only need to show that P pR1q Ď P pT pR1qq. Assume, on the contrary, that

there are elements z and w for which pz, wq P P pR1q and pw, zq P T pR1q, and note that

px, yq ‰ pz, wq ‰ py, xq. From the definition of T , we know that there is some finite

sequence s1, . . . , sn such that s1 “ w, sn “ z, and psj , sj ` 1q P R1 for each j “ 1, . . . , n´ 1.

Let m be the minimal integer such that there is such sequence of length m, and let S be

any such sequence of length m.

Given a sequence S as described above, there is some j such that either psj , sj`1q “ px, yq

or psj , sj`1q “ py, xq for some 1 ă j ă m ´ 1; otherwise pw, zq P T pRq “ R, contradicting

pz, wq P P pR1q. Suppose without loss of generality that psj , sj`1q “ px, yq for some 1 ă

j ă m ´ 1; then there is no k ‰ j such that psk, sk`1q “ py, xq or psk, sk`1q “ px, yq,

otherwise S would not be the shortest sequence from w to z such that every consecutive

pair is in R1. Since pz, wq P P pR1q, we have pz, wq P R1. Now consider the finite sequence

y, sj`2, . . . , sm´1, z, w, s1, . . . , sj´1, x. Note that every pair of consecutive elements of the

sequence is in R1 and is different from px, yq and py, xq, so every pair of consecutive elements

of the sequence is in R. But then py, xq P T pRq “ R, contradicting px, yq P NpRq.
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Note that separability-preserving holds for the transitive closure in a very simple form.

That is, if R is Z-separable for any Z and extended by T , then T pRq is also Z-separable.

We are giving more latitude in the definition of a separability-preserving function to ac-

commodate other useful rational closures. In particular, the monotone closure, described

in Section 4, requires to expand Z judiciously in order for the monotone closure to preserve

separability with respect to the augmented set.

It is simple to check that the transitive closure is not upper semi-continuous and therefore

not continuous for arbitrary topological space pX, τq. As an illustration of a closure that is

continuous–and therefore, a fortiori upper semi-continuous–for arbitrary topological space

pX, τq, consider the continuity closure given by

C : RÑ R,

where px, yq P CpRq if and only if there is a sequence pxn, ynq P R, such that xn Ñ x and

yn Ñ y. Unfortunately, the continuity closure is neither algebraic nor transitive, as shown

by means of examples below.

Examples. (a) Consider the preference relation R1 over X “ R, equipped with the

Euclidean topology, such that px, yq P IpR1q if and only if either x, y ą 1, or x, y ă 1, or

x, y “ 0, 1, and px, yq P P pR1q if and only x ą 1 ą y. We can check that px, yq P IpT pR1qq

if and only if either x, y ą 1 or x, y ď 1 and px, yq P P pT pR1qq if and only x ą 1 ě y.

Note that LR1pxq is open for x ą 1, but LT pR1qpxq is not. That is, T pR1q is transitive and

extends R1, but it is not upper semi-continuous. (See Figure 1.) We can also check that

px, yq P IpCpR1qq if and only if x, y ě 1 or x, y ď 1, and px, yq P P pCpR1qq if and only if

x ą 1 ą y. That is, CpR1q is continuous and extends R1, but it is not transitive.

(b) Consider the preference relation R2 “ tp 1n , 1q : n P Nu over X “ R, equipped with

the Euclidean topology. Note that p0, 1q P CpR2q, but there is no finite sub-relation R Ă R2

such that p0, 1q P CpRq, showing that the continuous closure is not algebraic.

A condition to apply the classical representation results of Debreu (1954) and Rader
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q

x

R

LR1pxq

0 1

s

x

R

LT pR1qpxq

Open lower contour set for R1 Closed lower contour set for T pR1q

Figure 1.1: Upper semi-continuous R1 but not upper semi-continuous T pR1q

(1963) is that pX, τq is a second countable topological space for some topology such that

contour sets are open. If pX, τq is second countable, in fact, upper semi-continuity of F

implies that F is separability-preserving with respect to the base of the topology. That

is, for a given second countable topological space, separability preserving with respect to

the base of the topology, upper semi-continuity, and continuity are increasingly demanding

conditions on F . However, as illustrated by the discussion above, upper semi-continuity is

in fact too demanding to be of interest for our approach as it conflicts with other desirable

properties.

1.2.4 Consistency

As shown below, the following is a necessary and sufficient condition for F pRq to be an

extension of R:

Definition 1.7. Given a function F : R Ñ R, a preference relation R is said to be F-

consistent if F pRq X P´1pRq “ H.

Example. Let the set of alternatives be X “ tx1, x2, x3, x4, x5u and consider the

preference relation R “ tpx1, x2q, px2, x3q, px3, x1qu. This relation is not transitive and is

not T -consistent (see Figure 1.2) because px1, x3q P T pRq and px3, x1q P P pRq. On other

hand R1 “ tpx1, x2q, px2, x3q, px4, x5qu is not transitive but it is T -consistent. Note that

11



transitivity of R is sufficient but not necessary for T -consistency of R.

P pRq

x1

x2 x3

T pRq

P pRq

x1

x2 x3

R T pRq

Figure 1.2: Violation of T -consistency

From idempotence and transitivity-preserving it follows that, if F is a rational closure,

then F pRq is transitive for any R. Thus, if F is a rational closure, F pRq Ě T pRq, so that

F -consistency implies T -consistency. That is, transitivity is a minimum requirement for an

extension rule intended to lead to a utility representation, but F may incorporate other

desiderata.

1.3 A Representation Theorem

Our main result is a theorem providing conditions for the existence of a utility function that

represents the complete extension of a given preference relation. We do it by showing the

existence of a complete relation that is a fixed point of a rational closure. Following Debreu

(1954), we define as a natural topology for a given complete and transitive preference

relation R any topology such that R is continuous.

Theorem 1.1. Let F be a rational closure and let R P R be Z-separable for some countable

set Z. R has a complete extension R˚ “ F pR˚q that can be represented by a utility function

if and only if R is F-consistent. Moreover, the utility function is continuous in any natural

topology.
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To prove Theorem 1.1 we need several supplementary results. We use the following

result (contained in Lemma 1 in Demuynck (2009)) repeatedly in the proofs:

Lemma 1.2. If F : RÑ R is closed, then R P RF if and only if R is F -consistent.

Proof. Since R Ď F pRq by assumption, we only need to show that P pRq Ď P pF pRqq if and

only if R is F -consistent. If px, yq P P pRq then px, yq P R and therefore px, yq P F pRq. Thus,

px, yq P P pF pRqq for every px, yq P P pRq if and only if py, xq R F pRq for every px, yq P P pRq,

or equivalently if and only if F pRq X P´1pRq “ H.

The next two results are useful in order to apply Zorn’s lemma and show that there is

a complete extension of the original preference relation.

Lemma 1.3. If F : R Ñ R is closed, monotone and algebraic, then for any countable Z

and every chain

R0 ĺ R1 ĺ ¨ ¨ ¨ ĺ Rα ĺ ¨ ¨ ¨

such that Rα P RZF for all α, we have Yαě0Rα P RZF .

E0

E1E2 E3

Figure 1.3: Illustration for Lemma 1.3. Ei Ă RZF is the of Z-separable F -consistent ex-

tensions of Ri. If every element in the sequence tEiu is non-empty, then the limit relation
Yαě0Rα also has a non-empty set of Z-separable F -consistent extensions.
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Proof. Let B “ Yαě0Rα. If the chain is finite B is itself an element (the last element) of

the chain, so that B P RF is immediate. Thus, we only need to be concerned with infinite

chains. We know that each element Rα of the chain is F -consistent (from Lemma 1.2) and

Z-separable, and we only need to show that B is F -consistent and Z-separable.

For consistency of B, assume that there is px, yq P F pBq but py, xq P P pBq. By con-

struction of B we know that py, xq P Ra for some relation Ra (with finite index a), and

therefore py, xq P Rα for α ě a. Since F is algebraic, there is some finite relation R1 Ď B

such that px, yq P F pR1q. Moreover, since R1 is finite, there is some Rb (with finite index

b) in the chain such that R1 Ď Rb. Since F is monotone, F pR1q Ď F pRbq and therefore

px, yq P F pRbq. By monotonicity again, px, yq P F pRαq for α ě b. Hence, there is a finite

c “ maxta, bu such that Rc is not F -consistent, a contradiction.

For Z-separability of B, suppose that px, yq P P pBq. By construction of B we know

that px, yq P Rd for some relation Rd (with finite index d), and py, xq R Rα for any α.

Hence px, yq P P pRdq. From Z-separability of Rd, there is z P Z such that px, zq P Rd and

pz, yq P Rd. But then px, zq P B and pz, yq P B.

Lemma 1.4. If F : R Ñ R is closed, idempotent, separability preserving, and expansive,

then for any countable Z Ě QF and for every R P RZF such that NpRq ‰ H there is a

non-empty subset S of NpRq such that RY S P RZF .

Proof. Consider first the case R ‰ F pRq, and let S “ F pRqzR. Note that S ‰ H since F is

closed, and by construction RYS “ F pRq. Since F is separability preserving, then R P RZF

implies RYS is Z-separable. Since F is idempotent, F pF pRqq “ F pRq so F pF pRqq ľ F pRq

and F pRq “ RY S P RZF .

Consider now the case R “ F pRq. Since F is expansive, there is a nonempty set

S Ď NpRq such that RY S is F -consistent and P pRY Sq “ P pRq. Since R is Z-separable,

it follows that RY S is also Z-separable. Since RY S is F -consistent and Z-separable, we

get RY S P RZF .
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In order to prove Theorem 1.1 we need also a classical result from Debreu (1954) included

below for reference.

Lemma 1.5 (Lemma 2 from Debreu (1954)). If R is a complete, transitive and Z-separable

preference relation for some countable Z Ď X, then there is a utility function that represents

R and is continuous in any natural topology.

We turn to the main proof next.

Proof of Theorem 1.1. Assume throughout the proof that F is a rational closure and R a

Z-separable preference relation for some countable Z. Define Z 1 “ ZYQF and note that R

is Z YQF -separable. To prove necessity of the condition in the statement of the theorem,

suppose first that R is not F -consistent, and let R1 be any extension of R. From R1 Ě R and

monotonicity of F we get F pR1q Ě F pRq. From P pR1q Ě P pRq we get P´1pR1q Ě P´1pRq.

It follows that if R is not F -consistent, then R1 is not F -consistent. Note that if R1 is not

F -consistent, then P pR1q ‰ P pF pR1qq and hence R1 ‰ F pR1q. Thus, if R is not F -consistent,

it cannot have an extension that is a fixed point of F .

To prove sufficiency, suppose R is F -consistent. Since F is separability-preserving and

R is Z 1-separable, then F pRq is Z 1-separable as well. Let

Ω “ tR1 P RZ1F |R ĺ R1u

be the set of extensions of R that are themselves Z 1-separable and extended by F . Note

that by Lemma 1.2, R P Ω if R is F -consistent, so Ω is nonempty.

We claim that every chain R0 ĺ R1 ĺ ¨ ¨ ¨ ĺ Rα ĺ ¨ ¨ ¨ of relations in Ω has an upper

bound B “ Yαě0Rα P Ω. To see this, from Lemma 1.3, B P RZ1F . It remains to check

that R ĺ B. Clearly, R Ď B. If P pBq Ğ P pRq, then there are elements x, y P X such

that px, yq P P pRq and py, xq P B. But then there must be a relation Rα in the chain for

which py, xq P Rα, which contradicts the fact that R ĺ Rα and we conclude that B P Ω.

Clearly, ĺ is a partial order (reflexive, antisymmetric and transitive binary relation) on Ω
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and we just showed that every chain has an upper bound. Hence, by Zorn’s lemma, there

is maximal element of Ω, and we can denote it by R˚.

We claim that R˚ is complete. To see this, assume on the contrary that NpR˚q ‰ H.

From Lemma 1.4 and the fact that QF Ď Z 1, we know that there is a nonempty S Ď NpR˚q

such that R˚YS P RZ1F . Since R˚ ľ R, we have R˚YS Ą R˚ Ą R. Note that py, xq P P pRq

implies px, yq R R˚ (since R˚ ľ R) and px, yq R S (since S Ď NpR˚q Ď NpRq). Hence,

P pR˚ Y Sq Ě P pRq. But then R˚ Y S ľ R and R˚ Y S P RZ1F , which contradicts that R˚ is

a maximal element of Ω.

We claim further that R˚ is a fixed point of F pRq, i.e. F pR˚q “ R˚. To see this, note

that R˚ Ď F pR˚q follows from the fact that R˚ ĺ F pR˚q. To get the reverse, assume that

px, yq P F pR˚q and px, yq R R˚. From completeness of R˚, py, xq must be an element of

P pR˚q which contradicts R˚ ĺ F pR˚q. Therefore, F pR˚q Ď R˚.

We are left to show that there is a utility function that represents R˚ “ F pR˚q. We just

showed that R˚ is complete. Since F is a rational closure, R˚ is transitive as well. As we

already showed R˚ P Ω Ď RZ1F , it follows that R˚ is Z 1-separable. Hence, R˚ satisfies the

conditions from Lemma 1.5, i.e. there is utility function that represents R˚. Moreover, the

utility function is continuous in natural topology.

Intuitively, we can think of the rational closure F as helping to construct a complete

extension of the original preference relation via an iterated algorithm. Starting with the

original preference relation, the algorithm works as follows. If the preference relation at a

given iteration is already a fixed point of F , but it is not a complete relation, the algorithm

requires adding indifference pairs to R while keeping the new preference relation in RF .

Adding indifference points in this manner is possible since F is expansive. If instead the

preference relation at a given iteration is not a fixed point, the algorithm requires going from

R to F pRq, which expands R while preserving its asymmetric part—since F is idempotent,

the new preference relation is a fixed point of F . In this sense, the proof of Theorem 1.1

establishes that such algorithm converges to a complete fixed point as long as the original
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P pRq
IpRq

X ˆX

45˝

P pRq
IpRq

P´1pRq

X ˆX

45˝

P pRq
IpRq

X ˆX

45˝

(a) Preference Relation (R) (b) F -consistency of R (c) Extension F pRq

P pF pRqq

IpF pRqq

X ˆX

45˝

T

P pF pRqq

IpF pRqq

X ˆX

45˝

T

P pF pRqq

IpF pRqq

P´1pF pRq Y T q

X ˆX

45˝

(d) Extended Relation F pRq (e) Addition of T (f) F -consistency of F pRq Y T

Figure 1.4: Intuition for the proof of Theorem 1.1. The dashed line is the diagonal. If px, yq
lies above the diagonal, then py, xq is the symmetric point below the diagonal.

preference relation is F -consistent. Since the algorithm preserves separability properties

of the preference relation, and fixed points of F are transitive, the complete fixed point

is representable by a utility function. Of course, convergence need not occur after a finite

number of iterations, and the proof relies on Zorn’s Lemma to assert existence.
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1.4 Revealed Preference Revisited

In this section we illustrate the techniques proposed in the chapter by revisiting the classical

problem of the existence of a utility function rationalizing observations obtained from a

finite number of budget sets. Formally, a consumption experiment is a finite vector

E “ pxi, Biq
n
i“1 P pXˆ2Xqn where for each i “ 1, . . . , n, xi P Bi Ď X. The interpretation is

that xi are chosen alternatives and Bi are budget sets, so that each xi is (directly) revealed

to be strictly preferred to each alternative in Biztxiu.

Given a consumption experiment E “ pxi, Biq
n
i“1, for each i “ 1, . . . , I, let Ri “ tpxi, yq :

y P Biztxiuu, and let RE “
Ť

iRi. We say that an experiment E “ pxi, Biq
n
i“1 can be

rationalized if there is a preference relation that is a complete extension of every element

in the set tRiu and that can be represented by a utility function. We claim:

Proposition 1.1. A consumption experiment can be rationalized if and only if (1) RE ľ Ri

for i P t1, . . . , nu and (2) RE is T -consistent.

Proof. To prove sufficiency of conditions 1 and 2, note that RE is separable with respect to

the finite set tx1, . . . , xnu and recall that the transitive closure is a rational closure (Lemma

1). From Theorem 1, then, RE has a complete extension R˚ that can be represented by a

utility function if and only if RE is T -consistent; that is, condition 2. Since R˚ ľ RE and

ľ is a transitive relation, condition 1 is sufficient for R˚ ľ Ri for i P t1, . . . , nu.

To prove necessity of condition 1, note that by construction P pRiq “ Ri for i P t1, . . . , nu.

Hence, if there is some i such that P pREq Ğ P pRiq, it must be the case that there is some

j ‰ i such that pxi, xjq P Ri “ P pRiq and pxj , xiq P Rj “ P pRjq. But there cannot be any

preference relation R˚ satisfying pxi, xjq P P pR
˚q and pxj , xiq P P pR

˚q.

To prove necessity of condition 2, suppose RE is not T -consistent but condition 1 holds.

Then for any preference relation R˚ that extends every Ri, we can build a cycle of strict

preference between three or more alternatives, which implies that R˚ cannot be represented

by a utility function.
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Two criteria to ascertain the rationality of the consumption experiment (developed first

by Samuelson (1938) and Houthakker (1950)) are described below:

Definition 1.8. The consumption experiment E “ pxi, Biq
n
i“1 satisfies the Weak Axiom of

Revealed Preference (WARP) if for every ti, ju Ď t1, . . . , nu, xj P B
i implies xi “ xj or

xi R Bj.

Definition 1.9. The consumption experiment E “ pxi, Biq
n
i“1 satisfies the Strong Axiom of

Revealed Preference (SARP) if for every integer m ď n and every ti1, . . . , imu Ď t1, . . . , nu,

xij`1 P Bij for j “ 1, . . . ,m´ 1 implies xi1 “ xim or xi1 R Bim.

The interpretation of WARP is that two alternatives cannot be directly revealed to

be strictly preferred to each other, while the interpretation of SARP that in addition two

alternatives cannot be indirectly revealed to be strictly preferred to each other, via a chain

of direct revelation. (See Figure 1.5.)

B1

B2

x1 x2

B1

B2

B3

x1

x2

x3

Violation of WARP Violation of SARP, but not WARP

Figure 1.5: Relation between WARP and SARP

The following are immediate:

Lemma 1.6. E “ pxi, Biq
n
i“1 satisfies WARP if and only if RE ľ Ri for i P t1, . . . , nu.
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Lemma 1.7. E “ pxi, Biq
n
i“1 satisfies SARP if and only if (1) RE ľ Ri for i P t1, . . . , nu

and (2) RE is T -consistent.

As a corollary of Proposition 1.1 and Lemma 1.7, a finite consumption experiment can

be rationalized if and only if it satisfies SARP.

By working with other closures we can induce monotonicity as well as transitivity in the

complete extension of the original preference relation. For this purpose we need to introduce

more structure on X. Assume X is endowed with a transitive and reflexive relation ě, with

strict part denoted by ą, and suppose there is a countable set Q that is dense in X with

respect to ě; that is, for all x, y P X such that x ą y there is Z P Q such that x ą z ą y. As

an example, we have X “ Rm and Q “ Qm for positive integer m. We say that a preference

relation R is monotone if for all x, y P X, x ą y implies px, yq P P pRq.

We define the monotone closure by M : R Ñ R, where px, yq P MpRq if there is a

finite sequence s1, . . . , sn such that s1 “ x and sn “ y, and for any j “ 1, . . . , n ´ 1 either

(1) psj , sj`1q P R, or (2) sj ą sj`1.

Lemma 1.8. The monotone closure M : RÑ R is a rational closure.

Proof. It is easy to check that M is an algebraic closure and that induces transitivity.

Expansiveness of M can be proven in a similar way to the expansiveness of T , considering

the fact that R “ MpRq is already monotone relation, i.e. all pairs x ě y are already in

MpRq.

We are left to show that M is separability-preserving. Consider a preference relation R

satisfying R P RZM for some countable set Z Ď X. We claim that MpRq is ZYQ-separable,

so that QM “ Q. To see this, note that px, yq P P pMpRqq implies that there is a sequence

S “ s1, . . . , sn, such that s1 “ x, sn “ y and for any j “ 1, . . . , n´ 1 either psj , sj`1q P R,

or sj ą sj`1, with at least one k P t1, . . . , n´ 1u such that either (1) psk, sk`1q P P pRq, or

(2) sk ą sk`1. If psk, sk`1q P P pRq, then there is z P Z, such that tpx, zq, pz, yqu Ď MpRq.

If sk ą sk`1 there is z P Q (since Q is dense with respect to ě) such that sk ě z ě sk`1,

i.e. tpx, zq, pz, yqu ĎMpRq.
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We make the (relatively mild) assumption that budgets are comprehensive; that is

for each i P t1, . . . , nu, x P Bi and y ă x imply y P Bi.

We have:

Proposition 1.2. A consumption experiment with comprehensive budgets can be rational-

ized by a strictly increasing utility function if and only if (1) RE ľ Ri for i P t1, . . . , nu and

(2) RE is M -consistent.

Proof. We prove sufficiency of conditions (1) and (2); necessity of each of the two conditions

follows along the lines of the previous proposition.

From condition (2) and Lemma 1.2, we have that MpREq extends RE . From condition

1, then, MpREq extends Ri for i P t1, . . . , nu. Since pxi, yq P P pRiq for all y P Biztxiu, we

must have pxi, yq P P pMpREqq for all y P Biztxiu. But from the definition of M , y ą xi

implies py, xiq P MpREq. It follows that px, yq P Ri implies that it is not the case that

y ą x, and hence px, yq P RE implies that it is not the case that x ă y.

We claim that MpREq is monotone; that is px, yq P P pMpREqq for all x ą y. To see

this, from the definition of M , x ą y implies px, yq P MpREq. So we only need to show

x ă y implies px, yq R MpREq, or equivalently, px, yq P MpREq implies that it is not the

case that x ă y. That is, it remains to be shown that if there there is a sequence s1, . . . , sn

such that s1 “ x and sn “ y, and for any j “ 1, . . . , n´ 1 either (i) psj , sj`1q P RE , or (ii)

sj ą sj`1, then it cannot be the case that x ă y.

Consider any such sequence as described in the previous paragraph. Trivially, if every

consecutive pair in the sequence is of type (ii) we get x ą y, so assume there is some

consecutive pair of type (i) in the sequence, and let psk, sk`1q be the last step of type (i).

From the definition of E, this implies that sk is equal to xi for some i P t1, . . . , nu. If

k ` 1 “ n, we get immediately psk, yq P Ri. If k ` 1 ă n, using the fact that psk, sk`1q

is the last step of type (i) we get y ă sk`1, hence from comprehensiveness of budget sets

y P Bi. Since y ă sk`1 P Bi, we know y ‰ xi and then psk, yq P Ri. In either case, then,

from condition (1), psk, yq P P pREq. But if y ą x, we can show py, sjq P MpREq using the
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sequence y, x, s1, . . . , sj , which violates condition (2).

Note that MpREq is (trivially) M -consistent, and it is separable with respect to the

countable set tx1, . . . , xτu YQ. Since, from Lemma 1.8, M is a rational closure, it follows

from Theorem 1 that MpREq has a complete extension R˚ “MpR˚q that can be represented

by a utility function. Since MpREq is monotone and R˚ is an extension of MpREq, it follows

thatR˚ is monotone. This in turn implies that any utility function representingR˚ is strictly

increasing.

Since R˚ is an extension of MpREq, it follows from conditions (1) and (2) and Lemma

1.2 that it is an extension of Ri for i P t1, . . . , nu as well.

Note that consistency with the monotone closure implies that for every budget Bi there

is no point above the chosen alternative xi; we do not need budgets to be comprehensive to

establish this. This implies that directly observed preferences do not contradict monotonic-

ity. Comprehensive budgets help us in proving that consistency with the monotone closure

implies that preferences built using the closure do not contradict monotonicity either.

1.5 Generalized Revealed Preference Revisited

Varian (1982) introduces an approach to revealed preference in which observed choices are

revealed to be strictly preferred to alternatives that are in the budget set and that are

cheaper than other alternatives in the budget set, and observed choices are revealed to be

weakly preferred to alternatives that are in the budget set but are not cheaper than other

alternatives. Intuitively, observed choices are possibly indifferent to other alternatives in

the budget set.

To formalize this approach in our environment, we assume as in the previous section

that X is endowed with a transitive and reflexive relation ě, with strict part denoted by

ą, and suppose there is a countable set Q that is dense in X with respect to ě; that is, for

all x, y P X such that x ą y there is Z P Q such that x ą z ą y.

Given a consumption experiment E “ pxi, Biq
n
i“1, for each i “ 1, . . . , I, let Ri and RE be
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defined as in the previous section, and let R̃i “ tpxi, yq : y P Biztxiu and y ă x for some x P

Biu and let R̃E “
Ť

i R̃i.

We say that an experiment E “ pxi, Biq
n
i“1 can be rationalized with possibly in-

different choices if there is a monotone preference relation that is a complete extension

of every element in the set tR̃iu and of T pREq and that can be represented by a utility

function.

We have:

Proposition 1.3. A consumption experiment with comprehensive budgets can be rational-

ized with possibly indifferent choices by a strictly increasing utility function if and only if

(1’) T pREq ľ R̃i for i P t1, . . . , nu and (2’) T pREq is M -consistent.

B1

x1

B2

B1

x2

x1

B3

B2

B1

x2

x1

x3

Violation of (2’) Direct violation of (1’) Indirect violation of (1’)

Figure 1.6: Relation between (1’) and (2’)

The proof is analogous to the proof of Proposition 1.2.

Adapting the formulation by Varian (1982) to our setting, we can define

Definition 1.10. The consumption experiment E “ pxi, Biq
n
i“1 satisfies the Generalized

Axiom of Revealed Preference (GARP) if pxi, xjq P T pREq implies that there is no y such

that y P Bj and y ą xi.
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With comprehensive budgets, GARP can be restated as pxi, xjq P T pREq ñ pxj , xiq R

R̃j . We claim that Conditions (1’) and (2’) in Theorem 1.3 are jointly equivalent to GARP

plus the assumption that observed choices are maximal with each budget set, i.e. for any

i P t1, . . . , nu there is no y P Bi, such that y ą xi. (See Figure 1.6.) Maximality of observed

choices is assumed in the original paper by Varian (1982).

Lemma 1.9. The consumption experiment E “ pxi, Biq
n
i“1 with comprehensive budgets

satisfies GARP and maximality of observed choices if and only if (1’) T pREq ľ R̃i for

i P t1, . . . , nu and (2’) T pREq is M -consistent.

Proof. To prove sufficiency, assume first that there is a violation of GARP, that is there

is pxi, xjq P T pREq and pxj , xiq P R̃j . Therefore, pxj , xiq P P pR̃jq and pxi, xjq P T pREq X

P´1pR̃jq. Hence, R̃j ł T pREq, i.e. a violation of (1’). Assume instead there is a violation

of maximality of observed choices, i.e. there is y ą xi and y P Bi. Then py, xiq PMpT pREqq

and pxi, yq P P pT pREqq. Hence T pREq is not M -consistent, i.e. there is a violation of (2’).

To prove necessity of condition (1’), suppose it is violated. We have then that there is

pxi, xjq P R̃i and pxj , xiq P T pREq. And pxi, xjq P R̃i implies that there is y ą xj such that

y P Bi; which violates GARP.

To prove necessity of condition (2’), suppose it is violated. Then there is pxi, yq P

P pT pREqq and py, xiq P MpT pREqq. Since T pREq is transitive and ą is transitive as well

we can claim that y ą xi. At the same time pxi, yq P T pREq implies that there is j, such

that y P Bj and xj P Bi, hence pxi, xjq P T pREq. Recall that budgets are comprehensive,

therefore, xi P Bj , because y ą xi. Then pxj , xiq P R̃j ; which violates GARP.

As a corollary of Proposition 1.3 and Lemma 1.9, an extended version of GARP (in-

cluding maximality of observed choices) is necessary and sufficient for rationalization with

possibly indifferent choices by a strictly increasing utility function.

Table 1.1 above summarizes the relation between revealed preferences axioms and the

conditions on extensions and closures we use to obtain representations. We think of row
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Table 1.1: A cheat sheet of consistency conditions and revealed preference axioms

H T -consistency M -consistency

tRi ĺ REu WARP SARP ˚

tR̃i ĺ T pREqu ˚˚ ˚˚˚ GARP

conditions as criteria regarding the internal consistency of the observed choices, i.e. the

consistency of each of the observed choices with the complete dataset. By the same token,

we think of column conditions as criteria regarding the external consistency of the dataset,

i.e. its consistency with theories about how a complete preference ordering should look

like. External consistency conditions grow more demanding as we move from left to right.

Internal consistency conditions cannot be similarly ranked; while P pR̃iq Ď P pR̃iq, P pREq is

not necessarily a subset of P pT pREqq. (See Figure 1.7.)

B1

B2

x2

x1

B1

B2

x1

x2

B1

B2B3

x1

x2

x3

Violation of (1) but not of (1’) Violation of (1’) and (1) Violation of (1’) but not of (1)

Figure 1.7: Relation between internal consistency conditions

The unnamed cells in Table 1 are of some interest. p˚q gives us necessary and sufficient
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conditions for representation by an increasing utility function in Proposition 1.2, and thus

is just a version of SARP. p˚˚q is the Weak version of GARP, requiring that observations

do not directly contradict rationalization by monotone preferences allowing for indifference

of observed choices. p˚˚˚q gives us necessary and sufficient conditions for representation by

a utility function assuming all observations come from a region in the consumption space

where preferences are monotone.

RE

E1 E2

E3

Figure 1.8: Consistency conditions. Ei is the set of F -consistent Z-separable extensions
of Ri. Internal consistency requires the aggregated preference relation (RE) to be a F -
consistent Z-separable extension of Ri for all i.

Our approach allows to restate the revealed preference axioms in a very abstract and

general form. Neither internal nor external consistency conditions require unique observed

choices from budget sets. The internal consistency condition is built on the idea that there

are some elementary observed relations (Ri and R̃i in the examples above), and that the

aggregated revealed preference relation (RE and T pREq in the examples above) must be

an extension of elementary ones. The external consistency condition, in turn, is built on

the idea that the aggregated observed preference relation can be extended to a complete

preference relation satisfying properties like transitivity and monotonicity. This framework
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allows is to consider, from the perspective of revealed preferences, observed behavior in

environments beyond the classical one of the a sequence of single alternatives chosen from

budgets sets. Observed behavior may be set-valued, for instance, in situations in which

there are many opportunities to choose from the same budget (see Figure 1.9). And choice

sets may be very different from linear budget sets (e.g. multiple price lists in experimental

economics).

B1

B2

CpB1q

CpB2q

B1

B2CpB1q

CpB2q

Internally consistent demand Internally inconsistent demand

Figure 1.9: Internal consistency of set-valued demands

1.6 Conclusion

In this chapter we show that there is a complete extension of an incomplete preference

relation that is fixed point of a mapping over preferences (the rational closure) and can

be represented by a utility function if and only if the original preference relation satisfies a

congruence condition related to the specific mapping. Intuitively, a rational closure is a rule

that can be used to extend an incomplete preference relation. The proof of the theorem

relies on the alternated application of the rational closure and the addition of indifference

pairs to construct the extension.
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An advantage of using an explicit rule to construct the complete extension of the original

preference relation is that further desiderata on the utility function can be induced by the

rule. We illustrate this point by revisiting the classical revealed preference problem of the

existence of a rationalization of a sequence of observed choices by means of strictly increasing

utility functions. We show, in particular, that classical revealed preference axioms can be

recast in terms of extensions and closures in a very abstract way, encompassing situations

that do not reduce to a sequence of single choices from linear budget sets.

Rational closures as defined in this chapter construct preferences over each ordered pair

of alternatives not in the original preference relation employing only a finite number of ob-

servations regarding other pairs of alternatives. This “algebraic” requirement is necessary

for the usage of Zorn’s lemma in the proof of existence of the complete extension. However,

this requirement is not compatible with a rule that induces continuity in order to construct

the complete extension. Thus, constructing a continuous extension of the original prefer-

ence relation seems an elusive goal in the general case,7 i.e. without assumptions such as

Euclidean consumption spaces and further constraints over budget sets.

7That is, for a fixed topology; continuity of the complete extension holds by assumption for natural
topologies.
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Chapter 2: A Revealed Preference Test of Quasi-Linear

Preferences

2.1 Introduction

We provide criteria for a set of observed choices to be generated by a quasi-linear preference

relation. When these conditions are satisfied there exists a complete, transitive, monotone

and quasi-linear preference relation consistent with observed behavior. In the special case

of linear budget sets, our condition implies the existence of a concave quasi-linear and

continuous utility function that rationalizes the data.

It is difficult to overstate the importance of the assumption of quasilinear preferences

in both the theoretical and empirical economics. It plays a crucial role in mechanism

design, the theory of the household as well as applied welfare analysis. For instance, it is a

necessary assumption for the Revenue Equivalence theorem (Krishna, 2009; Myerson, 1981),

the existence of truth-revealing dominant strategy mechanism for public goods (Green and

Laffont, 1977) and the Rotten Kids theorem (Becker, 1974; Bergstrom and Cornes, 1983). It

is also an often invoked assumption in applied welfare analysis (Domencich and McFadden,

1975; Allcott and Taubinsky, 2015). This chapter is concerned with the testable implications

of this assumption.

Above-mentioned applications differ greatly in the nature of the choice sets faced by

agents and are many times silent about whether preferences are convex or not. A main

advantage of our approach is that it does not rely in either the convexity of preferences or

the linearity of budget sets. Our test is built on the following observation. If preferences are

quasi-linear, say in good x, it must be true that px, yq ľ px1, y1q implies px`α, yq ľ px1`α, y1q

for all α. This property can be directly tested and requires making no assumptions on the

shape (or existence) of the utility function or ancillary assumptions on the choice set. The
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added generality of our test makes it possible to device tests of quasi-linearity of preferences

in strategic environments.

Brown and Calsamiglia (2007) provide a test for the existence of a quasi-linear, concave

and monotone utility function that rationalizes choices over linear budget sets.1 Relaxing

these two assumptions implies that while we can guarantee the existence of a quasi-linear

preference relation consistent with observed data, we cannot guarantee the existence of a

quasi-linear utility function representing it we talk about preference relation.2 We show,

however, that our test is equivalent to Brown and Calsamiglia (2007) if choice sets are linear.

This result is similar to Afriat (1967) who shows that if budgets are linear, convexity of

preferences has no empirical content.3

The second contribution of the chapter is to provide an empirical test of the quasi-

linearity of preferences using both lab and field data. In our experiment, we mimic different

consumption groups by offering gift cards at discounted prices. We test if subjects prefer-

ences over 5 alternative goods in 30 different budgets can be rationalized by a quasi-linear

preference ordering. We find that while support for the Generalized Axiom of Revealed

Preferences is strong, the support for quasi-linearity of preferences is weak.4 We conduct a

second test of quasi-linearity of preferences using the Spanish Continuous Family Expendi-

ture Survey (see Beatty and Crawford (2011)).5 In this dataset, we find stronger support

of the assumption of quasi-linearity of preferences against the alternative of random choice.

Due to the low variability in prices and income in this dataset,however, we conclude that

1More recently, Cherchye et al. (2015b) proposed a test of generalized quasi-linear preferences (Bergstrom

and Cornes, 1983). Their test is a generalization of Brown and Calsamiglia (2007) and also requires linear
budget sets.

2We note that previous tests of quasi-linear preferences can be extended to more general budget sets if
the assumption of concavity is maintained. In this case, the existence of a concave utility representation of
preferences will be equivalent to the existence of a set of prices that contain observed choice sets and for
which observed choices satisfy cyclical monotonicity.

3Convexity is also a crucial assumption in the test of separability of preferences, homotheticity (Varian,

1983), expected utility theory (Varian, 1983), preferences with habit formation (Crawford, 2010), collective

model of household consumption (Cherchye et al., 2007) and subjective expected utility (Echenique and

Saito, 2015).
4The test was designed to test quasi-linearity of preferences in money. We find that quasi-linearity of

preferences fail even if we relax this requirement.
5Crawford (2010) aggregates the data into 14 categorie. We use a further aggregation into 5 categories

as in Beatty and Crawford (2011).

30



further tests are needed to establish the empirical validity of the assumption of quasi-linear

preferences.

Varian (1982) shows how to derive non-parametric bounds on welfare measures based

solely on the satisfaction of the Generalized Axiom of Revealed Preferences. These bounds

can be quite wide and uninformative (Hausman and Newey, 1995). We show that these

bounds can be significantly narrowed under the assumption of quasi-linear preferences. This

suggests that aggregate welfare measures can be derived without making assumptions about

the unobserved heterogeneity of preferences.

2.2 Theoretical Framework

Let us start by defining the quasi-linearity of preferences. Preferences are said to be quasi-

linear in the i-th component if x being better than y implies that a shift of x along the i-th

axis (z “ x ` αei) is better then the same shift of y along the same axis (w “ y ` αei).

Wherer, x, y, w and z are consumption bundles and ei is the i-th unit vector, i.e. ei “

p0, . . . , 0, 1, 0, . . . , 0q with 1 at the i-th place.

`αei

`αei

x

y w “ y ` αei

z “ x` αei

ĺ ĺ

Figure 2.1: Quasilinear Preferences

Figure 2.1 shows this shift graphically. The dashed lines arrows represent shifts. If they

are of the same length, then preferences are quasi-linear if x is better than y implies that
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z “ x` αei is better than w “ y ` αei.

2.2.1 Idea of the Proof

Let us show the intuition for the necessary condition on quasi-linearity of preferences and

later we formally prove that it is sufficient as well. Figure 2.2 shows preferences that are

inconsistent with quasi-linearity. It is enough to have x strictly better than y and w “ y`αei

weakly better than z “ x` αei for some α P R.

`αei

`αei

x

y w “ y ` αei

z “ x` αei

ă
ĺ

Figure 2.2: Contradiction of Quasi-linearity

Thus, if the revealed preference relation contains two pairs as in Figure 2.2, then the

preference relation contains a contradiction of quasi-linearity. Clearly it is a necessary

condition for quasi-linearity of preferences.

We intend to apply our test to a revealed preference relation derived from choice data.

Hence, let us translate the case of violation of quasi-linearity to the context of revealed

preferences. Let pxt, Btqt“1,...,T be the finite consumption experiments, whereBt are budgets

and xt are chosen points.

Now we will define a revealed preference relation. In Figure 2.3, bundle xt is better than

y if y lies in budget Bt (including the boundary of the budget) and xt is strictly better than

z if z lies strictly inside (in the interior) of budget Bt. Note that the only bundles that are

revealed better than others are the chosen bundles (xt). That is, we do not know if y is
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Bt

xt

yz

Figure 2.3: Revealed Preference Relation

better than z. Hence, to get a contradiction of quasi-linearity we need to consider at least

two chosen points.

Figure 2.4(a) shows that bundle xr is strictly better than the chosen bundle xt. Let

us explicitly show that this example contains the violation of quasi-linearity. Figure 2.4(b)

shows that w is a shift6 of the point xr along the horizontal axis by the same amount as

z is a shift of the point xt. And from the definition of the revealed preference relation

we know that xt is strictly better than w, and xr is strictly better than z. Figure 2.4(c)

contains the case similar to one on Figure 2.2, thus the revealed preference relation violates

quasi-linearity.

Figure 2.5(a) shows the condition necessary to eliminate the possibility of violations of

quasi-linearity shown at the Figure 2.4(c). If the line from xt (the strictly worse bundle) to

z, [such that is still in the budget Br (still less preferred than xr)] is shorter than a line from

xr to the point w, [that lies in the budget Br (is worse than xt)], then there is a violation

6Note that we are not restricting the space to the positive orthant. Hence, the budget line (more general

hyperplane) simply separates the space into two subspaces, and interior of budget is the subspace that lies
“below” the budget line.
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(a) (b) (c)

Figure 2.4: Constructing Test for Quasi-linearity

of quasi-linearity.

The blue line is the maximum distance (along the horizontal axis) from xt to such point

z that is still worse than xt. The green line is the minimum distance from xr to the y that

is worse than xt. If blue line is longer than green one then there is z1 that is strictly worse

than xt and y1 that is strictly worse than xr. And these points can be equal shifts of xr

and xt respectively. It is exactly the case shown in Figures 2.2 and 2.4(c). Hence, the test

is simply checking that for any xt that is strictly worse than xr blue line must be shorter

than the green one.

Since we would like to construct a preference relation that is transitive and quasi-linear,

the test should take into account transitivity as well. We do this in the similar fashion as

the transformation of Weak Axiom of Revealed Preferences (WARP) into General Axiom

of Revealed Preference (GARP). Hence, consider a chain of elements such that each is less

preferred than a previous one and is achieved by shifting some chosen point. Sum of shifts

of elements in the chain should be less than the shift from the last to the first one. Let

us illustrate this with a simple example. Suppose we have three budgets and three chosen
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Figure 2.5: Test for Quasi-Linearity

points xt, xr and xs as illustrated in Figure 2.5(b). Then, xs is better than both xr and xt

and xr is better than xt. Figure 2.5(b) illustrates how the test works, it is passed if sum of

lengths of green and purple lines is greater than length of the blue one.

Let us show that the test shown on the Figure 2.5(a) is not capable of detecting violation

of the joint hypothesis of quasi-linearity and transitivity, and we have to use use the case

represented on the Figure 2.5(b) using the simple example. Figure 2.6(a) shows an example

of a relation that passes the test of quasi-linearity (Figure 2.5(a)) but fails the joint test

of quasi-linearity and transitivity (Figure 2.5(b)). Therefore, this set of choices cannot be

generated by complete, transitive and quasi-linear preference relation. Distance from xs

to budget set Bt is less than distance from xt to Bs, hence, there is no direct violation of

quasi-linearity. Bundle xt is preferred to u, so by quasi-linearity w is better than xr and by

transitivity w is better than v. Hence, applying quasi-linearity again we get that z is better

than xs, and at the same time xs is strictly better than z, since z lies strictly inside of the

budget set Bs. That is a violation of joint hypothesis of quasi-linearity and transitivity.
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Figure 2.6: Violation of Quasi-linearity under Assumption of Transitivity

2.2.2 Test

Consider a set of alternatives X Ď RN . A set R Ď X ˆ X is said to be a preference

relation. We denote the set of all preference relations on X by R. Denote the reverse

preference relation by R´1 “ tpx, yq|py, xq P Ru, the symmetric part of R by IpRq “

R X R´1 and the asymmetric part by P pRq “ RzIpRq. Denote the non-comparable part

by NpRq “ X ˆXzpRYR´1q. A relation R1 is said to be an extension of R, denoted by

R ĺ R1 if R Ď R1 and P pRq Ď P pR1q.

Definition 2.1. Preference relation is said to be:

1. Complete if NpRq “ H;

2. Transitive if for any x, y, z P X: px, yq P R and py, zq P R implies px, zq P R;

3. Monotone if for any x " y px, yq P R;

4. Quasi-linear in the i-th component if for any px, yq P R and any α P R px `

αei, y ` αeiq P R.
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Let pxt, Btqt“1...T be the finite consumption experiment where xt are chosen points

and Bt are budgets. We assume all budgets to be compact and monotone.7 Denote by

Rv the revealed preference relation,8 that is pxt, yq P Rv if y P Bt, pxt, xtq P IpRvq and

px, yq P P pRvq for any y P Btztxtu. Denote by T pRvq the transitive closure of the relation,

i.e. px, yq P T pRvq if there is a sequence S “ s1, s2, ..., sn such that for any j “ 1...n ´ 1

psj , sj`1q P Rv. Note that px, yq P P pT pRvqq if px, yq P T pRvq and there is k “ 1...n ´ 1

such that psk, sk ` 1q P Pv. Denote by C “ tx1, x2, ..., xT u the set of all chosen points in

the finite consumption experiment pxt;Btqt“1..T . A revealed preference relation is said to

be acyclic if it satisfies SARP.9

Definition 2.2. A revealed preference relation satisfies QLSARP with respect to the i-

th component if for any sequence of distinct elements xk1 , ..., xkn P C and pα, β3, . . . , βnq P

RˆR``ˆ. . .ˆR``, such that pxk1 , xk2´αeiq P P pT pRvqq and pxkj , xkj`1´βj`1eiq P T pRvq

for j “ 2, . . . , n´ 1, then pxkn , xk1 ` pα`
řn
j“3 βjqeiq R T pRvq.

QLSARP is simply the formal statement of the test from Figure 2.5. Note that α does

not need to be positive, i.e. pxk1 , xk2q may be an element of Rv, while none of further pairs

pxkj , xkj`1q can be in the revealed preference relation. Given a sequence of chosen points

xk1 , . . . , xkn , pα, β3, . . . , βnq are shifts (to the left) of the chosen points generating a new

sequence, such that each point in this new sequence is preferred to the next one. QLSARP

fails if and only if there is a sequence of chosen points and vector of such shifts, such that

the point obtained by shifting the initial chosen point (to the right) by pα`
řn
j“3 βjq is less

preferred than the last point of the sequence of chosen points. Note that if the sequence

consists of xk1 , xk2 only, then we need to check that if pxk1 , xk2 ´ αeiq P P pT pRvqq, then

pxk2 , xk1 ` αeiq R T pRvq, which exactly coincides with Figure 2.5(a).

7x P Bt, then any y ď x is also in Bt. And since we work on RN it will also include elements with
negative coordinates.

8All the results below can be achieved for weak rationalization as well, but the conditions will be inelegant.
9The consumption experiment E “ pxi, Biq

n
i“1 satisfies the Strong Axiom of Revealed Preference (SARP)

if for every integer m ď n and every ti1, . . . , imu Ď t1, . . . , nu, xij`1 P Bij for j “ 1, . . . ,m ´ 1 implies

xi1 “ xim or xi1 R Bim .
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Theorem 2.1. An acyclic revealed preference relation Rv generated by a finite consumption

experiment with monotone and compact budgets has an extension that is complete, transitive,

monotone and quasilinear in the i-th component if and only if Rv satisfies QLSARP with

respect to the i-th component.

Proof of Theorem 2.1 is in Appendix A and the proof of the similar result for the case of

weak rationalization is presented in Appendix B. The pseudo-code algorithmic implemen-

tation of QLSARP is presented in Appendix C.

Note that Theorem 2.1 does not guarantee the existence of a utility function. If we

assume that the set of alternatives is a subset of QN , then existence of utility would follow

immediately since the space is countable and any complete and transitive relation over no

more than countable set of alternatives can be represented by a utility function.10 However,

the utility function is not necessarily continuous.

2.3 Testing Quasi-Linearity

We test quasi-linearity in two contexts: quasi-linearity in goods11 and quasi-linearity in

money. By quasi-linearity in goods we mean the quasi-linearity in at least one of goods. It

is usually assumed that if consumer has to make choices among large variety of goods, then

his preferences are quasi-linear at least in one of them. Quasi-linearity in money is usually

assumed, since money is a natural numeraire in which one can express the value of every

good.

In order to test the assumption we have to use some benchmark. Our benchmark is ra-

tionality of preferences that is equivalent to the revealed preference relation to be consistent

with GARP (see Varian (1982)). It is important to consider that people make mistakes.

10The proof for existence of utility representation of a preference relation over no more than countable set
of alternatives can be found in Fishburn (1988). Moreover, the condition on the set of alternatives can be

relaxed to being subset of RN´1
ˆQ, using the result from Freer and Martinelli (2016).

11We relax the assumption and allow the goods to be different for different subjects. The detailed discussion
on the assumptions of common versus individual numeraires is in Appendix.
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Some people may therefore not pass QLSARP exactly even though their underlying prefer-

ences are quasi-linear. For the measure of distance from rationality we use the Critical Cost

Efficiency Index (CCEI) introduced by Afriat (1973). Since X is a linear space and Bt are

simply subsets of linear space, we can introduce Btpeq “ tx P X : xe P B
tu. Then, Rvpeq is

a revealed preference relation generated by the finite consumption experiment pxt, Btpeqq.

The CCEI for QLSARP can be defined as the maximum e P p0, 1s such that Rvpeq satisfies

QLSARP.12

Changing e changes the probability that a set of random choices will pass QLSARP.

To control this we use the predictive success index introduced by Selten (1991). The

predictive success index is defined as the difference between share of people that satisfies

axiom at the given e and the probability that uniform random choices will satisfy the axiom

at the same e. This index ranges between ´1 and 1, with ´1 meaning no subject passes

even though random choice would with probability one and 1 meaning every subjects passes

even though random choice never would. To estimate the probability that uniform random

choices will satisfy the axiom we use the Monte Carlo method with 1000 simulated random

agents for each set of prices.

2.3.1 Quasi-Linearity in Goods

First, we test quasi-linearity of preferences in goods that is existence of the numeraire good.

For this purpose we use data from Mattei (2000). It is experiment with 8 real consumption

goods.13 Each subject faced 20 different budgets and one (uniformly randomly chosen)

consumer choice was implemented. The experiment was conducted with 20 economics and

100 business students from the University of Lausanne.14 The payment was in goods and

the average monetary equivalent of payment is $30.5.

Figure 2.7 shows the distribution of CCEIs for GARP and QLSARP. Each consumer

12The CCEI can be defined similarly for any other axiom, e.g. GARP.
13The goods were: milk chocolate, biscuits, orange juice, iced tea, writing pads, plastic folders, diskettes,

post it
14The paper also contains similar non-incentivized expenditure survey for 320 real consumers. We do not

include the results from non-incentivized treatment.
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Figure 2.7: CCEI distributions for GARP and QLSARP

faced 8 goods, so, there will be 8 different CCEIs depending on the good in which we assume

preference to be quasi-linear in. The CCEI for QLSARP is maximum of these eight different

CCEIs for each consumer. The CCEI levels for QLSARP are lower than ones for GARP.

This is predictable, since the QLSARP is a stricter test. Let us then consider the Predictive

Success Index for these two axioms.

Figure 2.8 shows that quasi-linearity of preferences can not be rejected immediately.

Figure 2.8a shows the predictive success index for QLSARP and GARP separately. It shows

that at the low level of decision making error (high level of CCEI « .95) GARP outperforms

QLSARP (predictive success index for GARP is higher than one for QLSARP). Hence the

hypothesis of rational preferences is more favorable rather than a hypothesis of quasi-linear

preferences. While at the higher level of decision making error (lower level of CCEI « .85)

QLSARP outperforms GARP.

Figure 2.8b shows the predictive success index of QLSARP conditioning on random
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Figure 2.8: Predictive Success Index

choices that pass GARP, that is predictive success index equals 1 if none of the random

choices that passed GARP pass QLSARP, while all real observations pass QLSARP; and

predictive success index equals ´1 if all random choices pass that pass GARP pass QLSARP

as well, while none of real observations pass QLSARP. Note that difference between figures

is small, since the original test for GARP is weak (see Figure 2.7). The idea of conditioning

QLSARP Predictive Success Index on GARP, is that assume there is a person (random set of

choices) that looks consistent with GARP (has rational preferences), what is the probability

that this person will look consistent with QLSARP (has quasi-linear preferences) as well.

Figure 2.8b shows that conditioning of QLSARP on random choices that pass GARP does

not change the picture a lot. QLSARP still performs good enough at the lower level at

CCEI (« .9).

Figure 2.8 shows the trade-off between assuming rational and quasi-linear preferences.
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Agents are consistent with the assumption of rational preferences under the lower deci-

sion making error (higher CCEI). Assuming only rationality of preferences we gather very

vague predictions of future behavior. While assuming quasi-linear preferences allows us to

tighten these predictions significantly. However, assuming quasi-linear preferences requires

assuming that decision-making error is higher.

2.3.2 Quasi-Linearity in Money

We now test quasi-linearity in money which is not possible to do using the data from Mattei

(2000). To test quasi-linearity in money, we conduct an experiment15 in which each subject

had to allocate an endowment among five goods: Cash, Fandango Gift Card, Barnes and

Noble gift card, Gap gift card and Mason Money. Each good stands for the category of

goods and services on which subjects are expected to spend money. Fandango is movie

theater ticket distributor and stands for entertainment spending. Barnes and Noble is

book distributor and stands for necessities since textbooks are a required expenditure for

students. Gap is clothing store and stands for durable goods. Mason Money is George

Mason internal monetary system that can be used at any on-campus restaurant, therefore,

it stands for food spending. The commodities are chosen as to minimize the transaction

costs of consumption. The unit of measurement of each commodity is $1. Subjects are

asked to allocated a 100 tokens between the above described goods facing prices that are

denominated in tokens per dollar. Each subject faces 30 decision problems, one of which

is chosen at random to be implemented. The experiment was conducted with 64 George

Mason undergraduates.16

Figure 2.9 shows distribution of GARP and QLSARP (in money) CCEIs for the ex-

perimental data. Figure 2.9a shows distribution of GARP CCEIs for randomly simulated

choices17 and actual choices. Figure 2.9a shows that distribution of CCEIs for real choices

15For extensive description of experimental procedure, instructions and screen-shots see Appendix D.
16The complete explanation of the experimental design and procedures is in the Appendix.
17We firstly select a random order of five goods, then generate a share of income spent on the first of them

using uniform random distribution. The share of the remaining income is then determined in equal manner
for the second good. The same procedure is repeated for the third, fourth and fifth good.
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Figure 2.9: CCEI distributions for GARP and QLSARP

is shifted to the right in comparison to the distribution of random choices: mean GARP

CCEI for real choices is .81 and for random choices is .75.18 Figure 2.9b shows distribution

of QLSARP CCEIs for randomly simulated choices and actual choices. The distribution of

the QLSARP CCEIs for actual choices is shifted to the right and more dispersed than the

distribution of QLSARP CCEIs for random choices. The mean QLSARP CCEI is .69 for

actual choices and .49 for random choices.19

These results are similar if we compare actual choices to the choices of a “synthetic”

subject. A “synthetic” subject is a collection of 30 budgets and associated decisions taken

at random from all the menus produced by the experiment.20

18Distributions are different according to Kolmogorov-Smirnov test with p ă .001. The difference in
means is significant with p ă .001 according to t-test. Median GARP CCEI for real choices is .85 and .76
for random choices, the difference is significant according to Wilcoxon rank sum test with p ă .001.

19Distributions are different according to Kolmogorov-Smirnov test with p ă .001. The difference in means
is significant with p ă .001 according to t-test. Median QLSARP CCEI for real choices is .73 and .49 for
random choices, the difference is significant according to Wilcoxon rank sum test with p ă .001.

20Results are available from the authors upon request.
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Figure 2.10: Predictive Success Index

Figure 2.10a shows the predictive success indexes for GARP and QLSARP. Figure 2.10b

shows the predictive success index for QLSARP conditioning on random choices passing

GARP. We observe that the predictive success index for QLSARP peaks for CCEIs levels

between .6´ .7. This implies that to accept the hypothesis that subjects behave as if they

had quasi-linear preference we would need to accept that they are willing to waste about

30 to 40% of their income. This is equivalent to losing an average of $16 out the average

experimental payments of $40. Calculating the predictive success on random choices that

pass GARP reduces the values of predictive success index. At the same time the predictive

success index peaks at a CCEI level of .85. Our experimental evidence suggests that quasi-

linearity of preferences in money is a strong assumption that deserves further investigation.
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2.3.3 Quasi-Linearity in Panel Data

We use data from the Spanish Continuous Family Expenditure Survey (the Encuesta Con-

tinua de Presupuestos Familiares - ECPF). ECPF is a quarterly survey of households that

are randomly rotated out at a rate of 12.5% per quarter. In this panel, household can be

followed for up to eight consecutive periods and the years we use run from 1985 to 1997. For

comparability with previous studies, we use the subsample used by Beatty and Crawford

(2011) which comprises only two-adult households with a single income earner in the non-

agricultural sector. The data set consists of 21,866 observations on 3,134 households which

gives an average of seven consecutive periods per household. Expenditures of each house-

holds are aggregated into five groups: ”Food, Alcohol and Tobacco”,”Energy and Services

at Home”,”Non Durables”,”Travel” and ”Personal Services”. The price data are national

consumer price indexes for the corresponding expenditure categories.

Note that the longitudinal nature of the data requires assuming that preferences are

stable over time. Also, the data set imputes the same price index for all the household for

a given quarter. Price variation across households is then obtained through their rotation

in the sample.

A common problem in testing rationality with household expenditure data is the low

power of the test due to limited price variation. The power of the test can be increasing

by imposing additional assumptions like quasi-linearity of preferences. For instance, Heufer

et al. (2014) shows that the hypothesis of homothetic preferences is well-powered in the

ECPF panel. The same is true for the test of quasi-linear preferences.

We first determine the power of our test of quasi-linear preferences by obtaining CCEIs

for agents choosing at random. We generate random choices over the budgets using the

same procedure as in our experiment (see previous section).

Figure 2.11 shows the distributions of CCEIs for random and actual decisions, since there

are five commodities and quasi-linearity of preferences could hold for each one of them, we

report the distribution of maximum and minimum CCEI. For each agent we compute the

CCEI for each commodity and take the maximum and minimum of them. These are the
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Figure 2.11: CCEI Distributions for QLSARP

numbers used in Figure 2.11. This amounts to assuming that different agents might have

quasi-linear preferences in different goods. Figure 2.11(a) shows the distributions of the

maximum CCEIs for observed and random decisions. The mean of the maximum CCEIs

for random decisions is .995 (the median is .997) and the mean of the maximum CCEIs

for observed choices is .997 (the median is .997). Figure 2.11(b) shows the distributions of

the minimum CCEIs for observed and random choices. The mean of the minimum CCEIs

for random decisions is .979 (the median is .981) and the mean of the minimum CCEIs for

random choices is .988 (the median is .989). If we consider CCEIs by commodity groups

for random subjects, the mean is .988 (the median is .991) and for observed decisions the

mean CCEI by the commodity groups is .992 (the median is .995).

Figure 2.12 shows the predictive success indexes. Figure 2.12(a) shows the minimum and

maximum predictive success indexes conditioned on random choices. Note that due to the

very small difference between the CCEI for random and real subjects the predictive success

46



0 0.2 0.4 0.6 0.8 1

´2

0

2

¨10´2

CCEI

P
re

d
ic

ti
ve

S
u

cc
es

s
In

d
ex

Maximum
Minimum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
´6

´4

´2

0

2

4

6
¨10´3

CCEI

P
re

d
ic

ti
ve

S
u

cc
es

s
In

d
ex

Food
Home Services
Nondurables

Travel
Personal Services

(a) Bound for Predictive Succes Index (b) Predictive Sucess Indexes for Commodity Groups

Figure 2.12: Predictive Success Index

is zero for the most levels of the CCEI. A difference appears for a CCEI level close to one.

At this level, observed decisions are consistent with QLSARP while random decisions are

not. The predictive success index peaks at the CCEI level of 1 and provide weak positive

evidence for quasi-linearity (the index is .1). Figure 2.12(b) shows the predictive success

index conditioned on random choices by commodity groups. In this case, the predictive

success is close zero at every level of CCEI. The maximum among these predictive success

indexes peaks at .005 at the CCEI level of .95. Not surpringly, the hypothesis of quasi-linear

preferences does no worse once we assume that different people have quasi-linear preferences

in different goods.

Quasi-linearity in money is not testable in the ECPF dataset since no money leftover is

recorded. However, quasi-linearity of preferences are testable if we allow for the existence

of an unobserved commodity Cherchye et al. (2015b). We test for the joint hypothesis of

quasi-linearity and the existence of an unobserved commodity and find that only 0.9% of
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households passed the test.21 This suggests that our original findings are robust.

2.4 Nonparametric Welfare Analysis

Afriat (1977) shows that revealed preference restrictions can be used to estimate the welfare

effect of price changes. This idea was further developed by Varian (1982) to construct

“support sets”, i.e. the sets that include all the potential choices of consumer if the consumer

is rational. We conduct a similar exercise to show how the assumption of quasi-linearity

can help narrow prediction of choices in new budgets.

Figure 2.13 shows the extrapolation of behavior based on GARP alone. The red dots

are the chosen bundles and the dashed areas, denoted by Si, are the sets of possible choices

over the new budgets. Figure 2.13(a) shows all possible choices if preferences are rational

(S0). Any bundle not in S0 violates GARP. Figure 2.13(b) shows all possible choices if

preferences are quasi-linear (S1). Note that all the points in S0zS1 would violate QLSARP,

but not GARP. Figure 2.13(c) shows all possible choices if preferences are rational (S2). In

this case S2 is the entire budget line, since GARP imposes no restriction choices on budgets

that do not intersect with previous ones. Figure 2.13(d) all possible choices if preferences are

quasi-linear (S3). Note that predictions under quasi-linearity remain the same regardless

the new budget intersects with and old one or not.

Figure 2.14 shows that if preferences are quasi-linear even one observed choice can help

narrow the set of possible choices in new choice sets. Figure 2.14(a) present the case of a

change of the price for one of the goods. In this case, amount of good x2 have to be “above”

the amount consumed in the original choice set (S4). Figure 2.14(b) is the case of a change

income holding prices constant. In this case, the set of possible choices is a singleton (S5).
22

Sharper predictions can be obtained if additional choices are observed. Figure 2.14(c) shows

that predictions can be narrowed further in this case. Figure 2.14(c) shows the bounds for

21We cannot calculate how severe deviations from rationality are because income is not observed.
22Note that if we relax the requirements to QLGARP, then the support set in this case would include the

entire new budget set.
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Figure 2.13: Possible Choices: Comparison of Assumptions of Rational Preferences and
Quasi-Linear Preferences
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Figure 2.14: Possible Choices: Constructing a Forecast from a Single Observation

compensated variation for the point in the outer budget after an increase in the price of

good 2. The outer green line represent the budget that attains the original choice at the

new prices. The utility associated with this budget cannot be lower that the utility at

the original prices and therefore represent an upper bound of the compensation necessary

to maintain the original level of utility. To derive the lower bound of the compensating

variation consider the case in which all the points on the original budget set that give at

least as much of good 2 as the observed choice in the new budget are indifferent to the

originally chosen bundle. This certainly does not contradict quasi-linearity. In this case,

the needed compensation is defined by the lower green line.23

The next step is to construct bounds on demand functions and consumer surplus. Figure

2.15 provides a two-dimensional example. Since under quasi-linearity in x1, estimates of

consumer surplus can be approximated by changes in the demand of x2 due to price changes,

we construct bounds for the demand in x2.

Figure 2.15 shows the procedure to bound the demand of x2 according to GARP and

23This derivation is based on Figure 2.14(b), therefore, it would not be correct under the assumption of
QLGARP instead of QLSARP.
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Figure 2.15: Constructing Demand Bounds

QLSARP. Observed choices are represented by red dots the budgets Bt and Br. Hypothet-

ical budgets are represented by blue lines starting at point D. The only difference among

these budgets is the price of x2. Figure 2.15(a) shows bounds on the demand of x2 in the

case of rational preferences. Note that the bounds on demand will have two “jumps”. One

at the intersection of the new budget sets with Bt and one at the intersection of the new

budget sets with Br. Note that these extrapolation is done over a set of non previously

observed choice sets.

Figure 2.15(b) repeats the same exercise under the assumption of quasi-linear prefer-

ences. There are three different cases. The first case corresponds to the budget sets that

intersect the actual choice in Bt. In this case the bound on demand do not depend on

prices. The second case corresponds to the case in which the new budget set is parallel to

Br. This case is similar to Figure 2.14(b) where a point-prediction is possible. The third

case corresponds to the new budget sets for which the choice at Br is not affordable. The

prediction in this case is bounded above by the consumption of x2 in Br and strictly below

this amount when this is not affordable.
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Figure 2.16: Bounded Demands

Figure 2.16 shows the bounds for the demand function constructed using the same

procedure as the one used to construct Figure 2.15. Note that demand is not necessarily

continuous. Two sectors on the bounds on demand deserve attention. Figure 2.16(a), which

shows the bounds on demand based on rational preferences only, have jumps corresponding

to the cases where choices have jumps as well.

Figure 2.16(b) shows bound for the demand correspondence given the assumption of

quasi-linear preferences. In this case, there is a point at which bounds on demand shift

to the left discontinuously. If the price is higher than the price at this point (z), then the

lower bound for the demand is zero. If the price is lower than the price at z, then the lower

bound for the demand is constant.

This exercise shows that the bounds under quasi-linearity can be tight than under the

assumption of rational preferences alone.

The bounds on the demand function imply also bounds on consumer surplus. This can be

done by using the upper bound of demand to construct the upper bound of the consumer

surplus and the lower bound of demand to construct the lower bound of the consumer
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surplus. Note that upper bounds for demand functions are the right border lines of the green

area. This boundary is weakly decreasing and therefore a valid demand function under

quasi-linearity. This therefore provides the logical upper bound to all demand functions

consistent with quasi-linearity and the original choices.
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x̂2pp2q
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p2

x̂2pp2q

z
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(a) Lower Bound for Consumer Surplus (b) Upper Bound for Consumer Surplus

Figure 2.17: Constructing Bounds for Compensated Variation and Consumer Surplus

Figure 2.17 shows the bounds for Consumer Surplus when preferences are quasi-linear.

Figure 2.17(a) shows the lower bound for the consumer surplus and Figure 2.17(b) shows

the upper bound for the consumer surplus. The bounds on the consumer surplus follow

tightly the bounds on the demand functions explained above.

2.5 Connection to Previous Literature

In this section we show connection between QLSARP and the test from Brown and Cal-

samiglia (2007). We show that if budgets are linear, then QLSARP is equivalent to the con-

dition from Brown and Calsamiglia (2007). Therefore, if a consumption experiment satisfies

QLSARP, then there is a strictly concave, continuous, strictly monotone and quasi-linear

utility function that rationalizes the consumption experiment. This implies that if budgets
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are linear, then continuity and concavity have no empirical content under the assumption of

quasi-linearity of preferences. Moreover, it allows us to to develop the test for concavity of

preferences under the assumption of quasi-linearity preferences, using non-linear budgets.

Brown and Calsamiglia (2007) use linear budgets and normalize a price of a good in

which preferences are supposed to be quasi-linear (numeraire), so the linear consumption

experiment can be defined as ppxt, ytq, ppt, 1qqTt“1, where pt P RN´1` is the vector of prices.

Linear budget set can be defined as Bt “ tx P RN´1, y P R : ppt, 1qpx, yq ď ppt, 1qpxt, ytqu.

Following Brown and Calsamiglia (2007) a linear consumption experiment pxt, ptqTt“1 is said

to be strictly cyclically monotone if for any subset tppxm, ymq, ppm, 1qquMm“1 p
1px2 ´

x1q`p2px3´x2q` . . .`pM px1´xM q ą 0. A utility function rationalizes the consumption

experiment ppxtytq, ppt, 1qqTt“1 if upxt, ytq ě upx, yq for any ptx ` y ď ptxt ` yt for any

t “ 1, . . . , T .

Theorem 2.2 (Theorem 2.2 from Brown and Calsamiglia (2007)). A finite consumption

experiment ppxt, ytq, ppt, 1qqTt“1 can be rationalized by a strictly concave, continuous, quasi-

linear and strictly monotone utility function if and only if it is strictly cyclically monotone.

Lemma 2.1. Let ppxt, ytq, ppt, 1qqTt“1 be a finite consumption experiment that generates a

revealed preference relation Rv. Then, an acyclic Rv satisfies QLSARP if and only if the

consumption experiment is strict cyclically monotone.

Note that if there is a strictly concave, continuous, quasi-linear and strictly monotone

utility function that rationalizes the consumption experiment, then there is a complete

extension of the corresponding revealed preference relation that is complete, transitive and

monotone and quasi-linear. Therefore, if the consumption experiment is strict cyclically

monotone, then the revealed preference relation generated by the consumption experiment

satisfies QLSARP. Therefore, we left to prove the reverse, i.e. if there is an acyclic Rv

satisfies QLSARP, then the consumption experiment is strict cyclically monotone.

Proof. As in cyclical monotonicity for QLSARP we also need to consider any subset of
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budget experiment tppxm, ymq, ppm, 1qquMm“1 if for every j ăM ppxj , yjq, pxj`1, yj`1´ βjq P

T pRvq, then ppxM , yM q, px1, y1 `
řM´1
j“1 βjqq R P pT pRvqq. QLSARP implies this it should

be true for any sequence24 of βj . However, checking the minimum βj is enough. And

this βj can be defined as βj “ pjpxj`1 ´ xjq ` pyj`1 ´ yjq. Then ppxM , yM q, px1, y1 `

řM´1
j“1 βjqq R P pT pRvqq can be rewritten as pMx1 ` y1 `

řM´1
j“1 βj ą pMxM ` yM . And

simplifying the expression we get that p1px2 ´ x1q ` p2px3 ´ x2q ` . . . ` pM px1 ´ xM q `

py2 ´ y1q ` py3 ´ y2q ` . . .` py1 ´ yM q
looooooooooooooooooooooooomooooooooooooooooooooooooon

“0

“ p1px2´x1q`p2px3´x2q` . . .`pM px1´xM q ą 0

that is stict cyclical monotonicity.

Hence, combining Theorem 2.2 and Lemma 2.1 we can get the following result.

Theorem 2.3. A finite consumption experiment ppxt, ytq, ppt, 1qqTt“1 can be rationalized by a

strictly concave, continuous, quasi-linear and strictly monotone utility function if and only

if Rv is acyclic and satisfies QLSARP with respect to n-th component (yt).

Note that Theorem 2.2 uses strict concavity of the utility function as a crucial assump-

tion. While from Theorem 2.1 we know that QLSARP is equivalent to the existence of

an extension of the revealed preference relation that is just complete, transitive, monotone

and quasi-linear. Therefore, if budgets are linear concavity and continuity has no empirical

content under the assumption of quasi-linearity of preferences.

Now let us show how to construct the test for the concavity of the utility function under

the assumption of quasi-lienarity of preferences using non-linear budgets. Following Forges

and Minelli (2009) a function gtpx, yq : RL Ñ R is said to be gauge function of the

budget set Bt if Bt “ tx P X : gtpx, yq ď 0u. And with a finite consumption experiment

one can associate the linearized experiment, if gauge function is differentiable at least at

the optimal points. ppxt, ytq, CtqTt“1 is a linearized consumption experiment associated

with ppxt, ytq, BtqTt“1 if Ct “ tx P X : ∇gtpxt, ytqpx, yq ď ∇gtpxt, ytqpxt, ytqu. Denote by

24QLSARP specifies βj to be positive, however, in Appendix A we show that to obtain quasi-linear

representation, the similar condition should hold for any real sequence of βj not necessarily positive.
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RCv the revealed preference relation generated by the linearized consumption experiment

ppxt, ytq, CtqTt“1.

Theorem 2.4. Let ppxt, ytq, CtqTt“1 be a finite consumption experiment with gauge functions

that are increasing, continuous, quasi-convex, differentiable at every pxt, ytq and can be

represented as gtpx, yq “ htpxq ` y. Then there is a continuous, strictly concave, strictly

increasing and quasi-linear utility function (upxq ` y) that rationalizes it if and only if RCv

is acyclic and satisfies QLSARP.

Since the proof is very similar to the proof of the Theorem 2.2 let us sketch it to

emphasize the main differences. The proof can be done just by showing that the following

are equivalent:

1. There is a continuous, concave, increasing and quasi-linear utility function that ratio-

nalizes Rv,

2. There are numbers ut and us such that us ď ut ` ∇htpxtqpxs ´ xtq for any t, s “

1, . . . , T ,25

3. Linearized experiment satisfies cyclical monotonicity

p1q ñ p2q From the first order condition for quasi-linear utility function we know that

∇upxtq “ ∇htpxtq and from the fact that u is concave we can conclude that ∇htpxtq is the

super-gradient, i.e. upxq ď upxtq `∇htpxtqpxs ´ xtq for any x P X.

The rest of the implications are the same as in the original proof, since we take∇htpxtq as

linear prices, and as the result we will get the utility function that represents RCv and, hence,

represents Rv. As we have already shown if prices are linear, then QLSARP is equivalent

to strict cyclical monotonicity. That completes the proof. Hence, concavity of quasi-linear

representation can be rejected if the consumption experiment satisfies QLSARP, while its

25For the case of not necessarily differentiable utility function one similarly can start from us
` ys ď

ut
` yt ` p∇ht

pxtq, 1qppxs, ysq ´ pxt, ytq “ ut
` yt∇ht

pxtqpxs ´ xtq ` pys ´ ytq “ ut
` ys `∇ht

pxtqpxs ´ xtq,
that is equivalent to the original inequality.
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linearized version does not. It would imply that there is a quasi-linear extension of the

revealed preference relation, while there is no concave and quasi-linear utility function that

rationalizes the consumption experiment.

2.6 Summary

We provide a necessary and sufficient condition for a set of observed choices to be consistent

with the existence of complete, transitive, monotone and quasi-linear preference ordering.

This condition applies to choices over compact and downward closed budget sets and does

not require preferences to be convex. This condition does not guarantee existence of a

utility function but only the existence of a preference relation, that is complete transitive,

monotone, quasi-linear and generates the observed behavior. This condition is sufficient for

the existence of quasi-linear utility function if budget sets are linear.

We conduct a laboratory experiment to test the hypothesis that preferences are quasi-

linear in money. Our experiments show that while individual choices are generally consistent

with GARP they are no more consistent with quasi-linearity in money than choices made

at random. We also use the data from the Spanish Continuous Family Expenditure Survey

to test for quasi-linearity using household consumption data. We find support for the

hypothesis of quasi-linearity against the the alternative that choices are made at random.

However, and due to low observe variation in prices, we find no support for the existence of

quasi-linear preferences against the alternative of the existence of a smooth utility function.

We discuss how the assumption of quasi-linearity can be used to perform non-parametric

welfare analysis. In particular, we show how to estimate the bounds for the demand cor-

respondence, consumer surplus and compensated variation under the assumption of quasi-

linear preferences. Note that this estimations requires only the existence of a complete, tran-

sitive, monotone and quasi-linear preference ordering. These bounds can be considerably

tighter than nonparametric bounds derived under the assumption of rational preferences

alone.

An important advantage of the test of quasi-linearity we present here is that it applies
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to a large class of problems. First, it applies to consumer problems in the presence of

distortions due to taxes, subsidies or non-linear pricing. Second, it can also be extended to

test for quasi-linearity of preferences in strategic situations where such assumption might

be invoked (e.g. auction theory).

2.7 Appendix

2.7.1 Proof of Theorem 2.1

To prove Theorem 2.1 we use the notion of function over preference relations. A conve-

nient example of such function is the transitive closure, which adds px, zq to R for each

px, yq P R and py, zq P R. Being more precise px, yq P T pRq if there is a sequence of ele-

ments S “ s1, . . . , sn, such that for every j “ 1, . . . , n´ 1 psj , sj`1q P R, where T stays for

transitive closure. That is transitive closure of a preference relation is a transitive prefer-

ence relation, since transitive closure is idempotent and applying transitive closure to the

transitive closure of the relation does not add anything to the relation. The function we

propose is a generalization of transitive closure that guarantees that every fixed point of it

is transitive, monotone and quasi-linear preference relation.

The proof is organized as follows. First, we introduce the terminology and define the

function over preference relations that implies the desirable properties while extending the

preference relation. Further we show that the function is “well-behaved”, i.e. the possibility

of extension of preference relation by the function can be stated as a simple set-theoretical

condition. Finally, we show that consistency of a preference relation with the function is

equivalent to QLSARP.

Let F : R Ñ R be a function over preference relations. For a given function F pRq, a

preference relation R is said to be F -consistent if F pRq X P´1pRq “ H.26

Lemma 2.2. A preference relation R Ď F pRq is F -consistent if and only if R ĺ F pRq.27

26Recall that px, yq P P´1
pRq if py, xq P R and py, xq R R.

27Recall that R ĺ F pRq (F pRq is an extension of R) if R Ď F pRq and P pRq Ď P pF pRqq.

58



We omit the proof since it can be found in Demuynck (2009). Henceforth, further we

use these notions as equivalent definitions. For any function F : R Ñ R, let R˚F “ tR P

R|R ĺ F pRqu. We use the following definition throughout the section.

Definition 2.3. A function F : RÑ R is said to be an algebraic closure if

1. For all R,R1 P R, if R Ď R1, then F pRq Ď F pR1q, and,

2. For all R P R, R Ď F pRq, and,

3. For all R P R, F pF pRqq Ď F pRq, and,

4. For all R P R and all px, yq P F pRq, there is a finite relation R1 Ď R, s.t. px, yq P

F pR1q.

Properties (1) to (3) are those that define closure and are connected to the extrapolation

of the relation by F pRq. Property (1) is monotonicity, it states that from larger amount of

information we can get better extrapolation. Property (2) is extensiveness, that is function

adds additional information about preference relation. Property (3) is idempotence, that

is the function delivers all the information after the first application of it to the binary

relation. Property (4) is one that makes the closure algebraic (for the formal definition

in more general context see e.g. Crawley and Dilworth (1973)). This property is one

that allows us to make our theory testable with finite data set, i.e. there is finite set of

observations that is not F -consistent.

A function F : R Ñ R is said to be weakly expansive28 if for any R “ F pRq and

NpRq ‰ H, there is T Ď NpRq such that R Y T P R˚F . This property states that F is

non-satiated, i.e. for any incomplete fixed point (F pRq “ R) preference relation, there is

F -consistent extension of this relation. It is important since we are used to assume that

preferences are complete, i.e. any two bundles are comparable, and weak expansiveness

guarantees that the set of assumptions is not contradictory with completeness axiom.

28Weak expansiveness is equivalent to the condition C7 in Demuynck (2009).
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Theorem 2.5 (Theorem 2 from Demuynck (2009)). Let F be a weakly expansive algebraic

closure. Then, a relation R P R has a complete extension R˚ “ F pR˚q if and only if R is

F -consistent.

To provide the intuition for the proof of Theorem 2.5 let us show the algorithm that can

is used to construct a fixed point complete extension. Denote R0 “ R, i.e. the relation we

start from. Then, for any a ą 0 if Ra ‰ F pRaq, then Ra`1 “ F pRaq. If Ra “ F pRaq, then

from expansiveness we know that there is T , such that RaYT P R˚F , so let Ra`1 “ RaYT .

The existence of the limit relation which is a fixed point of F is guaranteed by the fact that

F is algebraic closure.

Let us specify the closure that will guarantee us existence of complete, monotone, tran-

sitive and quasi-linear in i-th component extension of the original relation.

Definition 2.4. Denote the Quasi-linear in the i-th component Monotone Transi-

tive closure by QLiMT pRq. Then, px, yq P QLiMT pRq if there is a sequence S “ s1, ..., sn,

s.t. s1 “ x, sn “ y and @j “ 1..n´ 1

1. Dαj P R : psj ` αjei, sj`1 ` αjeiq P R, or

2. sj " sj`1

We consider quasi-linearity29 with monotonicity, since these notions are usually consid-

ered together (see e.g. Kreps (2012) who defines quasi-linearity as the definition we provide

jointly with the monotonicity). However, monotonicity has no empirical content if we as-

sume budgets to be monotone. In the case of non-monotone budgets QLSARP can be easily

modified by using TMpRq instead of T pRq.30 TMpRq is transitive and monotone closure,

that can be defined as following: px, yq P TMpRq if there is a sequence S “ s1, . . . , sn, such

that for any j “ 1, . . . , n ´ 1 either psj , sj`1q P R or sj ě sj`1. If one wants to separate

the assumption of quasi-linearity from the monotonicity, monotonicity of budget sets can

29Recall that R is said to be quasi-linear in the i-the component if for any px, yq P R and α P R
px` αei, y ` αeiq P R.

30Recall that px, yq P T pRq if there is a sequence S “ s1, . . . , sn, s1 “ x and sn “ y, such that for any

j “ 1, . . . , n´ 1 psj , sj`1q P R
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be relaxed to monotonicity in the i-th component31 (the same as it should be quasi-linear

in). In this case QLSARP is equivalent to the existence of the extension of revealed prefer-

ence relation that is quasi-linear in the i-th component, monotone in the i-th component,

transitive and complete .

The proof of Theorem 2.1 consists of two parts:

1. Proposition 2.1 shows that QLiMT pRq is a weakly expansive algebraic closure;

2. Proposition 2.2 shows that Rv satisfies QLSARP if and only if T pRvq
32 is QLiMT -

consistent.

After proving these Propositions we can apply Theorem 2.5 to complete the proof of

Theorem 2.1.

Proof of Proposition 2.1

Proposition 2.1. QLiMT pRq is a weakly expansive algebraic closure.

The proof of the Proposition 2.1 consists of the following lemmas:

1. Lemma 2.3 shows that R “ QLiMT pRq if and only if R is quasi-linear, transitive

and monotone. This Lemma shows that any fixed point of QLiMT is a quasi-linear,

transitive and monotone relation. Moreover, we use it extensively in the further proofs.

2. Lemma 2.4 shows that QLiMT is a closure, i.e. satisfies (1)-(3). Note that if it is a

closure, it is algebraic by definition, because any element of QLiMT pRq is added by

adding the finite sequence of elements of R which generates it.

3. Lemma 2.5 shows that QLiMT is weakly expansive

Lemma 2.3. R “ QLiMT pRq if and only if R is quasi-linear, transitive and monotone.

31The budget is monotone with respect to i-component if x P B implies that for any α P R` x´ αei P B
32Recall that Rv is a revealed preference relation obtained pxt, yq P Rv if y P Bt, where xt is chosen bundle

and Bt is corresponding budget. T pRvq is a transitive closure of revealed preference relation.
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Proof. pñq. R is transitive, because if px, yq P R and py, zq P R, then px, zq P QLiMT pRq.

R is monotone also by the definition of QLiMT pRq. R is quasi-linear in i-th component,

i.e. if px` αei, y ` αeiq P R, then px, yq P QLiMT pRq.

pðq. From the Definition of QLiMT pRq it is clear that R Ď QLiMT pRq. Therefore,

we need to show that QLiMT pRq Ď R to show the equality of these sets. To prove this

we need to show, that if there is px, yq P QLiMT pRq, then px, yq P R. To do this take

px, yq P QLiMT pRq and show that px, yq is in R as well. We prove this by the induction

on the length of chain that adds px, yq to QLiMT . If length of the shortest chain is 2 it is

immediately true since R is quasi-linear, transitive and monotone. Now suppose that every

element px, yq P QLiMT pRq, such that it can be added to the QLiMT pRq by a chain of

the length no more than k is in R as well. To do the induction step, consider an element

px, yq P QLiMT pRq that is added to the QLiMT pRq by a chain of the length of k` 1. Let

us show that length of the chain can be reduced, i.e. the same element can be added to the

QLiMT pRq by a chain of the length no more than k. Take a j P t1, . . . , n´1u and consider

the four following cases:

Case 1: sj´1 " sj and psj`αjei, sj`1`αjeiq P R. Knowing that sj´1`αjei " sj`αjei

then by monotonicity, psj´1`αjei, sj`αjeiq P R. By transitivity psj´1`αjei, sj`1`αjeiq P

R. Therefore, length of the chain can be reduced.

Case 2: sj´1 " sj and sj " sj`1, then sj´1 " sj`1. By monotonicity psj´1, sj`1q P R.

Therefore, length of the chain can be reduced.

Case 3: psj´1 ` αj´1ei, sj ` αj´1eiq P R and sj " sj`1 Knowing that sj ` αj´1ei "

sj`1 ` αj´1ei then by monotonicity, psj ` αj´1ei, sj`1 ` αj´1eiq P R. By transitivity

psj´1 ` αj´1ei, sj`1 ` αj´1eiq P R. Therefore, length of the chain can be reduced.

Case 4: psj´1 ` αj´1ei, sj ` αj´1eiq P R and psj ` αjei, sj`1 ` αjeiq P R. By quasi-

linearity psj`αj´1ei, sj`1`αj´1eiq P R. By transitivity psj´1`αj´1ei, sj`1`αj´1eiq P R.

Therefore, length of the chain can be reduced.

This completes the induction.
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Lemma 2.4. QLiMT pRq is an algebraic closure

Note that QLiMT pRq is algebraic (satisfies condition (4)) by construction, since every

element can be added using a finite sequence. According to the Lemma 5 from Demuynck

(2009) F pRq is a closure if and only if F pRq “
Ş

tQ Ě R : Q “ F pQqu. Hence, it is enough

to prove that QLiMT pRq “
Ş

tQ Ě R : Q “ QLiMT pQqu

Proof. pĎq Let px, yq P QLiMT pRq, then there is a sequence S “ s1, . . . , sn such that

psj`αjei, sj`1`αjeiq P R or sj " sj`1 for any j “ 1, . . . , n´1. Since, R Ď Q, then for the

entire sequence psj ` αjei, sj`1 ` αjeiq P Q or sj " sj`1 for any j “ 1, . . . , n ´ 1. Hence,

px, yq P QLiMT pQq.

pĚq Note that from Lemma 2.3 we know that QLiMT pQLiMT pRqq “ QLiMT pRq.

Therefore QLiMT pRq P
Ş

tQ Ě R : Q “ QLiMT pQqu. Thus, if px, yq P Q for any

Q P
Ş

tQ Ě R : Q “ QLiMT pQqu, then px, yq P QLiMT pRq.

Lemma 2.5. QLiMT pRq is weakly expansive.

Proof. Take a point px, yq P NpRq and consider the relation R1 “ R Y tpx, yqu. We

need to show that QLiMT pR1q X P´1pR1q “ H. Assume to the contrary that there is

a pz, wq P QLiMT pR1q X P´1pR1q ‰ H.

Case 1: px, yq ‰ pw, zq. There is a chain S “ s1, . . . , sn such that there is k such that

sk ` αkei “ x and sk`1 ` αkei “ y and psj ` αjei, sj`1 ` αjeiq P R or sj " sj`1 for

any j ‰ k and pw, zq P R by assumption. Let us consider the following sequence33 S1 “

sk`1, . . . , sn, w, z, s1, . . . , sk with:

psk`1 ` αk`1ei, sk`2 ` αk`1eiq, . . . , psn´1 ` αn´1ei, w ` αn´1eiq,

pw, zq, pz ` α1ei, s2 ` α1eiq, . . . , psk´1 ` αk´1ei, sk ` αk´1eiq

33We omit elements of sequence that correspond to monotonicity, since QLiMT pRq “ R already implies
that all monotonicity pairs are already in R.
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elements of R.

From Lemma 2.3 we know that R is quasi-linear. Therefore, psk`1, skq P R. Recall that

by Lemma 2.3 R is quasi-linear. Hence, py, xq P R since they can be obtained by adding

αkei to sk`1 and sk respectively. Therefore, px, yq R NpRq.

Case 2: px, yq “ pw, zq. Then, py, xq P P pR1q and px, yq P QLiMT pR1q. If px, yq P

QLiMT pRq, then there is direct contradiction, because QLiMT pRq “ R and this con-

tradicts the fact that px, yq P NpRq. Hence, px, yq P QLiMT pR1qzR. Then, there is a

chain S “ s1, . . . , sn such that there is k such that sk ` αkei “ y and sk`1 ` αkei “ x

and psj ` αjei, sj`1 ` αjeiq P R or sj " sj`1 for any j “ 1, . . . , n ´ 1. Therefore, there

is a sequence S1 “ s1, . . . , sk, which contains only the elements of R, this implies, that

px, yq P QLiMT pRq. Therefore, px, yq R NpRq.

This completes the proof of Proposition 2.1.

(ii) Proof of Proposition 2.2: Rv satisfies QLSARP if and only if QLiMT pT pRvqqX

P´1pT pRvqq “ H

Recall the definition of QLSARP.

Definition 2.5. A revealed preference relation satisfies QLSARP with respect to i-th

component if for any sequence of distinct elements xk1 , ..., xkn P C and pα, β3, . . . , βnq P

RˆR``ˆ. . .ˆR``, such that pxk1 , xk2´αeiq P P pT pRvqq and pxkj , xkj`1´βj`1eiq P T pRvq

for j “ 2, . . . , n´ 1, then pxkn , xk1 ` pα`
řn
j“3 βjqeiq R T pRvq.

And since QLiMT pRq is a weakly expansive algebraic closure we need to show that

QLSARP is equivalent to QLiMT -consistency for Rv. Recall that elements of QLiMT

are added through sequences, such that psj ` αjei, sj`1 ` αjejq P T pRvq or sj " sj`1. A

sequence S “ s1, . . . , sn, s1 “ x and sn “ y that adds px, yq to QLiMT pRq is said to
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be px, yq-irreducible length sequence if there is no shorter sequence S1 “ s11, . . . , s
1
n,

s11 “ x and s1n “ y that adds px, yq to QLiMT pRq. For any sequence S denote by βj “

αj ´ αj´1, j “ 2, . . . , n. From the definition of QLiMT pRq we can be sure that for any

px, yq P QLiMT pRq there is a finite irreducible length sequence. Note that if px, yq P R

the px, yq-irreducible length sequence will trivially be s1 “ x, s2 “ y. Moreover, for each

element there is the shortest sequence, hence we need to show that QLSARP checks that

for any pair px, yq from the strict part of P pT pRvqq there is no py, xq-irreducible length

sequence in T pRvq - py, xq P QLiMT pT pRvqq.

But QLSARP does not say anything about one element being greater than another. So

let us show that no px, yq-irreducible length sequence will contain sj " sj`1. Note that

assumption of monotonicity of budget sets allows us to claim that px, yq P Rv then for any

z ď y px, zq P Rv as well. And this fact can be generalized for the transitive closure of the

relation.

Fact 2.1. px, yq P T pRvq then px, zq P T pRvq for any z ď y.

Hence, none of px, yq-irreducible length sequences will contain sj " sj`1, because sj

has to be a chosen point, hence psj , sj`1q P T pRvq and the length of the sequence can be

reduced otherwise.

For further proof denote by βj “ αj ´ αj´1 for j P t2, . . . , nu. Originally QLiMT pRq

assumes βj to be any real number while QLSARP considers only positive βj . So, let us

show that px, yq-irreducible length sequence will not contain βj ď 0.

Lemma 2.6. For any px, yq R T pRvq and px, yq P QLiMT pT pRvqq, an px, yq-irreducible

length sequence has all βj ą 0.

Proof. On the contrary assume that there is j P t2, ..., n´1u such that βj ď 0. And further

we show that there is a shorter sequence S1 “ s11, . . . , s
1
j´1, s

1
j`1, . . . , s

1
n, s11 “ x and s1n “ y,

such that for k “ 1, . . . , j ´ 1, j ` 1, . . . , n1 ´ 1, ps1k ` α1kei, s
1
k`1 ` α1keiq P T pRvq. This

contradicts the fact that the original sequence is px, yq-irreducible length sequence.
65



If βj ď 0, then αj ď αj´1, hence sj `αj´1ei ě sj `αjei. Therefore, psj´1`αj´1ei, sj `

αj´1eiq P T pRvq (by construction), psj ` αj´1ei, sj ` αjeiq P T pRvq (by Fact 2.1, i.e.

monotonicity of T pRvq) and psj ` αjei, sj`1 ` αjeiq P T pRvq. Hence , by transitivity of

T pRvq psj´1 ` αj´1ei, sj`1 ` αjeiq P T pRvq.

So, we need to define s1k and α1k for all k “ 1, . . . , j ´ 1, j ` 1, . . . , n to obtain ps1k `

α1kei, s
1
k`1`α

1
keiq P T pRvq. Let s1k “ sk for every k ‰ j`1 and sj`1 “ sj`1´βj . Let α1k “ αk

for every k R tj, j`1u. Then for every k ‰ j`1 ps1k`α
1
kei, s

1
k`1`α

1
keiq “ psk`αkei, sk`1`

αkeiq P T pRvq. Let α1j`1 “ αj`1`βj ď αj`1, then (i) psj´1`αj´1ei, s
1
j`1`αj´1eiq P T pRvq,

and (ii) s1j`1 `α
1
j`1ei “ sj`1 `αj`1ei. So, we only left to show that psj´1 `αj´1ei, s

1
j`1 `

αj´1eiq P T pRvq to complete the proof. Since α1j`1 ď αj`1, then sj`2 ` α1j`1ei ď sj`2 `

αj`1ei. Hence, by Fact 2.1 psj`1 ` αj`1ei,j`2`α
1
j`1eiq P T pRvq. Since s1j`1 ` α1j`1ei “

sj`1 ` αj`1ei, then psj`1 ` αj`1ei,j`2`α
1
j`1eiq “ ps

1
j`1 ` α

1
j`1ei,j`2`α

1
j`1eiq P T pRvq.

Another difference between QLSARP and QLiMT is that QLiMT pRq does not require

elements of sequence S “ s1, . . . , sn to be distinct, while QLSARP implies there is no

sj ` αjei “ sk ` αkei.

Lemma 2.7. For any px, yq R Rv and px, yq P QLiMT pT pRvqq and px, yq-irreducible length

sequence S there is not j ‰ k such that sj ` αjei “ sk ` αkei.

Proof. Without loss of generality assume that k ą j, then from Lemma 2.6 αk ą αj . Hence

sk ď sj and psj´1 ` αj´1ei, sk ` αj´1eiq P T pRvq. So, S is not px, yq-irreducible length

sequence.

To prove Theorem 2.1 we need to show that Rv satisfies QLSARP with respect to i-th

component if and only if T pRvq is QLiMT -consistent. Recall that QLiMT -consistency is

equivalent to QLiMT pT pRvqq X P
´1pT pRvqq “ H.
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Proposition 2.2. QLiMT pT pRvqqXP
´1pT pRvqq “ H in and only if Rv satisfies QLSARP

with respect to i-th component.

Proof. pðq We assume that there is a contradiction of QLiMT -consistency and construct

the contradiction of QLSARP from the contradiction of QLiMT -consistency. Assume

that QLiMT pT pRvqq X P´1pT pRvqq ‰ H, thus there is py, xq P P pT pRvqq and px, yq P

QLiMT pT pRvqq. Since px, yq P QLiMT pT pRvqq, there is px, yq-irreducible length sequence

S “ s1, . . . , sn, s1 “ x and sn “ y, such that psj ` αjei, sj`1 ` αjeiq P T pRvq and s1 “ x

and sn “ y. For j “ 1, . . . , n let xkj “ sj ` αjei and for j “ 2, . . . , n let βj “ αj ´ αj´1.

Note that for j “ 1, . . . , n´ 2

(i) x “ xk1 ´ α1ei implies py, xq “ py, xk1 ´ α1eiq P P pT pRvqq and pxkj , xkj`1 ´ βj`1eiq P

T pRvq;

(ii) xkj P C (all xkj are chosen points) by construction of Rv;

(iii) All βj ą 0, by Lemma 2.6;

(iv) All xkj are distinct points, by Lemma 2.7;

(v) αj “
řj
r“1 βr ` α1 and sn “ y.

Then pxkn , y ` p
řj
r“1 βr ` α1qeiq P T pRvq. That is exactly a contradiction of QLSARP.

pñq Assume that there is a violation of QLSARP, let us show that then T pRvq is not

QLiMT -consistent - QLiMT pT pRvqq X P
´1pT pRvqq ‰ H. Let y “ xk1 and x “ xk2 ´ αei,

then py, xq P P pT pRvqq. Let α1 “ α, αj “
řj
r“1 βr`α1 and sj “ xkj ´αjei for j “ 2, . . . , n.

Then xk1 “ x, xkn “ y and for any j “ 2, . . . , n there is psj ` αjei, sj`1 ` αjeiq P T pRvq.

Therefore, px, yq P QLiMT pT pRvqq. This implies that QLiMT pT pRvqqXP
´1pT pRvqq ‰ H,

i.e. there is a violation of QLiMT -consistency.

This allows us to apply Theorem 2.5 to complete the proof of Theorem 2.1.
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2.7.2 An Extension Theorem for Weak Rationalization

Since Afriat (1967), in revealed preference theory it is common to talk about ”weak ra-

tionalization” as a weakened concept of the rationalization we mentioned above. Weak

rationalization assume that chosen point is only weakly preferred to the points that lie on

the upper boundary of the budget set. However, it provokes a gap between the theoretical

definition of revealed preference relation and the consumption experiment, because strict

part can not be determined in standard way. Let us refine QLSARP to test for the existence

of complete, quasi-linear, transitive and monotone extension of the weak rationalization.

For a monotone and compact set B, let BB be the upper boundary if for any y P

BB and z ą y, z R B. Denote the weak rationalization generated by finite consumption

experiment pxt, Btqt“1,...,T by Rw, then pxt, yq P Rw if and only if y P Bt and pxt, yq P

P pRwq
34 if and only if y P BtzBBt. Let TwpRwq be the transitive closure of weak

rationalization and px, yq P P pTwpRwqq if and only if there is a sequence S “ s1, . . . , sn,

s1 “ x and sn “ y, such that for every j “ 1, . . . , n ´ 1 psj , sj`1q P Rw and there is

k such that psk, sk ` 1q P P pRwq; px, yq P IpTwpRwqq if and only if there is a sequence

S “ s1, . . . , sn, s1 “ x and sn “ y, such that for every j “ 1, . . . , n ´ 1 psj , sj`1q P Rw

and px, yq R P pTwpRwqq. Then TwpRwq is consistent with definition of preference relation

and can be decomposed into disjoint strict and indifference parts, such that TwpRwq “

P pTwpRwqqYIpTwpRwqq. This allows us to apply similar construction procedure to TwpRwq

as to T pRvq.

Definition 2.6. A weak rationalization Rw satisfies QLGARP with respect to i-th com-

ponent if for any sequence of distinct elements xk1 , ..., xkn P C and pα, β3, . . . , βnq P R ˆ

R``ˆ . . .ˆR``, such that pxk1 , xk2´αeiq P P pTwpRwqq and pxkj , xkj`1´βj`1eiq P TwpRwq

for j “ 2, . . . , n´ 1, then pxkn , xk1 ` pα`
řn
j“3 βjqeiq R TwpRwq.

A weak rationalization is said to be weakly acyclic if it satisfies GARP35 and from

34Recall that by P pRq we denote strict part of the relation
35The consumption experiment E “ pxi, Biq

n
i“1 satisfies the General Axiom of Revealed Preference
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Afriat (1967) we know that rationalization is weakly acyclic if and only if it satisfies GARP.

Then, the extension result can be immediately achieved from Theorem 2.1

Corollary 2.1. A weakly acyclic weak rationalization Rw generated by a finite consumption

experiment with monotone and compact budgets has an extension that is complete, transitive,

monotone and quasilinear in i-the component if and only if Rw satisfies QLGARP with

respect to the i-th component.

The proof of Corollary 2.1 is straight-forward, since the TwpRwq is monotone and tran-

sitive as well as T pRvq, then Lemma 2.6 and Lemma 2.7 hold.

Proposition 2.3. QLiMT pTwpRwqq X P´1pT pRwqq “ H in and only if Rw satisfies QL-

GARP with respect to the i-th component.

Then, Proposition 2.3 can be proven similarly to the Proposition 2.2. And the proof of

Proposition 2.1 is done for an arbitrary preference relation. Then the proof of Corollary 2.1

follows immediately from Theorem 2.5.

2.7.3 More On Quasi-Linearity in Goods

Let us provide more evidence on quasi-linearity in goods. We start from showing the

analysis for quasi-linearity in commodities from the experimental data we collected. Recall

that using the data from Mattei (2000) and the survey data from ECPF we got the strong

positive evidence for quasi-linearity in goods under marginally larger decision errors levels.

However, the both data sets have the feature of not sufficient price variation, unlike the

experiment we conducted.

Figure 2.18 shows the predictive success indexes for the assumption of quasi-linearity in

goods. Figure 2.18(a) shows the predictive success index for the assumption of individual

numeraires, that is the numeraire for each person can be different and chosen to either

maximize on minimize the predictive success. Figure 2.18(b) shows the predictive success

(GARP) if for every integer m ď n and every ti1, . . . , imu Ď t1, . . . , nu, xij`1 P Bij for j “ 1, . . . ,m ´ 1

implies xi1 “ xim or xi1 R BimzBBim .
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Figure 2.18: Predictive Succes Index

index for the assumption of common numeraire, that is we suppose each of goods possible

to be a numeraire and compute the predictive success index for it. Note that assumption

of quasi-linearity in goods (especially assuming the individual numeraire) looks favorable

comparing to the assumption of quasi-linearity in money (Figure 2.10). Note as well, that

the CCEI at which predictive success index peaks for the assumption of quasi-linearity in

goods is higher comparing to the CCEI at which predictive success peaks for quasi-linearity

in money. This reduces, the ”costs” of rationality, i.e. to look quasi-linear in money person

has to give up 35% of income, while to look quasi-linear in goods only 30%.

The support for the assumption of quasi-linearity in goods in we see less support in

the experimental data than in the case of experiment from Mattei (2000) and the ECPF

(Figures 2.8 and 2.12 respectively). However, for the case of individual numeraires evidence

is still supporting the assumption of quasi-linearity, since the lower bound of 95% confi-

dence interval (at CCEI of .7) is still positive (about .15).36 Therefore, the hypothesis of

36The confidence interval is estimated using the results from Demuynck (2014a).
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quasi-linear preferences looks favorable comparing to the null hypothesis of uniform random

choices. Note, that comparing to the previous evidence on quasi-linearity in goods we pro-

vided, this case requires allowing larger decision making error. This ”change” in decision

making quality should not be surprising, since if we compare it to the results we obtained

from Mattei (2000) data, then we will see that this is due to the change of the power of

test. Larger price variation and larger amount of budgets in our experiment allows us to

have mean (and median) level of CCEI lower for uniform random subjects.

Note that Figure 2.18 compares as well the assumption of common versus individual

numeraires. Both assumptions get the empirical support from the data, but the 95% con-

fidence interval lower bound for the assumption of individual numeraires is three times of

95% confidence interval lower bound for the assumption of the common numeraire. While,

there is no significant difference between the best predictive success for the assumption of

common numeraires and the assumption of individual numeraires, assuming that different

people can have different numraires still make the assumption of quasi-linearity in goods

more convincing.
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Chapter 3: On Pareto Rationalization of Collective Action

3.1 Introduction

This chapter provides a revealed preference characterization of single-valued Pareto ra-

tionalizable collective choice functions. A collective choice function is said to be Pareto

rationalizable if there are complete individual preference relations (satisfying additional

properties if necessary) such that the observed choices are the only Pareto efficient out-

comes over the observed choice sets. We show that Pareto rationalizability of single-valued

choice functions is equivalent to unitary rationalizability1 By unitary rationalizability we

mean that there is a complete preference relation (satisfying additional properties if nec-

essary), such that the observed choices are the only maximal elements within the choice

sets. We show that the result apply regardless of whether individual outcomes or only

aggregated collective outcomes are observed. The characterization we construct implies a

revealed preference test that can be applied to test the Pareto rationalizability using the

observed (panel or experimental) data.

Pareto efficiency of collective choices is a particularly important assumption in house-

hold economics. Assuming Pareto efficiency of collective outcomes, Apps and Rees (1988)

and Brett (1998) show that the welfare analysis of household behavior using the collective

model differs fundamentally from the welfare analysis using the unitary model. Moreover,

Chiappori (2010) provides testable implications of transferable utility, assuming household

choices to be Pareto efficient.2 Cherchye et al. (2015a) provide an identification of sharing

rules for general collective consumption models assuming the collective choices to be Pareto

1We follow the name given by Browning and Chiappori (1998). Sprumont (2000) uses a term “team
rationalizability”.

2Cherchye et al. (2015b) provide a revealed preference test for the transferability of utility under the
assumption of Pareto efficiency of household choice.
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efficient.

The applications of the revealed preference approach to collective choice differs based on

whether we assume individual outcomes are observed.3 For the case of observed individual

outcomes, Sprumont (2000) provides a sufficient condition for the Pareto rationalization and

Echenique and Ivanov (2011) provides a characterization of Pareto rationalizable collective

choice functions for the two-player case. For the case of unobserved individual outcomes

(only aggregated collective outcomes are observed), Cherchye et al. (2010) proposes a test

for the weak rationalization4 of collective choice function.

3.2 Definitions

Let N “ t1, . . . , nu be the set of agents. For every j P N let Xj be the set of strategies.

Let X “
Ś

jPN Xj be the set of outcomes (joint actions). Let B Ď 2X be a collection of

budgets, denoting every budget from B by B Ď X. A joint choice function C : B Ñ 2X

assigns every budget of B P B as non-empty set of chosen points CpBq. A joint choice

function C : B Ñ 2X is single-valued if |CpBq| “ 1 for every B P B.

3.2.1 Preferences

A set R Ď X ˆ X is said to be a preference relation. We denote the set of all preference

relations on X by R. We denote the inverse relation R´1 “ tpx, yq|py, xq P Ru. We denote

the symmetric (indifferent) part of R by IpRq “ RXR´1 and the asymmetric (strict) part

by P pRq “ RzIpRq. We denote the incomparable part by NpRq “ X ˆ XzpR Y R´1q.

A preference relation R is said to be complete if px, yq P R Y R´1 for all x, y P X (or

equivalently NpRq “ H). A preference relation R is said to be transitive if px, yq P R and

3Revealed preference approach pioneered by Samuelson (1938) assumes that the preferences of agents

cannot be observed while we can observe their choices. Since Richter (1966) and Afriat (1967) this approach

has been extensively used to construct tests of consistency of individual (and collective) behavior with various

theories (see Chambers and Echenique (2016) for review).
4Unlike the strong rationalization we use, Cherchye et al. (2010) assume that there may be other Pareto

efficient outcomes in the observed budgets.
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py, zq P R implies that px, zq P R.

Definition 3.1. A preference relation R1 is an extension of R, denoted R ĺ R1, if R Ď R1

and P pRq Ď P pR1q.

Every joint choice function generates a preference relation. Denote an atomic (within

budget) revealed preference relation by RCpBq, such that px, yq P RCpBq if and only if

x P CpBq and y P B. Denote the collective revealed preference relation by RC “

Ť

BPB RCpBq. A revealed preference relation satisfies internal consistency if and only if

RCpBq ĺ RC for every B P B.

B1

B2x1

x2

B1

B2x1

x2

(a) Internally consistent choice (b) Internally inconsistent choice

Figure 3.1: Internal consistency of collective choice function

Figure 3.1 illustrates the notion of internal consistency. Assume we observe only two

budget, B1 and B2, and the choice function CpB1q “ x1 and CpB2q “ x2. Figure 3.1(a)

provides an example of internally consistent preference relation. Figure 3.1(b) provides an

example of preference relation that violates internal consistency, since px1, x2q P P pRpB1qq

and px2, x1q P P pRpB2qq. Hence, px1, x2q P IpRCq, hence RC cannot be extension of RpB1q.
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3.2.2 Notion of Rationality

We use functions over preference relations to impose the notion of rationality. The simplest

example of such a function is transitive closure (T ), which adds px, zq to R, whenever

there is a finite sequence x “ y1, . . . , yn “ z, such that R contains pyj , yj`1q for every

j “ 1, . . . , n ´ 1. Transitive closure has several properties which allow every preference

relation which can be extended by its transitive closure to have a complete and transitive

extension (see Richter (1966)).

Definition 3.2. A function F : RÑ R is said to be

1. monotone if for all R,R1 P R, if R Ď R1, then F pRq Ď F pR1q,

2. closed if for all R P R, R Ď F pRq,

3. idempotent if for all R P R, F pF pRqq “ F pRq,

4. algebraic if for all R P R and all px, yq P F pRq, there is a finite relation R1 Ď R such

that px, yq P F pR1q,

5. weakly expansive if for any R “ F pRq and NpRq ‰ H, there is a nonempty set

S Ď NpRq such that RY S ĺ F pRY Sq.

Any function F : RÑ R that is monotone, closed and idempotent is called a closure.

A closure is algebraic as defined above if any element of the closure can be obtained from

applying the closure to a finite subset of the original relation.5 Weak expansiveness imposex

conditions on the fixed points of F .6 In particular, it guarantees that for every fixed point

of F there is a set of non-comparable points (comparisons) which can be added to the fixed

point, such that the enlarged relation can be extended by F .

Definition 3.3. Given a function F : R Ñ R, a preference relation R is said to be F-

consistent if F pRq X P´1pRq “ H.

5See e.g. Davey and Priestley (2002), definition 7.12.
6Fixed point of F is such R, that F pRq “ R.
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As opposed to the internal consistency we introduced above, F -consistency is an “ex-

ternal consistency” condition. It tests whether a preference relation can be extended by

a function F . This external consistency depends on the definition of function F , while

internal consistency does not.

Example. Let the set of alternatives be X “ tx1, x2, x3, x4, x5u and consider the

preference relation R “ tpx1, x2q, px2, x3q, px3, x1qu. This relation is not transitive and is

not T -consistent (see Figure 3.2) because px1, x3q P T pRq and px3, x1q P P pRq. On the

other hand R1 “ tpx1, x2q, px2, x3q, px4, x5qu is not transitive but is T -consistent. Note that

transitivity of R is sufficient but not necessary for T -consistency of R.

P pRq

x1

x2 x3

T pRq

P pRq

x1

x2 x3

(a) R (b) T pRq

Figure 3.2: Violation of T -consistency

As we previously mentioned, the idea behind F is to impose the desired properties or

the “notion of rationality”. Further, we assume that every notion of rationality includes

completeness and transitivity of preference relations. A function F : R Ñ R induces

transitivity if T pF pRqq “ F pRq for every R P R, or equivalently, F pRq is transitive for

every R P R.

3.2.3 Rationalization

Let Rj be the player j P N individual preference relations of players, then denote by Π the

Pareto relation, px, yq P Π if and only if px, yq P Rj for all j P N . Equivalently the Pareto
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relation can be defined as

Π “
č

jPN

Rj .

Denote by MpB,Rq “ tx P B : @y P B, py, xq R P pRqu the set of maximal elements of

budget B according to preference relation R.

Definition 3.4. A joint choice function Cp¨q is said to be F -Pareto rationalizable if and

only if there are complete individual preference relations Rj “ F pRjq for every j P N , such

that

CpBq “MpB,Πq

for every B P B, where Π “
Ş

jPN Rj.

3.3 Results

Theorem 3.1. Let F be a weakly expansive algebraic closure. A single-valued joint choice

function C : B Ñ X is F -Pareto rationalizable if and only if RC satisfies internal consis-

tency and F -consistency.

Let us make several remarks about the main result of the chapter. First, it does not

directly depend on the number of players, since the conditions are equivalent to the unitary

rationalizability. By unitary rationalizability, we mean that there is a single-player (“dic-

tator”) who is making decisions for the group according to his or her preferences. In this

sense, the result has some of the flavor of Arrow’s theorem. Second, Theorem 3.1 assumes

the individual outcomes to be observed. Later in the chapter, we show how the result can

be applied for the case in which we observe only aggregated consumption.

Further, we consider two important cases of Theorem 3.1, which are dictated by two

major notions of rationality. If outcomes are deterministic it is usually assumed that a

rational individual has transitive and complete preferences. If outcomes are stochastic

(lotteries), it is usually assumed that a rational individual has complete, transitive and

77



independent preferences. We call the first type of rationalization T -Pareto rationalization

and the second one TI-Pareto rationalization, named after two closures T and TI which

impose the corresponding notions of rationality. Recall that to characterize each of the

Pareto rationalizations, it is enough to define the correct F (the one that induces desired

properties) and show that it is a weakly expansive algebraic closure.

3.3.1 T -Pareto Rationalization

Recall that a preference relation R is said to be transitive if px, yq P R and py, zq P R

implies that px, zq P R. Denote the transitive closure by

T : RÑ R,

where px, yq P T pRq if and only if there is a finite sequence s1, . . . , sm such that psj , sj`1q P R

for every j “ 1, . . . ,m´1, and s1 “ x and sm “ y. For the proof that transitive closure is a

weakly expansive algebraic closure which induces transitivity see Demuynck (2009). Hence,

the following corollary is immediate.

Corollary 3.1. A single-valued joint choice function Cp¨q is T -Pareto rationalizable if and

only if RC satisfies internal consistency and is T -consistent.7

3.3.2 TI-Pareto Rationalization

Further, we need to assume that X is a mixture space, since this structure is required to

define the independence. A preference relation R satisfies independence if px, yq P R implies

that for every x P X and for every α P r0, 1s, pαx ` p1 ´ αqz, αy ` p1 ´ αqzq P R. Denote

the transitive and independent closure by

TI : RÑ R,
7Freer and Martinelli (2016) show that internal consistency and T -consistency of a preference relation

are equivalent to the existence of the utility function that represents the complete fixed point extension.
Moreover, if collective revealed preference relation is obtained from the finite amount of observations that
this utility function is continuous.
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where px, yq P TIpRq if and only if there are finite sequences x “ s1, . . . , sm`1 “ y, z1, . . . , zm

and α1, . . . , αm such that for each j “ 1, . . . ,m α P r0, 1s and pαsj ` p1 ´ αqzj , αsj`1 `

p1 ´ αqzjq P R. For the proof that TIpRq is an algebraic closure that induces transitivity

and independence, see Demuynck and Lauwers (2009). The proof that TIpRq is weakly

expansive is in the Appendix.

Corollary 3.2. A single-valued joint choice function Cp¨q is TI-Pareto Rationalizable if

and only if RC satisfies internal consistency and is TI-consistent.

3.3.3 Unobservable Individual Outcomes

Let us introduce additional notation to state the problem with unobserved individual out-

comes. We follow the standard framework of this problem (see, for instance, Cherchye et al.

(2010)) to obtain the revealed preference characterization. Let RL` be a set of aggregated

outcomes. We assume budgets to be linear; that is, every budget is uniquely determined

by the vector of prices p P RL` and we assume income to be known.8 A finite consumption

experiment is a set E “ tpxt, ptquTt“1, where pt are the prices which determine the budget,

xt is an aggregated outcome and x P Bt if ptx ď ptxt.

Definition 3.5. A finite consumption experiment satisfies Strong Axiom of Revealed

Preference (SARP) if for every sequence of distinct elemenents xt1 P Bt2 , . . . , xtm´1 P

Btm implies xtm R Bt1.

Recall that individual outcomes are not observed; therefore, we need to be able to

recover them using only observed aggregated outcome.

Definition 3.6. A vector of individual outcomes x̂ “ px̂1, . . . , x̂nq is said to be a decom-

position of x if
řn
i“1 x̂i “ x.

Then the set of collective outcomes is pRL`qn, where n is a number of agents. Note that

x̂ P Bt if and only if ptx ď ptxt. This is a restrictive assumption which requires every

8Further result is also true if we relax the assumption and require budgets to be just compact and
comprehensive.
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decomposition which is affordable (at the aggregate level) to be in the budget set. A finite

consumption experiment E exhibits strong collective rationalizability if and only if

there are such decompositions of xt and complete and transitive preference relations Rj

(over pRL`qn) that MpBt,Πq “ x̂t.

Corollary 3.3. A finite consumption experiment E exhibits strong collective rationalizabil-

ity if and only if it satisfies SARP.

Note that Corollary 3.3 states that collective strong rationalization does not have an

additional empirical content comparing to unitary strong rationalization. Again this is not

true for weak rationalization (see Chiappori (1988)).

3.4 Concluding Remarks

We consider only single-valued collective choice functions, leaving the question open for

set-valued functions. However, a more general case is not computationally feasible for more

than two players.9 The complete proof can be found in Demuynck (2014b) and we further

provide a sketch of the proof. Assume the set of alternatives is finite and consider a problem

of T -Pareto rationalization. Moreover, we have observed all the possible choice sets and the

observed relation is a partial order. Then, the solution candidate is a partial order. However,

it is non-trivial question whether this partial order can be obtained as an intersection of no

more than n complete orders. This is the dimension problem (introduced by Dushnik and

Miller (1941)) and is not computationally feasible if there are more than two players (see

Yannakakis (1982) for the proof).

3.5 Appendix

3.5.1 Proof of Theorem 3.1

Let us start by introducing some additional notations and preliminary results.

9By this we mean that problem is NP-complete.

80



Proposition 3.1 (Theorem 2 from Demuynck (2009)). Let F : R Ñ R be a weakly ex-

pansive algebraic closure. R has a complete extension R˚ “ F pR˚q if and only if R is

F-consistent.

Proof can be found in Demuynck (2009).

The following lemma uses the notion of team rationalizability, introduced by Sprumont

(2000) and assumes that all the players act as the team which is driven by the similar

preference relation. A joint choice function Cp¨q is F -team rationalizable if and only if

there exists a complete preference relation R˚ “ F pR˚q such that CpBq “ MpB,R˚q for

every B P B.

The proof consists of the following parts.

1. We show that F -Pareto rationalizability is equivalent for F -team rationalizability

2. We show that F -team rationalibility is equivalent to internal and F -consistency of

RC .

This implies that F -Pareto rationalizability, F -team rationalizability and consistency of

RC are all equivalent. Therefore, it is enough to conclude the proof.

(1) Let us start by showing the equivalence between F -Pareto and F -team rationaliz-

ability.

Lemma 3.1. If F : R Ñ R is a monotone function and Rj ĺ F pRjq for all j P N , then

Π ĺ F pΠq.

Proof. Assume on the contrary that there is px, yq P P´1pΠq X F pΠq. By definition of Π

py, xq P P´1pΠq implies that py, xq P Rj for every j P N . Moreover, there is i P N , such

that py, xq P P pRiq. Note that Π Ď Ri, then by monotonicity, px, yq P F pΠq implies that

px, yq P Ri. This contradicts the fact that Rj ĺ F pRjq for all j P N .

Lemma 3.2. If |MpB,Rq| “ 1 for every B P B and R ĺ R1, then MpB,Rq “ MpB,R1q

for every B P B.
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Proof. Recall that the set of maximal elements is the collection of points x such that there

is no y P B and py, xq P P pRq. At the same time, if x is the unique maximum point, then

for every other point y P B it should be the case that px, yq P P pRq. Now we can employ

the fact that R ĺ R1, then P pRq Ď P pR1q, therefore for every B P B and x PMpB,Rq and

every y P B there is px, yq P P pR1q, therefore, x is the unique maximal point of B according

to R1.

Lemma 3.3. Let C : B Ñ 2X be a single-valued choice function. C is F -Pareto Rational-

izable if and only if it is F -team rationalizable.

Proof. (ñ) Lemma 3.1 guarantees that Π is F -consistent, then Proposition 3.1 guarantees

that there is a complete extension of Π, which is a fixed point of F pRq. Then, by Lemma

3.2 we know that MpB,Πq “ MpB,Rq for every B P B. Recall that MpB,Πq “ CpBq for

every B P B, hence, MpB,Rq “ CpBq for every B P B.

(ð) If there is a complete preference relation F pR˚q “ R˚ that extends RC , then assume

for all j P N Rj “ R˚ “ F pRjq. Hence, the Pareto relation coincides with R˚ and extends

RC .

(2) Sufficiency of internal and F -consistency of RC for team rationalizability follows

from Lemma 3.2 and Proposition 3.1. Therefore, we concentrate on the necessity of condi-

tions over RC .

We need to prove two separate conditions. First, we show that internal consistency is

necessary for F -team rationalizability of a single-valued joint choice function. Second, we

show that RC ĺ R˚ (for every R˚ which guarantees F -team rationalizability). This allows

us to claim that F -consistency is necessary, because F -team rationalizability implies that

there is a complete fixed point extension of RC , then RC is F -consistent (see Proposition

3.1).

Lemma 3.4. Let C : B Ñ 2X be a single-valued choice function and let F be a weakly
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expansive algebraic closure. If C : B Ñ 2X is F -team rationalizable, then RC satisfies

internal consistency.

Proof. Assume to the contrary there is B P B such that py, xq P P pRCpBqq and px, yq P RC .

The first claim implies that y P CpBq and x P B. At the same time, there is B1 P B such

that x P CpB1q and y P B1. Hence, there is no z P B which strictly dominates the y, at the

same time by completeness of R˚ this implies that py, zq P P pR˚q for every z P B. This

contradicts the fact that x P CpB1q, because y P B1 and py, xq P P pR˚q.

Before we prove the following lemma, let us make an observation: if C : B Ñ 2X is a

single-valued joint choice function and RC is internally consistent, then RC “ P pRCq. Note

that in general RCzP pRCq “ IpRCq; thus, the only contradiction which can appear to the

claim above is x, y P B and x, y P B1 for some B,B1 P B. Moreover, to make those points

indifferent, x has to be chosen from one set and y has to be chosen from a different set.

This directly implies a contradiction to internal consistency.

Lemma 3.5. Let C : B Ñ 2X be a single-valued choice function and let F be a weakly

expansive algebraic closure. If C : B Ñ 2X is F -team rationalizable, then RC ĺ R˚.

Proof. Recall that C : B Ñ 2X is a single valued and R˚ is a complete relation, therefore, for

every B P B, x “ CpBq and y P BzCpBq we have px, yq P P pR˚q, because R˚ is complete

and C : B Ñ 2X is single-valued. Note that this implies that P pRCq Ď P pR˚q. Recall

that F -team rationalizability implies internal consistency of RC (see Lemma 3.4), hence,

RC “ P pRCq Ď R˚. This completes the proof that RC ĺ R˚.

3.5.2 Proof of Corollary 3.2

As we previously mentioned, the only thing left to complete the proof of Corollary 3.2 is

that TIpRq is weakly expansive.

Lemma 3.6. TI : RÑ R is weakly expansive.
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Proof. Take a point px, yq P NpRq and consider relation R1 “ RYtpx, yqu. We need to show

that P´1pR1qXTIpR1q “ H. Assume to the contrary that there is pz, wq P P´1pR1qXTIpRq,

that is pw, zq P P pR1q.

Case 1: pw, zq ‰ px, yq. At the same time pz, wq P TIpR1qzR implies that there are

sequences S “ s1, . . . , sn, L1, . . . , Ln and α1, . . . , αn such that for each j “ 1, . . . , n α P r0, 1s

and pαsj`p1´αqzj , αsj`1`p1´αqzjq P R. Then, there is m such that sm “ x and sm`1 “ y.

So, we can reorder existing sequences in the following way:

py ` αm`1Lm`1, sm`2 ` αm`1Lm`1q, . . . , pz, wq, . . .

. . . , psm´1 ` αm´1Lm´1, x` αm´1Lm´1q

This implies that py, xq P TIpRq “ R, that is a contradiction to the fact, that px, yq P NpRq.

Case 2: pw, zq “ px, yq. Hence, py, xq P TIpR1q, this implies that there are sequences

S “ s1, . . . , sn, L1, . . . , Ln and α1, . . . , αn such that for each j “ 1, . . . , n α P r0, 1s and

pαsj ` p1 ´ αqzj , αsj`1 ` p1 ´ αqzjq P R. Then, if the sequence does not contain sj “ x

and sj`1 “ y we obtain the contradiction, since py, xq P R “ TIpRq (this implies that

px, yq R NpRq). If the sequence contains sj “ x, sj`1 “ y, then we can find a subsequence

from y to x, hence, py, xq P R “ TIpRq (this implies that px, yq R NpRq).

3.5.3 Proof of Corollary 3.3

Let a unitary revealed preference relation RE contain px, yq if and only if x “ xt and y P Bt.

Lemma 3.7. RE is internally consistent and T -consistent if and only if E satisfies SARP.

Proof can be found in Freer and Martinelli (2016).

Let us start by proving sufficiency of the SARP for strong collective rationalizability

with the following lemma.
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Lemma 3.8. If RE is internally and T -consistent then there is a decomposition such that

RC is internally and T -consistent.

Proof. Take an arbitrary decomposition for every x̂t for every xt (decomposition should be

similar for similar x). This allows us to construct a collective revealed preference relation

RC . Hence, let us show that RC is internally and T -consistent and apply Theorem 3.1.

Note that px̂, ŷq P RC if and only if px, yq P RE or x “ y “ xt for some t.

Assume there is a violation of internal consistency; that is, px̂, ŷq P RC and pŷ, x̂q P

P pRCpB
tqq. This implies that x “ xt for some t and y “ xs for some s and xs ‰ xt,

hence, both pairs have to belong to RE , but this contradicts the fact that RE is internally

consistent.

Assume there is a violation of T -consistency; then there is pŷ, x̂q P P pRCq (this implies

that py, xq P P pREq) and px̂, ŷq P T pRCq. The latter implies that there is a sequence

S “ ŝ1, . . . , ŝn such that pŝj , ŝj`1q P RC . This implies that psj , sj`1q P RE . Hence,

px, yq P T pREq contradicts the T -consistency of RE .

Let us move onto proving necessity. Note that Theorem 3.1 implies that if E exhibits

strong collective rationalizability, then there is a decomposition such that RC is internally

and T -consistent.

Lemma 3.9. RC is internally and T -consistent then RE is internally and T -consistent.

Proof. Recall that px̂, ŷq P RC if and only if px, yq P RE or x “ y “ xt for some t.

Assume there is a violation of internal consistency of RE , i.e. xs P Bt and xt P Bs for

some s ‰ t, this obviously implies violation of internal consistency for RC , because x̂s P Bt

and x̂t P Bs.

Assume there is a violation of T -consistency of RE , then there is a sequence S “

s1, . . . , sn such that sj`1 P B
j and sn P B1. Note that all elements of the sequence are

chosen points, therefore, there is a unique mappint between sj and ŝj , therefore, this causes

violation of T -consistency for RC .
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This concludes the proof.
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